SemaExpr.cpp revision 08062aaaa5e32a9a313109a53afc1e13d3689eb5
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/LiteralSupport.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Designator.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/ParsedTemplate.h"
39#include "clang/Sema/SemaFixItUtils.h"
40#include "clang/Sema/Template.h"
41using namespace clang;
42using namespace sema;
43
44
45/// \brief Determine whether the use of this declaration is valid, and
46/// emit any corresponding diagnostics.
47///
48/// This routine diagnoses various problems with referencing
49/// declarations that can occur when using a declaration. For example,
50/// it might warn if a deprecated or unavailable declaration is being
51/// used, or produce an error (and return true) if a C++0x deleted
52/// function is being used.
53///
54/// If IgnoreDeprecated is set to true, this should not warn about deprecated
55/// decls.
56///
57/// \returns true if there was an error (this declaration cannot be
58/// referenced), false otherwise.
59///
60bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
61                             const ObjCInterfaceDecl *UnknownObjCClass) {
62  if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
63    // If there were any diagnostics suppressed by template argument deduction,
64    // emit them now.
65    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
66      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
67    if (Pos != SuppressedDiagnostics.end()) {
68      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
69      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
70        Diag(Suppressed[I].first, Suppressed[I].second);
71
72      // Clear out the list of suppressed diagnostics, so that we don't emit
73      // them again for this specialization. However, we don't obsolete this
74      // entry from the table, because we want to avoid ever emitting these
75      // diagnostics again.
76      Suppressed.clear();
77    }
78  }
79
80  // See if this is an auto-typed variable whose initializer we are parsing.
81  if (ParsingInitForAutoVars.count(D)) {
82    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
83      << D->getDeclName();
84    return true;
85  }
86
87  // See if this is a deleted function.
88  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
89    if (FD->isDeleted()) {
90      Diag(Loc, diag::err_deleted_function_use);
91      Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
92      return true;
93    }
94  }
95
96  // See if this declaration is unavailable or deprecated.
97  std::string Message;
98  switch (D->getAvailability(&Message)) {
99  case AR_Available:
100  case AR_NotYetIntroduced:
101    break;
102
103  case AR_Deprecated:
104    EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
105    break;
106
107  case AR_Unavailable:
108    if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) {
109      if (Message.empty()) {
110        if (!UnknownObjCClass)
111          Diag(Loc, diag::err_unavailable) << D->getDeclName();
112        else
113          Diag(Loc, diag::warn_unavailable_fwdclass_message)
114               << D->getDeclName();
115      }
116      else
117        Diag(Loc, diag::err_unavailable_message)
118          << D->getDeclName() << Message;
119      Diag(D->getLocation(), diag::note_unavailable_here)
120        << isa<FunctionDecl>(D) << false;
121    }
122    break;
123  }
124
125  // Warn if this is used but marked unused.
126  if (D->hasAttr<UnusedAttr>())
127    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
128
129  return false;
130}
131
132/// \brief Retrieve the message suffix that should be added to a
133/// diagnostic complaining about the given function being deleted or
134/// unavailable.
135std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
136  // FIXME: C++0x implicitly-deleted special member functions could be
137  // detected here so that we could improve diagnostics to say, e.g.,
138  // "base class 'A' had a deleted copy constructor".
139  if (FD->isDeleted())
140    return std::string();
141
142  std::string Message;
143  if (FD->getAvailability(&Message))
144    return ": " + Message;
145
146  return std::string();
147}
148
149/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
150/// (and other functions in future), which have been declared with sentinel
151/// attribute. It warns if call does not have the sentinel argument.
152///
153void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
154                                 Expr **Args, unsigned NumArgs) {
155  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
156  if (!attr)
157    return;
158
159  int sentinelPos = attr->getSentinel();
160  int nullPos = attr->getNullPos();
161
162  unsigned int i = 0;
163  bool warnNotEnoughArgs = false;
164  int isMethod = 0;
165  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
166    // skip over named parameters.
167    ObjCMethodDecl::param_iterator P, E = MD->param_end();
168    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
169      if (nullPos)
170        --nullPos;
171      else
172        ++i;
173    }
174    warnNotEnoughArgs = (P != E || i >= NumArgs);
175    isMethod = 1;
176  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
177    // skip over named parameters.
178    ObjCMethodDecl::param_iterator P, E = FD->param_end();
179    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
180      if (nullPos)
181        --nullPos;
182      else
183        ++i;
184    }
185    warnNotEnoughArgs = (P != E || i >= NumArgs);
186  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
187    // block or function pointer call.
188    QualType Ty = V->getType();
189    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
190      const FunctionType *FT = Ty->isFunctionPointerType()
191      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
192      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
193      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
194        unsigned NumArgsInProto = Proto->getNumArgs();
195        unsigned k;
196        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
197          if (nullPos)
198            --nullPos;
199          else
200            ++i;
201        }
202        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
203      }
204      if (Ty->isBlockPointerType())
205        isMethod = 2;
206    } else
207      return;
208  } else
209    return;
210
211  if (warnNotEnoughArgs) {
212    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
213    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
214    return;
215  }
216  int sentinel = i;
217  while (sentinelPos > 0 && i < NumArgs-1) {
218    --sentinelPos;
219    ++i;
220  }
221  if (sentinelPos > 0) {
222    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
223    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
224    return;
225  }
226  while (i < NumArgs-1) {
227    ++i;
228    ++sentinel;
229  }
230  Expr *sentinelExpr = Args[sentinel];
231  if (!sentinelExpr) return;
232  if (sentinelExpr->isTypeDependent()) return;
233  if (sentinelExpr->isValueDependent()) return;
234
235  // nullptr_t is always treated as null.
236  if (sentinelExpr->getType()->isNullPtrType()) return;
237
238  if (sentinelExpr->getType()->isAnyPointerType() &&
239      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
240                                            Expr::NPC_ValueDependentIsNull))
241    return;
242
243  // Unfortunately, __null has type 'int'.
244  if (isa<GNUNullExpr>(sentinelExpr)) return;
245
246  SourceLocation MissingNilLoc
247    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
248  std::string NullValue;
249  if (isMethod && PP.getIdentifierInfo("nil")->hasMacroDefinition())
250    NullValue = "nil";
251  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
252    NullValue = "NULL";
253  else if (Context.getTypeSize(Context.IntTy)
254                                  == Context.getTypeSize(Context.getSizeType()))
255    NullValue = "0";
256  else
257    NullValue = "0L";
258
259  Diag(MissingNilLoc, diag::warn_missing_sentinel)
260    << isMethod
261    << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
262  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
263}
264
265SourceRange Sema::getExprRange(ExprTy *E) const {
266  Expr *Ex = (Expr *)E;
267  return Ex? Ex->getSourceRange() : SourceRange();
268}
269
270//===----------------------------------------------------------------------===//
271//  Standard Promotions and Conversions
272//===----------------------------------------------------------------------===//
273
274/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
275ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
276  QualType Ty = E->getType();
277  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
278
279  if (Ty->isFunctionType())
280    E = ImpCastExprToType(E, Context.getPointerType(Ty),
281                          CK_FunctionToPointerDecay).take();
282  else if (Ty->isArrayType()) {
283    // In C90 mode, arrays only promote to pointers if the array expression is
284    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
285    // type 'array of type' is converted to an expression that has type 'pointer
286    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
287    // that has type 'array of type' ...".  The relevant change is "an lvalue"
288    // (C90) to "an expression" (C99).
289    //
290    // C++ 4.2p1:
291    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
292    // T" can be converted to an rvalue of type "pointer to T".
293    //
294    if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
295      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
296                            CK_ArrayToPointerDecay).take();
297  }
298  return Owned(E);
299}
300
301static void CheckForNullPointerDereference(Sema &S, Expr *E) {
302  // Check to see if we are dereferencing a null pointer.  If so,
303  // and if not volatile-qualified, this is undefined behavior that the
304  // optimizer will delete, so warn about it.  People sometimes try to use this
305  // to get a deterministic trap and are surprised by clang's behavior.  This
306  // only handles the pattern "*null", which is a very syntactic check.
307  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
308    if (UO->getOpcode() == UO_Deref &&
309        UO->getSubExpr()->IgnoreParenCasts()->
310          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
311        !UO->getType().isVolatileQualified()) {
312    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
313                          S.PDiag(diag::warn_indirection_through_null)
314                            << UO->getSubExpr()->getSourceRange());
315    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
316                        S.PDiag(diag::note_indirection_through_null));
317  }
318}
319
320ExprResult Sema::DefaultLvalueConversion(Expr *E) {
321  // C++ [conv.lval]p1:
322  //   A glvalue of a non-function, non-array type T can be
323  //   converted to a prvalue.
324  if (!E->isGLValue()) return Owned(E);
325
326  QualType T = E->getType();
327  assert(!T.isNull() && "r-value conversion on typeless expression?");
328
329  // Create a load out of an ObjCProperty l-value, if necessary.
330  if (E->getObjectKind() == OK_ObjCProperty) {
331    ExprResult Res = ConvertPropertyForRValue(E);
332    if (Res.isInvalid())
333      return Owned(E);
334    E = Res.take();
335    if (!E->isGLValue())
336      return Owned(E);
337  }
338
339  // We don't want to throw lvalue-to-rvalue casts on top of
340  // expressions of certain types in C++.
341  if (getLangOptions().CPlusPlus &&
342      (E->getType() == Context.OverloadTy ||
343       T->isDependentType() ||
344       T->isRecordType()))
345    return Owned(E);
346
347  // The C standard is actually really unclear on this point, and
348  // DR106 tells us what the result should be but not why.  It's
349  // generally best to say that void types just doesn't undergo
350  // lvalue-to-rvalue at all.  Note that expressions of unqualified
351  // 'void' type are never l-values, but qualified void can be.
352  if (T->isVoidType())
353    return Owned(E);
354
355  CheckForNullPointerDereference(*this, E);
356
357  // C++ [conv.lval]p1:
358  //   [...] If T is a non-class type, the type of the prvalue is the
359  //   cv-unqualified version of T. Otherwise, the type of the
360  //   rvalue is T.
361  //
362  // C99 6.3.2.1p2:
363  //   If the lvalue has qualified type, the value has the unqualified
364  //   version of the type of the lvalue; otherwise, the value has the
365  //   type of the lvalue.
366  if (T.hasQualifiers())
367    T = T.getUnqualifiedType();
368
369  return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
370                                        E, 0, VK_RValue));
371}
372
373ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
374  ExprResult Res = DefaultFunctionArrayConversion(E);
375  if (Res.isInvalid())
376    return ExprError();
377  Res = DefaultLvalueConversion(Res.take());
378  if (Res.isInvalid())
379    return ExprError();
380  return move(Res);
381}
382
383
384/// UsualUnaryConversions - Performs various conversions that are common to most
385/// operators (C99 6.3). The conversions of array and function types are
386/// sometimes suppressed. For example, the array->pointer conversion doesn't
387/// apply if the array is an argument to the sizeof or address (&) operators.
388/// In these instances, this routine should *not* be called.
389ExprResult Sema::UsualUnaryConversions(Expr *E) {
390  // First, convert to an r-value.
391  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
392  if (Res.isInvalid())
393    return Owned(E);
394  E = Res.take();
395
396  QualType Ty = E->getType();
397  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
398
399  // Try to perform integral promotions if the object has a theoretically
400  // promotable type.
401  if (Ty->isIntegralOrUnscopedEnumerationType()) {
402    // C99 6.3.1.1p2:
403    //
404    //   The following may be used in an expression wherever an int or
405    //   unsigned int may be used:
406    //     - an object or expression with an integer type whose integer
407    //       conversion rank is less than or equal to the rank of int
408    //       and unsigned int.
409    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
410    //
411    //   If an int can represent all values of the original type, the
412    //   value is converted to an int; otherwise, it is converted to an
413    //   unsigned int. These are called the integer promotions. All
414    //   other types are unchanged by the integer promotions.
415
416    QualType PTy = Context.isPromotableBitField(E);
417    if (!PTy.isNull()) {
418      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
419      return Owned(E);
420    }
421    if (Ty->isPromotableIntegerType()) {
422      QualType PT = Context.getPromotedIntegerType(Ty);
423      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
424      return Owned(E);
425    }
426  }
427  return Owned(E);
428}
429
430/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
431/// do not have a prototype. Arguments that have type float are promoted to
432/// double. All other argument types are converted by UsualUnaryConversions().
433ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
434  QualType Ty = E->getType();
435  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
436
437  ExprResult Res = UsualUnaryConversions(E);
438  if (Res.isInvalid())
439    return Owned(E);
440  E = Res.take();
441
442  // If this is a 'float' (CVR qualified or typedef) promote to double.
443  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
444    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
445
446  // C++ performs lvalue-to-rvalue conversion as a default argument
447  // promotion, even on class types, but note:
448  //   C++11 [conv.lval]p2:
449  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
450  //     operand or a subexpression thereof the value contained in the
451  //     referenced object is not accessed. Otherwise, if the glvalue
452  //     has a class type, the conversion copy-initializes a temporary
453  //     of type T from the glvalue and the result of the conversion
454  //     is a prvalue for the temporary.
455  // FIXME: add some way to gate this entire thing for correctness in
456  // potentially potentially evaluated contexts.
457  if (getLangOptions().CPlusPlus && E->isGLValue() &&
458      ExprEvalContexts.back().Context != Unevaluated) {
459    ExprResult Temp = PerformCopyInitialization(
460                       InitializedEntity::InitializeTemporary(E->getType()),
461                                                E->getExprLoc(),
462                                                Owned(E));
463    if (Temp.isInvalid())
464      return ExprError();
465    E = Temp.get();
466  }
467
468  return Owned(E);
469}
470
471/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
472/// will warn if the resulting type is not a POD type, and rejects ObjC
473/// interfaces passed by value.
474ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
475                                                  FunctionDecl *FDecl) {
476  ExprResult ExprRes = CheckPlaceholderExpr(E);
477  if (ExprRes.isInvalid())
478    return ExprError();
479
480  ExprRes = DefaultArgumentPromotion(E);
481  if (ExprRes.isInvalid())
482    return ExprError();
483  E = ExprRes.take();
484
485  // Don't allow one to pass an Objective-C interface to a vararg.
486  if (E->getType()->isObjCObjectType() &&
487    DiagRuntimeBehavior(E->getLocStart(), 0,
488                        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
489                          << E->getType() << CT))
490    return ExprError();
491
492  if (!E->getType().isPODType(Context)) {
493    // C++0x [expr.call]p7:
494    //   Passing a potentially-evaluated argument of class type (Clause 9)
495    //   having a non-trivial copy constructor, a non-trivial move constructor,
496    //   or a non-trivial destructor, with no corresponding parameter,
497    //   is conditionally-supported with implementation-defined semantics.
498    bool TrivialEnough = false;
499    if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType())  {
500      if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
501        if (Record->hasTrivialCopyConstructor() &&
502            Record->hasTrivialMoveConstructor() &&
503            Record->hasTrivialDestructor())
504          TrivialEnough = true;
505      }
506    }
507
508    if (!TrivialEnough &&
509        getLangOptions().ObjCAutoRefCount &&
510        E->getType()->isObjCLifetimeType())
511      TrivialEnough = true;
512
513    if (TrivialEnough) {
514      // Nothing to diagnose. This is okay.
515    } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
516                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
517                            << getLangOptions().CPlusPlus0x << E->getType()
518                            << CT)) {
519      // Turn this into a trap.
520      CXXScopeSpec SS;
521      UnqualifiedId Name;
522      Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
523                         E->getLocStart());
524      ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
525      if (TrapFn.isInvalid())
526        return ExprError();
527
528      ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
529                                      MultiExprArg(), E->getLocEnd());
530      if (Call.isInvalid())
531        return ExprError();
532
533      ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
534                                    Call.get(), E);
535      if (Comma.isInvalid())
536        return ExprError();
537      E = Comma.get();
538    }
539  }
540
541  return Owned(E);
542}
543
544/// \brief Converts an integer to complex float type.  Helper function of
545/// UsualArithmeticConversions()
546///
547/// \return false if the integer expression is an integer type and is
548/// successfully converted to the complex type.
549static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &intExpr,
550                                                  ExprResult &complexExpr,
551                                                  QualType intTy,
552                                                  QualType complexTy,
553                                                  bool skipCast) {
554  if (intTy->isComplexType() || intTy->isRealFloatingType()) return true;
555  if (skipCast) return false;
556  if (intTy->isIntegerType()) {
557    QualType fpTy = cast<ComplexType>(complexTy)->getElementType();
558    intExpr = S.ImpCastExprToType(intExpr.take(), fpTy, CK_IntegralToFloating);
559    intExpr = S.ImpCastExprToType(intExpr.take(), complexTy,
560                                  CK_FloatingRealToComplex);
561  } else {
562    assert(intTy->isComplexIntegerType());
563    intExpr = S.ImpCastExprToType(intExpr.take(), complexTy,
564                                  CK_IntegralComplexToFloatingComplex);
565  }
566  return false;
567}
568
569/// \brief Takes two complex float types and converts them to the same type.
570/// Helper function of UsualArithmeticConversions()
571static QualType
572handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
573                                            ExprResult &RHS, QualType LHSType,
574                                            QualType RHSType,
575                                            bool isCompAssign) {
576  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
577
578  if (order < 0) {
579    // _Complex float -> _Complex double
580    if (!isCompAssign)
581      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
582    return RHSType;
583  }
584  if (order > 0)
585    // _Complex float -> _Complex double
586    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
587  return LHSType;
588}
589
590/// \brief Converts otherExpr to complex float and promotes complexExpr if
591/// necessary.  Helper function of UsualArithmeticConversions()
592static QualType handleOtherComplexFloatConversion(Sema &S,
593                                                  ExprResult &complexExpr,
594                                                  ExprResult &otherExpr,
595                                                  QualType complexTy,
596                                                  QualType otherTy,
597                                                  bool convertComplexExpr,
598                                                  bool convertOtherExpr) {
599  int order = S.Context.getFloatingTypeOrder(complexTy, otherTy);
600
601  // If just the complexExpr is complex, the otherExpr needs to be converted,
602  // and the complexExpr might need to be promoted.
603  if (order > 0) { // complexExpr is wider
604    // float -> _Complex double
605    if (convertOtherExpr) {
606      QualType fp = cast<ComplexType>(complexTy)->getElementType();
607      otherExpr = S.ImpCastExprToType(otherExpr.take(), fp, CK_FloatingCast);
608      otherExpr = S.ImpCastExprToType(otherExpr.take(), complexTy,
609                                      CK_FloatingRealToComplex);
610    }
611    return complexTy;
612  }
613
614  // otherTy is at least as wide.  Find its corresponding complex type.
615  QualType result = (order == 0 ? complexTy :
616                                  S.Context.getComplexType(otherTy));
617
618  // double -> _Complex double
619  if (convertOtherExpr)
620    otherExpr = S.ImpCastExprToType(otherExpr.take(), result,
621                                    CK_FloatingRealToComplex);
622
623  // _Complex float -> _Complex double
624  if (convertComplexExpr && order < 0)
625    complexExpr = S.ImpCastExprToType(complexExpr.take(), result,
626                                      CK_FloatingComplexCast);
627
628  return result;
629}
630
631/// \brief Handle arithmetic conversion with complex types.  Helper function of
632/// UsualArithmeticConversions()
633static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
634                                             ExprResult &RHS, QualType LHSType,
635                                             QualType RHSType,
636                                             bool isCompAssign) {
637  // if we have an integer operand, the result is the complex type.
638  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
639                                             /*skipCast*/false))
640    return LHSType;
641  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
642                                             /*skipCast*/isCompAssign))
643    return RHSType;
644
645  // This handles complex/complex, complex/float, or float/complex.
646  // When both operands are complex, the shorter operand is converted to the
647  // type of the longer, and that is the type of the result. This corresponds
648  // to what is done when combining two real floating-point operands.
649  // The fun begins when size promotion occur across type domains.
650  // From H&S 6.3.4: When one operand is complex and the other is a real
651  // floating-point type, the less precise type is converted, within it's
652  // real or complex domain, to the precision of the other type. For example,
653  // when combining a "long double" with a "double _Complex", the
654  // "double _Complex" is promoted to "long double _Complex".
655
656  bool LHSComplexFloat = LHSType->isComplexType();
657  bool RHSComplexFloat = RHSType->isComplexType();
658
659  // If both are complex, just cast to the more precise type.
660  if (LHSComplexFloat && RHSComplexFloat)
661    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
662                                                       LHSType, RHSType,
663                                                       isCompAssign);
664
665  // If only one operand is complex, promote it if necessary and convert the
666  // other operand to complex.
667  if (LHSComplexFloat)
668    return handleOtherComplexFloatConversion(
669        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!isCompAssign,
670        /*convertOtherExpr*/ true);
671
672  assert(RHSComplexFloat);
673  return handleOtherComplexFloatConversion(
674      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
675      /*convertOtherExpr*/ !isCompAssign);
676}
677
678/// \brief Hande arithmetic conversion from integer to float.  Helper function
679/// of UsualArithmeticConversions()
680static QualType handleIntToFloatConversion(Sema &S, ExprResult &floatExpr,
681                                           ExprResult &intExpr,
682                                           QualType floatTy, QualType intTy,
683                                           bool convertFloat, bool convertInt) {
684  if (intTy->isIntegerType()) {
685    if (convertInt)
686      // Convert intExpr to the lhs floating point type.
687      intExpr = S.ImpCastExprToType(intExpr.take(), floatTy,
688                                    CK_IntegralToFloating);
689    return floatTy;
690  }
691
692  // Convert both sides to the appropriate complex float.
693  assert(intTy->isComplexIntegerType());
694  QualType result = S.Context.getComplexType(floatTy);
695
696  // _Complex int -> _Complex float
697  if (convertInt)
698    intExpr = S.ImpCastExprToType(intExpr.take(), result,
699                                  CK_IntegralComplexToFloatingComplex);
700
701  // float -> _Complex float
702  if (convertFloat)
703    floatExpr = S.ImpCastExprToType(floatExpr.take(), result,
704                                    CK_FloatingRealToComplex);
705
706  return result;
707}
708
709/// \brief Handle arithmethic conversion with floating point types.  Helper
710/// function of UsualArithmeticConversions()
711static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
712                                      ExprResult &RHS, QualType LHSType,
713                                      QualType RHSType, bool isCompAssign) {
714  bool LHSFloat = LHSType->isRealFloatingType();
715  bool RHSFloat = RHSType->isRealFloatingType();
716
717  // If we have two real floating types, convert the smaller operand
718  // to the bigger result.
719  if (LHSFloat && RHSFloat) {
720    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
721    if (order > 0) {
722      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
723      return LHSType;
724    }
725
726    assert(order < 0 && "illegal float comparison");
727    if (!isCompAssign)
728      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
729    return RHSType;
730  }
731
732  if (LHSFloat)
733    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
734                                      /*convertFloat=*/!isCompAssign,
735                                      /*convertInt=*/ true);
736  assert(RHSFloat);
737  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
738                                    /*convertInt=*/ true,
739                                    /*convertFloat=*/!isCompAssign);
740}
741
742/// \brief Handle conversions with GCC complex int extension.  Helper function
743/// of UsualArithmeticConversions()
744// FIXME: if the operands are (int, _Complex long), we currently
745// don't promote the complex.  Also, signedness?
746static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
747                                           ExprResult &RHS, QualType LHSType,
748                                           QualType RHSType,
749                                           bool isCompAssign) {
750  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
751  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
752
753  if (LHSComplexInt && RHSComplexInt) {
754    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
755                                              RHSComplexInt->getElementType());
756    assert(order && "inequal types with equal element ordering");
757    if (order > 0) {
758      // _Complex int -> _Complex long
759      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
760      return LHSType;
761    }
762
763    if (!isCompAssign)
764      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
765    return RHSType;
766  }
767
768  if (LHSComplexInt) {
769    // int -> _Complex int
770    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
771    return LHSType;
772  }
773
774  assert(RHSComplexInt);
775  // int -> _Complex int
776  if (!isCompAssign)
777    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
778  return RHSType;
779}
780
781/// \brief Handle integer arithmetic conversions.  Helper function of
782/// UsualArithmeticConversions()
783static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
784                                        ExprResult &RHS, QualType LHSType,
785                                        QualType RHSType, bool isCompAssign) {
786  // The rules for this case are in C99 6.3.1.8
787  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
788  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
789  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
790  if (LHSSigned == RHSSigned) {
791    // Same signedness; use the higher-ranked type
792    if (order >= 0) {
793      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
794      return LHSType;
795    } else if (!isCompAssign)
796      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
797    return RHSType;
798  } else if (order != (LHSSigned ? 1 : -1)) {
799    // The unsigned type has greater than or equal rank to the
800    // signed type, so use the unsigned type
801    if (RHSSigned) {
802      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
803      return LHSType;
804    } else if (!isCompAssign)
805      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
806    return RHSType;
807  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
808    // The two types are different widths; if we are here, that
809    // means the signed type is larger than the unsigned type, so
810    // use the signed type.
811    if (LHSSigned) {
812      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
813      return LHSType;
814    } else if (!isCompAssign)
815      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
816    return RHSType;
817  } else {
818    // The signed type is higher-ranked than the unsigned type,
819    // but isn't actually any bigger (like unsigned int and long
820    // on most 32-bit systems).  Use the unsigned type corresponding
821    // to the signed type.
822    QualType result =
823      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
824    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
825    if (!isCompAssign)
826      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
827    return result;
828  }
829}
830
831/// UsualArithmeticConversions - Performs various conversions that are common to
832/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
833/// routine returns the first non-arithmetic type found. The client is
834/// responsible for emitting appropriate error diagnostics.
835/// FIXME: verify the conversion rules for "complex int" are consistent with
836/// GCC.
837QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
838                                          bool isCompAssign) {
839  if (!isCompAssign) {
840    LHS = UsualUnaryConversions(LHS.take());
841    if (LHS.isInvalid())
842      return QualType();
843  }
844
845  RHS = UsualUnaryConversions(RHS.take());
846  if (RHS.isInvalid())
847    return QualType();
848
849  // For conversion purposes, we ignore any qualifiers.
850  // For example, "const float" and "float" are equivalent.
851  QualType LHSType =
852    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
853  QualType RHSType =
854    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
855
856  // If both types are identical, no conversion is needed.
857  if (LHSType == RHSType)
858    return LHSType;
859
860  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
861  // The caller can deal with this (e.g. pointer + int).
862  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
863    return LHSType;
864
865  // Apply unary and bitfield promotions to the LHS's type.
866  QualType LHSUnpromotedType = LHSType;
867  if (LHSType->isPromotableIntegerType())
868    LHSType = Context.getPromotedIntegerType(LHSType);
869  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
870  if (!LHSBitfieldPromoteTy.isNull())
871    LHSType = LHSBitfieldPromoteTy;
872  if (LHSType != LHSUnpromotedType && !isCompAssign)
873    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
874
875  // If both types are identical, no conversion is needed.
876  if (LHSType == RHSType)
877    return LHSType;
878
879  // At this point, we have two different arithmetic types.
880
881  // Handle complex types first (C99 6.3.1.8p1).
882  if (LHSType->isComplexType() || RHSType->isComplexType())
883    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
884                                        isCompAssign);
885
886  // Now handle "real" floating types (i.e. float, double, long double).
887  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
888    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
889                                 isCompAssign);
890
891  // Handle GCC complex int extension.
892  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
893    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
894                                      isCompAssign);
895
896  // Finally, we have two differing integer types.
897  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
898                                 isCompAssign);
899}
900
901//===----------------------------------------------------------------------===//
902//  Semantic Analysis for various Expression Types
903//===----------------------------------------------------------------------===//
904
905
906ExprResult
907Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
908                                SourceLocation DefaultLoc,
909                                SourceLocation RParenLoc,
910                                Expr *ControllingExpr,
911                                MultiTypeArg types,
912                                MultiExprArg exprs) {
913  unsigned NumAssocs = types.size();
914  assert(NumAssocs == exprs.size());
915
916  ParsedType *ParsedTypes = types.release();
917  Expr **Exprs = exprs.release();
918
919  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
920  for (unsigned i = 0; i < NumAssocs; ++i) {
921    if (ParsedTypes[i])
922      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
923    else
924      Types[i] = 0;
925  }
926
927  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
928                                             ControllingExpr, Types, Exprs,
929                                             NumAssocs);
930  delete [] Types;
931  return ER;
932}
933
934ExprResult
935Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
936                                 SourceLocation DefaultLoc,
937                                 SourceLocation RParenLoc,
938                                 Expr *ControllingExpr,
939                                 TypeSourceInfo **Types,
940                                 Expr **Exprs,
941                                 unsigned NumAssocs) {
942  bool TypeErrorFound = false,
943       IsResultDependent = ControllingExpr->isTypeDependent(),
944       ContainsUnexpandedParameterPack
945         = ControllingExpr->containsUnexpandedParameterPack();
946
947  for (unsigned i = 0; i < NumAssocs; ++i) {
948    if (Exprs[i]->containsUnexpandedParameterPack())
949      ContainsUnexpandedParameterPack = true;
950
951    if (Types[i]) {
952      if (Types[i]->getType()->containsUnexpandedParameterPack())
953        ContainsUnexpandedParameterPack = true;
954
955      if (Types[i]->getType()->isDependentType()) {
956        IsResultDependent = true;
957      } else {
958        // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
959        // complete object type other than a variably modified type."
960        unsigned D = 0;
961        if (Types[i]->getType()->isIncompleteType())
962          D = diag::err_assoc_type_incomplete;
963        else if (!Types[i]->getType()->isObjectType())
964          D = diag::err_assoc_type_nonobject;
965        else if (Types[i]->getType()->isVariablyModifiedType())
966          D = diag::err_assoc_type_variably_modified;
967
968        if (D != 0) {
969          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
970            << Types[i]->getTypeLoc().getSourceRange()
971            << Types[i]->getType();
972          TypeErrorFound = true;
973        }
974
975        // C1X 6.5.1.1p2 "No two generic associations in the same generic
976        // selection shall specify compatible types."
977        for (unsigned j = i+1; j < NumAssocs; ++j)
978          if (Types[j] && !Types[j]->getType()->isDependentType() &&
979              Context.typesAreCompatible(Types[i]->getType(),
980                                         Types[j]->getType())) {
981            Diag(Types[j]->getTypeLoc().getBeginLoc(),
982                 diag::err_assoc_compatible_types)
983              << Types[j]->getTypeLoc().getSourceRange()
984              << Types[j]->getType()
985              << Types[i]->getType();
986            Diag(Types[i]->getTypeLoc().getBeginLoc(),
987                 diag::note_compat_assoc)
988              << Types[i]->getTypeLoc().getSourceRange()
989              << Types[i]->getType();
990            TypeErrorFound = true;
991          }
992      }
993    }
994  }
995  if (TypeErrorFound)
996    return ExprError();
997
998  // If we determined that the generic selection is result-dependent, don't
999  // try to compute the result expression.
1000  if (IsResultDependent)
1001    return Owned(new (Context) GenericSelectionExpr(
1002                   Context, KeyLoc, ControllingExpr,
1003                   Types, Exprs, NumAssocs, DefaultLoc,
1004                   RParenLoc, ContainsUnexpandedParameterPack));
1005
1006  SmallVector<unsigned, 1> CompatIndices;
1007  unsigned DefaultIndex = -1U;
1008  for (unsigned i = 0; i < NumAssocs; ++i) {
1009    if (!Types[i])
1010      DefaultIndex = i;
1011    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1012                                        Types[i]->getType()))
1013      CompatIndices.push_back(i);
1014  }
1015
1016  // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
1017  // type compatible with at most one of the types named in its generic
1018  // association list."
1019  if (CompatIndices.size() > 1) {
1020    // We strip parens here because the controlling expression is typically
1021    // parenthesized in macro definitions.
1022    ControllingExpr = ControllingExpr->IgnoreParens();
1023    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1024      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1025      << (unsigned) CompatIndices.size();
1026    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1027         E = CompatIndices.end(); I != E; ++I) {
1028      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1029           diag::note_compat_assoc)
1030        << Types[*I]->getTypeLoc().getSourceRange()
1031        << Types[*I]->getType();
1032    }
1033    return ExprError();
1034  }
1035
1036  // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
1037  // its controlling expression shall have type compatible with exactly one of
1038  // the types named in its generic association list."
1039  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1040    // We strip parens here because the controlling expression is typically
1041    // parenthesized in macro definitions.
1042    ControllingExpr = ControllingExpr->IgnoreParens();
1043    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1044      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1045    return ExprError();
1046  }
1047
1048  // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
1049  // type name that is compatible with the type of the controlling expression,
1050  // then the result expression of the generic selection is the expression
1051  // in that generic association. Otherwise, the result expression of the
1052  // generic selection is the expression in the default generic association."
1053  unsigned ResultIndex =
1054    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1055
1056  return Owned(new (Context) GenericSelectionExpr(
1057                 Context, KeyLoc, ControllingExpr,
1058                 Types, Exprs, NumAssocs, DefaultLoc,
1059                 RParenLoc, ContainsUnexpandedParameterPack,
1060                 ResultIndex));
1061}
1062
1063/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1064/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1065/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1066/// multiple tokens.  However, the common case is that StringToks points to one
1067/// string.
1068///
1069ExprResult
1070Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
1071  assert(NumStringToks && "Must have at least one string!");
1072
1073  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1074  if (Literal.hadError)
1075    return ExprError();
1076
1077  SmallVector<SourceLocation, 4> StringTokLocs;
1078  for (unsigned i = 0; i != NumStringToks; ++i)
1079    StringTokLocs.push_back(StringToks[i].getLocation());
1080
1081  QualType StrTy = Context.CharTy;
1082  if (Literal.isWide())
1083    StrTy = Context.getWCharType();
1084  else if (Literal.isUTF16())
1085    StrTy = Context.Char16Ty;
1086  else if (Literal.isUTF32())
1087    StrTy = Context.Char32Ty;
1088  else if (Literal.Pascal)
1089    StrTy = Context.UnsignedCharTy;
1090
1091  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1092  if (Literal.isWide())
1093    Kind = StringLiteral::Wide;
1094  else if (Literal.isUTF8())
1095    Kind = StringLiteral::UTF8;
1096  else if (Literal.isUTF16())
1097    Kind = StringLiteral::UTF16;
1098  else if (Literal.isUTF32())
1099    Kind = StringLiteral::UTF32;
1100
1101  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1102  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
1103    StrTy.addConst();
1104
1105  // Get an array type for the string, according to C99 6.4.5.  This includes
1106  // the nul terminator character as well as the string length for pascal
1107  // strings.
1108  StrTy = Context.getConstantArrayType(StrTy,
1109                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1110                                       ArrayType::Normal, 0);
1111
1112  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1113  return Owned(StringLiteral::Create(Context, Literal.GetString(),
1114                                     Kind, Literal.Pascal, StrTy,
1115                                     &StringTokLocs[0],
1116                                     StringTokLocs.size()));
1117}
1118
1119enum CaptureResult {
1120  /// No capture is required.
1121  CR_NoCapture,
1122
1123  /// A capture is required.
1124  CR_Capture,
1125
1126  /// A by-ref capture is required.
1127  CR_CaptureByRef,
1128
1129  /// An error occurred when trying to capture the given variable.
1130  CR_Error
1131};
1132
1133/// Diagnose an uncapturable value reference.
1134///
1135/// \param var - the variable referenced
1136/// \param DC - the context which we couldn't capture through
1137static CaptureResult
1138diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
1139                                   VarDecl *var, DeclContext *DC) {
1140  switch (S.ExprEvalContexts.back().Context) {
1141  case Sema::Unevaluated:
1142    // The argument will never be evaluated, so don't complain.
1143    return CR_NoCapture;
1144
1145  case Sema::PotentiallyEvaluated:
1146  case Sema::PotentiallyEvaluatedIfUsed:
1147    break;
1148
1149  case Sema::PotentiallyPotentiallyEvaluated:
1150    // FIXME: delay these!
1151    break;
1152  }
1153
1154  // Don't diagnose about capture if we're not actually in code right
1155  // now; in general, there are more appropriate places that will
1156  // diagnose this.
1157  if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
1158
1159  // Certain madnesses can happen with parameter declarations, which
1160  // we want to ignore.
1161  if (isa<ParmVarDecl>(var)) {
1162    // - If the parameter still belongs to the translation unit, then
1163    //   we're actually just using one parameter in the declaration of
1164    //   the next.  This is useful in e.g. VLAs.
1165    if (isa<TranslationUnitDecl>(var->getDeclContext()))
1166      return CR_NoCapture;
1167
1168    // - This particular madness can happen in ill-formed default
1169    //   arguments; claim it's okay and let downstream code handle it.
1170    if (S.CurContext == var->getDeclContext()->getParent())
1171      return CR_NoCapture;
1172  }
1173
1174  DeclarationName functionName;
1175  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
1176    functionName = fn->getDeclName();
1177  // FIXME: variable from enclosing block that we couldn't capture from!
1178
1179  S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
1180    << var->getIdentifier() << functionName;
1181  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
1182    << var->getIdentifier();
1183
1184  return CR_Error;
1185}
1186
1187/// There is a well-formed capture at a particular scope level;
1188/// propagate it through all the nested blocks.
1189static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
1190                                      const BlockDecl::Capture &capture) {
1191  VarDecl *var = capture.getVariable();
1192
1193  // Update all the inner blocks with the capture information.
1194  for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
1195         i != e; ++i) {
1196    BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
1197    innerBlock->Captures.push_back(
1198      BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
1199                         /*nested*/ true, capture.getCopyExpr()));
1200    innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
1201  }
1202
1203  return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
1204}
1205
1206/// shouldCaptureValueReference - Determine if a reference to the
1207/// given value in the current context requires a variable capture.
1208///
1209/// This also keeps the captures set in the BlockScopeInfo records
1210/// up-to-date.
1211static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
1212                                                 ValueDecl *value) {
1213  // Only variables ever require capture.
1214  VarDecl *var = dyn_cast<VarDecl>(value);
1215  if (!var) return CR_NoCapture;
1216
1217  // Fast path: variables from the current context never require capture.
1218  DeclContext *DC = S.CurContext;
1219  if (var->getDeclContext() == DC) return CR_NoCapture;
1220
1221  // Only variables with local storage require capture.
1222  // FIXME: What about 'const' variables in C++?
1223  if (!var->hasLocalStorage()) return CR_NoCapture;
1224
1225  // Otherwise, we need to capture.
1226
1227  unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
1228  do {
1229    // Only blocks (and eventually C++0x closures) can capture; other
1230    // scopes don't work.
1231    if (!isa<BlockDecl>(DC))
1232      return diagnoseUncapturableValueReference(S, loc, var, DC);
1233
1234    BlockScopeInfo *blockScope =
1235      cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1236    assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
1237
1238    // Check whether we've already captured it in this block.  If so,
1239    // we're done.
1240    if (unsigned indexPlus1 = blockScope->CaptureMap[var])
1241      return propagateCapture(S, functionScopesIndex,
1242                              blockScope->Captures[indexPlus1 - 1]);
1243
1244    functionScopesIndex--;
1245    DC = cast<BlockDecl>(DC)->getDeclContext();
1246  } while (var->getDeclContext() != DC);
1247
1248  // Okay, we descended all the way to the block that defines the variable.
1249  // Actually try to capture it.
1250  QualType type = var->getType();
1251
1252  // Prohibit variably-modified types.
1253  if (type->isVariablyModifiedType()) {
1254    S.Diag(loc, diag::err_ref_vm_type);
1255    S.Diag(var->getLocation(), diag::note_declared_at);
1256    return CR_Error;
1257  }
1258
1259  // Prohibit arrays, even in __block variables, but not references to
1260  // them.
1261  if (type->isArrayType()) {
1262    S.Diag(loc, diag::err_ref_array_type);
1263    S.Diag(var->getLocation(), diag::note_declared_at);
1264    return CR_Error;
1265  }
1266
1267  S.MarkDeclarationReferenced(loc, var);
1268
1269  // The BlocksAttr indicates the variable is bound by-reference.
1270  bool byRef = var->hasAttr<BlocksAttr>();
1271
1272  // Build a copy expression.
1273  Expr *copyExpr = 0;
1274  const RecordType *rtype;
1275  if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
1276      (rtype = type->getAs<RecordType>())) {
1277
1278    // The capture logic needs the destructor, so make sure we mark it.
1279    // Usually this is unnecessary because most local variables have
1280    // their destructors marked at declaration time, but parameters are
1281    // an exception because it's technically only the call site that
1282    // actually requires the destructor.
1283    if (isa<ParmVarDecl>(var))
1284      S.FinalizeVarWithDestructor(var, rtype);
1285
1286    // According to the blocks spec, the capture of a variable from
1287    // the stack requires a const copy constructor.  This is not true
1288    // of the copy/move done to move a __block variable to the heap.
1289    type.addConst();
1290
1291    Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
1292    ExprResult result =
1293      S.PerformCopyInitialization(
1294                      InitializedEntity::InitializeBlock(var->getLocation(),
1295                                                         type, false),
1296                                  loc, S.Owned(declRef));
1297
1298    // Build a full-expression copy expression if initialization
1299    // succeeded and used a non-trivial constructor.  Recover from
1300    // errors by pretending that the copy isn't necessary.
1301    if (!result.isInvalid() &&
1302        !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
1303      result = S.MaybeCreateExprWithCleanups(result);
1304      copyExpr = result.take();
1305    }
1306  }
1307
1308  // We're currently at the declarer; go back to the closure.
1309  functionScopesIndex++;
1310  BlockScopeInfo *blockScope =
1311    cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1312
1313  // Build a valid capture in this scope.
1314  blockScope->Captures.push_back(
1315                 BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
1316  blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
1317
1318  // Propagate that to inner captures if necessary.
1319  return propagateCapture(S, functionScopesIndex,
1320                          blockScope->Captures.back());
1321}
1322
1323static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
1324                                        const DeclarationNameInfo &NameInfo,
1325                                        bool byRef) {
1326  assert(isa<VarDecl>(vd) && "capturing non-variable");
1327
1328  VarDecl *var = cast<VarDecl>(vd);
1329  assert(var->hasLocalStorage() && "capturing non-local");
1330  assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
1331
1332  QualType exprType = var->getType().getNonReferenceType();
1333
1334  BlockDeclRefExpr *BDRE;
1335  if (!byRef) {
1336    // The variable will be bound by copy; make it const within the
1337    // closure, but record that this was done in the expression.
1338    bool constAdded = !exprType.isConstQualified();
1339    exprType.addConst();
1340
1341    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1342                                            NameInfo.getLoc(), false,
1343                                            constAdded);
1344  } else {
1345    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1346                                            NameInfo.getLoc(), true);
1347  }
1348
1349  return S.Owned(BDRE);
1350}
1351
1352ExprResult
1353Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1354                       SourceLocation Loc,
1355                       const CXXScopeSpec *SS) {
1356  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1357  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1358}
1359
1360/// BuildDeclRefExpr - Build an expression that references a
1361/// declaration that does not require a closure capture.
1362ExprResult
1363Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1364                       const DeclarationNameInfo &NameInfo,
1365                       const CXXScopeSpec *SS) {
1366  MarkDeclarationReferenced(NameInfo.getLoc(), D);
1367
1368  Expr *E = DeclRefExpr::Create(Context,
1369                                SS? SS->getWithLocInContext(Context)
1370                                  : NestedNameSpecifierLoc(),
1371                                D, NameInfo, Ty, VK);
1372
1373  // Just in case we're building an illegal pointer-to-member.
1374  if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
1375    E->setObjectKind(OK_BitField);
1376
1377  return Owned(E);
1378}
1379
1380/// Decomposes the given name into a DeclarationNameInfo, its location, and
1381/// possibly a list of template arguments.
1382///
1383/// If this produces template arguments, it is permitted to call
1384/// DecomposeTemplateName.
1385///
1386/// This actually loses a lot of source location information for
1387/// non-standard name kinds; we should consider preserving that in
1388/// some way.
1389void
1390Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1391                             TemplateArgumentListInfo &Buffer,
1392                             DeclarationNameInfo &NameInfo,
1393                             const TemplateArgumentListInfo *&TemplateArgs) {
1394  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1395    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1396    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1397
1398    ASTTemplateArgsPtr TemplateArgsPtr(*this,
1399                                       Id.TemplateId->getTemplateArgs(),
1400                                       Id.TemplateId->NumArgs);
1401    translateTemplateArguments(TemplateArgsPtr, Buffer);
1402    TemplateArgsPtr.release();
1403
1404    TemplateName TName = Id.TemplateId->Template.get();
1405    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1406    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1407    TemplateArgs = &Buffer;
1408  } else {
1409    NameInfo = GetNameFromUnqualifiedId(Id);
1410    TemplateArgs = 0;
1411  }
1412}
1413
1414/// Diagnose an empty lookup.
1415///
1416/// \return false if new lookup candidates were found
1417bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1418                               CorrectTypoContext CTC,
1419                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1420                               Expr **Args, unsigned NumArgs) {
1421  DeclarationName Name = R.getLookupName();
1422
1423  unsigned diagnostic = diag::err_undeclared_var_use;
1424  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1425  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1426      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1427      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1428    diagnostic = diag::err_undeclared_use;
1429    diagnostic_suggest = diag::err_undeclared_use_suggest;
1430  }
1431
1432  // If the original lookup was an unqualified lookup, fake an
1433  // unqualified lookup.  This is useful when (for example) the
1434  // original lookup would not have found something because it was a
1435  // dependent name.
1436  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1437       DC; DC = DC->getParent()) {
1438    if (isa<CXXRecordDecl>(DC)) {
1439      LookupQualifiedName(R, DC);
1440
1441      if (!R.empty()) {
1442        // Don't give errors about ambiguities in this lookup.
1443        R.suppressDiagnostics();
1444
1445        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1446        bool isInstance = CurMethod &&
1447                          CurMethod->isInstance() &&
1448                          DC == CurMethod->getParent();
1449
1450        // Give a code modification hint to insert 'this->'.
1451        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1452        // Actually quite difficult!
1453        if (isInstance) {
1454          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1455              CallsUndergoingInstantiation.back()->getCallee());
1456          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1457              CurMethod->getInstantiatedFromMemberFunction());
1458          if (DepMethod) {
1459            Diag(R.getNameLoc(), diagnostic) << Name
1460              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1461            QualType DepThisType = DepMethod->getThisType(Context);
1462            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1463                                       R.getNameLoc(), DepThisType, false);
1464            TemplateArgumentListInfo TList;
1465            if (ULE->hasExplicitTemplateArgs())
1466              ULE->copyTemplateArgumentsInto(TList);
1467
1468            CXXScopeSpec SS;
1469            SS.Adopt(ULE->getQualifierLoc());
1470            CXXDependentScopeMemberExpr *DepExpr =
1471                CXXDependentScopeMemberExpr::Create(
1472                    Context, DepThis, DepThisType, true, SourceLocation(),
1473                    SS.getWithLocInContext(Context), NULL,
1474                    R.getLookupNameInfo(),
1475                    ULE->hasExplicitTemplateArgs() ? &TList : 0);
1476            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1477          } else {
1478            // FIXME: we should be able to handle this case too. It is correct
1479            // to add this-> here. This is a workaround for PR7947.
1480            Diag(R.getNameLoc(), diagnostic) << Name;
1481          }
1482        } else {
1483          Diag(R.getNameLoc(), diagnostic) << Name;
1484        }
1485
1486        // Do we really want to note all of these?
1487        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1488          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1489
1490        // Tell the callee to try to recover.
1491        return false;
1492      }
1493
1494      R.clear();
1495    }
1496  }
1497
1498  // We didn't find anything, so try to correct for a typo.
1499  TypoCorrection Corrected;
1500  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1501                                    S, &SS, NULL, false, CTC))) {
1502    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
1503    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
1504    R.setLookupName(Corrected.getCorrection());
1505
1506    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1507      if (Corrected.isOverloaded()) {
1508        OverloadCandidateSet OCS(R.getNameLoc());
1509        OverloadCandidateSet::iterator Best;
1510        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1511                                        CDEnd = Corrected.end();
1512             CD != CDEnd; ++CD) {
1513          if (FunctionTemplateDecl *FTD =
1514                   dyn_cast<FunctionTemplateDecl>(*CD))
1515            AddTemplateOverloadCandidate(
1516                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1517                Args, NumArgs, OCS);
1518          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1519            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1520              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1521                                   Args, NumArgs, OCS);
1522        }
1523        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1524          case OR_Success:
1525            ND = Best->Function;
1526            break;
1527          default:
1528            break;
1529        }
1530      }
1531      R.addDecl(ND);
1532      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1533        if (SS.isEmpty())
1534          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1535            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1536        else
1537          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1538            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1539            << SS.getRange()
1540            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1541        if (ND)
1542          Diag(ND->getLocation(), diag::note_previous_decl)
1543            << CorrectedQuotedStr;
1544
1545        // Tell the callee to try to recover.
1546        return false;
1547      }
1548
1549      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1550        // FIXME: If we ended up with a typo for a type name or
1551        // Objective-C class name, we're in trouble because the parser
1552        // is in the wrong place to recover. Suggest the typo
1553        // correction, but don't make it a fix-it since we're not going
1554        // to recover well anyway.
1555        if (SS.isEmpty())
1556          Diag(R.getNameLoc(), diagnostic_suggest)
1557            << Name << CorrectedQuotedStr;
1558        else
1559          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1560            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1561            << SS.getRange();
1562
1563        // Don't try to recover; it won't work.
1564        return true;
1565      }
1566    } else {
1567      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1568      // because we aren't able to recover.
1569      if (SS.isEmpty())
1570        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1571      else
1572        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1573        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1574        << SS.getRange();
1575      return true;
1576    }
1577  }
1578  R.clear();
1579
1580  // Emit a special diagnostic for failed member lookups.
1581  // FIXME: computing the declaration context might fail here (?)
1582  if (!SS.isEmpty()) {
1583    Diag(R.getNameLoc(), diag::err_no_member)
1584      << Name << computeDeclContext(SS, false)
1585      << SS.getRange();
1586    return true;
1587  }
1588
1589  // Give up, we can't recover.
1590  Diag(R.getNameLoc(), diagnostic) << Name;
1591  return true;
1592}
1593
1594ExprResult Sema::ActOnIdExpression(Scope *S,
1595                                   CXXScopeSpec &SS,
1596                                   UnqualifiedId &Id,
1597                                   bool HasTrailingLParen,
1598                                   bool isAddressOfOperand) {
1599  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1600         "cannot be direct & operand and have a trailing lparen");
1601
1602  if (SS.isInvalid())
1603    return ExprError();
1604
1605  TemplateArgumentListInfo TemplateArgsBuffer;
1606
1607  // Decompose the UnqualifiedId into the following data.
1608  DeclarationNameInfo NameInfo;
1609  const TemplateArgumentListInfo *TemplateArgs;
1610  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1611
1612  DeclarationName Name = NameInfo.getName();
1613  IdentifierInfo *II = Name.getAsIdentifierInfo();
1614  SourceLocation NameLoc = NameInfo.getLoc();
1615
1616  // C++ [temp.dep.expr]p3:
1617  //   An id-expression is type-dependent if it contains:
1618  //     -- an identifier that was declared with a dependent type,
1619  //        (note: handled after lookup)
1620  //     -- a template-id that is dependent,
1621  //        (note: handled in BuildTemplateIdExpr)
1622  //     -- a conversion-function-id that specifies a dependent type,
1623  //     -- a nested-name-specifier that contains a class-name that
1624  //        names a dependent type.
1625  // Determine whether this is a member of an unknown specialization;
1626  // we need to handle these differently.
1627  bool DependentID = false;
1628  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1629      Name.getCXXNameType()->isDependentType()) {
1630    DependentID = true;
1631  } else if (SS.isSet()) {
1632    if (DeclContext *DC = computeDeclContext(SS, false)) {
1633      if (RequireCompleteDeclContext(SS, DC))
1634        return ExprError();
1635    } else {
1636      DependentID = true;
1637    }
1638  }
1639
1640  if (DependentID)
1641    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1642                                      TemplateArgs);
1643
1644  bool IvarLookupFollowUp = false;
1645  // Perform the required lookup.
1646  LookupResult R(*this, NameInfo,
1647                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1648                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1649  if (TemplateArgs) {
1650    // Lookup the template name again to correctly establish the context in
1651    // which it was found. This is really unfortunate as we already did the
1652    // lookup to determine that it was a template name in the first place. If
1653    // this becomes a performance hit, we can work harder to preserve those
1654    // results until we get here but it's likely not worth it.
1655    bool MemberOfUnknownSpecialization;
1656    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1657                       MemberOfUnknownSpecialization);
1658
1659    if (MemberOfUnknownSpecialization ||
1660        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1661      return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1662                                        TemplateArgs);
1663  } else {
1664    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1665    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1666
1667    // If the result might be in a dependent base class, this is a dependent
1668    // id-expression.
1669    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1670      return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1671                                        TemplateArgs);
1672
1673    // If this reference is in an Objective-C method, then we need to do
1674    // some special Objective-C lookup, too.
1675    if (IvarLookupFollowUp) {
1676      ExprResult E(LookupInObjCMethod(R, S, II, true));
1677      if (E.isInvalid())
1678        return ExprError();
1679
1680      if (Expr *Ex = E.takeAs<Expr>())
1681        return Owned(Ex);
1682
1683      // for further use, this must be set to false if in class method.
1684      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1685    }
1686  }
1687
1688  if (R.isAmbiguous())
1689    return ExprError();
1690
1691  // Determine whether this name might be a candidate for
1692  // argument-dependent lookup.
1693  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1694
1695  if (R.empty() && !ADL) {
1696    // Otherwise, this could be an implicitly declared function reference (legal
1697    // in C90, extension in C99, forbidden in C++).
1698    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1699      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1700      if (D) R.addDecl(D);
1701    }
1702
1703    // If this name wasn't predeclared and if this is not a function
1704    // call, diagnose the problem.
1705    if (R.empty()) {
1706      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1707        return ExprError();
1708
1709      assert(!R.empty() &&
1710             "DiagnoseEmptyLookup returned false but added no results");
1711
1712      // If we found an Objective-C instance variable, let
1713      // LookupInObjCMethod build the appropriate expression to
1714      // reference the ivar.
1715      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1716        R.clear();
1717        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1718        assert(E.isInvalid() || E.get());
1719        return move(E);
1720      }
1721    }
1722  }
1723
1724  // This is guaranteed from this point on.
1725  assert(!R.empty() || ADL);
1726
1727  // Check whether this might be a C++ implicit instance member access.
1728  // C++ [class.mfct.non-static]p3:
1729  //   When an id-expression that is not part of a class member access
1730  //   syntax and not used to form a pointer to member is used in the
1731  //   body of a non-static member function of class X, if name lookup
1732  //   resolves the name in the id-expression to a non-static non-type
1733  //   member of some class C, the id-expression is transformed into a
1734  //   class member access expression using (*this) as the
1735  //   postfix-expression to the left of the . operator.
1736  //
1737  // But we don't actually need to do this for '&' operands if R
1738  // resolved to a function or overloaded function set, because the
1739  // expression is ill-formed if it actually works out to be a
1740  // non-static member function:
1741  //
1742  // C++ [expr.ref]p4:
1743  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1744  //   [t]he expression can be used only as the left-hand operand of a
1745  //   member function call.
1746  //
1747  // There are other safeguards against such uses, but it's important
1748  // to get this right here so that we don't end up making a
1749  // spuriously dependent expression if we're inside a dependent
1750  // instance method.
1751  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1752    bool MightBeImplicitMember;
1753    if (!isAddressOfOperand)
1754      MightBeImplicitMember = true;
1755    else if (!SS.isEmpty())
1756      MightBeImplicitMember = false;
1757    else if (R.isOverloadedResult())
1758      MightBeImplicitMember = false;
1759    else if (R.isUnresolvableResult())
1760      MightBeImplicitMember = true;
1761    else
1762      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1763                              isa<IndirectFieldDecl>(R.getFoundDecl());
1764
1765    if (MightBeImplicitMember)
1766      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1767  }
1768
1769  if (TemplateArgs)
1770    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1771
1772  return BuildDeclarationNameExpr(SS, R, ADL);
1773}
1774
1775/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1776/// declaration name, generally during template instantiation.
1777/// There's a large number of things which don't need to be done along
1778/// this path.
1779ExprResult
1780Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1781                                        const DeclarationNameInfo &NameInfo) {
1782  DeclContext *DC;
1783  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1784    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1785
1786  if (RequireCompleteDeclContext(SS, DC))
1787    return ExprError();
1788
1789  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1790  LookupQualifiedName(R, DC);
1791
1792  if (R.isAmbiguous())
1793    return ExprError();
1794
1795  if (R.empty()) {
1796    Diag(NameInfo.getLoc(), diag::err_no_member)
1797      << NameInfo.getName() << DC << SS.getRange();
1798    return ExprError();
1799  }
1800
1801  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1802}
1803
1804/// LookupInObjCMethod - The parser has read a name in, and Sema has
1805/// detected that we're currently inside an ObjC method.  Perform some
1806/// additional lookup.
1807///
1808/// Ideally, most of this would be done by lookup, but there's
1809/// actually quite a lot of extra work involved.
1810///
1811/// Returns a null sentinel to indicate trivial success.
1812ExprResult
1813Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1814                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1815  SourceLocation Loc = Lookup.getNameLoc();
1816  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1817
1818  // There are two cases to handle here.  1) scoped lookup could have failed,
1819  // in which case we should look for an ivar.  2) scoped lookup could have
1820  // found a decl, but that decl is outside the current instance method (i.e.
1821  // a global variable).  In these two cases, we do a lookup for an ivar with
1822  // this name, if the lookup sucedes, we replace it our current decl.
1823
1824  // If we're in a class method, we don't normally want to look for
1825  // ivars.  But if we don't find anything else, and there's an
1826  // ivar, that's an error.
1827  bool IsClassMethod = CurMethod->isClassMethod();
1828
1829  bool LookForIvars;
1830  if (Lookup.empty())
1831    LookForIvars = true;
1832  else if (IsClassMethod)
1833    LookForIvars = false;
1834  else
1835    LookForIvars = (Lookup.isSingleResult() &&
1836                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1837  ObjCInterfaceDecl *IFace = 0;
1838  if (LookForIvars) {
1839    IFace = CurMethod->getClassInterface();
1840    ObjCInterfaceDecl *ClassDeclared;
1841    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1842      // Diagnose using an ivar in a class method.
1843      if (IsClassMethod)
1844        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1845                         << IV->getDeclName());
1846
1847      // If we're referencing an invalid decl, just return this as a silent
1848      // error node.  The error diagnostic was already emitted on the decl.
1849      if (IV->isInvalidDecl())
1850        return ExprError();
1851
1852      // Check if referencing a field with __attribute__((deprecated)).
1853      if (DiagnoseUseOfDecl(IV, Loc))
1854        return ExprError();
1855
1856      // Diagnose the use of an ivar outside of the declaring class.
1857      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1858          ClassDeclared != IFace)
1859        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1860
1861      // FIXME: This should use a new expr for a direct reference, don't
1862      // turn this into Self->ivar, just return a BareIVarExpr or something.
1863      IdentifierInfo &II = Context.Idents.get("self");
1864      UnqualifiedId SelfName;
1865      SelfName.setIdentifier(&II, SourceLocation());
1866      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1867      CXXScopeSpec SelfScopeSpec;
1868      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1869                                              SelfName, false, false);
1870      if (SelfExpr.isInvalid())
1871        return ExprError();
1872
1873      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1874      if (SelfExpr.isInvalid())
1875        return ExprError();
1876
1877      MarkDeclarationReferenced(Loc, IV);
1878      return Owned(new (Context)
1879                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1880                                   SelfExpr.take(), true, true));
1881    }
1882  } else if (CurMethod->isInstanceMethod()) {
1883    // We should warn if a local variable hides an ivar.
1884    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1885    ObjCInterfaceDecl *ClassDeclared;
1886    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1887      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1888          IFace == ClassDeclared)
1889        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1890    }
1891  }
1892
1893  if (Lookup.empty() && II && AllowBuiltinCreation) {
1894    // FIXME. Consolidate this with similar code in LookupName.
1895    if (unsigned BuiltinID = II->getBuiltinID()) {
1896      if (!(getLangOptions().CPlusPlus &&
1897            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1898        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1899                                           S, Lookup.isForRedeclaration(),
1900                                           Lookup.getNameLoc());
1901        if (D) Lookup.addDecl(D);
1902      }
1903    }
1904  }
1905  // Sentinel value saying that we didn't do anything special.
1906  return Owned((Expr*) 0);
1907}
1908
1909/// \brief Cast a base object to a member's actual type.
1910///
1911/// Logically this happens in three phases:
1912///
1913/// * First we cast from the base type to the naming class.
1914///   The naming class is the class into which we were looking
1915///   when we found the member;  it's the qualifier type if a
1916///   qualifier was provided, and otherwise it's the base type.
1917///
1918/// * Next we cast from the naming class to the declaring class.
1919///   If the member we found was brought into a class's scope by
1920///   a using declaration, this is that class;  otherwise it's
1921///   the class declaring the member.
1922///
1923/// * Finally we cast from the declaring class to the "true"
1924///   declaring class of the member.  This conversion does not
1925///   obey access control.
1926ExprResult
1927Sema::PerformObjectMemberConversion(Expr *From,
1928                                    NestedNameSpecifier *Qualifier,
1929                                    NamedDecl *FoundDecl,
1930                                    NamedDecl *Member) {
1931  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1932  if (!RD)
1933    return Owned(From);
1934
1935  QualType DestRecordType;
1936  QualType DestType;
1937  QualType FromRecordType;
1938  QualType FromType = From->getType();
1939  bool PointerConversions = false;
1940  if (isa<FieldDecl>(Member)) {
1941    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1942
1943    if (FromType->getAs<PointerType>()) {
1944      DestType = Context.getPointerType(DestRecordType);
1945      FromRecordType = FromType->getPointeeType();
1946      PointerConversions = true;
1947    } else {
1948      DestType = DestRecordType;
1949      FromRecordType = FromType;
1950    }
1951  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1952    if (Method->isStatic())
1953      return Owned(From);
1954
1955    DestType = Method->getThisType(Context);
1956    DestRecordType = DestType->getPointeeType();
1957
1958    if (FromType->getAs<PointerType>()) {
1959      FromRecordType = FromType->getPointeeType();
1960      PointerConversions = true;
1961    } else {
1962      FromRecordType = FromType;
1963      DestType = DestRecordType;
1964    }
1965  } else {
1966    // No conversion necessary.
1967    return Owned(From);
1968  }
1969
1970  if (DestType->isDependentType() || FromType->isDependentType())
1971    return Owned(From);
1972
1973  // If the unqualified types are the same, no conversion is necessary.
1974  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1975    return Owned(From);
1976
1977  SourceRange FromRange = From->getSourceRange();
1978  SourceLocation FromLoc = FromRange.getBegin();
1979
1980  ExprValueKind VK = CastCategory(From);
1981
1982  // C++ [class.member.lookup]p8:
1983  //   [...] Ambiguities can often be resolved by qualifying a name with its
1984  //   class name.
1985  //
1986  // If the member was a qualified name and the qualified referred to a
1987  // specific base subobject type, we'll cast to that intermediate type
1988  // first and then to the object in which the member is declared. That allows
1989  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1990  //
1991  //   class Base { public: int x; };
1992  //   class Derived1 : public Base { };
1993  //   class Derived2 : public Base { };
1994  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1995  //
1996  //   void VeryDerived::f() {
1997  //     x = 17; // error: ambiguous base subobjects
1998  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1999  //   }
2000  if (Qualifier) {
2001    QualType QType = QualType(Qualifier->getAsType(), 0);
2002    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2003    assert(QType->isRecordType() && "lookup done with non-record type");
2004
2005    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2006
2007    // In C++98, the qualifier type doesn't actually have to be a base
2008    // type of the object type, in which case we just ignore it.
2009    // Otherwise build the appropriate casts.
2010    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2011      CXXCastPath BasePath;
2012      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2013                                       FromLoc, FromRange, &BasePath))
2014        return ExprError();
2015
2016      if (PointerConversions)
2017        QType = Context.getPointerType(QType);
2018      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2019                               VK, &BasePath).take();
2020
2021      FromType = QType;
2022      FromRecordType = QRecordType;
2023
2024      // If the qualifier type was the same as the destination type,
2025      // we're done.
2026      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2027        return Owned(From);
2028    }
2029  }
2030
2031  bool IgnoreAccess = false;
2032
2033  // If we actually found the member through a using declaration, cast
2034  // down to the using declaration's type.
2035  //
2036  // Pointer equality is fine here because only one declaration of a
2037  // class ever has member declarations.
2038  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2039    assert(isa<UsingShadowDecl>(FoundDecl));
2040    QualType URecordType = Context.getTypeDeclType(
2041                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2042
2043    // We only need to do this if the naming-class to declaring-class
2044    // conversion is non-trivial.
2045    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2046      assert(IsDerivedFrom(FromRecordType, URecordType));
2047      CXXCastPath BasePath;
2048      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2049                                       FromLoc, FromRange, &BasePath))
2050        return ExprError();
2051
2052      QualType UType = URecordType;
2053      if (PointerConversions)
2054        UType = Context.getPointerType(UType);
2055      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2056                               VK, &BasePath).take();
2057      FromType = UType;
2058      FromRecordType = URecordType;
2059    }
2060
2061    // We don't do access control for the conversion from the
2062    // declaring class to the true declaring class.
2063    IgnoreAccess = true;
2064  }
2065
2066  CXXCastPath BasePath;
2067  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2068                                   FromLoc, FromRange, &BasePath,
2069                                   IgnoreAccess))
2070    return ExprError();
2071
2072  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2073                           VK, &BasePath);
2074}
2075
2076bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2077                                      const LookupResult &R,
2078                                      bool HasTrailingLParen) {
2079  // Only when used directly as the postfix-expression of a call.
2080  if (!HasTrailingLParen)
2081    return false;
2082
2083  // Never if a scope specifier was provided.
2084  if (SS.isSet())
2085    return false;
2086
2087  // Only in C++ or ObjC++.
2088  if (!getLangOptions().CPlusPlus)
2089    return false;
2090
2091  // Turn off ADL when we find certain kinds of declarations during
2092  // normal lookup:
2093  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2094    NamedDecl *D = *I;
2095
2096    // C++0x [basic.lookup.argdep]p3:
2097    //     -- a declaration of a class member
2098    // Since using decls preserve this property, we check this on the
2099    // original decl.
2100    if (D->isCXXClassMember())
2101      return false;
2102
2103    // C++0x [basic.lookup.argdep]p3:
2104    //     -- a block-scope function declaration that is not a
2105    //        using-declaration
2106    // NOTE: we also trigger this for function templates (in fact, we
2107    // don't check the decl type at all, since all other decl types
2108    // turn off ADL anyway).
2109    if (isa<UsingShadowDecl>(D))
2110      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2111    else if (D->getDeclContext()->isFunctionOrMethod())
2112      return false;
2113
2114    // C++0x [basic.lookup.argdep]p3:
2115    //     -- a declaration that is neither a function or a function
2116    //        template
2117    // And also for builtin functions.
2118    if (isa<FunctionDecl>(D)) {
2119      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2120
2121      // But also builtin functions.
2122      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2123        return false;
2124    } else if (!isa<FunctionTemplateDecl>(D))
2125      return false;
2126  }
2127
2128  return true;
2129}
2130
2131
2132/// Diagnoses obvious problems with the use of the given declaration
2133/// as an expression.  This is only actually called for lookups that
2134/// were not overloaded, and it doesn't promise that the declaration
2135/// will in fact be used.
2136static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2137  if (isa<TypedefNameDecl>(D)) {
2138    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2139    return true;
2140  }
2141
2142  if (isa<ObjCInterfaceDecl>(D)) {
2143    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2144    return true;
2145  }
2146
2147  if (isa<NamespaceDecl>(D)) {
2148    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2149    return true;
2150  }
2151
2152  return false;
2153}
2154
2155ExprResult
2156Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2157                               LookupResult &R,
2158                               bool NeedsADL) {
2159  // If this is a single, fully-resolved result and we don't need ADL,
2160  // just build an ordinary singleton decl ref.
2161  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2162    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2163                                    R.getFoundDecl());
2164
2165  // We only need to check the declaration if there's exactly one
2166  // result, because in the overloaded case the results can only be
2167  // functions and function templates.
2168  if (R.isSingleResult() &&
2169      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2170    return ExprError();
2171
2172  // Otherwise, just build an unresolved lookup expression.  Suppress
2173  // any lookup-related diagnostics; we'll hash these out later, when
2174  // we've picked a target.
2175  R.suppressDiagnostics();
2176
2177  UnresolvedLookupExpr *ULE
2178    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2179                                   SS.getWithLocInContext(Context),
2180                                   R.getLookupNameInfo(),
2181                                   NeedsADL, R.isOverloadedResult(),
2182                                   R.begin(), R.end());
2183
2184  return Owned(ULE);
2185}
2186
2187/// \brief Complete semantic analysis for a reference to the given declaration.
2188ExprResult
2189Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2190                               const DeclarationNameInfo &NameInfo,
2191                               NamedDecl *D) {
2192  assert(D && "Cannot refer to a NULL declaration");
2193  assert(!isa<FunctionTemplateDecl>(D) &&
2194         "Cannot refer unambiguously to a function template");
2195
2196  SourceLocation Loc = NameInfo.getLoc();
2197  if (CheckDeclInExpr(*this, Loc, D))
2198    return ExprError();
2199
2200  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2201    // Specifically diagnose references to class templates that are missing
2202    // a template argument list.
2203    Diag(Loc, diag::err_template_decl_ref)
2204      << Template << SS.getRange();
2205    Diag(Template->getLocation(), diag::note_template_decl_here);
2206    return ExprError();
2207  }
2208
2209  // Make sure that we're referring to a value.
2210  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2211  if (!VD) {
2212    Diag(Loc, diag::err_ref_non_value)
2213      << D << SS.getRange();
2214    Diag(D->getLocation(), diag::note_declared_at);
2215    return ExprError();
2216  }
2217
2218  // Check whether this declaration can be used. Note that we suppress
2219  // this check when we're going to perform argument-dependent lookup
2220  // on this function name, because this might not be the function
2221  // that overload resolution actually selects.
2222  if (DiagnoseUseOfDecl(VD, Loc))
2223    return ExprError();
2224
2225  // Only create DeclRefExpr's for valid Decl's.
2226  if (VD->isInvalidDecl())
2227    return ExprError();
2228
2229  // Handle members of anonymous structs and unions.  If we got here,
2230  // and the reference is to a class member indirect field, then this
2231  // must be the subject of a pointer-to-member expression.
2232  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2233    if (!indirectField->isCXXClassMember())
2234      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2235                                                      indirectField);
2236
2237  // If the identifier reference is inside a block, and it refers to a value
2238  // that is outside the block, create a BlockDeclRefExpr instead of a
2239  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
2240  // the block is formed.
2241  //
2242  // We do not do this for things like enum constants, global variables, etc,
2243  // as they do not get snapshotted.
2244  //
2245  switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
2246  case CR_Error:
2247    return ExprError();
2248
2249  case CR_Capture:
2250    assert(!SS.isSet() && "referenced local variable with scope specifier?");
2251    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
2252
2253  case CR_CaptureByRef:
2254    assert(!SS.isSet() && "referenced local variable with scope specifier?");
2255    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
2256
2257  case CR_NoCapture: {
2258    // If this reference is not in a block or if the referenced
2259    // variable is within the block, create a normal DeclRefExpr.
2260
2261    QualType type = VD->getType();
2262    ExprValueKind valueKind = VK_RValue;
2263
2264    switch (D->getKind()) {
2265    // Ignore all the non-ValueDecl kinds.
2266#define ABSTRACT_DECL(kind)
2267#define VALUE(type, base)
2268#define DECL(type, base) \
2269    case Decl::type:
2270#include "clang/AST/DeclNodes.inc"
2271      llvm_unreachable("invalid value decl kind");
2272      return ExprError();
2273
2274    // These shouldn't make it here.
2275    case Decl::ObjCAtDefsField:
2276    case Decl::ObjCIvar:
2277      llvm_unreachable("forming non-member reference to ivar?");
2278      return ExprError();
2279
2280    // Enum constants are always r-values and never references.
2281    // Unresolved using declarations are dependent.
2282    case Decl::EnumConstant:
2283    case Decl::UnresolvedUsingValue:
2284      valueKind = VK_RValue;
2285      break;
2286
2287    // Fields and indirect fields that got here must be for
2288    // pointer-to-member expressions; we just call them l-values for
2289    // internal consistency, because this subexpression doesn't really
2290    // exist in the high-level semantics.
2291    case Decl::Field:
2292    case Decl::IndirectField:
2293      assert(getLangOptions().CPlusPlus &&
2294             "building reference to field in C?");
2295
2296      // These can't have reference type in well-formed programs, but
2297      // for internal consistency we do this anyway.
2298      type = type.getNonReferenceType();
2299      valueKind = VK_LValue;
2300      break;
2301
2302    // Non-type template parameters are either l-values or r-values
2303    // depending on the type.
2304    case Decl::NonTypeTemplateParm: {
2305      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2306        type = reftype->getPointeeType();
2307        valueKind = VK_LValue; // even if the parameter is an r-value reference
2308        break;
2309      }
2310
2311      // For non-references, we need to strip qualifiers just in case
2312      // the template parameter was declared as 'const int' or whatever.
2313      valueKind = VK_RValue;
2314      type = type.getUnqualifiedType();
2315      break;
2316    }
2317
2318    case Decl::Var:
2319      // In C, "extern void blah;" is valid and is an r-value.
2320      if (!getLangOptions().CPlusPlus &&
2321          !type.hasQualifiers() &&
2322          type->isVoidType()) {
2323        valueKind = VK_RValue;
2324        break;
2325      }
2326      // fallthrough
2327
2328    case Decl::ImplicitParam:
2329    case Decl::ParmVar:
2330      // These are always l-values.
2331      valueKind = VK_LValue;
2332      type = type.getNonReferenceType();
2333      break;
2334
2335    case Decl::Function: {
2336      const FunctionType *fty = type->castAs<FunctionType>();
2337
2338      // If we're referring to a function with an __unknown_anytype
2339      // result type, make the entire expression __unknown_anytype.
2340      if (fty->getResultType() == Context.UnknownAnyTy) {
2341        type = Context.UnknownAnyTy;
2342        valueKind = VK_RValue;
2343        break;
2344      }
2345
2346      // Functions are l-values in C++.
2347      if (getLangOptions().CPlusPlus) {
2348        valueKind = VK_LValue;
2349        break;
2350      }
2351
2352      // C99 DR 316 says that, if a function type comes from a
2353      // function definition (without a prototype), that type is only
2354      // used for checking compatibility. Therefore, when referencing
2355      // the function, we pretend that we don't have the full function
2356      // type.
2357      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2358          isa<FunctionProtoType>(fty))
2359        type = Context.getFunctionNoProtoType(fty->getResultType(),
2360                                              fty->getExtInfo());
2361
2362      // Functions are r-values in C.
2363      valueKind = VK_RValue;
2364      break;
2365    }
2366
2367    case Decl::CXXMethod:
2368      // If we're referring to a method with an __unknown_anytype
2369      // result type, make the entire expression __unknown_anytype.
2370      // This should only be possible with a type written directly.
2371      if (const FunctionProtoType *proto
2372            = dyn_cast<FunctionProtoType>(VD->getType()))
2373        if (proto->getResultType() == Context.UnknownAnyTy) {
2374          type = Context.UnknownAnyTy;
2375          valueKind = VK_RValue;
2376          break;
2377        }
2378
2379      // C++ methods are l-values if static, r-values if non-static.
2380      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2381        valueKind = VK_LValue;
2382        break;
2383      }
2384      // fallthrough
2385
2386    case Decl::CXXConversion:
2387    case Decl::CXXDestructor:
2388    case Decl::CXXConstructor:
2389      valueKind = VK_RValue;
2390      break;
2391    }
2392
2393    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2394  }
2395
2396  }
2397
2398  llvm_unreachable("unknown capture result");
2399  return ExprError();
2400}
2401
2402ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2403  PredefinedExpr::IdentType IT;
2404
2405  switch (Kind) {
2406  default: assert(0 && "Unknown simple primary expr!");
2407  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2408  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2409  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2410  }
2411
2412  // Pre-defined identifiers are of type char[x], where x is the length of the
2413  // string.
2414
2415  Decl *currentDecl = getCurFunctionOrMethodDecl();
2416  if (!currentDecl && getCurBlock())
2417    currentDecl = getCurBlock()->TheDecl;
2418  if (!currentDecl) {
2419    Diag(Loc, diag::ext_predef_outside_function);
2420    currentDecl = Context.getTranslationUnitDecl();
2421  }
2422
2423  QualType ResTy;
2424  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2425    ResTy = Context.DependentTy;
2426  } else {
2427    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2428
2429    llvm::APInt LengthI(32, Length + 1);
2430    ResTy = Context.CharTy.withConst();
2431    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2432  }
2433  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2434}
2435
2436ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
2437  llvm::SmallString<16> CharBuffer;
2438  bool Invalid = false;
2439  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2440  if (Invalid)
2441    return ExprError();
2442
2443  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2444                            PP, Tok.getKind());
2445  if (Literal.hadError())
2446    return ExprError();
2447
2448  QualType Ty;
2449  if (!getLangOptions().CPlusPlus)
2450    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
2451  else if (Literal.isWide())
2452    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
2453  else if (Literal.isUTF16())
2454    Ty = Context.Char16Ty; // u'x' -> char16_t in C++0x.
2455  else if (Literal.isUTF32())
2456    Ty = Context.Char32Ty; // U'x' -> char32_t in C++0x.
2457  else if (Literal.isMultiChar())
2458    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
2459  else
2460    Ty = Context.CharTy;  // 'x' -> char in C++
2461
2462  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2463  if (Literal.isWide())
2464    Kind = CharacterLiteral::Wide;
2465  else if (Literal.isUTF16())
2466    Kind = CharacterLiteral::UTF16;
2467  else if (Literal.isUTF32())
2468    Kind = CharacterLiteral::UTF32;
2469
2470  return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2471                                              Tok.getLocation()));
2472}
2473
2474ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
2475  // Fast path for a single digit (which is quite common).  A single digit
2476  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2477  if (Tok.getLength() == 1) {
2478    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2479    unsigned IntSize = Context.getTargetInfo().getIntWidth();
2480    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
2481                    Context.IntTy, Tok.getLocation()));
2482  }
2483
2484  llvm::SmallString<512> IntegerBuffer;
2485  // Add padding so that NumericLiteralParser can overread by one character.
2486  IntegerBuffer.resize(Tok.getLength()+1);
2487  const char *ThisTokBegin = &IntegerBuffer[0];
2488
2489  // Get the spelling of the token, which eliminates trigraphs, etc.
2490  bool Invalid = false;
2491  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2492  if (Invalid)
2493    return ExprError();
2494
2495  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2496                               Tok.getLocation(), PP);
2497  if (Literal.hadError)
2498    return ExprError();
2499
2500  Expr *Res;
2501
2502  if (Literal.isFloatingLiteral()) {
2503    QualType Ty;
2504    if (Literal.isFloat)
2505      Ty = Context.FloatTy;
2506    else if (!Literal.isLong)
2507      Ty = Context.DoubleTy;
2508    else
2509      Ty = Context.LongDoubleTy;
2510
2511    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
2512
2513    using llvm::APFloat;
2514    APFloat Val(Format);
2515
2516    APFloat::opStatus result = Literal.GetFloatValue(Val);
2517
2518    // Overflow is always an error, but underflow is only an error if
2519    // we underflowed to zero (APFloat reports denormals as underflow).
2520    if ((result & APFloat::opOverflow) ||
2521        ((result & APFloat::opUnderflow) && Val.isZero())) {
2522      unsigned diagnostic;
2523      llvm::SmallString<20> buffer;
2524      if (result & APFloat::opOverflow) {
2525        diagnostic = diag::warn_float_overflow;
2526        APFloat::getLargest(Format).toString(buffer);
2527      } else {
2528        diagnostic = diag::warn_float_underflow;
2529        APFloat::getSmallest(Format).toString(buffer);
2530      }
2531
2532      Diag(Tok.getLocation(), diagnostic)
2533        << Ty
2534        << StringRef(buffer.data(), buffer.size());
2535    }
2536
2537    bool isExact = (result == APFloat::opOK);
2538    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2539
2540    if (Ty == Context.DoubleTy) {
2541      if (getLangOptions().SinglePrecisionConstants) {
2542        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2543      } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2544        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2545        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2546      }
2547    }
2548  } else if (!Literal.isIntegerLiteral()) {
2549    return ExprError();
2550  } else {
2551    QualType Ty;
2552
2553    // long long is a C99 feature.
2554    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2555        Literal.isLongLong)
2556      Diag(Tok.getLocation(), diag::ext_longlong);
2557
2558    // Get the value in the widest-possible width.
2559    llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
2560
2561    if (Literal.GetIntegerValue(ResultVal)) {
2562      // If this value didn't fit into uintmax_t, warn and force to ull.
2563      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2564      Ty = Context.UnsignedLongLongTy;
2565      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2566             "long long is not intmax_t?");
2567    } else {
2568      // If this value fits into a ULL, try to figure out what else it fits into
2569      // according to the rules of C99 6.4.4.1p5.
2570
2571      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2572      // be an unsigned int.
2573      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2574
2575      // Check from smallest to largest, picking the smallest type we can.
2576      unsigned Width = 0;
2577      if (!Literal.isLong && !Literal.isLongLong) {
2578        // Are int/unsigned possibilities?
2579        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2580
2581        // Does it fit in a unsigned int?
2582        if (ResultVal.isIntN(IntSize)) {
2583          // Does it fit in a signed int?
2584          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2585            Ty = Context.IntTy;
2586          else if (AllowUnsigned)
2587            Ty = Context.UnsignedIntTy;
2588          Width = IntSize;
2589        }
2590      }
2591
2592      // Are long/unsigned long possibilities?
2593      if (Ty.isNull() && !Literal.isLongLong) {
2594        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2595
2596        // Does it fit in a unsigned long?
2597        if (ResultVal.isIntN(LongSize)) {
2598          // Does it fit in a signed long?
2599          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2600            Ty = Context.LongTy;
2601          else if (AllowUnsigned)
2602            Ty = Context.UnsignedLongTy;
2603          Width = LongSize;
2604        }
2605      }
2606
2607      // Finally, check long long if needed.
2608      if (Ty.isNull()) {
2609        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2610
2611        // Does it fit in a unsigned long long?
2612        if (ResultVal.isIntN(LongLongSize)) {
2613          // Does it fit in a signed long long?
2614          // To be compatible with MSVC, hex integer literals ending with the
2615          // LL or i64 suffix are always signed in Microsoft mode.
2616          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2617              (getLangOptions().Microsoft && Literal.isLongLong)))
2618            Ty = Context.LongLongTy;
2619          else if (AllowUnsigned)
2620            Ty = Context.UnsignedLongLongTy;
2621          Width = LongLongSize;
2622        }
2623      }
2624
2625      // If we still couldn't decide a type, we probably have something that
2626      // does not fit in a signed long long, but has no U suffix.
2627      if (Ty.isNull()) {
2628        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2629        Ty = Context.UnsignedLongLongTy;
2630        Width = Context.getTargetInfo().getLongLongWidth();
2631      }
2632
2633      if (ResultVal.getBitWidth() != Width)
2634        ResultVal = ResultVal.trunc(Width);
2635    }
2636    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2637  }
2638
2639  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2640  if (Literal.isImaginary)
2641    Res = new (Context) ImaginaryLiteral(Res,
2642                                        Context.getComplexType(Res->getType()));
2643
2644  return Owned(Res);
2645}
2646
2647ExprResult Sema::ActOnParenExpr(SourceLocation L,
2648                                              SourceLocation R, Expr *E) {
2649  assert((E != 0) && "ActOnParenExpr() missing expr");
2650  return Owned(new (Context) ParenExpr(L, R, E));
2651}
2652
2653static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2654                                         SourceLocation Loc,
2655                                         SourceRange ArgRange) {
2656  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2657  // scalar or vector data type argument..."
2658  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2659  // type (C99 6.2.5p18) or void.
2660  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2661    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2662      << T << ArgRange;
2663    return true;
2664  }
2665
2666  assert((T->isVoidType() || !T->isIncompleteType()) &&
2667         "Scalar types should always be complete");
2668  return false;
2669}
2670
2671static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2672                                           SourceLocation Loc,
2673                                           SourceRange ArgRange,
2674                                           UnaryExprOrTypeTrait TraitKind) {
2675  // C99 6.5.3.4p1:
2676  if (T->isFunctionType()) {
2677    // alignof(function) is allowed as an extension.
2678    if (TraitKind == UETT_SizeOf)
2679      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2680    return false;
2681  }
2682
2683  // Allow sizeof(void)/alignof(void) as an extension.
2684  if (T->isVoidType()) {
2685    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2686    return false;
2687  }
2688
2689  return true;
2690}
2691
2692static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2693                                             SourceLocation Loc,
2694                                             SourceRange ArgRange,
2695                                             UnaryExprOrTypeTrait TraitKind) {
2696  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2697  if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2698    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2699      << T << (TraitKind == UETT_SizeOf)
2700      << ArgRange;
2701    return true;
2702  }
2703
2704  return false;
2705}
2706
2707/// \brief Check the constrains on expression operands to unary type expression
2708/// and type traits.
2709///
2710/// Completes any types necessary and validates the constraints on the operand
2711/// expression. The logic mostly mirrors the type-based overload, but may modify
2712/// the expression as it completes the type for that expression through template
2713/// instantiation, etc.
2714bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
2715                                            UnaryExprOrTypeTrait ExprKind) {
2716  QualType ExprTy = Op->getType();
2717
2718  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2719  //   the result is the size of the referenced type."
2720  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2721  //   result shall be the alignment of the referenced type."
2722  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2723    ExprTy = Ref->getPointeeType();
2724
2725  if (ExprKind == UETT_VecStep)
2726    return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
2727                                        Op->getSourceRange());
2728
2729  // Whitelist some types as extensions
2730  if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
2731                                      Op->getSourceRange(), ExprKind))
2732    return false;
2733
2734  if (RequireCompleteExprType(Op,
2735                              PDiag(diag::err_sizeof_alignof_incomplete_type)
2736                              << ExprKind << Op->getSourceRange(),
2737                              std::make_pair(SourceLocation(), PDiag(0))))
2738    return true;
2739
2740  // Completeing the expression's type may have changed it.
2741  ExprTy = Op->getType();
2742  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2743    ExprTy = Ref->getPointeeType();
2744
2745  if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
2746                                       Op->getSourceRange(), ExprKind))
2747    return true;
2748
2749  if (ExprKind == UETT_SizeOf) {
2750    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
2751      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2752        QualType OType = PVD->getOriginalType();
2753        QualType Type = PVD->getType();
2754        if (Type->isPointerType() && OType->isArrayType()) {
2755          Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
2756            << Type << OType;
2757          Diag(PVD->getLocation(), diag::note_declared_at);
2758        }
2759      }
2760    }
2761  }
2762
2763  return false;
2764}
2765
2766/// \brief Check the constraints on operands to unary expression and type
2767/// traits.
2768///
2769/// This will complete any types necessary, and validate the various constraints
2770/// on those operands.
2771///
2772/// The UsualUnaryConversions() function is *not* called by this routine.
2773/// C99 6.3.2.1p[2-4] all state:
2774///   Except when it is the operand of the sizeof operator ...
2775///
2776/// C++ [expr.sizeof]p4
2777///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2778///   standard conversions are not applied to the operand of sizeof.
2779///
2780/// This policy is followed for all of the unary trait expressions.
2781bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
2782                                            SourceLocation OpLoc,
2783                                            SourceRange ExprRange,
2784                                            UnaryExprOrTypeTrait ExprKind) {
2785  if (exprType->isDependentType())
2786    return false;
2787
2788  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2789  //   the result is the size of the referenced type."
2790  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2791  //   result shall be the alignment of the referenced type."
2792  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2793    exprType = Ref->getPointeeType();
2794
2795  if (ExprKind == UETT_VecStep)
2796    return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
2797
2798  // Whitelist some types as extensions
2799  if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
2800                                      ExprKind))
2801    return false;
2802
2803  if (RequireCompleteType(OpLoc, exprType,
2804                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2805                          << ExprKind << ExprRange))
2806    return true;
2807
2808  if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
2809                                       ExprKind))
2810    return true;
2811
2812  return false;
2813}
2814
2815static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2816  E = E->IgnoreParens();
2817
2818  // alignof decl is always ok.
2819  if (isa<DeclRefExpr>(E))
2820    return false;
2821
2822  // Cannot know anything else if the expression is dependent.
2823  if (E->isTypeDependent())
2824    return false;
2825
2826  if (E->getBitField()) {
2827    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2828       << 1 << E->getSourceRange();
2829    return true;
2830  }
2831
2832  // Alignment of a field access is always okay, so long as it isn't a
2833  // bit-field.
2834  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2835    if (isa<FieldDecl>(ME->getMemberDecl()))
2836      return false;
2837
2838  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2839}
2840
2841bool Sema::CheckVecStepExpr(Expr *E) {
2842  E = E->IgnoreParens();
2843
2844  // Cannot know anything else if the expression is dependent.
2845  if (E->isTypeDependent())
2846    return false;
2847
2848  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2849}
2850
2851/// \brief Build a sizeof or alignof expression given a type operand.
2852ExprResult
2853Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2854                                     SourceLocation OpLoc,
2855                                     UnaryExprOrTypeTrait ExprKind,
2856                                     SourceRange R) {
2857  if (!TInfo)
2858    return ExprError();
2859
2860  QualType T = TInfo->getType();
2861
2862  if (!T->isDependentType() &&
2863      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2864    return ExprError();
2865
2866  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2867  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2868                                                      Context.getSizeType(),
2869                                                      OpLoc, R.getEnd()));
2870}
2871
2872/// \brief Build a sizeof or alignof expression given an expression
2873/// operand.
2874ExprResult
2875Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
2876                                     UnaryExprOrTypeTrait ExprKind) {
2877  ExprResult PE = CheckPlaceholderExpr(E);
2878  if (PE.isInvalid())
2879    return ExprError();
2880
2881  E = PE.get();
2882
2883  // Verify that the operand is valid.
2884  bool isInvalid = false;
2885  if (E->isTypeDependent()) {
2886    // Delay type-checking for type-dependent expressions.
2887  } else if (ExprKind == UETT_AlignOf) {
2888    isInvalid = CheckAlignOfExpr(*this, E);
2889  } else if (ExprKind == UETT_VecStep) {
2890    isInvalid = CheckVecStepExpr(E);
2891  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2892    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
2893    isInvalid = true;
2894  } else {
2895    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
2896  }
2897
2898  if (isInvalid)
2899    return ExprError();
2900
2901  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2902  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
2903      ExprKind, E, Context.getSizeType(), OpLoc,
2904      E->getSourceRange().getEnd()));
2905}
2906
2907/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
2908/// expr and the same for @c alignof and @c __alignof
2909/// Note that the ArgRange is invalid if isType is false.
2910ExprResult
2911Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
2912                                    UnaryExprOrTypeTrait ExprKind, bool isType,
2913                                    void *TyOrEx, const SourceRange &ArgRange) {
2914  // If error parsing type, ignore.
2915  if (TyOrEx == 0) return ExprError();
2916
2917  if (isType) {
2918    TypeSourceInfo *TInfo;
2919    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2920    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
2921  }
2922
2923  Expr *ArgEx = (Expr *)TyOrEx;
2924  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
2925  return move(Result);
2926}
2927
2928static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
2929                                     bool isReal) {
2930  if (V.get()->isTypeDependent())
2931    return S.Context.DependentTy;
2932
2933  // _Real and _Imag are only l-values for normal l-values.
2934  if (V.get()->getObjectKind() != OK_Ordinary) {
2935    V = S.DefaultLvalueConversion(V.take());
2936    if (V.isInvalid())
2937      return QualType();
2938  }
2939
2940  // These operators return the element type of a complex type.
2941  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
2942    return CT->getElementType();
2943
2944  // Otherwise they pass through real integer and floating point types here.
2945  if (V.get()->getType()->isArithmeticType())
2946    return V.get()->getType();
2947
2948  // Test for placeholders.
2949  ExprResult PR = S.CheckPlaceholderExpr(V.get());
2950  if (PR.isInvalid()) return QualType();
2951  if (PR.get() != V.get()) {
2952    V = move(PR);
2953    return CheckRealImagOperand(S, V, Loc, isReal);
2954  }
2955
2956  // Reject anything else.
2957  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
2958    << (isReal ? "__real" : "__imag");
2959  return QualType();
2960}
2961
2962
2963
2964ExprResult
2965Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2966                          tok::TokenKind Kind, Expr *Input) {
2967  UnaryOperatorKind Opc;
2968  switch (Kind) {
2969  default: assert(0 && "Unknown unary op!");
2970  case tok::plusplus:   Opc = UO_PostInc; break;
2971  case tok::minusminus: Opc = UO_PostDec; break;
2972  }
2973
2974  return BuildUnaryOp(S, OpLoc, Opc, Input);
2975}
2976
2977ExprResult
2978Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2979                              Expr *Idx, SourceLocation RLoc) {
2980  // Since this might be a postfix expression, get rid of ParenListExprs.
2981  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2982  if (Result.isInvalid()) return ExprError();
2983  Base = Result.take();
2984
2985  Expr *LHSExp = Base, *RHSExp = Idx;
2986
2987  if (getLangOptions().CPlusPlus &&
2988      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2989    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2990                                                  Context.DependentTy,
2991                                                  VK_LValue, OK_Ordinary,
2992                                                  RLoc));
2993  }
2994
2995  if (getLangOptions().CPlusPlus &&
2996      (LHSExp->getType()->isRecordType() ||
2997       LHSExp->getType()->isEnumeralType() ||
2998       RHSExp->getType()->isRecordType() ||
2999       RHSExp->getType()->isEnumeralType())) {
3000    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3001  }
3002
3003  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3004}
3005
3006
3007ExprResult
3008Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3009                                     Expr *Idx, SourceLocation RLoc) {
3010  Expr *LHSExp = Base;
3011  Expr *RHSExp = Idx;
3012
3013  // Perform default conversions.
3014  if (!LHSExp->getType()->getAs<VectorType>()) {
3015    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3016    if (Result.isInvalid())
3017      return ExprError();
3018    LHSExp = Result.take();
3019  }
3020  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3021  if (Result.isInvalid())
3022    return ExprError();
3023  RHSExp = Result.take();
3024
3025  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3026  ExprValueKind VK = VK_LValue;
3027  ExprObjectKind OK = OK_Ordinary;
3028
3029  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3030  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3031  // in the subscript position. As a result, we need to derive the array base
3032  // and index from the expression types.
3033  Expr *BaseExpr, *IndexExpr;
3034  QualType ResultType;
3035  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3036    BaseExpr = LHSExp;
3037    IndexExpr = RHSExp;
3038    ResultType = Context.DependentTy;
3039  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3040    BaseExpr = LHSExp;
3041    IndexExpr = RHSExp;
3042    ResultType = PTy->getPointeeType();
3043  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3044     // Handle the uncommon case of "123[Ptr]".
3045    BaseExpr = RHSExp;
3046    IndexExpr = LHSExp;
3047    ResultType = PTy->getPointeeType();
3048  } else if (const ObjCObjectPointerType *PTy =
3049               LHSTy->getAs<ObjCObjectPointerType>()) {
3050    BaseExpr = LHSExp;
3051    IndexExpr = RHSExp;
3052    ResultType = PTy->getPointeeType();
3053  } else if (const ObjCObjectPointerType *PTy =
3054               RHSTy->getAs<ObjCObjectPointerType>()) {
3055     // Handle the uncommon case of "123[Ptr]".
3056    BaseExpr = RHSExp;
3057    IndexExpr = LHSExp;
3058    ResultType = PTy->getPointeeType();
3059  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3060    BaseExpr = LHSExp;    // vectors: V[123]
3061    IndexExpr = RHSExp;
3062    VK = LHSExp->getValueKind();
3063    if (VK != VK_RValue)
3064      OK = OK_VectorComponent;
3065
3066    // FIXME: need to deal with const...
3067    ResultType = VTy->getElementType();
3068  } else if (LHSTy->isArrayType()) {
3069    // If we see an array that wasn't promoted by
3070    // DefaultFunctionArrayLvalueConversion, it must be an array that
3071    // wasn't promoted because of the C90 rule that doesn't
3072    // allow promoting non-lvalue arrays.  Warn, then
3073    // force the promotion here.
3074    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3075        LHSExp->getSourceRange();
3076    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3077                               CK_ArrayToPointerDecay).take();
3078    LHSTy = LHSExp->getType();
3079
3080    BaseExpr = LHSExp;
3081    IndexExpr = RHSExp;
3082    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3083  } else if (RHSTy->isArrayType()) {
3084    // Same as previous, except for 123[f().a] case
3085    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3086        RHSExp->getSourceRange();
3087    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3088                               CK_ArrayToPointerDecay).take();
3089    RHSTy = RHSExp->getType();
3090
3091    BaseExpr = RHSExp;
3092    IndexExpr = LHSExp;
3093    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3094  } else {
3095    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3096       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3097  }
3098  // C99 6.5.2.1p1
3099  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3100    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3101                     << IndexExpr->getSourceRange());
3102
3103  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3104       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3105         && !IndexExpr->isTypeDependent())
3106    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3107
3108  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3109  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3110  // type. Note that Functions are not objects, and that (in C99 parlance)
3111  // incomplete types are not object types.
3112  if (ResultType->isFunctionType()) {
3113    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3114      << ResultType << BaseExpr->getSourceRange();
3115    return ExprError();
3116  }
3117
3118  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
3119    // GNU extension: subscripting on pointer to void
3120    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3121      << BaseExpr->getSourceRange();
3122
3123    // C forbids expressions of unqualified void type from being l-values.
3124    // See IsCForbiddenLValueType.
3125    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3126  } else if (!ResultType->isDependentType() &&
3127      RequireCompleteType(LLoc, ResultType,
3128                          PDiag(diag::err_subscript_incomplete_type)
3129                            << BaseExpr->getSourceRange()))
3130    return ExprError();
3131
3132  // Diagnose bad cases where we step over interface counts.
3133  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3134    Diag(LLoc, diag::err_subscript_nonfragile_interface)
3135      << ResultType << BaseExpr->getSourceRange();
3136    return ExprError();
3137  }
3138
3139  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3140         !ResultType.isCForbiddenLValueType());
3141
3142  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3143                                                ResultType, VK, OK, RLoc));
3144}
3145
3146ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3147                                        FunctionDecl *FD,
3148                                        ParmVarDecl *Param) {
3149  if (Param->hasUnparsedDefaultArg()) {
3150    Diag(CallLoc,
3151         diag::err_use_of_default_argument_to_function_declared_later) <<
3152      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3153    Diag(UnparsedDefaultArgLocs[Param],
3154         diag::note_default_argument_declared_here);
3155    return ExprError();
3156  }
3157
3158  if (Param->hasUninstantiatedDefaultArg()) {
3159    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3160
3161    // Instantiate the expression.
3162    MultiLevelTemplateArgumentList ArgList
3163      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3164
3165    std::pair<const TemplateArgument *, unsigned> Innermost
3166      = ArgList.getInnermost();
3167    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3168                               Innermost.second);
3169
3170    ExprResult Result;
3171    {
3172      // C++ [dcl.fct.default]p5:
3173      //   The names in the [default argument] expression are bound, and
3174      //   the semantic constraints are checked, at the point where the
3175      //   default argument expression appears.
3176      ContextRAII SavedContext(*this, FD);
3177      Result = SubstExpr(UninstExpr, ArgList);
3178    }
3179    if (Result.isInvalid())
3180      return ExprError();
3181
3182    // Check the expression as an initializer for the parameter.
3183    InitializedEntity Entity
3184      = InitializedEntity::InitializeParameter(Context, Param);
3185    InitializationKind Kind
3186      = InitializationKind::CreateCopy(Param->getLocation(),
3187             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3188    Expr *ResultE = Result.takeAs<Expr>();
3189
3190    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3191    Result = InitSeq.Perform(*this, Entity, Kind,
3192                             MultiExprArg(*this, &ResultE, 1));
3193    if (Result.isInvalid())
3194      return ExprError();
3195
3196    // Build the default argument expression.
3197    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3198                                           Result.takeAs<Expr>()));
3199  }
3200
3201  // If the default expression creates temporaries, we need to
3202  // push them to the current stack of expression temporaries so they'll
3203  // be properly destroyed.
3204  // FIXME: We should really be rebuilding the default argument with new
3205  // bound temporaries; see the comment in PR5810.
3206  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
3207    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
3208    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
3209                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
3210    ExprTemporaries.push_back(Temporary);
3211    ExprNeedsCleanups = true;
3212  }
3213
3214  // We already type-checked the argument, so we know it works.
3215  // Just mark all of the declarations in this potentially-evaluated expression
3216  // as being "referenced".
3217  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3218  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3219}
3220
3221/// ConvertArgumentsForCall - Converts the arguments specified in
3222/// Args/NumArgs to the parameter types of the function FDecl with
3223/// function prototype Proto. Call is the call expression itself, and
3224/// Fn is the function expression. For a C++ member function, this
3225/// routine does not attempt to convert the object argument. Returns
3226/// true if the call is ill-formed.
3227bool
3228Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3229                              FunctionDecl *FDecl,
3230                              const FunctionProtoType *Proto,
3231                              Expr **Args, unsigned NumArgs,
3232                              SourceLocation RParenLoc) {
3233  // Bail out early if calling a builtin with custom typechecking.
3234  // We don't need to do this in the
3235  if (FDecl)
3236    if (unsigned ID = FDecl->getBuiltinID())
3237      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3238        return false;
3239
3240  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3241  // assignment, to the types of the corresponding parameter, ...
3242  unsigned NumArgsInProto = Proto->getNumArgs();
3243  bool Invalid = false;
3244
3245  // If too few arguments are available (and we don't have default
3246  // arguments for the remaining parameters), don't make the call.
3247  if (NumArgs < NumArgsInProto) {
3248    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) {
3249      Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3250        << Fn->getType()->isBlockPointerType()
3251        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3252
3253      // Emit the location of the prototype.
3254      if (FDecl && !FDecl->getBuiltinID())
3255        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3256          << FDecl;
3257
3258      return true;
3259    }
3260    Call->setNumArgs(Context, NumArgsInProto);
3261  }
3262
3263  // If too many are passed and not variadic, error on the extras and drop
3264  // them.
3265  if (NumArgs > NumArgsInProto) {
3266    if (!Proto->isVariadic()) {
3267      Diag(Args[NumArgsInProto]->getLocStart(),
3268           diag::err_typecheck_call_too_many_args)
3269        << Fn->getType()->isBlockPointerType()
3270        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3271        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3272                       Args[NumArgs-1]->getLocEnd());
3273
3274      // Emit the location of the prototype.
3275      if (FDecl && !FDecl->getBuiltinID())
3276        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3277          << FDecl;
3278
3279      // This deletes the extra arguments.
3280      Call->setNumArgs(Context, NumArgsInProto);
3281      return true;
3282    }
3283  }
3284  SmallVector<Expr *, 8> AllArgs;
3285  VariadicCallType CallType =
3286    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3287  if (Fn->getType()->isBlockPointerType())
3288    CallType = VariadicBlock; // Block
3289  else if (isa<MemberExpr>(Fn))
3290    CallType = VariadicMethod;
3291  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3292                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3293  if (Invalid)
3294    return true;
3295  unsigned TotalNumArgs = AllArgs.size();
3296  for (unsigned i = 0; i < TotalNumArgs; ++i)
3297    Call->setArg(i, AllArgs[i]);
3298
3299  return false;
3300}
3301
3302bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3303                                  FunctionDecl *FDecl,
3304                                  const FunctionProtoType *Proto,
3305                                  unsigned FirstProtoArg,
3306                                  Expr **Args, unsigned NumArgs,
3307                                  SmallVector<Expr *, 8> &AllArgs,
3308                                  VariadicCallType CallType) {
3309  unsigned NumArgsInProto = Proto->getNumArgs();
3310  unsigned NumArgsToCheck = NumArgs;
3311  bool Invalid = false;
3312  if (NumArgs != NumArgsInProto)
3313    // Use default arguments for missing arguments
3314    NumArgsToCheck = NumArgsInProto;
3315  unsigned ArgIx = 0;
3316  // Continue to check argument types (even if we have too few/many args).
3317  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3318    QualType ProtoArgType = Proto->getArgType(i);
3319
3320    Expr *Arg;
3321    if (ArgIx < NumArgs) {
3322      Arg = Args[ArgIx++];
3323
3324      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3325                              ProtoArgType,
3326                              PDiag(diag::err_call_incomplete_argument)
3327                              << Arg->getSourceRange()))
3328        return true;
3329
3330      // Pass the argument
3331      ParmVarDecl *Param = 0;
3332      if (FDecl && i < FDecl->getNumParams())
3333        Param = FDecl->getParamDecl(i);
3334
3335      InitializedEntity Entity =
3336        Param? InitializedEntity::InitializeParameter(Context, Param)
3337             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3338                                                      Proto->isArgConsumed(i));
3339      ExprResult ArgE = PerformCopyInitialization(Entity,
3340                                                  SourceLocation(),
3341                                                  Owned(Arg));
3342      if (ArgE.isInvalid())
3343        return true;
3344
3345      Arg = ArgE.takeAs<Expr>();
3346    } else {
3347      ParmVarDecl *Param = FDecl->getParamDecl(i);
3348
3349      ExprResult ArgExpr =
3350        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3351      if (ArgExpr.isInvalid())
3352        return true;
3353
3354      Arg = ArgExpr.takeAs<Expr>();
3355    }
3356
3357    // Check for array bounds violations for each argument to the call. This
3358    // check only triggers warnings when the argument isn't a more complex Expr
3359    // with its own checking, such as a BinaryOperator.
3360    CheckArrayAccess(Arg);
3361
3362    AllArgs.push_back(Arg);
3363  }
3364
3365  // If this is a variadic call, handle args passed through "...".
3366  if (CallType != VariadicDoesNotApply) {
3367
3368    // Assume that extern "C" functions with variadic arguments that
3369    // return __unknown_anytype aren't *really* variadic.
3370    if (Proto->getResultType() == Context.UnknownAnyTy &&
3371        FDecl && FDecl->isExternC()) {
3372      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3373        ExprResult arg;
3374        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3375          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3376        else
3377          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3378        Invalid |= arg.isInvalid();
3379        AllArgs.push_back(arg.take());
3380      }
3381
3382    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3383    } else {
3384      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3385        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3386                                                          FDecl);
3387        Invalid |= Arg.isInvalid();
3388        AllArgs.push_back(Arg.take());
3389      }
3390    }
3391  }
3392  return Invalid;
3393}
3394
3395/// Given a function expression of unknown-any type, try to rebuild it
3396/// to have a function type.
3397static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3398
3399/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3400/// This provides the location of the left/right parens and a list of comma
3401/// locations.
3402ExprResult
3403Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3404                    MultiExprArg args, SourceLocation RParenLoc,
3405                    Expr *ExecConfig) {
3406  unsigned NumArgs = args.size();
3407
3408  // Since this might be a postfix expression, get rid of ParenListExprs.
3409  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3410  if (Result.isInvalid()) return ExprError();
3411  Fn = Result.take();
3412
3413  Expr **Args = args.release();
3414
3415  if (getLangOptions().CPlusPlus) {
3416    // If this is a pseudo-destructor expression, build the call immediately.
3417    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3418      if (NumArgs > 0) {
3419        // Pseudo-destructor calls should not have any arguments.
3420        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3421          << FixItHint::CreateRemoval(
3422                                    SourceRange(Args[0]->getLocStart(),
3423                                                Args[NumArgs-1]->getLocEnd()));
3424
3425        NumArgs = 0;
3426      }
3427
3428      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3429                                          VK_RValue, RParenLoc));
3430    }
3431
3432    // Determine whether this is a dependent call inside a C++ template,
3433    // in which case we won't do any semantic analysis now.
3434    // FIXME: Will need to cache the results of name lookup (including ADL) in
3435    // Fn.
3436    bool Dependent = false;
3437    if (Fn->isTypeDependent())
3438      Dependent = true;
3439    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3440      Dependent = true;
3441
3442    if (Dependent) {
3443      if (ExecConfig) {
3444        return Owned(new (Context) CUDAKernelCallExpr(
3445            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3446            Context.DependentTy, VK_RValue, RParenLoc));
3447      } else {
3448        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3449                                            Context.DependentTy, VK_RValue,
3450                                            RParenLoc));
3451      }
3452    }
3453
3454    // Determine whether this is a call to an object (C++ [over.call.object]).
3455    if (Fn->getType()->isRecordType())
3456      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3457                                                RParenLoc));
3458
3459    if (Fn->getType() == Context.UnknownAnyTy) {
3460      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3461      if (result.isInvalid()) return ExprError();
3462      Fn = result.take();
3463    }
3464
3465    if (Fn->getType() == Context.BoundMemberTy) {
3466      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3467                                       RParenLoc);
3468    }
3469  }
3470
3471  // Check for overloaded calls.  This can happen even in C due to extensions.
3472  if (Fn->getType() == Context.OverloadTy) {
3473    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3474
3475    // We aren't supposed to apply this logic if there's an '&' involved.
3476    if (!find.IsAddressOfOperand) {
3477      OverloadExpr *ovl = find.Expression;
3478      if (isa<UnresolvedLookupExpr>(ovl)) {
3479        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3480        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3481                                       RParenLoc, ExecConfig);
3482      } else {
3483        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3484                                         RParenLoc);
3485      }
3486    }
3487  }
3488
3489  // If we're directly calling a function, get the appropriate declaration.
3490
3491  Expr *NakedFn = Fn->IgnoreParens();
3492
3493  NamedDecl *NDecl = 0;
3494  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3495    if (UnOp->getOpcode() == UO_AddrOf)
3496      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3497
3498  if (isa<DeclRefExpr>(NakedFn))
3499    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3500  else if (isa<MemberExpr>(NakedFn))
3501    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3502
3503  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3504                               ExecConfig);
3505}
3506
3507ExprResult
3508Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3509                              MultiExprArg execConfig, SourceLocation GGGLoc) {
3510  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3511  if (!ConfigDecl)
3512    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3513                          << "cudaConfigureCall");
3514  QualType ConfigQTy = ConfigDecl->getType();
3515
3516  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3517      ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
3518
3519  return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
3520}
3521
3522/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3523///
3524/// __builtin_astype( value, dst type )
3525///
3526ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
3527                                 SourceLocation BuiltinLoc,
3528                                 SourceLocation RParenLoc) {
3529  ExprValueKind VK = VK_RValue;
3530  ExprObjectKind OK = OK_Ordinary;
3531  QualType DstTy = GetTypeFromParser(destty);
3532  QualType SrcTy = expr->getType();
3533  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3534    return ExprError(Diag(BuiltinLoc,
3535                          diag::err_invalid_astype_of_different_size)
3536                     << DstTy
3537                     << SrcTy
3538                     << expr->getSourceRange());
3539  return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc,
3540               RParenLoc));
3541}
3542
3543/// BuildResolvedCallExpr - Build a call to a resolved expression,
3544/// i.e. an expression not of \p OverloadTy.  The expression should
3545/// unary-convert to an expression of function-pointer or
3546/// block-pointer type.
3547///
3548/// \param NDecl the declaration being called, if available
3549ExprResult
3550Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3551                            SourceLocation LParenLoc,
3552                            Expr **Args, unsigned NumArgs,
3553                            SourceLocation RParenLoc,
3554                            Expr *Config) {
3555  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3556
3557  // Promote the function operand.
3558  ExprResult Result = UsualUnaryConversions(Fn);
3559  if (Result.isInvalid())
3560    return ExprError();
3561  Fn = Result.take();
3562
3563  // Make the call expr early, before semantic checks.  This guarantees cleanup
3564  // of arguments and function on error.
3565  CallExpr *TheCall;
3566  if (Config) {
3567    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3568                                               cast<CallExpr>(Config),
3569                                               Args, NumArgs,
3570                                               Context.BoolTy,
3571                                               VK_RValue,
3572                                               RParenLoc);
3573  } else {
3574    TheCall = new (Context) CallExpr(Context, Fn,
3575                                     Args, NumArgs,
3576                                     Context.BoolTy,
3577                                     VK_RValue,
3578                                     RParenLoc);
3579  }
3580
3581  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3582
3583  // Bail out early if calling a builtin with custom typechecking.
3584  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3585    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3586
3587 retry:
3588  const FunctionType *FuncT;
3589  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3590    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3591    // have type pointer to function".
3592    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3593    if (FuncT == 0)
3594      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3595                         << Fn->getType() << Fn->getSourceRange());
3596  } else if (const BlockPointerType *BPT =
3597               Fn->getType()->getAs<BlockPointerType>()) {
3598    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3599  } else {
3600    // Handle calls to expressions of unknown-any type.
3601    if (Fn->getType() == Context.UnknownAnyTy) {
3602      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3603      if (rewrite.isInvalid()) return ExprError();
3604      Fn = rewrite.take();
3605      TheCall->setCallee(Fn);
3606      goto retry;
3607    }
3608
3609    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3610      << Fn->getType() << Fn->getSourceRange());
3611  }
3612
3613  if (getLangOptions().CUDA) {
3614    if (Config) {
3615      // CUDA: Kernel calls must be to global functions
3616      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3617        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3618            << FDecl->getName() << Fn->getSourceRange());
3619
3620      // CUDA: Kernel function must have 'void' return type
3621      if (!FuncT->getResultType()->isVoidType())
3622        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3623            << Fn->getType() << Fn->getSourceRange());
3624    }
3625  }
3626
3627  // Check for a valid return type
3628  if (CheckCallReturnType(FuncT->getResultType(),
3629                          Fn->getSourceRange().getBegin(), TheCall,
3630                          FDecl))
3631    return ExprError();
3632
3633  // We know the result type of the call, set it.
3634  TheCall->setType(FuncT->getCallResultType(Context));
3635  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3636
3637  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3638    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3639                                RParenLoc))
3640      return ExprError();
3641  } else {
3642    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3643
3644    if (FDecl) {
3645      // Check if we have too few/too many template arguments, based
3646      // on our knowledge of the function definition.
3647      const FunctionDecl *Def = 0;
3648      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3649        const FunctionProtoType *Proto
3650          = Def->getType()->getAs<FunctionProtoType>();
3651        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3652          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3653            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3654      }
3655
3656      // If the function we're calling isn't a function prototype, but we have
3657      // a function prototype from a prior declaratiom, use that prototype.
3658      if (!FDecl->hasPrototype())
3659        Proto = FDecl->getType()->getAs<FunctionProtoType>();
3660    }
3661
3662    // Promote the arguments (C99 6.5.2.2p6).
3663    for (unsigned i = 0; i != NumArgs; i++) {
3664      Expr *Arg = Args[i];
3665
3666      if (Proto && i < Proto->getNumArgs()) {
3667        InitializedEntity Entity
3668          = InitializedEntity::InitializeParameter(Context,
3669                                                   Proto->getArgType(i),
3670                                                   Proto->isArgConsumed(i));
3671        ExprResult ArgE = PerformCopyInitialization(Entity,
3672                                                    SourceLocation(),
3673                                                    Owned(Arg));
3674        if (ArgE.isInvalid())
3675          return true;
3676
3677        Arg = ArgE.takeAs<Expr>();
3678
3679      } else {
3680        ExprResult ArgE = DefaultArgumentPromotion(Arg);
3681
3682        if (ArgE.isInvalid())
3683          return true;
3684
3685        Arg = ArgE.takeAs<Expr>();
3686      }
3687
3688      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3689                              Arg->getType(),
3690                              PDiag(diag::err_call_incomplete_argument)
3691                                << Arg->getSourceRange()))
3692        return ExprError();
3693
3694      TheCall->setArg(i, Arg);
3695    }
3696  }
3697
3698  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3699    if (!Method->isStatic())
3700      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3701        << Fn->getSourceRange());
3702
3703  // Check for sentinels
3704  if (NDecl)
3705    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3706
3707  // Do special checking on direct calls to functions.
3708  if (FDecl) {
3709    if (CheckFunctionCall(FDecl, TheCall))
3710      return ExprError();
3711
3712    if (BuiltinID)
3713      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3714  } else if (NDecl) {
3715    if (CheckBlockCall(NDecl, TheCall))
3716      return ExprError();
3717  }
3718
3719  return MaybeBindToTemporary(TheCall);
3720}
3721
3722ExprResult
3723Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3724                           SourceLocation RParenLoc, Expr *InitExpr) {
3725  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3726  // FIXME: put back this assert when initializers are worked out.
3727  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3728
3729  TypeSourceInfo *TInfo;
3730  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3731  if (!TInfo)
3732    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3733
3734  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3735}
3736
3737ExprResult
3738Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3739                               SourceLocation RParenLoc, Expr *literalExpr) {
3740  QualType literalType = TInfo->getType();
3741
3742  if (literalType->isArrayType()) {
3743    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3744             PDiag(diag::err_illegal_decl_array_incomplete_type)
3745               << SourceRange(LParenLoc,
3746                              literalExpr->getSourceRange().getEnd())))
3747      return ExprError();
3748    if (literalType->isVariableArrayType())
3749      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3750        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3751  } else if (!literalType->isDependentType() &&
3752             RequireCompleteType(LParenLoc, literalType,
3753                      PDiag(diag::err_typecheck_decl_incomplete_type)
3754                        << SourceRange(LParenLoc,
3755                                       literalExpr->getSourceRange().getEnd())))
3756    return ExprError();
3757
3758  InitializedEntity Entity
3759    = InitializedEntity::InitializeTemporary(literalType);
3760  InitializationKind Kind
3761    = InitializationKind::CreateCStyleCast(LParenLoc,
3762                                           SourceRange(LParenLoc, RParenLoc));
3763  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3764  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3765                                       MultiExprArg(*this, &literalExpr, 1),
3766                                            &literalType);
3767  if (Result.isInvalid())
3768    return ExprError();
3769  literalExpr = Result.get();
3770
3771  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3772  if (isFileScope) { // 6.5.2.5p3
3773    if (CheckForConstantInitializer(literalExpr, literalType))
3774      return ExprError();
3775  }
3776
3777  // In C, compound literals are l-values for some reason.
3778  ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
3779
3780  return MaybeBindToTemporary(
3781           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3782                                             VK, literalExpr, isFileScope));
3783}
3784
3785ExprResult
3786Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3787                    SourceLocation RBraceLoc) {
3788  unsigned NumInit = initlist.size();
3789  Expr **InitList = initlist.release();
3790
3791  // Semantic analysis for initializers is done by ActOnDeclarator() and
3792  // CheckInitializer() - it requires knowledge of the object being intialized.
3793
3794  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3795                                               NumInit, RBraceLoc);
3796  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3797  return Owned(E);
3798}
3799
3800/// Prepares for a scalar cast, performing all the necessary stages
3801/// except the final cast and returning the kind required.
3802static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
3803  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
3804  // Also, callers should have filtered out the invalid cases with
3805  // pointers.  Everything else should be possible.
3806
3807  QualType SrcTy = Src.get()->getType();
3808  if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
3809    return CK_NoOp;
3810
3811  switch (SrcTy->getScalarTypeKind()) {
3812  case Type::STK_MemberPointer:
3813    llvm_unreachable("member pointer type in C");
3814
3815  case Type::STK_Pointer:
3816    switch (DestTy->getScalarTypeKind()) {
3817    case Type::STK_Pointer:
3818      return DestTy->isObjCObjectPointerType() ?
3819                CK_AnyPointerToObjCPointerCast :
3820                CK_BitCast;
3821    case Type::STK_Bool:
3822      return CK_PointerToBoolean;
3823    case Type::STK_Integral:
3824      return CK_PointerToIntegral;
3825    case Type::STK_Floating:
3826    case Type::STK_FloatingComplex:
3827    case Type::STK_IntegralComplex:
3828    case Type::STK_MemberPointer:
3829      llvm_unreachable("illegal cast from pointer");
3830    }
3831    break;
3832
3833  case Type::STK_Bool: // casting from bool is like casting from an integer
3834  case Type::STK_Integral:
3835    switch (DestTy->getScalarTypeKind()) {
3836    case Type::STK_Pointer:
3837      if (Src.get()->isNullPointerConstant(S.Context,
3838                                           Expr::NPC_ValueDependentIsNull))
3839        return CK_NullToPointer;
3840      return CK_IntegralToPointer;
3841    case Type::STK_Bool:
3842      return CK_IntegralToBoolean;
3843    case Type::STK_Integral:
3844      return CK_IntegralCast;
3845    case Type::STK_Floating:
3846      return CK_IntegralToFloating;
3847    case Type::STK_IntegralComplex:
3848      Src = S.ImpCastExprToType(Src.take(),
3849                                DestTy->getAs<ComplexType>()->getElementType(),
3850                                CK_IntegralCast);
3851      return CK_IntegralRealToComplex;
3852    case Type::STK_FloatingComplex:
3853      Src = S.ImpCastExprToType(Src.take(),
3854                                DestTy->getAs<ComplexType>()->getElementType(),
3855                                CK_IntegralToFloating);
3856      return CK_FloatingRealToComplex;
3857    case Type::STK_MemberPointer:
3858      llvm_unreachable("member pointer type in C");
3859    }
3860    break;
3861
3862  case Type::STK_Floating:
3863    switch (DestTy->getScalarTypeKind()) {
3864    case Type::STK_Floating:
3865      return CK_FloatingCast;
3866    case Type::STK_Bool:
3867      return CK_FloatingToBoolean;
3868    case Type::STK_Integral:
3869      return CK_FloatingToIntegral;
3870    case Type::STK_FloatingComplex:
3871      Src = S.ImpCastExprToType(Src.take(),
3872                                DestTy->getAs<ComplexType>()->getElementType(),
3873                                CK_FloatingCast);
3874      return CK_FloatingRealToComplex;
3875    case Type::STK_IntegralComplex:
3876      Src = S.ImpCastExprToType(Src.take(),
3877                                DestTy->getAs<ComplexType>()->getElementType(),
3878                                CK_FloatingToIntegral);
3879      return CK_IntegralRealToComplex;
3880    case Type::STK_Pointer:
3881      llvm_unreachable("valid float->pointer cast?");
3882    case Type::STK_MemberPointer:
3883      llvm_unreachable("member pointer type in C");
3884    }
3885    break;
3886
3887  case Type::STK_FloatingComplex:
3888    switch (DestTy->getScalarTypeKind()) {
3889    case Type::STK_FloatingComplex:
3890      return CK_FloatingComplexCast;
3891    case Type::STK_IntegralComplex:
3892      return CK_FloatingComplexToIntegralComplex;
3893    case Type::STK_Floating: {
3894      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
3895      if (S.Context.hasSameType(ET, DestTy))
3896        return CK_FloatingComplexToReal;
3897      Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
3898      return CK_FloatingCast;
3899    }
3900    case Type::STK_Bool:
3901      return CK_FloatingComplexToBoolean;
3902    case Type::STK_Integral:
3903      Src = S.ImpCastExprToType(Src.take(),
3904                                SrcTy->getAs<ComplexType>()->getElementType(),
3905                                CK_FloatingComplexToReal);
3906      return CK_FloatingToIntegral;
3907    case Type::STK_Pointer:
3908      llvm_unreachable("valid complex float->pointer cast?");
3909    case Type::STK_MemberPointer:
3910      llvm_unreachable("member pointer type in C");
3911    }
3912    break;
3913
3914  case Type::STK_IntegralComplex:
3915    switch (DestTy->getScalarTypeKind()) {
3916    case Type::STK_FloatingComplex:
3917      return CK_IntegralComplexToFloatingComplex;
3918    case Type::STK_IntegralComplex:
3919      return CK_IntegralComplexCast;
3920    case Type::STK_Integral: {
3921      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
3922      if (S.Context.hasSameType(ET, DestTy))
3923        return CK_IntegralComplexToReal;
3924      Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
3925      return CK_IntegralCast;
3926    }
3927    case Type::STK_Bool:
3928      return CK_IntegralComplexToBoolean;
3929    case Type::STK_Floating:
3930      Src = S.ImpCastExprToType(Src.take(),
3931                                SrcTy->getAs<ComplexType>()->getElementType(),
3932                                CK_IntegralComplexToReal);
3933      return CK_IntegralToFloating;
3934    case Type::STK_Pointer:
3935      llvm_unreachable("valid complex int->pointer cast?");
3936    case Type::STK_MemberPointer:
3937      llvm_unreachable("member pointer type in C");
3938    }
3939    break;
3940  }
3941
3942  llvm_unreachable("Unhandled scalar cast");
3943  return CK_BitCast;
3944}
3945
3946/// CheckCastTypes - Check type constraints for casting between types.
3947ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR,
3948                                QualType castType, Expr *castExpr,
3949                                CastKind& Kind, ExprValueKind &VK,
3950                                CXXCastPath &BasePath, bool FunctionalStyle) {
3951  if (castExpr->getType() == Context.UnknownAnyTy)
3952    return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
3953
3954  if (getLangOptions().CPlusPlus)
3955    return CXXCheckCStyleCast(SourceRange(CastStartLoc,
3956                                          castExpr->getLocEnd()),
3957                              castType, VK, castExpr, Kind, BasePath,
3958                              FunctionalStyle);
3959
3960  assert(!castExpr->getType()->isPlaceholderType());
3961
3962  // We only support r-value casts in C.
3963  VK = VK_RValue;
3964
3965  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3966  // type needs to be scalar.
3967  if (castType->isVoidType()) {
3968    // We don't necessarily do lvalue-to-rvalue conversions on this.
3969    ExprResult castExprRes = IgnoredValueConversions(castExpr);
3970    if (castExprRes.isInvalid())
3971      return ExprError();
3972    castExpr = castExprRes.take();
3973
3974    // Cast to void allows any expr type.
3975    Kind = CK_ToVoid;
3976    return Owned(castExpr);
3977  }
3978
3979  ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
3980  if (castExprRes.isInvalid())
3981    return ExprError();
3982  castExpr = castExprRes.take();
3983
3984  if (RequireCompleteType(TyR.getBegin(), castType,
3985                          diag::err_typecheck_cast_to_incomplete))
3986    return ExprError();
3987
3988  if (!castType->isScalarType() && !castType->isVectorType()) {
3989    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3990        (castType->isStructureType() || castType->isUnionType())) {
3991      // GCC struct/union extension: allow cast to self.
3992      // FIXME: Check that the cast destination type is complete.
3993      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3994        << castType << castExpr->getSourceRange();
3995      Kind = CK_NoOp;
3996      return Owned(castExpr);
3997    }
3998
3999    if (castType->isUnionType()) {
4000      // GCC cast to union extension
4001      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
4002      RecordDecl::field_iterator Field, FieldEnd;
4003      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
4004           Field != FieldEnd; ++Field) {
4005        if (Context.hasSameUnqualifiedType(Field->getType(),
4006                                           castExpr->getType()) &&
4007            !Field->isUnnamedBitfield()) {
4008          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
4009            << castExpr->getSourceRange();
4010          break;
4011        }
4012      }
4013      if (Field == FieldEnd) {
4014        Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
4015          << castExpr->getType() << castExpr->getSourceRange();
4016        return ExprError();
4017      }
4018      Kind = CK_ToUnion;
4019      return Owned(castExpr);
4020    }
4021
4022    // Reject any other conversions to non-scalar types.
4023    Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
4024      << castType << castExpr->getSourceRange();
4025    return ExprError();
4026  }
4027
4028  // The type we're casting to is known to be a scalar or vector.
4029
4030  // Require the operand to be a scalar or vector.
4031  if (!castExpr->getType()->isScalarType() &&
4032      !castExpr->getType()->isVectorType()) {
4033    Diag(castExpr->getLocStart(),
4034                diag::err_typecheck_expect_scalar_operand)
4035      << castExpr->getType() << castExpr->getSourceRange();
4036    return ExprError();
4037  }
4038
4039  if (castType->isExtVectorType())
4040    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
4041
4042  if (castType->isVectorType()) {
4043    if (castType->getAs<VectorType>()->getVectorKind() ==
4044        VectorType::AltiVecVector &&
4045          (castExpr->getType()->isIntegerType() ||
4046           castExpr->getType()->isFloatingType())) {
4047      Kind = CK_VectorSplat;
4048      return Owned(castExpr);
4049    } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
4050      return ExprError();
4051    } else
4052      return Owned(castExpr);
4053  }
4054  if (castExpr->getType()->isVectorType()) {
4055    if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
4056      return ExprError();
4057    else
4058      return Owned(castExpr);
4059  }
4060
4061  // The source and target types are both scalars, i.e.
4062  //   - arithmetic types (fundamental, enum, and complex)
4063  //   - all kinds of pointers
4064  // Note that member pointers were filtered out with C++, above.
4065
4066  if (isa<ObjCSelectorExpr>(castExpr)) {
4067    Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4068    return ExprError();
4069  }
4070
4071  // If either type is a pointer, the other type has to be either an
4072  // integer or a pointer.
4073  QualType castExprType = castExpr->getType();
4074  if (!castType->isArithmeticType()) {
4075    if (!castExprType->isIntegralType(Context) &&
4076        castExprType->isArithmeticType()) {
4077      Diag(castExpr->getLocStart(),
4078           diag::err_cast_pointer_from_non_pointer_int)
4079        << castExprType << castExpr->getSourceRange();
4080      return ExprError();
4081    }
4082  } else if (!castExpr->getType()->isArithmeticType()) {
4083    if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
4084      Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
4085        << castType << castExpr->getSourceRange();
4086      return ExprError();
4087    }
4088  }
4089
4090  if (getLangOptions().ObjCAutoRefCount) {
4091    // Diagnose problems with Objective-C casts involving lifetime qualifiers.
4092    CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()),
4093                           castType, castExpr, CCK_CStyleCast);
4094
4095    if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
4096      if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) {
4097        Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
4098        Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
4099        if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
4100            ExprPtr->getPointeeType()->isObjCLifetimeType() &&
4101            !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
4102          Diag(castExpr->getLocStart(),
4103               diag::err_typecheck_incompatible_ownership)
4104            << castExprType << castType << AA_Casting
4105            << castExpr->getSourceRange();
4106
4107          return ExprError();
4108        }
4109      }
4110    }
4111    else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) {
4112           Diag(castExpr->getLocStart(),
4113                diag::err_arc_convesion_of_weak_unavailable) << 1
4114                << castExprType << castType
4115                << castExpr->getSourceRange();
4116          return ExprError();
4117    }
4118  }
4119
4120  castExprRes = Owned(castExpr);
4121  Kind = PrepareScalarCast(*this, castExprRes, castType);
4122  if (castExprRes.isInvalid())
4123    return ExprError();
4124  castExpr = castExprRes.take();
4125
4126  if (Kind == CK_BitCast)
4127    CheckCastAlign(castExpr, castType, TyR);
4128
4129  return Owned(castExpr);
4130}
4131
4132bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4133                           CastKind &Kind) {
4134  assert(VectorTy->isVectorType() && "Not a vector type!");
4135
4136  if (Ty->isVectorType() || Ty->isIntegerType()) {
4137    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4138      return Diag(R.getBegin(),
4139                  Ty->isVectorType() ?
4140                  diag::err_invalid_conversion_between_vectors :
4141                  diag::err_invalid_conversion_between_vector_and_integer)
4142        << VectorTy << Ty << R;
4143  } else
4144    return Diag(R.getBegin(),
4145                diag::err_invalid_conversion_between_vector_and_scalar)
4146      << VectorTy << Ty << R;
4147
4148  Kind = CK_BitCast;
4149  return false;
4150}
4151
4152ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4153                                    Expr *CastExpr, CastKind &Kind) {
4154  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4155
4156  QualType SrcTy = CastExpr->getType();
4157
4158  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4159  // an ExtVectorType.
4160  if (SrcTy->isVectorType()) {
4161    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
4162      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4163        << DestTy << SrcTy << R;
4164      return ExprError();
4165    }
4166    Kind = CK_BitCast;
4167    return Owned(CastExpr);
4168  }
4169
4170  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4171  // conversion will take place first from scalar to elt type, and then
4172  // splat from elt type to vector.
4173  if (SrcTy->isPointerType())
4174    return Diag(R.getBegin(),
4175                diag::err_invalid_conversion_between_vector_and_scalar)
4176      << DestTy << SrcTy << R;
4177
4178  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4179  ExprResult CastExprRes = Owned(CastExpr);
4180  CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
4181  if (CastExprRes.isInvalid())
4182    return ExprError();
4183  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4184
4185  Kind = CK_VectorSplat;
4186  return Owned(CastExpr);
4187}
4188
4189ExprResult
4190Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4191                    Declarator &D, ParsedType &Ty,
4192                    SourceLocation RParenLoc, Expr *castExpr) {
4193  assert(!D.isInvalidType() && (castExpr != 0) &&
4194         "ActOnCastExpr(): missing type or expr");
4195
4196  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType());
4197  if (D.isInvalidType())
4198    return ExprError();
4199
4200  if (getLangOptions().CPlusPlus) {
4201    // Check that there are no default arguments (C++ only).
4202    CheckExtraCXXDefaultArguments(D);
4203  }
4204
4205  QualType castType = castTInfo->getType();
4206  Ty = CreateParsedType(castType, castTInfo);
4207
4208  bool isVectorLiteral = false;
4209
4210  // Check for an altivec or OpenCL literal,
4211  // i.e. all the elements are integer constants.
4212  ParenExpr *PE = dyn_cast<ParenExpr>(castExpr);
4213  ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr);
4214  if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) {
4215    if (PLE && PLE->getNumExprs() == 0) {
4216      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4217      return ExprError();
4218    }
4219    if (PE || PLE->getNumExprs() == 1) {
4220      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4221      if (!E->getType()->isVectorType())
4222        isVectorLiteral = true;
4223    }
4224    else
4225      isVectorLiteral = true;
4226  }
4227
4228  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4229  // then handle it as such.
4230  if (isVectorLiteral)
4231    return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo);
4232
4233  // If the Expr being casted is a ParenListExpr, handle it specially.
4234  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4235  // sequence of BinOp comma operators.
4236  if (isa<ParenListExpr>(castExpr)) {
4237    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr);
4238    if (Result.isInvalid()) return ExprError();
4239    castExpr = Result.take();
4240  }
4241
4242  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4243}
4244
4245ExprResult
4246Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4247                          SourceLocation RParenLoc, Expr *castExpr) {
4248  CastKind Kind = CK_Invalid;
4249  ExprValueKind VK = VK_RValue;
4250  CXXCastPath BasePath;
4251  ExprResult CastResult =
4252    CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(),
4253                   castExpr, Kind, VK, BasePath);
4254  if (CastResult.isInvalid())
4255    return ExprError();
4256  castExpr = CastResult.take();
4257
4258  return Owned(CStyleCastExpr::Create(
4259    Context, Ty->getType().getNonLValueExprType(Context), VK, Kind, castExpr,
4260    &BasePath, Ty, LParenLoc, RParenLoc));
4261}
4262
4263ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4264                                    SourceLocation RParenLoc, Expr *E,
4265                                    TypeSourceInfo *TInfo) {
4266  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4267         "Expected paren or paren list expression");
4268
4269  Expr **exprs;
4270  unsigned numExprs;
4271  Expr *subExpr;
4272  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4273    exprs = PE->getExprs();
4274    numExprs = PE->getNumExprs();
4275  } else {
4276    subExpr = cast<ParenExpr>(E)->getSubExpr();
4277    exprs = &subExpr;
4278    numExprs = 1;
4279  }
4280
4281  QualType Ty = TInfo->getType();
4282  assert(Ty->isVectorType() && "Expected vector type");
4283
4284  SmallVector<Expr *, 8> initExprs;
4285  const VectorType *VTy = Ty->getAs<VectorType>();
4286  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4287
4288  // '(...)' form of vector initialization in AltiVec: the number of
4289  // initializers must be one or must match the size of the vector.
4290  // If a single value is specified in the initializer then it will be
4291  // replicated to all the components of the vector
4292  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4293    // The number of initializers must be one or must match the size of the
4294    // vector. If a single value is specified in the initializer then it will
4295    // be replicated to all the components of the vector
4296    if (numExprs == 1) {
4297      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4298      ExprResult Literal = Owned(exprs[0]);
4299      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4300                                  PrepareScalarCast(*this, Literal, ElemTy));
4301      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4302    }
4303    else if (numExprs < numElems) {
4304      Diag(E->getExprLoc(),
4305           diag::err_incorrect_number_of_vector_initializers);
4306      return ExprError();
4307    }
4308    else
4309      for (unsigned i = 0, e = numExprs; i != e; ++i)
4310        initExprs.push_back(exprs[i]);
4311  }
4312  else {
4313    // For OpenCL, when the number of initializers is a single value,
4314    // it will be replicated to all components of the vector.
4315    if (getLangOptions().OpenCL &&
4316        VTy->getVectorKind() == VectorType::GenericVector &&
4317        numExprs == 1) {
4318        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4319        ExprResult Literal = Owned(exprs[0]);
4320        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4321                                    PrepareScalarCast(*this, Literal, ElemTy));
4322        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4323    }
4324
4325    for (unsigned i = 0, e = numExprs; i != e; ++i)
4326      initExprs.push_back(exprs[i]);
4327  }
4328  // FIXME: This means that pretty-printing the final AST will produce curly
4329  // braces instead of the original commas.
4330  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4331                                                   &initExprs[0],
4332                                                   initExprs.size(), RParenLoc);
4333  initE->setType(Ty);
4334  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4335}
4336
4337/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4338/// of comma binary operators.
4339ExprResult
4340Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4341  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4342  if (!E)
4343    return Owned(expr);
4344
4345  ExprResult Result(E->getExpr(0));
4346
4347  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4348    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4349                        E->getExpr(i));
4350
4351  if (Result.isInvalid()) return ExprError();
4352
4353  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4354}
4355
4356ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4357                                                  SourceLocation R,
4358                                                  MultiExprArg Val) {
4359  unsigned nexprs = Val.size();
4360  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4361  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4362  Expr *expr;
4363  if (nexprs == 1)
4364    expr = new (Context) ParenExpr(L, R, exprs[0]);
4365  else
4366    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R,
4367                                       exprs[nexprs-1]->getType());
4368  return Owned(expr);
4369}
4370
4371/// \brief Emit a specialized diagnostic when one expression is a null pointer
4372/// constant and the other is not a pointer.  Returns true if a diagnostic is
4373/// emitted.
4374bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4375                                      SourceLocation QuestionLoc) {
4376  Expr *NullExpr = LHSExpr;
4377  Expr *NonPointerExpr = RHSExpr;
4378  Expr::NullPointerConstantKind NullKind =
4379      NullExpr->isNullPointerConstant(Context,
4380                                      Expr::NPC_ValueDependentIsNotNull);
4381
4382  if (NullKind == Expr::NPCK_NotNull) {
4383    NullExpr = RHSExpr;
4384    NonPointerExpr = LHSExpr;
4385    NullKind =
4386        NullExpr->isNullPointerConstant(Context,
4387                                        Expr::NPC_ValueDependentIsNotNull);
4388  }
4389
4390  if (NullKind == Expr::NPCK_NotNull)
4391    return false;
4392
4393  if (NullKind == Expr::NPCK_ZeroInteger) {
4394    // In this case, check to make sure that we got here from a "NULL"
4395    // string in the source code.
4396    NullExpr = NullExpr->IgnoreParenImpCasts();
4397    SourceLocation loc = NullExpr->getExprLoc();
4398    if (!findMacroSpelling(loc, "NULL"))
4399      return false;
4400  }
4401
4402  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4403  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4404      << NonPointerExpr->getType() << DiagType
4405      << NonPointerExpr->getSourceRange();
4406  return true;
4407}
4408
4409/// \brief Return false if the condition expression is valid, true otherwise.
4410static bool checkCondition(Sema &S, Expr *Cond) {
4411  QualType CondTy = Cond->getType();
4412
4413  // C99 6.5.15p2
4414  if (CondTy->isScalarType()) return false;
4415
4416  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4417  if (S.getLangOptions().OpenCL && CondTy->isVectorType())
4418    return false;
4419
4420  // Emit the proper error message.
4421  S.Diag(Cond->getLocStart(), S.getLangOptions().OpenCL ?
4422                              diag::err_typecheck_cond_expect_scalar :
4423                              diag::err_typecheck_cond_expect_scalar_or_vector)
4424    << CondTy;
4425  return true;
4426}
4427
4428/// \brief Return false if the two expressions can be converted to a vector,
4429/// true otherwise
4430static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4431                                                    ExprResult &RHS,
4432                                                    QualType CondTy) {
4433  // Both operands should be of scalar type.
4434  if (!LHS.get()->getType()->isScalarType()) {
4435    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4436      << CondTy;
4437    return true;
4438  }
4439  if (!RHS.get()->getType()->isScalarType()) {
4440    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4441      << CondTy;
4442    return true;
4443  }
4444
4445  // Implicity convert these scalars to the type of the condition.
4446  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4447  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4448  return false;
4449}
4450
4451/// \brief Handle when one or both operands are void type.
4452static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4453                                         ExprResult &RHS) {
4454    Expr *LHSExpr = LHS.get();
4455    Expr *RHSExpr = RHS.get();
4456
4457    if (!LHSExpr->getType()->isVoidType())
4458      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4459        << RHSExpr->getSourceRange();
4460    if (!RHSExpr->getType()->isVoidType())
4461      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4462        << LHSExpr->getSourceRange();
4463    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4464    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4465    return S.Context.VoidTy;
4466}
4467
4468/// \brief Return false if the NullExpr can be promoted to PointerTy,
4469/// true otherwise.
4470static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4471                                        QualType PointerTy) {
4472  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4473      !NullExpr.get()->isNullPointerConstant(S.Context,
4474                                            Expr::NPC_ValueDependentIsNull))
4475    return true;
4476
4477  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4478  return false;
4479}
4480
4481/// \brief Checks compatibility between two pointers and return the resulting
4482/// type.
4483static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4484                                                     ExprResult &RHS,
4485                                                     SourceLocation Loc) {
4486  QualType LHSTy = LHS.get()->getType();
4487  QualType RHSTy = RHS.get()->getType();
4488
4489  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4490    // Two identical pointers types are always compatible.
4491    return LHSTy;
4492  }
4493
4494  QualType lhptee, rhptee;
4495
4496  // Get the pointee types.
4497  if (LHSTy->isBlockPointerType()) {
4498    lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4499    rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4500  } else {
4501    lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4502    rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4503  }
4504
4505  if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4506                                    rhptee.getUnqualifiedType())) {
4507    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4508      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4509      << RHS.get()->getSourceRange();
4510    // In this situation, we assume void* type. No especially good
4511    // reason, but this is what gcc does, and we do have to pick
4512    // to get a consistent AST.
4513    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4514    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4515    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4516    return incompatTy;
4517  }
4518
4519  // The pointer types are compatible.
4520  // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4521  // differently qualified versions of compatible types, the result type is
4522  // a pointer to an appropriately qualified version of the *composite*
4523  // type.
4524  // FIXME: Need to calculate the composite type.
4525  // FIXME: Need to add qualifiers
4526
4527  LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
4528  RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4529  return LHSTy;
4530}
4531
4532/// \brief Return the resulting type when the operands are both block pointers.
4533static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4534                                                          ExprResult &LHS,
4535                                                          ExprResult &RHS,
4536                                                          SourceLocation Loc) {
4537  QualType LHSTy = LHS.get()->getType();
4538  QualType RHSTy = RHS.get()->getType();
4539
4540  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4541    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4542      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4543      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4544      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4545      return destType;
4546    }
4547    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4548      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4549      << RHS.get()->getSourceRange();
4550    return QualType();
4551  }
4552
4553  // We have 2 block pointer types.
4554  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4555}
4556
4557/// \brief Return the resulting type when the operands are both pointers.
4558static QualType
4559checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4560                                            ExprResult &RHS,
4561                                            SourceLocation Loc) {
4562  // get the pointer types
4563  QualType LHSTy = LHS.get()->getType();
4564  QualType RHSTy = RHS.get()->getType();
4565
4566  // get the "pointed to" types
4567  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4568  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4569
4570  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4571  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4572    // Figure out necessary qualifiers (C99 6.5.15p6)
4573    QualType destPointee
4574      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4575    QualType destType = S.Context.getPointerType(destPointee);
4576    // Add qualifiers if necessary.
4577    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4578    // Promote to void*.
4579    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4580    return destType;
4581  }
4582  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4583    QualType destPointee
4584      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4585    QualType destType = S.Context.getPointerType(destPointee);
4586    // Add qualifiers if necessary.
4587    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4588    // Promote to void*.
4589    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4590    return destType;
4591  }
4592
4593  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4594}
4595
4596/// \brief Return false if the first expression is not an integer and the second
4597/// expression is not a pointer, true otherwise.
4598static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4599                                        Expr* PointerExpr, SourceLocation Loc,
4600                                        bool isIntFirstExpr) {
4601  if (!PointerExpr->getType()->isPointerType() ||
4602      !Int.get()->getType()->isIntegerType())
4603    return false;
4604
4605  Expr *Expr1 = isIntFirstExpr ? Int.get() : PointerExpr;
4606  Expr *Expr2 = isIntFirstExpr ? PointerExpr : Int.get();
4607
4608  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4609    << Expr1->getType() << Expr2->getType()
4610    << Expr1->getSourceRange() << Expr2->getSourceRange();
4611  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4612                            CK_IntegralToPointer);
4613  return true;
4614}
4615
4616/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4617/// In that case, LHS = cond.
4618/// C99 6.5.15
4619QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4620                                        ExprResult &RHS, ExprValueKind &VK,
4621                                        ExprObjectKind &OK,
4622                                        SourceLocation QuestionLoc) {
4623
4624  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4625  if (!LHSResult.isUsable()) return QualType();
4626  LHS = move(LHSResult);
4627
4628  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4629  if (!RHSResult.isUsable()) return QualType();
4630  RHS = move(RHSResult);
4631
4632  // C++ is sufficiently different to merit its own checker.
4633  if (getLangOptions().CPlusPlus)
4634    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4635
4636  VK = VK_RValue;
4637  OK = OK_Ordinary;
4638
4639  Cond = UsualUnaryConversions(Cond.take());
4640  if (Cond.isInvalid())
4641    return QualType();
4642  LHS = UsualUnaryConversions(LHS.take());
4643  if (LHS.isInvalid())
4644    return QualType();
4645  RHS = UsualUnaryConversions(RHS.take());
4646  if (RHS.isInvalid())
4647    return QualType();
4648
4649  QualType CondTy = Cond.get()->getType();
4650  QualType LHSTy = LHS.get()->getType();
4651  QualType RHSTy = RHS.get()->getType();
4652
4653  // first, check the condition.
4654  if (checkCondition(*this, Cond.get()))
4655    return QualType();
4656
4657  // Now check the two expressions.
4658  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4659    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4660
4661  // OpenCL: If the condition is a vector, and both operands are scalar,
4662  // attempt to implicity convert them to the vector type to act like the
4663  // built in select.
4664  if (getLangOptions().OpenCL && CondTy->isVectorType())
4665    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4666      return QualType();
4667
4668  // If both operands have arithmetic type, do the usual arithmetic conversions
4669  // to find a common type: C99 6.5.15p3,5.
4670  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4671    UsualArithmeticConversions(LHS, RHS);
4672    if (LHS.isInvalid() || RHS.isInvalid())
4673      return QualType();
4674    return LHS.get()->getType();
4675  }
4676
4677  // If both operands are the same structure or union type, the result is that
4678  // type.
4679  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4680    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4681      if (LHSRT->getDecl() == RHSRT->getDecl())
4682        // "If both the operands have structure or union type, the result has
4683        // that type."  This implies that CV qualifiers are dropped.
4684        return LHSTy.getUnqualifiedType();
4685    // FIXME: Type of conditional expression must be complete in C mode.
4686  }
4687
4688  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4689  // The following || allows only one side to be void (a GCC-ism).
4690  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4691    return checkConditionalVoidType(*this, LHS, RHS);
4692  }
4693
4694  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4695  // the type of the other operand."
4696  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4697  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4698
4699  // All objective-c pointer type analysis is done here.
4700  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4701                                                        QuestionLoc);
4702  if (LHS.isInvalid() || RHS.isInvalid())
4703    return QualType();
4704  if (!compositeType.isNull())
4705    return compositeType;
4706
4707
4708  // Handle block pointer types.
4709  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4710    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4711                                                     QuestionLoc);
4712
4713  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4714  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4715    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4716                                                       QuestionLoc);
4717
4718  // GCC compatibility: soften pointer/integer mismatch.  Note that
4719  // null pointers have been filtered out by this point.
4720  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4721      /*isIntFirstExpr=*/true))
4722    return RHSTy;
4723  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4724      /*isIntFirstExpr=*/false))
4725    return LHSTy;
4726
4727  // Emit a better diagnostic if one of the expressions is a null pointer
4728  // constant and the other is not a pointer type. In this case, the user most
4729  // likely forgot to take the address of the other expression.
4730  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4731    return QualType();
4732
4733  // Otherwise, the operands are not compatible.
4734  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4735    << LHSTy << RHSTy << LHS.get()->getSourceRange()
4736    << RHS.get()->getSourceRange();
4737  return QualType();
4738}
4739
4740/// FindCompositeObjCPointerType - Helper method to find composite type of
4741/// two objective-c pointer types of the two input expressions.
4742QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4743                                            SourceLocation QuestionLoc) {
4744  QualType LHSTy = LHS.get()->getType();
4745  QualType RHSTy = RHS.get()->getType();
4746
4747  // Handle things like Class and struct objc_class*.  Here we case the result
4748  // to the pseudo-builtin, because that will be implicitly cast back to the
4749  // redefinition type if an attempt is made to access its fields.
4750  if (LHSTy->isObjCClassType() &&
4751      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4752    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4753    return LHSTy;
4754  }
4755  if (RHSTy->isObjCClassType() &&
4756      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4757    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4758    return RHSTy;
4759  }
4760  // And the same for struct objc_object* / id
4761  if (LHSTy->isObjCIdType() &&
4762      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4763    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4764    return LHSTy;
4765  }
4766  if (RHSTy->isObjCIdType() &&
4767      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
4768    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4769    return RHSTy;
4770  }
4771  // And the same for struct objc_selector* / SEL
4772  if (Context.isObjCSelType(LHSTy) &&
4773      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
4774    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4775    return LHSTy;
4776  }
4777  if (Context.isObjCSelType(RHSTy) &&
4778      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
4779    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4780    return RHSTy;
4781  }
4782  // Check constraints for Objective-C object pointers types.
4783  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4784
4785    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4786      // Two identical object pointer types are always compatible.
4787      return LHSTy;
4788    }
4789    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4790    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4791    QualType compositeType = LHSTy;
4792
4793    // If both operands are interfaces and either operand can be
4794    // assigned to the other, use that type as the composite
4795    // type. This allows
4796    //   xxx ? (A*) a : (B*) b
4797    // where B is a subclass of A.
4798    //
4799    // Additionally, as for assignment, if either type is 'id'
4800    // allow silent coercion. Finally, if the types are
4801    // incompatible then make sure to use 'id' as the composite
4802    // type so the result is acceptable for sending messages to.
4803
4804    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4805    // It could return the composite type.
4806    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4807      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4808    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4809      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4810    } else if ((LHSTy->isObjCQualifiedIdType() ||
4811                RHSTy->isObjCQualifiedIdType()) &&
4812               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4813      // Need to handle "id<xx>" explicitly.
4814      // GCC allows qualified id and any Objective-C type to devolve to
4815      // id. Currently localizing to here until clear this should be
4816      // part of ObjCQualifiedIdTypesAreCompatible.
4817      compositeType = Context.getObjCIdType();
4818    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4819      compositeType = Context.getObjCIdType();
4820    } else if (!(compositeType =
4821                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4822      ;
4823    else {
4824      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4825      << LHSTy << RHSTy
4826      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4827      QualType incompatTy = Context.getObjCIdType();
4828      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4829      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4830      return incompatTy;
4831    }
4832    // The object pointer types are compatible.
4833    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4834    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4835    return compositeType;
4836  }
4837  // Check Objective-C object pointer types and 'void *'
4838  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4839    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4840    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4841    QualType destPointee
4842    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4843    QualType destType = Context.getPointerType(destPointee);
4844    // Add qualifiers if necessary.
4845    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4846    // Promote to void*.
4847    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4848    return destType;
4849  }
4850  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4851    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4852    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4853    QualType destPointee
4854    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4855    QualType destType = Context.getPointerType(destPointee);
4856    // Add qualifiers if necessary.
4857    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4858    // Promote to void*.
4859    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4860    return destType;
4861  }
4862  return QualType();
4863}
4864
4865/// SuggestParentheses - Emit a note with a fixit hint that wraps
4866/// ParenRange in parentheses.
4867static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4868                               const PartialDiagnostic &Note,
4869                               SourceRange ParenRange) {
4870  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4871  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4872      EndLoc.isValid()) {
4873    Self.Diag(Loc, Note)
4874      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4875      << FixItHint::CreateInsertion(EndLoc, ")");
4876  } else {
4877    // We can't display the parentheses, so just show the bare note.
4878    Self.Diag(Loc, Note) << ParenRange;
4879  }
4880}
4881
4882static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4883  return Opc >= BO_Mul && Opc <= BO_Shr;
4884}
4885
4886/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
4887/// expression, either using a built-in or overloaded operator,
4888/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
4889/// expression.
4890static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
4891                                   Expr **RHSExprs) {
4892  E = E->IgnoreParenImpCasts();
4893  E = E->IgnoreConversionOperator();
4894  E = E->IgnoreParenImpCasts();
4895
4896  // Built-in binary operator.
4897  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
4898    if (IsArithmeticOp(OP->getOpcode())) {
4899      *Opcode = OP->getOpcode();
4900      *RHSExprs = OP->getRHS();
4901      return true;
4902    }
4903  }
4904
4905  // Overloaded operator.
4906  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
4907    if (Call->getNumArgs() != 2)
4908      return false;
4909
4910    // Make sure this is really a binary operator that is safe to pass into
4911    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
4912    OverloadedOperatorKind OO = Call->getOperator();
4913    if (OO < OO_Plus || OO > OO_Arrow)
4914      return false;
4915
4916    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
4917    if (IsArithmeticOp(OpKind)) {
4918      *Opcode = OpKind;
4919      *RHSExprs = Call->getArg(1);
4920      return true;
4921    }
4922  }
4923
4924  return false;
4925}
4926
4927static bool IsLogicOp(BinaryOperatorKind Opc) {
4928  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
4929}
4930
4931/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
4932/// or is a logical expression such as (x==y) which has int type, but is
4933/// commonly interpreted as boolean.
4934static bool ExprLooksBoolean(Expr *E) {
4935  E = E->IgnoreParenImpCasts();
4936
4937  if (E->getType()->isBooleanType())
4938    return true;
4939  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
4940    return IsLogicOp(OP->getOpcode());
4941  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
4942    return OP->getOpcode() == UO_LNot;
4943
4944  return false;
4945}
4946
4947/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
4948/// and binary operator are mixed in a way that suggests the programmer assumed
4949/// the conditional operator has higher precedence, for example:
4950/// "int x = a + someBinaryCondition ? 1 : 2".
4951static void DiagnoseConditionalPrecedence(Sema &Self,
4952                                          SourceLocation OpLoc,
4953                                          Expr *Condition,
4954                                          Expr *LHSExpr,
4955                                          Expr *RHSExpr) {
4956  BinaryOperatorKind CondOpcode;
4957  Expr *CondRHS;
4958
4959  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
4960    return;
4961  if (!ExprLooksBoolean(CondRHS))
4962    return;
4963
4964  // The condition is an arithmetic binary expression, with a right-
4965  // hand side that looks boolean, so warn.
4966
4967  Self.Diag(OpLoc, diag::warn_precedence_conditional)
4968      << Condition->getSourceRange()
4969      << BinaryOperator::getOpcodeStr(CondOpcode);
4970
4971  SuggestParentheses(Self, OpLoc,
4972    Self.PDiag(diag::note_precedence_conditional_silence)
4973      << BinaryOperator::getOpcodeStr(CondOpcode),
4974    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
4975
4976  SuggestParentheses(Self, OpLoc,
4977    Self.PDiag(diag::note_precedence_conditional_first),
4978    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
4979}
4980
4981/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4982/// in the case of a the GNU conditional expr extension.
4983ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4984                                    SourceLocation ColonLoc,
4985                                    Expr *CondExpr, Expr *LHSExpr,
4986                                    Expr *RHSExpr) {
4987  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4988  // was the condition.
4989  OpaqueValueExpr *opaqueValue = 0;
4990  Expr *commonExpr = 0;
4991  if (LHSExpr == 0) {
4992    commonExpr = CondExpr;
4993
4994    // We usually want to apply unary conversions *before* saving, except
4995    // in the special case of a C++ l-value conditional.
4996    if (!(getLangOptions().CPlusPlus
4997          && !commonExpr->isTypeDependent()
4998          && commonExpr->getValueKind() == RHSExpr->getValueKind()
4999          && commonExpr->isGLValue()
5000          && commonExpr->isOrdinaryOrBitFieldObject()
5001          && RHSExpr->isOrdinaryOrBitFieldObject()
5002          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5003      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5004      if (commonRes.isInvalid())
5005        return ExprError();
5006      commonExpr = commonRes.take();
5007    }
5008
5009    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5010                                                commonExpr->getType(),
5011                                                commonExpr->getValueKind(),
5012                                                commonExpr->getObjectKind());
5013    LHSExpr = CondExpr = opaqueValue;
5014  }
5015
5016  ExprValueKind VK = VK_RValue;
5017  ExprObjectKind OK = OK_Ordinary;
5018  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5019  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5020                                             VK, OK, QuestionLoc);
5021  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5022      RHS.isInvalid())
5023    return ExprError();
5024
5025  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5026                                RHS.get());
5027
5028  if (!commonExpr)
5029    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5030                                                   LHS.take(), ColonLoc,
5031                                                   RHS.take(), result, VK, OK));
5032
5033  return Owned(new (Context)
5034    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5035                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5036                              OK));
5037}
5038
5039// checkPointerTypesForAssignment - This is a very tricky routine (despite
5040// being closely modeled after the C99 spec:-). The odd characteristic of this
5041// routine is it effectively iqnores the qualifiers on the top level pointee.
5042// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5043// FIXME: add a couple examples in this comment.
5044static Sema::AssignConvertType
5045checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5046  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5047  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5048
5049  // get the "pointed to" type (ignoring qualifiers at the top level)
5050  const Type *lhptee, *rhptee;
5051  Qualifiers lhq, rhq;
5052  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5053  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5054
5055  Sema::AssignConvertType ConvTy = Sema::Compatible;
5056
5057  // C99 6.5.16.1p1: This following citation is common to constraints
5058  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5059  // qualifiers of the type *pointed to* by the right;
5060  Qualifiers lq;
5061
5062  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5063  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5064      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5065    // Ignore lifetime for further calculation.
5066    lhq.removeObjCLifetime();
5067    rhq.removeObjCLifetime();
5068  }
5069
5070  if (!lhq.compatiblyIncludes(rhq)) {
5071    // Treat address-space mismatches as fatal.  TODO: address subspaces
5072    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5073      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5074
5075    // It's okay to add or remove GC or lifetime qualifiers when converting to
5076    // and from void*.
5077    else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime()
5078                        .compatiblyIncludes(
5079                                rhq.withoutObjCGCAttr().withoutObjCGLifetime())
5080             && (lhptee->isVoidType() || rhptee->isVoidType()))
5081      ; // keep old
5082
5083    // Treat lifetime mismatches as fatal.
5084    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5085      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5086
5087    // For GCC compatibility, other qualifier mismatches are treated
5088    // as still compatible in C.
5089    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5090  }
5091
5092  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5093  // incomplete type and the other is a pointer to a qualified or unqualified
5094  // version of void...
5095  if (lhptee->isVoidType()) {
5096    if (rhptee->isIncompleteOrObjectType())
5097      return ConvTy;
5098
5099    // As an extension, we allow cast to/from void* to function pointer.
5100    assert(rhptee->isFunctionType());
5101    return Sema::FunctionVoidPointer;
5102  }
5103
5104  if (rhptee->isVoidType()) {
5105    if (lhptee->isIncompleteOrObjectType())
5106      return ConvTy;
5107
5108    // As an extension, we allow cast to/from void* to function pointer.
5109    assert(lhptee->isFunctionType());
5110    return Sema::FunctionVoidPointer;
5111  }
5112
5113  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5114  // unqualified versions of compatible types, ...
5115  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5116  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5117    // Check if the pointee types are compatible ignoring the sign.
5118    // We explicitly check for char so that we catch "char" vs
5119    // "unsigned char" on systems where "char" is unsigned.
5120    if (lhptee->isCharType())
5121      ltrans = S.Context.UnsignedCharTy;
5122    else if (lhptee->hasSignedIntegerRepresentation())
5123      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5124
5125    if (rhptee->isCharType())
5126      rtrans = S.Context.UnsignedCharTy;
5127    else if (rhptee->hasSignedIntegerRepresentation())
5128      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5129
5130    if (ltrans == rtrans) {
5131      // Types are compatible ignoring the sign. Qualifier incompatibility
5132      // takes priority over sign incompatibility because the sign
5133      // warning can be disabled.
5134      if (ConvTy != Sema::Compatible)
5135        return ConvTy;
5136
5137      return Sema::IncompatiblePointerSign;
5138    }
5139
5140    // If we are a multi-level pointer, it's possible that our issue is simply
5141    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5142    // the eventual target type is the same and the pointers have the same
5143    // level of indirection, this must be the issue.
5144    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5145      do {
5146        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5147        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5148      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5149
5150      if (lhptee == rhptee)
5151        return Sema::IncompatibleNestedPointerQualifiers;
5152    }
5153
5154    // General pointer incompatibility takes priority over qualifiers.
5155    return Sema::IncompatiblePointer;
5156  }
5157  return ConvTy;
5158}
5159
5160/// checkBlockPointerTypesForAssignment - This routine determines whether two
5161/// block pointer types are compatible or whether a block and normal pointer
5162/// are compatible. It is more restrict than comparing two function pointer
5163// types.
5164static Sema::AssignConvertType
5165checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5166                                    QualType RHSType) {
5167  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5168  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5169
5170  QualType lhptee, rhptee;
5171
5172  // get the "pointed to" type (ignoring qualifiers at the top level)
5173  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5174  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5175
5176  // In C++, the types have to match exactly.
5177  if (S.getLangOptions().CPlusPlus)
5178    return Sema::IncompatibleBlockPointer;
5179
5180  Sema::AssignConvertType ConvTy = Sema::Compatible;
5181
5182  // For blocks we enforce that qualifiers are identical.
5183  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5184    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5185
5186  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5187    return Sema::IncompatibleBlockPointer;
5188
5189  return ConvTy;
5190}
5191
5192/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5193/// for assignment compatibility.
5194static Sema::AssignConvertType
5195checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5196                                   QualType RHSType) {
5197  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5198  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5199
5200  if (LHSType->isObjCBuiltinType()) {
5201    // Class is not compatible with ObjC object pointers.
5202    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5203        !RHSType->isObjCQualifiedClassType())
5204      return Sema::IncompatiblePointer;
5205    return Sema::Compatible;
5206  }
5207  if (RHSType->isObjCBuiltinType()) {
5208    // Class is not compatible with ObjC object pointers.
5209    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5210        !LHSType->isObjCQualifiedClassType())
5211      return Sema::IncompatiblePointer;
5212    return Sema::Compatible;
5213  }
5214  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5215  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5216
5217  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5218    return Sema::CompatiblePointerDiscardsQualifiers;
5219
5220  if (S.Context.typesAreCompatible(LHSType, RHSType))
5221    return Sema::Compatible;
5222  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5223    return Sema::IncompatibleObjCQualifiedId;
5224  return Sema::IncompatiblePointer;
5225}
5226
5227Sema::AssignConvertType
5228Sema::CheckAssignmentConstraints(SourceLocation Loc,
5229                                 QualType LHSType, QualType RHSType) {
5230  // Fake up an opaque expression.  We don't actually care about what
5231  // cast operations are required, so if CheckAssignmentConstraints
5232  // adds casts to this they'll be wasted, but fortunately that doesn't
5233  // usually happen on valid code.
5234  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5235  ExprResult RHSPtr = &RHSExpr;
5236  CastKind K = CK_Invalid;
5237
5238  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5239}
5240
5241/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5242/// has code to accommodate several GCC extensions when type checking
5243/// pointers. Here are some objectionable examples that GCC considers warnings:
5244///
5245///  int a, *pint;
5246///  short *pshort;
5247///  struct foo *pfoo;
5248///
5249///  pint = pshort; // warning: assignment from incompatible pointer type
5250///  a = pint; // warning: assignment makes integer from pointer without a cast
5251///  pint = a; // warning: assignment makes pointer from integer without a cast
5252///  pint = pfoo; // warning: assignment from incompatible pointer type
5253///
5254/// As a result, the code for dealing with pointers is more complex than the
5255/// C99 spec dictates.
5256///
5257/// Sets 'Kind' for any result kind except Incompatible.
5258Sema::AssignConvertType
5259Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5260                                 CastKind &Kind) {
5261  QualType RHSType = RHS.get()->getType();
5262  QualType OrigLHSType = LHSType;
5263
5264  // Get canonical types.  We're not formatting these types, just comparing
5265  // them.
5266  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5267  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5268
5269  // Common case: no conversion required.
5270  if (LHSType == RHSType) {
5271    Kind = CK_NoOp;
5272    return Compatible;
5273  }
5274
5275  // If the left-hand side is a reference type, then we are in a
5276  // (rare!) case where we've allowed the use of references in C,
5277  // e.g., as a parameter type in a built-in function. In this case,
5278  // just make sure that the type referenced is compatible with the
5279  // right-hand side type. The caller is responsible for adjusting
5280  // LHSType so that the resulting expression does not have reference
5281  // type.
5282  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5283    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5284      Kind = CK_LValueBitCast;
5285      return Compatible;
5286    }
5287    return Incompatible;
5288  }
5289
5290  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5291  // to the same ExtVector type.
5292  if (LHSType->isExtVectorType()) {
5293    if (RHSType->isExtVectorType())
5294      return Incompatible;
5295    if (RHSType->isArithmeticType()) {
5296      // CK_VectorSplat does T -> vector T, so first cast to the
5297      // element type.
5298      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5299      if (elType != RHSType) {
5300        Kind = PrepareScalarCast(*this, RHS, elType);
5301        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5302      }
5303      Kind = CK_VectorSplat;
5304      return Compatible;
5305    }
5306  }
5307
5308  // Conversions to or from vector type.
5309  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5310    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5311      // Allow assignments of an AltiVec vector type to an equivalent GCC
5312      // vector type and vice versa
5313      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5314        Kind = CK_BitCast;
5315        return Compatible;
5316      }
5317
5318      // If we are allowing lax vector conversions, and LHS and RHS are both
5319      // vectors, the total size only needs to be the same. This is a bitcast;
5320      // no bits are changed but the result type is different.
5321      if (getLangOptions().LaxVectorConversions &&
5322          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5323        Kind = CK_BitCast;
5324        return IncompatibleVectors;
5325      }
5326    }
5327    return Incompatible;
5328  }
5329
5330  // Arithmetic conversions.
5331  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5332      !(getLangOptions().CPlusPlus && LHSType->isEnumeralType())) {
5333    Kind = PrepareScalarCast(*this, RHS, LHSType);
5334    return Compatible;
5335  }
5336
5337  // Conversions to normal pointers.
5338  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5339    // U* -> T*
5340    if (isa<PointerType>(RHSType)) {
5341      Kind = CK_BitCast;
5342      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5343    }
5344
5345    // int -> T*
5346    if (RHSType->isIntegerType()) {
5347      Kind = CK_IntegralToPointer; // FIXME: null?
5348      return IntToPointer;
5349    }
5350
5351    // C pointers are not compatible with ObjC object pointers,
5352    // with two exceptions:
5353    if (isa<ObjCObjectPointerType>(RHSType)) {
5354      //  - conversions to void*
5355      if (LHSPointer->getPointeeType()->isVoidType()) {
5356        Kind = CK_AnyPointerToObjCPointerCast;
5357        return Compatible;
5358      }
5359
5360      //  - conversions from 'Class' to the redefinition type
5361      if (RHSType->isObjCClassType() &&
5362          Context.hasSameType(LHSType,
5363                              Context.getObjCClassRedefinitionType())) {
5364        Kind = CK_BitCast;
5365        return Compatible;
5366      }
5367
5368      Kind = CK_BitCast;
5369      return IncompatiblePointer;
5370    }
5371
5372    // U^ -> void*
5373    if (RHSType->getAs<BlockPointerType>()) {
5374      if (LHSPointer->getPointeeType()->isVoidType()) {
5375        Kind = CK_BitCast;
5376        return Compatible;
5377      }
5378    }
5379
5380    return Incompatible;
5381  }
5382
5383  // Conversions to block pointers.
5384  if (isa<BlockPointerType>(LHSType)) {
5385    // U^ -> T^
5386    if (RHSType->isBlockPointerType()) {
5387      Kind = CK_AnyPointerToBlockPointerCast;
5388      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5389    }
5390
5391    // int or null -> T^
5392    if (RHSType->isIntegerType()) {
5393      Kind = CK_IntegralToPointer; // FIXME: null
5394      return IntToBlockPointer;
5395    }
5396
5397    // id -> T^
5398    if (getLangOptions().ObjC1 && RHSType->isObjCIdType()) {
5399      Kind = CK_AnyPointerToBlockPointerCast;
5400      return Compatible;
5401    }
5402
5403    // void* -> T^
5404    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5405      if (RHSPT->getPointeeType()->isVoidType()) {
5406        Kind = CK_AnyPointerToBlockPointerCast;
5407        return Compatible;
5408      }
5409
5410    return Incompatible;
5411  }
5412
5413  // Conversions to Objective-C pointers.
5414  if (isa<ObjCObjectPointerType>(LHSType)) {
5415    // A* -> B*
5416    if (RHSType->isObjCObjectPointerType()) {
5417      Kind = CK_BitCast;
5418      Sema::AssignConvertType result =
5419        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5420      if (getLangOptions().ObjCAutoRefCount &&
5421          result == Compatible &&
5422          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5423        result = IncompatibleObjCWeakRef;
5424      return result;
5425    }
5426
5427    // int or null -> A*
5428    if (RHSType->isIntegerType()) {
5429      Kind = CK_IntegralToPointer; // FIXME: null
5430      return IntToPointer;
5431    }
5432
5433    // In general, C pointers are not compatible with ObjC object pointers,
5434    // with two exceptions:
5435    if (isa<PointerType>(RHSType)) {
5436      //  - conversions from 'void*'
5437      if (RHSType->isVoidPointerType()) {
5438        Kind = CK_AnyPointerToObjCPointerCast;
5439        return Compatible;
5440      }
5441
5442      //  - conversions to 'Class' from its redefinition type
5443      if (LHSType->isObjCClassType() &&
5444          Context.hasSameType(RHSType,
5445                              Context.getObjCClassRedefinitionType())) {
5446        Kind = CK_BitCast;
5447        return Compatible;
5448      }
5449
5450      Kind = CK_AnyPointerToObjCPointerCast;
5451      return IncompatiblePointer;
5452    }
5453
5454    // T^ -> A*
5455    if (RHSType->isBlockPointerType()) {
5456      Kind = CK_AnyPointerToObjCPointerCast;
5457      return Compatible;
5458    }
5459
5460    return Incompatible;
5461  }
5462
5463  // Conversions from pointers that are not covered by the above.
5464  if (isa<PointerType>(RHSType)) {
5465    // T* -> _Bool
5466    if (LHSType == Context.BoolTy) {
5467      Kind = CK_PointerToBoolean;
5468      return Compatible;
5469    }
5470
5471    // T* -> int
5472    if (LHSType->isIntegerType()) {
5473      Kind = CK_PointerToIntegral;
5474      return PointerToInt;
5475    }
5476
5477    return Incompatible;
5478  }
5479
5480  // Conversions from Objective-C pointers that are not covered by the above.
5481  if (isa<ObjCObjectPointerType>(RHSType)) {
5482    // T* -> _Bool
5483    if (LHSType == Context.BoolTy) {
5484      Kind = CK_PointerToBoolean;
5485      return Compatible;
5486    }
5487
5488    // T* -> int
5489    if (LHSType->isIntegerType()) {
5490      Kind = CK_PointerToIntegral;
5491      return PointerToInt;
5492    }
5493
5494    return Incompatible;
5495  }
5496
5497  // struct A -> struct B
5498  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5499    if (Context.typesAreCompatible(LHSType, RHSType)) {
5500      Kind = CK_NoOp;
5501      return Compatible;
5502    }
5503  }
5504
5505  return Incompatible;
5506}
5507
5508/// \brief Constructs a transparent union from an expression that is
5509/// used to initialize the transparent union.
5510static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5511                                      ExprResult &EResult, QualType UnionType,
5512                                      FieldDecl *Field) {
5513  // Build an initializer list that designates the appropriate member
5514  // of the transparent union.
5515  Expr *E = EResult.take();
5516  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5517                                                   &E, 1,
5518                                                   SourceLocation());
5519  Initializer->setType(UnionType);
5520  Initializer->setInitializedFieldInUnion(Field);
5521
5522  // Build a compound literal constructing a value of the transparent
5523  // union type from this initializer list.
5524  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5525  EResult = S.Owned(
5526    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5527                                VK_RValue, Initializer, false));
5528}
5529
5530Sema::AssignConvertType
5531Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5532                                               ExprResult &RHS) {
5533  QualType RHSType = RHS.get()->getType();
5534
5535  // If the ArgType is a Union type, we want to handle a potential
5536  // transparent_union GCC extension.
5537  const RecordType *UT = ArgType->getAsUnionType();
5538  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5539    return Incompatible;
5540
5541  // The field to initialize within the transparent union.
5542  RecordDecl *UD = UT->getDecl();
5543  FieldDecl *InitField = 0;
5544  // It's compatible if the expression matches any of the fields.
5545  for (RecordDecl::field_iterator it = UD->field_begin(),
5546         itend = UD->field_end();
5547       it != itend; ++it) {
5548    if (it->getType()->isPointerType()) {
5549      // If the transparent union contains a pointer type, we allow:
5550      // 1) void pointer
5551      // 2) null pointer constant
5552      if (RHSType->isPointerType())
5553        if (RHSType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
5554          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5555          InitField = *it;
5556          break;
5557        }
5558
5559      if (RHS.get()->isNullPointerConstant(Context,
5560                                           Expr::NPC_ValueDependentIsNull)) {
5561        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5562                                CK_NullToPointer);
5563        InitField = *it;
5564        break;
5565      }
5566    }
5567
5568    CastKind Kind = CK_Invalid;
5569    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5570          == Compatible) {
5571      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5572      InitField = *it;
5573      break;
5574    }
5575  }
5576
5577  if (!InitField)
5578    return Incompatible;
5579
5580  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5581  return Compatible;
5582}
5583
5584Sema::AssignConvertType
5585Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS) {
5586  if (getLangOptions().CPlusPlus) {
5587    if (!LHSType->isRecordType()) {
5588      // C++ 5.17p3: If the left operand is not of class type, the
5589      // expression is implicitly converted (C++ 4) to the
5590      // cv-unqualified type of the left operand.
5591      ExprResult Res = PerformImplicitConversion(RHS.get(),
5592                                                 LHSType.getUnqualifiedType(),
5593                                                 AA_Assigning);
5594      if (Res.isInvalid())
5595        return Incompatible;
5596      Sema::AssignConvertType result = Compatible;
5597      if (getLangOptions().ObjCAutoRefCount &&
5598          !CheckObjCARCUnavailableWeakConversion(LHSType,
5599                                                 RHS.get()->getType()))
5600        result = IncompatibleObjCWeakRef;
5601      RHS = move(Res);
5602      return result;
5603    }
5604
5605    // FIXME: Currently, we fall through and treat C++ classes like C
5606    // structures.
5607  }
5608
5609  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5610  // a null pointer constant.
5611  if ((LHSType->isPointerType() ||
5612       LHSType->isObjCObjectPointerType() ||
5613       LHSType->isBlockPointerType())
5614      && RHS.get()->isNullPointerConstant(Context,
5615                                          Expr::NPC_ValueDependentIsNull)) {
5616    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5617    return Compatible;
5618  }
5619
5620  // This check seems unnatural, however it is necessary to ensure the proper
5621  // conversion of functions/arrays. If the conversion were done for all
5622  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5623  // expressions that suppress this implicit conversion (&, sizeof).
5624  //
5625  // Suppress this for references: C++ 8.5.3p5.
5626  if (!LHSType->isReferenceType()) {
5627    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5628    if (RHS.isInvalid())
5629      return Incompatible;
5630  }
5631
5632  CastKind Kind = CK_Invalid;
5633  Sema::AssignConvertType result =
5634    CheckAssignmentConstraints(LHSType, RHS, Kind);
5635
5636  // C99 6.5.16.1p2: The value of the right operand is converted to the
5637  // type of the assignment expression.
5638  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5639  // so that we can use references in built-in functions even in C.
5640  // The getNonReferenceType() call makes sure that the resulting expression
5641  // does not have reference type.
5642  if (result != Incompatible && RHS.get()->getType() != LHSType)
5643    RHS = ImpCastExprToType(RHS.take(),
5644                            LHSType.getNonLValueExprType(Context), Kind);
5645  return result;
5646}
5647
5648QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5649                               ExprResult &RHS) {
5650  Diag(Loc, diag::err_typecheck_invalid_operands)
5651    << LHS.get()->getType() << RHS.get()->getType()
5652    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5653  return QualType();
5654}
5655
5656QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5657                                   SourceLocation Loc, bool isCompAssign) {
5658  // For conversion purposes, we ignore any qualifiers.
5659  // For example, "const float" and "float" are equivalent.
5660  QualType LHSType =
5661    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5662  QualType RHSType =
5663    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5664
5665  // If the vector types are identical, return.
5666  if (LHSType == RHSType)
5667    return LHSType;
5668
5669  // Handle the case of equivalent AltiVec and GCC vector types
5670  if (LHSType->isVectorType() && RHSType->isVectorType() &&
5671      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5672    if (LHSType->isExtVectorType()) {
5673      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5674      return LHSType;
5675    }
5676
5677    if (!isCompAssign)
5678      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5679    return RHSType;
5680  }
5681
5682  if (getLangOptions().LaxVectorConversions &&
5683      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5684    // If we are allowing lax vector conversions, and LHS and RHS are both
5685    // vectors, the total size only needs to be the same. This is a
5686    // bitcast; no bits are changed but the result type is different.
5687    // FIXME: Should we really be allowing this?
5688    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5689    return LHSType;
5690  }
5691
5692  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5693  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5694  bool swapped = false;
5695  if (RHSType->isExtVectorType() && !isCompAssign) {
5696    swapped = true;
5697    std::swap(RHS, LHS);
5698    std::swap(RHSType, LHSType);
5699  }
5700
5701  // Handle the case of an ext vector and scalar.
5702  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5703    QualType EltTy = LV->getElementType();
5704    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
5705      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
5706      if (order > 0)
5707        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
5708      if (order >= 0) {
5709        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5710        if (swapped) std::swap(RHS, LHS);
5711        return LHSType;
5712      }
5713    }
5714    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
5715        RHSType->isRealFloatingType()) {
5716      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
5717      if (order > 0)
5718        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
5719      if (order >= 0) {
5720        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5721        if (swapped) std::swap(RHS, LHS);
5722        return LHSType;
5723      }
5724    }
5725  }
5726
5727  // Vectors of different size or scalar and non-ext-vector are errors.
5728  if (swapped) std::swap(RHS, LHS);
5729  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5730    << LHS.get()->getType() << RHS.get()->getType()
5731    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5732  return QualType();
5733}
5734
5735QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
5736                                           SourceLocation Loc,
5737                                           bool isCompAssign, bool isDiv) {
5738  if (LHS.get()->getType()->isVectorType() ||
5739      RHS.get()->getType()->isVectorType())
5740    return CheckVectorOperands(LHS, RHS, Loc, isCompAssign);
5741
5742  QualType compType = UsualArithmeticConversions(LHS, RHS, isCompAssign);
5743  if (LHS.isInvalid() || RHS.isInvalid())
5744    return QualType();
5745
5746  if (!LHS.get()->getType()->isArithmeticType() ||
5747      !RHS.get()->getType()->isArithmeticType())
5748    return InvalidOperands(Loc, LHS, RHS);
5749
5750  // Check for division by zero.
5751  if (isDiv &&
5752      RHS.get()->isNullPointerConstant(Context,
5753                                       Expr::NPC_ValueDependentIsNotNull))
5754    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
5755                                          << RHS.get()->getSourceRange());
5756
5757  return compType;
5758}
5759
5760QualType Sema::CheckRemainderOperands(
5761  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool isCompAssign) {
5762  if (LHS.get()->getType()->isVectorType() ||
5763      RHS.get()->getType()->isVectorType()) {
5764    if (LHS.get()->getType()->hasIntegerRepresentation() &&
5765        RHS.get()->getType()->hasIntegerRepresentation())
5766      return CheckVectorOperands(LHS, RHS, Loc, isCompAssign);
5767    return InvalidOperands(Loc, LHS, RHS);
5768  }
5769
5770  QualType compType = UsualArithmeticConversions(LHS, RHS, isCompAssign);
5771  if (LHS.isInvalid() || RHS.isInvalid())
5772    return QualType();
5773
5774  if (!LHS.get()->getType()->isIntegerType() ||
5775      !RHS.get()->getType()->isIntegerType())
5776    return InvalidOperands(Loc, LHS, RHS);
5777
5778  // Check for remainder by zero.
5779  if (RHS.get()->isNullPointerConstant(Context,
5780                                       Expr::NPC_ValueDependentIsNotNull))
5781    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
5782                                 << RHS.get()->getSourceRange());
5783
5784  return compType;
5785}
5786
5787/// \brief Diagnose invalid arithmetic on two void pointers.
5788static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
5789                                                Expr *LHS, Expr *RHS) {
5790  S.Diag(Loc, S.getLangOptions().CPlusPlus
5791                ? diag::err_typecheck_pointer_arith_void_type
5792                : diag::ext_gnu_void_ptr)
5793    << 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange();
5794}
5795
5796/// \brief Diagnose invalid arithmetic on a void pointer.
5797static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
5798                                            Expr *Pointer) {
5799  S.Diag(Loc, S.getLangOptions().CPlusPlus
5800                ? diag::err_typecheck_pointer_arith_void_type
5801                : diag::ext_gnu_void_ptr)
5802    << 0 /* one pointer */ << Pointer->getSourceRange();
5803}
5804
5805/// \brief Diagnose invalid arithmetic on two function pointers.
5806static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
5807                                                    Expr *LHS, Expr *RHS) {
5808  assert(LHS->getType()->isAnyPointerType());
5809  assert(RHS->getType()->isAnyPointerType());
5810  S.Diag(Loc, S.getLangOptions().CPlusPlus
5811                ? diag::err_typecheck_pointer_arith_function_type
5812                : diag::ext_gnu_ptr_func_arith)
5813    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
5814    // We only show the second type if it differs from the first.
5815    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
5816                                                   RHS->getType())
5817    << RHS->getType()->getPointeeType()
5818    << LHS->getSourceRange() << RHS->getSourceRange();
5819}
5820
5821/// \brief Diagnose invalid arithmetic on a function pointer.
5822static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
5823                                                Expr *Pointer) {
5824  assert(Pointer->getType()->isAnyPointerType());
5825  S.Diag(Loc, S.getLangOptions().CPlusPlus
5826                ? diag::err_typecheck_pointer_arith_function_type
5827                : diag::ext_gnu_ptr_func_arith)
5828    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
5829    << 0 /* one pointer, so only one type */
5830    << Pointer->getSourceRange();
5831}
5832
5833/// \brief Warn if Operand is incomplete pointer type
5834///
5835/// \returns True if pointer has incomplete type
5836static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
5837                                                 Expr *Operand) {
5838  if ((Operand->getType()->isPointerType() &&
5839       !Operand->getType()->isDependentType()) ||
5840      Operand->getType()->isObjCObjectPointerType()) {
5841    QualType PointeeTy = Operand->getType()->getPointeeType();
5842    if (S.RequireCompleteType(
5843          Loc, PointeeTy,
5844          S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5845            << PointeeTy << Operand->getSourceRange()))
5846      return true;
5847  }
5848  return false;
5849}
5850
5851/// \brief Check the validity of an arithmetic pointer operand.
5852///
5853/// If the operand has pointer type, this code will check for pointer types
5854/// which are invalid in arithmetic operations. These will be diagnosed
5855/// appropriately, including whether or not the use is supported as an
5856/// extension.
5857///
5858/// \returns True when the operand is valid to use (even if as an extension).
5859static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
5860                                            Expr *Operand) {
5861  if (!Operand->getType()->isAnyPointerType()) return true;
5862
5863  QualType PointeeTy = Operand->getType()->getPointeeType();
5864  if (PointeeTy->isVoidType()) {
5865    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
5866    return !S.getLangOptions().CPlusPlus;
5867  }
5868  if (PointeeTy->isFunctionType()) {
5869    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
5870    return !S.getLangOptions().CPlusPlus;
5871  }
5872
5873  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
5874
5875  return true;
5876}
5877
5878/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
5879/// operands.
5880///
5881/// This routine will diagnose any invalid arithmetic on pointer operands much
5882/// like \see checkArithmeticOpPointerOperand. However, it has special logic
5883/// for emitting a single diagnostic even for operations where both LHS and RHS
5884/// are (potentially problematic) pointers.
5885///
5886/// \returns True when the operand is valid to use (even if as an extension).
5887static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
5888                                                Expr *LHS, Expr *RHS) {
5889  bool isLHSPointer = LHS->getType()->isAnyPointerType();
5890  bool isRHSPointer = RHS->getType()->isAnyPointerType();
5891  if (!isLHSPointer && !isRHSPointer) return true;
5892
5893  QualType LHSPointeeTy, RHSPointeeTy;
5894  if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType();
5895  if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType();
5896
5897  // Check for arithmetic on pointers to incomplete types.
5898  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
5899  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
5900  if (isLHSVoidPtr || isRHSVoidPtr) {
5901    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS);
5902    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS);
5903    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS);
5904
5905    return !S.getLangOptions().CPlusPlus;
5906  }
5907
5908  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
5909  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
5910  if (isLHSFuncPtr || isRHSFuncPtr) {
5911    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS);
5912    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS);
5913    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS);
5914
5915    return !S.getLangOptions().CPlusPlus;
5916  }
5917
5918  if (checkArithmeticIncompletePointerType(S, Loc, LHS)) return false;
5919  if (checkArithmeticIncompletePointerType(S, Loc, RHS)) return false;
5920
5921  return true;
5922}
5923
5924/// \brief Check bad cases where we step over interface counts.
5925static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
5926                                                   SourceLocation OpLoc,
5927                                                   Expr *Op) {
5928  assert(Op->getType()->isAnyPointerType());
5929  QualType PointeeTy = Op->getType()->getPointeeType();
5930  if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
5931    return true;
5932
5933  S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5934    << PointeeTy << Op->getSourceRange();
5935  return false;
5936}
5937
5938/// \brief Warn when two pointers are incompatible.
5939static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
5940                                           Expr *LHS, Expr *RHS) {
5941  assert(LHS->getType()->isAnyPointerType());
5942  assert(RHS->getType()->isAnyPointerType());
5943  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5944    << LHS->getType() << RHS->getType() << LHS->getSourceRange()
5945    << RHS->getSourceRange();
5946}
5947
5948QualType Sema::CheckAdditionOperands( // C99 6.5.6
5949  ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
5950  if (lex.get()->getType()->isVectorType() ||
5951      rex.get()->getType()->isVectorType()) {
5952    QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
5953    if (CompLHSTy) *CompLHSTy = compType;
5954    return compType;
5955  }
5956
5957  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5958  if (lex.isInvalid() || rex.isInvalid())
5959    return QualType();
5960
5961  // handle the common case first (both operands are arithmetic).
5962  if (lex.get()->getType()->isArithmeticType() &&
5963      rex.get()->getType()->isArithmeticType()) {
5964    if (CompLHSTy) *CompLHSTy = compType;
5965    return compType;
5966  }
5967
5968  // Put any potential pointer into PExp
5969  Expr* PExp = lex.get(), *IExp = rex.get();
5970  if (IExp->getType()->isAnyPointerType())
5971    std::swap(PExp, IExp);
5972
5973  if (PExp->getType()->isAnyPointerType()) {
5974    if (IExp->getType()->isIntegerType()) {
5975      if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
5976        return QualType();
5977
5978      // Diagnose bad cases where we step over interface counts.
5979      if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
5980        return QualType();
5981
5982      // Check array bounds for pointer arithemtic
5983      CheckArrayAccess(PExp, IExp);
5984
5985      if (CompLHSTy) {
5986        QualType LHSTy = Context.isPromotableBitField(lex.get());
5987        if (LHSTy.isNull()) {
5988          LHSTy = lex.get()->getType();
5989          if (LHSTy->isPromotableIntegerType())
5990            LHSTy = Context.getPromotedIntegerType(LHSTy);
5991        }
5992        *CompLHSTy = LHSTy;
5993      }
5994      return PExp->getType();
5995    }
5996  }
5997
5998  return InvalidOperands(Loc, lex, rex);
5999}
6000
6001// C99 6.5.6
6002QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
6003                                        SourceLocation Loc,
6004                                        QualType* CompLHSTy) {
6005  if (lex.get()->getType()->isVectorType() ||
6006      rex.get()->getType()->isVectorType()) {
6007    QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
6008    if (CompLHSTy) *CompLHSTy = compType;
6009    return compType;
6010  }
6011
6012  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
6013  if (lex.isInvalid() || rex.isInvalid())
6014    return QualType();
6015
6016  // Enforce type constraints: C99 6.5.6p3.
6017
6018  // Handle the common case first (both operands are arithmetic).
6019  if (lex.get()->getType()->isArithmeticType() &&
6020      rex.get()->getType()->isArithmeticType()) {
6021    if (CompLHSTy) *CompLHSTy = compType;
6022    return compType;
6023  }
6024
6025  // Either ptr - int   or   ptr - ptr.
6026  if (lex.get()->getType()->isAnyPointerType()) {
6027    QualType lpointee = lex.get()->getType()->getPointeeType();
6028
6029    // Diagnose bad cases where we step over interface counts.
6030    if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, lex.get()))
6031      return QualType();
6032
6033    // The result type of a pointer-int computation is the pointer type.
6034    if (rex.get()->getType()->isIntegerType()) {
6035      if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get()))
6036        return QualType();
6037
6038      Expr *IExpr = rex.get()->IgnoreParenCasts();
6039      UnaryOperator negRex(IExpr, UO_Minus, IExpr->getType(), VK_RValue,
6040                           OK_Ordinary, IExpr->getExprLoc());
6041      // Check array bounds for pointer arithemtic
6042      CheckArrayAccess(lex.get()->IgnoreParenCasts(), &negRex);
6043
6044      if (CompLHSTy) *CompLHSTy = lex.get()->getType();
6045      return lex.get()->getType();
6046    }
6047
6048    // Handle pointer-pointer subtractions.
6049    if (const PointerType *RHSPTy
6050          = rex.get()->getType()->getAs<PointerType>()) {
6051      QualType rpointee = RHSPTy->getPointeeType();
6052
6053      if (getLangOptions().CPlusPlus) {
6054        // Pointee types must be the same: C++ [expr.add]
6055        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6056          diagnosePointerIncompatibility(*this, Loc, lex.get(), rex.get());
6057        }
6058      } else {
6059        // Pointee types must be compatible C99 6.5.6p3
6060        if (!Context.typesAreCompatible(
6061                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6062                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6063          diagnosePointerIncompatibility(*this, Loc, lex.get(), rex.get());
6064          return QualType();
6065        }
6066      }
6067
6068      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6069                                               lex.get(), rex.get()))
6070        return QualType();
6071
6072      if (CompLHSTy) *CompLHSTy = lex.get()->getType();
6073      return Context.getPointerDiffType();
6074    }
6075  }
6076
6077  return InvalidOperands(Loc, lex, rex);
6078}
6079
6080static bool isScopedEnumerationType(QualType T) {
6081  if (const EnumType *ET = dyn_cast<EnumType>(T))
6082    return ET->getDecl()->isScoped();
6083  return false;
6084}
6085
6086static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
6087                                   SourceLocation Loc, unsigned Opc,
6088                                   QualType LHSTy) {
6089  llvm::APSInt Right;
6090  // Check right/shifter operand
6091  if (rex.get()->isValueDependent() ||
6092      !rex.get()->isIntegerConstantExpr(Right, S.Context))
6093    return;
6094
6095  if (Right.isNegative()) {
6096    S.DiagRuntimeBehavior(Loc, rex.get(),
6097                          S.PDiag(diag::warn_shift_negative)
6098                            << rex.get()->getSourceRange());
6099    return;
6100  }
6101  llvm::APInt LeftBits(Right.getBitWidth(),
6102                       S.Context.getTypeSize(lex.get()->getType()));
6103  if (Right.uge(LeftBits)) {
6104    S.DiagRuntimeBehavior(Loc, rex.get(),
6105                          S.PDiag(diag::warn_shift_gt_typewidth)
6106                            << rex.get()->getSourceRange());
6107    return;
6108  }
6109  if (Opc != BO_Shl)
6110    return;
6111
6112  // When left shifting an ICE which is signed, we can check for overflow which
6113  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6114  // integers have defined behavior modulo one more than the maximum value
6115  // representable in the result type, so never warn for those.
6116  llvm::APSInt Left;
6117  if (lex.get()->isValueDependent() ||
6118      !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
6119      LHSTy->hasUnsignedIntegerRepresentation())
6120    return;
6121  llvm::APInt ResultBits =
6122      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6123  if (LeftBits.uge(ResultBits))
6124    return;
6125  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6126  Result = Result.shl(Right);
6127
6128  // Print the bit representation of the signed integer as an unsigned
6129  // hexadecimal number.
6130  llvm::SmallString<40> HexResult;
6131  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6132
6133  // If we are only missing a sign bit, this is less likely to result in actual
6134  // bugs -- if the result is cast back to an unsigned type, it will have the
6135  // expected value. Thus we place this behind a different warning that can be
6136  // turned off separately if needed.
6137  if (LeftBits == ResultBits - 1) {
6138    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6139        << HexResult.str() << LHSTy
6140        << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6141    return;
6142  }
6143
6144  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6145    << HexResult.str() << Result.getMinSignedBits() << LHSTy
6146    << Left.getBitWidth() << lex.get()->getSourceRange()
6147    << rex.get()->getSourceRange();
6148}
6149
6150// C99 6.5.7
6151QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex,
6152                                  SourceLocation Loc, unsigned Opc,
6153                                  bool isCompAssign) {
6154  // C99 6.5.7p2: Each of the operands shall have integer type.
6155  if (!lex.get()->getType()->hasIntegerRepresentation() ||
6156      !rex.get()->getType()->hasIntegerRepresentation())
6157    return InvalidOperands(Loc, lex, rex);
6158
6159  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6160  // hasIntegerRepresentation() above instead of this.
6161  if (isScopedEnumerationType(lex.get()->getType()) ||
6162      isScopedEnumerationType(rex.get()->getType())) {
6163    return InvalidOperands(Loc, lex, rex);
6164  }
6165
6166  // Vector shifts promote their scalar inputs to vector type.
6167  if (lex.get()->getType()->isVectorType() ||
6168      rex.get()->getType()->isVectorType())
6169    return CheckVectorOperands(lex, rex, Loc, isCompAssign);
6170
6171  // Shifts don't perform usual arithmetic conversions, they just do integer
6172  // promotions on each operand. C99 6.5.7p3
6173
6174  // For the LHS, do usual unary conversions, but then reset them away
6175  // if this is a compound assignment.
6176  ExprResult old_lex = lex;
6177  lex = UsualUnaryConversions(lex.take());
6178  if (lex.isInvalid())
6179    return QualType();
6180  QualType LHSTy = lex.get()->getType();
6181  if (isCompAssign) lex = old_lex;
6182
6183  // The RHS is simpler.
6184  rex = UsualUnaryConversions(rex.take());
6185  if (rex.isInvalid())
6186    return QualType();
6187
6188  // Sanity-check shift operands
6189  DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
6190
6191  // "The type of the result is that of the promoted left operand."
6192  return LHSTy;
6193}
6194
6195static bool IsWithinTemplateSpecialization(Decl *D) {
6196  if (DeclContext *DC = D->getDeclContext()) {
6197    if (isa<ClassTemplateSpecializationDecl>(DC))
6198      return true;
6199    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6200      return FD->isFunctionTemplateSpecialization();
6201  }
6202  return false;
6203}
6204
6205/// If two different enums are compared, raise a warning.
6206static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &lex,
6207                                ExprResult &rex) {
6208  QualType LHSStrippedType = lex.get()->IgnoreParenImpCasts()->getType();
6209  QualType RHSStrippedType = rex.get()->IgnoreParenImpCasts()->getType();
6210
6211  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6212  if (!LHSEnumType)
6213    return;
6214  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6215  if (!RHSEnumType)
6216    return;
6217
6218  // Ignore anonymous enums.
6219  if (!LHSEnumType->getDecl()->getIdentifier())
6220    return;
6221  if (!RHSEnumType->getDecl()->getIdentifier())
6222    return;
6223
6224  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6225    return;
6226
6227  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6228      << LHSStrippedType << RHSStrippedType
6229      << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6230}
6231
6232/// \brief Diagnose bad pointer comparisons.
6233static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6234                                              ExprResult &lex, ExprResult &rex,
6235                                              bool isError) {
6236  S.Diag(Loc, isError ? diag::err_typecheck_comparison_of_distinct_pointers
6237                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6238    << lex.get()->getType() << rex.get()->getType()
6239    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6240}
6241
6242/// \brief Returns false if the pointers are converted to a composite type,
6243/// true otherwise.
6244static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6245                                           ExprResult &lex, ExprResult &rex) {
6246  // C++ [expr.rel]p2:
6247  //   [...] Pointer conversions (4.10) and qualification
6248  //   conversions (4.4) are performed on pointer operands (or on
6249  //   a pointer operand and a null pointer constant) to bring
6250  //   them to their composite pointer type. [...]
6251  //
6252  // C++ [expr.eq]p1 uses the same notion for (in)equality
6253  // comparisons of pointers.
6254
6255  // C++ [expr.eq]p2:
6256  //   In addition, pointers to members can be compared, or a pointer to
6257  //   member and a null pointer constant. Pointer to member conversions
6258  //   (4.11) and qualification conversions (4.4) are performed to bring
6259  //   them to a common type. If one operand is a null pointer constant,
6260  //   the common type is the type of the other operand. Otherwise, the
6261  //   common type is a pointer to member type similar (4.4) to the type
6262  //   of one of the operands, with a cv-qualification signature (4.4)
6263  //   that is the union of the cv-qualification signatures of the operand
6264  //   types.
6265
6266  QualType lType = lex.get()->getType();
6267  QualType rType = rex.get()->getType();
6268  assert((lType->isPointerType() && rType->isPointerType()) ||
6269         (lType->isMemberPointerType() && rType->isMemberPointerType()));
6270
6271  bool NonStandardCompositeType = false;
6272  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6273  QualType T = S.FindCompositePointerType(Loc, lex, rex, BoolPtr);
6274  if (T.isNull()) {
6275    diagnoseDistinctPointerComparison(S, Loc, lex, rex, /*isError*/true);
6276    return true;
6277  }
6278
6279  if (NonStandardCompositeType)
6280    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6281      << lType << rType << T << lex.get()->getSourceRange()
6282      << rex.get()->getSourceRange();
6283
6284  lex = S.ImpCastExprToType(lex.take(), T, CK_BitCast);
6285  rex = S.ImpCastExprToType(rex.take(), T, CK_BitCast);
6286  return false;
6287}
6288
6289static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6290                                                    ExprResult &lex,
6291                                                    ExprResult &rex,
6292                                                    bool isError) {
6293  S.Diag(Loc,isError ? diag::err_typecheck_comparison_of_fptr_to_void
6294                     : diag::ext_typecheck_comparison_of_fptr_to_void)
6295    << lex.get()->getType() << rex.get()->getType()
6296    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
6297}
6298
6299// C99 6.5.8, C++ [expr.rel]
6300QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex,
6301                                    SourceLocation Loc, unsigned OpaqueOpc,
6302                                    bool isRelational) {
6303  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6304
6305  // Handle vector comparisons separately.
6306  if (lex.get()->getType()->isVectorType() ||
6307      rex.get()->getType()->isVectorType())
6308    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
6309
6310  QualType lType = lex.get()->getType();
6311  QualType rType = rex.get()->getType();
6312
6313  Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
6314  Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
6315
6316  checkEnumComparison(*this, Loc, lex, rex);
6317
6318  if (!lType->hasFloatingRepresentation() &&
6319      !(lType->isBlockPointerType() && isRelational) &&
6320      !lex.get()->getLocStart().isMacroID() &&
6321      !rex.get()->getLocStart().isMacroID()) {
6322    // For non-floating point types, check for self-comparisons of the form
6323    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6324    // often indicate logic errors in the program.
6325    //
6326    // NOTE: Don't warn about comparison expressions resulting from macro
6327    // expansion. Also don't warn about comparisons which are only self
6328    // comparisons within a template specialization. The warnings should catch
6329    // obvious cases in the definition of the template anyways. The idea is to
6330    // warn when the typed comparison operator will always evaluate to the same
6331    // result.
6332    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6333      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6334        if (DRL->getDecl() == DRR->getDecl() &&
6335            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6336          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6337                              << 0 // self-
6338                              << (Opc == BO_EQ
6339                                  || Opc == BO_LE
6340                                  || Opc == BO_GE));
6341        } else if (lType->isArrayType() && rType->isArrayType() &&
6342                   !DRL->getDecl()->getType()->isReferenceType() &&
6343                   !DRR->getDecl()->getType()->isReferenceType()) {
6344            // what is it always going to eval to?
6345            char always_evals_to;
6346            switch(Opc) {
6347            case BO_EQ: // e.g. array1 == array2
6348              always_evals_to = 0; // false
6349              break;
6350            case BO_NE: // e.g. array1 != array2
6351              always_evals_to = 1; // true
6352              break;
6353            default:
6354              // best we can say is 'a constant'
6355              always_evals_to = 2; // e.g. array1 <= array2
6356              break;
6357            }
6358            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6359                                << 1 // array
6360                                << always_evals_to);
6361        }
6362      }
6363    }
6364
6365    if (isa<CastExpr>(LHSStripped))
6366      LHSStripped = LHSStripped->IgnoreParenCasts();
6367    if (isa<CastExpr>(RHSStripped))
6368      RHSStripped = RHSStripped->IgnoreParenCasts();
6369
6370    // Warn about comparisons against a string constant (unless the other
6371    // operand is null), the user probably wants strcmp.
6372    Expr *literalString = 0;
6373    Expr *literalStringStripped = 0;
6374    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6375        !RHSStripped->isNullPointerConstant(Context,
6376                                            Expr::NPC_ValueDependentIsNull)) {
6377      literalString = lex.get();
6378      literalStringStripped = LHSStripped;
6379    } else if ((isa<StringLiteral>(RHSStripped) ||
6380                isa<ObjCEncodeExpr>(RHSStripped)) &&
6381               !LHSStripped->isNullPointerConstant(Context,
6382                                            Expr::NPC_ValueDependentIsNull)) {
6383      literalString = rex.get();
6384      literalStringStripped = RHSStripped;
6385    }
6386
6387    if (literalString) {
6388      std::string resultComparison;
6389      switch (Opc) {
6390      case BO_LT: resultComparison = ") < 0"; break;
6391      case BO_GT: resultComparison = ") > 0"; break;
6392      case BO_LE: resultComparison = ") <= 0"; break;
6393      case BO_GE: resultComparison = ") >= 0"; break;
6394      case BO_EQ: resultComparison = ") == 0"; break;
6395      case BO_NE: resultComparison = ") != 0"; break;
6396      default: assert(false && "Invalid comparison operator");
6397      }
6398
6399      DiagRuntimeBehavior(Loc, 0,
6400        PDiag(diag::warn_stringcompare)
6401          << isa<ObjCEncodeExpr>(literalStringStripped)
6402          << literalString->getSourceRange());
6403    }
6404  }
6405
6406  // C99 6.5.8p3 / C99 6.5.9p4
6407  if (lex.get()->getType()->isArithmeticType() &&
6408      rex.get()->getType()->isArithmeticType()) {
6409    UsualArithmeticConversions(lex, rex);
6410    if (lex.isInvalid() || rex.isInvalid())
6411      return QualType();
6412  }
6413  else {
6414    lex = UsualUnaryConversions(lex.take());
6415    if (lex.isInvalid())
6416      return QualType();
6417
6418    rex = UsualUnaryConversions(rex.take());
6419    if (rex.isInvalid())
6420      return QualType();
6421  }
6422
6423  lType = lex.get()->getType();
6424  rType = rex.get()->getType();
6425
6426  // The result of comparisons is 'bool' in C++, 'int' in C.
6427  QualType ResultTy = Context.getLogicalOperationType();
6428
6429  if (isRelational) {
6430    if (lType->isRealType() && rType->isRealType())
6431      return ResultTy;
6432  } else {
6433    // Check for comparisons of floating point operands using != and ==.
6434    if (lType->hasFloatingRepresentation())
6435      CheckFloatComparison(Loc, lex.get(), rex.get());
6436
6437    if (lType->isArithmeticType() && rType->isArithmeticType())
6438      return ResultTy;
6439  }
6440
6441  bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
6442                                              Expr::NPC_ValueDependentIsNull);
6443  bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
6444                                              Expr::NPC_ValueDependentIsNull);
6445
6446  // All of the following pointer-related warnings are GCC extensions, except
6447  // when handling null pointer constants.
6448  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
6449    QualType LCanPointeeTy =
6450      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
6451    QualType RCanPointeeTy =
6452      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
6453
6454    if (getLangOptions().CPlusPlus) {
6455      if (LCanPointeeTy == RCanPointeeTy)
6456        return ResultTy;
6457      if (!isRelational &&
6458          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6459        // Valid unless comparison between non-null pointer and function pointer
6460        // This is a gcc extension compatibility comparison.
6461        // In a SFINAE context, we treat this as a hard error to maintain
6462        // conformance with the C++ standard.
6463        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6464            && !LHSIsNull && !RHSIsNull) {
6465          diagnoseFunctionPointerToVoidComparison(
6466              *this, Loc, lex, rex, /*isError*/ isSFINAEContext());
6467
6468          if (isSFINAEContext())
6469            return QualType();
6470
6471          rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6472          return ResultTy;
6473        }
6474      }
6475
6476      if (convertPointersToCompositeType(*this, Loc, lex, rex))
6477        return QualType();
6478      else
6479        return ResultTy;
6480    }
6481    // C99 6.5.9p2 and C99 6.5.8p2
6482    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6483                                   RCanPointeeTy.getUnqualifiedType())) {
6484      // Valid unless a relational comparison of function pointers
6485      if (isRelational && LCanPointeeTy->isFunctionType()) {
6486        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6487          << lType << rType << lex.get()->getSourceRange()
6488          << rex.get()->getSourceRange();
6489      }
6490    } else if (!isRelational &&
6491               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6492      // Valid unless comparison between non-null pointer and function pointer
6493      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6494          && !LHSIsNull && !RHSIsNull)
6495        diagnoseFunctionPointerToVoidComparison(*this, Loc, lex, rex,
6496                                                /*isError*/false);
6497    } else {
6498      // Invalid
6499      diagnoseDistinctPointerComparison(*this, Loc, lex, rex, /*isError*/false);
6500    }
6501    if (LCanPointeeTy != RCanPointeeTy) {
6502      if (LHSIsNull && !RHSIsNull)
6503        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6504      else
6505        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6506    }
6507    return ResultTy;
6508  }
6509
6510  if (getLangOptions().CPlusPlus) {
6511    // Comparison of nullptr_t with itself.
6512    if (lType->isNullPtrType() && rType->isNullPtrType())
6513      return ResultTy;
6514
6515    // Comparison of pointers with null pointer constants and equality
6516    // comparisons of member pointers to null pointer constants.
6517    if (RHSIsNull &&
6518        ((lType->isAnyPointerType() || lType->isNullPtrType()) ||
6519         (!isRelational &&
6520          (lType->isMemberPointerType() || lType->isBlockPointerType())))) {
6521      rex = ImpCastExprToType(rex.take(), lType,
6522                        lType->isMemberPointerType()
6523                          ? CK_NullToMemberPointer
6524                          : CK_NullToPointer);
6525      return ResultTy;
6526    }
6527    if (LHSIsNull &&
6528        ((rType->isAnyPointerType() || rType->isNullPtrType()) ||
6529         (!isRelational &&
6530          (rType->isMemberPointerType() || rType->isBlockPointerType())))) {
6531      lex = ImpCastExprToType(lex.take(), rType,
6532                        rType->isMemberPointerType()
6533                          ? CK_NullToMemberPointer
6534                          : CK_NullToPointer);
6535      return ResultTy;
6536    }
6537
6538    // Comparison of member pointers.
6539    if (!isRelational &&
6540        lType->isMemberPointerType() && rType->isMemberPointerType()) {
6541      if (convertPointersToCompositeType(*this, Loc, lex, rex))
6542        return QualType();
6543      else
6544        return ResultTy;
6545    }
6546
6547    // Handle scoped enumeration types specifically, since they don't promote
6548    // to integers.
6549    if (lex.get()->getType()->isEnumeralType() &&
6550        Context.hasSameUnqualifiedType(lex.get()->getType(),
6551                                       rex.get()->getType()))
6552      return ResultTy;
6553  }
6554
6555  // Handle block pointer types.
6556  if (!isRelational && lType->isBlockPointerType() &&
6557      rType->isBlockPointerType()) {
6558    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
6559    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
6560
6561    if (!LHSIsNull && !RHSIsNull &&
6562        !Context.typesAreCompatible(lpointee, rpointee)) {
6563      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6564        << lType << rType << lex.get()->getSourceRange()
6565        << rex.get()->getSourceRange();
6566    }
6567    rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6568    return ResultTy;
6569  }
6570
6571  // Allow block pointers to be compared with null pointer constants.
6572  if (!isRelational
6573      && ((lType->isBlockPointerType() && rType->isPointerType())
6574          || (lType->isPointerType() && rType->isBlockPointerType()))) {
6575    if (!LHSIsNull && !RHSIsNull) {
6576      if (!((rType->isPointerType() && rType->castAs<PointerType>()
6577             ->getPointeeType()->isVoidType())
6578            || (lType->isPointerType() && lType->castAs<PointerType>()
6579                ->getPointeeType()->isVoidType())))
6580        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6581          << lType << rType << lex.get()->getSourceRange()
6582          << rex.get()->getSourceRange();
6583    }
6584    if (LHSIsNull && !RHSIsNull)
6585      lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6586    else
6587      rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6588    return ResultTy;
6589  }
6590
6591  if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
6592    const PointerType *LPT = lType->getAs<PointerType>();
6593    const PointerType *RPT = rType->getAs<PointerType>();
6594    if (LPT || RPT) {
6595      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6596      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6597
6598      if (!LPtrToVoid && !RPtrToVoid &&
6599          !Context.typesAreCompatible(lType, rType)) {
6600        diagnoseDistinctPointerComparison(*this, Loc, lex, rex,
6601                                          /*isError*/false);
6602      }
6603      if (LHSIsNull && !RHSIsNull)
6604        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6605      else
6606        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6607      return ResultTy;
6608    }
6609    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
6610      if (!Context.areComparableObjCPointerTypes(lType, rType))
6611        diagnoseDistinctPointerComparison(*this, Loc, lex, rex,
6612                                          /*isError*/false);
6613      if (LHSIsNull && !RHSIsNull)
6614        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
6615      else
6616        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
6617      return ResultTy;
6618    }
6619  }
6620  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
6621      (lType->isIntegerType() && rType->isAnyPointerType())) {
6622    unsigned DiagID = 0;
6623    bool isError = false;
6624    if ((LHSIsNull && lType->isIntegerType()) ||
6625        (RHSIsNull && rType->isIntegerType())) {
6626      if (isRelational && !getLangOptions().CPlusPlus)
6627        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6628    } else if (isRelational && !getLangOptions().CPlusPlus)
6629      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6630    else if (getLangOptions().CPlusPlus) {
6631      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6632      isError = true;
6633    } else
6634      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6635
6636    if (DiagID) {
6637      Diag(Loc, DiagID)
6638        << lType << rType << lex.get()->getSourceRange()
6639        << rex.get()->getSourceRange();
6640      if (isError)
6641        return QualType();
6642    }
6643
6644    if (lType->isIntegerType())
6645      lex = ImpCastExprToType(lex.take(), rType,
6646                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6647    else
6648      rex = ImpCastExprToType(rex.take(), lType,
6649                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6650    return ResultTy;
6651  }
6652
6653  // Handle block pointers.
6654  if (!isRelational && RHSIsNull
6655      && lType->isBlockPointerType() && rType->isIntegerType()) {
6656    rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
6657    return ResultTy;
6658  }
6659  if (!isRelational && LHSIsNull
6660      && lType->isIntegerType() && rType->isBlockPointerType()) {
6661    lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
6662    return ResultTy;
6663  }
6664
6665  return InvalidOperands(Loc, lex, rex);
6666}
6667
6668/// CheckVectorCompareOperands - vector comparisons are a clang extension that
6669/// operates on extended vector types.  Instead of producing an IntTy result,
6670/// like a scalar comparison, a vector comparison produces a vector of integer
6671/// types.
6672QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
6673                                          SourceLocation Loc,
6674                                          bool isRelational) {
6675  // Check to make sure we're operating on vectors of the same type and width,
6676  // Allowing one side to be a scalar of element type.
6677  QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false);
6678  if (vType.isNull())
6679    return vType;
6680
6681  QualType lType = lex.get()->getType();
6682  QualType rType = rex.get()->getType();
6683
6684  // If AltiVec, the comparison results in a numeric type, i.e.
6685  // bool for C++, int for C
6686  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6687    return Context.getLogicalOperationType();
6688
6689  // For non-floating point types, check for self-comparisons of the form
6690  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6691  // often indicate logic errors in the program.
6692  if (!lType->hasFloatingRepresentation()) {
6693    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
6694      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
6695        if (DRL->getDecl() == DRR->getDecl())
6696          DiagRuntimeBehavior(Loc, 0,
6697                              PDiag(diag::warn_comparison_always)
6698                                << 0 // self-
6699                                << 2 // "a constant"
6700                              );
6701  }
6702
6703  // Check for comparisons of floating point operands using != and ==.
6704  if (!isRelational && lType->hasFloatingRepresentation()) {
6705    assert (rType->hasFloatingRepresentation());
6706    CheckFloatComparison(Loc, lex.get(), rex.get());
6707  }
6708
6709  // Return the type for the comparison, which is the same as vector type for
6710  // integer vectors, or an integer type of identical size and number of
6711  // elements for floating point vectors.
6712  if (lType->hasIntegerRepresentation())
6713    return lType;
6714
6715  const VectorType *VTy = lType->getAs<VectorType>();
6716  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6717  if (TypeSize == Context.getTypeSize(Context.IntTy))
6718    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6719  if (TypeSize == Context.getTypeSize(Context.LongTy))
6720    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6721
6722  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6723         "Unhandled vector element size in vector compare");
6724  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6725}
6726
6727inline QualType Sema::CheckBitwiseOperands(
6728  ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
6729  if (lex.get()->getType()->isVectorType() ||
6730      rex.get()->getType()->isVectorType()) {
6731    if (lex.get()->getType()->hasIntegerRepresentation() &&
6732        rex.get()->getType()->hasIntegerRepresentation())
6733      return CheckVectorOperands(lex, rex, Loc, isCompAssign);
6734
6735    return InvalidOperands(Loc, lex, rex);
6736  }
6737
6738  ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
6739  QualType compType = UsualArithmeticConversions(lexResult, rexResult,
6740                                                 isCompAssign);
6741  if (lexResult.isInvalid() || rexResult.isInvalid())
6742    return QualType();
6743  lex = lexResult.take();
6744  rex = rexResult.take();
6745
6746  if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
6747      rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
6748    return compType;
6749  return InvalidOperands(Loc, lex, rex);
6750}
6751
6752inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
6753  ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
6754
6755  // Diagnose cases where the user write a logical and/or but probably meant a
6756  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
6757  // is a constant.
6758  if (lex.get()->getType()->isIntegerType() &&
6759      !lex.get()->getType()->isBooleanType() &&
6760      rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
6761      // Don't warn in macros or template instantiations.
6762      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
6763    // If the RHS can be constant folded, and if it constant folds to something
6764    // that isn't 0 or 1 (which indicate a potential logical operation that
6765    // happened to fold to true/false) then warn.
6766    // Parens on the RHS are ignored.
6767    Expr::EvalResult Result;
6768    if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
6769      if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
6770          (Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
6771        Diag(Loc, diag::warn_logical_instead_of_bitwise)
6772          << rex.get()->getSourceRange()
6773          << (Opc == BO_LAnd ? "&&" : "||");
6774        // Suggest replacing the logical operator with the bitwise version
6775        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
6776            << (Opc == BO_LAnd ? "&" : "|")
6777            << FixItHint::CreateReplacement(SourceRange(
6778                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
6779                                                getLangOptions())),
6780                                            Opc == BO_LAnd ? "&" : "|");
6781        if (Opc == BO_LAnd)
6782          // Suggest replacing "Foo() && kNonZero" with "Foo()"
6783          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
6784              << FixItHint::CreateRemoval(
6785                  SourceRange(
6786                      Lexer::getLocForEndOfToken(lex.get()->getLocEnd(),
6787                                                 0, getSourceManager(),
6788                                                 getLangOptions()),
6789                      rex.get()->getLocEnd()));
6790      }
6791  }
6792
6793  if (!Context.getLangOptions().CPlusPlus) {
6794    lex = UsualUnaryConversions(lex.take());
6795    if (lex.isInvalid())
6796      return QualType();
6797
6798    rex = UsualUnaryConversions(rex.take());
6799    if (rex.isInvalid())
6800      return QualType();
6801
6802    if (!lex.get()->getType()->isScalarType() ||
6803        !rex.get()->getType()->isScalarType())
6804      return InvalidOperands(Loc, lex, rex);
6805
6806    return Context.IntTy;
6807  }
6808
6809  // The following is safe because we only use this method for
6810  // non-overloadable operands.
6811
6812  // C++ [expr.log.and]p1
6813  // C++ [expr.log.or]p1
6814  // The operands are both contextually converted to type bool.
6815  ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
6816  if (lexRes.isInvalid())
6817    return InvalidOperands(Loc, lex, rex);
6818  lex = move(lexRes);
6819
6820  ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
6821  if (rexRes.isInvalid())
6822    return InvalidOperands(Loc, lex, rex);
6823  rex = move(rexRes);
6824
6825  // C++ [expr.log.and]p2
6826  // C++ [expr.log.or]p2
6827  // The result is a bool.
6828  return Context.BoolTy;
6829}
6830
6831/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
6832/// is a read-only property; return true if so. A readonly property expression
6833/// depends on various declarations and thus must be treated specially.
6834///
6835static bool IsReadonlyProperty(Expr *E, Sema &S) {
6836  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
6837    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
6838    if (PropExpr->isImplicitProperty()) return false;
6839
6840    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
6841    QualType BaseType = PropExpr->isSuperReceiver() ?
6842                            PropExpr->getSuperReceiverType() :
6843                            PropExpr->getBase()->getType();
6844
6845    if (const ObjCObjectPointerType *OPT =
6846          BaseType->getAsObjCInterfacePointerType())
6847      if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
6848        if (S.isPropertyReadonly(PDecl, IFace))
6849          return true;
6850  }
6851  return false;
6852}
6853
6854static bool IsConstProperty(Expr *E, Sema &S) {
6855  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
6856    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
6857    if (PropExpr->isImplicitProperty()) return false;
6858
6859    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
6860    QualType T = PDecl->getType();
6861    if (T->isReferenceType())
6862      T = T->getAs<ReferenceType>()->getPointeeType();
6863    CanQualType CT = S.Context.getCanonicalType(T);
6864    return CT.isConstQualified();
6865  }
6866  return false;
6867}
6868
6869static bool IsReadonlyMessage(Expr *E, Sema &S) {
6870  if (E->getStmtClass() != Expr::MemberExprClass)
6871    return false;
6872  const MemberExpr *ME = cast<MemberExpr>(E);
6873  NamedDecl *Member = ME->getMemberDecl();
6874  if (isa<FieldDecl>(Member)) {
6875    Expr *Base = ME->getBase()->IgnoreParenImpCasts();
6876    if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
6877      return false;
6878    return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
6879  }
6880  return false;
6881}
6882
6883/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
6884/// emit an error and return true.  If so, return false.
6885static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
6886  SourceLocation OrigLoc = Loc;
6887  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
6888                                                              &Loc);
6889  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
6890    IsLV = Expr::MLV_ReadonlyProperty;
6891  else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
6892    IsLV = Expr::MLV_Valid;
6893  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
6894    IsLV = Expr::MLV_InvalidMessageExpression;
6895  if (IsLV == Expr::MLV_Valid)
6896    return false;
6897
6898  unsigned Diag = 0;
6899  bool NeedType = false;
6900  switch (IsLV) { // C99 6.5.16p2
6901  case Expr::MLV_ConstQualified:
6902    Diag = diag::err_typecheck_assign_const;
6903
6904    // In ARC, use some specialized diagnostics for occasions where we
6905    // infer 'const'.  These are always pseudo-strong variables.
6906    if (S.getLangOptions().ObjCAutoRefCount) {
6907      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
6908      if (declRef && isa<VarDecl>(declRef->getDecl())) {
6909        VarDecl *var = cast<VarDecl>(declRef->getDecl());
6910
6911        // Use the normal diagnostic if it's pseudo-__strong but the
6912        // user actually wrote 'const'.
6913        if (var->isARCPseudoStrong() &&
6914            (!var->getTypeSourceInfo() ||
6915             !var->getTypeSourceInfo()->getType().isConstQualified())) {
6916          // There are two pseudo-strong cases:
6917          //  - self
6918          ObjCMethodDecl *method = S.getCurMethodDecl();
6919          if (method && var == method->getSelfDecl())
6920            Diag = diag::err_typecheck_arr_assign_self;
6921
6922          //  - fast enumeration variables
6923          else
6924            Diag = diag::err_typecheck_arr_assign_enumeration;
6925
6926          SourceRange Assign;
6927          if (Loc != OrigLoc)
6928            Assign = SourceRange(OrigLoc, OrigLoc);
6929          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6930          // We need to preserve the AST regardless, so migration tool
6931          // can do its job.
6932          return false;
6933        }
6934      }
6935    }
6936
6937    break;
6938  case Expr::MLV_ArrayType:
6939    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
6940    NeedType = true;
6941    break;
6942  case Expr::MLV_NotObjectType:
6943    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
6944    NeedType = true;
6945    break;
6946  case Expr::MLV_LValueCast:
6947    Diag = diag::err_typecheck_lvalue_casts_not_supported;
6948    break;
6949  case Expr::MLV_Valid:
6950    llvm_unreachable("did not take early return for MLV_Valid");
6951  case Expr::MLV_InvalidExpression:
6952  case Expr::MLV_MemberFunction:
6953  case Expr::MLV_ClassTemporary:
6954    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
6955    break;
6956  case Expr::MLV_IncompleteType:
6957  case Expr::MLV_IncompleteVoidType:
6958    return S.RequireCompleteType(Loc, E->getType(),
6959              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
6960                  << E->getSourceRange());
6961  case Expr::MLV_DuplicateVectorComponents:
6962    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
6963    break;
6964  case Expr::MLV_NotBlockQualified:
6965    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
6966    break;
6967  case Expr::MLV_ReadonlyProperty:
6968    Diag = diag::error_readonly_property_assignment;
6969    break;
6970  case Expr::MLV_NoSetterProperty:
6971    Diag = diag::error_nosetter_property_assignment;
6972    break;
6973  case Expr::MLV_InvalidMessageExpression:
6974    Diag = diag::error_readonly_message_assignment;
6975    break;
6976  case Expr::MLV_SubObjCPropertySetting:
6977    Diag = diag::error_no_subobject_property_setting;
6978    break;
6979  }
6980
6981  SourceRange Assign;
6982  if (Loc != OrigLoc)
6983    Assign = SourceRange(OrigLoc, OrigLoc);
6984  if (NeedType)
6985    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6986  else
6987    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6988  return true;
6989}
6990
6991
6992
6993// C99 6.5.16.1
6994QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
6995                                       SourceLocation Loc,
6996                                       QualType CompoundType) {
6997  // Verify that LHS is a modifiable lvalue, and emit error if not.
6998  if (CheckForModifiableLvalue(LHS, Loc, *this))
6999    return QualType();
7000
7001  QualType LHSType = LHS->getType();
7002  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7003                                             CompoundType;
7004  AssignConvertType ConvTy;
7005  if (CompoundType.isNull()) {
7006    QualType LHSTy(LHSType);
7007    // Simple assignment "x = y".
7008    if (LHS->getObjectKind() == OK_ObjCProperty) {
7009      ExprResult LHSResult = Owned(LHS);
7010      ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
7011      if (LHSResult.isInvalid())
7012        return QualType();
7013      LHS = LHSResult.take();
7014    }
7015    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7016    if (RHS.isInvalid())
7017      return QualType();
7018    // Special case of NSObject attributes on c-style pointer types.
7019    if (ConvTy == IncompatiblePointer &&
7020        ((Context.isObjCNSObjectType(LHSType) &&
7021          RHSType->isObjCObjectPointerType()) ||
7022         (Context.isObjCNSObjectType(RHSType) &&
7023          LHSType->isObjCObjectPointerType())))
7024      ConvTy = Compatible;
7025
7026    if (ConvTy == Compatible &&
7027        getLangOptions().ObjCNonFragileABI &&
7028        LHSType->isObjCObjectType())
7029      Diag(Loc, diag::err_assignment_requires_nonfragile_object)
7030        << LHSType;
7031
7032    // If the RHS is a unary plus or minus, check to see if they = and + are
7033    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7034    // instead of "x += 4".
7035    Expr *RHSCheck = RHS.get();
7036    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7037      RHSCheck = ICE->getSubExpr();
7038    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7039      if ((UO->getOpcode() == UO_Plus ||
7040           UO->getOpcode() == UO_Minus) &&
7041          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7042          // Only if the two operators are exactly adjacent.
7043          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
7044          // And there is a space or other character before the subexpr of the
7045          // unary +/-.  We don't want to warn on "x=-1".
7046          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7047          UO->getSubExpr()->getLocStart().isFileID()) {
7048        Diag(Loc, diag::warn_not_compound_assign)
7049          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7050          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7051      }
7052    }
7053
7054    if (ConvTy == Compatible) {
7055      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7056        checkRetainCycles(LHS, RHS.get());
7057      else if (getLangOptions().ObjCAutoRefCount)
7058        checkUnsafeExprAssigns(Loc, LHS, RHS.get());
7059    }
7060  } else {
7061    // Compound assignment "x += y"
7062    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7063  }
7064
7065  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7066                               RHS.get(), AA_Assigning))
7067    return QualType();
7068
7069  CheckForNullPointerDereference(*this, LHS);
7070
7071  // C99 6.5.16p3: The type of an assignment expression is the type of the
7072  // left operand unless the left operand has qualified type, in which case
7073  // it is the unqualified version of the type of the left operand.
7074  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7075  // is converted to the type of the assignment expression (above).
7076  // C++ 5.17p1: the type of the assignment expression is that of its left
7077  // operand.
7078  return (getLangOptions().CPlusPlus
7079          ? LHSType : LHSType.getUnqualifiedType());
7080}
7081
7082// C99 6.5.17
7083static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7084                                   SourceLocation Loc) {
7085  S.DiagnoseUnusedExprResult(LHS.get());
7086
7087  LHS = S.CheckPlaceholderExpr(LHS.take());
7088  RHS = S.CheckPlaceholderExpr(RHS.take());
7089  if (LHS.isInvalid() || RHS.isInvalid())
7090    return QualType();
7091
7092  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7093  // operands, but not unary promotions.
7094  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7095
7096  // So we treat the LHS as a ignored value, and in C++ we allow the
7097  // containing site to determine what should be done with the RHS.
7098  LHS = S.IgnoredValueConversions(LHS.take());
7099  if (LHS.isInvalid())
7100    return QualType();
7101
7102  if (!S.getLangOptions().CPlusPlus) {
7103    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7104    if (RHS.isInvalid())
7105      return QualType();
7106    if (!RHS.get()->getType()->isVoidType())
7107      S.RequireCompleteType(Loc, RHS.get()->getType(),
7108                            diag::err_incomplete_type);
7109  }
7110
7111  return RHS.get()->getType();
7112}
7113
7114/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7115/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7116static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7117                                               ExprValueKind &VK,
7118                                               SourceLocation OpLoc,
7119                                               bool isInc, bool isPrefix) {
7120  if (Op->isTypeDependent())
7121    return S.Context.DependentTy;
7122
7123  QualType ResType = Op->getType();
7124  assert(!ResType.isNull() && "no type for increment/decrement expression");
7125
7126  if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
7127    // Decrement of bool is not allowed.
7128    if (!isInc) {
7129      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7130      return QualType();
7131    }
7132    // Increment of bool sets it to true, but is deprecated.
7133    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7134  } else if (ResType->isRealType()) {
7135    // OK!
7136  } else if (ResType->isAnyPointerType()) {
7137    // C99 6.5.2.4p2, 6.5.6p2
7138    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7139      return QualType();
7140
7141    // Diagnose bad cases where we step over interface counts.
7142    else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7143      return QualType();
7144  } else if (ResType->isAnyComplexType()) {
7145    // C99 does not support ++/-- on complex types, we allow as an extension.
7146    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7147      << ResType << Op->getSourceRange();
7148  } else if (ResType->isPlaceholderType()) {
7149    ExprResult PR = S.CheckPlaceholderExpr(Op);
7150    if (PR.isInvalid()) return QualType();
7151    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7152                                          isInc, isPrefix);
7153  } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
7154    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7155  } else {
7156    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7157      << ResType << int(isInc) << Op->getSourceRange();
7158    return QualType();
7159  }
7160  // At this point, we know we have a real, complex or pointer type.
7161  // Now make sure the operand is a modifiable lvalue.
7162  if (CheckForModifiableLvalue(Op, OpLoc, S))
7163    return QualType();
7164  // In C++, a prefix increment is the same type as the operand. Otherwise
7165  // (in C or with postfix), the increment is the unqualified type of the
7166  // operand.
7167  if (isPrefix && S.getLangOptions().CPlusPlus) {
7168    VK = VK_LValue;
7169    return ResType;
7170  } else {
7171    VK = VK_RValue;
7172    return ResType.getUnqualifiedType();
7173  }
7174}
7175
7176ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
7177  assert(E->getValueKind() == VK_LValue &&
7178         E->getObjectKind() == OK_ObjCProperty);
7179  const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
7180
7181  QualType T = E->getType();
7182  QualType ReceiverType;
7183  if (PRE->isObjectReceiver())
7184    ReceiverType = PRE->getBase()->getType();
7185  else if (PRE->isSuperReceiver())
7186    ReceiverType = PRE->getSuperReceiverType();
7187  else
7188    ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
7189
7190  ExprValueKind VK = VK_RValue;
7191  if (PRE->isImplicitProperty()) {
7192    if (ObjCMethodDecl *GetterMethod =
7193          PRE->getImplicitPropertyGetter()) {
7194      T = getMessageSendResultType(ReceiverType, GetterMethod,
7195                                   PRE->isClassReceiver(),
7196                                   PRE->isSuperReceiver());
7197      VK = Expr::getValueKindForType(GetterMethod->getResultType());
7198    }
7199    else {
7200      Diag(PRE->getLocation(), diag::err_getter_not_found)
7201            << PRE->getBase()->getType();
7202    }
7203  }
7204
7205  E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
7206                               E, 0, VK);
7207
7208  ExprResult Result = MaybeBindToTemporary(E);
7209  if (!Result.isInvalid())
7210    E = Result.take();
7211
7212  return Owned(E);
7213}
7214
7215void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS,
7216                                    QualType &LHSTy) {
7217  assert(LHS.get()->getValueKind() == VK_LValue &&
7218         LHS.get()->getObjectKind() == OK_ObjCProperty);
7219  const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
7220
7221  bool Consumed = false;
7222
7223  if (PropRef->isImplicitProperty()) {
7224    // If using property-dot syntax notation for assignment, and there is a
7225    // setter, RHS expression is being passed to the setter argument. So,
7226    // type conversion (and comparison) is RHS to setter's argument type.
7227    if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
7228      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
7229      LHSTy = (*P)->getType();
7230      Consumed = (getLangOptions().ObjCAutoRefCount &&
7231                  (*P)->hasAttr<NSConsumedAttr>());
7232
7233    // Otherwise, if the getter returns an l-value, just call that.
7234    } else {
7235      QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
7236      ExprValueKind VK = Expr::getValueKindForType(Result);
7237      if (VK == VK_LValue) {
7238        LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
7239                                        CK_GetObjCProperty, LHS.take(), 0, VK);
7240        return;
7241      }
7242    }
7243  } else if (getLangOptions().ObjCAutoRefCount) {
7244    const ObjCMethodDecl *setter
7245      = PropRef->getExplicitProperty()->getSetterMethodDecl();
7246    if (setter) {
7247      ObjCMethodDecl::param_iterator P = setter->param_begin();
7248      LHSTy = (*P)->getType();
7249      Consumed = (*P)->hasAttr<NSConsumedAttr>();
7250    }
7251  }
7252
7253  if ((getLangOptions().CPlusPlus && LHSTy->isRecordType()) ||
7254      getLangOptions().ObjCAutoRefCount) {
7255    InitializedEntity Entity =
7256      InitializedEntity::InitializeParameter(Context, LHSTy, Consumed);
7257    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
7258    if (!ArgE.isInvalid()) {
7259      RHS = ArgE;
7260      if (getLangOptions().ObjCAutoRefCount && !PropRef->isSuperReceiver())
7261        checkRetainCycles(const_cast<Expr*>(PropRef->getBase()), RHS.get());
7262    }
7263  }
7264}
7265
7266
7267/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7268/// This routine allows us to typecheck complex/recursive expressions
7269/// where the declaration is needed for type checking. We only need to
7270/// handle cases when the expression references a function designator
7271/// or is an lvalue. Here are some examples:
7272///  - &(x) => x
7273///  - &*****f => f for f a function designator.
7274///  - &s.xx => s
7275///  - &s.zz[1].yy -> s, if zz is an array
7276///  - *(x + 1) -> x, if x is an array
7277///  - &"123"[2] -> 0
7278///  - & __real__ x -> x
7279static ValueDecl *getPrimaryDecl(Expr *E) {
7280  switch (E->getStmtClass()) {
7281  case Stmt::DeclRefExprClass:
7282    return cast<DeclRefExpr>(E)->getDecl();
7283  case Stmt::MemberExprClass:
7284    // If this is an arrow operator, the address is an offset from
7285    // the base's value, so the object the base refers to is
7286    // irrelevant.
7287    if (cast<MemberExpr>(E)->isArrow())
7288      return 0;
7289    // Otherwise, the expression refers to a part of the base
7290    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7291  case Stmt::ArraySubscriptExprClass: {
7292    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7293    // promotion of register arrays earlier.
7294    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7295    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7296      if (ICE->getSubExpr()->getType()->isArrayType())
7297        return getPrimaryDecl(ICE->getSubExpr());
7298    }
7299    return 0;
7300  }
7301  case Stmt::UnaryOperatorClass: {
7302    UnaryOperator *UO = cast<UnaryOperator>(E);
7303
7304    switch(UO->getOpcode()) {
7305    case UO_Real:
7306    case UO_Imag:
7307    case UO_Extension:
7308      return getPrimaryDecl(UO->getSubExpr());
7309    default:
7310      return 0;
7311    }
7312  }
7313  case Stmt::ParenExprClass:
7314    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7315  case Stmt::ImplicitCastExprClass:
7316    // If the result of an implicit cast is an l-value, we care about
7317    // the sub-expression; otherwise, the result here doesn't matter.
7318    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7319  default:
7320    return 0;
7321  }
7322}
7323
7324/// \brief Diagnose invalid operand for address of operations.
7325///
7326/// \param Type The type of operand which cannot have its address taken.
7327/// 0:bit-field 1:vector element 2:property expression 3:register variable
7328static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7329                                         Expr *E, unsigned Type) {
7330  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7331}
7332
7333/// CheckAddressOfOperand - The operand of & must be either a function
7334/// designator or an lvalue designating an object. If it is an lvalue, the
7335/// object cannot be declared with storage class register or be a bit field.
7336/// Note: The usual conversions are *not* applied to the operand of the &
7337/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7338/// In C++, the operand might be an overloaded function name, in which case
7339/// we allow the '&' but retain the overloaded-function type.
7340static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
7341                                      SourceLocation OpLoc) {
7342  if (OrigOp->isTypeDependent())
7343    return S.Context.DependentTy;
7344  if (OrigOp->getType() == S.Context.OverloadTy)
7345    return S.Context.OverloadTy;
7346  if (OrigOp->getType() == S.Context.UnknownAnyTy)
7347    return S.Context.UnknownAnyTy;
7348  if (OrigOp->getType() == S.Context.BoundMemberTy) {
7349    S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7350      << OrigOp->getSourceRange();
7351    return QualType();
7352  }
7353
7354  assert(!OrigOp->getType()->isPlaceholderType());
7355
7356  // Make sure to ignore parentheses in subsequent checks
7357  Expr *op = OrigOp->IgnoreParens();
7358
7359  if (S.getLangOptions().C99) {
7360    // Implement C99-only parts of addressof rules.
7361    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7362      if (uOp->getOpcode() == UO_Deref)
7363        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7364        // (assuming the deref expression is valid).
7365        return uOp->getSubExpr()->getType();
7366    }
7367    // Technically, there should be a check for array subscript
7368    // expressions here, but the result of one is always an lvalue anyway.
7369  }
7370  ValueDecl *dcl = getPrimaryDecl(op);
7371  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7372
7373  if (lval == Expr::LV_ClassTemporary) {
7374    bool sfinae = S.isSFINAEContext();
7375    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7376                         : diag::ext_typecheck_addrof_class_temporary)
7377      << op->getType() << op->getSourceRange();
7378    if (sfinae)
7379      return QualType();
7380  } else if (isa<ObjCSelectorExpr>(op)) {
7381    return S.Context.getPointerType(op->getType());
7382  } else if (lval == Expr::LV_MemberFunction) {
7383    // If it's an instance method, make a member pointer.
7384    // The expression must have exactly the form &A::foo.
7385
7386    // If the underlying expression isn't a decl ref, give up.
7387    if (!isa<DeclRefExpr>(op)) {
7388      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7389        << OrigOp->getSourceRange();
7390      return QualType();
7391    }
7392    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7393    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7394
7395    // The id-expression was parenthesized.
7396    if (OrigOp != DRE) {
7397      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7398        << OrigOp->getSourceRange();
7399
7400    // The method was named without a qualifier.
7401    } else if (!DRE->getQualifier()) {
7402      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7403        << op->getSourceRange();
7404    }
7405
7406    return S.Context.getMemberPointerType(op->getType(),
7407              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7408  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7409    // C99 6.5.3.2p1
7410    // The operand must be either an l-value or a function designator
7411    if (!op->getType()->isFunctionType()) {
7412      // FIXME: emit more specific diag...
7413      S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7414        << op->getSourceRange();
7415      return QualType();
7416    }
7417  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7418    // The operand cannot be a bit-field
7419    diagnoseAddressOfInvalidType(S, OpLoc, op, /*bit-field*/ 0);
7420    return QualType();
7421  } else if (op->getObjectKind() == OK_VectorComponent) {
7422    // The operand cannot be an element of a vector
7423    diagnoseAddressOfInvalidType(S, OpLoc, op, /*vector element*/ 1);
7424    return QualType();
7425  } else if (op->getObjectKind() == OK_ObjCProperty) {
7426    // cannot take address of a property expression.
7427    diagnoseAddressOfInvalidType(S, OpLoc, op, /*property expression*/ 2);
7428    return QualType();
7429  } else if (dcl) { // C99 6.5.3.2p1
7430    // We have an lvalue with a decl. Make sure the decl is not declared
7431    // with the register storage-class specifier.
7432    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7433      // in C++ it is not error to take address of a register
7434      // variable (c++03 7.1.1P3)
7435      if (vd->getStorageClass() == SC_Register &&
7436          !S.getLangOptions().CPlusPlus) {
7437        diagnoseAddressOfInvalidType(S, OpLoc, op, /*register variable*/ 3);
7438        return QualType();
7439      }
7440    } else if (isa<FunctionTemplateDecl>(dcl)) {
7441      return S.Context.OverloadTy;
7442    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7443      // Okay: we can take the address of a field.
7444      // Could be a pointer to member, though, if there is an explicit
7445      // scope qualifier for the class.
7446      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7447        DeclContext *Ctx = dcl->getDeclContext();
7448        if (Ctx && Ctx->isRecord()) {
7449          if (dcl->getType()->isReferenceType()) {
7450            S.Diag(OpLoc,
7451                   diag::err_cannot_form_pointer_to_member_of_reference_type)
7452              << dcl->getDeclName() << dcl->getType();
7453            return QualType();
7454          }
7455
7456          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7457            Ctx = Ctx->getParent();
7458          return S.Context.getMemberPointerType(op->getType(),
7459                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7460        }
7461      }
7462    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
7463      assert(0 && "Unknown/unexpected decl type");
7464  }
7465
7466  if (lval == Expr::LV_IncompleteVoidType) {
7467    // Taking the address of a void variable is technically illegal, but we
7468    // allow it in cases which are otherwise valid.
7469    // Example: "extern void x; void* y = &x;".
7470    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7471  }
7472
7473  // If the operand has type "type", the result has type "pointer to type".
7474  if (op->getType()->isObjCObjectType())
7475    return S.Context.getObjCObjectPointerType(op->getType());
7476  return S.Context.getPointerType(op->getType());
7477}
7478
7479/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7480static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7481                                        SourceLocation OpLoc) {
7482  if (Op->isTypeDependent())
7483    return S.Context.DependentTy;
7484
7485  ExprResult ConvResult = S.UsualUnaryConversions(Op);
7486  if (ConvResult.isInvalid())
7487    return QualType();
7488  Op = ConvResult.take();
7489  QualType OpTy = Op->getType();
7490  QualType Result;
7491
7492  if (isa<CXXReinterpretCastExpr>(Op)) {
7493    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7494    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7495                                     Op->getSourceRange());
7496  }
7497
7498  // Note that per both C89 and C99, indirection is always legal, even if OpTy
7499  // is an incomplete type or void.  It would be possible to warn about
7500  // dereferencing a void pointer, but it's completely well-defined, and such a
7501  // warning is unlikely to catch any mistakes.
7502  if (const PointerType *PT = OpTy->getAs<PointerType>())
7503    Result = PT->getPointeeType();
7504  else if (const ObjCObjectPointerType *OPT =
7505             OpTy->getAs<ObjCObjectPointerType>())
7506    Result = OPT->getPointeeType();
7507  else {
7508    ExprResult PR = S.CheckPlaceholderExpr(Op);
7509    if (PR.isInvalid()) return QualType();
7510    if (PR.take() != Op)
7511      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7512  }
7513
7514  if (Result.isNull()) {
7515    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7516      << OpTy << Op->getSourceRange();
7517    return QualType();
7518  }
7519
7520  // Dereferences are usually l-values...
7521  VK = VK_LValue;
7522
7523  // ...except that certain expressions are never l-values in C.
7524  if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
7525    VK = VK_RValue;
7526
7527  return Result;
7528}
7529
7530static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7531  tok::TokenKind Kind) {
7532  BinaryOperatorKind Opc;
7533  switch (Kind) {
7534  default: assert(0 && "Unknown binop!");
7535  case tok::periodstar:           Opc = BO_PtrMemD; break;
7536  case tok::arrowstar:            Opc = BO_PtrMemI; break;
7537  case tok::star:                 Opc = BO_Mul; break;
7538  case tok::slash:                Opc = BO_Div; break;
7539  case tok::percent:              Opc = BO_Rem; break;
7540  case tok::plus:                 Opc = BO_Add; break;
7541  case tok::minus:                Opc = BO_Sub; break;
7542  case tok::lessless:             Opc = BO_Shl; break;
7543  case tok::greatergreater:       Opc = BO_Shr; break;
7544  case tok::lessequal:            Opc = BO_LE; break;
7545  case tok::less:                 Opc = BO_LT; break;
7546  case tok::greaterequal:         Opc = BO_GE; break;
7547  case tok::greater:              Opc = BO_GT; break;
7548  case tok::exclaimequal:         Opc = BO_NE; break;
7549  case tok::equalequal:           Opc = BO_EQ; break;
7550  case tok::amp:                  Opc = BO_And; break;
7551  case tok::caret:                Opc = BO_Xor; break;
7552  case tok::pipe:                 Opc = BO_Or; break;
7553  case tok::ampamp:               Opc = BO_LAnd; break;
7554  case tok::pipepipe:             Opc = BO_LOr; break;
7555  case tok::equal:                Opc = BO_Assign; break;
7556  case tok::starequal:            Opc = BO_MulAssign; break;
7557  case tok::slashequal:           Opc = BO_DivAssign; break;
7558  case tok::percentequal:         Opc = BO_RemAssign; break;
7559  case tok::plusequal:            Opc = BO_AddAssign; break;
7560  case tok::minusequal:           Opc = BO_SubAssign; break;
7561  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
7562  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
7563  case tok::ampequal:             Opc = BO_AndAssign; break;
7564  case tok::caretequal:           Opc = BO_XorAssign; break;
7565  case tok::pipeequal:            Opc = BO_OrAssign; break;
7566  case tok::comma:                Opc = BO_Comma; break;
7567  }
7568  return Opc;
7569}
7570
7571static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7572  tok::TokenKind Kind) {
7573  UnaryOperatorKind Opc;
7574  switch (Kind) {
7575  default: assert(0 && "Unknown unary op!");
7576  case tok::plusplus:     Opc = UO_PreInc; break;
7577  case tok::minusminus:   Opc = UO_PreDec; break;
7578  case tok::amp:          Opc = UO_AddrOf; break;
7579  case tok::star:         Opc = UO_Deref; break;
7580  case tok::plus:         Opc = UO_Plus; break;
7581  case tok::minus:        Opc = UO_Minus; break;
7582  case tok::tilde:        Opc = UO_Not; break;
7583  case tok::exclaim:      Opc = UO_LNot; break;
7584  case tok::kw___real:    Opc = UO_Real; break;
7585  case tok::kw___imag:    Opc = UO_Imag; break;
7586  case tok::kw___extension__: Opc = UO_Extension; break;
7587  }
7588  return Opc;
7589}
7590
7591/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7592/// This warning is only emitted for builtin assignment operations. It is also
7593/// suppressed in the event of macro expansions.
7594static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
7595                                   SourceLocation OpLoc) {
7596  if (!S.ActiveTemplateInstantiations.empty())
7597    return;
7598  if (OpLoc.isInvalid() || OpLoc.isMacroID())
7599    return;
7600  lhs = lhs->IgnoreParenImpCasts();
7601  rhs = rhs->IgnoreParenImpCasts();
7602  const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
7603  const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
7604  if (!LeftDeclRef || !RightDeclRef ||
7605      LeftDeclRef->getLocation().isMacroID() ||
7606      RightDeclRef->getLocation().isMacroID())
7607    return;
7608  const ValueDecl *LeftDecl =
7609    cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
7610  const ValueDecl *RightDecl =
7611    cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
7612  if (LeftDecl != RightDecl)
7613    return;
7614  if (LeftDecl->getType().isVolatileQualified())
7615    return;
7616  if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
7617    if (RefTy->getPointeeType().isVolatileQualified())
7618      return;
7619
7620  S.Diag(OpLoc, diag::warn_self_assignment)
7621      << LeftDeclRef->getType()
7622      << lhs->getSourceRange() << rhs->getSourceRange();
7623}
7624
7625// checkArithmeticNull - Detect when a NULL constant is used improperly in an
7626// expression.  These are mainly cases where the null pointer is used as an
7627// integer instead of a pointer.
7628static void checkArithmeticNull(Sema &S, ExprResult &lex, ExprResult &rex,
7629                                SourceLocation Loc, bool isCompare) {
7630  // The canonical way to check for a GNU null is with isNullPointerConstant,
7631  // but we use a bit of a hack here for speed; this is a relatively
7632  // hot path, and isNullPointerConstant is slow.
7633  bool LeftNull = isa<GNUNullExpr>(lex.get()->IgnoreParenImpCasts());
7634  bool RightNull = isa<GNUNullExpr>(rex.get()->IgnoreParenImpCasts());
7635
7636  // Detect when a NULL constant is used improperly in an expression.  These
7637  // are mainly cases where the null pointer is used as an integer instead
7638  // of a pointer.
7639  if (!LeftNull && !RightNull)
7640    return;
7641
7642  QualType LeftType = lex.get()->getType();
7643  QualType RightType = rex.get()->getType();
7644
7645  // Avoid analyzing cases where the result will either be invalid (and
7646  // diagnosed as such) or entirely valid and not something to warn about.
7647  if (LeftType->isBlockPointerType() || LeftType->isMemberPointerType() ||
7648      LeftType->isFunctionType() || RightType->isBlockPointerType() ||
7649      RightType->isMemberPointerType() || RightType->isFunctionType())
7650    return;
7651
7652  // Comparison operations would not make sense with a null pointer no matter
7653  // what the other expression is.
7654  if (!isCompare) {
7655    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
7656        << (LeftNull ? lex.get()->getSourceRange() : SourceRange())
7657        << (RightNull ? rex.get()->getSourceRange() : SourceRange());
7658    return;
7659  }
7660
7661  // The rest of the operations only make sense with a null pointer
7662  // if the other expression is a pointer.
7663  if (LeftNull == RightNull || LeftType->isAnyPointerType() ||
7664      LeftType->canDecayToPointerType() || RightType->isAnyPointerType() ||
7665      RightType->canDecayToPointerType())
7666    return;
7667
7668  S.Diag(Loc, diag::warn_null_in_comparison_operation)
7669      << LeftNull /* LHS is NULL */
7670      << (LeftNull ? rex.get()->getType() : lex.get()->getType())
7671      << lex.get()->getSourceRange() << rex.get()->getSourceRange();
7672}
7673/// CreateBuiltinBinOp - Creates a new built-in binary operation with
7674/// operator @p Opc at location @c TokLoc. This routine only supports
7675/// built-in operations; ActOnBinOp handles overloaded operators.
7676ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7677                                    BinaryOperatorKind Opc,
7678                                    Expr *lhsExpr, Expr *rhsExpr) {
7679  ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
7680  QualType ResultTy;     // Result type of the binary operator.
7681  // The following two variables are used for compound assignment operators
7682  QualType CompLHSTy;    // Type of LHS after promotions for computation
7683  QualType CompResultTy; // Type of computation result
7684  ExprValueKind VK = VK_RValue;
7685  ExprObjectKind OK = OK_Ordinary;
7686
7687  // Check if a 'foo<int>' involved in a binary op, identifies a single
7688  // function unambiguously (i.e. an lvalue ala 13.4)
7689  // But since an assignment can trigger target based overload, exclude it in
7690  // our blind search. i.e:
7691  // template<class T> void f(); template<class T, class U> void f(U);
7692  // f<int> == 0;  // resolve f<int> blindly
7693  // void (*p)(int); p = f<int>;  // resolve f<int> using target
7694  if (Opc != BO_Assign) {
7695    ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
7696    if (!resolvedLHS.isUsable()) return ExprError();
7697    lhs = move(resolvedLHS);
7698
7699    ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
7700    if (!resolvedRHS.isUsable()) return ExprError();
7701    rhs = move(resolvedRHS);
7702  }
7703
7704  if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add ||
7705      Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And ||
7706      Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign ||
7707      Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign ||
7708      Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign ||
7709      Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign)
7710    checkArithmeticNull(*this, lhs, rhs, OpLoc, /*isCompare=*/false);
7711  else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT ||
7712           Opc == BO_EQ || Opc == BO_NE)
7713    checkArithmeticNull(*this, lhs, rhs, OpLoc, /*isCompare=*/true);
7714
7715  switch (Opc) {
7716  case BO_Assign:
7717    ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
7718    if (getLangOptions().CPlusPlus &&
7719        lhs.get()->getObjectKind() != OK_ObjCProperty) {
7720      VK = lhs.get()->getValueKind();
7721      OK = lhs.get()->getObjectKind();
7722    }
7723    if (!ResultTy.isNull())
7724      DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
7725    break;
7726  case BO_PtrMemD:
7727  case BO_PtrMemI:
7728    ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
7729                                            Opc == BO_PtrMemI);
7730    break;
7731  case BO_Mul:
7732  case BO_Div:
7733    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
7734                                           Opc == BO_Div);
7735    break;
7736  case BO_Rem:
7737    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
7738    break;
7739  case BO_Add:
7740    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
7741    break;
7742  case BO_Sub:
7743    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
7744    break;
7745  case BO_Shl:
7746  case BO_Shr:
7747    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
7748    break;
7749  case BO_LE:
7750  case BO_LT:
7751  case BO_GE:
7752  case BO_GT:
7753    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
7754    break;
7755  case BO_EQ:
7756  case BO_NE:
7757    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
7758    break;
7759  case BO_And:
7760  case BO_Xor:
7761  case BO_Or:
7762    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
7763    break;
7764  case BO_LAnd:
7765  case BO_LOr:
7766    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
7767    break;
7768  case BO_MulAssign:
7769  case BO_DivAssign:
7770    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
7771                                               Opc == BO_DivAssign);
7772    CompLHSTy = CompResultTy;
7773    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7774      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7775    break;
7776  case BO_RemAssign:
7777    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
7778    CompLHSTy = CompResultTy;
7779    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7780      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7781    break;
7782  case BO_AddAssign:
7783    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7784    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7785      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7786    break;
7787  case BO_SubAssign:
7788    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
7789    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7790      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7791    break;
7792  case BO_ShlAssign:
7793  case BO_ShrAssign:
7794    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
7795    CompLHSTy = CompResultTy;
7796    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7797      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7798    break;
7799  case BO_AndAssign:
7800  case BO_XorAssign:
7801  case BO_OrAssign:
7802    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
7803    CompLHSTy = CompResultTy;
7804    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
7805      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
7806    break;
7807  case BO_Comma:
7808    ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
7809    if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
7810      VK = rhs.get()->getValueKind();
7811      OK = rhs.get()->getObjectKind();
7812    }
7813    break;
7814  }
7815  if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
7816    return ExprError();
7817
7818  // Check for array bounds violations for both sides of the BinaryOperator
7819  CheckArrayAccess(lhs.get());
7820  CheckArrayAccess(rhs.get());
7821
7822  if (CompResultTy.isNull())
7823    return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
7824                                              ResultTy, VK, OK, OpLoc));
7825  if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() !=
7826      OK_ObjCProperty) {
7827    VK = VK_LValue;
7828    OK = lhs.get()->getObjectKind();
7829  }
7830  return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
7831                                                    ResultTy, VK, OK, CompLHSTy,
7832                                                    CompResultTy, OpLoc));
7833}
7834
7835/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
7836/// operators are mixed in a way that suggests that the programmer forgot that
7837/// comparison operators have higher precedence. The most typical example of
7838/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
7839static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
7840                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
7841  typedef BinaryOperator BinOp;
7842  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
7843                rhsopc = static_cast<BinOp::Opcode>(-1);
7844  if (BinOp *BO = dyn_cast<BinOp>(lhs))
7845    lhsopc = BO->getOpcode();
7846  if (BinOp *BO = dyn_cast<BinOp>(rhs))
7847    rhsopc = BO->getOpcode();
7848
7849  // Subs are not binary operators.
7850  if (lhsopc == -1 && rhsopc == -1)
7851    return;
7852
7853  // Bitwise operations are sometimes used as eager logical ops.
7854  // Don't diagnose this.
7855  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
7856      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
7857    return;
7858
7859  bool isLeftComp = BinOp::isComparisonOp(lhsopc);
7860  bool isRightComp = BinOp::isComparisonOp(rhsopc);
7861  if (!isLeftComp && !isRightComp) return;
7862
7863  SourceRange DiagRange = isLeftComp ? SourceRange(lhs->getLocStart(), OpLoc)
7864                                     : SourceRange(OpLoc, rhs->getLocEnd());
7865  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(lhsopc)
7866                                 : BinOp::getOpcodeStr(rhsopc);
7867  SourceRange ParensRange = isLeftComp ?
7868      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(),
7869                  rhs->getLocEnd())
7870    : SourceRange(lhs->getLocStart(),
7871                  cast<BinOp>(rhs)->getLHS()->getLocStart());
7872
7873  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
7874    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
7875  SuggestParentheses(Self, OpLoc,
7876    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
7877    rhs->getSourceRange());
7878  SuggestParentheses(Self, OpLoc,
7879    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
7880    ParensRange);
7881}
7882
7883/// \brief It accepts a '&' expr that is inside a '|' one.
7884/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
7885/// in parentheses.
7886static void
7887EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
7888                                       BinaryOperator *Bop) {
7889  assert(Bop->getOpcode() == BO_And);
7890  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
7891      << Bop->getSourceRange() << OpLoc;
7892  SuggestParentheses(Self, Bop->getOperatorLoc(),
7893    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
7894    Bop->getSourceRange());
7895}
7896
7897/// \brief It accepts a '&&' expr that is inside a '||' one.
7898/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
7899/// in parentheses.
7900static void
7901EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
7902                                       BinaryOperator *Bop) {
7903  assert(Bop->getOpcode() == BO_LAnd);
7904  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
7905      << Bop->getSourceRange() << OpLoc;
7906  SuggestParentheses(Self, Bop->getOperatorLoc(),
7907    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
7908    Bop->getSourceRange());
7909}
7910
7911/// \brief Returns true if the given expression can be evaluated as a constant
7912/// 'true'.
7913static bool EvaluatesAsTrue(Sema &S, Expr *E) {
7914  bool Res;
7915  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
7916}
7917
7918/// \brief Returns true if the given expression can be evaluated as a constant
7919/// 'false'.
7920static bool EvaluatesAsFalse(Sema &S, Expr *E) {
7921  bool Res;
7922  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
7923}
7924
7925/// \brief Look for '&&' in the left hand of a '||' expr.
7926static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
7927                                             Expr *OrLHS, Expr *OrRHS) {
7928  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
7929    if (Bop->getOpcode() == BO_LAnd) {
7930      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
7931      if (EvaluatesAsFalse(S, OrRHS))
7932        return;
7933      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
7934      if (!EvaluatesAsTrue(S, Bop->getLHS()))
7935        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7936    } else if (Bop->getOpcode() == BO_LOr) {
7937      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
7938        // If it's "a || b && 1 || c" we didn't warn earlier for
7939        // "a || b && 1", but warn now.
7940        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
7941          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
7942      }
7943    }
7944  }
7945}
7946
7947/// \brief Look for '&&' in the right hand of a '||' expr.
7948static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
7949                                             Expr *OrLHS, Expr *OrRHS) {
7950  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
7951    if (Bop->getOpcode() == BO_LAnd) {
7952      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
7953      if (EvaluatesAsFalse(S, OrLHS))
7954        return;
7955      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
7956      if (!EvaluatesAsTrue(S, Bop->getRHS()))
7957        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7958    }
7959  }
7960}
7961
7962/// \brief Look for '&' in the left or right hand of a '|' expr.
7963static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
7964                                             Expr *OrArg) {
7965  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
7966    if (Bop->getOpcode() == BO_And)
7967      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
7968  }
7969}
7970
7971/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
7972/// precedence.
7973static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
7974                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
7975  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
7976  if (BinaryOperator::isBitwiseOp(Opc))
7977    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
7978
7979  // Diagnose "arg1 & arg2 | arg3"
7980  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
7981    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs);
7982    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs);
7983  }
7984
7985  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
7986  // We don't warn for 'assert(a || b && "bad")' since this is safe.
7987  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
7988    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
7989    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
7990  }
7991}
7992
7993// Binary Operators.  'Tok' is the token for the operator.
7994ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
7995                            tok::TokenKind Kind,
7996                            Expr *lhs, Expr *rhs) {
7997  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
7998  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
7999  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
8000
8001  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8002  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
8003
8004  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
8005}
8006
8007ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8008                            BinaryOperatorKind Opc,
8009                            Expr *lhs, Expr *rhs) {
8010  if (getLangOptions().CPlusPlus) {
8011    bool UseBuiltinOperator;
8012
8013    if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
8014      UseBuiltinOperator = false;
8015    } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
8016      UseBuiltinOperator = true;
8017    } else {
8018      UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
8019                           !rhs->getType()->isOverloadableType();
8020    }
8021
8022    if (!UseBuiltinOperator) {
8023      // Find all of the overloaded operators visible from this
8024      // point. We perform both an operator-name lookup from the local
8025      // scope and an argument-dependent lookup based on the types of
8026      // the arguments.
8027      UnresolvedSet<16> Functions;
8028      OverloadedOperatorKind OverOp
8029        = BinaryOperator::getOverloadedOperator(Opc);
8030      if (S && OverOp != OO_None)
8031        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
8032                                     Functions);
8033
8034      // Build the (potentially-overloaded, potentially-dependent)
8035      // binary operation.
8036      return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
8037    }
8038  }
8039
8040  // Build a built-in binary operation.
8041  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
8042}
8043
8044ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8045                                      UnaryOperatorKind Opc,
8046                                      Expr *InputExpr) {
8047  ExprResult Input = Owned(InputExpr);
8048  ExprValueKind VK = VK_RValue;
8049  ExprObjectKind OK = OK_Ordinary;
8050  QualType resultType;
8051  switch (Opc) {
8052  case UO_PreInc:
8053  case UO_PreDec:
8054  case UO_PostInc:
8055  case UO_PostDec:
8056    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8057                                                Opc == UO_PreInc ||
8058                                                Opc == UO_PostInc,
8059                                                Opc == UO_PreInc ||
8060                                                Opc == UO_PreDec);
8061    break;
8062  case UO_AddrOf:
8063    resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
8064    break;
8065  case UO_Deref: {
8066    ExprResult resolved = CheckPlaceholderExpr(Input.get());
8067    if (!resolved.isUsable()) return ExprError();
8068    Input = move(resolved);
8069    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8070    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8071    break;
8072  }
8073  case UO_Plus:
8074  case UO_Minus:
8075    Input = UsualUnaryConversions(Input.take());
8076    if (Input.isInvalid()) return ExprError();
8077    resultType = Input.get()->getType();
8078    if (resultType->isDependentType())
8079      break;
8080    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8081        resultType->isVectorType())
8082      break;
8083    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
8084             resultType->isEnumeralType())
8085      break;
8086    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
8087             Opc == UO_Plus &&
8088             resultType->isPointerType())
8089      break;
8090    else if (resultType->isPlaceholderType()) {
8091      Input = CheckPlaceholderExpr(Input.take());
8092      if (Input.isInvalid()) return ExprError();
8093      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
8094    }
8095
8096    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8097      << resultType << Input.get()->getSourceRange());
8098
8099  case UO_Not: // bitwise complement
8100    Input = UsualUnaryConversions(Input.take());
8101    if (Input.isInvalid()) return ExprError();
8102    resultType = Input.get()->getType();
8103    if (resultType->isDependentType())
8104      break;
8105    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8106    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8107      // C99 does not support '~' for complex conjugation.
8108      Diag(OpLoc, diag::ext_integer_complement_complex)
8109        << resultType << Input.get()->getSourceRange();
8110    else if (resultType->hasIntegerRepresentation())
8111      break;
8112    else if (resultType->isPlaceholderType()) {
8113      Input = CheckPlaceholderExpr(Input.take());
8114      if (Input.isInvalid()) return ExprError();
8115      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
8116    } else {
8117      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8118        << resultType << Input.get()->getSourceRange());
8119    }
8120    break;
8121
8122  case UO_LNot: // logical negation
8123    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8124    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8125    if (Input.isInvalid()) return ExprError();
8126    resultType = Input.get()->getType();
8127    if (resultType->isDependentType())
8128      break;
8129    if (resultType->isScalarType()) {
8130      // C99 6.5.3.3p1: ok, fallthrough;
8131      if (Context.getLangOptions().CPlusPlus) {
8132        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8133        // operand contextually converted to bool.
8134        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8135                                  ScalarTypeToBooleanCastKind(resultType));
8136      }
8137    } else if (resultType->isPlaceholderType()) {
8138      Input = CheckPlaceholderExpr(Input.take());
8139      if (Input.isInvalid()) return ExprError();
8140      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
8141    } else {
8142      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8143        << resultType << Input.get()->getSourceRange());
8144    }
8145
8146    // LNot always has type int. C99 6.5.3.3p5.
8147    // In C++, it's bool. C++ 5.3.1p8
8148    resultType = Context.getLogicalOperationType();
8149    break;
8150  case UO_Real:
8151  case UO_Imag:
8152    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8153    // _Real and _Imag map ordinary l-values into ordinary l-values.
8154    if (Input.isInvalid()) return ExprError();
8155    if (Input.get()->getValueKind() != VK_RValue &&
8156        Input.get()->getObjectKind() == OK_Ordinary)
8157      VK = Input.get()->getValueKind();
8158    break;
8159  case UO_Extension:
8160    resultType = Input.get()->getType();
8161    VK = Input.get()->getValueKind();
8162    OK = Input.get()->getObjectKind();
8163    break;
8164  }
8165  if (resultType.isNull() || Input.isInvalid())
8166    return ExprError();
8167
8168  // Check for array bounds violations in the operand of the UnaryOperator,
8169  // except for the '*' and '&' operators that have to be handled specially
8170  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8171  // that are explicitly defined as valid by the standard).
8172  if (Opc != UO_AddrOf && Opc != UO_Deref)
8173    CheckArrayAccess(Input.get());
8174
8175  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8176                                           VK, OK, OpLoc));
8177}
8178
8179ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8180                              UnaryOperatorKind Opc,
8181                              Expr *Input) {
8182  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
8183      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
8184    // Find all of the overloaded operators visible from this
8185    // point. We perform both an operator-name lookup from the local
8186    // scope and an argument-dependent lookup based on the types of
8187    // the arguments.
8188    UnresolvedSet<16> Functions;
8189    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8190    if (S && OverOp != OO_None)
8191      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8192                                   Functions);
8193
8194    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8195  }
8196
8197  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8198}
8199
8200// Unary Operators.  'Tok' is the token for the operator.
8201ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8202                              tok::TokenKind Op, Expr *Input) {
8203  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8204}
8205
8206/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8207ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8208                                LabelDecl *TheDecl) {
8209  TheDecl->setUsed();
8210  // Create the AST node.  The address of a label always has type 'void*'.
8211  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8212                                       Context.getPointerType(Context.VoidTy)));
8213}
8214
8215/// Given the last statement in a statement-expression, check whether
8216/// the result is a producing expression (like a call to an
8217/// ns_returns_retained function) and, if so, rebuild it to hoist the
8218/// release out of the full-expression.  Otherwise, return null.
8219/// Cannot fail.
8220static Expr *maybeRebuildARCConsumingStmt(Stmt *s) {
8221  // Should always be wrapped with one of these.
8222  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s);
8223  if (!cleanups) return 0;
8224
8225  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8226  if (!cast || cast->getCastKind() != CK_ObjCConsumeObject)
8227    return 0;
8228
8229  // Splice out the cast.  This shouldn't modify any interesting
8230  // features of the statement.
8231  Expr *producer = cast->getSubExpr();
8232  assert(producer->getType() == cast->getType());
8233  assert(producer->getValueKind() == cast->getValueKind());
8234  cleanups->setSubExpr(producer);
8235  return cleanups;
8236}
8237
8238ExprResult
8239Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8240                    SourceLocation RPLoc) { // "({..})"
8241  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8242  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8243
8244  bool isFileScope
8245    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8246  if (isFileScope)
8247    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8248
8249  // FIXME: there are a variety of strange constraints to enforce here, for
8250  // example, it is not possible to goto into a stmt expression apparently.
8251  // More semantic analysis is needed.
8252
8253  // If there are sub stmts in the compound stmt, take the type of the last one
8254  // as the type of the stmtexpr.
8255  QualType Ty = Context.VoidTy;
8256  bool StmtExprMayBindToTemp = false;
8257  if (!Compound->body_empty()) {
8258    Stmt *LastStmt = Compound->body_back();
8259    LabelStmt *LastLabelStmt = 0;
8260    // If LastStmt is a label, skip down through into the body.
8261    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8262      LastLabelStmt = Label;
8263      LastStmt = Label->getSubStmt();
8264    }
8265
8266    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8267      // Do function/array conversion on the last expression, but not
8268      // lvalue-to-rvalue.  However, initialize an unqualified type.
8269      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8270      if (LastExpr.isInvalid())
8271        return ExprError();
8272      Ty = LastExpr.get()->getType().getUnqualifiedType();
8273
8274      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8275        // In ARC, if the final expression ends in a consume, splice
8276        // the consume out and bind it later.  In the alternate case
8277        // (when dealing with a retainable type), the result
8278        // initialization will create a produce.  In both cases the
8279        // result will be +1, and we'll need to balance that out with
8280        // a bind.
8281        if (Expr *rebuiltLastStmt
8282              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8283          LastExpr = rebuiltLastStmt;
8284        } else {
8285          LastExpr = PerformCopyInitialization(
8286                            InitializedEntity::InitializeResult(LPLoc,
8287                                                                Ty,
8288                                                                false),
8289                                                   SourceLocation(),
8290                                               LastExpr);
8291        }
8292
8293        if (LastExpr.isInvalid())
8294          return ExprError();
8295        if (LastExpr.get() != 0) {
8296          if (!LastLabelStmt)
8297            Compound->setLastStmt(LastExpr.take());
8298          else
8299            LastLabelStmt->setSubStmt(LastExpr.take());
8300          StmtExprMayBindToTemp = true;
8301        }
8302      }
8303    }
8304  }
8305
8306  // FIXME: Check that expression type is complete/non-abstract; statement
8307  // expressions are not lvalues.
8308  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8309  if (StmtExprMayBindToTemp)
8310    return MaybeBindToTemporary(ResStmtExpr);
8311  return Owned(ResStmtExpr);
8312}
8313
8314ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8315                                      TypeSourceInfo *TInfo,
8316                                      OffsetOfComponent *CompPtr,
8317                                      unsigned NumComponents,
8318                                      SourceLocation RParenLoc) {
8319  QualType ArgTy = TInfo->getType();
8320  bool Dependent = ArgTy->isDependentType();
8321  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8322
8323  // We must have at least one component that refers to the type, and the first
8324  // one is known to be a field designator.  Verify that the ArgTy represents
8325  // a struct/union/class.
8326  if (!Dependent && !ArgTy->isRecordType())
8327    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8328                       << ArgTy << TypeRange);
8329
8330  // Type must be complete per C99 7.17p3 because a declaring a variable
8331  // with an incomplete type would be ill-formed.
8332  if (!Dependent
8333      && RequireCompleteType(BuiltinLoc, ArgTy,
8334                             PDiag(diag::err_offsetof_incomplete_type)
8335                               << TypeRange))
8336    return ExprError();
8337
8338  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8339  // GCC extension, diagnose them.
8340  // FIXME: This diagnostic isn't actually visible because the location is in
8341  // a system header!
8342  if (NumComponents != 1)
8343    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8344      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8345
8346  bool DidWarnAboutNonPOD = false;
8347  QualType CurrentType = ArgTy;
8348  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8349  SmallVector<OffsetOfNode, 4> Comps;
8350  SmallVector<Expr*, 4> Exprs;
8351  for (unsigned i = 0; i != NumComponents; ++i) {
8352    const OffsetOfComponent &OC = CompPtr[i];
8353    if (OC.isBrackets) {
8354      // Offset of an array sub-field.  TODO: Should we allow vector elements?
8355      if (!CurrentType->isDependentType()) {
8356        const ArrayType *AT = Context.getAsArrayType(CurrentType);
8357        if(!AT)
8358          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8359                           << CurrentType);
8360        CurrentType = AT->getElementType();
8361      } else
8362        CurrentType = Context.DependentTy;
8363
8364      // The expression must be an integral expression.
8365      // FIXME: An integral constant expression?
8366      Expr *Idx = static_cast<Expr*>(OC.U.E);
8367      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8368          !Idx->getType()->isIntegerType())
8369        return ExprError(Diag(Idx->getLocStart(),
8370                              diag::err_typecheck_subscript_not_integer)
8371                         << Idx->getSourceRange());
8372
8373      // Record this array index.
8374      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8375      Exprs.push_back(Idx);
8376      continue;
8377    }
8378
8379    // Offset of a field.
8380    if (CurrentType->isDependentType()) {
8381      // We have the offset of a field, but we can't look into the dependent
8382      // type. Just record the identifier of the field.
8383      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8384      CurrentType = Context.DependentTy;
8385      continue;
8386    }
8387
8388    // We need to have a complete type to look into.
8389    if (RequireCompleteType(OC.LocStart, CurrentType,
8390                            diag::err_offsetof_incomplete_type))
8391      return ExprError();
8392
8393    // Look for the designated field.
8394    const RecordType *RC = CurrentType->getAs<RecordType>();
8395    if (!RC)
8396      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8397                       << CurrentType);
8398    RecordDecl *RD = RC->getDecl();
8399
8400    // C++ [lib.support.types]p5:
8401    //   The macro offsetof accepts a restricted set of type arguments in this
8402    //   International Standard. type shall be a POD structure or a POD union
8403    //   (clause 9).
8404    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8405      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8406          DiagRuntimeBehavior(BuiltinLoc, 0,
8407                              PDiag(diag::warn_offsetof_non_pod_type)
8408                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8409                              << CurrentType))
8410        DidWarnAboutNonPOD = true;
8411    }
8412
8413    // Look for the field.
8414    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8415    LookupQualifiedName(R, RD);
8416    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8417    IndirectFieldDecl *IndirectMemberDecl = 0;
8418    if (!MemberDecl) {
8419      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8420        MemberDecl = IndirectMemberDecl->getAnonField();
8421    }
8422
8423    if (!MemberDecl)
8424      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8425                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8426                                                              OC.LocEnd));
8427
8428    // C99 7.17p3:
8429    //   (If the specified member is a bit-field, the behavior is undefined.)
8430    //
8431    // We diagnose this as an error.
8432    if (MemberDecl->getBitWidth()) {
8433      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8434        << MemberDecl->getDeclName()
8435        << SourceRange(BuiltinLoc, RParenLoc);
8436      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8437      return ExprError();
8438    }
8439
8440    RecordDecl *Parent = MemberDecl->getParent();
8441    if (IndirectMemberDecl)
8442      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8443
8444    // If the member was found in a base class, introduce OffsetOfNodes for
8445    // the base class indirections.
8446    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8447                       /*DetectVirtual=*/false);
8448    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8449      CXXBasePath &Path = Paths.front();
8450      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8451           B != BEnd; ++B)
8452        Comps.push_back(OffsetOfNode(B->Base));
8453    }
8454
8455    if (IndirectMemberDecl) {
8456      for (IndirectFieldDecl::chain_iterator FI =
8457           IndirectMemberDecl->chain_begin(),
8458           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8459        assert(isa<FieldDecl>(*FI));
8460        Comps.push_back(OffsetOfNode(OC.LocStart,
8461                                     cast<FieldDecl>(*FI), OC.LocEnd));
8462      }
8463    } else
8464      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8465
8466    CurrentType = MemberDecl->getType().getNonReferenceType();
8467  }
8468
8469  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8470                                    TInfo, Comps.data(), Comps.size(),
8471                                    Exprs.data(), Exprs.size(), RParenLoc));
8472}
8473
8474ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8475                                      SourceLocation BuiltinLoc,
8476                                      SourceLocation TypeLoc,
8477                                      ParsedType argty,
8478                                      OffsetOfComponent *CompPtr,
8479                                      unsigned NumComponents,
8480                                      SourceLocation RPLoc) {
8481
8482  TypeSourceInfo *ArgTInfo;
8483  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
8484  if (ArgTy.isNull())
8485    return ExprError();
8486
8487  if (!ArgTInfo)
8488    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8489
8490  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8491                              RPLoc);
8492}
8493
8494
8495ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8496                                 Expr *CondExpr,
8497                                 Expr *LHSExpr, Expr *RHSExpr,
8498                                 SourceLocation RPLoc) {
8499  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8500
8501  ExprValueKind VK = VK_RValue;
8502  ExprObjectKind OK = OK_Ordinary;
8503  QualType resType;
8504  bool ValueDependent = false;
8505  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8506    resType = Context.DependentTy;
8507    ValueDependent = true;
8508  } else {
8509    // The conditional expression is required to be a constant expression.
8510    llvm::APSInt condEval(32);
8511    SourceLocation ExpLoc;
8512    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
8513      return ExprError(Diag(ExpLoc,
8514                       diag::err_typecheck_choose_expr_requires_constant)
8515        << CondExpr->getSourceRange());
8516
8517    // If the condition is > zero, then the AST type is the same as the LSHExpr.
8518    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8519
8520    resType = ActiveExpr->getType();
8521    ValueDependent = ActiveExpr->isValueDependent();
8522    VK = ActiveExpr->getValueKind();
8523    OK = ActiveExpr->getObjectKind();
8524  }
8525
8526  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8527                                        resType, VK, OK, RPLoc,
8528                                        resType->isDependentType(),
8529                                        ValueDependent));
8530}
8531
8532//===----------------------------------------------------------------------===//
8533// Clang Extensions.
8534//===----------------------------------------------------------------------===//
8535
8536/// ActOnBlockStart - This callback is invoked when a block literal is started.
8537void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
8538  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8539  PushBlockScope(BlockScope, Block);
8540  CurContext->addDecl(Block);
8541  if (BlockScope)
8542    PushDeclContext(BlockScope, Block);
8543  else
8544    CurContext = Block;
8545}
8546
8547void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8548  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8549  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8550  BlockScopeInfo *CurBlock = getCurBlock();
8551
8552  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8553  QualType T = Sig->getType();
8554
8555  // GetTypeForDeclarator always produces a function type for a block
8556  // literal signature.  Furthermore, it is always a FunctionProtoType
8557  // unless the function was written with a typedef.
8558  assert(T->isFunctionType() &&
8559         "GetTypeForDeclarator made a non-function block signature");
8560
8561  // Look for an explicit signature in that function type.
8562  FunctionProtoTypeLoc ExplicitSignature;
8563
8564  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8565  if (isa<FunctionProtoTypeLoc>(tmp)) {
8566    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8567
8568    // Check whether that explicit signature was synthesized by
8569    // GetTypeForDeclarator.  If so, don't save that as part of the
8570    // written signature.
8571    if (ExplicitSignature.getLocalRangeBegin() ==
8572        ExplicitSignature.getLocalRangeEnd()) {
8573      // This would be much cheaper if we stored TypeLocs instead of
8574      // TypeSourceInfos.
8575      TypeLoc Result = ExplicitSignature.getResultLoc();
8576      unsigned Size = Result.getFullDataSize();
8577      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8578      Sig->getTypeLoc().initializeFullCopy(Result, Size);
8579
8580      ExplicitSignature = FunctionProtoTypeLoc();
8581    }
8582  }
8583
8584  CurBlock->TheDecl->setSignatureAsWritten(Sig);
8585  CurBlock->FunctionType = T;
8586
8587  const FunctionType *Fn = T->getAs<FunctionType>();
8588  QualType RetTy = Fn->getResultType();
8589  bool isVariadic =
8590    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8591
8592  CurBlock->TheDecl->setIsVariadic(isVariadic);
8593
8594  // Don't allow returning a objc interface by value.
8595  if (RetTy->isObjCObjectType()) {
8596    Diag(ParamInfo.getSourceRange().getBegin(),
8597         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8598    return;
8599  }
8600
8601  // Context.DependentTy is used as a placeholder for a missing block
8602  // return type.  TODO:  what should we do with declarators like:
8603  //   ^ * { ... }
8604  // If the answer is "apply template argument deduction"....
8605  if (RetTy != Context.DependentTy)
8606    CurBlock->ReturnType = RetTy;
8607
8608  // Push block parameters from the declarator if we had them.
8609  SmallVector<ParmVarDecl*, 8> Params;
8610  if (ExplicitSignature) {
8611    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8612      ParmVarDecl *Param = ExplicitSignature.getArg(I);
8613      if (Param->getIdentifier() == 0 &&
8614          !Param->isImplicit() &&
8615          !Param->isInvalidDecl() &&
8616          !getLangOptions().CPlusPlus)
8617        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8618      Params.push_back(Param);
8619    }
8620
8621  // Fake up parameter variables if we have a typedef, like
8622  //   ^ fntype { ... }
8623  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8624    for (FunctionProtoType::arg_type_iterator
8625           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8626      ParmVarDecl *Param =
8627        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8628                                   ParamInfo.getSourceRange().getBegin(),
8629                                   *I);
8630      Params.push_back(Param);
8631    }
8632  }
8633
8634  // Set the parameters on the block decl.
8635  if (!Params.empty()) {
8636    CurBlock->TheDecl->setParams(Params.data(), Params.size());
8637    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8638                             CurBlock->TheDecl->param_end(),
8639                             /*CheckParameterNames=*/false);
8640  }
8641
8642  // Finally we can process decl attributes.
8643  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8644
8645  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
8646    Diag(ParamInfo.getAttributes()->getLoc(),
8647         diag::warn_attribute_sentinel_not_variadic) << 1;
8648    // FIXME: remove the attribute.
8649  }
8650
8651  // Put the parameter variables in scope.  We can bail out immediately
8652  // if we don't have any.
8653  if (Params.empty())
8654    return;
8655
8656  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
8657         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
8658    (*AI)->setOwningFunction(CurBlock->TheDecl);
8659
8660    // If this has an identifier, add it to the scope stack.
8661    if ((*AI)->getIdentifier()) {
8662      CheckShadow(CurBlock->TheScope, *AI);
8663
8664      PushOnScopeChains(*AI, CurBlock->TheScope);
8665    }
8666  }
8667}
8668
8669/// ActOnBlockError - If there is an error parsing a block, this callback
8670/// is invoked to pop the information about the block from the action impl.
8671void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
8672  // Pop off CurBlock, handle nested blocks.
8673  PopDeclContext();
8674  PopFunctionOrBlockScope();
8675}
8676
8677/// ActOnBlockStmtExpr - This is called when the body of a block statement
8678/// literal was successfully completed.  ^(int x){...}
8679ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
8680                                    Stmt *Body, Scope *CurScope) {
8681  // If blocks are disabled, emit an error.
8682  if (!LangOpts.Blocks)
8683    Diag(CaretLoc, diag::err_blocks_disable);
8684
8685  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
8686
8687  PopDeclContext();
8688
8689  QualType RetTy = Context.VoidTy;
8690  if (!BSI->ReturnType.isNull())
8691    RetTy = BSI->ReturnType;
8692
8693  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
8694  QualType BlockTy;
8695
8696  // Set the captured variables on the block.
8697  BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
8698                            BSI->CapturesCXXThis);
8699
8700  // If the user wrote a function type in some form, try to use that.
8701  if (!BSI->FunctionType.isNull()) {
8702    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
8703
8704    FunctionType::ExtInfo Ext = FTy->getExtInfo();
8705    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
8706
8707    // Turn protoless block types into nullary block types.
8708    if (isa<FunctionNoProtoType>(FTy)) {
8709      FunctionProtoType::ExtProtoInfo EPI;
8710      EPI.ExtInfo = Ext;
8711      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8712
8713    // Otherwise, if we don't need to change anything about the function type,
8714    // preserve its sugar structure.
8715    } else if (FTy->getResultType() == RetTy &&
8716               (!NoReturn || FTy->getNoReturnAttr())) {
8717      BlockTy = BSI->FunctionType;
8718
8719    // Otherwise, make the minimal modifications to the function type.
8720    } else {
8721      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
8722      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8723      EPI.TypeQuals = 0; // FIXME: silently?
8724      EPI.ExtInfo = Ext;
8725      BlockTy = Context.getFunctionType(RetTy,
8726                                        FPT->arg_type_begin(),
8727                                        FPT->getNumArgs(),
8728                                        EPI);
8729    }
8730
8731  // If we don't have a function type, just build one from nothing.
8732  } else {
8733    FunctionProtoType::ExtProtoInfo EPI;
8734    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
8735    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8736  }
8737
8738  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
8739                           BSI->TheDecl->param_end());
8740  BlockTy = Context.getBlockPointerType(BlockTy);
8741
8742  // If needed, diagnose invalid gotos and switches in the block.
8743  if (getCurFunction()->NeedsScopeChecking() &&
8744      !hasAnyUnrecoverableErrorsInThisFunction())
8745    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
8746
8747  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
8748
8749  for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
8750       ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
8751    const VarDecl *variable = ci->getVariable();
8752    QualType T = variable->getType();
8753    QualType::DestructionKind destructKind = T.isDestructedType();
8754    if (destructKind != QualType::DK_none)
8755      getCurFunction()->setHasBranchProtectedScope();
8756  }
8757
8758  computeNRVO(Body, getCurBlock());
8759
8760  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
8761  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
8762  PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
8763
8764  return Owned(Result);
8765}
8766
8767ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
8768                                        Expr *expr, ParsedType type,
8769                                        SourceLocation RPLoc) {
8770  TypeSourceInfo *TInfo;
8771  GetTypeFromParser(type, &TInfo);
8772  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
8773}
8774
8775ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
8776                                Expr *E, TypeSourceInfo *TInfo,
8777                                SourceLocation RPLoc) {
8778  Expr *OrigExpr = E;
8779
8780  // Get the va_list type
8781  QualType VaListType = Context.getBuiltinVaListType();
8782  if (VaListType->isArrayType()) {
8783    // Deal with implicit array decay; for example, on x86-64,
8784    // va_list is an array, but it's supposed to decay to
8785    // a pointer for va_arg.
8786    VaListType = Context.getArrayDecayedType(VaListType);
8787    // Make sure the input expression also decays appropriately.
8788    ExprResult Result = UsualUnaryConversions(E);
8789    if (Result.isInvalid())
8790      return ExprError();
8791    E = Result.take();
8792  } else {
8793    // Otherwise, the va_list argument must be an l-value because
8794    // it is modified by va_arg.
8795    if (!E->isTypeDependent() &&
8796        CheckForModifiableLvalue(E, BuiltinLoc, *this))
8797      return ExprError();
8798  }
8799
8800  if (!E->isTypeDependent() &&
8801      !Context.hasSameType(VaListType, E->getType())) {
8802    return ExprError(Diag(E->getLocStart(),
8803                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
8804      << OrigExpr->getType() << E->getSourceRange());
8805  }
8806
8807  if (!TInfo->getType()->isDependentType()) {
8808    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
8809          PDiag(diag::err_second_parameter_to_va_arg_incomplete)
8810          << TInfo->getTypeLoc().getSourceRange()))
8811      return ExprError();
8812
8813    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
8814          TInfo->getType(),
8815          PDiag(diag::err_second_parameter_to_va_arg_abstract)
8816          << TInfo->getTypeLoc().getSourceRange()))
8817      return ExprError();
8818
8819    if (!TInfo->getType().isPODType(Context)) {
8820      Diag(TInfo->getTypeLoc().getBeginLoc(),
8821           TInfo->getType()->isObjCLifetimeType()
8822             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
8823             : diag::warn_second_parameter_to_va_arg_not_pod)
8824        << TInfo->getType()
8825        << TInfo->getTypeLoc().getSourceRange();
8826    }
8827
8828    // Check for va_arg where arguments of the given type will be promoted
8829    // (i.e. this va_arg is guaranteed to have undefined behavior).
8830    QualType PromoteType;
8831    if (TInfo->getType()->isPromotableIntegerType()) {
8832      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
8833      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
8834        PromoteType = QualType();
8835    }
8836    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
8837      PromoteType = Context.DoubleTy;
8838    if (!PromoteType.isNull())
8839      Diag(TInfo->getTypeLoc().getBeginLoc(),
8840          diag::warn_second_parameter_to_va_arg_never_compatible)
8841        << TInfo->getType()
8842        << PromoteType
8843        << TInfo->getTypeLoc().getSourceRange();
8844  }
8845
8846  QualType T = TInfo->getType().getNonLValueExprType(Context);
8847  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
8848}
8849
8850ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
8851  // The type of __null will be int or long, depending on the size of
8852  // pointers on the target.
8853  QualType Ty;
8854  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
8855  if (pw == Context.getTargetInfo().getIntWidth())
8856    Ty = Context.IntTy;
8857  else if (pw == Context.getTargetInfo().getLongWidth())
8858    Ty = Context.LongTy;
8859  else if (pw == Context.getTargetInfo().getLongLongWidth())
8860    Ty = Context.LongLongTy;
8861  else {
8862    assert(!"I don't know size of pointer!");
8863    Ty = Context.IntTy;
8864  }
8865
8866  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
8867}
8868
8869static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
8870                                           Expr *SrcExpr, FixItHint &Hint) {
8871  if (!SemaRef.getLangOptions().ObjC1)
8872    return;
8873
8874  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
8875  if (!PT)
8876    return;
8877
8878  // Check if the destination is of type 'id'.
8879  if (!PT->isObjCIdType()) {
8880    // Check if the destination is the 'NSString' interface.
8881    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
8882    if (!ID || !ID->getIdentifier()->isStr("NSString"))
8883      return;
8884  }
8885
8886  // Strip off any parens and casts.
8887  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
8888  if (!SL || !SL->isAscii())
8889    return;
8890
8891  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
8892}
8893
8894bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
8895                                    SourceLocation Loc,
8896                                    QualType DstType, QualType SrcType,
8897                                    Expr *SrcExpr, AssignmentAction Action,
8898                                    bool *Complained) {
8899  if (Complained)
8900    *Complained = false;
8901
8902  // Decode the result (notice that AST's are still created for extensions).
8903  bool CheckInferredResultType = false;
8904  bool isInvalid = false;
8905  unsigned DiagKind;
8906  FixItHint Hint;
8907  ConversionFixItGenerator ConvHints;
8908  bool MayHaveConvFixit = false;
8909
8910  switch (ConvTy) {
8911  default: assert(0 && "Unknown conversion type");
8912  case Compatible: return false;
8913  case PointerToInt:
8914    DiagKind = diag::ext_typecheck_convert_pointer_int;
8915    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
8916    MayHaveConvFixit = true;
8917    break;
8918  case IntToPointer:
8919    DiagKind = diag::ext_typecheck_convert_int_pointer;
8920    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
8921    MayHaveConvFixit = true;
8922    break;
8923  case IncompatiblePointer:
8924    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
8925    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
8926    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
8927      SrcType->isObjCObjectPointerType();
8928    if (Hint.isNull() && !CheckInferredResultType) {
8929      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
8930    }
8931    MayHaveConvFixit = true;
8932    break;
8933  case IncompatiblePointerSign:
8934    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
8935    break;
8936  case FunctionVoidPointer:
8937    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
8938    break;
8939  case IncompatiblePointerDiscardsQualifiers: {
8940    // Perform array-to-pointer decay if necessary.
8941    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
8942
8943    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
8944    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
8945    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
8946      DiagKind = diag::err_typecheck_incompatible_address_space;
8947      break;
8948
8949
8950    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
8951      DiagKind = diag::err_typecheck_incompatible_ownership;
8952      break;
8953    }
8954
8955    llvm_unreachable("unknown error case for discarding qualifiers!");
8956    // fallthrough
8957  }
8958  case CompatiblePointerDiscardsQualifiers:
8959    // If the qualifiers lost were because we were applying the
8960    // (deprecated) C++ conversion from a string literal to a char*
8961    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
8962    // Ideally, this check would be performed in
8963    // checkPointerTypesForAssignment. However, that would require a
8964    // bit of refactoring (so that the second argument is an
8965    // expression, rather than a type), which should be done as part
8966    // of a larger effort to fix checkPointerTypesForAssignment for
8967    // C++ semantics.
8968    if (getLangOptions().CPlusPlus &&
8969        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
8970      return false;
8971    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
8972    break;
8973  case IncompatibleNestedPointerQualifiers:
8974    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
8975    break;
8976  case IntToBlockPointer:
8977    DiagKind = diag::err_int_to_block_pointer;
8978    break;
8979  case IncompatibleBlockPointer:
8980    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
8981    break;
8982  case IncompatibleObjCQualifiedId:
8983    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
8984    // it can give a more specific diagnostic.
8985    DiagKind = diag::warn_incompatible_qualified_id;
8986    break;
8987  case IncompatibleVectors:
8988    DiagKind = diag::warn_incompatible_vectors;
8989    break;
8990  case IncompatibleObjCWeakRef:
8991    DiagKind = diag::err_arc_weak_unavailable_assign;
8992    break;
8993  case Incompatible:
8994    DiagKind = diag::err_typecheck_convert_incompatible;
8995    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
8996    MayHaveConvFixit = true;
8997    isInvalid = true;
8998    break;
8999  }
9000
9001  QualType FirstType, SecondType;
9002  switch (Action) {
9003  case AA_Assigning:
9004  case AA_Initializing:
9005    // The destination type comes first.
9006    FirstType = DstType;
9007    SecondType = SrcType;
9008    break;
9009
9010  case AA_Returning:
9011  case AA_Passing:
9012  case AA_Converting:
9013  case AA_Sending:
9014  case AA_Casting:
9015    // The source type comes first.
9016    FirstType = SrcType;
9017    SecondType = DstType;
9018    break;
9019  }
9020
9021  PartialDiagnostic FDiag = PDiag(DiagKind);
9022  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9023
9024  // If we can fix the conversion, suggest the FixIts.
9025  assert(ConvHints.isNull() || Hint.isNull());
9026  if (!ConvHints.isNull()) {
9027    for (llvm::SmallVector<FixItHint, 1>::iterator
9028        HI = ConvHints.Hints.begin(), HE = ConvHints.Hints.end();
9029        HI != HE; ++HI)
9030      FDiag << *HI;
9031  } else {
9032    FDiag << Hint;
9033  }
9034  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9035
9036  Diag(Loc, FDiag);
9037
9038  if (CheckInferredResultType)
9039    EmitRelatedResultTypeNote(SrcExpr);
9040
9041  if (Complained)
9042    *Complained = true;
9043  return isInvalid;
9044}
9045
9046bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
9047  llvm::APSInt ICEResult;
9048  if (E->isIntegerConstantExpr(ICEResult, Context)) {
9049    if (Result)
9050      *Result = ICEResult;
9051    return false;
9052  }
9053
9054  Expr::EvalResult EvalResult;
9055
9056  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
9057      EvalResult.HasSideEffects) {
9058    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
9059
9060    if (EvalResult.Diag) {
9061      // We only show the note if it's not the usual "invalid subexpression"
9062      // or if it's actually in a subexpression.
9063      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
9064          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
9065        Diag(EvalResult.DiagLoc, EvalResult.Diag);
9066    }
9067
9068    return true;
9069  }
9070
9071  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
9072    E->getSourceRange();
9073
9074  if (EvalResult.Diag &&
9075      Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
9076          != Diagnostic::Ignored)
9077    Diag(EvalResult.DiagLoc, EvalResult.Diag);
9078
9079  if (Result)
9080    *Result = EvalResult.Val.getInt();
9081  return false;
9082}
9083
9084void
9085Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
9086  ExprEvalContexts.push_back(
9087             ExpressionEvaluationContextRecord(NewContext,
9088                                               ExprTemporaries.size(),
9089                                               ExprNeedsCleanups));
9090  ExprNeedsCleanups = false;
9091}
9092
9093void Sema::PopExpressionEvaluationContext() {
9094  // Pop the current expression evaluation context off the stack.
9095  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
9096  ExprEvalContexts.pop_back();
9097
9098  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
9099    if (Rec.PotentiallyReferenced) {
9100      // Mark any remaining declarations in the current position of the stack
9101      // as "referenced". If they were not meant to be referenced, semantic
9102      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
9103      for (PotentiallyReferencedDecls::iterator
9104             I = Rec.PotentiallyReferenced->begin(),
9105             IEnd = Rec.PotentiallyReferenced->end();
9106           I != IEnd; ++I)
9107        MarkDeclarationReferenced(I->first, I->second);
9108    }
9109
9110    if (Rec.PotentiallyDiagnosed) {
9111      // Emit any pending diagnostics.
9112      for (PotentiallyEmittedDiagnostics::iterator
9113                I = Rec.PotentiallyDiagnosed->begin(),
9114             IEnd = Rec.PotentiallyDiagnosed->end();
9115           I != IEnd; ++I)
9116        Diag(I->first, I->second);
9117    }
9118  }
9119
9120  // When are coming out of an unevaluated context, clear out any
9121  // temporaries that we may have created as part of the evaluation of
9122  // the expression in that context: they aren't relevant because they
9123  // will never be constructed.
9124  if (Rec.Context == Unevaluated) {
9125    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
9126                          ExprTemporaries.end());
9127    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
9128
9129  // Otherwise, merge the contexts together.
9130  } else {
9131    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
9132  }
9133
9134  // Destroy the popped expression evaluation record.
9135  Rec.Destroy();
9136}
9137
9138void Sema::DiscardCleanupsInEvaluationContext() {
9139  ExprTemporaries.erase(
9140              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
9141              ExprTemporaries.end());
9142  ExprNeedsCleanups = false;
9143}
9144
9145/// \brief Note that the given declaration was referenced in the source code.
9146///
9147/// This routine should be invoke whenever a given declaration is referenced
9148/// in the source code, and where that reference occurred. If this declaration
9149/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
9150/// C99 6.9p3), then the declaration will be marked as used.
9151///
9152/// \param Loc the location where the declaration was referenced.
9153///
9154/// \param D the declaration that has been referenced by the source code.
9155void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
9156  assert(D && "No declaration?");
9157
9158  D->setReferenced();
9159
9160  if (D->isUsed(false))
9161    return;
9162
9163  // Mark a parameter or variable declaration "used", regardless of whether
9164  // we're in a template or not. The reason for this is that unevaluated
9165  // expressions (e.g. (void)sizeof()) constitute a use for warning purposes
9166  // (-Wunused-variables and -Wunused-parameters)
9167  if (isa<ParmVarDecl>(D) ||
9168      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
9169    D->setUsed();
9170    return;
9171  }
9172
9173  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
9174    return;
9175
9176  // Do not mark anything as "used" within a dependent context; wait for
9177  // an instantiation.
9178  if (CurContext->isDependentContext())
9179    return;
9180
9181  switch (ExprEvalContexts.back().Context) {
9182    case Unevaluated:
9183      // We are in an expression that is not potentially evaluated; do nothing.
9184      return;
9185
9186    case PotentiallyEvaluated:
9187      // We are in a potentially-evaluated expression, so this declaration is
9188      // "used"; handle this below.
9189      break;
9190
9191    case PotentiallyPotentiallyEvaluated:
9192      // We are in an expression that may be potentially evaluated; queue this
9193      // declaration reference until we know whether the expression is
9194      // potentially evaluated.
9195      ExprEvalContexts.back().addReferencedDecl(Loc, D);
9196      return;
9197
9198    case PotentiallyEvaluatedIfUsed:
9199      // Referenced declarations will only be used if the construct in the
9200      // containing expression is used.
9201      return;
9202  }
9203
9204  // Note that this declaration has been used.
9205  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
9206    if (Constructor->isDefaulted()) {
9207      if (Constructor->isDefaultConstructor()) {
9208        if (Constructor->isTrivial())
9209          return;
9210        if (!Constructor->isUsed(false))
9211          DefineImplicitDefaultConstructor(Loc, Constructor);
9212      } else if (Constructor->isCopyConstructor()) {
9213        if (!Constructor->isUsed(false))
9214          DefineImplicitCopyConstructor(Loc, Constructor);
9215      } else if (Constructor->isMoveConstructor()) {
9216        if (!Constructor->isUsed(false))
9217          DefineImplicitMoveConstructor(Loc, Constructor);
9218      }
9219    }
9220
9221    MarkVTableUsed(Loc, Constructor->getParent());
9222  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
9223    if (Destructor->isDefaulted() && !Destructor->isUsed(false))
9224      DefineImplicitDestructor(Loc, Destructor);
9225    if (Destructor->isVirtual())
9226      MarkVTableUsed(Loc, Destructor->getParent());
9227  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
9228    if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
9229        MethodDecl->getOverloadedOperator() == OO_Equal) {
9230      if (!MethodDecl->isUsed(false)) {
9231        if (MethodDecl->isCopyAssignmentOperator())
9232          DefineImplicitCopyAssignment(Loc, MethodDecl);
9233        else
9234          DefineImplicitMoveAssignment(Loc, MethodDecl);
9235      }
9236    } else if (MethodDecl->isVirtual())
9237      MarkVTableUsed(Loc, MethodDecl->getParent());
9238  }
9239  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
9240    // Recursive functions should be marked when used from another function.
9241    if (CurContext == Function) return;
9242
9243    // Implicit instantiation of function templates and member functions of
9244    // class templates.
9245    if (Function->isImplicitlyInstantiable()) {
9246      bool AlreadyInstantiated = false;
9247      if (FunctionTemplateSpecializationInfo *SpecInfo
9248                                = Function->getTemplateSpecializationInfo()) {
9249        if (SpecInfo->getPointOfInstantiation().isInvalid())
9250          SpecInfo->setPointOfInstantiation(Loc);
9251        else if (SpecInfo->getTemplateSpecializationKind()
9252                   == TSK_ImplicitInstantiation)
9253          AlreadyInstantiated = true;
9254      } else if (MemberSpecializationInfo *MSInfo
9255                                  = Function->getMemberSpecializationInfo()) {
9256        if (MSInfo->getPointOfInstantiation().isInvalid())
9257          MSInfo->setPointOfInstantiation(Loc);
9258        else if (MSInfo->getTemplateSpecializationKind()
9259                   == TSK_ImplicitInstantiation)
9260          AlreadyInstantiated = true;
9261      }
9262
9263      if (!AlreadyInstantiated) {
9264        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
9265            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
9266          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
9267                                                                      Loc));
9268        else
9269          PendingInstantiations.push_back(std::make_pair(Function, Loc));
9270      }
9271    } else {
9272      // Walk redefinitions, as some of them may be instantiable.
9273      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
9274           e(Function->redecls_end()); i != e; ++i) {
9275        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
9276          MarkDeclarationReferenced(Loc, *i);
9277      }
9278    }
9279
9280    // Keep track of used but undefined functions.
9281    if (!Function->isPure() && !Function->hasBody() &&
9282        Function->getLinkage() != ExternalLinkage) {
9283      SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
9284      if (old.isInvalid()) old = Loc;
9285    }
9286
9287    Function->setUsed(true);
9288    return;
9289  }
9290
9291  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
9292    // Implicit instantiation of static data members of class templates.
9293    if (Var->isStaticDataMember() &&
9294        Var->getInstantiatedFromStaticDataMember()) {
9295      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
9296      assert(MSInfo && "Missing member specialization information?");
9297      if (MSInfo->getPointOfInstantiation().isInvalid() &&
9298          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
9299        MSInfo->setPointOfInstantiation(Loc);
9300        // This is a modification of an existing AST node. Notify listeners.
9301        if (ASTMutationListener *L = getASTMutationListener())
9302          L->StaticDataMemberInstantiated(Var);
9303        PendingInstantiations.push_back(std::make_pair(Var, Loc));
9304      }
9305    }
9306
9307    // Keep track of used but undefined variables.  We make a hole in
9308    // the warning for static const data members with in-line
9309    // initializers.
9310    if (Var->hasDefinition() == VarDecl::DeclarationOnly
9311        && Var->getLinkage() != ExternalLinkage
9312        && !(Var->isStaticDataMember() && Var->hasInit())) {
9313      SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
9314      if (old.isInvalid()) old = Loc;
9315    }
9316
9317    D->setUsed(true);
9318    return;
9319  }
9320}
9321
9322namespace {
9323  // Mark all of the declarations referenced
9324  // FIXME: Not fully implemented yet! We need to have a better understanding
9325  // of when we're entering
9326  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
9327    Sema &S;
9328    SourceLocation Loc;
9329
9330  public:
9331    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
9332
9333    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
9334
9335    bool TraverseTemplateArgument(const TemplateArgument &Arg);
9336    bool TraverseRecordType(RecordType *T);
9337  };
9338}
9339
9340bool MarkReferencedDecls::TraverseTemplateArgument(
9341  const TemplateArgument &Arg) {
9342  if (Arg.getKind() == TemplateArgument::Declaration) {
9343    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
9344  }
9345
9346  return Inherited::TraverseTemplateArgument(Arg);
9347}
9348
9349bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
9350  if (ClassTemplateSpecializationDecl *Spec
9351                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
9352    const TemplateArgumentList &Args = Spec->getTemplateArgs();
9353    return TraverseTemplateArguments(Args.data(), Args.size());
9354  }
9355
9356  return true;
9357}
9358
9359void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
9360  MarkReferencedDecls Marker(*this, Loc);
9361  Marker.TraverseType(Context.getCanonicalType(T));
9362}
9363
9364namespace {
9365  /// \brief Helper class that marks all of the declarations referenced by
9366  /// potentially-evaluated subexpressions as "referenced".
9367  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
9368    Sema &S;
9369
9370  public:
9371    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
9372
9373    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
9374
9375    void VisitDeclRefExpr(DeclRefExpr *E) {
9376      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9377    }
9378
9379    void VisitMemberExpr(MemberExpr *E) {
9380      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
9381      Inherited::VisitMemberExpr(E);
9382    }
9383
9384    void VisitCXXNewExpr(CXXNewExpr *E) {
9385      if (E->getConstructor())
9386        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9387      if (E->getOperatorNew())
9388        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
9389      if (E->getOperatorDelete())
9390        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9391      Inherited::VisitCXXNewExpr(E);
9392    }
9393
9394    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
9395      if (E->getOperatorDelete())
9396        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9397      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
9398      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
9399        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
9400        S.MarkDeclarationReferenced(E->getLocStart(),
9401                                    S.LookupDestructor(Record));
9402      }
9403
9404      Inherited::VisitCXXDeleteExpr(E);
9405    }
9406
9407    void VisitCXXConstructExpr(CXXConstructExpr *E) {
9408      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9409      Inherited::VisitCXXConstructExpr(E);
9410    }
9411
9412    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
9413      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9414    }
9415
9416    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
9417      Visit(E->getExpr());
9418    }
9419  };
9420}
9421
9422/// \brief Mark any declarations that appear within this expression or any
9423/// potentially-evaluated subexpressions as "referenced".
9424void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
9425  EvaluatedExprMarker(*this).Visit(E);
9426}
9427
9428/// \brief Emit a diagnostic that describes an effect on the run-time behavior
9429/// of the program being compiled.
9430///
9431/// This routine emits the given diagnostic when the code currently being
9432/// type-checked is "potentially evaluated", meaning that there is a
9433/// possibility that the code will actually be executable. Code in sizeof()
9434/// expressions, code used only during overload resolution, etc., are not
9435/// potentially evaluated. This routine will suppress such diagnostics or,
9436/// in the absolutely nutty case of potentially potentially evaluated
9437/// expressions (C++ typeid), queue the diagnostic to potentially emit it
9438/// later.
9439///
9440/// This routine should be used for all diagnostics that describe the run-time
9441/// behavior of a program, such as passing a non-POD value through an ellipsis.
9442/// Failure to do so will likely result in spurious diagnostics or failures
9443/// during overload resolution or within sizeof/alignof/typeof/typeid.
9444bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
9445                               const PartialDiagnostic &PD) {
9446  switch (ExprEvalContexts.back().Context) {
9447  case Unevaluated:
9448    // The argument will never be evaluated, so don't complain.
9449    break;
9450
9451  case PotentiallyEvaluated:
9452  case PotentiallyEvaluatedIfUsed:
9453    if (stmt && getCurFunctionOrMethodDecl()) {
9454      FunctionScopes.back()->PossiblyUnreachableDiags.
9455        push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
9456    }
9457    else
9458      Diag(Loc, PD);
9459
9460    return true;
9461
9462  case PotentiallyPotentiallyEvaluated:
9463    ExprEvalContexts.back().addDiagnostic(Loc, PD);
9464    break;
9465  }
9466
9467  return false;
9468}
9469
9470bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
9471                               CallExpr *CE, FunctionDecl *FD) {
9472  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
9473    return false;
9474
9475  PartialDiagnostic Note =
9476    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
9477    << FD->getDeclName() : PDiag();
9478  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
9479
9480  if (RequireCompleteType(Loc, ReturnType,
9481                          FD ?
9482                          PDiag(diag::err_call_function_incomplete_return)
9483                            << CE->getSourceRange() << FD->getDeclName() :
9484                          PDiag(diag::err_call_incomplete_return)
9485                            << CE->getSourceRange(),
9486                          std::make_pair(NoteLoc, Note)))
9487    return true;
9488
9489  return false;
9490}
9491
9492// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
9493// will prevent this condition from triggering, which is what we want.
9494void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
9495  SourceLocation Loc;
9496
9497  unsigned diagnostic = diag::warn_condition_is_assignment;
9498  bool IsOrAssign = false;
9499
9500  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
9501    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
9502      return;
9503
9504    IsOrAssign = Op->getOpcode() == BO_OrAssign;
9505
9506    // Greylist some idioms by putting them into a warning subcategory.
9507    if (ObjCMessageExpr *ME
9508          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
9509      Selector Sel = ME->getSelector();
9510
9511      // self = [<foo> init...]
9512      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
9513        diagnostic = diag::warn_condition_is_idiomatic_assignment;
9514
9515      // <foo> = [<bar> nextObject]
9516      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
9517        diagnostic = diag::warn_condition_is_idiomatic_assignment;
9518    }
9519
9520    Loc = Op->getOperatorLoc();
9521  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
9522    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
9523      return;
9524
9525    IsOrAssign = Op->getOperator() == OO_PipeEqual;
9526    Loc = Op->getOperatorLoc();
9527  } else {
9528    // Not an assignment.
9529    return;
9530  }
9531
9532  Diag(Loc, diagnostic) << E->getSourceRange();
9533
9534  SourceLocation Open = E->getSourceRange().getBegin();
9535  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
9536  Diag(Loc, diag::note_condition_assign_silence)
9537        << FixItHint::CreateInsertion(Open, "(")
9538        << FixItHint::CreateInsertion(Close, ")");
9539
9540  if (IsOrAssign)
9541    Diag(Loc, diag::note_condition_or_assign_to_comparison)
9542      << FixItHint::CreateReplacement(Loc, "!=");
9543  else
9544    Diag(Loc, diag::note_condition_assign_to_comparison)
9545      << FixItHint::CreateReplacement(Loc, "==");
9546}
9547
9548/// \brief Redundant parentheses over an equality comparison can indicate
9549/// that the user intended an assignment used as condition.
9550void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
9551  // Don't warn if the parens came from a macro.
9552  SourceLocation parenLoc = parenE->getLocStart();
9553  if (parenLoc.isInvalid() || parenLoc.isMacroID())
9554    return;
9555  // Don't warn for dependent expressions.
9556  if (parenE->isTypeDependent())
9557    return;
9558
9559  Expr *E = parenE->IgnoreParens();
9560
9561  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
9562    if (opE->getOpcode() == BO_EQ &&
9563        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
9564                                                           == Expr::MLV_Valid) {
9565      SourceLocation Loc = opE->getOperatorLoc();
9566
9567      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
9568      Diag(Loc, diag::note_equality_comparison_silence)
9569        << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
9570        << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
9571      Diag(Loc, diag::note_equality_comparison_to_assign)
9572        << FixItHint::CreateReplacement(Loc, "=");
9573    }
9574}
9575
9576ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
9577  DiagnoseAssignmentAsCondition(E);
9578  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
9579    DiagnoseEqualityWithExtraParens(parenE);
9580
9581  ExprResult result = CheckPlaceholderExpr(E);
9582  if (result.isInvalid()) return ExprError();
9583  E = result.take();
9584
9585  if (!E->isTypeDependent()) {
9586    if (getLangOptions().CPlusPlus)
9587      return CheckCXXBooleanCondition(E); // C++ 6.4p4
9588
9589    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
9590    if (ERes.isInvalid())
9591      return ExprError();
9592    E = ERes.take();
9593
9594    QualType T = E->getType();
9595    if (!T->isScalarType()) { // C99 6.8.4.1p1
9596      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
9597        << T << E->getSourceRange();
9598      return ExprError();
9599    }
9600  }
9601
9602  return Owned(E);
9603}
9604
9605ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
9606                                       Expr *Sub) {
9607  if (!Sub)
9608    return ExprError();
9609
9610  return CheckBooleanCondition(Sub, Loc);
9611}
9612
9613namespace {
9614  /// A visitor for rebuilding a call to an __unknown_any expression
9615  /// to have an appropriate type.
9616  struct RebuildUnknownAnyFunction
9617    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
9618
9619    Sema &S;
9620
9621    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
9622
9623    ExprResult VisitStmt(Stmt *S) {
9624      llvm_unreachable("unexpected statement!");
9625      return ExprError();
9626    }
9627
9628    ExprResult VisitExpr(Expr *expr) {
9629      S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
9630        << expr->getSourceRange();
9631      return ExprError();
9632    }
9633
9634    /// Rebuild an expression which simply semantically wraps another
9635    /// expression which it shares the type and value kind of.
9636    template <class T> ExprResult rebuildSugarExpr(T *expr) {
9637      ExprResult subResult = Visit(expr->getSubExpr());
9638      if (subResult.isInvalid()) return ExprError();
9639
9640      Expr *subExpr = subResult.take();
9641      expr->setSubExpr(subExpr);
9642      expr->setType(subExpr->getType());
9643      expr->setValueKind(subExpr->getValueKind());
9644      assert(expr->getObjectKind() == OK_Ordinary);
9645      return expr;
9646    }
9647
9648    ExprResult VisitParenExpr(ParenExpr *paren) {
9649      return rebuildSugarExpr(paren);
9650    }
9651
9652    ExprResult VisitUnaryExtension(UnaryOperator *op) {
9653      return rebuildSugarExpr(op);
9654    }
9655
9656    ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
9657      ExprResult subResult = Visit(op->getSubExpr());
9658      if (subResult.isInvalid()) return ExprError();
9659
9660      Expr *subExpr = subResult.take();
9661      op->setSubExpr(subExpr);
9662      op->setType(S.Context.getPointerType(subExpr->getType()));
9663      assert(op->getValueKind() == VK_RValue);
9664      assert(op->getObjectKind() == OK_Ordinary);
9665      return op;
9666    }
9667
9668    ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
9669      if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
9670
9671      expr->setType(decl->getType());
9672
9673      assert(expr->getValueKind() == VK_RValue);
9674      if (S.getLangOptions().CPlusPlus &&
9675          !(isa<CXXMethodDecl>(decl) &&
9676            cast<CXXMethodDecl>(decl)->isInstance()))
9677        expr->setValueKind(VK_LValue);
9678
9679      return expr;
9680    }
9681
9682    ExprResult VisitMemberExpr(MemberExpr *mem) {
9683      return resolveDecl(mem, mem->getMemberDecl());
9684    }
9685
9686    ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
9687      return resolveDecl(ref, ref->getDecl());
9688    }
9689  };
9690}
9691
9692/// Given a function expression of unknown-any type, try to rebuild it
9693/// to have a function type.
9694static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
9695  ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
9696  if (result.isInvalid()) return ExprError();
9697  return S.DefaultFunctionArrayConversion(result.take());
9698}
9699
9700namespace {
9701  /// A visitor for rebuilding an expression of type __unknown_anytype
9702  /// into one which resolves the type directly on the referring
9703  /// expression.  Strict preservation of the original source
9704  /// structure is not a goal.
9705  struct RebuildUnknownAnyExpr
9706    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
9707
9708    Sema &S;
9709
9710    /// The current destination type.
9711    QualType DestType;
9712
9713    RebuildUnknownAnyExpr(Sema &S, QualType castType)
9714      : S(S), DestType(castType) {}
9715
9716    ExprResult VisitStmt(Stmt *S) {
9717      llvm_unreachable("unexpected statement!");
9718      return ExprError();
9719    }
9720
9721    ExprResult VisitExpr(Expr *expr) {
9722      S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
9723        << expr->getSourceRange();
9724      return ExprError();
9725    }
9726
9727    ExprResult VisitCallExpr(CallExpr *call);
9728    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
9729
9730    /// Rebuild an expression which simply semantically wraps another
9731    /// expression which it shares the type and value kind of.
9732    template <class T> ExprResult rebuildSugarExpr(T *expr) {
9733      ExprResult subResult = Visit(expr->getSubExpr());
9734      if (subResult.isInvalid()) return ExprError();
9735      Expr *subExpr = subResult.take();
9736      expr->setSubExpr(subExpr);
9737      expr->setType(subExpr->getType());
9738      expr->setValueKind(subExpr->getValueKind());
9739      assert(expr->getObjectKind() == OK_Ordinary);
9740      return expr;
9741    }
9742
9743    ExprResult VisitParenExpr(ParenExpr *paren) {
9744      return rebuildSugarExpr(paren);
9745    }
9746
9747    ExprResult VisitUnaryExtension(UnaryOperator *op) {
9748      return rebuildSugarExpr(op);
9749    }
9750
9751    ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
9752      const PointerType *ptr = DestType->getAs<PointerType>();
9753      if (!ptr) {
9754        S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
9755          << op->getSourceRange();
9756        return ExprError();
9757      }
9758      assert(op->getValueKind() == VK_RValue);
9759      assert(op->getObjectKind() == OK_Ordinary);
9760      op->setType(DestType);
9761
9762      // Build the sub-expression as if it were an object of the pointee type.
9763      DestType = ptr->getPointeeType();
9764      ExprResult subResult = Visit(op->getSubExpr());
9765      if (subResult.isInvalid()) return ExprError();
9766      op->setSubExpr(subResult.take());
9767      return op;
9768    }
9769
9770    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
9771
9772    ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
9773
9774    ExprResult VisitMemberExpr(MemberExpr *mem) {
9775      return resolveDecl(mem, mem->getMemberDecl());
9776    }
9777
9778    ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
9779      return resolveDecl(ref, ref->getDecl());
9780    }
9781  };
9782}
9783
9784/// Rebuilds a call expression which yielded __unknown_anytype.
9785ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
9786  Expr *callee = call->getCallee();
9787
9788  enum FnKind {
9789    FK_MemberFunction,
9790    FK_FunctionPointer,
9791    FK_BlockPointer
9792  };
9793
9794  FnKind kind;
9795  QualType type = callee->getType();
9796  if (type == S.Context.BoundMemberTy) {
9797    assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
9798    kind = FK_MemberFunction;
9799    type = Expr::findBoundMemberType(callee);
9800  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
9801    type = ptr->getPointeeType();
9802    kind = FK_FunctionPointer;
9803  } else {
9804    type = type->castAs<BlockPointerType>()->getPointeeType();
9805    kind = FK_BlockPointer;
9806  }
9807  const FunctionType *fnType = type->castAs<FunctionType>();
9808
9809  // Verify that this is a legal result type of a function.
9810  if (DestType->isArrayType() || DestType->isFunctionType()) {
9811    unsigned diagID = diag::err_func_returning_array_function;
9812    if (kind == FK_BlockPointer)
9813      diagID = diag::err_block_returning_array_function;
9814
9815    S.Diag(call->getExprLoc(), diagID)
9816      << DestType->isFunctionType() << DestType;
9817    return ExprError();
9818  }
9819
9820  // Otherwise, go ahead and set DestType as the call's result.
9821  call->setType(DestType.getNonLValueExprType(S.Context));
9822  call->setValueKind(Expr::getValueKindForType(DestType));
9823  assert(call->getObjectKind() == OK_Ordinary);
9824
9825  // Rebuild the function type, replacing the result type with DestType.
9826  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
9827    DestType = S.Context.getFunctionType(DestType,
9828                                         proto->arg_type_begin(),
9829                                         proto->getNumArgs(),
9830                                         proto->getExtProtoInfo());
9831  else
9832    DestType = S.Context.getFunctionNoProtoType(DestType,
9833                                                fnType->getExtInfo());
9834
9835  // Rebuild the appropriate pointer-to-function type.
9836  switch (kind) {
9837  case FK_MemberFunction:
9838    // Nothing to do.
9839    break;
9840
9841  case FK_FunctionPointer:
9842    DestType = S.Context.getPointerType(DestType);
9843    break;
9844
9845  case FK_BlockPointer:
9846    DestType = S.Context.getBlockPointerType(DestType);
9847    break;
9848  }
9849
9850  // Finally, we can recurse.
9851  ExprResult calleeResult = Visit(callee);
9852  if (!calleeResult.isUsable()) return ExprError();
9853  call->setCallee(calleeResult.take());
9854
9855  // Bind a temporary if necessary.
9856  return S.MaybeBindToTemporary(call);
9857}
9858
9859ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
9860  // Verify that this is a legal result type of a call.
9861  if (DestType->isArrayType() || DestType->isFunctionType()) {
9862    S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
9863      << DestType->isFunctionType() << DestType;
9864    return ExprError();
9865  }
9866
9867  // Rewrite the method result type if available.
9868  if (ObjCMethodDecl *method = msg->getMethodDecl()) {
9869    assert(method->getResultType() == S.Context.UnknownAnyTy);
9870    method->setResultType(DestType);
9871  }
9872
9873  // Change the type of the message.
9874  msg->setType(DestType.getNonReferenceType());
9875  msg->setValueKind(Expr::getValueKindForType(DestType));
9876
9877  return S.MaybeBindToTemporary(msg);
9878}
9879
9880ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
9881  // The only case we should ever see here is a function-to-pointer decay.
9882  assert(ice->getCastKind() == CK_FunctionToPointerDecay);
9883  assert(ice->getValueKind() == VK_RValue);
9884  assert(ice->getObjectKind() == OK_Ordinary);
9885
9886  ice->setType(DestType);
9887
9888  // Rebuild the sub-expression as the pointee (function) type.
9889  DestType = DestType->castAs<PointerType>()->getPointeeType();
9890
9891  ExprResult result = Visit(ice->getSubExpr());
9892  if (!result.isUsable()) return ExprError();
9893
9894  ice->setSubExpr(result.take());
9895  return S.Owned(ice);
9896}
9897
9898ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
9899  ExprValueKind valueKind = VK_LValue;
9900  QualType type = DestType;
9901
9902  // We know how to make this work for certain kinds of decls:
9903
9904  //  - functions
9905  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
9906    if (const PointerType *ptr = type->getAs<PointerType>()) {
9907      DestType = ptr->getPointeeType();
9908      ExprResult result = resolveDecl(expr, decl);
9909      if (result.isInvalid()) return ExprError();
9910      return S.ImpCastExprToType(result.take(), type,
9911                                 CK_FunctionToPointerDecay, VK_RValue);
9912    }
9913
9914    if (!type->isFunctionType()) {
9915      S.Diag(expr->getExprLoc(), diag::err_unknown_any_function)
9916        << decl << expr->getSourceRange();
9917      return ExprError();
9918    }
9919
9920    if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
9921      if (method->isInstance()) {
9922        valueKind = VK_RValue;
9923        type = S.Context.BoundMemberTy;
9924      }
9925
9926    // Function references aren't l-values in C.
9927    if (!S.getLangOptions().CPlusPlus)
9928      valueKind = VK_RValue;
9929
9930  //  - variables
9931  } else if (isa<VarDecl>(decl)) {
9932    if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
9933      type = refTy->getPointeeType();
9934    } else if (type->isFunctionType()) {
9935      S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
9936        << decl << expr->getSourceRange();
9937      return ExprError();
9938    }
9939
9940  //  - nothing else
9941  } else {
9942    S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
9943      << decl << expr->getSourceRange();
9944    return ExprError();
9945  }
9946
9947  decl->setType(DestType);
9948  expr->setType(type);
9949  expr->setValueKind(valueKind);
9950  return S.Owned(expr);
9951}
9952
9953/// Check a cast of an unknown-any type.  We intentionally only
9954/// trigger this for C-style casts.
9955ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
9956                                     Expr *castExpr, CastKind &castKind,
9957                                     ExprValueKind &VK, CXXCastPath &path) {
9958  // Rewrite the casted expression from scratch.
9959  ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
9960  if (!result.isUsable()) return ExprError();
9961
9962  castExpr = result.take();
9963  VK = castExpr->getValueKind();
9964  castKind = CK_NoOp;
9965
9966  return castExpr;
9967}
9968
9969static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
9970  Expr *orig = e;
9971  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
9972  while (true) {
9973    e = e->IgnoreParenImpCasts();
9974    if (CallExpr *call = dyn_cast<CallExpr>(e)) {
9975      e = call->getCallee();
9976      diagID = diag::err_uncasted_call_of_unknown_any;
9977    } else {
9978      break;
9979    }
9980  }
9981
9982  SourceLocation loc;
9983  NamedDecl *d;
9984  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
9985    loc = ref->getLocation();
9986    d = ref->getDecl();
9987  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
9988    loc = mem->getMemberLoc();
9989    d = mem->getMemberDecl();
9990  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
9991    diagID = diag::err_uncasted_call_of_unknown_any;
9992    loc = msg->getSelectorLoc();
9993    d = msg->getMethodDecl();
9994    if (!d) {
9995      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
9996        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
9997        << orig->getSourceRange();
9998      return ExprError();
9999    }
10000  } else {
10001    S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10002      << e->getSourceRange();
10003    return ExprError();
10004  }
10005
10006  S.Diag(loc, diagID) << d << orig->getSourceRange();
10007
10008  // Never recoverable.
10009  return ExprError();
10010}
10011
10012/// Check for operands with placeholder types and complain if found.
10013/// Returns true if there was an error and no recovery was possible.
10014ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
10015  // Placeholder types are always *exactly* the appropriate builtin type.
10016  QualType type = E->getType();
10017
10018  // Overloaded expressions.
10019  if (type == Context.OverloadTy)
10020    return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
10021                                                           E->getSourceRange(),
10022                                                             QualType(),
10023                                                   diag::err_ovl_unresolvable);
10024
10025  // Bound member functions.
10026  if (type == Context.BoundMemberTy) {
10027    Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
10028      << E->getSourceRange();
10029    return ExprError();
10030  }
10031
10032  // Expressions of unknown type.
10033  if (type == Context.UnknownAnyTy)
10034    return diagnoseUnknownAnyExpr(*this, E);
10035
10036  assert(!type->isPlaceholderType());
10037  return Owned(E);
10038}
10039
10040bool Sema::CheckCaseExpression(Expr *expr) {
10041  if (expr->isTypeDependent())
10042    return true;
10043  if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
10044    return expr->getType()->isIntegralOrEnumerationType();
10045  return false;
10046}
10047