SemaExpr.cpp revision 0ba3aff6166d24f3e6732c033e87bf3d33faad7b
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Designator.h"
27#include "clang/Parse/Scope.h"
28using namespace clang;
29
30
31/// \brief Determine whether the use of this declaration is valid, and
32/// emit any corresponding diagnostics.
33///
34/// This routine diagnoses various problems with referencing
35/// declarations that can occur when using a declaration. For example,
36/// it might warn if a deprecated or unavailable declaration is being
37/// used, or produce an error (and return true) if a C++0x deleted
38/// function is being used.
39///
40/// If IgnoreDeprecated is set to true, this should not want about deprecated
41/// decls.
42///
43/// \returns true if there was an error (this declaration cannot be
44/// referenced), false otherwise.
45///
46bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
47  // See if the decl is deprecated.
48  if (D->getAttr<DeprecatedAttr>()) {
49    EmitDeprecationWarning(D, Loc);
50  }
51
52  // See if the decl is unavailable
53  if (D->getAttr<UnavailableAttr>()) {
54    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
55    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
56  }
57
58  // See if this is a deleted function.
59  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
60    if (FD->isDeleted()) {
61      Diag(Loc, diag::err_deleted_function_use);
62      Diag(D->getLocation(), diag::note_unavailable_here) << true;
63      return true;
64    }
65  }
66
67  return false;
68}
69
70/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
71/// (and other functions in future), which have been declared with sentinel
72/// attribute. It warns if call does not have the sentinel argument.
73///
74void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
75                                 Expr **Args, unsigned NumArgs) {
76  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
77  if (!attr)
78    return;
79  int sentinelPos = attr->getSentinel();
80  int nullPos = attr->getNullPos();
81
82  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
83  // base class. Then we won't be needing two versions of the same code.
84  unsigned int i = 0;
85  bool warnNotEnoughArgs = false;
86  int isMethod = 0;
87  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
88    // skip over named parameters.
89    ObjCMethodDecl::param_iterator P, E = MD->param_end();
90    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
91      if (nullPos)
92        --nullPos;
93      else
94        ++i;
95    }
96    warnNotEnoughArgs = (P != E || i >= NumArgs);
97    isMethod = 1;
98  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
99    // skip over named parameters.
100    ObjCMethodDecl::param_iterator P, E = FD->param_end();
101    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
102      if (nullPos)
103        --nullPos;
104      else
105        ++i;
106    }
107    warnNotEnoughArgs = (P != E || i >= NumArgs);
108  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
109    // block or function pointer call.
110    QualType Ty = V->getType();
111    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
112      const FunctionType *FT = Ty->isFunctionPointerType()
113      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
114      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
115      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
116        unsigned NumArgsInProto = Proto->getNumArgs();
117        unsigned k;
118        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
119          if (nullPos)
120            --nullPos;
121          else
122            ++i;
123        }
124        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
125      }
126      if (Ty->isBlockPointerType())
127        isMethod = 2;
128    } else
129      return;
130  } else
131    return;
132
133  if (warnNotEnoughArgs) {
134    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
135    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
136    return;
137  }
138  int sentinel = i;
139  while (sentinelPos > 0 && i < NumArgs-1) {
140    --sentinelPos;
141    ++i;
142  }
143  if (sentinelPos > 0) {
144    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
145    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
146    return;
147  }
148  while (i < NumArgs-1) {
149    ++i;
150    ++sentinel;
151  }
152  Expr *sentinelExpr = Args[sentinel];
153  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
154                       !sentinelExpr->isNullPointerConstant(Context,
155                                            Expr::NPC_ValueDependentIsNull))) {
156    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
157    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
158  }
159  return;
160}
161
162SourceRange Sema::getExprRange(ExprTy *E) const {
163  Expr *Ex = (Expr *)E;
164  return Ex? Ex->getSourceRange() : SourceRange();
165}
166
167//===----------------------------------------------------------------------===//
168//  Standard Promotions and Conversions
169//===----------------------------------------------------------------------===//
170
171/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
172void Sema::DefaultFunctionArrayConversion(Expr *&E) {
173  QualType Ty = E->getType();
174  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
175
176  if (Ty->isFunctionType())
177    ImpCastExprToType(E, Context.getPointerType(Ty),
178                      CastExpr::CK_FunctionToPointerDecay);
179  else if (Ty->isArrayType()) {
180    // In C90 mode, arrays only promote to pointers if the array expression is
181    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
182    // type 'array of type' is converted to an expression that has type 'pointer
183    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
184    // that has type 'array of type' ...".  The relevant change is "an lvalue"
185    // (C90) to "an expression" (C99).
186    //
187    // C++ 4.2p1:
188    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
189    // T" can be converted to an rvalue of type "pointer to T".
190    //
191    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
192        E->isLvalue(Context) == Expr::LV_Valid)
193      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
194                        CastExpr::CK_ArrayToPointerDecay);
195  }
196}
197
198/// UsualUnaryConversions - Performs various conversions that are common to most
199/// operators (C99 6.3). The conversions of array and function types are
200/// sometimes surpressed. For example, the array->pointer conversion doesn't
201/// apply if the array is an argument to the sizeof or address (&) operators.
202/// In these instances, this routine should *not* be called.
203Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
204  QualType Ty = Expr->getType();
205  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
206
207  // C99 6.3.1.1p2:
208  //
209  //   The following may be used in an expression wherever an int or
210  //   unsigned int may be used:
211  //     - an object or expression with an integer type whose integer
212  //       conversion rank is less than or equal to the rank of int
213  //       and unsigned int.
214  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
215  //
216  //   If an int can represent all values of the original type, the
217  //   value is converted to an int; otherwise, it is converted to an
218  //   unsigned int. These are called the integer promotions. All
219  //   other types are unchanged by the integer promotions.
220  QualType PTy = Context.isPromotableBitField(Expr);
221  if (!PTy.isNull()) {
222    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
223    return Expr;
224  }
225  if (Ty->isPromotableIntegerType()) {
226    QualType PT = Context.getPromotedIntegerType(Ty);
227    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
228    return Expr;
229  }
230
231  DefaultFunctionArrayConversion(Expr);
232  return Expr;
233}
234
235/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
236/// do not have a prototype. Arguments that have type float are promoted to
237/// double. All other argument types are converted by UsualUnaryConversions().
238void Sema::DefaultArgumentPromotion(Expr *&Expr) {
239  QualType Ty = Expr->getType();
240  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
241
242  // If this is a 'float' (CVR qualified or typedef) promote to double.
243  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
244    if (BT->getKind() == BuiltinType::Float)
245      return ImpCastExprToType(Expr, Context.DoubleTy,
246                               CastExpr::CK_FloatingCast);
247
248  UsualUnaryConversions(Expr);
249}
250
251/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
252/// will warn if the resulting type is not a POD type, and rejects ObjC
253/// interfaces passed by value.  This returns true if the argument type is
254/// completely illegal.
255bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
256  DefaultArgumentPromotion(Expr);
257
258  if (Expr->getType()->isObjCInterfaceType()) {
259    Diag(Expr->getLocStart(),
260         diag::err_cannot_pass_objc_interface_to_vararg)
261      << Expr->getType() << CT;
262    return true;
263  }
264
265  if (!Expr->getType()->isPODType())
266    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
267      << Expr->getType() << CT;
268
269  return false;
270}
271
272
273/// UsualArithmeticConversions - Performs various conversions that are common to
274/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
275/// routine returns the first non-arithmetic type found. The client is
276/// responsible for emitting appropriate error diagnostics.
277/// FIXME: verify the conversion rules for "complex int" are consistent with
278/// GCC.
279QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
280                                          bool isCompAssign) {
281  if (!isCompAssign)
282    UsualUnaryConversions(lhsExpr);
283
284  UsualUnaryConversions(rhsExpr);
285
286  // For conversion purposes, we ignore any qualifiers.
287  // For example, "const float" and "float" are equivalent.
288  QualType lhs =
289    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
290  QualType rhs =
291    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
292
293  // If both types are identical, no conversion is needed.
294  if (lhs == rhs)
295    return lhs;
296
297  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
298  // The caller can deal with this (e.g. pointer + int).
299  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
300    return lhs;
301
302  // Perform bitfield promotions.
303  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
304  if (!LHSBitfieldPromoteTy.isNull())
305    lhs = LHSBitfieldPromoteTy;
306  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
307  if (!RHSBitfieldPromoteTy.isNull())
308    rhs = RHSBitfieldPromoteTy;
309
310  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
311  if (!isCompAssign)
312    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
313  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
314  return destType;
315}
316
317//===----------------------------------------------------------------------===//
318//  Semantic Analysis for various Expression Types
319//===----------------------------------------------------------------------===//
320
321
322/// ActOnStringLiteral - The specified tokens were lexed as pasted string
323/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
324/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
325/// multiple tokens.  However, the common case is that StringToks points to one
326/// string.
327///
328Action::OwningExprResult
329Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
330  assert(NumStringToks && "Must have at least one string!");
331
332  StringLiteralParser Literal(StringToks, NumStringToks, PP);
333  if (Literal.hadError)
334    return ExprError();
335
336  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
337  for (unsigned i = 0; i != NumStringToks; ++i)
338    StringTokLocs.push_back(StringToks[i].getLocation());
339
340  QualType StrTy = Context.CharTy;
341  if (Literal.AnyWide) StrTy = Context.getWCharType();
342  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
343
344  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
345  if (getLangOptions().CPlusPlus)
346    StrTy.addConst();
347
348  // Get an array type for the string, according to C99 6.4.5.  This includes
349  // the nul terminator character as well as the string length for pascal
350  // strings.
351  StrTy = Context.getConstantArrayType(StrTy,
352                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
353                                       ArrayType::Normal, 0);
354
355  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
356  return Owned(StringLiteral::Create(Context, Literal.GetString(),
357                                     Literal.GetStringLength(),
358                                     Literal.AnyWide, StrTy,
359                                     &StringTokLocs[0],
360                                     StringTokLocs.size()));
361}
362
363/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
364/// CurBlock to VD should cause it to be snapshotted (as we do for auto
365/// variables defined outside the block) or false if this is not needed (e.g.
366/// for values inside the block or for globals).
367///
368/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
369/// up-to-date.
370///
371static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
372                                              ValueDecl *VD) {
373  // If the value is defined inside the block, we couldn't snapshot it even if
374  // we wanted to.
375  if (CurBlock->TheDecl == VD->getDeclContext())
376    return false;
377
378  // If this is an enum constant or function, it is constant, don't snapshot.
379  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
380    return false;
381
382  // If this is a reference to an extern, static, or global variable, no need to
383  // snapshot it.
384  // FIXME: What about 'const' variables in C++?
385  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
386    if (!Var->hasLocalStorage())
387      return false;
388
389  // Blocks that have these can't be constant.
390  CurBlock->hasBlockDeclRefExprs = true;
391
392  // If we have nested blocks, the decl may be declared in an outer block (in
393  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
394  // be defined outside all of the current blocks (in which case the blocks do
395  // all get the bit).  Walk the nesting chain.
396  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
397       NextBlock = NextBlock->PrevBlockInfo) {
398    // If we found the defining block for the variable, don't mark the block as
399    // having a reference outside it.
400    if (NextBlock->TheDecl == VD->getDeclContext())
401      break;
402
403    // Otherwise, the DeclRef from the inner block causes the outer one to need
404    // a snapshot as well.
405    NextBlock->hasBlockDeclRefExprs = true;
406  }
407
408  return true;
409}
410
411
412
413/// BuildDeclRefExpr - Build a DeclRefExpr.
414Sema::OwningExprResult
415Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
416                       bool TypeDependent, bool ValueDependent,
417                       const CXXScopeSpec *SS) {
418  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
419    Diag(Loc,
420         diag::err_auto_variable_cannot_appear_in_own_initializer)
421      << D->getDeclName();
422    return ExprError();
423  }
424
425  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
426    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
427      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
428        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
429          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
430            << D->getIdentifier() << FD->getDeclName();
431          Diag(D->getLocation(), diag::note_local_variable_declared_here)
432            << D->getIdentifier();
433          return ExprError();
434        }
435      }
436    }
437  }
438
439  MarkDeclarationReferenced(Loc, D);
440
441  return Owned(DeclRefExpr::Create(Context,
442                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
443                                   SS? SS->getRange() : SourceRange(),
444                                   D, Loc,
445                                   Ty, TypeDependent, ValueDependent));
446}
447
448/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
449/// variable corresponding to the anonymous union or struct whose type
450/// is Record.
451static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
452                                             RecordDecl *Record) {
453  assert(Record->isAnonymousStructOrUnion() &&
454         "Record must be an anonymous struct or union!");
455
456  // FIXME: Once Decls are directly linked together, this will be an O(1)
457  // operation rather than a slow walk through DeclContext's vector (which
458  // itself will be eliminated). DeclGroups might make this even better.
459  DeclContext *Ctx = Record->getDeclContext();
460  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
461                               DEnd = Ctx->decls_end();
462       D != DEnd; ++D) {
463    if (*D == Record) {
464      // The object for the anonymous struct/union directly
465      // follows its type in the list of declarations.
466      ++D;
467      assert(D != DEnd && "Missing object for anonymous record");
468      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
469      return *D;
470    }
471  }
472
473  assert(false && "Missing object for anonymous record");
474  return 0;
475}
476
477/// \brief Given a field that represents a member of an anonymous
478/// struct/union, build the path from that field's context to the
479/// actual member.
480///
481/// Construct the sequence of field member references we'll have to
482/// perform to get to the field in the anonymous union/struct. The
483/// list of members is built from the field outward, so traverse it
484/// backwards to go from an object in the current context to the field
485/// we found.
486///
487/// \returns The variable from which the field access should begin,
488/// for an anonymous struct/union that is not a member of another
489/// class. Otherwise, returns NULL.
490VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
491                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
492  assert(Field->getDeclContext()->isRecord() &&
493         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
494         && "Field must be stored inside an anonymous struct or union");
495
496  Path.push_back(Field);
497  VarDecl *BaseObject = 0;
498  DeclContext *Ctx = Field->getDeclContext();
499  do {
500    RecordDecl *Record = cast<RecordDecl>(Ctx);
501    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
502    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
503      Path.push_back(AnonField);
504    else {
505      BaseObject = cast<VarDecl>(AnonObject);
506      break;
507    }
508    Ctx = Ctx->getParent();
509  } while (Ctx->isRecord() &&
510           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
511
512  return BaseObject;
513}
514
515Sema::OwningExprResult
516Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
517                                               FieldDecl *Field,
518                                               Expr *BaseObjectExpr,
519                                               SourceLocation OpLoc) {
520  llvm::SmallVector<FieldDecl *, 4> AnonFields;
521  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
522                                                            AnonFields);
523
524  // Build the expression that refers to the base object, from
525  // which we will build a sequence of member references to each
526  // of the anonymous union objects and, eventually, the field we
527  // found via name lookup.
528  bool BaseObjectIsPointer = false;
529  Qualifiers BaseQuals;
530  if (BaseObject) {
531    // BaseObject is an anonymous struct/union variable (and is,
532    // therefore, not part of another non-anonymous record).
533    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
534    MarkDeclarationReferenced(Loc, BaseObject);
535    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
536                                               SourceLocation());
537    BaseQuals
538      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
539  } else if (BaseObjectExpr) {
540    // The caller provided the base object expression. Determine
541    // whether its a pointer and whether it adds any qualifiers to the
542    // anonymous struct/union fields we're looking into.
543    QualType ObjectType = BaseObjectExpr->getType();
544    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
545      BaseObjectIsPointer = true;
546      ObjectType = ObjectPtr->getPointeeType();
547    }
548    BaseQuals
549      = Context.getCanonicalType(ObjectType).getQualifiers();
550  } else {
551    // We've found a member of an anonymous struct/union that is
552    // inside a non-anonymous struct/union, so in a well-formed
553    // program our base object expression is "this".
554    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
555      if (!MD->isStatic()) {
556        QualType AnonFieldType
557          = Context.getTagDeclType(
558                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
559        QualType ThisType = Context.getTagDeclType(MD->getParent());
560        if ((Context.getCanonicalType(AnonFieldType)
561               == Context.getCanonicalType(ThisType)) ||
562            IsDerivedFrom(ThisType, AnonFieldType)) {
563          // Our base object expression is "this".
564          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
565                                                     MD->getThisType(Context));
566          BaseObjectIsPointer = true;
567        }
568      } else {
569        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
570          << Field->getDeclName());
571      }
572      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
573    }
574
575    if (!BaseObjectExpr)
576      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
577        << Field->getDeclName());
578  }
579
580  // Build the implicit member references to the field of the
581  // anonymous struct/union.
582  Expr *Result = BaseObjectExpr;
583  Qualifiers ResultQuals = BaseQuals;
584  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
585         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
586       FI != FIEnd; ++FI) {
587    QualType MemberType = (*FI)->getType();
588    Qualifiers MemberTypeQuals =
589      Context.getCanonicalType(MemberType).getQualifiers();
590
591    // CVR attributes from the base are picked up by members,
592    // except that 'mutable' members don't pick up 'const'.
593    if ((*FI)->isMutable())
594      ResultQuals.removeConst();
595
596    // GC attributes are never picked up by members.
597    ResultQuals.removeObjCGCAttr();
598
599    // TR 18037 does not allow fields to be declared with address spaces.
600    assert(!MemberTypeQuals.hasAddressSpace());
601
602    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
603    if (NewQuals != MemberTypeQuals)
604      MemberType = Context.getQualifiedType(MemberType, NewQuals);
605
606    MarkDeclarationReferenced(Loc, *FI);
607    // FIXME: Might this end up being a qualified name?
608    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
609                                      OpLoc, MemberType);
610    BaseObjectIsPointer = false;
611    ResultQuals = NewQuals;
612  }
613
614  return Owned(Result);
615}
616
617Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
618                                               const CXXScopeSpec &SS,
619                                               UnqualifiedId &Name,
620                                               bool HasTrailingLParen,
621                                               bool IsAddressOfOperand) {
622  if (Name.getKind() == UnqualifiedId::IK_TemplateId) {
623    ASTTemplateArgsPtr TemplateArgsPtr(*this,
624                                       Name.TemplateId->getTemplateArgs(),
625                                       Name.TemplateId->getTemplateArgIsType(),
626                                       Name.TemplateId->NumArgs);
627    return ActOnTemplateIdExpr(SS,
628                               TemplateTy::make(Name.TemplateId->Template),
629                               Name.TemplateId->TemplateNameLoc,
630                               Name.TemplateId->LAngleLoc,
631                               TemplateArgsPtr,
632                               Name.TemplateId->getTemplateArgLocations(),
633                               Name.TemplateId->RAngleLoc);
634  }
635
636  // FIXME: We lose a bunch of source information by doing this. Later,
637  // we'll want to merge ActOnDeclarationNameExpr's logic into
638  // ActOnIdExpression.
639  return ActOnDeclarationNameExpr(S,
640                                  Name.StartLocation,
641                                  GetNameFromUnqualifiedId(Name),
642                                  HasTrailingLParen,
643                                  &SS,
644                                  IsAddressOfOperand);
645}
646
647/// ActOnDeclarationNameExpr - The parser has read some kind of name
648/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
649/// performs lookup on that name and returns an expression that refers
650/// to that name. This routine isn't directly called from the parser,
651/// because the parser doesn't know about DeclarationName. Rather,
652/// this routine is called by ActOnIdExpression, which contains a
653/// parsed UnqualifiedId.
654///
655/// HasTrailingLParen indicates whether this identifier is used in a
656/// function call context.  LookupCtx is only used for a C++
657/// qualified-id (foo::bar) to indicate the class or namespace that
658/// the identifier must be a member of.
659///
660/// isAddressOfOperand means that this expression is the direct operand
661/// of an address-of operator. This matters because this is the only
662/// situation where a qualified name referencing a non-static member may
663/// appear outside a member function of this class.
664Sema::OwningExprResult
665Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
666                               DeclarationName Name, bool HasTrailingLParen,
667                               const CXXScopeSpec *SS,
668                               bool isAddressOfOperand) {
669  // Could be enum-constant, value decl, instance variable, etc.
670  if (SS && SS->isInvalid())
671    return ExprError();
672
673  // C++ [temp.dep.expr]p3:
674  //   An id-expression is type-dependent if it contains:
675  //     -- a nested-name-specifier that contains a class-name that
676  //        names a dependent type.
677  // FIXME: Member of the current instantiation.
678  if (SS && isDependentScopeSpecifier(*SS)) {
679    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
680                                                     Loc, SS->getRange(),
681                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
682                                                     isAddressOfOperand));
683  }
684
685  LookupResult Lookup;
686  LookupParsedName(Lookup, S, SS, Name, LookupOrdinaryName, false, true, Loc);
687
688  if (Lookup.isAmbiguous()) {
689    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
690                            SS && SS->isSet() ? SS->getRange()
691                                              : SourceRange());
692    return ExprError();
693  }
694
695  NamedDecl *D = Lookup.getAsSingleDecl(Context);
696
697  // If this reference is in an Objective-C method, then ivar lookup happens as
698  // well.
699  IdentifierInfo *II = Name.getAsIdentifierInfo();
700  if (II && getCurMethodDecl()) {
701    // There are two cases to handle here.  1) scoped lookup could have failed,
702    // in which case we should look for an ivar.  2) scoped lookup could have
703    // found a decl, but that decl is outside the current instance method (i.e.
704    // a global variable).  In these two cases, we do a lookup for an ivar with
705    // this name, if the lookup sucedes, we replace it our current decl.
706    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
707      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
708      ObjCInterfaceDecl *ClassDeclared;
709      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
710        // Check if referencing a field with __attribute__((deprecated)).
711        if (DiagnoseUseOfDecl(IV, Loc))
712          return ExprError();
713
714        // If we're referencing an invalid decl, just return this as a silent
715        // error node.  The error diagnostic was already emitted on the decl.
716        if (IV->isInvalidDecl())
717          return ExprError();
718
719        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
720        // If a class method attemps to use a free standing ivar, this is
721        // an error.
722        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
723           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
724                           << IV->getDeclName());
725        // If a class method uses a global variable, even if an ivar with
726        // same name exists, use the global.
727        if (!IsClsMethod) {
728          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
729              ClassDeclared != IFace)
730           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
731          // FIXME: This should use a new expr for a direct reference, don't
732          // turn this into Self->ivar, just return a BareIVarExpr or something.
733          IdentifierInfo &II = Context.Idents.get("self");
734          UnqualifiedId SelfName;
735          SelfName.setIdentifier(&II, SourceLocation());
736          CXXScopeSpec SelfScopeSpec;
737          OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
738                                                        SelfName, false, false);
739          MarkDeclarationReferenced(Loc, IV);
740          return Owned(new (Context)
741                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
742                                       SelfExpr.takeAs<Expr>(), true, true));
743        }
744      }
745    } else if (getCurMethodDecl()->isInstanceMethod()) {
746      // We should warn if a local variable hides an ivar.
747      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
748      ObjCInterfaceDecl *ClassDeclared;
749      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
750        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
751            IFace == ClassDeclared)
752          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
753      }
754    }
755    // Needed to implement property "super.method" notation.
756    if (D == 0 && II->isStr("super")) {
757      QualType T;
758
759      if (getCurMethodDecl()->isInstanceMethod())
760        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
761                                      getCurMethodDecl()->getClassInterface()));
762      else
763        T = Context.getObjCClassType();
764      return Owned(new (Context) ObjCSuperExpr(Loc, T));
765    }
766  }
767
768  // Determine whether this name might be a candidate for
769  // argument-dependent lookup.
770  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
771             HasTrailingLParen;
772
773  if (ADL && D == 0) {
774    // We've seen something of the form
775    //
776    //   identifier(
777    //
778    // and we did not find any entity by the name
779    // "identifier". However, this identifier is still subject to
780    // argument-dependent lookup, so keep track of the name.
781    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
782                                                          Context.OverloadTy,
783                                                          Loc));
784  }
785
786  if (D == 0) {
787    // Otherwise, this could be an implicitly declared function reference (legal
788    // in C90, extension in C99).
789    if (HasTrailingLParen && II &&
790        !getLangOptions().CPlusPlus) // Not in C++.
791      D = ImplicitlyDefineFunction(Loc, *II, S);
792    else {
793      // If this name wasn't predeclared and if this is not a function call,
794      // diagnose the problem.
795      if (SS && !SS->isEmpty())
796        return ExprError(Diag(Loc, diag::err_no_member)
797                           << Name << computeDeclContext(*SS, false)
798                           << SS->getRange());
799      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
800               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
801        return ExprError(Diag(Loc, diag::err_undeclared_use)
802          << Name.getAsString());
803      else
804        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
805    }
806  }
807
808  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
809    // Warn about constructs like:
810    //   if (void *X = foo()) { ... } else { X }.
811    // In the else block, the pointer is always false.
812
813    // FIXME: In a template instantiation, we don't have scope
814    // information to check this property.
815    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
816      Scope *CheckS = S;
817      while (CheckS) {
818        if (CheckS->isWithinElse() &&
819            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
820          if (Var->getType()->isBooleanType())
821            ExprError(Diag(Loc, diag::warn_value_always_false)
822                      << Var->getDeclName());
823          else
824            ExprError(Diag(Loc, diag::warn_value_always_zero)
825                      << Var->getDeclName());
826          break;
827        }
828
829        // Move up one more control parent to check again.
830        CheckS = CheckS->getControlParent();
831        if (CheckS)
832          CheckS = CheckS->getParent();
833      }
834    }
835  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
836    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
837      // C99 DR 316 says that, if a function type comes from a
838      // function definition (without a prototype), that type is only
839      // used for checking compatibility. Therefore, when referencing
840      // the function, we pretend that we don't have the full function
841      // type.
842      if (DiagnoseUseOfDecl(Func, Loc))
843        return ExprError();
844
845      QualType T = Func->getType();
846      QualType NoProtoType = T;
847      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
848        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
849      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
850    }
851  }
852
853  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
854}
855/// \brief Cast member's object to its own class if necessary.
856bool
857Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
858  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
859    if (CXXRecordDecl *RD =
860        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
861      QualType DestType =
862        Context.getCanonicalType(Context.getTypeDeclType(RD));
863      if (DestType->isDependentType() || From->getType()->isDependentType())
864        return false;
865      QualType FromRecordType = From->getType();
866      QualType DestRecordType = DestType;
867      if (FromRecordType->getAs<PointerType>()) {
868        DestType = Context.getPointerType(DestType);
869        FromRecordType = FromRecordType->getPointeeType();
870      }
871      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
872          CheckDerivedToBaseConversion(FromRecordType,
873                                       DestRecordType,
874                                       From->getSourceRange().getBegin(),
875                                       From->getSourceRange()))
876        return true;
877      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
878                        /*isLvalue=*/true);
879    }
880  return false;
881}
882
883/// \brief Build a MemberExpr AST node.
884static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
885                                   const CXXScopeSpec *SS, NamedDecl *Member,
886                                   SourceLocation Loc, QualType Ty) {
887  if (SS && SS->isSet())
888    return MemberExpr::Create(C, Base, isArrow,
889                              (NestedNameSpecifier *)SS->getScopeRep(),
890                              SS->getRange(), Member, Loc,
891                              // FIXME: Explicit template argument lists
892                              false, SourceLocation(), 0, 0, SourceLocation(),
893                              Ty);
894
895  return new (C) MemberExpr(Base, isArrow, Member, Loc, Ty);
896}
897
898/// \brief Complete semantic analysis for a reference to the given declaration.
899Sema::OwningExprResult
900Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
901                               bool HasTrailingLParen,
902                               const CXXScopeSpec *SS,
903                               bool isAddressOfOperand) {
904  assert(D && "Cannot refer to a NULL declaration");
905  DeclarationName Name = D->getDeclName();
906
907  // If this is an expression of the form &Class::member, don't build an
908  // implicit member ref, because we want a pointer to the member in general,
909  // not any specific instance's member.
910  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
911    DeclContext *DC = computeDeclContext(*SS);
912    if (D && isa<CXXRecordDecl>(DC)) {
913      QualType DType;
914      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
915        DType = FD->getType().getNonReferenceType();
916      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
917        DType = Method->getType();
918      } else if (isa<OverloadedFunctionDecl>(D)) {
919        DType = Context.OverloadTy;
920      }
921      // Could be an inner type. That's diagnosed below, so ignore it here.
922      if (!DType.isNull()) {
923        // The pointer is type- and value-dependent if it points into something
924        // dependent.
925        bool Dependent = DC->isDependentContext();
926        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
927      }
928    }
929  }
930
931  // We may have found a field within an anonymous union or struct
932  // (C++ [class.union]).
933  // FIXME: This needs to happen post-isImplicitMemberReference?
934  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
935    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
936      return BuildAnonymousStructUnionMemberReference(Loc, FD);
937
938  // Cope with an implicit member access in a C++ non-static member function.
939  QualType ThisType, MemberType;
940  if (isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) {
941    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
942    MarkDeclarationReferenced(Loc, D);
943    if (PerformObjectMemberConversion(This, D))
944      return ExprError();
945
946    bool ShouldCheckUse = true;
947    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
948      // Don't diagnose the use of a virtual member function unless it's
949      // explicitly qualified.
950      if (MD->isVirtual() && (!SS || !SS->isSet()))
951        ShouldCheckUse = false;
952    }
953
954    if (ShouldCheckUse && DiagnoseUseOfDecl(D, Loc))
955      return ExprError();
956    return Owned(BuildMemberExpr(Context, This, true, SS, D,
957                                 Loc, MemberType));
958  }
959
960  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
961    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
962      if (MD->isStatic())
963        // "invalid use of member 'x' in static member function"
964        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
965          << FD->getDeclName());
966    }
967
968    // Any other ways we could have found the field in a well-formed
969    // program would have been turned into implicit member expressions
970    // above.
971    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
972      << FD->getDeclName());
973  }
974
975  if (isa<TypedefDecl>(D))
976    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
977  if (isa<ObjCInterfaceDecl>(D))
978    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
979  if (isa<NamespaceDecl>(D))
980    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
981
982  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
983  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
984    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
985                           false, false, SS);
986  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
987    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
988                            false, false, SS);
989  else if (UnresolvedUsingDecl *UD = dyn_cast<UnresolvedUsingDecl>(D))
990    return BuildDeclRefExpr(UD, Context.DependentTy, Loc,
991                            /*TypeDependent=*/true,
992                            /*ValueDependent=*/true, SS);
993
994  ValueDecl *VD = cast<ValueDecl>(D);
995
996  // Check whether this declaration can be used. Note that we suppress
997  // this check when we're going to perform argument-dependent lookup
998  // on this function name, because this might not be the function
999  // that overload resolution actually selects.
1000  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1001             HasTrailingLParen;
1002  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1003    return ExprError();
1004
1005  // Only create DeclRefExpr's for valid Decl's.
1006  if (VD->isInvalidDecl())
1007    return ExprError();
1008
1009  // If the identifier reference is inside a block, and it refers to a value
1010  // that is outside the block, create a BlockDeclRefExpr instead of a
1011  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1012  // the block is formed.
1013  //
1014  // We do not do this for things like enum constants, global variables, etc,
1015  // as they do not get snapshotted.
1016  //
1017  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1018    MarkDeclarationReferenced(Loc, VD);
1019    QualType ExprTy = VD->getType().getNonReferenceType();
1020    // The BlocksAttr indicates the variable is bound by-reference.
1021    if (VD->getAttr<BlocksAttr>())
1022      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1023    // This is to record that a 'const' was actually synthesize and added.
1024    bool constAdded = !ExprTy.isConstQualified();
1025    // Variable will be bound by-copy, make it const within the closure.
1026
1027    ExprTy.addConst();
1028    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1029                                                constAdded));
1030  }
1031  // If this reference is not in a block or if the referenced variable is
1032  // within the block, create a normal DeclRefExpr.
1033
1034  bool TypeDependent = false;
1035  bool ValueDependent = false;
1036  if (getLangOptions().CPlusPlus) {
1037    // C++ [temp.dep.expr]p3:
1038    //   An id-expression is type-dependent if it contains:
1039    //     - an identifier that was declared with a dependent type,
1040    if (VD->getType()->isDependentType())
1041      TypeDependent = true;
1042    //     - FIXME: a template-id that is dependent,
1043    //     - a conversion-function-id that specifies a dependent type,
1044    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1045             Name.getCXXNameType()->isDependentType())
1046      TypeDependent = true;
1047    //     - a nested-name-specifier that contains a class-name that
1048    //       names a dependent type.
1049    else if (SS && !SS->isEmpty()) {
1050      for (DeclContext *DC = computeDeclContext(*SS);
1051           DC; DC = DC->getParent()) {
1052        // FIXME: could stop early at namespace scope.
1053        if (DC->isRecord()) {
1054          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1055          if (Context.getTypeDeclType(Record)->isDependentType()) {
1056            TypeDependent = true;
1057            break;
1058          }
1059        }
1060      }
1061    }
1062
1063    // C++ [temp.dep.constexpr]p2:
1064    //
1065    //   An identifier is value-dependent if it is:
1066    //     - a name declared with a dependent type,
1067    if (TypeDependent)
1068      ValueDependent = true;
1069    //     - the name of a non-type template parameter,
1070    else if (isa<NonTypeTemplateParmDecl>(VD))
1071      ValueDependent = true;
1072    //    - a constant with integral or enumeration type and is
1073    //      initialized with an expression that is value-dependent
1074    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1075      if (Context.getCanonicalType(Dcl->getType()).getCVRQualifiers()
1076          == Qualifiers::Const &&
1077          Dcl->getInit()) {
1078        ValueDependent = Dcl->getInit()->isValueDependent();
1079      }
1080    }
1081  }
1082
1083  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1084                          TypeDependent, ValueDependent, SS);
1085}
1086
1087Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1088                                                 tok::TokenKind Kind) {
1089  PredefinedExpr::IdentType IT;
1090
1091  switch (Kind) {
1092  default: assert(0 && "Unknown simple primary expr!");
1093  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1094  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1095  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1096  }
1097
1098  // Pre-defined identifiers are of type char[x], where x is the length of the
1099  // string.
1100
1101  Decl *currentDecl = getCurFunctionOrMethodDecl();
1102  if (!currentDecl) {
1103    Diag(Loc, diag::ext_predef_outside_function);
1104    currentDecl = Context.getTranslationUnitDecl();
1105  }
1106
1107  QualType ResTy;
1108  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1109    ResTy = Context.DependentTy;
1110  } else {
1111    unsigned Length =
1112      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1113
1114    llvm::APInt LengthI(32, Length + 1);
1115    ResTy = Context.CharTy.withConst();
1116    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1117  }
1118  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1119}
1120
1121Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1122  llvm::SmallString<16> CharBuffer;
1123  CharBuffer.resize(Tok.getLength());
1124  const char *ThisTokBegin = &CharBuffer[0];
1125  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1126
1127  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1128                            Tok.getLocation(), PP);
1129  if (Literal.hadError())
1130    return ExprError();
1131
1132  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1133
1134  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1135                                              Literal.isWide(),
1136                                              type, Tok.getLocation()));
1137}
1138
1139Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1140  // Fast path for a single digit (which is quite common).  A single digit
1141  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1142  if (Tok.getLength() == 1) {
1143    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1144    unsigned IntSize = Context.Target.getIntWidth();
1145    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1146                    Context.IntTy, Tok.getLocation()));
1147  }
1148
1149  llvm::SmallString<512> IntegerBuffer;
1150  // Add padding so that NumericLiteralParser can overread by one character.
1151  IntegerBuffer.resize(Tok.getLength()+1);
1152  const char *ThisTokBegin = &IntegerBuffer[0];
1153
1154  // Get the spelling of the token, which eliminates trigraphs, etc.
1155  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1156
1157  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1158                               Tok.getLocation(), PP);
1159  if (Literal.hadError)
1160    return ExprError();
1161
1162  Expr *Res;
1163
1164  if (Literal.isFloatingLiteral()) {
1165    QualType Ty;
1166    if (Literal.isFloat)
1167      Ty = Context.FloatTy;
1168    else if (!Literal.isLong)
1169      Ty = Context.DoubleTy;
1170    else
1171      Ty = Context.LongDoubleTy;
1172
1173    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1174
1175    // isExact will be set by GetFloatValue().
1176    bool isExact = false;
1177    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1178    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1179
1180  } else if (!Literal.isIntegerLiteral()) {
1181    return ExprError();
1182  } else {
1183    QualType Ty;
1184
1185    // long long is a C99 feature.
1186    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1187        Literal.isLongLong)
1188      Diag(Tok.getLocation(), diag::ext_longlong);
1189
1190    // Get the value in the widest-possible width.
1191    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1192
1193    if (Literal.GetIntegerValue(ResultVal)) {
1194      // If this value didn't fit into uintmax_t, warn and force to ull.
1195      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1196      Ty = Context.UnsignedLongLongTy;
1197      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1198             "long long is not intmax_t?");
1199    } else {
1200      // If this value fits into a ULL, try to figure out what else it fits into
1201      // according to the rules of C99 6.4.4.1p5.
1202
1203      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1204      // be an unsigned int.
1205      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1206
1207      // Check from smallest to largest, picking the smallest type we can.
1208      unsigned Width = 0;
1209      if (!Literal.isLong && !Literal.isLongLong) {
1210        // Are int/unsigned possibilities?
1211        unsigned IntSize = Context.Target.getIntWidth();
1212
1213        // Does it fit in a unsigned int?
1214        if (ResultVal.isIntN(IntSize)) {
1215          // Does it fit in a signed int?
1216          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1217            Ty = Context.IntTy;
1218          else if (AllowUnsigned)
1219            Ty = Context.UnsignedIntTy;
1220          Width = IntSize;
1221        }
1222      }
1223
1224      // Are long/unsigned long possibilities?
1225      if (Ty.isNull() && !Literal.isLongLong) {
1226        unsigned LongSize = Context.Target.getLongWidth();
1227
1228        // Does it fit in a unsigned long?
1229        if (ResultVal.isIntN(LongSize)) {
1230          // Does it fit in a signed long?
1231          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1232            Ty = Context.LongTy;
1233          else if (AllowUnsigned)
1234            Ty = Context.UnsignedLongTy;
1235          Width = LongSize;
1236        }
1237      }
1238
1239      // Finally, check long long if needed.
1240      if (Ty.isNull()) {
1241        unsigned LongLongSize = Context.Target.getLongLongWidth();
1242
1243        // Does it fit in a unsigned long long?
1244        if (ResultVal.isIntN(LongLongSize)) {
1245          // Does it fit in a signed long long?
1246          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1247            Ty = Context.LongLongTy;
1248          else if (AllowUnsigned)
1249            Ty = Context.UnsignedLongLongTy;
1250          Width = LongLongSize;
1251        }
1252      }
1253
1254      // If we still couldn't decide a type, we probably have something that
1255      // does not fit in a signed long long, but has no U suffix.
1256      if (Ty.isNull()) {
1257        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1258        Ty = Context.UnsignedLongLongTy;
1259        Width = Context.Target.getLongLongWidth();
1260      }
1261
1262      if (ResultVal.getBitWidth() != Width)
1263        ResultVal.trunc(Width);
1264    }
1265    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1266  }
1267
1268  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1269  if (Literal.isImaginary)
1270    Res = new (Context) ImaginaryLiteral(Res,
1271                                        Context.getComplexType(Res->getType()));
1272
1273  return Owned(Res);
1274}
1275
1276Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1277                                              SourceLocation R, ExprArg Val) {
1278  Expr *E = Val.takeAs<Expr>();
1279  assert((E != 0) && "ActOnParenExpr() missing expr");
1280  return Owned(new (Context) ParenExpr(L, R, E));
1281}
1282
1283/// The UsualUnaryConversions() function is *not* called by this routine.
1284/// See C99 6.3.2.1p[2-4] for more details.
1285bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1286                                     SourceLocation OpLoc,
1287                                     const SourceRange &ExprRange,
1288                                     bool isSizeof) {
1289  if (exprType->isDependentType())
1290    return false;
1291
1292  // C99 6.5.3.4p1:
1293  if (isa<FunctionType>(exprType)) {
1294    // alignof(function) is allowed as an extension.
1295    if (isSizeof)
1296      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1297    return false;
1298  }
1299
1300  // Allow sizeof(void)/alignof(void) as an extension.
1301  if (exprType->isVoidType()) {
1302    Diag(OpLoc, diag::ext_sizeof_void_type)
1303      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1304    return false;
1305  }
1306
1307  if (RequireCompleteType(OpLoc, exprType,
1308                          isSizeof ? diag::err_sizeof_incomplete_type :
1309                          PDiag(diag::err_alignof_incomplete_type)
1310                            << ExprRange))
1311    return true;
1312
1313  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1314  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1315    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1316      << exprType << isSizeof << ExprRange;
1317    return true;
1318  }
1319
1320  return false;
1321}
1322
1323bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1324                            const SourceRange &ExprRange) {
1325  E = E->IgnoreParens();
1326
1327  // alignof decl is always ok.
1328  if (isa<DeclRefExpr>(E))
1329    return false;
1330
1331  // Cannot know anything else if the expression is dependent.
1332  if (E->isTypeDependent())
1333    return false;
1334
1335  if (E->getBitField()) {
1336    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1337    return true;
1338  }
1339
1340  // Alignment of a field access is always okay, so long as it isn't a
1341  // bit-field.
1342  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1343    if (isa<FieldDecl>(ME->getMemberDecl()))
1344      return false;
1345
1346  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1347}
1348
1349/// \brief Build a sizeof or alignof expression given a type operand.
1350Action::OwningExprResult
1351Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1352                              bool isSizeOf, SourceRange R) {
1353  if (T.isNull())
1354    return ExprError();
1355
1356  if (!T->isDependentType() &&
1357      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1358    return ExprError();
1359
1360  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1361  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1362                                               Context.getSizeType(), OpLoc,
1363                                               R.getEnd()));
1364}
1365
1366/// \brief Build a sizeof or alignof expression given an expression
1367/// operand.
1368Action::OwningExprResult
1369Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1370                              bool isSizeOf, SourceRange R) {
1371  // Verify that the operand is valid.
1372  bool isInvalid = false;
1373  if (E->isTypeDependent()) {
1374    // Delay type-checking for type-dependent expressions.
1375  } else if (!isSizeOf) {
1376    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1377  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1378    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1379    isInvalid = true;
1380  } else {
1381    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1382  }
1383
1384  if (isInvalid)
1385    return ExprError();
1386
1387  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1388  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1389                                               Context.getSizeType(), OpLoc,
1390                                               R.getEnd()));
1391}
1392
1393/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1394/// the same for @c alignof and @c __alignof
1395/// Note that the ArgRange is invalid if isType is false.
1396Action::OwningExprResult
1397Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1398                             void *TyOrEx, const SourceRange &ArgRange) {
1399  // If error parsing type, ignore.
1400  if (TyOrEx == 0) return ExprError();
1401
1402  if (isType) {
1403    // FIXME: Preserve type source info.
1404    QualType ArgTy = GetTypeFromParser(TyOrEx);
1405    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1406  }
1407
1408  // Get the end location.
1409  Expr *ArgEx = (Expr *)TyOrEx;
1410  Action::OwningExprResult Result
1411    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1412
1413  if (Result.isInvalid())
1414    DeleteExpr(ArgEx);
1415
1416  return move(Result);
1417}
1418
1419QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1420  if (V->isTypeDependent())
1421    return Context.DependentTy;
1422
1423  // These operators return the element type of a complex type.
1424  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1425    return CT->getElementType();
1426
1427  // Otherwise they pass through real integer and floating point types here.
1428  if (V->getType()->isArithmeticType())
1429    return V->getType();
1430
1431  // Reject anything else.
1432  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1433    << (isReal ? "__real" : "__imag");
1434  return QualType();
1435}
1436
1437
1438
1439Action::OwningExprResult
1440Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1441                          tok::TokenKind Kind, ExprArg Input) {
1442  // Since this might be a postfix expression, get rid of ParenListExprs.
1443  Input = MaybeConvertParenListExprToParenExpr(S, move(Input));
1444  Expr *Arg = (Expr *)Input.get();
1445
1446  UnaryOperator::Opcode Opc;
1447  switch (Kind) {
1448  default: assert(0 && "Unknown unary op!");
1449  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1450  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1451  }
1452
1453  if (getLangOptions().CPlusPlus &&
1454      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1455    // Which overloaded operator?
1456    OverloadedOperatorKind OverOp =
1457      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1458
1459    // C++ [over.inc]p1:
1460    //
1461    //     [...] If the function is a member function with one
1462    //     parameter (which shall be of type int) or a non-member
1463    //     function with two parameters (the second of which shall be
1464    //     of type int), it defines the postfix increment operator ++
1465    //     for objects of that type. When the postfix increment is
1466    //     called as a result of using the ++ operator, the int
1467    //     argument will have value zero.
1468    Expr *Args[2] = {
1469      Arg,
1470      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1471                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1472    };
1473
1474    // Build the candidate set for overloading
1475    OverloadCandidateSet CandidateSet;
1476    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1477
1478    // Perform overload resolution.
1479    OverloadCandidateSet::iterator Best;
1480    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1481    case OR_Success: {
1482      // We found a built-in operator or an overloaded operator.
1483      FunctionDecl *FnDecl = Best->Function;
1484
1485      if (FnDecl) {
1486        // We matched an overloaded operator. Build a call to that
1487        // operator.
1488
1489        // Convert the arguments.
1490        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1491          if (PerformObjectArgumentInitialization(Arg, Method))
1492            return ExprError();
1493        } else {
1494          // Convert the arguments.
1495          if (PerformCopyInitialization(Arg,
1496                                        FnDecl->getParamDecl(0)->getType(),
1497                                        "passing"))
1498            return ExprError();
1499        }
1500
1501        // Determine the result type
1502        QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
1503
1504        // Build the actual expression node.
1505        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1506                                                 SourceLocation());
1507        UsualUnaryConversions(FnExpr);
1508
1509        Input.release();
1510        Args[0] = Arg;
1511
1512        ExprOwningPtr<CXXOperatorCallExpr>
1513          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OverOp,
1514                                                          FnExpr, Args, 2,
1515                                                          ResultTy, OpLoc));
1516
1517        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
1518                                FnDecl))
1519          return ExprError();
1520        return Owned(TheCall.release());
1521
1522      } else {
1523        // We matched a built-in operator. Convert the arguments, then
1524        // break out so that we will build the appropriate built-in
1525        // operator node.
1526        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1527                                      "passing"))
1528          return ExprError();
1529
1530        break;
1531      }
1532    }
1533
1534    case OR_No_Viable_Function: {
1535      // No viable function; try checking this as a built-in operator, which
1536      // will fail and provide a diagnostic. Then, print the overload
1537      // candidates.
1538      OwningExprResult Result = CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1539      assert(Result.isInvalid() &&
1540             "C++ postfix-unary operator overloading is missing candidates!");
1541      if (Result.isInvalid())
1542        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1543
1544      return move(Result);
1545    }
1546
1547    case OR_Ambiguous:
1548      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1549          << UnaryOperator::getOpcodeStr(Opc)
1550          << Arg->getSourceRange();
1551      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1552      return ExprError();
1553
1554    case OR_Deleted:
1555      Diag(OpLoc, diag::err_ovl_deleted_oper)
1556        << Best->Function->isDeleted()
1557        << UnaryOperator::getOpcodeStr(Opc)
1558        << Arg->getSourceRange();
1559      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1560      return ExprError();
1561    }
1562
1563    // Either we found no viable overloaded operator or we matched a
1564    // built-in operator. In either case, fall through to trying to
1565    // build a built-in operation.
1566  }
1567
1568  Input.release();
1569  Input = Arg;
1570  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1571}
1572
1573Action::OwningExprResult
1574Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1575                              ExprArg Idx, SourceLocation RLoc) {
1576  // Since this might be a postfix expression, get rid of ParenListExprs.
1577  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1578
1579  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1580       *RHSExp = static_cast<Expr*>(Idx.get());
1581
1582  if (getLangOptions().CPlusPlus &&
1583      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1584    Base.release();
1585    Idx.release();
1586    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1587                                                  Context.DependentTy, RLoc));
1588  }
1589
1590  if (getLangOptions().CPlusPlus &&
1591      (LHSExp->getType()->isRecordType() ||
1592       LHSExp->getType()->isEnumeralType() ||
1593       RHSExp->getType()->isRecordType() ||
1594       RHSExp->getType()->isEnumeralType())) {
1595    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
1596  }
1597
1598  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
1599}
1600
1601
1602Action::OwningExprResult
1603Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
1604                                     ExprArg Idx, SourceLocation RLoc) {
1605  Expr *LHSExp = static_cast<Expr*>(Base.get());
1606  Expr *RHSExp = static_cast<Expr*>(Idx.get());
1607
1608  // Perform default conversions.
1609  DefaultFunctionArrayConversion(LHSExp);
1610  DefaultFunctionArrayConversion(RHSExp);
1611
1612  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1613
1614  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1615  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1616  // in the subscript position. As a result, we need to derive the array base
1617  // and index from the expression types.
1618  Expr *BaseExpr, *IndexExpr;
1619  QualType ResultType;
1620  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1621    BaseExpr = LHSExp;
1622    IndexExpr = RHSExp;
1623    ResultType = Context.DependentTy;
1624  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1625    BaseExpr = LHSExp;
1626    IndexExpr = RHSExp;
1627    ResultType = PTy->getPointeeType();
1628  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1629     // Handle the uncommon case of "123[Ptr]".
1630    BaseExpr = RHSExp;
1631    IndexExpr = LHSExp;
1632    ResultType = PTy->getPointeeType();
1633  } else if (const ObjCObjectPointerType *PTy =
1634               LHSTy->getAs<ObjCObjectPointerType>()) {
1635    BaseExpr = LHSExp;
1636    IndexExpr = RHSExp;
1637    ResultType = PTy->getPointeeType();
1638  } else if (const ObjCObjectPointerType *PTy =
1639               RHSTy->getAs<ObjCObjectPointerType>()) {
1640     // Handle the uncommon case of "123[Ptr]".
1641    BaseExpr = RHSExp;
1642    IndexExpr = LHSExp;
1643    ResultType = PTy->getPointeeType();
1644  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
1645    BaseExpr = LHSExp;    // vectors: V[123]
1646    IndexExpr = RHSExp;
1647
1648    // FIXME: need to deal with const...
1649    ResultType = VTy->getElementType();
1650  } else if (LHSTy->isArrayType()) {
1651    // If we see an array that wasn't promoted by
1652    // DefaultFunctionArrayConversion, it must be an array that
1653    // wasn't promoted because of the C90 rule that doesn't
1654    // allow promoting non-lvalue arrays.  Warn, then
1655    // force the promotion here.
1656    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1657        LHSExp->getSourceRange();
1658    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
1659                      CastExpr::CK_ArrayToPointerDecay);
1660    LHSTy = LHSExp->getType();
1661
1662    BaseExpr = LHSExp;
1663    IndexExpr = RHSExp;
1664    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1665  } else if (RHSTy->isArrayType()) {
1666    // Same as previous, except for 123[f().a] case
1667    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1668        RHSExp->getSourceRange();
1669    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
1670                      CastExpr::CK_ArrayToPointerDecay);
1671    RHSTy = RHSExp->getType();
1672
1673    BaseExpr = RHSExp;
1674    IndexExpr = LHSExp;
1675    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1676  } else {
1677    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1678       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1679  }
1680  // C99 6.5.2.1p1
1681  if (!(IndexExpr->getType()->isIntegerType() &&
1682        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1683    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1684                     << IndexExpr->getSourceRange());
1685
1686  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
1687       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
1688         && !IndexExpr->isTypeDependent())
1689    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
1690
1691  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1692  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1693  // type. Note that Functions are not objects, and that (in C99 parlance)
1694  // incomplete types are not object types.
1695  if (ResultType->isFunctionType()) {
1696    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1697      << ResultType << BaseExpr->getSourceRange();
1698    return ExprError();
1699  }
1700
1701  if (!ResultType->isDependentType() &&
1702      RequireCompleteType(LLoc, ResultType,
1703                          PDiag(diag::err_subscript_incomplete_type)
1704                            << BaseExpr->getSourceRange()))
1705    return ExprError();
1706
1707  // Diagnose bad cases where we step over interface counts.
1708  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1709    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1710      << ResultType << BaseExpr->getSourceRange();
1711    return ExprError();
1712  }
1713
1714  Base.release();
1715  Idx.release();
1716  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1717                                                ResultType, RLoc));
1718}
1719
1720QualType Sema::
1721CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1722                        const IdentifierInfo *CompName,
1723                        SourceLocation CompLoc) {
1724  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
1725  // see FIXME there.
1726  //
1727  // FIXME: This logic can be greatly simplified by splitting it along
1728  // halving/not halving and reworking the component checking.
1729  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
1730
1731  // The vector accessor can't exceed the number of elements.
1732  const char *compStr = CompName->getNameStart();
1733
1734  // This flag determines whether or not the component is one of the four
1735  // special names that indicate a subset of exactly half the elements are
1736  // to be selected.
1737  bool HalvingSwizzle = false;
1738
1739  // This flag determines whether or not CompName has an 's' char prefix,
1740  // indicating that it is a string of hex values to be used as vector indices.
1741  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1742
1743  // Check that we've found one of the special components, or that the component
1744  // names must come from the same set.
1745  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1746      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1747    HalvingSwizzle = true;
1748  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1749    do
1750      compStr++;
1751    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1752  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1753    do
1754      compStr++;
1755    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1756  }
1757
1758  if (!HalvingSwizzle && *compStr) {
1759    // We didn't get to the end of the string. This means the component names
1760    // didn't come from the same set *or* we encountered an illegal name.
1761    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1762      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1763    return QualType();
1764  }
1765
1766  // Ensure no component accessor exceeds the width of the vector type it
1767  // operates on.
1768  if (!HalvingSwizzle) {
1769    compStr = CompName->getNameStart();
1770
1771    if (HexSwizzle)
1772      compStr++;
1773
1774    while (*compStr) {
1775      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1776        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1777          << baseType << SourceRange(CompLoc);
1778        return QualType();
1779      }
1780    }
1781  }
1782
1783  // If this is a halving swizzle, verify that the base type has an even
1784  // number of elements.
1785  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1786    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1787      << baseType << SourceRange(CompLoc);
1788    return QualType();
1789  }
1790
1791  // The component accessor looks fine - now we need to compute the actual type.
1792  // The vector type is implied by the component accessor. For example,
1793  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1794  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1795  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1796  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1797                                     : CompName->getLength();
1798  if (HexSwizzle)
1799    CompSize--;
1800
1801  if (CompSize == 1)
1802    return vecType->getElementType();
1803
1804  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1805  // Now look up the TypeDefDecl from the vector type. Without this,
1806  // diagostics look bad. We want extended vector types to appear built-in.
1807  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1808    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1809      return Context.getTypedefType(ExtVectorDecls[i]);
1810  }
1811  return VT; // should never get here (a typedef type should always be found).
1812}
1813
1814static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1815                                                IdentifierInfo *Member,
1816                                                const Selector &Sel,
1817                                                ASTContext &Context) {
1818
1819  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1820    return PD;
1821  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1822    return OMD;
1823
1824  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1825       E = PDecl->protocol_end(); I != E; ++I) {
1826    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1827                                                     Context))
1828      return D;
1829  }
1830  return 0;
1831}
1832
1833static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1834                                IdentifierInfo *Member,
1835                                const Selector &Sel,
1836                                ASTContext &Context) {
1837  // Check protocols on qualified interfaces.
1838  Decl *GDecl = 0;
1839  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1840       E = QIdTy->qual_end(); I != E; ++I) {
1841    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1842      GDecl = PD;
1843      break;
1844    }
1845    // Also must look for a getter name which uses property syntax.
1846    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1847      GDecl = OMD;
1848      break;
1849    }
1850  }
1851  if (!GDecl) {
1852    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1853         E = QIdTy->qual_end(); I != E; ++I) {
1854      // Search in the protocol-qualifier list of current protocol.
1855      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1856      if (GDecl)
1857        return GDecl;
1858    }
1859  }
1860  return GDecl;
1861}
1862
1863Action::OwningExprResult
1864Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1865                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1866                               DeclarationName MemberName,
1867                               bool HasExplicitTemplateArgs,
1868                               SourceLocation LAngleLoc,
1869                               const TemplateArgumentLoc *ExplicitTemplateArgs,
1870                               unsigned NumExplicitTemplateArgs,
1871                               SourceLocation RAngleLoc,
1872                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS,
1873                               NamedDecl *FirstQualifierInScope) {
1874  if (SS && SS->isInvalid())
1875    return ExprError();
1876
1877  // Since this might be a postfix expression, get rid of ParenListExprs.
1878  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1879
1880  Expr *BaseExpr = Base.takeAs<Expr>();
1881  assert(BaseExpr && "no base expression");
1882
1883  // Perform default conversions.
1884  DefaultFunctionArrayConversion(BaseExpr);
1885
1886  QualType BaseType = BaseExpr->getType();
1887  // If this is an Objective-C pseudo-builtin and a definition is provided then
1888  // use that.
1889  if (BaseType->isObjCIdType()) {
1890    // We have an 'id' type. Rather than fall through, we check if this
1891    // is a reference to 'isa'.
1892    if (BaseType != Context.ObjCIdRedefinitionType) {
1893      BaseType = Context.ObjCIdRedefinitionType;
1894      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1895    }
1896  }
1897  assert(!BaseType.isNull() && "no type for member expression");
1898
1899  // Handle properties on ObjC 'Class' types.
1900  if (OpKind == tok::period && BaseType->isObjCClassType()) {
1901    // Also must look for a getter name which uses property syntax.
1902    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1903    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1904    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1905      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1906      ObjCMethodDecl *Getter;
1907      // FIXME: need to also look locally in the implementation.
1908      if ((Getter = IFace->lookupClassMethod(Sel))) {
1909        // Check the use of this method.
1910        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1911          return ExprError();
1912      }
1913      // If we found a getter then this may be a valid dot-reference, we
1914      // will look for the matching setter, in case it is needed.
1915      Selector SetterSel =
1916      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1917                                         PP.getSelectorTable(), Member);
1918      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1919      if (!Setter) {
1920        // If this reference is in an @implementation, also check for 'private'
1921        // methods.
1922        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
1923      }
1924      // Look through local category implementations associated with the class.
1925      if (!Setter)
1926        Setter = IFace->getCategoryClassMethod(SetterSel);
1927
1928      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1929        return ExprError();
1930
1931      if (Getter || Setter) {
1932        QualType PType;
1933
1934        if (Getter)
1935          PType = Getter->getResultType();
1936        else
1937          // Get the expression type from Setter's incoming parameter.
1938          PType = (*(Setter->param_end() -1))->getType();
1939        // FIXME: we must check that the setter has property type.
1940        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
1941                                                  PType,
1942                                                  Setter, MemberLoc, BaseExpr));
1943      }
1944      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1945                       << MemberName << BaseType);
1946    }
1947  }
1948
1949  if (BaseType->isObjCClassType() &&
1950      BaseType != Context.ObjCClassRedefinitionType) {
1951    BaseType = Context.ObjCClassRedefinitionType;
1952    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1953  }
1954
1955  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1956  // must have pointer type, and the accessed type is the pointee.
1957  if (OpKind == tok::arrow) {
1958    if (BaseType->isDependentType()) {
1959      NestedNameSpecifier *Qualifier = 0;
1960      if (SS) {
1961        Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
1962        if (!FirstQualifierInScope)
1963          FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
1964      }
1965
1966      return Owned(CXXUnresolvedMemberExpr::Create(Context, BaseExpr, true,
1967                                                   OpLoc, Qualifier,
1968                                            SS? SS->getRange() : SourceRange(),
1969                                                   FirstQualifierInScope,
1970                                                   MemberName,
1971                                                   MemberLoc,
1972                                                   HasExplicitTemplateArgs,
1973                                                   LAngleLoc,
1974                                                   ExplicitTemplateArgs,
1975                                                   NumExplicitTemplateArgs,
1976                                                   RAngleLoc));
1977    }
1978    else if (const PointerType *PT = BaseType->getAs<PointerType>())
1979      BaseType = PT->getPointeeType();
1980    else if (BaseType->isObjCObjectPointerType())
1981      ;
1982    else
1983      return ExprError(Diag(MemberLoc,
1984                            diag::err_typecheck_member_reference_arrow)
1985        << BaseType << BaseExpr->getSourceRange());
1986  } else if (BaseType->isDependentType()) {
1987      // Require that the base type isn't a pointer type
1988      // (so we'll report an error for)
1989      // T* t;
1990      // t.f;
1991      //
1992      // In Obj-C++, however, the above expression is valid, since it could be
1993      // accessing the 'f' property if T is an Obj-C interface. The extra check
1994      // allows this, while still reporting an error if T is a struct pointer.
1995      const PointerType *PT = BaseType->getAs<PointerType>();
1996
1997      if (!PT || (getLangOptions().ObjC1 &&
1998                  !PT->getPointeeType()->isRecordType())) {
1999        NestedNameSpecifier *Qualifier = 0;
2000        if (SS) {
2001          Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2002          if (!FirstQualifierInScope)
2003            FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2004        }
2005
2006        return Owned(CXXUnresolvedMemberExpr::Create(Context,
2007                                                     BaseExpr, false,
2008                                                     OpLoc,
2009                                                     Qualifier,
2010                                            SS? SS->getRange() : SourceRange(),
2011                                                     FirstQualifierInScope,
2012                                                     MemberName,
2013                                                     MemberLoc,
2014                                                     HasExplicitTemplateArgs,
2015                                                     LAngleLoc,
2016                                                     ExplicitTemplateArgs,
2017                                                     NumExplicitTemplateArgs,
2018                                                     RAngleLoc));
2019      }
2020    }
2021
2022  // Handle field access to simple records.  This also handles access to fields
2023  // of the ObjC 'id' struct.
2024  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2025    RecordDecl *RDecl = RTy->getDecl();
2026    if (RequireCompleteType(OpLoc, BaseType,
2027                            PDiag(diag::err_typecheck_incomplete_tag)
2028                              << BaseExpr->getSourceRange()))
2029      return ExprError();
2030
2031    DeclContext *DC = RDecl;
2032    if (SS && SS->isSet()) {
2033      // If the member name was a qualified-id, look into the
2034      // nested-name-specifier.
2035      DC = computeDeclContext(*SS, false);
2036
2037      if (!isa<TypeDecl>(DC)) {
2038        Diag(MemberLoc, diag::err_qualified_member_nonclass)
2039          << DC << SS->getRange();
2040        return ExprError();
2041      }
2042
2043      // FIXME: If DC is not computable, we should build a
2044      // CXXUnresolvedMemberExpr.
2045      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2046    }
2047
2048    // The record definition is complete, now make sure the member is valid.
2049    LookupResult Result;
2050    LookupQualifiedName(Result, DC, MemberName, LookupMemberName, false);
2051
2052    if (Result.empty())
2053      return ExprError(Diag(MemberLoc, diag::err_no_member)
2054               << MemberName << DC << BaseExpr->getSourceRange());
2055    if (Result.isAmbiguous()) {
2056      DiagnoseAmbiguousLookup(Result, MemberName, MemberLoc,
2057                              BaseExpr->getSourceRange());
2058      return ExprError();
2059    }
2060
2061    NamedDecl *MemberDecl = Result.getAsSingleDecl(Context);
2062
2063    if (SS && SS->isSet()) {
2064      TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext());
2065      QualType BaseTypeCanon
2066        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2067      QualType MemberTypeCanon
2068        = Context.getCanonicalType(Context.getTypeDeclType(TyD));
2069
2070      if (BaseTypeCanon != MemberTypeCanon &&
2071          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2072        return ExprError(Diag(SS->getBeginLoc(),
2073                              diag::err_not_direct_base_or_virtual)
2074                         << MemberTypeCanon << BaseTypeCanon);
2075    }
2076
2077    // If the decl being referenced had an error, return an error for this
2078    // sub-expr without emitting another error, in order to avoid cascading
2079    // error cases.
2080    if (MemberDecl->isInvalidDecl())
2081      return ExprError();
2082
2083    bool ShouldCheckUse = true;
2084    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2085      // Don't diagnose the use of a virtual member function unless it's
2086      // explicitly qualified.
2087      if (MD->isVirtual() && (!SS || !SS->isSet()))
2088        ShouldCheckUse = false;
2089    }
2090
2091    // Check the use of this field
2092    if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2093      return ExprError();
2094
2095    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2096      // We may have found a field within an anonymous union or struct
2097      // (C++ [class.union]).
2098      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2099        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2100                                                        BaseExpr, OpLoc);
2101
2102      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2103      QualType MemberType = FD->getType();
2104      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2105        MemberType = Ref->getPointeeType();
2106      else {
2107        Qualifiers BaseQuals = BaseType.getQualifiers();
2108        BaseQuals.removeObjCGCAttr();
2109        if (FD->isMutable()) BaseQuals.removeConst();
2110
2111        Qualifiers MemberQuals
2112          = Context.getCanonicalType(MemberType).getQualifiers();
2113
2114        Qualifiers Combined = BaseQuals + MemberQuals;
2115        if (Combined != MemberQuals)
2116          MemberType = Context.getQualifiedType(MemberType, Combined);
2117      }
2118
2119      MarkDeclarationReferenced(MemberLoc, FD);
2120      if (PerformObjectMemberConversion(BaseExpr, FD))
2121        return ExprError();
2122      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2123                                   FD, MemberLoc, MemberType));
2124    }
2125
2126    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2127      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2128      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2129                                   Var, MemberLoc,
2130                                   Var->getType().getNonReferenceType()));
2131    }
2132    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2133      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2134      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2135                                   MemberFn, MemberLoc,
2136                                   MemberFn->getType()));
2137    }
2138    if (FunctionTemplateDecl *FunTmpl
2139          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2140      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2141
2142      if (HasExplicitTemplateArgs)
2143        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2144                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2145                                       SS? SS->getRange() : SourceRange(),
2146                                        FunTmpl, MemberLoc, true,
2147                                        LAngleLoc, ExplicitTemplateArgs,
2148                                        NumExplicitTemplateArgs, RAngleLoc,
2149                                        Context.OverloadTy));
2150
2151      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2152                                   FunTmpl, MemberLoc,
2153                                   Context.OverloadTy));
2154    }
2155    if (OverloadedFunctionDecl *Ovl
2156          = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) {
2157      if (HasExplicitTemplateArgs)
2158        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2159                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2160                                        SS? SS->getRange() : SourceRange(),
2161                                        Ovl, MemberLoc, true,
2162                                        LAngleLoc, ExplicitTemplateArgs,
2163                                        NumExplicitTemplateArgs, RAngleLoc,
2164                                        Context.OverloadTy));
2165
2166      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2167                                   Ovl, MemberLoc, Context.OverloadTy));
2168    }
2169    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2170      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2171      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2172                                   Enum, MemberLoc, Enum->getType()));
2173    }
2174    if (isa<TypeDecl>(MemberDecl))
2175      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2176        << MemberName << int(OpKind == tok::arrow));
2177
2178    // We found a declaration kind that we didn't expect. This is a
2179    // generic error message that tells the user that she can't refer
2180    // to this member with '.' or '->'.
2181    return ExprError(Diag(MemberLoc,
2182                          diag::err_typecheck_member_reference_unknown)
2183      << MemberName << int(OpKind == tok::arrow));
2184  }
2185
2186  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2187  // into a record type was handled above, any destructor we see here is a
2188  // pseudo-destructor.
2189  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2190    // C++ [expr.pseudo]p2:
2191    //   The left hand side of the dot operator shall be of scalar type. The
2192    //   left hand side of the arrow operator shall be of pointer to scalar
2193    //   type.
2194    if (!BaseType->isScalarType())
2195      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2196                     << BaseType << BaseExpr->getSourceRange());
2197
2198    //   [...] The type designated by the pseudo-destructor-name shall be the
2199    //   same as the object type.
2200    if (!MemberName.getCXXNameType()->isDependentType() &&
2201        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2202      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2203                     << BaseType << MemberName.getCXXNameType()
2204                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2205
2206    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2207    //   the form
2208    //
2209    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2210    //
2211    //   shall designate the same scalar type.
2212    //
2213    // FIXME: DPG can't see any way to trigger this particular clause, so it
2214    // isn't checked here.
2215
2216    // FIXME: We've lost the precise spelling of the type by going through
2217    // DeclarationName. Can we do better?
2218    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2219                                                       OpKind == tok::arrow,
2220                                                       OpLoc,
2221                            (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2222                                            SS? SS->getRange() : SourceRange(),
2223                                                   MemberName.getCXXNameType(),
2224                                                       MemberLoc));
2225  }
2226
2227  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2228  // (*Obj).ivar.
2229  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2230      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2231    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2232    const ObjCInterfaceType *IFaceT =
2233      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2234    if (IFaceT) {
2235      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2236
2237      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2238      ObjCInterfaceDecl *ClassDeclared;
2239      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2240
2241      if (IV) {
2242        // If the decl being referenced had an error, return an error for this
2243        // sub-expr without emitting another error, in order to avoid cascading
2244        // error cases.
2245        if (IV->isInvalidDecl())
2246          return ExprError();
2247
2248        // Check whether we can reference this field.
2249        if (DiagnoseUseOfDecl(IV, MemberLoc))
2250          return ExprError();
2251        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2252            IV->getAccessControl() != ObjCIvarDecl::Package) {
2253          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2254          if (ObjCMethodDecl *MD = getCurMethodDecl())
2255            ClassOfMethodDecl =  MD->getClassInterface();
2256          else if (ObjCImpDecl && getCurFunctionDecl()) {
2257            // Case of a c-function declared inside an objc implementation.
2258            // FIXME: For a c-style function nested inside an objc implementation
2259            // class, there is no implementation context available, so we pass
2260            // down the context as argument to this routine. Ideally, this context
2261            // need be passed down in the AST node and somehow calculated from the
2262            // AST for a function decl.
2263            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2264            if (ObjCImplementationDecl *IMPD =
2265                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2266              ClassOfMethodDecl = IMPD->getClassInterface();
2267            else if (ObjCCategoryImplDecl* CatImplClass =
2268                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2269              ClassOfMethodDecl = CatImplClass->getClassInterface();
2270          }
2271
2272          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2273            if (ClassDeclared != IDecl ||
2274                ClassOfMethodDecl != ClassDeclared)
2275              Diag(MemberLoc, diag::error_private_ivar_access)
2276                << IV->getDeclName();
2277          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2278            // @protected
2279            Diag(MemberLoc, diag::error_protected_ivar_access)
2280              << IV->getDeclName();
2281        }
2282
2283        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2284                                                   MemberLoc, BaseExpr,
2285                                                   OpKind == tok::arrow));
2286      }
2287      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2288                         << IDecl->getDeclName() << MemberName
2289                         << BaseExpr->getSourceRange());
2290    }
2291  }
2292  // Handle properties on 'id' and qualified "id".
2293  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2294                                BaseType->isObjCQualifiedIdType())) {
2295    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2296    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2297
2298    // Check protocols on qualified interfaces.
2299    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2300    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2301      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2302        // Check the use of this declaration
2303        if (DiagnoseUseOfDecl(PD, MemberLoc))
2304          return ExprError();
2305
2306        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2307                                                       MemberLoc, BaseExpr));
2308      }
2309      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2310        // Check the use of this method.
2311        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2312          return ExprError();
2313
2314        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2315                                                   OMD->getResultType(),
2316                                                   OMD, OpLoc, MemberLoc,
2317                                                   NULL, 0));
2318      }
2319    }
2320
2321    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2322                       << MemberName << BaseType);
2323  }
2324  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2325  // pointer to a (potentially qualified) interface type.
2326  const ObjCObjectPointerType *OPT;
2327  if (OpKind == tok::period &&
2328      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2329    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2330    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2331    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2332
2333    // Search for a declared property first.
2334    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2335      // Check whether we can reference this property.
2336      if (DiagnoseUseOfDecl(PD, MemberLoc))
2337        return ExprError();
2338      QualType ResTy = PD->getType();
2339      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2340      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2341      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2342        ResTy = Getter->getResultType();
2343      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2344                                                     MemberLoc, BaseExpr));
2345    }
2346    // Check protocols on qualified interfaces.
2347    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2348         E = OPT->qual_end(); I != E; ++I)
2349      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2350        // Check whether we can reference this property.
2351        if (DiagnoseUseOfDecl(PD, MemberLoc))
2352          return ExprError();
2353
2354        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2355                                                       MemberLoc, BaseExpr));
2356      }
2357    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2358         E = OPT->qual_end(); I != E; ++I)
2359      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2360        // Check whether we can reference this property.
2361        if (DiagnoseUseOfDecl(PD, MemberLoc))
2362          return ExprError();
2363
2364        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2365                                                       MemberLoc, BaseExpr));
2366      }
2367    // If that failed, look for an "implicit" property by seeing if the nullary
2368    // selector is implemented.
2369
2370    // FIXME: The logic for looking up nullary and unary selectors should be
2371    // shared with the code in ActOnInstanceMessage.
2372
2373    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2374    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2375
2376    // If this reference is in an @implementation, check for 'private' methods.
2377    if (!Getter)
2378      Getter = IFace->lookupPrivateInstanceMethod(Sel);
2379
2380    // Look through local category implementations associated with the class.
2381    if (!Getter)
2382      Getter = IFace->getCategoryInstanceMethod(Sel);
2383    if (Getter) {
2384      // Check if we can reference this property.
2385      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2386        return ExprError();
2387    }
2388    // If we found a getter then this may be a valid dot-reference, we
2389    // will look for the matching setter, in case it is needed.
2390    Selector SetterSel =
2391      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2392                                         PP.getSelectorTable(), Member);
2393    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2394    if (!Setter) {
2395      // If this reference is in an @implementation, also check for 'private'
2396      // methods.
2397      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2398    }
2399    // Look through local category implementations associated with the class.
2400    if (!Setter)
2401      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2402
2403    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2404      return ExprError();
2405
2406    if (Getter || Setter) {
2407      QualType PType;
2408
2409      if (Getter)
2410        PType = Getter->getResultType();
2411      else
2412        // Get the expression type from Setter's incoming parameter.
2413        PType = (*(Setter->param_end() -1))->getType();
2414      // FIXME: we must check that the setter has property type.
2415      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2416                                      Setter, MemberLoc, BaseExpr));
2417    }
2418    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2419      << MemberName << BaseType);
2420  }
2421
2422  // Handle the following exceptional case (*Obj).isa.
2423  if (OpKind == tok::period &&
2424      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2425      MemberName.getAsIdentifierInfo()->isStr("isa"))
2426    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2427                                           Context.getObjCIdType()));
2428
2429  // Handle 'field access' to vectors, such as 'V.xx'.
2430  if (BaseType->isExtVectorType()) {
2431    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2432    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2433    if (ret.isNull())
2434      return ExprError();
2435    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2436                                                    MemberLoc));
2437  }
2438
2439  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2440    << BaseType << BaseExpr->getSourceRange();
2441
2442  // If the user is trying to apply -> or . to a function or function
2443  // pointer, it's probably because they forgot parentheses to call
2444  // the function. Suggest the addition of those parentheses.
2445  if (BaseType == Context.OverloadTy ||
2446      BaseType->isFunctionType() ||
2447      (BaseType->isPointerType() &&
2448       BaseType->getAs<PointerType>()->isFunctionType())) {
2449    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2450    Diag(Loc, diag::note_member_reference_needs_call)
2451      << CodeModificationHint::CreateInsertion(Loc, "()");
2452  }
2453
2454  return ExprError();
2455}
2456
2457Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg Base,
2458                                                   SourceLocation OpLoc,
2459                                                   tok::TokenKind OpKind,
2460                                                   const CXXScopeSpec &SS,
2461                                                   UnqualifiedId &Member,
2462                                                   DeclPtrTy ObjCImpDecl,
2463                                                   bool HasTrailingLParen) {
2464  if (Member.getKind() == UnqualifiedId::IK_TemplateId) {
2465    TemplateName Template
2466      = TemplateName::getFromVoidPointer(Member.TemplateId->Template);
2467
2468    // FIXME: We're going to end up looking up the template based on its name,
2469    // twice!
2470    DeclarationName Name;
2471    if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
2472      Name = ActualTemplate->getDeclName();
2473    else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
2474      Name = Ovl->getDeclName();
2475    else {
2476      DependentTemplateName *DTN = Template.getAsDependentTemplateName();
2477      if (DTN->isIdentifier())
2478        Name = DTN->getIdentifier();
2479      else
2480        Name = Context.DeclarationNames.getCXXOperatorName(DTN->getOperator());
2481    }
2482
2483    // Translate the parser's template argument list in our AST format.
2484    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2485                                       Member.TemplateId->getTemplateArgs(),
2486                                       Member.TemplateId->getTemplateArgIsType(),
2487                                       Member.TemplateId->NumArgs);
2488
2489    llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2490    translateTemplateArguments(TemplateArgsPtr,
2491                               Member.TemplateId->getTemplateArgLocations(),
2492                               TemplateArgs);
2493    TemplateArgsPtr.release();
2494
2495    // Do we have the save the actual template name? We might need it...
2496    return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2497                                    Member.TemplateId->TemplateNameLoc,
2498                                    Name, true, Member.TemplateId->LAngleLoc,
2499                                    TemplateArgs.data(), TemplateArgs.size(),
2500                                    Member.TemplateId->RAngleLoc, DeclPtrTy(),
2501                                    &SS);
2502  }
2503
2504  // FIXME: We lose a lot of source information by mapping directly to the
2505  // DeclarationName.
2506  OwningExprResult Result
2507    = BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2508                               Member.getSourceRange().getBegin(),
2509                               GetNameFromUnqualifiedId(Member),
2510                               ObjCImpDecl, &SS);
2511
2512  if (Result.isInvalid() || HasTrailingLParen ||
2513      Member.getKind() != UnqualifiedId::IK_DestructorName)
2514    return move(Result);
2515
2516  // The only way a reference to a destructor can be used is to
2517  // immediately call them. Since the next token is not a '(', produce a
2518  // diagnostic and build the call now.
2519  Expr *E = (Expr *)Result.get();
2520  SourceLocation ExpectedLParenLoc
2521    = PP.getLocForEndOfToken(Member.getSourceRange().getEnd());
2522  Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
2523    << isa<CXXPseudoDestructorExpr>(E)
2524    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
2525
2526  return ActOnCallExpr(0, move(Result), ExpectedLParenLoc,
2527                       MultiExprArg(*this, 0, 0), 0, ExpectedLParenLoc);
2528}
2529
2530Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2531                                                    FunctionDecl *FD,
2532                                                    ParmVarDecl *Param) {
2533  if (Param->hasUnparsedDefaultArg()) {
2534    Diag (CallLoc,
2535          diag::err_use_of_default_argument_to_function_declared_later) <<
2536      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2537    Diag(UnparsedDefaultArgLocs[Param],
2538          diag::note_default_argument_declared_here);
2539  } else {
2540    if (Param->hasUninstantiatedDefaultArg()) {
2541      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2542
2543      // Instantiate the expression.
2544      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2545
2546      InstantiatingTemplate Inst(*this, CallLoc, Param,
2547                                 ArgList.getInnermost().getFlatArgumentList(),
2548                                 ArgList.getInnermost().flat_size());
2549
2550      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2551      if (Result.isInvalid())
2552        return ExprError();
2553
2554      if (SetParamDefaultArgument(Param, move(Result),
2555                                  /*FIXME:EqualLoc*/
2556                                  UninstExpr->getSourceRange().getBegin()))
2557        return ExprError();
2558    }
2559
2560    Expr *DefaultExpr = Param->getDefaultArg();
2561
2562    // If the default expression creates temporaries, we need to
2563    // push them to the current stack of expression temporaries so they'll
2564    // be properly destroyed.
2565    if (CXXExprWithTemporaries *E
2566          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2567      assert(!E->shouldDestroyTemporaries() &&
2568             "Can't destroy temporaries in a default argument expr!");
2569      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2570        ExprTemporaries.push_back(E->getTemporary(I));
2571    }
2572  }
2573
2574  // We already type-checked the argument, so we know it works.
2575  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2576}
2577
2578/// ConvertArgumentsForCall - Converts the arguments specified in
2579/// Args/NumArgs to the parameter types of the function FDecl with
2580/// function prototype Proto. Call is the call expression itself, and
2581/// Fn is the function expression. For a C++ member function, this
2582/// routine does not attempt to convert the object argument. Returns
2583/// true if the call is ill-formed.
2584bool
2585Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2586                              FunctionDecl *FDecl,
2587                              const FunctionProtoType *Proto,
2588                              Expr **Args, unsigned NumArgs,
2589                              SourceLocation RParenLoc) {
2590  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2591  // assignment, to the types of the corresponding parameter, ...
2592  unsigned NumArgsInProto = Proto->getNumArgs();
2593  unsigned NumArgsToCheck = NumArgs;
2594  bool Invalid = false;
2595
2596  // If too few arguments are available (and we don't have default
2597  // arguments for the remaining parameters), don't make the call.
2598  if (NumArgs < NumArgsInProto) {
2599    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2600      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2601        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2602    // Use default arguments for missing arguments
2603    NumArgsToCheck = NumArgsInProto;
2604    Call->setNumArgs(Context, NumArgsInProto);
2605  }
2606
2607  // If too many are passed and not variadic, error on the extras and drop
2608  // them.
2609  if (NumArgs > NumArgsInProto) {
2610    if (!Proto->isVariadic()) {
2611      Diag(Args[NumArgsInProto]->getLocStart(),
2612           diag::err_typecheck_call_too_many_args)
2613        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2614        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2615                       Args[NumArgs-1]->getLocEnd());
2616      // This deletes the extra arguments.
2617      Call->setNumArgs(Context, NumArgsInProto);
2618      Invalid = true;
2619    }
2620    NumArgsToCheck = NumArgsInProto;
2621  }
2622
2623  // Continue to check argument types (even if we have too few/many args).
2624  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2625    QualType ProtoArgType = Proto->getArgType(i);
2626
2627    Expr *Arg;
2628    if (i < NumArgs) {
2629      Arg = Args[i];
2630
2631      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2632                              ProtoArgType,
2633                              PDiag(diag::err_call_incomplete_argument)
2634                                << Arg->getSourceRange()))
2635        return true;
2636
2637      // Pass the argument.
2638      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2639        return true;
2640    } else {
2641      ParmVarDecl *Param = FDecl->getParamDecl(i);
2642
2643      OwningExprResult ArgExpr =
2644        BuildCXXDefaultArgExpr(Call->getSourceRange().getBegin(),
2645                               FDecl, Param);
2646      if (ArgExpr.isInvalid())
2647        return true;
2648
2649      Arg = ArgExpr.takeAs<Expr>();
2650    }
2651
2652    Call->setArg(i, Arg);
2653  }
2654
2655  // If this is a variadic call, handle args passed through "...".
2656  if (Proto->isVariadic()) {
2657    VariadicCallType CallType = VariadicFunction;
2658    if (Fn->getType()->isBlockPointerType())
2659      CallType = VariadicBlock; // Block
2660    else if (isa<MemberExpr>(Fn))
2661      CallType = VariadicMethod;
2662
2663    // Promote the arguments (C99 6.5.2.2p7).
2664    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2665      Expr *Arg = Args[i];
2666      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2667      Call->setArg(i, Arg);
2668    }
2669  }
2670
2671  return Invalid;
2672}
2673
2674/// \brief "Deconstruct" the function argument of a call expression to find
2675/// the underlying declaration (if any), the name of the called function,
2676/// whether argument-dependent lookup is available, whether it has explicit
2677/// template arguments, etc.
2678void Sema::DeconstructCallFunction(Expr *FnExpr,
2679                                   NamedDecl *&Function,
2680                                   DeclarationName &Name,
2681                                   NestedNameSpecifier *&Qualifier,
2682                                   SourceRange &QualifierRange,
2683                                   bool &ArgumentDependentLookup,
2684                                   bool &HasExplicitTemplateArguments,
2685                           const TemplateArgumentLoc *&ExplicitTemplateArgs,
2686                                   unsigned &NumExplicitTemplateArgs) {
2687  // Set defaults for all of the output parameters.
2688  Function = 0;
2689  Name = DeclarationName();
2690  Qualifier = 0;
2691  QualifierRange = SourceRange();
2692  ArgumentDependentLookup = getLangOptions().CPlusPlus;
2693  HasExplicitTemplateArguments = false;
2694
2695  // If we're directly calling a function, get the appropriate declaration.
2696  // Also, in C++, keep track of whether we should perform argument-dependent
2697  // lookup and whether there were any explicitly-specified template arguments.
2698  while (true) {
2699    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2700      FnExpr = IcExpr->getSubExpr();
2701    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2702      // Parentheses around a function disable ADL
2703      // (C++0x [basic.lookup.argdep]p1).
2704      ArgumentDependentLookup = false;
2705      FnExpr = PExpr->getSubExpr();
2706    } else if (isa<UnaryOperator>(FnExpr) &&
2707               cast<UnaryOperator>(FnExpr)->getOpcode()
2708               == UnaryOperator::AddrOf) {
2709      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2710    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2711      Function = dyn_cast<NamedDecl>(DRExpr->getDecl());
2712      if ((Qualifier = DRExpr->getQualifier())) {
2713        ArgumentDependentLookup = false;
2714        QualifierRange = DRExpr->getQualifierRange();
2715      }
2716      break;
2717    } else if (UnresolvedFunctionNameExpr *DepName
2718               = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2719      Name = DepName->getName();
2720      break;
2721    } else if (TemplateIdRefExpr *TemplateIdRef
2722               = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2723      Function = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2724      if (!Function)
2725        Function = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2726      HasExplicitTemplateArguments = true;
2727      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2728      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2729
2730      // C++ [temp.arg.explicit]p6:
2731      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2732      //   applies even when the function name is not visible within the
2733      //   scope of the call. This is because the call still has the syntactic
2734      //   form of a function call (3.4.1). But when a function template with
2735      //   explicit template arguments is used, the call does not have the
2736      //   correct syntactic form unless there is a function template with
2737      //   that name visible at the point of the call. If no such name is
2738      //   visible, the call is not syntactically well-formed and
2739      //   argument-dependent lookup does not apply. If some such name is
2740      //   visible, argument dependent lookup applies and additional function
2741      //   templates may be found in other namespaces.
2742      //
2743      // The summary of this paragraph is that, if we get to this point and the
2744      // template-id was not a qualified name, then argument-dependent lookup
2745      // is still possible.
2746      if ((Qualifier = TemplateIdRef->getQualifier())) {
2747        ArgumentDependentLookup = false;
2748        QualifierRange = TemplateIdRef->getQualifierRange();
2749      }
2750      break;
2751    } else {
2752      // Any kind of name that does not refer to a declaration (or
2753      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2754      ArgumentDependentLookup = false;
2755      break;
2756    }
2757  }
2758}
2759
2760/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2761/// This provides the location of the left/right parens and a list of comma
2762/// locations.
2763Action::OwningExprResult
2764Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2765                    MultiExprArg args,
2766                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2767  unsigned NumArgs = args.size();
2768
2769  // Since this might be a postfix expression, get rid of ParenListExprs.
2770  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2771
2772  Expr *Fn = fn.takeAs<Expr>();
2773  Expr **Args = reinterpret_cast<Expr**>(args.release());
2774  assert(Fn && "no function call expression");
2775  FunctionDecl *FDecl = NULL;
2776  NamedDecl *NDecl = NULL;
2777  DeclarationName UnqualifiedName;
2778
2779  if (getLangOptions().CPlusPlus) {
2780    // If this is a pseudo-destructor expression, build the call immediately.
2781    if (isa<CXXPseudoDestructorExpr>(Fn)) {
2782      if (NumArgs > 0) {
2783        // Pseudo-destructor calls should not have any arguments.
2784        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
2785          << CodeModificationHint::CreateRemoval(
2786                                    SourceRange(Args[0]->getLocStart(),
2787                                                Args[NumArgs-1]->getLocEnd()));
2788
2789        for (unsigned I = 0; I != NumArgs; ++I)
2790          Args[I]->Destroy(Context);
2791
2792        NumArgs = 0;
2793      }
2794
2795      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
2796                                          RParenLoc));
2797    }
2798
2799    // Determine whether this is a dependent call inside a C++ template,
2800    // in which case we won't do any semantic analysis now.
2801    // FIXME: Will need to cache the results of name lookup (including ADL) in
2802    // Fn.
2803    bool Dependent = false;
2804    if (Fn->isTypeDependent())
2805      Dependent = true;
2806    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2807      Dependent = true;
2808
2809    if (Dependent)
2810      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2811                                          Context.DependentTy, RParenLoc));
2812
2813    // Determine whether this is a call to an object (C++ [over.call.object]).
2814    if (Fn->getType()->isRecordType())
2815      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2816                                                CommaLocs, RParenLoc));
2817
2818    // Determine whether this is a call to a member function.
2819    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2820      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2821      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2822          isa<CXXMethodDecl>(MemDecl) ||
2823          (isa<FunctionTemplateDecl>(MemDecl) &&
2824           isa<CXXMethodDecl>(
2825                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2826        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2827                                               CommaLocs, RParenLoc));
2828    }
2829
2830    // Determine whether this is a call to a pointer-to-member function.
2831    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) {
2832      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
2833          BO->getOpcode() == BinaryOperator::PtrMemI) {
2834        if (const FunctionProtoType *FPT =
2835              dyn_cast<FunctionProtoType>(BO->getType())) {
2836          QualType ResultTy = FPT->getResultType().getNonReferenceType();
2837
2838          ExprOwningPtr<CXXMemberCallExpr>
2839            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
2840                                                          NumArgs, ResultTy,
2841                                                          RParenLoc));
2842
2843          if (CheckCallReturnType(FPT->getResultType(),
2844                                  BO->getRHS()->getSourceRange().getBegin(),
2845                                  TheCall.get(), 0))
2846            return ExprError();
2847
2848          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
2849                                      RParenLoc))
2850            return ExprError();
2851
2852          return Owned(MaybeBindToTemporary(TheCall.release()).release());
2853        }
2854        return ExprError(Diag(Fn->getLocStart(),
2855                              diag::err_typecheck_call_not_function)
2856                              << Fn->getType() << Fn->getSourceRange());
2857      }
2858    }
2859  }
2860
2861  // If we're directly calling a function, get the appropriate declaration.
2862  // Also, in C++, keep track of whether we should perform argument-dependent
2863  // lookup and whether there were any explicitly-specified template arguments.
2864  bool ADL = true;
2865  bool HasExplicitTemplateArgs = 0;
2866  const TemplateArgumentLoc *ExplicitTemplateArgs = 0;
2867  unsigned NumExplicitTemplateArgs = 0;
2868  NestedNameSpecifier *Qualifier = 0;
2869  SourceRange QualifierRange;
2870  DeconstructCallFunction(Fn, NDecl, UnqualifiedName, Qualifier, QualifierRange,
2871                          ADL,HasExplicitTemplateArgs, ExplicitTemplateArgs,
2872                          NumExplicitTemplateArgs);
2873
2874  OverloadedFunctionDecl *Ovl = 0;
2875  FunctionTemplateDecl *FunctionTemplate = 0;
2876  if (NDecl) {
2877    FDecl = dyn_cast<FunctionDecl>(NDecl);
2878    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2879      FDecl = FunctionTemplate->getTemplatedDecl();
2880    else
2881      FDecl = dyn_cast<FunctionDecl>(NDecl);
2882    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2883  }
2884
2885  if (Ovl || FunctionTemplate ||
2886      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2887    // We don't perform ADL for implicit declarations of builtins.
2888    if (FDecl && FDecl->getBuiltinID() && FDecl->isImplicit())
2889      ADL = false;
2890
2891    // We don't perform ADL in C.
2892    if (!getLangOptions().CPlusPlus)
2893      ADL = false;
2894
2895    if (Ovl || FunctionTemplate || ADL) {
2896      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2897                                      HasExplicitTemplateArgs,
2898                                      ExplicitTemplateArgs,
2899                                      NumExplicitTemplateArgs,
2900                                      LParenLoc, Args, NumArgs, CommaLocs,
2901                                      RParenLoc, ADL);
2902      if (!FDecl)
2903        return ExprError();
2904
2905      Fn = FixOverloadedFunctionReference(Fn, FDecl);
2906    }
2907  }
2908
2909  // Promote the function operand.
2910  UsualUnaryConversions(Fn);
2911
2912  // Make the call expr early, before semantic checks.  This guarantees cleanup
2913  // of arguments and function on error.
2914  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2915                                                               Args, NumArgs,
2916                                                               Context.BoolTy,
2917                                                               RParenLoc));
2918
2919  const FunctionType *FuncT;
2920  if (!Fn->getType()->isBlockPointerType()) {
2921    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2922    // have type pointer to function".
2923    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2924    if (PT == 0)
2925      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2926        << Fn->getType() << Fn->getSourceRange());
2927    FuncT = PT->getPointeeType()->getAs<FunctionType>();
2928  } else { // This is a block call.
2929    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2930                getAs<FunctionType>();
2931  }
2932  if (FuncT == 0)
2933    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2934      << Fn->getType() << Fn->getSourceRange());
2935
2936  // Check for a valid return type
2937  if (CheckCallReturnType(FuncT->getResultType(),
2938                          Fn->getSourceRange().getBegin(), TheCall.get(),
2939                          FDecl))
2940    return ExprError();
2941
2942  // We know the result type of the call, set it.
2943  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2944
2945  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2946    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2947                                RParenLoc))
2948      return ExprError();
2949  } else {
2950    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2951
2952    if (FDecl) {
2953      // Check if we have too few/too many template arguments, based
2954      // on our knowledge of the function definition.
2955      const FunctionDecl *Def = 0;
2956      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2957        const FunctionProtoType *Proto =
2958            Def->getType()->getAs<FunctionProtoType>();
2959        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2960          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2961            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2962        }
2963      }
2964    }
2965
2966    // Promote the arguments (C99 6.5.2.2p6).
2967    for (unsigned i = 0; i != NumArgs; i++) {
2968      Expr *Arg = Args[i];
2969      DefaultArgumentPromotion(Arg);
2970      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2971                              Arg->getType(),
2972                              PDiag(diag::err_call_incomplete_argument)
2973                                << Arg->getSourceRange()))
2974        return ExprError();
2975      TheCall->setArg(i, Arg);
2976    }
2977  }
2978
2979  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2980    if (!Method->isStatic())
2981      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2982        << Fn->getSourceRange());
2983
2984  // Check for sentinels
2985  if (NDecl)
2986    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2987
2988  // Do special checking on direct calls to functions.
2989  if (FDecl) {
2990    if (CheckFunctionCall(FDecl, TheCall.get()))
2991      return ExprError();
2992
2993    if (unsigned BuiltinID = FDecl->getBuiltinID())
2994      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
2995  } else if (NDecl) {
2996    if (CheckBlockCall(NDecl, TheCall.get()))
2997      return ExprError();
2998  }
2999
3000  return MaybeBindToTemporary(TheCall.take());
3001}
3002
3003Action::OwningExprResult
3004Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3005                           SourceLocation RParenLoc, ExprArg InitExpr) {
3006  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3007  //FIXME: Preserve type source info.
3008  QualType literalType = GetTypeFromParser(Ty);
3009  // FIXME: put back this assert when initializers are worked out.
3010  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3011  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3012
3013  if (literalType->isArrayType()) {
3014    if (literalType->isVariableArrayType())
3015      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3016        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3017  } else if (!literalType->isDependentType() &&
3018             RequireCompleteType(LParenLoc, literalType,
3019                      PDiag(diag::err_typecheck_decl_incomplete_type)
3020                        << SourceRange(LParenLoc,
3021                                       literalExpr->getSourceRange().getEnd())))
3022    return ExprError();
3023
3024  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
3025                            DeclarationName(), /*FIXME:DirectInit=*/false))
3026    return ExprError();
3027
3028  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3029  if (isFileScope) { // 6.5.2.5p3
3030    if (CheckForConstantInitializer(literalExpr, literalType))
3031      return ExprError();
3032  }
3033  InitExpr.release();
3034  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
3035                                                 literalExpr, isFileScope));
3036}
3037
3038Action::OwningExprResult
3039Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3040                    SourceLocation RBraceLoc) {
3041  unsigned NumInit = initlist.size();
3042  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3043
3044  // Semantic analysis for initializers is done by ActOnDeclarator() and
3045  // CheckInitializer() - it requires knowledge of the object being intialized.
3046
3047  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3048                                               RBraceLoc);
3049  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3050  return Owned(E);
3051}
3052
3053static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3054                                            QualType SrcTy, QualType DestTy) {
3055  if (Context.getCanonicalType(SrcTy).getUnqualifiedType() ==
3056      Context.getCanonicalType(DestTy).getUnqualifiedType())
3057    return CastExpr::CK_NoOp;
3058
3059  if (SrcTy->hasPointerRepresentation()) {
3060    if (DestTy->hasPointerRepresentation())
3061      return CastExpr::CK_BitCast;
3062    if (DestTy->isIntegerType())
3063      return CastExpr::CK_PointerToIntegral;
3064  }
3065
3066  if (SrcTy->isIntegerType()) {
3067    if (DestTy->isIntegerType())
3068      return CastExpr::CK_IntegralCast;
3069    if (DestTy->hasPointerRepresentation())
3070      return CastExpr::CK_IntegralToPointer;
3071    if (DestTy->isRealFloatingType())
3072      return CastExpr::CK_IntegralToFloating;
3073  }
3074
3075  if (SrcTy->isRealFloatingType()) {
3076    if (DestTy->isRealFloatingType())
3077      return CastExpr::CK_FloatingCast;
3078    if (DestTy->isIntegerType())
3079      return CastExpr::CK_FloatingToIntegral;
3080  }
3081
3082  // FIXME: Assert here.
3083  // assert(false && "Unhandled cast combination!");
3084  return CastExpr::CK_Unknown;
3085}
3086
3087/// CheckCastTypes - Check type constraints for casting between types.
3088bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3089                          CastExpr::CastKind& Kind,
3090                          CXXMethodDecl *& ConversionDecl,
3091                          bool FunctionalStyle) {
3092  if (getLangOptions().CPlusPlus)
3093    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3094                              ConversionDecl);
3095
3096  DefaultFunctionArrayConversion(castExpr);
3097
3098  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3099  // type needs to be scalar.
3100  if (castType->isVoidType()) {
3101    // Cast to void allows any expr type.
3102    Kind = CastExpr::CK_ToVoid;
3103    return false;
3104  }
3105
3106  if (!castType->isScalarType() && !castType->isVectorType()) {
3107    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
3108        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
3109        (castType->isStructureType() || castType->isUnionType())) {
3110      // GCC struct/union extension: allow cast to self.
3111      // FIXME: Check that the cast destination type is complete.
3112      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3113        << castType << castExpr->getSourceRange();
3114      Kind = CastExpr::CK_NoOp;
3115      return false;
3116    }
3117
3118    if (castType->isUnionType()) {
3119      // GCC cast to union extension
3120      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3121      RecordDecl::field_iterator Field, FieldEnd;
3122      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3123           Field != FieldEnd; ++Field) {
3124        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
3125            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
3126          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3127            << castExpr->getSourceRange();
3128          break;
3129        }
3130      }
3131      if (Field == FieldEnd)
3132        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3133          << castExpr->getType() << castExpr->getSourceRange();
3134      Kind = CastExpr::CK_ToUnion;
3135      return false;
3136    }
3137
3138    // Reject any other conversions to non-scalar types.
3139    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3140      << castType << castExpr->getSourceRange();
3141  }
3142
3143  if (!castExpr->getType()->isScalarType() &&
3144      !castExpr->getType()->isVectorType()) {
3145    return Diag(castExpr->getLocStart(),
3146                diag::err_typecheck_expect_scalar_operand)
3147      << castExpr->getType() << castExpr->getSourceRange();
3148  }
3149
3150  if (castType->isExtVectorType())
3151    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3152
3153  if (castType->isVectorType())
3154    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3155  if (castExpr->getType()->isVectorType())
3156    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3157
3158  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3159    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3160
3161  if (isa<ObjCSelectorExpr>(castExpr))
3162    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3163
3164  if (!castType->isArithmeticType()) {
3165    QualType castExprType = castExpr->getType();
3166    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3167      return Diag(castExpr->getLocStart(),
3168                  diag::err_cast_pointer_from_non_pointer_int)
3169        << castExprType << castExpr->getSourceRange();
3170  } else if (!castExpr->getType()->isArithmeticType()) {
3171    if (!castType->isIntegralType() && castType->isArithmeticType())
3172      return Diag(castExpr->getLocStart(),
3173                  diag::err_cast_pointer_to_non_pointer_int)
3174        << castType << castExpr->getSourceRange();
3175  }
3176
3177  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3178  return false;
3179}
3180
3181bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3182                           CastExpr::CastKind &Kind) {
3183  assert(VectorTy->isVectorType() && "Not a vector type!");
3184
3185  if (Ty->isVectorType() || Ty->isIntegerType()) {
3186    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3187      return Diag(R.getBegin(),
3188                  Ty->isVectorType() ?
3189                  diag::err_invalid_conversion_between_vectors :
3190                  diag::err_invalid_conversion_between_vector_and_integer)
3191        << VectorTy << Ty << R;
3192  } else
3193    return Diag(R.getBegin(),
3194                diag::err_invalid_conversion_between_vector_and_scalar)
3195      << VectorTy << Ty << R;
3196
3197  Kind = CastExpr::CK_BitCast;
3198  return false;
3199}
3200
3201bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3202                              CastExpr::CastKind &Kind) {
3203  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3204
3205  QualType SrcTy = CastExpr->getType();
3206
3207  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3208  // an ExtVectorType.
3209  if (SrcTy->isVectorType()) {
3210    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3211      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3212        << DestTy << SrcTy << R;
3213    Kind = CastExpr::CK_BitCast;
3214    return false;
3215  }
3216
3217  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3218  // conversion will take place first from scalar to elt type, and then
3219  // splat from elt type to vector.
3220  if (SrcTy->isPointerType())
3221    return Diag(R.getBegin(),
3222                diag::err_invalid_conversion_between_vector_and_scalar)
3223      << DestTy << SrcTy << R;
3224
3225  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3226  ImpCastExprToType(CastExpr, DestElemTy,
3227                    getScalarCastKind(Context, SrcTy, DestElemTy));
3228
3229  Kind = CastExpr::CK_VectorSplat;
3230  return false;
3231}
3232
3233Action::OwningExprResult
3234Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3235                    SourceLocation RParenLoc, ExprArg Op) {
3236  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3237
3238  assert((Ty != 0) && (Op.get() != 0) &&
3239         "ActOnCastExpr(): missing type or expr");
3240
3241  Expr *castExpr = (Expr *)Op.get();
3242  //FIXME: Preserve type source info.
3243  QualType castType = GetTypeFromParser(Ty);
3244
3245  // If the Expr being casted is a ParenListExpr, handle it specially.
3246  if (isa<ParenListExpr>(castExpr))
3247    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3248  CXXMethodDecl *Method = 0;
3249  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3250                     Kind, Method))
3251    return ExprError();
3252
3253  if (Method) {
3254    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
3255                                                    Method, move(Op));
3256
3257    if (CastArg.isInvalid())
3258      return ExprError();
3259
3260    castExpr = CastArg.takeAs<Expr>();
3261  } else {
3262    Op.release();
3263  }
3264
3265  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3266                                            Kind, castExpr, castType,
3267                                            LParenLoc, RParenLoc));
3268}
3269
3270/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3271/// of comma binary operators.
3272Action::OwningExprResult
3273Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3274  Expr *expr = EA.takeAs<Expr>();
3275  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3276  if (!E)
3277    return Owned(expr);
3278
3279  OwningExprResult Result(*this, E->getExpr(0));
3280
3281  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3282    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3283                        Owned(E->getExpr(i)));
3284
3285  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3286}
3287
3288Action::OwningExprResult
3289Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3290                               SourceLocation RParenLoc, ExprArg Op,
3291                               QualType Ty) {
3292  ParenListExpr *PE = (ParenListExpr *)Op.get();
3293
3294  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3295  // then handle it as such.
3296  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3297    if (PE->getNumExprs() == 0) {
3298      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3299      return ExprError();
3300    }
3301
3302    llvm::SmallVector<Expr *, 8> initExprs;
3303    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3304      initExprs.push_back(PE->getExpr(i));
3305
3306    // FIXME: This means that pretty-printing the final AST will produce curly
3307    // braces instead of the original commas.
3308    Op.release();
3309    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3310                                                 initExprs.size(), RParenLoc);
3311    E->setType(Ty);
3312    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3313                                Owned(E));
3314  } else {
3315    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3316    // sequence of BinOp comma operators.
3317    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3318    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3319  }
3320}
3321
3322Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3323                                                  SourceLocation R,
3324                                                  MultiExprArg Val) {
3325  unsigned nexprs = Val.size();
3326  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3327  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3328  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3329  return Owned(expr);
3330}
3331
3332/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3333/// In that case, lhs = cond.
3334/// C99 6.5.15
3335QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3336                                        SourceLocation QuestionLoc) {
3337  // C++ is sufficiently different to merit its own checker.
3338  if (getLangOptions().CPlusPlus)
3339    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3340
3341  UsualUnaryConversions(Cond);
3342  UsualUnaryConversions(LHS);
3343  UsualUnaryConversions(RHS);
3344  QualType CondTy = Cond->getType();
3345  QualType LHSTy = LHS->getType();
3346  QualType RHSTy = RHS->getType();
3347
3348  // first, check the condition.
3349  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3350    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3351      << CondTy;
3352    return QualType();
3353  }
3354
3355  // Now check the two expressions.
3356  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3357    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3358
3359  // If both operands have arithmetic type, do the usual arithmetic conversions
3360  // to find a common type: C99 6.5.15p3,5.
3361  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3362    UsualArithmeticConversions(LHS, RHS);
3363    return LHS->getType();
3364  }
3365
3366  // If both operands are the same structure or union type, the result is that
3367  // type.
3368  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3369    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3370      if (LHSRT->getDecl() == RHSRT->getDecl())
3371        // "If both the operands have structure or union type, the result has
3372        // that type."  This implies that CV qualifiers are dropped.
3373        return LHSTy.getUnqualifiedType();
3374    // FIXME: Type of conditional expression must be complete in C mode.
3375  }
3376
3377  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3378  // The following || allows only one side to be void (a GCC-ism).
3379  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3380    if (!LHSTy->isVoidType())
3381      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3382        << RHS->getSourceRange();
3383    if (!RHSTy->isVoidType())
3384      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3385        << LHS->getSourceRange();
3386    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
3387    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
3388    return Context.VoidTy;
3389  }
3390  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3391  // the type of the other operand."
3392  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3393      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3394    // promote the null to a pointer.
3395    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
3396    return LHSTy;
3397  }
3398  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3399      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3400    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
3401    return RHSTy;
3402  }
3403  // Handle things like Class and struct objc_class*.  Here we case the result
3404  // to the pseudo-builtin, because that will be implicitly cast back to the
3405  // redefinition type if an attempt is made to access its fields.
3406  if (LHSTy->isObjCClassType() &&
3407      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3408    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3409    return LHSTy;
3410  }
3411  if (RHSTy->isObjCClassType() &&
3412      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3413    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3414    return RHSTy;
3415  }
3416  // And the same for struct objc_object* / id
3417  if (LHSTy->isObjCIdType() &&
3418      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3419    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3420    return LHSTy;
3421  }
3422  if (RHSTy->isObjCIdType() &&
3423      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3424    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3425    return RHSTy;
3426  }
3427  // Handle block pointer types.
3428  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3429    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3430      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3431        QualType destType = Context.getPointerType(Context.VoidTy);
3432        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3433        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3434        return destType;
3435      }
3436      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3437            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3438      return QualType();
3439    }
3440    // We have 2 block pointer types.
3441    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3442      // Two identical block pointer types are always compatible.
3443      return LHSTy;
3444    }
3445    // The block pointer types aren't identical, continue checking.
3446    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3447    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3448
3449    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3450                                    rhptee.getUnqualifiedType())) {
3451      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3452        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3453      // In this situation, we assume void* type. No especially good
3454      // reason, but this is what gcc does, and we do have to pick
3455      // to get a consistent AST.
3456      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3457      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3458      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3459      return incompatTy;
3460    }
3461    // The block pointer types are compatible.
3462    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3463    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3464    return LHSTy;
3465  }
3466  // Check constraints for Objective-C object pointers types.
3467  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3468
3469    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3470      // Two identical object pointer types are always compatible.
3471      return LHSTy;
3472    }
3473    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
3474    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
3475    QualType compositeType = LHSTy;
3476
3477    // If both operands are interfaces and either operand can be
3478    // assigned to the other, use that type as the composite
3479    // type. This allows
3480    //   xxx ? (A*) a : (B*) b
3481    // where B is a subclass of A.
3482    //
3483    // Additionally, as for assignment, if either type is 'id'
3484    // allow silent coercion. Finally, if the types are
3485    // incompatible then make sure to use 'id' as the composite
3486    // type so the result is acceptable for sending messages to.
3487
3488    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3489    // It could return the composite type.
3490    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3491      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3492    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3493      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3494    } else if ((LHSTy->isObjCQualifiedIdType() ||
3495                RHSTy->isObjCQualifiedIdType()) &&
3496                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3497      // Need to handle "id<xx>" explicitly.
3498      // GCC allows qualified id and any Objective-C type to devolve to
3499      // id. Currently localizing to here until clear this should be
3500      // part of ObjCQualifiedIdTypesAreCompatible.
3501      compositeType = Context.getObjCIdType();
3502    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3503      compositeType = Context.getObjCIdType();
3504    } else if (!(compositeType =
3505                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
3506      ;
3507    else {
3508      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3509        << LHSTy << RHSTy
3510        << LHS->getSourceRange() << RHS->getSourceRange();
3511      QualType incompatTy = Context.getObjCIdType();
3512      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3513      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3514      return incompatTy;
3515    }
3516    // The object pointer types are compatible.
3517    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
3518    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
3519    return compositeType;
3520  }
3521  // Check Objective-C object pointer types and 'void *'
3522  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3523    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3524    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3525    QualType destPointee
3526      = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3527    QualType destType = Context.getPointerType(destPointee);
3528    // Add qualifiers if necessary.
3529    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3530    // Promote to void*.
3531    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3532    return destType;
3533  }
3534  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3535    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3536    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3537    QualType destPointee
3538      = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3539    QualType destType = Context.getPointerType(destPointee);
3540    // Add qualifiers if necessary.
3541    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3542    // Promote to void*.
3543    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3544    return destType;
3545  }
3546  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3547  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3548    // get the "pointed to" types
3549    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3550    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3551
3552    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3553    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3554      // Figure out necessary qualifiers (C99 6.5.15p6)
3555      QualType destPointee
3556        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3557      QualType destType = Context.getPointerType(destPointee);
3558      // Add qualifiers if necessary.
3559      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3560      // Promote to void*.
3561      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3562      return destType;
3563    }
3564    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3565      QualType destPointee
3566        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3567      QualType destType = Context.getPointerType(destPointee);
3568      // Add qualifiers if necessary.
3569      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3570      // Promote to void*.
3571      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3572      return destType;
3573    }
3574
3575    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3576      // Two identical pointer types are always compatible.
3577      return LHSTy;
3578    }
3579    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3580                                    rhptee.getUnqualifiedType())) {
3581      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3582        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3583      // In this situation, we assume void* type. No especially good
3584      // reason, but this is what gcc does, and we do have to pick
3585      // to get a consistent AST.
3586      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3587      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3588      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3589      return incompatTy;
3590    }
3591    // The pointer types are compatible.
3592    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3593    // differently qualified versions of compatible types, the result type is
3594    // a pointer to an appropriately qualified version of the *composite*
3595    // type.
3596    // FIXME: Need to calculate the composite type.
3597    // FIXME: Need to add qualifiers
3598    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3599    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3600    return LHSTy;
3601  }
3602
3603  // GCC compatibility: soften pointer/integer mismatch.
3604  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3605    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3606      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3607    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
3608    return RHSTy;
3609  }
3610  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3611    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3612      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3613    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
3614    return LHSTy;
3615  }
3616
3617  // Otherwise, the operands are not compatible.
3618  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3619    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3620  return QualType();
3621}
3622
3623/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3624/// in the case of a the GNU conditional expr extension.
3625Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3626                                                  SourceLocation ColonLoc,
3627                                                  ExprArg Cond, ExprArg LHS,
3628                                                  ExprArg RHS) {
3629  Expr *CondExpr = (Expr *) Cond.get();
3630  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3631
3632  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3633  // was the condition.
3634  bool isLHSNull = LHSExpr == 0;
3635  if (isLHSNull)
3636    LHSExpr = CondExpr;
3637
3638  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3639                                             RHSExpr, QuestionLoc);
3640  if (result.isNull())
3641    return ExprError();
3642
3643  Cond.release();
3644  LHS.release();
3645  RHS.release();
3646  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3647                                                 isLHSNull ? 0 : LHSExpr,
3648                                                 ColonLoc, RHSExpr, result));
3649}
3650
3651// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3652// being closely modeled after the C99 spec:-). The odd characteristic of this
3653// routine is it effectively iqnores the qualifiers on the top level pointee.
3654// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3655// FIXME: add a couple examples in this comment.
3656Sema::AssignConvertType
3657Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3658  QualType lhptee, rhptee;
3659
3660  if ((lhsType->isObjCClassType() &&
3661       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3662     (rhsType->isObjCClassType() &&
3663       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3664      return Compatible;
3665  }
3666
3667  // get the "pointed to" type (ignoring qualifiers at the top level)
3668  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3669  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3670
3671  // make sure we operate on the canonical type
3672  lhptee = Context.getCanonicalType(lhptee);
3673  rhptee = Context.getCanonicalType(rhptee);
3674
3675  AssignConvertType ConvTy = Compatible;
3676
3677  // C99 6.5.16.1p1: This following citation is common to constraints
3678  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3679  // qualifiers of the type *pointed to* by the right;
3680  // FIXME: Handle ExtQualType
3681  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3682    ConvTy = CompatiblePointerDiscardsQualifiers;
3683
3684  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3685  // incomplete type and the other is a pointer to a qualified or unqualified
3686  // version of void...
3687  if (lhptee->isVoidType()) {
3688    if (rhptee->isIncompleteOrObjectType())
3689      return ConvTy;
3690
3691    // As an extension, we allow cast to/from void* to function pointer.
3692    assert(rhptee->isFunctionType());
3693    return FunctionVoidPointer;
3694  }
3695
3696  if (rhptee->isVoidType()) {
3697    if (lhptee->isIncompleteOrObjectType())
3698      return ConvTy;
3699
3700    // As an extension, we allow cast to/from void* to function pointer.
3701    assert(lhptee->isFunctionType());
3702    return FunctionVoidPointer;
3703  }
3704  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3705  // unqualified versions of compatible types, ...
3706  lhptee = lhptee.getUnqualifiedType();
3707  rhptee = rhptee.getUnqualifiedType();
3708  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3709    // Check if the pointee types are compatible ignoring the sign.
3710    // We explicitly check for char so that we catch "char" vs
3711    // "unsigned char" on systems where "char" is unsigned.
3712    if (lhptee->isCharType())
3713      lhptee = Context.UnsignedCharTy;
3714    else if (lhptee->isSignedIntegerType())
3715      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3716
3717    if (rhptee->isCharType())
3718      rhptee = Context.UnsignedCharTy;
3719    else if (rhptee->isSignedIntegerType())
3720      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3721
3722    if (lhptee == rhptee) {
3723      // Types are compatible ignoring the sign. Qualifier incompatibility
3724      // takes priority over sign incompatibility because the sign
3725      // warning can be disabled.
3726      if (ConvTy != Compatible)
3727        return ConvTy;
3728      return IncompatiblePointerSign;
3729    }
3730    // General pointer incompatibility takes priority over qualifiers.
3731    return IncompatiblePointer;
3732  }
3733  return ConvTy;
3734}
3735
3736/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3737/// block pointer types are compatible or whether a block and normal pointer
3738/// are compatible. It is more restrict than comparing two function pointer
3739// types.
3740Sema::AssignConvertType
3741Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3742                                          QualType rhsType) {
3743  QualType lhptee, rhptee;
3744
3745  // get the "pointed to" type (ignoring qualifiers at the top level)
3746  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3747  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3748
3749  // make sure we operate on the canonical type
3750  lhptee = Context.getCanonicalType(lhptee);
3751  rhptee = Context.getCanonicalType(rhptee);
3752
3753  AssignConvertType ConvTy = Compatible;
3754
3755  // For blocks we enforce that qualifiers are identical.
3756  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3757    ConvTy = CompatiblePointerDiscardsQualifiers;
3758
3759  if (!Context.typesAreCompatible(lhptee, rhptee))
3760    return IncompatibleBlockPointer;
3761  return ConvTy;
3762}
3763
3764/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3765/// has code to accommodate several GCC extensions when type checking
3766/// pointers. Here are some objectionable examples that GCC considers warnings:
3767///
3768///  int a, *pint;
3769///  short *pshort;
3770///  struct foo *pfoo;
3771///
3772///  pint = pshort; // warning: assignment from incompatible pointer type
3773///  a = pint; // warning: assignment makes integer from pointer without a cast
3774///  pint = a; // warning: assignment makes pointer from integer without a cast
3775///  pint = pfoo; // warning: assignment from incompatible pointer type
3776///
3777/// As a result, the code for dealing with pointers is more complex than the
3778/// C99 spec dictates.
3779///
3780Sema::AssignConvertType
3781Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3782  // Get canonical types.  We're not formatting these types, just comparing
3783  // them.
3784  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3785  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3786
3787  if (lhsType == rhsType)
3788    return Compatible; // Common case: fast path an exact match.
3789
3790  if ((lhsType->isObjCClassType() &&
3791       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3792     (rhsType->isObjCClassType() &&
3793       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3794      return Compatible;
3795  }
3796
3797  // If the left-hand side is a reference type, then we are in a
3798  // (rare!) case where we've allowed the use of references in C,
3799  // e.g., as a parameter type in a built-in function. In this case,
3800  // just make sure that the type referenced is compatible with the
3801  // right-hand side type. The caller is responsible for adjusting
3802  // lhsType so that the resulting expression does not have reference
3803  // type.
3804  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3805    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3806      return Compatible;
3807    return Incompatible;
3808  }
3809  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3810  // to the same ExtVector type.
3811  if (lhsType->isExtVectorType()) {
3812    if (rhsType->isExtVectorType())
3813      return lhsType == rhsType ? Compatible : Incompatible;
3814    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3815      return Compatible;
3816  }
3817
3818  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3819    // If we are allowing lax vector conversions, and LHS and RHS are both
3820    // vectors, the total size only needs to be the same. This is a bitcast;
3821    // no bits are changed but the result type is different.
3822    if (getLangOptions().LaxVectorConversions &&
3823        lhsType->isVectorType() && rhsType->isVectorType()) {
3824      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3825        return IncompatibleVectors;
3826    }
3827    return Incompatible;
3828  }
3829
3830  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3831    return Compatible;
3832
3833  if (isa<PointerType>(lhsType)) {
3834    if (rhsType->isIntegerType())
3835      return IntToPointer;
3836
3837    if (isa<PointerType>(rhsType))
3838      return CheckPointerTypesForAssignment(lhsType, rhsType);
3839
3840    // In general, C pointers are not compatible with ObjC object pointers.
3841    if (isa<ObjCObjectPointerType>(rhsType)) {
3842      if (lhsType->isVoidPointerType()) // an exception to the rule.
3843        return Compatible;
3844      return IncompatiblePointer;
3845    }
3846    if (rhsType->getAs<BlockPointerType>()) {
3847      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3848        return Compatible;
3849
3850      // Treat block pointers as objects.
3851      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3852        return Compatible;
3853    }
3854    return Incompatible;
3855  }
3856
3857  if (isa<BlockPointerType>(lhsType)) {
3858    if (rhsType->isIntegerType())
3859      return IntToBlockPointer;
3860
3861    // Treat block pointers as objects.
3862    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3863      return Compatible;
3864
3865    if (rhsType->isBlockPointerType())
3866      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3867
3868    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3869      if (RHSPT->getPointeeType()->isVoidType())
3870        return Compatible;
3871    }
3872    return Incompatible;
3873  }
3874
3875  if (isa<ObjCObjectPointerType>(lhsType)) {
3876    if (rhsType->isIntegerType())
3877      return IntToPointer;
3878
3879    // In general, C pointers are not compatible with ObjC object pointers.
3880    if (isa<PointerType>(rhsType)) {
3881      if (rhsType->isVoidPointerType()) // an exception to the rule.
3882        return Compatible;
3883      return IncompatiblePointer;
3884    }
3885    if (rhsType->isObjCObjectPointerType()) {
3886      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3887        return Compatible;
3888      if (Context.typesAreCompatible(lhsType, rhsType))
3889        return Compatible;
3890      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3891        return IncompatibleObjCQualifiedId;
3892      return IncompatiblePointer;
3893    }
3894    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3895      if (RHSPT->getPointeeType()->isVoidType())
3896        return Compatible;
3897    }
3898    // Treat block pointers as objects.
3899    if (rhsType->isBlockPointerType())
3900      return Compatible;
3901    return Incompatible;
3902  }
3903  if (isa<PointerType>(rhsType)) {
3904    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3905    if (lhsType == Context.BoolTy)
3906      return Compatible;
3907
3908    if (lhsType->isIntegerType())
3909      return PointerToInt;
3910
3911    if (isa<PointerType>(lhsType))
3912      return CheckPointerTypesForAssignment(lhsType, rhsType);
3913
3914    if (isa<BlockPointerType>(lhsType) &&
3915        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3916      return Compatible;
3917    return Incompatible;
3918  }
3919  if (isa<ObjCObjectPointerType>(rhsType)) {
3920    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3921    if (lhsType == Context.BoolTy)
3922      return Compatible;
3923
3924    if (lhsType->isIntegerType())
3925      return PointerToInt;
3926
3927    // In general, C pointers are not compatible with ObjC object pointers.
3928    if (isa<PointerType>(lhsType)) {
3929      if (lhsType->isVoidPointerType()) // an exception to the rule.
3930        return Compatible;
3931      return IncompatiblePointer;
3932    }
3933    if (isa<BlockPointerType>(lhsType) &&
3934        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3935      return Compatible;
3936    return Incompatible;
3937  }
3938
3939  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3940    if (Context.typesAreCompatible(lhsType, rhsType))
3941      return Compatible;
3942  }
3943  return Incompatible;
3944}
3945
3946/// \brief Constructs a transparent union from an expression that is
3947/// used to initialize the transparent union.
3948static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3949                                      QualType UnionType, FieldDecl *Field) {
3950  // Build an initializer list that designates the appropriate member
3951  // of the transparent union.
3952  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3953                                                   &E, 1,
3954                                                   SourceLocation());
3955  Initializer->setType(UnionType);
3956  Initializer->setInitializedFieldInUnion(Field);
3957
3958  // Build a compound literal constructing a value of the transparent
3959  // union type from this initializer list.
3960  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3961                                  false);
3962}
3963
3964Sema::AssignConvertType
3965Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3966  QualType FromType = rExpr->getType();
3967
3968  // If the ArgType is a Union type, we want to handle a potential
3969  // transparent_union GCC extension.
3970  const RecordType *UT = ArgType->getAsUnionType();
3971  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3972    return Incompatible;
3973
3974  // The field to initialize within the transparent union.
3975  RecordDecl *UD = UT->getDecl();
3976  FieldDecl *InitField = 0;
3977  // It's compatible if the expression matches any of the fields.
3978  for (RecordDecl::field_iterator it = UD->field_begin(),
3979         itend = UD->field_end();
3980       it != itend; ++it) {
3981    if (it->getType()->isPointerType()) {
3982      // If the transparent union contains a pointer type, we allow:
3983      // 1) void pointer
3984      // 2) null pointer constant
3985      if (FromType->isPointerType())
3986        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
3987          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
3988          InitField = *it;
3989          break;
3990        }
3991
3992      if (rExpr->isNullPointerConstant(Context,
3993                                       Expr::NPC_ValueDependentIsNull)) {
3994        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
3995        InitField = *it;
3996        break;
3997      }
3998    }
3999
4000    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4001          == Compatible) {
4002      InitField = *it;
4003      break;
4004    }
4005  }
4006
4007  if (!InitField)
4008    return Incompatible;
4009
4010  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4011  return Compatible;
4012}
4013
4014Sema::AssignConvertType
4015Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4016  if (getLangOptions().CPlusPlus) {
4017    if (!lhsType->isRecordType()) {
4018      // C++ 5.17p3: If the left operand is not of class type, the
4019      // expression is implicitly converted (C++ 4) to the
4020      // cv-unqualified type of the left operand.
4021      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4022                                    "assigning"))
4023        return Incompatible;
4024      return Compatible;
4025    }
4026
4027    // FIXME: Currently, we fall through and treat C++ classes like C
4028    // structures.
4029  }
4030
4031  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4032  // a null pointer constant.
4033  if ((lhsType->isPointerType() ||
4034       lhsType->isObjCObjectPointerType() ||
4035       lhsType->isBlockPointerType())
4036      && rExpr->isNullPointerConstant(Context,
4037                                      Expr::NPC_ValueDependentIsNull)) {
4038    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4039    return Compatible;
4040  }
4041
4042  // This check seems unnatural, however it is necessary to ensure the proper
4043  // conversion of functions/arrays. If the conversion were done for all
4044  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4045  // expressions that surpress this implicit conversion (&, sizeof).
4046  //
4047  // Suppress this for references: C++ 8.5.3p5.
4048  if (!lhsType->isReferenceType())
4049    DefaultFunctionArrayConversion(rExpr);
4050
4051  Sema::AssignConvertType result =
4052    CheckAssignmentConstraints(lhsType, rExpr->getType());
4053
4054  // C99 6.5.16.1p2: The value of the right operand is converted to the
4055  // type of the assignment expression.
4056  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4057  // so that we can use references in built-in functions even in C.
4058  // The getNonReferenceType() call makes sure that the resulting expression
4059  // does not have reference type.
4060  if (result != Incompatible && rExpr->getType() != lhsType)
4061    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4062                      CastExpr::CK_Unknown);
4063  return result;
4064}
4065
4066QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4067  Diag(Loc, diag::err_typecheck_invalid_operands)
4068    << lex->getType() << rex->getType()
4069    << lex->getSourceRange() << rex->getSourceRange();
4070  return QualType();
4071}
4072
4073inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
4074                                                              Expr *&rex) {
4075  // For conversion purposes, we ignore any qualifiers.
4076  // For example, "const float" and "float" are equivalent.
4077  QualType lhsType =
4078    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4079  QualType rhsType =
4080    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4081
4082  // If the vector types are identical, return.
4083  if (lhsType == rhsType)
4084    return lhsType;
4085
4086  // Handle the case of a vector & extvector type of the same size and element
4087  // type.  It would be nice if we only had one vector type someday.
4088  if (getLangOptions().LaxVectorConversions) {
4089    // FIXME: Should we warn here?
4090    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4091      if (const VectorType *RV = rhsType->getAs<VectorType>())
4092        if (LV->getElementType() == RV->getElementType() &&
4093            LV->getNumElements() == RV->getNumElements()) {
4094          return lhsType->isExtVectorType() ? lhsType : rhsType;
4095        }
4096    }
4097  }
4098
4099  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4100  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4101  bool swapped = false;
4102  if (rhsType->isExtVectorType()) {
4103    swapped = true;
4104    std::swap(rex, lex);
4105    std::swap(rhsType, lhsType);
4106  }
4107
4108  // Handle the case of an ext vector and scalar.
4109  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4110    QualType EltTy = LV->getElementType();
4111    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4112      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4113        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4114        if (swapped) std::swap(rex, lex);
4115        return lhsType;
4116      }
4117    }
4118    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4119        rhsType->isRealFloatingType()) {
4120      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4121        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4122        if (swapped) std::swap(rex, lex);
4123        return lhsType;
4124      }
4125    }
4126  }
4127
4128  // Vectors of different size or scalar and non-ext-vector are errors.
4129  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4130    << lex->getType() << rex->getType()
4131    << lex->getSourceRange() << rex->getSourceRange();
4132  return QualType();
4133}
4134
4135inline QualType Sema::CheckMultiplyDivideOperands(
4136  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4137  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4138    return CheckVectorOperands(Loc, lex, rex);
4139
4140  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4141
4142  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4143    return compType;
4144  return InvalidOperands(Loc, lex, rex);
4145}
4146
4147inline QualType Sema::CheckRemainderOperands(
4148  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4149  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4150    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4151      return CheckVectorOperands(Loc, lex, rex);
4152    return InvalidOperands(Loc, lex, rex);
4153  }
4154
4155  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4156
4157  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4158    return compType;
4159  return InvalidOperands(Loc, lex, rex);
4160}
4161
4162inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
4163  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4164  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4165    QualType compType = CheckVectorOperands(Loc, lex, rex);
4166    if (CompLHSTy) *CompLHSTy = compType;
4167    return compType;
4168  }
4169
4170  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4171
4172  // handle the common case first (both operands are arithmetic).
4173  if (lex->getType()->isArithmeticType() &&
4174      rex->getType()->isArithmeticType()) {
4175    if (CompLHSTy) *CompLHSTy = compType;
4176    return compType;
4177  }
4178
4179  // Put any potential pointer into PExp
4180  Expr* PExp = lex, *IExp = rex;
4181  if (IExp->getType()->isAnyPointerType())
4182    std::swap(PExp, IExp);
4183
4184  if (PExp->getType()->isAnyPointerType()) {
4185
4186    if (IExp->getType()->isIntegerType()) {
4187      QualType PointeeTy = PExp->getType()->getPointeeType();
4188
4189      // Check for arithmetic on pointers to incomplete types.
4190      if (PointeeTy->isVoidType()) {
4191        if (getLangOptions().CPlusPlus) {
4192          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4193            << lex->getSourceRange() << rex->getSourceRange();
4194          return QualType();
4195        }
4196
4197        // GNU extension: arithmetic on pointer to void
4198        Diag(Loc, diag::ext_gnu_void_ptr)
4199          << lex->getSourceRange() << rex->getSourceRange();
4200      } else if (PointeeTy->isFunctionType()) {
4201        if (getLangOptions().CPlusPlus) {
4202          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4203            << lex->getType() << lex->getSourceRange();
4204          return QualType();
4205        }
4206
4207        // GNU extension: arithmetic on pointer to function
4208        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4209          << lex->getType() << lex->getSourceRange();
4210      } else {
4211        // Check if we require a complete type.
4212        if (((PExp->getType()->isPointerType() &&
4213              !PExp->getType()->isDependentType()) ||
4214              PExp->getType()->isObjCObjectPointerType()) &&
4215             RequireCompleteType(Loc, PointeeTy,
4216                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4217                             << PExp->getSourceRange()
4218                             << PExp->getType()))
4219          return QualType();
4220      }
4221      // Diagnose bad cases where we step over interface counts.
4222      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4223        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4224          << PointeeTy << PExp->getSourceRange();
4225        return QualType();
4226      }
4227
4228      if (CompLHSTy) {
4229        QualType LHSTy = Context.isPromotableBitField(lex);
4230        if (LHSTy.isNull()) {
4231          LHSTy = lex->getType();
4232          if (LHSTy->isPromotableIntegerType())
4233            LHSTy = Context.getPromotedIntegerType(LHSTy);
4234        }
4235        *CompLHSTy = LHSTy;
4236      }
4237      return PExp->getType();
4238    }
4239  }
4240
4241  return InvalidOperands(Loc, lex, rex);
4242}
4243
4244// C99 6.5.6
4245QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4246                                        SourceLocation Loc, QualType* CompLHSTy) {
4247  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4248    QualType compType = CheckVectorOperands(Loc, lex, rex);
4249    if (CompLHSTy) *CompLHSTy = compType;
4250    return compType;
4251  }
4252
4253  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4254
4255  // Enforce type constraints: C99 6.5.6p3.
4256
4257  // Handle the common case first (both operands are arithmetic).
4258  if (lex->getType()->isArithmeticType()
4259      && rex->getType()->isArithmeticType()) {
4260    if (CompLHSTy) *CompLHSTy = compType;
4261    return compType;
4262  }
4263
4264  // Either ptr - int   or   ptr - ptr.
4265  if (lex->getType()->isAnyPointerType()) {
4266    QualType lpointee = lex->getType()->getPointeeType();
4267
4268    // The LHS must be an completely-defined object type.
4269
4270    bool ComplainAboutVoid = false;
4271    Expr *ComplainAboutFunc = 0;
4272    if (lpointee->isVoidType()) {
4273      if (getLangOptions().CPlusPlus) {
4274        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4275          << lex->getSourceRange() << rex->getSourceRange();
4276        return QualType();
4277      }
4278
4279      // GNU C extension: arithmetic on pointer to void
4280      ComplainAboutVoid = true;
4281    } else if (lpointee->isFunctionType()) {
4282      if (getLangOptions().CPlusPlus) {
4283        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4284          << lex->getType() << lex->getSourceRange();
4285        return QualType();
4286      }
4287
4288      // GNU C extension: arithmetic on pointer to function
4289      ComplainAboutFunc = lex;
4290    } else if (!lpointee->isDependentType() &&
4291               RequireCompleteType(Loc, lpointee,
4292                                   PDiag(diag::err_typecheck_sub_ptr_object)
4293                                     << lex->getSourceRange()
4294                                     << lex->getType()))
4295      return QualType();
4296
4297    // Diagnose bad cases where we step over interface counts.
4298    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4299      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4300        << lpointee << lex->getSourceRange();
4301      return QualType();
4302    }
4303
4304    // The result type of a pointer-int computation is the pointer type.
4305    if (rex->getType()->isIntegerType()) {
4306      if (ComplainAboutVoid)
4307        Diag(Loc, diag::ext_gnu_void_ptr)
4308          << lex->getSourceRange() << rex->getSourceRange();
4309      if (ComplainAboutFunc)
4310        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4311          << ComplainAboutFunc->getType()
4312          << ComplainAboutFunc->getSourceRange();
4313
4314      if (CompLHSTy) *CompLHSTy = lex->getType();
4315      return lex->getType();
4316    }
4317
4318    // Handle pointer-pointer subtractions.
4319    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4320      QualType rpointee = RHSPTy->getPointeeType();
4321
4322      // RHS must be a completely-type object type.
4323      // Handle the GNU void* extension.
4324      if (rpointee->isVoidType()) {
4325        if (getLangOptions().CPlusPlus) {
4326          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4327            << lex->getSourceRange() << rex->getSourceRange();
4328          return QualType();
4329        }
4330
4331        ComplainAboutVoid = true;
4332      } else if (rpointee->isFunctionType()) {
4333        if (getLangOptions().CPlusPlus) {
4334          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4335            << rex->getType() << rex->getSourceRange();
4336          return QualType();
4337        }
4338
4339        // GNU extension: arithmetic on pointer to function
4340        if (!ComplainAboutFunc)
4341          ComplainAboutFunc = rex;
4342      } else if (!rpointee->isDependentType() &&
4343                 RequireCompleteType(Loc, rpointee,
4344                                     PDiag(diag::err_typecheck_sub_ptr_object)
4345                                       << rex->getSourceRange()
4346                                       << rex->getType()))
4347        return QualType();
4348
4349      if (getLangOptions().CPlusPlus) {
4350        // Pointee types must be the same: C++ [expr.add]
4351        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4352          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4353            << lex->getType() << rex->getType()
4354            << lex->getSourceRange() << rex->getSourceRange();
4355          return QualType();
4356        }
4357      } else {
4358        // Pointee types must be compatible C99 6.5.6p3
4359        if (!Context.typesAreCompatible(
4360                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4361                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4362          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4363            << lex->getType() << rex->getType()
4364            << lex->getSourceRange() << rex->getSourceRange();
4365          return QualType();
4366        }
4367      }
4368
4369      if (ComplainAboutVoid)
4370        Diag(Loc, diag::ext_gnu_void_ptr)
4371          << lex->getSourceRange() << rex->getSourceRange();
4372      if (ComplainAboutFunc)
4373        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4374          << ComplainAboutFunc->getType()
4375          << ComplainAboutFunc->getSourceRange();
4376
4377      if (CompLHSTy) *CompLHSTy = lex->getType();
4378      return Context.getPointerDiffType();
4379    }
4380  }
4381
4382  return InvalidOperands(Loc, lex, rex);
4383}
4384
4385// C99 6.5.7
4386QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4387                                  bool isCompAssign) {
4388  // C99 6.5.7p2: Each of the operands shall have integer type.
4389  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4390    return InvalidOperands(Loc, lex, rex);
4391
4392  // Vector shifts promote their scalar inputs to vector type.
4393  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4394    return CheckVectorOperands(Loc, lex, rex);
4395
4396  // Shifts don't perform usual arithmetic conversions, they just do integer
4397  // promotions on each operand. C99 6.5.7p3
4398  QualType LHSTy = Context.isPromotableBitField(lex);
4399  if (LHSTy.isNull()) {
4400    LHSTy = lex->getType();
4401    if (LHSTy->isPromotableIntegerType())
4402      LHSTy = Context.getPromotedIntegerType(LHSTy);
4403  }
4404  if (!isCompAssign)
4405    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
4406
4407  UsualUnaryConversions(rex);
4408
4409  // Sanity-check shift operands
4410  llvm::APSInt Right;
4411  // Check right/shifter operand
4412  if (!rex->isValueDependent() &&
4413      rex->isIntegerConstantExpr(Right, Context)) {
4414    if (Right.isNegative())
4415      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4416    else {
4417      llvm::APInt LeftBits(Right.getBitWidth(),
4418                          Context.getTypeSize(lex->getType()));
4419      if (Right.uge(LeftBits))
4420        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4421    }
4422  }
4423
4424  // "The type of the result is that of the promoted left operand."
4425  return LHSTy;
4426}
4427
4428// C99 6.5.8, C++ [expr.rel]
4429QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4430                                    unsigned OpaqueOpc, bool isRelational) {
4431  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4432
4433  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4434    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4435
4436  // C99 6.5.8p3 / C99 6.5.9p4
4437  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4438    UsualArithmeticConversions(lex, rex);
4439  else {
4440    UsualUnaryConversions(lex);
4441    UsualUnaryConversions(rex);
4442  }
4443  QualType lType = lex->getType();
4444  QualType rType = rex->getType();
4445
4446  if (!lType->isFloatingType()
4447      && !(lType->isBlockPointerType() && isRelational)) {
4448    // For non-floating point types, check for self-comparisons of the form
4449    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4450    // often indicate logic errors in the program.
4451    // NOTE: Don't warn about comparisons of enum constants. These can arise
4452    //  from macro expansions, and are usually quite deliberate.
4453    Expr *LHSStripped = lex->IgnoreParens();
4454    Expr *RHSStripped = rex->IgnoreParens();
4455    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4456      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4457        if (DRL->getDecl() == DRR->getDecl() &&
4458            !isa<EnumConstantDecl>(DRL->getDecl()))
4459          Diag(Loc, diag::warn_selfcomparison);
4460
4461    if (isa<CastExpr>(LHSStripped))
4462      LHSStripped = LHSStripped->IgnoreParenCasts();
4463    if (isa<CastExpr>(RHSStripped))
4464      RHSStripped = RHSStripped->IgnoreParenCasts();
4465
4466    // Warn about comparisons against a string constant (unless the other
4467    // operand is null), the user probably wants strcmp.
4468    Expr *literalString = 0;
4469    Expr *literalStringStripped = 0;
4470    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4471        !RHSStripped->isNullPointerConstant(Context,
4472                                            Expr::NPC_ValueDependentIsNull)) {
4473      literalString = lex;
4474      literalStringStripped = LHSStripped;
4475    } else if ((isa<StringLiteral>(RHSStripped) ||
4476                isa<ObjCEncodeExpr>(RHSStripped)) &&
4477               !LHSStripped->isNullPointerConstant(Context,
4478                                            Expr::NPC_ValueDependentIsNull)) {
4479      literalString = rex;
4480      literalStringStripped = RHSStripped;
4481    }
4482
4483    if (literalString) {
4484      std::string resultComparison;
4485      switch (Opc) {
4486      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4487      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4488      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4489      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4490      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4491      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4492      default: assert(false && "Invalid comparison operator");
4493      }
4494      Diag(Loc, diag::warn_stringcompare)
4495        << isa<ObjCEncodeExpr>(literalStringStripped)
4496        << literalString->getSourceRange()
4497        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4498        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4499                                                 "strcmp(")
4500        << CodeModificationHint::CreateInsertion(
4501                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4502                                       resultComparison);
4503    }
4504  }
4505
4506  // The result of comparisons is 'bool' in C++, 'int' in C.
4507  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4508
4509  if (isRelational) {
4510    if (lType->isRealType() && rType->isRealType())
4511      return ResultTy;
4512  } else {
4513    // Check for comparisons of floating point operands using != and ==.
4514    if (lType->isFloatingType()) {
4515      assert(rType->isFloatingType());
4516      CheckFloatComparison(Loc,lex,rex);
4517    }
4518
4519    if (lType->isArithmeticType() && rType->isArithmeticType())
4520      return ResultTy;
4521  }
4522
4523  bool LHSIsNull = lex->isNullPointerConstant(Context,
4524                                              Expr::NPC_ValueDependentIsNull);
4525  bool RHSIsNull = rex->isNullPointerConstant(Context,
4526                                              Expr::NPC_ValueDependentIsNull);
4527
4528  // All of the following pointer related warnings are GCC extensions, except
4529  // when handling null pointer constants. One day, we can consider making them
4530  // errors (when -pedantic-errors is enabled).
4531  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4532    QualType LCanPointeeTy =
4533      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4534    QualType RCanPointeeTy =
4535      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4536
4537    if (getLangOptions().CPlusPlus) {
4538      if (LCanPointeeTy == RCanPointeeTy)
4539        return ResultTy;
4540
4541      // C++ [expr.rel]p2:
4542      //   [...] Pointer conversions (4.10) and qualification
4543      //   conversions (4.4) are performed on pointer operands (or on
4544      //   a pointer operand and a null pointer constant) to bring
4545      //   them to their composite pointer type. [...]
4546      //
4547      // C++ [expr.eq]p1 uses the same notion for (in)equality
4548      // comparisons of pointers.
4549      QualType T = FindCompositePointerType(lex, rex);
4550      if (T.isNull()) {
4551        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4552          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4553        return QualType();
4554      }
4555
4556      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4557      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4558      return ResultTy;
4559    }
4560    // C99 6.5.9p2 and C99 6.5.8p2
4561    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4562                                   RCanPointeeTy.getUnqualifiedType())) {
4563      // Valid unless a relational comparison of function pointers
4564      if (isRelational && LCanPointeeTy->isFunctionType()) {
4565        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4566          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4567      }
4568    } else if (!isRelational &&
4569               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4570      // Valid unless comparison between non-null pointer and function pointer
4571      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4572          && !LHSIsNull && !RHSIsNull) {
4573        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4574          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4575      }
4576    } else {
4577      // Invalid
4578      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4579        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4580    }
4581    if (LCanPointeeTy != RCanPointeeTy)
4582      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4583    return ResultTy;
4584  }
4585
4586  if (getLangOptions().CPlusPlus) {
4587    // Comparison of pointers with null pointer constants and equality
4588    // comparisons of member pointers to null pointer constants.
4589    if (RHSIsNull &&
4590        (lType->isPointerType() ||
4591         (!isRelational && lType->isMemberPointerType()))) {
4592      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4593      return ResultTy;
4594    }
4595    if (LHSIsNull &&
4596        (rType->isPointerType() ||
4597         (!isRelational && rType->isMemberPointerType()))) {
4598      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4599      return ResultTy;
4600    }
4601
4602    // Comparison of member pointers.
4603    if (!isRelational &&
4604        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4605      // C++ [expr.eq]p2:
4606      //   In addition, pointers to members can be compared, or a pointer to
4607      //   member and a null pointer constant. Pointer to member conversions
4608      //   (4.11) and qualification conversions (4.4) are performed to bring
4609      //   them to a common type. If one operand is a null pointer constant,
4610      //   the common type is the type of the other operand. Otherwise, the
4611      //   common type is a pointer to member type similar (4.4) to the type
4612      //   of one of the operands, with a cv-qualification signature (4.4)
4613      //   that is the union of the cv-qualification signatures of the operand
4614      //   types.
4615      QualType T = FindCompositePointerType(lex, rex);
4616      if (T.isNull()) {
4617        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4618        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4619        return QualType();
4620      }
4621
4622      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4623      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4624      return ResultTy;
4625    }
4626
4627    // Comparison of nullptr_t with itself.
4628    if (lType->isNullPtrType() && rType->isNullPtrType())
4629      return ResultTy;
4630  }
4631
4632  // Handle block pointer types.
4633  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4634    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4635    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4636
4637    if (!LHSIsNull && !RHSIsNull &&
4638        !Context.typesAreCompatible(lpointee, rpointee)) {
4639      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4640        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4641    }
4642    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4643    return ResultTy;
4644  }
4645  // Allow block pointers to be compared with null pointer constants.
4646  if (!isRelational
4647      && ((lType->isBlockPointerType() && rType->isPointerType())
4648          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4649    if (!LHSIsNull && !RHSIsNull) {
4650      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4651             ->getPointeeType()->isVoidType())
4652            || (lType->isPointerType() && lType->getAs<PointerType>()
4653                ->getPointeeType()->isVoidType())))
4654        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4655          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4656    }
4657    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4658    return ResultTy;
4659  }
4660
4661  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4662    if (lType->isPointerType() || rType->isPointerType()) {
4663      const PointerType *LPT = lType->getAs<PointerType>();
4664      const PointerType *RPT = rType->getAs<PointerType>();
4665      bool LPtrToVoid = LPT ?
4666        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4667      bool RPtrToVoid = RPT ?
4668        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4669
4670      if (!LPtrToVoid && !RPtrToVoid &&
4671          !Context.typesAreCompatible(lType, rType)) {
4672        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4673          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4674      }
4675      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4676      return ResultTy;
4677    }
4678    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4679      if (!Context.areComparableObjCPointerTypes(lType, rType))
4680        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4681          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4682      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4683      return ResultTy;
4684    }
4685  }
4686  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4687    unsigned DiagID = 0;
4688    if (RHSIsNull) {
4689      if (isRelational)
4690        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4691    } else if (isRelational)
4692      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4693    else
4694      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4695
4696    if (DiagID) {
4697      Diag(Loc, DiagID)
4698        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4699    }
4700    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4701    return ResultTy;
4702  }
4703  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4704    unsigned DiagID = 0;
4705    if (LHSIsNull) {
4706      if (isRelational)
4707        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4708    } else if (isRelational)
4709      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4710    else
4711      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4712
4713    if (DiagID) {
4714      Diag(Loc, DiagID)
4715        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4716    }
4717    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4718    return ResultTy;
4719  }
4720  // Handle block pointers.
4721  if (!isRelational && RHSIsNull
4722      && lType->isBlockPointerType() && rType->isIntegerType()) {
4723    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4724    return ResultTy;
4725  }
4726  if (!isRelational && LHSIsNull
4727      && lType->isIntegerType() && rType->isBlockPointerType()) {
4728    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4729    return ResultTy;
4730  }
4731  return InvalidOperands(Loc, lex, rex);
4732}
4733
4734/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4735/// operates on extended vector types.  Instead of producing an IntTy result,
4736/// like a scalar comparison, a vector comparison produces a vector of integer
4737/// types.
4738QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4739                                          SourceLocation Loc,
4740                                          bool isRelational) {
4741  // Check to make sure we're operating on vectors of the same type and width,
4742  // Allowing one side to be a scalar of element type.
4743  QualType vType = CheckVectorOperands(Loc, lex, rex);
4744  if (vType.isNull())
4745    return vType;
4746
4747  QualType lType = lex->getType();
4748  QualType rType = rex->getType();
4749
4750  // For non-floating point types, check for self-comparisons of the form
4751  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4752  // often indicate logic errors in the program.
4753  if (!lType->isFloatingType()) {
4754    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4755      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4756        if (DRL->getDecl() == DRR->getDecl())
4757          Diag(Loc, diag::warn_selfcomparison);
4758  }
4759
4760  // Check for comparisons of floating point operands using != and ==.
4761  if (!isRelational && lType->isFloatingType()) {
4762    assert (rType->isFloatingType());
4763    CheckFloatComparison(Loc,lex,rex);
4764  }
4765
4766  // Return the type for the comparison, which is the same as vector type for
4767  // integer vectors, or an integer type of identical size and number of
4768  // elements for floating point vectors.
4769  if (lType->isIntegerType())
4770    return lType;
4771
4772  const VectorType *VTy = lType->getAs<VectorType>();
4773  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4774  if (TypeSize == Context.getTypeSize(Context.IntTy))
4775    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4776  if (TypeSize == Context.getTypeSize(Context.LongTy))
4777    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4778
4779  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4780         "Unhandled vector element size in vector compare");
4781  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4782}
4783
4784inline QualType Sema::CheckBitwiseOperands(
4785  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4786  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4787    return CheckVectorOperands(Loc, lex, rex);
4788
4789  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4790
4791  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4792    return compType;
4793  return InvalidOperands(Loc, lex, rex);
4794}
4795
4796inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4797  Expr *&lex, Expr *&rex, SourceLocation Loc) {
4798  UsualUnaryConversions(lex);
4799  UsualUnaryConversions(rex);
4800
4801  if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
4802    return InvalidOperands(Loc, lex, rex);
4803
4804  if (Context.getLangOptions().CPlusPlus) {
4805    // C++ [expr.log.and]p2
4806    // C++ [expr.log.or]p2
4807    return Context.BoolTy;
4808  }
4809
4810  return Context.IntTy;
4811}
4812
4813/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4814/// is a read-only property; return true if so. A readonly property expression
4815/// depends on various declarations and thus must be treated specially.
4816///
4817static bool IsReadonlyProperty(Expr *E, Sema &S) {
4818  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4819    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4820    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4821      QualType BaseType = PropExpr->getBase()->getType();
4822      if (const ObjCObjectPointerType *OPT =
4823            BaseType->getAsObjCInterfacePointerType())
4824        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4825          if (S.isPropertyReadonly(PDecl, IFace))
4826            return true;
4827    }
4828  }
4829  return false;
4830}
4831
4832/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4833/// emit an error and return true.  If so, return false.
4834static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4835  SourceLocation OrigLoc = Loc;
4836  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4837                                                              &Loc);
4838  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4839    IsLV = Expr::MLV_ReadonlyProperty;
4840  if (IsLV == Expr::MLV_Valid)
4841    return false;
4842
4843  unsigned Diag = 0;
4844  bool NeedType = false;
4845  switch (IsLV) { // C99 6.5.16p2
4846  default: assert(0 && "Unknown result from isModifiableLvalue!");
4847  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4848  case Expr::MLV_ArrayType:
4849    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4850    NeedType = true;
4851    break;
4852  case Expr::MLV_NotObjectType:
4853    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4854    NeedType = true;
4855    break;
4856  case Expr::MLV_LValueCast:
4857    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4858    break;
4859  case Expr::MLV_InvalidExpression:
4860    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4861    break;
4862  case Expr::MLV_IncompleteType:
4863  case Expr::MLV_IncompleteVoidType:
4864    return S.RequireCompleteType(Loc, E->getType(),
4865                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4866                  << E->getSourceRange());
4867  case Expr::MLV_DuplicateVectorComponents:
4868    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4869    break;
4870  case Expr::MLV_NotBlockQualified:
4871    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4872    break;
4873  case Expr::MLV_ReadonlyProperty:
4874    Diag = diag::error_readonly_property_assignment;
4875    break;
4876  case Expr::MLV_NoSetterProperty:
4877    Diag = diag::error_nosetter_property_assignment;
4878    break;
4879  }
4880
4881  SourceRange Assign;
4882  if (Loc != OrigLoc)
4883    Assign = SourceRange(OrigLoc, OrigLoc);
4884  if (NeedType)
4885    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4886  else
4887    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4888  return true;
4889}
4890
4891
4892
4893// C99 6.5.16.1
4894QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4895                                       SourceLocation Loc,
4896                                       QualType CompoundType) {
4897  // Verify that LHS is a modifiable lvalue, and emit error if not.
4898  if (CheckForModifiableLvalue(LHS, Loc, *this))
4899    return QualType();
4900
4901  QualType LHSType = LHS->getType();
4902  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4903
4904  AssignConvertType ConvTy;
4905  if (CompoundType.isNull()) {
4906    // Simple assignment "x = y".
4907    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4908    // Special case of NSObject attributes on c-style pointer types.
4909    if (ConvTy == IncompatiblePointer &&
4910        ((Context.isObjCNSObjectType(LHSType) &&
4911          RHSType->isObjCObjectPointerType()) ||
4912         (Context.isObjCNSObjectType(RHSType) &&
4913          LHSType->isObjCObjectPointerType())))
4914      ConvTy = Compatible;
4915
4916    // If the RHS is a unary plus or minus, check to see if they = and + are
4917    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4918    // instead of "x += 4".
4919    Expr *RHSCheck = RHS;
4920    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4921      RHSCheck = ICE->getSubExpr();
4922    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4923      if ((UO->getOpcode() == UnaryOperator::Plus ||
4924           UO->getOpcode() == UnaryOperator::Minus) &&
4925          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4926          // Only if the two operators are exactly adjacent.
4927          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4928          // And there is a space or other character before the subexpr of the
4929          // unary +/-.  We don't want to warn on "x=-1".
4930          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4931          UO->getSubExpr()->getLocStart().isFileID()) {
4932        Diag(Loc, diag::warn_not_compound_assign)
4933          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4934          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4935      }
4936    }
4937  } else {
4938    // Compound assignment "x += y"
4939    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4940  }
4941
4942  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4943                               RHS, "assigning"))
4944    return QualType();
4945
4946  // C99 6.5.16p3: The type of an assignment expression is the type of the
4947  // left operand unless the left operand has qualified type, in which case
4948  // it is the unqualified version of the type of the left operand.
4949  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4950  // is converted to the type of the assignment expression (above).
4951  // C++ 5.17p1: the type of the assignment expression is that of its left
4952  // operand.
4953  return LHSType.getUnqualifiedType();
4954}
4955
4956// C99 6.5.17
4957QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4958  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4959  DefaultFunctionArrayConversion(RHS);
4960
4961  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4962  // incomplete in C++).
4963
4964  return RHS->getType();
4965}
4966
4967/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4968/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4969QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4970                                              bool isInc) {
4971  if (Op->isTypeDependent())
4972    return Context.DependentTy;
4973
4974  QualType ResType = Op->getType();
4975  assert(!ResType.isNull() && "no type for increment/decrement expression");
4976
4977  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4978    // Decrement of bool is not allowed.
4979    if (!isInc) {
4980      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4981      return QualType();
4982    }
4983    // Increment of bool sets it to true, but is deprecated.
4984    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4985  } else if (ResType->isRealType()) {
4986    // OK!
4987  } else if (ResType->isAnyPointerType()) {
4988    QualType PointeeTy = ResType->getPointeeType();
4989
4990    // C99 6.5.2.4p2, 6.5.6p2
4991    if (PointeeTy->isVoidType()) {
4992      if (getLangOptions().CPlusPlus) {
4993        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4994          << Op->getSourceRange();
4995        return QualType();
4996      }
4997
4998      // Pointer to void is a GNU extension in C.
4999      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5000    } else if (PointeeTy->isFunctionType()) {
5001      if (getLangOptions().CPlusPlus) {
5002        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5003          << Op->getType() << Op->getSourceRange();
5004        return QualType();
5005      }
5006
5007      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5008        << ResType << Op->getSourceRange();
5009    } else if (RequireCompleteType(OpLoc, PointeeTy,
5010                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5011                             << Op->getSourceRange()
5012                             << ResType))
5013      return QualType();
5014    // Diagnose bad cases where we step over interface counts.
5015    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5016      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5017        << PointeeTy << Op->getSourceRange();
5018      return QualType();
5019    }
5020  } else if (ResType->isComplexType()) {
5021    // C99 does not support ++/-- on complex types, we allow as an extension.
5022    Diag(OpLoc, diag::ext_integer_increment_complex)
5023      << ResType << Op->getSourceRange();
5024  } else {
5025    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5026      << ResType << Op->getSourceRange();
5027    return QualType();
5028  }
5029  // At this point, we know we have a real, complex or pointer type.
5030  // Now make sure the operand is a modifiable lvalue.
5031  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5032    return QualType();
5033  return ResType;
5034}
5035
5036/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5037/// This routine allows us to typecheck complex/recursive expressions
5038/// where the declaration is needed for type checking. We only need to
5039/// handle cases when the expression references a function designator
5040/// or is an lvalue. Here are some examples:
5041///  - &(x) => x
5042///  - &*****f => f for f a function designator.
5043///  - &s.xx => s
5044///  - &s.zz[1].yy -> s, if zz is an array
5045///  - *(x + 1) -> x, if x is an array
5046///  - &"123"[2] -> 0
5047///  - & __real__ x -> x
5048static NamedDecl *getPrimaryDecl(Expr *E) {
5049  switch (E->getStmtClass()) {
5050  case Stmt::DeclRefExprClass:
5051    return cast<DeclRefExpr>(E)->getDecl();
5052  case Stmt::MemberExprClass:
5053    // If this is an arrow operator, the address is an offset from
5054    // the base's value, so the object the base refers to is
5055    // irrelevant.
5056    if (cast<MemberExpr>(E)->isArrow())
5057      return 0;
5058    // Otherwise, the expression refers to a part of the base
5059    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5060  case Stmt::ArraySubscriptExprClass: {
5061    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5062    // promotion of register arrays earlier.
5063    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5064    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5065      if (ICE->getSubExpr()->getType()->isArrayType())
5066        return getPrimaryDecl(ICE->getSubExpr());
5067    }
5068    return 0;
5069  }
5070  case Stmt::UnaryOperatorClass: {
5071    UnaryOperator *UO = cast<UnaryOperator>(E);
5072
5073    switch(UO->getOpcode()) {
5074    case UnaryOperator::Real:
5075    case UnaryOperator::Imag:
5076    case UnaryOperator::Extension:
5077      return getPrimaryDecl(UO->getSubExpr());
5078    default:
5079      return 0;
5080    }
5081  }
5082  case Stmt::ParenExprClass:
5083    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5084  case Stmt::ImplicitCastExprClass:
5085    // If the result of an implicit cast is an l-value, we care about
5086    // the sub-expression; otherwise, the result here doesn't matter.
5087    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5088  default:
5089    return 0;
5090  }
5091}
5092
5093/// CheckAddressOfOperand - The operand of & must be either a function
5094/// designator or an lvalue designating an object. If it is an lvalue, the
5095/// object cannot be declared with storage class register or be a bit field.
5096/// Note: The usual conversions are *not* applied to the operand of the &
5097/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5098/// In C++, the operand might be an overloaded function name, in which case
5099/// we allow the '&' but retain the overloaded-function type.
5100QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5101  // Make sure to ignore parentheses in subsequent checks
5102  op = op->IgnoreParens();
5103
5104  if (op->isTypeDependent())
5105    return Context.DependentTy;
5106
5107  if (getLangOptions().C99) {
5108    // Implement C99-only parts of addressof rules.
5109    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5110      if (uOp->getOpcode() == UnaryOperator::Deref)
5111        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5112        // (assuming the deref expression is valid).
5113        return uOp->getSubExpr()->getType();
5114    }
5115    // Technically, there should be a check for array subscript
5116    // expressions here, but the result of one is always an lvalue anyway.
5117  }
5118  NamedDecl *dcl = getPrimaryDecl(op);
5119  Expr::isLvalueResult lval = op->isLvalue(Context);
5120
5121  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5122    // C99 6.5.3.2p1
5123    // The operand must be either an l-value or a function designator
5124    if (!op->getType()->isFunctionType()) {
5125      // FIXME: emit more specific diag...
5126      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5127        << op->getSourceRange();
5128      return QualType();
5129    }
5130  } else if (op->getBitField()) { // C99 6.5.3.2p1
5131    // The operand cannot be a bit-field
5132    Diag(OpLoc, diag::err_typecheck_address_of)
5133      << "bit-field" << op->getSourceRange();
5134        return QualType();
5135  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5136           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5137    // The operand cannot be an element of a vector
5138    Diag(OpLoc, diag::err_typecheck_address_of)
5139      << "vector element" << op->getSourceRange();
5140    return QualType();
5141  } else if (isa<ObjCPropertyRefExpr>(op)) {
5142    // cannot take address of a property expression.
5143    Diag(OpLoc, diag::err_typecheck_address_of)
5144      << "property expression" << op->getSourceRange();
5145    return QualType();
5146  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5147    // FIXME: Can LHS ever be null here?
5148    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5149      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5150  } else if (dcl) { // C99 6.5.3.2p1
5151    // We have an lvalue with a decl. Make sure the decl is not declared
5152    // with the register storage-class specifier.
5153    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5154      if (vd->getStorageClass() == VarDecl::Register) {
5155        Diag(OpLoc, diag::err_typecheck_address_of)
5156          << "register variable" << op->getSourceRange();
5157        return QualType();
5158      }
5159    } else if (isa<OverloadedFunctionDecl>(dcl) ||
5160               isa<FunctionTemplateDecl>(dcl)) {
5161      return Context.OverloadTy;
5162    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
5163      // Okay: we can take the address of a field.
5164      // Could be a pointer to member, though, if there is an explicit
5165      // scope qualifier for the class.
5166      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
5167        DeclContext *Ctx = dcl->getDeclContext();
5168        if (Ctx && Ctx->isRecord()) {
5169          if (FD->getType()->isReferenceType()) {
5170            Diag(OpLoc,
5171                 diag::err_cannot_form_pointer_to_member_of_reference_type)
5172              << FD->getDeclName() << FD->getType();
5173            return QualType();
5174          }
5175
5176          return Context.getMemberPointerType(op->getType(),
5177                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
5178        }
5179      }
5180    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
5181      // Okay: we can take the address of a function.
5182      // As above.
5183      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
5184          MD->isInstance())
5185        return Context.getMemberPointerType(op->getType(),
5186              Context.getTypeDeclType(MD->getParent()).getTypePtr());
5187    } else if (!isa<FunctionDecl>(dcl))
5188      assert(0 && "Unknown/unexpected decl type");
5189  }
5190
5191  if (lval == Expr::LV_IncompleteVoidType) {
5192    // Taking the address of a void variable is technically illegal, but we
5193    // allow it in cases which are otherwise valid.
5194    // Example: "extern void x; void* y = &x;".
5195    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
5196  }
5197
5198  // If the operand has type "type", the result has type "pointer to type".
5199  return Context.getPointerType(op->getType());
5200}
5201
5202QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
5203  if (Op->isTypeDependent())
5204    return Context.DependentTy;
5205
5206  UsualUnaryConversions(Op);
5207  QualType Ty = Op->getType();
5208
5209  // Note that per both C89 and C99, this is always legal, even if ptype is an
5210  // incomplete type or void.  It would be possible to warn about dereferencing
5211  // a void pointer, but it's completely well-defined, and such a warning is
5212  // unlikely to catch any mistakes.
5213  if (const PointerType *PT = Ty->getAs<PointerType>())
5214    return PT->getPointeeType();
5215
5216  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
5217    return OPT->getPointeeType();
5218
5219  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5220    << Ty << Op->getSourceRange();
5221  return QualType();
5222}
5223
5224static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5225  tok::TokenKind Kind) {
5226  BinaryOperator::Opcode Opc;
5227  switch (Kind) {
5228  default: assert(0 && "Unknown binop!");
5229  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5230  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5231  case tok::star:                 Opc = BinaryOperator::Mul; break;
5232  case tok::slash:                Opc = BinaryOperator::Div; break;
5233  case tok::percent:              Opc = BinaryOperator::Rem; break;
5234  case tok::plus:                 Opc = BinaryOperator::Add; break;
5235  case tok::minus:                Opc = BinaryOperator::Sub; break;
5236  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5237  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5238  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5239  case tok::less:                 Opc = BinaryOperator::LT; break;
5240  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5241  case tok::greater:              Opc = BinaryOperator::GT; break;
5242  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5243  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5244  case tok::amp:                  Opc = BinaryOperator::And; break;
5245  case tok::caret:                Opc = BinaryOperator::Xor; break;
5246  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5247  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5248  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5249  case tok::equal:                Opc = BinaryOperator::Assign; break;
5250  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5251  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5252  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5253  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5254  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5255  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5256  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5257  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5258  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5259  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5260  case tok::comma:                Opc = BinaryOperator::Comma; break;
5261  }
5262  return Opc;
5263}
5264
5265static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5266  tok::TokenKind Kind) {
5267  UnaryOperator::Opcode Opc;
5268  switch (Kind) {
5269  default: assert(0 && "Unknown unary op!");
5270  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5271  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5272  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5273  case tok::star:         Opc = UnaryOperator::Deref; break;
5274  case tok::plus:         Opc = UnaryOperator::Plus; break;
5275  case tok::minus:        Opc = UnaryOperator::Minus; break;
5276  case tok::tilde:        Opc = UnaryOperator::Not; break;
5277  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5278  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5279  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5280  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5281  }
5282  return Opc;
5283}
5284
5285/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5286/// operator @p Opc at location @c TokLoc. This routine only supports
5287/// built-in operations; ActOnBinOp handles overloaded operators.
5288Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5289                                                  unsigned Op,
5290                                                  Expr *lhs, Expr *rhs) {
5291  QualType ResultTy;     // Result type of the binary operator.
5292  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5293  // The following two variables are used for compound assignment operators
5294  QualType CompLHSTy;    // Type of LHS after promotions for computation
5295  QualType CompResultTy; // Type of computation result
5296
5297  switch (Opc) {
5298  case BinaryOperator::Assign:
5299    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5300    break;
5301  case BinaryOperator::PtrMemD:
5302  case BinaryOperator::PtrMemI:
5303    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5304                                            Opc == BinaryOperator::PtrMemI);
5305    break;
5306  case BinaryOperator::Mul:
5307  case BinaryOperator::Div:
5308    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5309    break;
5310  case BinaryOperator::Rem:
5311    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5312    break;
5313  case BinaryOperator::Add:
5314    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5315    break;
5316  case BinaryOperator::Sub:
5317    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5318    break;
5319  case BinaryOperator::Shl:
5320  case BinaryOperator::Shr:
5321    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5322    break;
5323  case BinaryOperator::LE:
5324  case BinaryOperator::LT:
5325  case BinaryOperator::GE:
5326  case BinaryOperator::GT:
5327    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5328    break;
5329  case BinaryOperator::EQ:
5330  case BinaryOperator::NE:
5331    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5332    break;
5333  case BinaryOperator::And:
5334  case BinaryOperator::Xor:
5335  case BinaryOperator::Or:
5336    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5337    break;
5338  case BinaryOperator::LAnd:
5339  case BinaryOperator::LOr:
5340    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5341    break;
5342  case BinaryOperator::MulAssign:
5343  case BinaryOperator::DivAssign:
5344    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5345    CompLHSTy = CompResultTy;
5346    if (!CompResultTy.isNull())
5347      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5348    break;
5349  case BinaryOperator::RemAssign:
5350    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5351    CompLHSTy = CompResultTy;
5352    if (!CompResultTy.isNull())
5353      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5354    break;
5355  case BinaryOperator::AddAssign:
5356    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5357    if (!CompResultTy.isNull())
5358      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5359    break;
5360  case BinaryOperator::SubAssign:
5361    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5362    if (!CompResultTy.isNull())
5363      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5364    break;
5365  case BinaryOperator::ShlAssign:
5366  case BinaryOperator::ShrAssign:
5367    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5368    CompLHSTy = CompResultTy;
5369    if (!CompResultTy.isNull())
5370      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5371    break;
5372  case BinaryOperator::AndAssign:
5373  case BinaryOperator::XorAssign:
5374  case BinaryOperator::OrAssign:
5375    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5376    CompLHSTy = CompResultTy;
5377    if (!CompResultTy.isNull())
5378      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5379    break;
5380  case BinaryOperator::Comma:
5381    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5382    break;
5383  }
5384  if (ResultTy.isNull())
5385    return ExprError();
5386  if (CompResultTy.isNull())
5387    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5388  else
5389    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5390                                                      CompLHSTy, CompResultTy,
5391                                                      OpLoc));
5392}
5393
5394/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
5395/// ParenRange in parentheses.
5396static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5397                               const PartialDiagnostic &PD,
5398                               SourceRange ParenRange)
5399{
5400  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5401  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
5402    // We can't display the parentheses, so just dig the
5403    // warning/error and return.
5404    Self.Diag(Loc, PD);
5405    return;
5406  }
5407
5408  Self.Diag(Loc, PD)
5409    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
5410    << CodeModificationHint::CreateInsertion(EndLoc, ")");
5411}
5412
5413/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
5414/// operators are mixed in a way that suggests that the programmer forgot that
5415/// comparison operators have higher precedence. The most typical example of
5416/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
5417static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5418                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
5419  typedef BinaryOperator BinOp;
5420  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
5421                rhsopc = static_cast<BinOp::Opcode>(-1);
5422  if (BinOp *BO = dyn_cast<BinOp>(lhs))
5423    lhsopc = BO->getOpcode();
5424  if (BinOp *BO = dyn_cast<BinOp>(rhs))
5425    rhsopc = BO->getOpcode();
5426
5427  // Subs are not binary operators.
5428  if (lhsopc == -1 && rhsopc == -1)
5429    return;
5430
5431  // Bitwise operations are sometimes used as eager logical ops.
5432  // Don't diagnose this.
5433  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
5434      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
5435    return;
5436
5437  if (BinOp::isComparisonOp(lhsopc))
5438    SuggestParentheses(Self, OpLoc,
5439      PDiag(diag::warn_precedence_bitwise_rel)
5440          << SourceRange(lhs->getLocStart(), OpLoc)
5441          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
5442      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
5443  else if (BinOp::isComparisonOp(rhsopc))
5444    SuggestParentheses(Self, OpLoc,
5445      PDiag(diag::warn_precedence_bitwise_rel)
5446          << SourceRange(OpLoc, rhs->getLocEnd())
5447          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
5448      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
5449}
5450
5451/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
5452/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
5453/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
5454static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5455                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
5456  if (BinaryOperator::isBitwiseOp(Opc))
5457    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
5458}
5459
5460// Binary Operators.  'Tok' is the token for the operator.
5461Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5462                                          tok::TokenKind Kind,
5463                                          ExprArg LHS, ExprArg RHS) {
5464  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5465  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5466
5467  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5468  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5469
5470  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
5471  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
5472
5473  if (getLangOptions().CPlusPlus &&
5474      (lhs->getType()->isOverloadableType() ||
5475       rhs->getType()->isOverloadableType())) {
5476    // Find all of the overloaded operators visible from this
5477    // point. We perform both an operator-name lookup from the local
5478    // scope and an argument-dependent lookup based on the types of
5479    // the arguments.
5480    FunctionSet Functions;
5481    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5482    if (OverOp != OO_None) {
5483      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5484                                   Functions);
5485      Expr *Args[2] = { lhs, rhs };
5486      DeclarationName OpName
5487        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5488      ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
5489    }
5490
5491    // Build the (potentially-overloaded, potentially-dependent)
5492    // binary operation.
5493    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5494  }
5495
5496  // Build a built-in binary operation.
5497  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5498}
5499
5500Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5501                                                    unsigned OpcIn,
5502                                                    ExprArg InputArg) {
5503  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5504
5505  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5506  Expr *Input = (Expr *)InputArg.get();
5507  QualType resultType;
5508  switch (Opc) {
5509  case UnaryOperator::OffsetOf:
5510    assert(false && "Invalid unary operator");
5511    break;
5512
5513  case UnaryOperator::PreInc:
5514  case UnaryOperator::PreDec:
5515  case UnaryOperator::PostInc:
5516  case UnaryOperator::PostDec:
5517    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5518                                                Opc == UnaryOperator::PreInc ||
5519                                                Opc == UnaryOperator::PostInc);
5520    break;
5521  case UnaryOperator::AddrOf:
5522    resultType = CheckAddressOfOperand(Input, OpLoc);
5523    break;
5524  case UnaryOperator::Deref:
5525    DefaultFunctionArrayConversion(Input);
5526    resultType = CheckIndirectionOperand(Input, OpLoc);
5527    break;
5528  case UnaryOperator::Plus:
5529  case UnaryOperator::Minus:
5530    UsualUnaryConversions(Input);
5531    resultType = Input->getType();
5532    if (resultType->isDependentType())
5533      break;
5534    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5535      break;
5536    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5537             resultType->isEnumeralType())
5538      break;
5539    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5540             Opc == UnaryOperator::Plus &&
5541             resultType->isPointerType())
5542      break;
5543
5544    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5545      << resultType << Input->getSourceRange());
5546  case UnaryOperator::Not: // bitwise complement
5547    UsualUnaryConversions(Input);
5548    resultType = Input->getType();
5549    if (resultType->isDependentType())
5550      break;
5551    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5552    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5553      // C99 does not support '~' for complex conjugation.
5554      Diag(OpLoc, diag::ext_integer_complement_complex)
5555        << resultType << Input->getSourceRange();
5556    else if (!resultType->isIntegerType())
5557      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5558        << resultType << Input->getSourceRange());
5559    break;
5560  case UnaryOperator::LNot: // logical negation
5561    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5562    DefaultFunctionArrayConversion(Input);
5563    resultType = Input->getType();
5564    if (resultType->isDependentType())
5565      break;
5566    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5567      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5568        << resultType << Input->getSourceRange());
5569    // LNot always has type int. C99 6.5.3.3p5.
5570    // In C++, it's bool. C++ 5.3.1p8
5571    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5572    break;
5573  case UnaryOperator::Real:
5574  case UnaryOperator::Imag:
5575    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5576    break;
5577  case UnaryOperator::Extension:
5578    resultType = Input->getType();
5579    break;
5580  }
5581  if (resultType.isNull())
5582    return ExprError();
5583
5584  InputArg.release();
5585  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5586}
5587
5588// Unary Operators.  'Tok' is the token for the operator.
5589Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5590                                            tok::TokenKind Op, ExprArg input) {
5591  Expr *Input = (Expr*)input.get();
5592  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5593
5594  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5595    // Find all of the overloaded operators visible from this
5596    // point. We perform both an operator-name lookup from the local
5597    // scope and an argument-dependent lookup based on the types of
5598    // the arguments.
5599    FunctionSet Functions;
5600    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5601    if (OverOp != OO_None) {
5602      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5603                                   Functions);
5604      DeclarationName OpName
5605        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5606      ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
5607    }
5608
5609    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5610  }
5611
5612  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5613}
5614
5615/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5616Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5617                                            SourceLocation LabLoc,
5618                                            IdentifierInfo *LabelII) {
5619  // Look up the record for this label identifier.
5620  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5621
5622  // If we haven't seen this label yet, create a forward reference. It
5623  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5624  if (LabelDecl == 0)
5625    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5626
5627  // Create the AST node.  The address of a label always has type 'void*'.
5628  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5629                                       Context.getPointerType(Context.VoidTy)));
5630}
5631
5632Sema::OwningExprResult
5633Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5634                    SourceLocation RPLoc) { // "({..})"
5635  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5636  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5637  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5638
5639  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5640  if (isFileScope)
5641    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5642
5643  // FIXME: there are a variety of strange constraints to enforce here, for
5644  // example, it is not possible to goto into a stmt expression apparently.
5645  // More semantic analysis is needed.
5646
5647  // If there are sub stmts in the compound stmt, take the type of the last one
5648  // as the type of the stmtexpr.
5649  QualType Ty = Context.VoidTy;
5650
5651  if (!Compound->body_empty()) {
5652    Stmt *LastStmt = Compound->body_back();
5653    // If LastStmt is a label, skip down through into the body.
5654    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5655      LastStmt = Label->getSubStmt();
5656
5657    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5658      Ty = LastExpr->getType();
5659  }
5660
5661  // FIXME: Check that expression type is complete/non-abstract; statement
5662  // expressions are not lvalues.
5663
5664  substmt.release();
5665  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5666}
5667
5668Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5669                                                  SourceLocation BuiltinLoc,
5670                                                  SourceLocation TypeLoc,
5671                                                  TypeTy *argty,
5672                                                  OffsetOfComponent *CompPtr,
5673                                                  unsigned NumComponents,
5674                                                  SourceLocation RPLoc) {
5675  // FIXME: This function leaks all expressions in the offset components on
5676  // error.
5677  // FIXME: Preserve type source info.
5678  QualType ArgTy = GetTypeFromParser(argty);
5679  assert(!ArgTy.isNull() && "Missing type argument!");
5680
5681  bool Dependent = ArgTy->isDependentType();
5682
5683  // We must have at least one component that refers to the type, and the first
5684  // one is known to be a field designator.  Verify that the ArgTy represents
5685  // a struct/union/class.
5686  if (!Dependent && !ArgTy->isRecordType())
5687    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5688
5689  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5690  // with an incomplete type would be illegal.
5691
5692  // Otherwise, create a null pointer as the base, and iteratively process
5693  // the offsetof designators.
5694  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5695  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5696  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5697                                    ArgTy, SourceLocation());
5698
5699  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5700  // GCC extension, diagnose them.
5701  // FIXME: This diagnostic isn't actually visible because the location is in
5702  // a system header!
5703  if (NumComponents != 1)
5704    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5705      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5706
5707  if (!Dependent) {
5708    bool DidWarnAboutNonPOD = false;
5709
5710    if (RequireCompleteType(TypeLoc, Res->getType(),
5711                            diag::err_offsetof_incomplete_type))
5712      return ExprError();
5713
5714    // FIXME: Dependent case loses a lot of information here. And probably
5715    // leaks like a sieve.
5716    for (unsigned i = 0; i != NumComponents; ++i) {
5717      const OffsetOfComponent &OC = CompPtr[i];
5718      if (OC.isBrackets) {
5719        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5720        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5721        if (!AT) {
5722          Res->Destroy(Context);
5723          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5724            << Res->getType());
5725        }
5726
5727        // FIXME: C++: Verify that operator[] isn't overloaded.
5728
5729        // Promote the array so it looks more like a normal array subscript
5730        // expression.
5731        DefaultFunctionArrayConversion(Res);
5732
5733        // C99 6.5.2.1p1
5734        Expr *Idx = static_cast<Expr*>(OC.U.E);
5735        // FIXME: Leaks Res
5736        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5737          return ExprError(Diag(Idx->getLocStart(),
5738                                diag::err_typecheck_subscript_not_integer)
5739            << Idx->getSourceRange());
5740
5741        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5742                                               OC.LocEnd);
5743        continue;
5744      }
5745
5746      const RecordType *RC = Res->getType()->getAs<RecordType>();
5747      if (!RC) {
5748        Res->Destroy(Context);
5749        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5750          << Res->getType());
5751      }
5752
5753      // Get the decl corresponding to this.
5754      RecordDecl *RD = RC->getDecl();
5755      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5756        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5757          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5758            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5759            << Res->getType());
5760          DidWarnAboutNonPOD = true;
5761        }
5762      }
5763
5764      LookupResult R;
5765      LookupQualifiedName(R, RD, OC.U.IdentInfo, LookupMemberName);
5766
5767      FieldDecl *MemberDecl
5768        = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context));
5769      // FIXME: Leaks Res
5770      if (!MemberDecl)
5771        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
5772         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
5773
5774      // FIXME: C++: Verify that MemberDecl isn't a static field.
5775      // FIXME: Verify that MemberDecl isn't a bitfield.
5776      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5777        Res = BuildAnonymousStructUnionMemberReference(
5778            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5779      } else {
5780        // MemberDecl->getType() doesn't get the right qualifiers, but it
5781        // doesn't matter here.
5782        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5783                MemberDecl->getType().getNonReferenceType());
5784      }
5785    }
5786  }
5787
5788  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5789                                           Context.getSizeType(), BuiltinLoc));
5790}
5791
5792
5793Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5794                                                      TypeTy *arg1,TypeTy *arg2,
5795                                                      SourceLocation RPLoc) {
5796  // FIXME: Preserve type source info.
5797  QualType argT1 = GetTypeFromParser(arg1);
5798  QualType argT2 = GetTypeFromParser(arg2);
5799
5800  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5801
5802  if (getLangOptions().CPlusPlus) {
5803    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5804      << SourceRange(BuiltinLoc, RPLoc);
5805    return ExprError();
5806  }
5807
5808  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5809                                                 argT1, argT2, RPLoc));
5810}
5811
5812Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5813                                             ExprArg cond,
5814                                             ExprArg expr1, ExprArg expr2,
5815                                             SourceLocation RPLoc) {
5816  Expr *CondExpr = static_cast<Expr*>(cond.get());
5817  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5818  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5819
5820  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5821
5822  QualType resType;
5823  bool ValueDependent = false;
5824  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5825    resType = Context.DependentTy;
5826    ValueDependent = true;
5827  } else {
5828    // The conditional expression is required to be a constant expression.
5829    llvm::APSInt condEval(32);
5830    SourceLocation ExpLoc;
5831    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5832      return ExprError(Diag(ExpLoc,
5833                       diag::err_typecheck_choose_expr_requires_constant)
5834        << CondExpr->getSourceRange());
5835
5836    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5837    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5838    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
5839                                             : RHSExpr->isValueDependent();
5840  }
5841
5842  cond.release(); expr1.release(); expr2.release();
5843  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5844                                        resType, RPLoc,
5845                                        resType->isDependentType(),
5846                                        ValueDependent));
5847}
5848
5849//===----------------------------------------------------------------------===//
5850// Clang Extensions.
5851//===----------------------------------------------------------------------===//
5852
5853/// ActOnBlockStart - This callback is invoked when a block literal is started.
5854void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5855  // Analyze block parameters.
5856  BlockSemaInfo *BSI = new BlockSemaInfo();
5857
5858  // Add BSI to CurBlock.
5859  BSI->PrevBlockInfo = CurBlock;
5860  CurBlock = BSI;
5861
5862  BSI->ReturnType = QualType();
5863  BSI->TheScope = BlockScope;
5864  BSI->hasBlockDeclRefExprs = false;
5865  BSI->hasPrototype = false;
5866  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5867  CurFunctionNeedsScopeChecking = false;
5868
5869  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5870  PushDeclContext(BlockScope, BSI->TheDecl);
5871}
5872
5873void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5874  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5875
5876  if (ParamInfo.getNumTypeObjects() == 0
5877      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5878    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5879    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5880
5881    if (T->isArrayType()) {
5882      Diag(ParamInfo.getSourceRange().getBegin(),
5883           diag::err_block_returns_array);
5884      return;
5885    }
5886
5887    // The parameter list is optional, if there was none, assume ().
5888    if (!T->isFunctionType())
5889      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5890
5891    CurBlock->hasPrototype = true;
5892    CurBlock->isVariadic = false;
5893    // Check for a valid sentinel attribute on this block.
5894    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5895      Diag(ParamInfo.getAttributes()->getLoc(),
5896           diag::warn_attribute_sentinel_not_variadic) << 1;
5897      // FIXME: remove the attribute.
5898    }
5899    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
5900
5901    // Do not allow returning a objc interface by-value.
5902    if (RetTy->isObjCInterfaceType()) {
5903      Diag(ParamInfo.getSourceRange().getBegin(),
5904           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5905      return;
5906    }
5907    return;
5908  }
5909
5910  // Analyze arguments to block.
5911  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5912         "Not a function declarator!");
5913  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5914
5915  CurBlock->hasPrototype = FTI.hasPrototype;
5916  CurBlock->isVariadic = true;
5917
5918  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5919  // no arguments, not a function that takes a single void argument.
5920  if (FTI.hasPrototype &&
5921      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5922     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5923        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5924    // empty arg list, don't push any params.
5925    CurBlock->isVariadic = false;
5926  } else if (FTI.hasPrototype) {
5927    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5928      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5929    CurBlock->isVariadic = FTI.isVariadic;
5930  }
5931  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5932                               CurBlock->Params.size());
5933  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5934  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5935  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5936       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5937    // If this has an identifier, add it to the scope stack.
5938    if ((*AI)->getIdentifier())
5939      PushOnScopeChains(*AI, CurBlock->TheScope);
5940
5941  // Check for a valid sentinel attribute on this block.
5942  if (!CurBlock->isVariadic &&
5943      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5944    Diag(ParamInfo.getAttributes()->getLoc(),
5945         diag::warn_attribute_sentinel_not_variadic) << 1;
5946    // FIXME: remove the attribute.
5947  }
5948
5949  // Analyze the return type.
5950  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5951  QualType RetTy = T->getAs<FunctionType>()->getResultType();
5952
5953  // Do not allow returning a objc interface by-value.
5954  if (RetTy->isObjCInterfaceType()) {
5955    Diag(ParamInfo.getSourceRange().getBegin(),
5956         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5957  } else if (!RetTy->isDependentType())
5958    CurBlock->ReturnType = RetTy;
5959}
5960
5961/// ActOnBlockError - If there is an error parsing a block, this callback
5962/// is invoked to pop the information about the block from the action impl.
5963void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5964  // Ensure that CurBlock is deleted.
5965  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5966
5967  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5968
5969  // Pop off CurBlock, handle nested blocks.
5970  PopDeclContext();
5971  CurBlock = CurBlock->PrevBlockInfo;
5972  // FIXME: Delete the ParmVarDecl objects as well???
5973}
5974
5975/// ActOnBlockStmtExpr - This is called when the body of a block statement
5976/// literal was successfully completed.  ^(int x){...}
5977Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5978                                                StmtArg body, Scope *CurScope) {
5979  // If blocks are disabled, emit an error.
5980  if (!LangOpts.Blocks)
5981    Diag(CaretLoc, diag::err_blocks_disable);
5982
5983  // Ensure that CurBlock is deleted.
5984  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5985
5986  PopDeclContext();
5987
5988  // Pop off CurBlock, handle nested blocks.
5989  CurBlock = CurBlock->PrevBlockInfo;
5990
5991  QualType RetTy = Context.VoidTy;
5992  if (!BSI->ReturnType.isNull())
5993    RetTy = BSI->ReturnType;
5994
5995  llvm::SmallVector<QualType, 8> ArgTypes;
5996  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5997    ArgTypes.push_back(BSI->Params[i]->getType());
5998
5999  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6000  QualType BlockTy;
6001  if (!BSI->hasPrototype)
6002    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6003                                      NoReturn);
6004  else
6005    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6006                                      BSI->isVariadic, 0, false, false, 0, 0,
6007                                      NoReturn);
6008
6009  // FIXME: Check that return/parameter types are complete/non-abstract
6010  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6011  BlockTy = Context.getBlockPointerType(BlockTy);
6012
6013  // If needed, diagnose invalid gotos and switches in the block.
6014  if (CurFunctionNeedsScopeChecking)
6015    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6016  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6017
6018  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6019  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
6020  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6021                                       BSI->hasBlockDeclRefExprs));
6022}
6023
6024Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6025                                        ExprArg expr, TypeTy *type,
6026                                        SourceLocation RPLoc) {
6027  QualType T = GetTypeFromParser(type);
6028  Expr *E = static_cast<Expr*>(expr.get());
6029  Expr *OrigExpr = E;
6030
6031  InitBuiltinVaListType();
6032
6033  // Get the va_list type
6034  QualType VaListType = Context.getBuiltinVaListType();
6035  if (VaListType->isArrayType()) {
6036    // Deal with implicit array decay; for example, on x86-64,
6037    // va_list is an array, but it's supposed to decay to
6038    // a pointer for va_arg.
6039    VaListType = Context.getArrayDecayedType(VaListType);
6040    // Make sure the input expression also decays appropriately.
6041    UsualUnaryConversions(E);
6042  } else {
6043    // Otherwise, the va_list argument must be an l-value because
6044    // it is modified by va_arg.
6045    if (!E->isTypeDependent() &&
6046        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6047      return ExprError();
6048  }
6049
6050  if (!E->isTypeDependent() &&
6051      !Context.hasSameType(VaListType, E->getType())) {
6052    return ExprError(Diag(E->getLocStart(),
6053                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6054      << OrigExpr->getType() << E->getSourceRange());
6055  }
6056
6057  // FIXME: Check that type is complete/non-abstract
6058  // FIXME: Warn if a non-POD type is passed in.
6059
6060  expr.release();
6061  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6062                                       RPLoc));
6063}
6064
6065Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6066  // The type of __null will be int or long, depending on the size of
6067  // pointers on the target.
6068  QualType Ty;
6069  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6070    Ty = Context.IntTy;
6071  else
6072    Ty = Context.LongTy;
6073
6074  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6075}
6076
6077bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6078                                    SourceLocation Loc,
6079                                    QualType DstType, QualType SrcType,
6080                                    Expr *SrcExpr, const char *Flavor) {
6081  // Decode the result (notice that AST's are still created for extensions).
6082  bool isInvalid = false;
6083  unsigned DiagKind;
6084  switch (ConvTy) {
6085  default: assert(0 && "Unknown conversion type");
6086  case Compatible: return false;
6087  case PointerToInt:
6088    DiagKind = diag::ext_typecheck_convert_pointer_int;
6089    break;
6090  case IntToPointer:
6091    DiagKind = diag::ext_typecheck_convert_int_pointer;
6092    break;
6093  case IncompatiblePointer:
6094    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
6095    break;
6096  case IncompatiblePointerSign:
6097    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
6098    break;
6099  case FunctionVoidPointer:
6100    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
6101    break;
6102  case CompatiblePointerDiscardsQualifiers:
6103    // If the qualifiers lost were because we were applying the
6104    // (deprecated) C++ conversion from a string literal to a char*
6105    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
6106    // Ideally, this check would be performed in
6107    // CheckPointerTypesForAssignment. However, that would require a
6108    // bit of refactoring (so that the second argument is an
6109    // expression, rather than a type), which should be done as part
6110    // of a larger effort to fix CheckPointerTypesForAssignment for
6111    // C++ semantics.
6112    if (getLangOptions().CPlusPlus &&
6113        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
6114      return false;
6115    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
6116    break;
6117  case IntToBlockPointer:
6118    DiagKind = diag::err_int_to_block_pointer;
6119    break;
6120  case IncompatibleBlockPointer:
6121    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
6122    break;
6123  case IncompatibleObjCQualifiedId:
6124    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
6125    // it can give a more specific diagnostic.
6126    DiagKind = diag::warn_incompatible_qualified_id;
6127    break;
6128  case IncompatibleVectors:
6129    DiagKind = diag::warn_incompatible_vectors;
6130    break;
6131  case Incompatible:
6132    DiagKind = diag::err_typecheck_convert_incompatible;
6133    isInvalid = true;
6134    break;
6135  }
6136
6137  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
6138    << SrcExpr->getSourceRange();
6139  return isInvalid;
6140}
6141
6142bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
6143  llvm::APSInt ICEResult;
6144  if (E->isIntegerConstantExpr(ICEResult, Context)) {
6145    if (Result)
6146      *Result = ICEResult;
6147    return false;
6148  }
6149
6150  Expr::EvalResult EvalResult;
6151
6152  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
6153      EvalResult.HasSideEffects) {
6154    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
6155
6156    if (EvalResult.Diag) {
6157      // We only show the note if it's not the usual "invalid subexpression"
6158      // or if it's actually in a subexpression.
6159      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
6160          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
6161        Diag(EvalResult.DiagLoc, EvalResult.Diag);
6162    }
6163
6164    return true;
6165  }
6166
6167  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
6168    E->getSourceRange();
6169
6170  if (EvalResult.Diag &&
6171      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
6172    Diag(EvalResult.DiagLoc, EvalResult.Diag);
6173
6174  if (Result)
6175    *Result = EvalResult.Val.getInt();
6176  return false;
6177}
6178
6179Sema::ExpressionEvaluationContext
6180Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
6181  // Introduce a new set of potentially referenced declarations to the stack.
6182  if (NewContext == PotentiallyPotentiallyEvaluated)
6183    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
6184
6185  std::swap(ExprEvalContext, NewContext);
6186  return NewContext;
6187}
6188
6189void
6190Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
6191                                     ExpressionEvaluationContext NewContext) {
6192  ExprEvalContext = NewContext;
6193
6194  if (OldContext == PotentiallyPotentiallyEvaluated) {
6195    // Mark any remaining declarations in the current position of the stack
6196    // as "referenced". If they were not meant to be referenced, semantic
6197    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
6198    PotentiallyReferencedDecls RemainingDecls;
6199    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
6200    PotentiallyReferencedDeclStack.pop_back();
6201
6202    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
6203                                           IEnd = RemainingDecls.end();
6204         I != IEnd; ++I)
6205      MarkDeclarationReferenced(I->first, I->second);
6206  }
6207}
6208
6209/// \brief Note that the given declaration was referenced in the source code.
6210///
6211/// This routine should be invoke whenever a given declaration is referenced
6212/// in the source code, and where that reference occurred. If this declaration
6213/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
6214/// C99 6.9p3), then the declaration will be marked as used.
6215///
6216/// \param Loc the location where the declaration was referenced.
6217///
6218/// \param D the declaration that has been referenced by the source code.
6219void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
6220  assert(D && "No declaration?");
6221
6222  if (D->isUsed())
6223    return;
6224
6225  // Mark a parameter or variable declaration "used", regardless of whether we're in a
6226  // template or not. The reason for this is that unevaluated expressions
6227  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
6228  // -Wunused-parameters)
6229  if (isa<ParmVarDecl>(D) ||
6230      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
6231    D->setUsed(true);
6232
6233  // Do not mark anything as "used" within a dependent context; wait for
6234  // an instantiation.
6235  if (CurContext->isDependentContext())
6236    return;
6237
6238  switch (ExprEvalContext) {
6239    case Unevaluated:
6240      // We are in an expression that is not potentially evaluated; do nothing.
6241      return;
6242
6243    case PotentiallyEvaluated:
6244      // We are in a potentially-evaluated expression, so this declaration is
6245      // "used"; handle this below.
6246      break;
6247
6248    case PotentiallyPotentiallyEvaluated:
6249      // We are in an expression that may be potentially evaluated; queue this
6250      // declaration reference until we know whether the expression is
6251      // potentially evaluated.
6252      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
6253      return;
6254  }
6255
6256  // Note that this declaration has been used.
6257  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
6258    unsigned TypeQuals;
6259    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
6260        if (!Constructor->isUsed())
6261          DefineImplicitDefaultConstructor(Loc, Constructor);
6262    } else if (Constructor->isImplicit() &&
6263               Constructor->isCopyConstructor(Context, TypeQuals)) {
6264      if (!Constructor->isUsed())
6265        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
6266    }
6267  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
6268    if (Destructor->isImplicit() && !Destructor->isUsed())
6269      DefineImplicitDestructor(Loc, Destructor);
6270
6271  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
6272    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
6273        MethodDecl->getOverloadedOperator() == OO_Equal) {
6274      if (!MethodDecl->isUsed())
6275        DefineImplicitOverloadedAssign(Loc, MethodDecl);
6276    }
6277  }
6278  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
6279    // Implicit instantiation of function templates and member functions of
6280    // class templates.
6281    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
6282      bool AlreadyInstantiated = false;
6283      if (FunctionTemplateSpecializationInfo *SpecInfo
6284                                = Function->getTemplateSpecializationInfo()) {
6285        if (SpecInfo->getPointOfInstantiation().isInvalid())
6286          SpecInfo->setPointOfInstantiation(Loc);
6287        else if (SpecInfo->getTemplateSpecializationKind()
6288                   == TSK_ImplicitInstantiation)
6289          AlreadyInstantiated = true;
6290      } else if (MemberSpecializationInfo *MSInfo
6291                                  = Function->getMemberSpecializationInfo()) {
6292        if (MSInfo->getPointOfInstantiation().isInvalid())
6293          MSInfo->setPointOfInstantiation(Loc);
6294        else if (MSInfo->getTemplateSpecializationKind()
6295                   == TSK_ImplicitInstantiation)
6296          AlreadyInstantiated = true;
6297      }
6298
6299      if (!AlreadyInstantiated)
6300        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
6301    }
6302
6303    // FIXME: keep track of references to static functions
6304    Function->setUsed(true);
6305    return;
6306  }
6307
6308  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
6309    // Implicit instantiation of static data members of class templates.
6310    if (Var->isStaticDataMember() &&
6311        Var->getInstantiatedFromStaticDataMember()) {
6312      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
6313      assert(MSInfo && "Missing member specialization information?");
6314      if (MSInfo->getPointOfInstantiation().isInvalid() &&
6315          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
6316        MSInfo->setPointOfInstantiation(Loc);
6317        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6318      }
6319    }
6320
6321    // FIXME: keep track of references to static data?
6322
6323    D->setUsed(true);
6324    return;
6325  }
6326}
6327
6328bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
6329                               CallExpr *CE, FunctionDecl *FD) {
6330  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
6331    return false;
6332
6333  PartialDiagnostic Note =
6334    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
6335    << FD->getDeclName() : PDiag();
6336  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
6337
6338  if (RequireCompleteType(Loc, ReturnType,
6339                          FD ?
6340                          PDiag(diag::err_call_function_incomplete_return)
6341                            << CE->getSourceRange() << FD->getDeclName() :
6342                          PDiag(diag::err_call_incomplete_return)
6343                            << CE->getSourceRange(),
6344                          std::make_pair(NoteLoc, Note)))
6345    return true;
6346
6347  return false;
6348}
6349
6350// Diagnose the common s/=/==/ typo.  Note that adding parentheses
6351// will prevent this condition from triggering, which is what we want.
6352void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
6353  SourceLocation Loc;
6354
6355  if (isa<BinaryOperator>(E)) {
6356    BinaryOperator *Op = cast<BinaryOperator>(E);
6357    if (Op->getOpcode() != BinaryOperator::Assign)
6358      return;
6359
6360    Loc = Op->getOperatorLoc();
6361  } else if (isa<CXXOperatorCallExpr>(E)) {
6362    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
6363    if (Op->getOperator() != OO_Equal)
6364      return;
6365
6366    Loc = Op->getOperatorLoc();
6367  } else {
6368    // Not an assignment.
6369    return;
6370  }
6371
6372  SourceLocation Open = E->getSourceRange().getBegin();
6373  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
6374
6375  Diag(Loc, diag::warn_condition_is_assignment)
6376    << E->getSourceRange()
6377    << CodeModificationHint::CreateInsertion(Open, "(")
6378    << CodeModificationHint::CreateInsertion(Close, ")");
6379}
6380
6381bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
6382  DiagnoseAssignmentAsCondition(E);
6383
6384  if (!E->isTypeDependent()) {
6385    DefaultFunctionArrayConversion(E);
6386
6387    QualType T = E->getType();
6388
6389    if (getLangOptions().CPlusPlus) {
6390      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
6391        return true;
6392    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
6393      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
6394        << T << E->getSourceRange();
6395      return true;
6396    }
6397  }
6398
6399  return false;
6400}
6401