SemaExpr.cpp revision 0bbc135a8d04570e8709ebd6b672eaa8e6fc9269
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79
80  // See if the decl is unavailable
81  if (D->getAttr<UnavailableAttr>()) {
82    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
83    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
84  }
85
86
87  return false;
88}
89
90//===----------------------------------------------------------------------===//
91//  Standard Promotions and Conversions
92//===----------------------------------------------------------------------===//
93
94/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
95void Sema::DefaultFunctionArrayConversion(Expr *&E) {
96  QualType Ty = E->getType();
97  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
98
99  if (Ty->isFunctionType())
100    ImpCastExprToType(E, Context.getPointerType(Ty));
101  else if (Ty->isArrayType()) {
102    // In C90 mode, arrays only promote to pointers if the array expression is
103    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
104    // type 'array of type' is converted to an expression that has type 'pointer
105    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
106    // that has type 'array of type' ...".  The relevant change is "an lvalue"
107    // (C90) to "an expression" (C99).
108    //
109    // C++ 4.2p1:
110    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
111    // T" can be converted to an rvalue of type "pointer to T".
112    //
113    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
114        E->isLvalue(Context) == Expr::LV_Valid)
115      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
116  }
117}
118
119/// UsualUnaryConversions - Performs various conversions that are common to most
120/// operators (C99 6.3). The conversions of array and function types are
121/// sometimes surpressed. For example, the array->pointer conversion doesn't
122/// apply if the array is an argument to the sizeof or address (&) operators.
123/// In these instances, this routine should *not* be called.
124Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
125  QualType Ty = Expr->getType();
126  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
127
128  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
129    ImpCastExprToType(Expr, Context.IntTy);
130  else
131    DefaultFunctionArrayConversion(Expr);
132
133  return Expr;
134}
135
136/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
137/// do not have a prototype. Arguments that have type float are promoted to
138/// double. All other argument types are converted by UsualUnaryConversions().
139void Sema::DefaultArgumentPromotion(Expr *&Expr) {
140  QualType Ty = Expr->getType();
141  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
142
143  // If this is a 'float' (CVR qualified or typedef) promote to double.
144  if (const BuiltinType *BT = Ty->getAsBuiltinType())
145    if (BT->getKind() == BuiltinType::Float)
146      return ImpCastExprToType(Expr, Context.DoubleTy);
147
148  UsualUnaryConversions(Expr);
149}
150
151// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
152// will warn if the resulting type is not a POD type.
153void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
154  DefaultArgumentPromotion(Expr);
155
156  if (!Expr->getType()->isPODType()) {
157    Diag(Expr->getLocStart(),
158         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
159    Expr->getType() << CT;
160  }
161}
162
163
164/// UsualArithmeticConversions - Performs various conversions that are common to
165/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
166/// routine returns the first non-arithmetic type found. The client is
167/// responsible for emitting appropriate error diagnostics.
168/// FIXME: verify the conversion rules for "complex int" are consistent with
169/// GCC.
170QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
171                                          bool isCompAssign) {
172  if (!isCompAssign) {
173    UsualUnaryConversions(lhsExpr);
174    UsualUnaryConversions(rhsExpr);
175  }
176
177  // For conversion purposes, we ignore any qualifiers.
178  // For example, "const float" and "float" are equivalent.
179  QualType lhs =
180    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
181  QualType rhs =
182    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
183
184  // If both types are identical, no conversion is needed.
185  if (lhs == rhs)
186    return lhs;
187
188  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
189  // The caller can deal with this (e.g. pointer + int).
190  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
191    return lhs;
192
193  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
194  if (!isCompAssign) {
195    ImpCastExprToType(lhsExpr, destType);
196    ImpCastExprToType(rhsExpr, destType);
197  }
198  return destType;
199}
200
201QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
202  // Perform the usual unary conversions. We do this early so that
203  // integral promotions to "int" can allow us to exit early, in the
204  // lhs == rhs check. Also, for conversion purposes, we ignore any
205  // qualifiers.  For example, "const float" and "float" are
206  // equivalent.
207  if (lhs->isPromotableIntegerType())
208    lhs = Context.IntTy;
209  else
210    lhs = lhs.getUnqualifiedType();
211  if (rhs->isPromotableIntegerType())
212    rhs = Context.IntTy;
213  else
214    rhs = rhs.getUnqualifiedType();
215
216  // If both types are identical, no conversion is needed.
217  if (lhs == rhs)
218    return lhs;
219
220  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
221  // The caller can deal with this (e.g. pointer + int).
222  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
223    return lhs;
224
225  // At this point, we have two different arithmetic types.
226
227  // Handle complex types first (C99 6.3.1.8p1).
228  if (lhs->isComplexType() || rhs->isComplexType()) {
229    // if we have an integer operand, the result is the complex type.
230    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
231      // convert the rhs to the lhs complex type.
232      return lhs;
233    }
234    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
235      // convert the lhs to the rhs complex type.
236      return rhs;
237    }
238    // This handles complex/complex, complex/float, or float/complex.
239    // When both operands are complex, the shorter operand is converted to the
240    // type of the longer, and that is the type of the result. This corresponds
241    // to what is done when combining two real floating-point operands.
242    // The fun begins when size promotion occur across type domains.
243    // From H&S 6.3.4: When one operand is complex and the other is a real
244    // floating-point type, the less precise type is converted, within it's
245    // real or complex domain, to the precision of the other type. For example,
246    // when combining a "long double" with a "double _Complex", the
247    // "double _Complex" is promoted to "long double _Complex".
248    int result = Context.getFloatingTypeOrder(lhs, rhs);
249
250    if (result > 0) { // The left side is bigger, convert rhs.
251      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
252    } else if (result < 0) { // The right side is bigger, convert lhs.
253      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
254    }
255    // At this point, lhs and rhs have the same rank/size. Now, make sure the
256    // domains match. This is a requirement for our implementation, C99
257    // does not require this promotion.
258    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
259      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
260        return rhs;
261      } else { // handle "_Complex double, double".
262        return lhs;
263      }
264    }
265    return lhs; // The domain/size match exactly.
266  }
267  // Now handle "real" floating types (i.e. float, double, long double).
268  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
269    // if we have an integer operand, the result is the real floating type.
270    if (rhs->isIntegerType()) {
271      // convert rhs to the lhs floating point type.
272      return lhs;
273    }
274    if (rhs->isComplexIntegerType()) {
275      // convert rhs to the complex floating point type.
276      return Context.getComplexType(lhs);
277    }
278    if (lhs->isIntegerType()) {
279      // convert lhs to the rhs floating point type.
280      return rhs;
281    }
282    if (lhs->isComplexIntegerType()) {
283      // convert lhs to the complex floating point type.
284      return Context.getComplexType(rhs);
285    }
286    // We have two real floating types, float/complex combos were handled above.
287    // Convert the smaller operand to the bigger result.
288    int result = Context.getFloatingTypeOrder(lhs, rhs);
289    if (result > 0) // convert the rhs
290      return lhs;
291    assert(result < 0 && "illegal float comparison");
292    return rhs;   // convert the lhs
293  }
294  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
295    // Handle GCC complex int extension.
296    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
297    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
298
299    if (lhsComplexInt && rhsComplexInt) {
300      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
301                                      rhsComplexInt->getElementType()) >= 0)
302        return lhs; // convert the rhs
303      return rhs;
304    } else if (lhsComplexInt && rhs->isIntegerType()) {
305      // convert the rhs to the lhs complex type.
306      return lhs;
307    } else if (rhsComplexInt && lhs->isIntegerType()) {
308      // convert the lhs to the rhs complex type.
309      return rhs;
310    }
311  }
312  // Finally, we have two differing integer types.
313  // The rules for this case are in C99 6.3.1.8
314  int compare = Context.getIntegerTypeOrder(lhs, rhs);
315  bool lhsSigned = lhs->isSignedIntegerType(),
316       rhsSigned = rhs->isSignedIntegerType();
317  QualType destType;
318  if (lhsSigned == rhsSigned) {
319    // Same signedness; use the higher-ranked type
320    destType = compare >= 0 ? lhs : rhs;
321  } else if (compare != (lhsSigned ? 1 : -1)) {
322    // The unsigned type has greater than or equal rank to the
323    // signed type, so use the unsigned type
324    destType = lhsSigned ? rhs : lhs;
325  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
326    // The two types are different widths; if we are here, that
327    // means the signed type is larger than the unsigned type, so
328    // use the signed type.
329    destType = lhsSigned ? lhs : rhs;
330  } else {
331    // The signed type is higher-ranked than the unsigned type,
332    // but isn't actually any bigger (like unsigned int and long
333    // on most 32-bit systems).  Use the unsigned type corresponding
334    // to the signed type.
335    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
336  }
337  return destType;
338}
339
340//===----------------------------------------------------------------------===//
341//  Semantic Analysis for various Expression Types
342//===----------------------------------------------------------------------===//
343
344
345/// ActOnStringLiteral - The specified tokens were lexed as pasted string
346/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
347/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
348/// multiple tokens.  However, the common case is that StringToks points to one
349/// string.
350///
351Action::OwningExprResult
352Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
353  assert(NumStringToks && "Must have at least one string!");
354
355  StringLiteralParser Literal(StringToks, NumStringToks, PP);
356  if (Literal.hadError)
357    return ExprError();
358
359  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
360  for (unsigned i = 0; i != NumStringToks; ++i)
361    StringTokLocs.push_back(StringToks[i].getLocation());
362
363  QualType StrTy = Context.CharTy;
364  if (Literal.AnyWide) StrTy = Context.getWCharType();
365  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
366
367  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
368  if (getLangOptions().CPlusPlus)
369    StrTy.addConst();
370
371  // Get an array type for the string, according to C99 6.4.5.  This includes
372  // the nul terminator character as well as the string length for pascal
373  // strings.
374  StrTy = Context.getConstantArrayType(StrTy,
375                                   llvm::APInt(32, Literal.GetStringLength()+1),
376                                       ArrayType::Normal, 0);
377
378  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
379  return Owned(StringLiteral::Create(Context, Literal.GetString(),
380                                     Literal.GetStringLength(),
381                                     Literal.AnyWide, StrTy,
382                                     &StringTokLocs[0],
383                                     StringTokLocs.size()));
384}
385
386/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
387/// CurBlock to VD should cause it to be snapshotted (as we do for auto
388/// variables defined outside the block) or false if this is not needed (e.g.
389/// for values inside the block or for globals).
390///
391/// FIXME: This will create BlockDeclRefExprs for global variables,
392/// function references, etc which is suboptimal :) and breaks
393/// things like "integer constant expression" tests.
394static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
395                                              ValueDecl *VD) {
396  // If the value is defined inside the block, we couldn't snapshot it even if
397  // we wanted to.
398  if (CurBlock->TheDecl == VD->getDeclContext())
399    return false;
400
401  // If this is an enum constant or function, it is constant, don't snapshot.
402  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
403    return false;
404
405  // If this is a reference to an extern, static, or global variable, no need to
406  // snapshot it.
407  // FIXME: What about 'const' variables in C++?
408  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
409    return Var->hasLocalStorage();
410
411  return true;
412}
413
414
415
416/// ActOnIdentifierExpr - The parser read an identifier in expression context,
417/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
418/// identifier is used in a function call context.
419/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
420/// class or namespace that the identifier must be a member of.
421Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
422                                                 IdentifierInfo &II,
423                                                 bool HasTrailingLParen,
424                                                 const CXXScopeSpec *SS,
425                                                 bool isAddressOfOperand) {
426  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
427                                  isAddressOfOperand);
428}
429
430/// BuildDeclRefExpr - Build either a DeclRefExpr or a
431/// QualifiedDeclRefExpr based on whether or not SS is a
432/// nested-name-specifier.
433DeclRefExpr *
434Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
435                       bool TypeDependent, bool ValueDependent,
436                       const CXXScopeSpec *SS) {
437  if (SS && !SS->isEmpty())
438    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
439                                              ValueDependent,
440                                              SS->getRange().getBegin());
441  else
442    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
443}
444
445/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
446/// variable corresponding to the anonymous union or struct whose type
447/// is Record.
448static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
449  assert(Record->isAnonymousStructOrUnion() &&
450         "Record must be an anonymous struct or union!");
451
452  // FIXME: Once Decls are directly linked together, this will
453  // be an O(1) operation rather than a slow walk through DeclContext's
454  // vector (which itself will be eliminated). DeclGroups might make
455  // this even better.
456  DeclContext *Ctx = Record->getDeclContext();
457  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
458                               DEnd = Ctx->decls_end();
459       D != DEnd; ++D) {
460    if (*D == Record) {
461      // The object for the anonymous struct/union directly
462      // follows its type in the list of declarations.
463      ++D;
464      assert(D != DEnd && "Missing object for anonymous record");
465      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
466      return *D;
467    }
468  }
469
470  assert(false && "Missing object for anonymous record");
471  return 0;
472}
473
474Sema::OwningExprResult
475Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
476                                               FieldDecl *Field,
477                                               Expr *BaseObjectExpr,
478                                               SourceLocation OpLoc) {
479  assert(Field->getDeclContext()->isRecord() &&
480         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
481         && "Field must be stored inside an anonymous struct or union");
482
483  // Construct the sequence of field member references
484  // we'll have to perform to get to the field in the anonymous
485  // union/struct. The list of members is built from the field
486  // outward, so traverse it backwards to go from an object in
487  // the current context to the field we found.
488  llvm::SmallVector<FieldDecl *, 4> AnonFields;
489  AnonFields.push_back(Field);
490  VarDecl *BaseObject = 0;
491  DeclContext *Ctx = Field->getDeclContext();
492  do {
493    RecordDecl *Record = cast<RecordDecl>(Ctx);
494    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
495    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
496      AnonFields.push_back(AnonField);
497    else {
498      BaseObject = cast<VarDecl>(AnonObject);
499      break;
500    }
501    Ctx = Ctx->getParent();
502  } while (Ctx->isRecord() &&
503           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
504
505  // Build the expression that refers to the base object, from
506  // which we will build a sequence of member references to each
507  // of the anonymous union objects and, eventually, the field we
508  // found via name lookup.
509  bool BaseObjectIsPointer = false;
510  unsigned ExtraQuals = 0;
511  if (BaseObject) {
512    // BaseObject is an anonymous struct/union variable (and is,
513    // therefore, not part of another non-anonymous record).
514    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
515    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
516                                               SourceLocation());
517    ExtraQuals
518      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
519  } else if (BaseObjectExpr) {
520    // The caller provided the base object expression. Determine
521    // whether its a pointer and whether it adds any qualifiers to the
522    // anonymous struct/union fields we're looking into.
523    QualType ObjectType = BaseObjectExpr->getType();
524    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
525      BaseObjectIsPointer = true;
526      ObjectType = ObjectPtr->getPointeeType();
527    }
528    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
529  } else {
530    // We've found a member of an anonymous struct/union that is
531    // inside a non-anonymous struct/union, so in a well-formed
532    // program our base object expression is "this".
533    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
534      if (!MD->isStatic()) {
535        QualType AnonFieldType
536          = Context.getTagDeclType(
537                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
538        QualType ThisType = Context.getTagDeclType(MD->getParent());
539        if ((Context.getCanonicalType(AnonFieldType)
540               == Context.getCanonicalType(ThisType)) ||
541            IsDerivedFrom(ThisType, AnonFieldType)) {
542          // Our base object expression is "this".
543          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
544                                                     MD->getThisType(Context));
545          BaseObjectIsPointer = true;
546        }
547      } else {
548        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
549          << Field->getDeclName());
550      }
551      ExtraQuals = MD->getTypeQualifiers();
552    }
553
554    if (!BaseObjectExpr)
555      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
556        << Field->getDeclName());
557  }
558
559  // Build the implicit member references to the field of the
560  // anonymous struct/union.
561  Expr *Result = BaseObjectExpr;
562  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
563         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
564       FI != FIEnd; ++FI) {
565    QualType MemberType = (*FI)->getType();
566    if (!(*FI)->isMutable()) {
567      unsigned combinedQualifiers
568        = MemberType.getCVRQualifiers() | ExtraQuals;
569      MemberType = MemberType.getQualifiedType(combinedQualifiers);
570    }
571    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
572                                      OpLoc, MemberType);
573    BaseObjectIsPointer = false;
574    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
575    OpLoc = SourceLocation();
576  }
577
578  return Owned(Result);
579}
580
581/// ActOnDeclarationNameExpr - The parser has read some kind of name
582/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
583/// performs lookup on that name and returns an expression that refers
584/// to that name. This routine isn't directly called from the parser,
585/// because the parser doesn't know about DeclarationName. Rather,
586/// this routine is called by ActOnIdentifierExpr,
587/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
588/// which form the DeclarationName from the corresponding syntactic
589/// forms.
590///
591/// HasTrailingLParen indicates whether this identifier is used in a
592/// function call context.  LookupCtx is only used for a C++
593/// qualified-id (foo::bar) to indicate the class or namespace that
594/// the identifier must be a member of.
595///
596/// isAddressOfOperand means that this expression is the direct operand
597/// of an address-of operator. This matters because this is the only
598/// situation where a qualified name referencing a non-static member may
599/// appear outside a member function of this class.
600Sema::OwningExprResult
601Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
602                               DeclarationName Name, bool HasTrailingLParen,
603                               const CXXScopeSpec *SS,
604                               bool isAddressOfOperand) {
605  // Could be enum-constant, value decl, instance variable, etc.
606  if (SS && SS->isInvalid())
607    return ExprError();
608  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
609                                         false, true, Loc);
610
611  NamedDecl *D = 0;
612  if (Lookup.isAmbiguous()) {
613    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
614                            SS && SS->isSet() ? SS->getRange()
615                                              : SourceRange());
616    return ExprError();
617  } else
618    D = Lookup.getAsDecl();
619
620  // If this reference is in an Objective-C method, then ivar lookup happens as
621  // well.
622  IdentifierInfo *II = Name.getAsIdentifierInfo();
623  if (II && getCurMethodDecl()) {
624    // There are two cases to handle here.  1) scoped lookup could have failed,
625    // in which case we should look for an ivar.  2) scoped lookup could have
626    // found a decl, but that decl is outside the current method (i.e. a global
627    // variable).  In these two cases, we do a lookup for an ivar with this
628    // name, if the lookup suceeds, we replace it our current decl.
629    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
630      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
631      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
632        // Check if referencing a field with __attribute__((deprecated)).
633        if (DiagnoseUseOfDecl(IV, Loc))
634          return ExprError();
635
636        // FIXME: This should use a new expr for a direct reference, don't turn
637        // this into Self->ivar, just return a BareIVarExpr or something.
638        IdentifierInfo &II = Context.Idents.get("self");
639        OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
640        ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
641                                  Loc, static_cast<Expr*>(SelfExpr.release()),
642                                  true, true);
643        Context.setFieldDecl(IFace, IV, MRef);
644        return Owned(MRef);
645      }
646    }
647    // Needed to implement property "super.method" notation.
648    if (D == 0 && II->isStr("super")) {
649      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
650                     getCurMethodDecl()->getClassInterface()));
651      return Owned(new (Context) ObjCSuperExpr(Loc, T));
652    }
653  }
654
655  // Determine whether this name might be a candidate for
656  // argument-dependent lookup.
657  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
658             HasTrailingLParen;
659
660  if (ADL && D == 0) {
661    // We've seen something of the form
662    //
663    //   identifier(
664    //
665    // and we did not find any entity by the name
666    // "identifier". However, this identifier is still subject to
667    // argument-dependent lookup, so keep track of the name.
668    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
669                                                          Context.OverloadTy,
670                                                          Loc));
671  }
672
673  if (D == 0) {
674    // Otherwise, this could be an implicitly declared function reference (legal
675    // in C90, extension in C99).
676    if (HasTrailingLParen && II &&
677        !getLangOptions().CPlusPlus) // Not in C++.
678      D = ImplicitlyDefineFunction(Loc, *II, S);
679    else {
680      // If this name wasn't predeclared and if this is not a function call,
681      // diagnose the problem.
682      if (SS && !SS->isEmpty())
683        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
684          << Name << SS->getRange());
685      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
686               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
687        return ExprError(Diag(Loc, diag::err_undeclared_use)
688          << Name.getAsString());
689      else
690        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
691    }
692  }
693
694  // If this is an expression of the form &Class::member, don't build an
695  // implicit member ref, because we want a pointer to the member in general,
696  // not any specific instance's member.
697  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
698    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
699    if (D && isa<CXXRecordDecl>(DC)) {
700      QualType DType;
701      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
702        DType = FD->getType().getNonReferenceType();
703      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
704        DType = Method->getType();
705      } else if (isa<OverloadedFunctionDecl>(D)) {
706        DType = Context.OverloadTy;
707      }
708      // Could be an inner type. That's diagnosed below, so ignore it here.
709      if (!DType.isNull()) {
710        // The pointer is type- and value-dependent if it points into something
711        // dependent.
712        bool Dependent = false;
713        for (; DC; DC = DC->getParent()) {
714          // FIXME: could stop early at namespace scope.
715          if (DC->isRecord()) {
716            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
717            if (Context.getTypeDeclType(Record)->isDependentType()) {
718              Dependent = true;
719              break;
720            }
721          }
722        }
723        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
724      }
725    }
726  }
727
728  // We may have found a field within an anonymous union or struct
729  // (C++ [class.union]).
730  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
731    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
732      return BuildAnonymousStructUnionMemberReference(Loc, FD);
733
734  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
735    if (!MD->isStatic()) {
736      // C++ [class.mfct.nonstatic]p2:
737      //   [...] if name lookup (3.4.1) resolves the name in the
738      //   id-expression to a nonstatic nontype member of class X or of
739      //   a base class of X, the id-expression is transformed into a
740      //   class member access expression (5.2.5) using (*this) (9.3.2)
741      //   as the postfix-expression to the left of the '.' operator.
742      DeclContext *Ctx = 0;
743      QualType MemberType;
744      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
745        Ctx = FD->getDeclContext();
746        MemberType = FD->getType();
747
748        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
749          MemberType = RefType->getPointeeType();
750        else if (!FD->isMutable()) {
751          unsigned combinedQualifiers
752            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
753          MemberType = MemberType.getQualifiedType(combinedQualifiers);
754        }
755      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
756        if (!Method->isStatic()) {
757          Ctx = Method->getParent();
758          MemberType = Method->getType();
759        }
760      } else if (OverloadedFunctionDecl *Ovl
761                   = dyn_cast<OverloadedFunctionDecl>(D)) {
762        for (OverloadedFunctionDecl::function_iterator
763               Func = Ovl->function_begin(),
764               FuncEnd = Ovl->function_end();
765             Func != FuncEnd; ++Func) {
766          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
767            if (!DMethod->isStatic()) {
768              Ctx = Ovl->getDeclContext();
769              MemberType = Context.OverloadTy;
770              break;
771            }
772        }
773      }
774
775      if (Ctx && Ctx->isRecord()) {
776        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
777        QualType ThisType = Context.getTagDeclType(MD->getParent());
778        if ((Context.getCanonicalType(CtxType)
779               == Context.getCanonicalType(ThisType)) ||
780            IsDerivedFrom(ThisType, CtxType)) {
781          // Build the implicit member access expression.
782          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
783                                                 MD->getThisType(Context));
784          return Owned(new (Context) MemberExpr(This, true, D,
785                                                SourceLocation(), MemberType));
786        }
787      }
788    }
789  }
790
791  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
792    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
793      if (MD->isStatic())
794        // "invalid use of member 'x' in static member function"
795        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
796          << FD->getDeclName());
797    }
798
799    // Any other ways we could have found the field in a well-formed
800    // program would have been turned into implicit member expressions
801    // above.
802    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
803      << FD->getDeclName());
804  }
805
806  if (isa<TypedefDecl>(D))
807    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
808  if (isa<ObjCInterfaceDecl>(D))
809    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
810  if (isa<NamespaceDecl>(D))
811    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
812
813  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
814  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
815    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
816                                  false, false, SS));
817  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
818    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
819                                  false, false, SS));
820  ValueDecl *VD = cast<ValueDecl>(D);
821
822  // Check whether this declaration can be used. Note that we suppress
823  // this check when we're going to perform argument-dependent lookup
824  // on this function name, because this might not be the function
825  // that overload resolution actually selects.
826  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
827    return ExprError();
828
829  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
830    // Warn about constructs like:
831    //   if (void *X = foo()) { ... } else { X }.
832    // In the else block, the pointer is always false.
833    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
834      Scope *CheckS = S;
835      while (CheckS) {
836        if (CheckS->isWithinElse() &&
837            CheckS->getControlParent()->isDeclScope(Var)) {
838          if (Var->getType()->isBooleanType())
839            ExprError(Diag(Loc, diag::warn_value_always_false)
840              << Var->getDeclName());
841          else
842            ExprError(Diag(Loc, diag::warn_value_always_zero)
843              << Var->getDeclName());
844          break;
845        }
846
847        // Move up one more control parent to check again.
848        CheckS = CheckS->getControlParent();
849        if (CheckS)
850          CheckS = CheckS->getParent();
851      }
852    }
853  }
854
855  // Only create DeclRefExpr's for valid Decl's.
856  if (VD->isInvalidDecl())
857    return ExprError();
858
859  // If the identifier reference is inside a block, and it refers to a value
860  // that is outside the block, create a BlockDeclRefExpr instead of a
861  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
862  // the block is formed.
863  //
864  // We do not do this for things like enum constants, global variables, etc,
865  // as they do not get snapshotted.
866  //
867  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
868    // Blocks that have these can't be constant.
869    CurBlock->hasBlockDeclRefExprs = true;
870
871    // The BlocksAttr indicates the variable is bound by-reference.
872    if (VD->getAttr<BlocksAttr>())
873      return Owned(new (Context) BlockDeclRefExpr(VD,
874                               VD->getType().getNonReferenceType(), Loc, true));
875
876    // Variable will be bound by-copy, make it const within the closure.
877    VD->getType().addConst();
878    return Owned(new (Context) BlockDeclRefExpr(VD,
879                             VD->getType().getNonReferenceType(), Loc, false));
880  }
881  // If this reference is not in a block or if the referenced variable is
882  // within the block, create a normal DeclRefExpr.
883
884  bool TypeDependent = false;
885  bool ValueDependent = false;
886  if (getLangOptions().CPlusPlus) {
887    // C++ [temp.dep.expr]p3:
888    //   An id-expression is type-dependent if it contains:
889    //     - an identifier that was declared with a dependent type,
890    if (VD->getType()->isDependentType())
891      TypeDependent = true;
892    //     - FIXME: a template-id that is dependent,
893    //     - a conversion-function-id that specifies a dependent type,
894    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
895             Name.getCXXNameType()->isDependentType())
896      TypeDependent = true;
897    //     - a nested-name-specifier that contains a class-name that
898    //       names a dependent type.
899    else if (SS && !SS->isEmpty()) {
900      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
901           DC; DC = DC->getParent()) {
902        // FIXME: could stop early at namespace scope.
903        if (DC->isRecord()) {
904          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
905          if (Context.getTypeDeclType(Record)->isDependentType()) {
906            TypeDependent = true;
907            break;
908          }
909        }
910      }
911    }
912
913    // C++ [temp.dep.constexpr]p2:
914    //
915    //   An identifier is value-dependent if it is:
916    //     - a name declared with a dependent type,
917    if (TypeDependent)
918      ValueDependent = true;
919    //     - the name of a non-type template parameter,
920    else if (isa<NonTypeTemplateParmDecl>(VD))
921      ValueDependent = true;
922    //    - a constant with integral or enumeration type and is
923    //      initialized with an expression that is value-dependent
924    //      (FIXME!).
925  }
926
927  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
928                                TypeDependent, ValueDependent, SS));
929}
930
931Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
932                                                 tok::TokenKind Kind) {
933  PredefinedExpr::IdentType IT;
934
935  switch (Kind) {
936  default: assert(0 && "Unknown simple primary expr!");
937  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
938  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
939  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
940  }
941
942  // Pre-defined identifiers are of type char[x], where x is the length of the
943  // string.
944  unsigned Length;
945  if (FunctionDecl *FD = getCurFunctionDecl())
946    Length = FD->getIdentifier()->getLength();
947  else if (ObjCMethodDecl *MD = getCurMethodDecl())
948    Length = MD->getSynthesizedMethodSize();
949  else {
950    Diag(Loc, diag::ext_predef_outside_function);
951    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
952    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
953  }
954
955
956  llvm::APInt LengthI(32, Length + 1);
957  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
958  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
959  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
960}
961
962Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
963  llvm::SmallString<16> CharBuffer;
964  CharBuffer.resize(Tok.getLength());
965  const char *ThisTokBegin = &CharBuffer[0];
966  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
967
968  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
969                            Tok.getLocation(), PP);
970  if (Literal.hadError())
971    return ExprError();
972
973  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
974
975  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
976                                              Literal.isWide(),
977                                              type, Tok.getLocation()));
978}
979
980Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
981  // Fast path for a single digit (which is quite common).  A single digit
982  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
983  if (Tok.getLength() == 1) {
984    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
985    unsigned IntSize = Context.Target.getIntWidth();
986    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
987                    Context.IntTy, Tok.getLocation()));
988  }
989
990  llvm::SmallString<512> IntegerBuffer;
991  // Add padding so that NumericLiteralParser can overread by one character.
992  IntegerBuffer.resize(Tok.getLength()+1);
993  const char *ThisTokBegin = &IntegerBuffer[0];
994
995  // Get the spelling of the token, which eliminates trigraphs, etc.
996  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
997
998  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
999                               Tok.getLocation(), PP);
1000  if (Literal.hadError)
1001    return ExprError();
1002
1003  Expr *Res;
1004
1005  if (Literal.isFloatingLiteral()) {
1006    QualType Ty;
1007    if (Literal.isFloat)
1008      Ty = Context.FloatTy;
1009    else if (!Literal.isLong)
1010      Ty = Context.DoubleTy;
1011    else
1012      Ty = Context.LongDoubleTy;
1013
1014    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1015
1016    // isExact will be set by GetFloatValue().
1017    bool isExact = false;
1018    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1019                                        &isExact, Ty, Tok.getLocation());
1020
1021  } else if (!Literal.isIntegerLiteral()) {
1022    return ExprError();
1023  } else {
1024    QualType Ty;
1025
1026    // long long is a C99 feature.
1027    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1028        Literal.isLongLong)
1029      Diag(Tok.getLocation(), diag::ext_longlong);
1030
1031    // Get the value in the widest-possible width.
1032    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1033
1034    if (Literal.GetIntegerValue(ResultVal)) {
1035      // If this value didn't fit into uintmax_t, warn and force to ull.
1036      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1037      Ty = Context.UnsignedLongLongTy;
1038      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1039             "long long is not intmax_t?");
1040    } else {
1041      // If this value fits into a ULL, try to figure out what else it fits into
1042      // according to the rules of C99 6.4.4.1p5.
1043
1044      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1045      // be an unsigned int.
1046      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1047
1048      // Check from smallest to largest, picking the smallest type we can.
1049      unsigned Width = 0;
1050      if (!Literal.isLong && !Literal.isLongLong) {
1051        // Are int/unsigned possibilities?
1052        unsigned IntSize = Context.Target.getIntWidth();
1053
1054        // Does it fit in a unsigned int?
1055        if (ResultVal.isIntN(IntSize)) {
1056          // Does it fit in a signed int?
1057          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1058            Ty = Context.IntTy;
1059          else if (AllowUnsigned)
1060            Ty = Context.UnsignedIntTy;
1061          Width = IntSize;
1062        }
1063      }
1064
1065      // Are long/unsigned long possibilities?
1066      if (Ty.isNull() && !Literal.isLongLong) {
1067        unsigned LongSize = Context.Target.getLongWidth();
1068
1069        // Does it fit in a unsigned long?
1070        if (ResultVal.isIntN(LongSize)) {
1071          // Does it fit in a signed long?
1072          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1073            Ty = Context.LongTy;
1074          else if (AllowUnsigned)
1075            Ty = Context.UnsignedLongTy;
1076          Width = LongSize;
1077        }
1078      }
1079
1080      // Finally, check long long if needed.
1081      if (Ty.isNull()) {
1082        unsigned LongLongSize = Context.Target.getLongLongWidth();
1083
1084        // Does it fit in a unsigned long long?
1085        if (ResultVal.isIntN(LongLongSize)) {
1086          // Does it fit in a signed long long?
1087          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1088            Ty = Context.LongLongTy;
1089          else if (AllowUnsigned)
1090            Ty = Context.UnsignedLongLongTy;
1091          Width = LongLongSize;
1092        }
1093      }
1094
1095      // If we still couldn't decide a type, we probably have something that
1096      // does not fit in a signed long long, but has no U suffix.
1097      if (Ty.isNull()) {
1098        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1099        Ty = Context.UnsignedLongLongTy;
1100        Width = Context.Target.getLongLongWidth();
1101      }
1102
1103      if (ResultVal.getBitWidth() != Width)
1104        ResultVal.trunc(Width);
1105    }
1106    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1107  }
1108
1109  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1110  if (Literal.isImaginary)
1111    Res = new (Context) ImaginaryLiteral(Res,
1112                                        Context.getComplexType(Res->getType()));
1113
1114  return Owned(Res);
1115}
1116
1117Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1118                                              SourceLocation R, ExprArg Val) {
1119  Expr *E = (Expr *)Val.release();
1120  assert((E != 0) && "ActOnParenExpr() missing expr");
1121  return Owned(new (Context) ParenExpr(L, R, E));
1122}
1123
1124/// The UsualUnaryConversions() function is *not* called by this routine.
1125/// See C99 6.3.2.1p[2-4] for more details.
1126bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1127                                     SourceLocation OpLoc,
1128                                     const SourceRange &ExprRange,
1129                                     bool isSizeof) {
1130  // C99 6.5.3.4p1:
1131  if (isa<FunctionType>(exprType)) {
1132    // alignof(function) is allowed.
1133    if (isSizeof)
1134      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1135    return false;
1136  }
1137
1138  if (exprType->isVoidType()) {
1139    Diag(OpLoc, diag::ext_sizeof_void_type)
1140      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1141    return false;
1142  }
1143
1144  return DiagnoseIncompleteType(OpLoc, exprType,
1145                                isSizeof ? diag::err_sizeof_incomplete_type :
1146                                           diag::err_alignof_incomplete_type,
1147                                ExprRange);
1148}
1149
1150bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1151                            const SourceRange &ExprRange) {
1152  E = E->IgnoreParens();
1153
1154  // alignof decl is always ok.
1155  if (isa<DeclRefExpr>(E))
1156    return false;
1157
1158  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1159    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1160      if (FD->isBitField()) {
1161        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1162        return true;
1163      }
1164      // Other fields are ok.
1165      return false;
1166    }
1167  }
1168  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1169}
1170
1171/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1172/// the same for @c alignof and @c __alignof
1173/// Note that the ArgRange is invalid if isType is false.
1174Action::OwningExprResult
1175Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1176                             void *TyOrEx, const SourceRange &ArgRange) {
1177  // If error parsing type, ignore.
1178  if (TyOrEx == 0) return ExprError();
1179
1180  QualType ArgTy;
1181  SourceRange Range;
1182  if (isType) {
1183    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1184    Range = ArgRange;
1185
1186    // Verify that the operand is valid.
1187    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1188      return ExprError();
1189  } else {
1190    // Get the end location.
1191    Expr *ArgEx = (Expr *)TyOrEx;
1192    Range = ArgEx->getSourceRange();
1193    ArgTy = ArgEx->getType();
1194
1195    // Verify that the operand is valid.
1196    bool isInvalid;
1197    if (!isSizeof) {
1198      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1199    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1200      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1201      isInvalid = true;
1202    } else {
1203      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1204    }
1205
1206    if (isInvalid) {
1207      DeleteExpr(ArgEx);
1208      return ExprError();
1209    }
1210  }
1211
1212  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1213  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1214                                               Context.getSizeType(), OpLoc,
1215                                               Range.getEnd()));
1216}
1217
1218QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1219  DefaultFunctionArrayConversion(V);
1220
1221  // These operators return the element type of a complex type.
1222  if (const ComplexType *CT = V->getType()->getAsComplexType())
1223    return CT->getElementType();
1224
1225  // Otherwise they pass through real integer and floating point types here.
1226  if (V->getType()->isArithmeticType())
1227    return V->getType();
1228
1229  // Reject anything else.
1230  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1231    << (isReal ? "__real" : "__imag");
1232  return QualType();
1233}
1234
1235
1236
1237Action::OwningExprResult
1238Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1239                          tok::TokenKind Kind, ExprArg Input) {
1240  Expr *Arg = (Expr *)Input.get();
1241
1242  UnaryOperator::Opcode Opc;
1243  switch (Kind) {
1244  default: assert(0 && "Unknown unary op!");
1245  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1246  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1247  }
1248
1249  if (getLangOptions().CPlusPlus &&
1250      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1251    // Which overloaded operator?
1252    OverloadedOperatorKind OverOp =
1253      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1254
1255    // C++ [over.inc]p1:
1256    //
1257    //     [...] If the function is a member function with one
1258    //     parameter (which shall be of type int) or a non-member
1259    //     function with two parameters (the second of which shall be
1260    //     of type int), it defines the postfix increment operator ++
1261    //     for objects of that type. When the postfix increment is
1262    //     called as a result of using the ++ operator, the int
1263    //     argument will have value zero.
1264    Expr *Args[2] = {
1265      Arg,
1266      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1267                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1268    };
1269
1270    // Build the candidate set for overloading
1271    OverloadCandidateSet CandidateSet;
1272    if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet))
1273      return ExprError();
1274
1275    // Perform overload resolution.
1276    OverloadCandidateSet::iterator Best;
1277    switch (BestViableFunction(CandidateSet, Best)) {
1278    case OR_Success: {
1279      // We found a built-in operator or an overloaded operator.
1280      FunctionDecl *FnDecl = Best->Function;
1281
1282      if (FnDecl) {
1283        // We matched an overloaded operator. Build a call to that
1284        // operator.
1285
1286        // Convert the arguments.
1287        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1288          if (PerformObjectArgumentInitialization(Arg, Method))
1289            return ExprError();
1290        } else {
1291          // Convert the arguments.
1292          if (PerformCopyInitialization(Arg,
1293                                        FnDecl->getParamDecl(0)->getType(),
1294                                        "passing"))
1295            return ExprError();
1296        }
1297
1298        // Determine the result type
1299        QualType ResultTy
1300          = FnDecl->getType()->getAsFunctionType()->getResultType();
1301        ResultTy = ResultTy.getNonReferenceType();
1302
1303        // Build the actual expression node.
1304        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1305                                                 SourceLocation());
1306        UsualUnaryConversions(FnExpr);
1307
1308        Input.release();
1309        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1310                                                       ResultTy, OpLoc));
1311      } else {
1312        // We matched a built-in operator. Convert the arguments, then
1313        // break out so that we will build the appropriate built-in
1314        // operator node.
1315        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1316                                      "passing"))
1317          return ExprError();
1318
1319        break;
1320      }
1321    }
1322
1323    case OR_No_Viable_Function:
1324      // No viable function; fall through to handling this as a
1325      // built-in operator, which will produce an error message for us.
1326      break;
1327
1328    case OR_Ambiguous:
1329      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1330          << UnaryOperator::getOpcodeStr(Opc)
1331          << Arg->getSourceRange();
1332      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1333      return ExprError();
1334
1335    case OR_Deleted:
1336      Diag(OpLoc, diag::err_ovl_deleted_oper)
1337        << Best->Function->isDeleted()
1338        << UnaryOperator::getOpcodeStr(Opc)
1339        << Arg->getSourceRange();
1340      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1341      return ExprError();
1342    }
1343
1344    // Either we found no viable overloaded operator or we matched a
1345    // built-in operator. In either case, fall through to trying to
1346    // build a built-in operation.
1347  }
1348
1349  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1350                                                 Opc == UnaryOperator::PostInc);
1351  if (result.isNull())
1352    return ExprError();
1353  Input.release();
1354  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1355}
1356
1357Action::OwningExprResult
1358Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1359                              ExprArg Idx, SourceLocation RLoc) {
1360  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1361       *RHSExp = static_cast<Expr*>(Idx.get());
1362
1363  if (getLangOptions().CPlusPlus &&
1364      (LHSExp->getType()->isRecordType() ||
1365       LHSExp->getType()->isEnumeralType() ||
1366       RHSExp->getType()->isRecordType() ||
1367       RHSExp->getType()->isEnumeralType())) {
1368    // Add the appropriate overloaded operators (C++ [over.match.oper])
1369    // to the candidate set.
1370    OverloadCandidateSet CandidateSet;
1371    Expr *Args[2] = { LHSExp, RHSExp };
1372    if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1373                              SourceRange(LLoc, RLoc)))
1374      return ExprError();
1375
1376    // Perform overload resolution.
1377    OverloadCandidateSet::iterator Best;
1378    switch (BestViableFunction(CandidateSet, Best)) {
1379    case OR_Success: {
1380      // We found a built-in operator or an overloaded operator.
1381      FunctionDecl *FnDecl = Best->Function;
1382
1383      if (FnDecl) {
1384        // We matched an overloaded operator. Build a call to that
1385        // operator.
1386
1387        // Convert the arguments.
1388        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1389          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1390              PerformCopyInitialization(RHSExp,
1391                                        FnDecl->getParamDecl(0)->getType(),
1392                                        "passing"))
1393            return ExprError();
1394        } else {
1395          // Convert the arguments.
1396          if (PerformCopyInitialization(LHSExp,
1397                                        FnDecl->getParamDecl(0)->getType(),
1398                                        "passing") ||
1399              PerformCopyInitialization(RHSExp,
1400                                        FnDecl->getParamDecl(1)->getType(),
1401                                        "passing"))
1402            return ExprError();
1403        }
1404
1405        // Determine the result type
1406        QualType ResultTy
1407          = FnDecl->getType()->getAsFunctionType()->getResultType();
1408        ResultTy = ResultTy.getNonReferenceType();
1409
1410        // Build the actual expression node.
1411        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1412                                                 SourceLocation());
1413        UsualUnaryConversions(FnExpr);
1414
1415        Base.release();
1416        Idx.release();
1417        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1418                                                       ResultTy, LLoc));
1419      } else {
1420        // We matched a built-in operator. Convert the arguments, then
1421        // break out so that we will build the appropriate built-in
1422        // operator node.
1423        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1424                                      "passing") ||
1425            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1426                                      "passing"))
1427          return ExprError();
1428
1429        break;
1430      }
1431    }
1432
1433    case OR_No_Viable_Function:
1434      // No viable function; fall through to handling this as a
1435      // built-in operator, which will produce an error message for us.
1436      break;
1437
1438    case OR_Ambiguous:
1439      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1440          << "[]"
1441          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1442      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1443      return ExprError();
1444
1445    case OR_Deleted:
1446      Diag(LLoc, diag::err_ovl_deleted_oper)
1447        << Best->Function->isDeleted()
1448        << "[]"
1449        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1450      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1451      return ExprError();
1452    }
1453
1454    // Either we found no viable overloaded operator or we matched a
1455    // built-in operator. In either case, fall through to trying to
1456    // build a built-in operation.
1457  }
1458
1459  // Perform default conversions.
1460  DefaultFunctionArrayConversion(LHSExp);
1461  DefaultFunctionArrayConversion(RHSExp);
1462
1463  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1464
1465  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1466  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1467  // in the subscript position. As a result, we need to derive the array base
1468  // and index from the expression types.
1469  Expr *BaseExpr, *IndexExpr;
1470  QualType ResultType;
1471  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1472    BaseExpr = LHSExp;
1473    IndexExpr = RHSExp;
1474    // FIXME: need to deal with const...
1475    ResultType = PTy->getPointeeType();
1476  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1477     // Handle the uncommon case of "123[Ptr]".
1478    BaseExpr = RHSExp;
1479    IndexExpr = LHSExp;
1480    // FIXME: need to deal with const...
1481    ResultType = PTy->getPointeeType();
1482  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1483    BaseExpr = LHSExp;    // vectors: V[123]
1484    IndexExpr = RHSExp;
1485
1486    // FIXME: need to deal with const...
1487    ResultType = VTy->getElementType();
1488  } else {
1489    return ExprError(Diag(LHSExp->getLocStart(),
1490      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1491  }
1492  // C99 6.5.2.1p1
1493  if (!IndexExpr->getType()->isIntegerType())
1494    return ExprError(Diag(IndexExpr->getLocStart(),
1495      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1496
1497  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1498  // the following check catches trying to index a pointer to a function (e.g.
1499  // void (*)(int)) and pointers to incomplete types.  Functions are not
1500  // objects in C99.
1501  if (!ResultType->isObjectType())
1502    return ExprError(Diag(BaseExpr->getLocStart(),
1503                diag::err_typecheck_subscript_not_object)
1504      << BaseExpr->getType() << BaseExpr->getSourceRange());
1505
1506  Base.release();
1507  Idx.release();
1508  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1509                                                ResultType, RLoc));
1510}
1511
1512QualType Sema::
1513CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1514                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1515  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1516
1517  // The vector accessor can't exceed the number of elements.
1518  const char *compStr = CompName.getName();
1519
1520  // This flag determines whether or not the component is one of the four
1521  // special names that indicate a subset of exactly half the elements are
1522  // to be selected.
1523  bool HalvingSwizzle = false;
1524
1525  // This flag determines whether or not CompName has an 's' char prefix,
1526  // indicating that it is a string of hex values to be used as vector indices.
1527  bool HexSwizzle = *compStr == 's';
1528
1529  // Check that we've found one of the special components, or that the component
1530  // names must come from the same set.
1531  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1532      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1533    HalvingSwizzle = true;
1534  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1535    do
1536      compStr++;
1537    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1538  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1539    do
1540      compStr++;
1541    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1542  }
1543
1544  if (!HalvingSwizzle && *compStr) {
1545    // We didn't get to the end of the string. This means the component names
1546    // didn't come from the same set *or* we encountered an illegal name.
1547    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1548      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1549    return QualType();
1550  }
1551
1552  // Ensure no component accessor exceeds the width of the vector type it
1553  // operates on.
1554  if (!HalvingSwizzle) {
1555    compStr = CompName.getName();
1556
1557    if (HexSwizzle)
1558      compStr++;
1559
1560    while (*compStr) {
1561      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1562        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1563          << baseType << SourceRange(CompLoc);
1564        return QualType();
1565      }
1566    }
1567  }
1568
1569  // If this is a halving swizzle, verify that the base type has an even
1570  // number of elements.
1571  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1572    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1573      << baseType << SourceRange(CompLoc);
1574    return QualType();
1575  }
1576
1577  // The component accessor looks fine - now we need to compute the actual type.
1578  // The vector type is implied by the component accessor. For example,
1579  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1580  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1581  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1582  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1583                                     : CompName.getLength();
1584  if (HexSwizzle)
1585    CompSize--;
1586
1587  if (CompSize == 1)
1588    return vecType->getElementType();
1589
1590  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1591  // Now look up the TypeDefDecl from the vector type. Without this,
1592  // diagostics look bad. We want extended vector types to appear built-in.
1593  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1594    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1595      return Context.getTypedefType(ExtVectorDecls[i]);
1596  }
1597  return VT; // should never get here (a typedef type should always be found).
1598}
1599
1600
1601/// constructSetterName - Return the setter name for the given
1602/// identifier, i.e. "set" + Name where the initial character of Name
1603/// has been capitalized.
1604// FIXME: Merge with same routine in Parser. But where should this
1605// live?
1606static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1607                                           const IdentifierInfo *Name) {
1608  llvm::SmallString<100> SelectorName;
1609  SelectorName = "set";
1610  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1611  SelectorName[3] = toupper(SelectorName[3]);
1612  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1613}
1614
1615Action::OwningExprResult
1616Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1617                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1618                               IdentifierInfo &Member) {
1619  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1620  assert(BaseExpr && "no record expression");
1621
1622  // Perform default conversions.
1623  DefaultFunctionArrayConversion(BaseExpr);
1624
1625  QualType BaseType = BaseExpr->getType();
1626  assert(!BaseType.isNull() && "no type for member expression");
1627
1628  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1629  // must have pointer type, and the accessed type is the pointee.
1630  if (OpKind == tok::arrow) {
1631    if (const PointerType *PT = BaseType->getAsPointerType())
1632      BaseType = PT->getPointeeType();
1633    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1634      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1635                                            MemberLoc, Member));
1636    else
1637      return ExprError(Diag(MemberLoc,
1638                            diag::err_typecheck_member_reference_arrow)
1639        << BaseType << BaseExpr->getSourceRange());
1640  }
1641
1642  // Handle field access to simple records.  This also handles access to fields
1643  // of the ObjC 'id' struct.
1644  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1645    RecordDecl *RDecl = RTy->getDecl();
1646    if (DiagnoseIncompleteType(OpLoc, BaseType,
1647                               diag::err_typecheck_incomplete_tag,
1648                               BaseExpr->getSourceRange()))
1649      return ExprError();
1650
1651    // The record definition is complete, now make sure the member is valid.
1652    // FIXME: Qualified name lookup for C++ is a bit more complicated
1653    // than this.
1654    LookupResult Result
1655      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1656                            LookupMemberName, false);
1657
1658    NamedDecl *MemberDecl = 0;
1659    if (!Result)
1660      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1661               << &Member << BaseExpr->getSourceRange());
1662    else if (Result.isAmbiguous()) {
1663      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1664                              MemberLoc, BaseExpr->getSourceRange());
1665      return ExprError();
1666    } else
1667      MemberDecl = Result;
1668
1669    // If the decl being referenced had an error, return an error for this
1670    // sub-expr without emitting another error, in order to avoid cascading
1671    // error cases.
1672    if (MemberDecl->isInvalidDecl())
1673      return ExprError();
1674
1675    // Check the use of this field
1676    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1677      return ExprError();
1678
1679    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1680      // We may have found a field within an anonymous union or struct
1681      // (C++ [class.union]).
1682      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1683        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1684                                                        BaseExpr, OpLoc);
1685
1686      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1687      // FIXME: Handle address space modifiers
1688      QualType MemberType = FD->getType();
1689      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1690        MemberType = Ref->getPointeeType();
1691      else {
1692        unsigned combinedQualifiers =
1693          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1694        if (FD->isMutable())
1695          combinedQualifiers &= ~QualType::Const;
1696        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1697      }
1698
1699      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1700                                            MemberLoc, MemberType));
1701    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1702      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1703                                  Var, MemberLoc,
1704                                  Var->getType().getNonReferenceType()));
1705    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1706      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1707                                  MemberFn, MemberLoc, MemberFn->getType()));
1708    else if (OverloadedFunctionDecl *Ovl
1709             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1710      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1711                                  MemberLoc, Context.OverloadTy));
1712    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1713      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1714                                            Enum, MemberLoc, Enum->getType()));
1715    else if (isa<TypeDecl>(MemberDecl))
1716      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1717        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1718
1719    // We found a declaration kind that we didn't expect. This is a
1720    // generic error message that tells the user that she can't refer
1721    // to this member with '.' or '->'.
1722    return ExprError(Diag(MemberLoc,
1723                          diag::err_typecheck_member_reference_unknown)
1724      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1725  }
1726
1727  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1728  // (*Obj).ivar.
1729  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1730    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1731      // If the decl being referenced had an error, return an error for this
1732      // sub-expr without emitting another error, in order to avoid cascading
1733      // error cases.
1734      if (IV->isInvalidDecl())
1735        return ExprError();
1736
1737      // Check whether we can reference this field.
1738      if (DiagnoseUseOfDecl(IV, MemberLoc))
1739        return ExprError();
1740
1741      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1742                                                 MemberLoc, BaseExpr,
1743                                                 OpKind == tok::arrow);
1744      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1745      return Owned(MRef);
1746    }
1747    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1748                       << IFTy->getDecl()->getDeclName() << &Member
1749                       << BaseExpr->getSourceRange());
1750  }
1751
1752  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1753  // pointer to a (potentially qualified) interface type.
1754  const PointerType *PTy;
1755  const ObjCInterfaceType *IFTy;
1756  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1757      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1758    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1759
1760    // Search for a declared property first.
1761    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1762      // Check whether we can reference this property.
1763      if (DiagnoseUseOfDecl(PD, MemberLoc))
1764        return ExprError();
1765
1766      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1767                                                     MemberLoc, BaseExpr));
1768    }
1769
1770    // Check protocols on qualified interfaces.
1771    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1772         E = IFTy->qual_end(); I != E; ++I)
1773      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1774        // Check whether we can reference this property.
1775        if (DiagnoseUseOfDecl(PD, MemberLoc))
1776          return ExprError();
1777
1778        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1779                                                       MemberLoc, BaseExpr));
1780      }
1781
1782    // If that failed, look for an "implicit" property by seeing if the nullary
1783    // selector is implemented.
1784
1785    // FIXME: The logic for looking up nullary and unary selectors should be
1786    // shared with the code in ActOnInstanceMessage.
1787
1788    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1789    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1790
1791    // If this reference is in an @implementation, check for 'private' methods.
1792    if (!Getter)
1793      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1794        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1795          if (ObjCImplementationDecl *ImpDecl =
1796              ObjCImplementations[ClassDecl->getIdentifier()])
1797            Getter = ImpDecl->getInstanceMethod(Sel);
1798
1799    // Look through local category implementations associated with the class.
1800    if (!Getter) {
1801      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1802        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1803          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1804      }
1805    }
1806    if (Getter) {
1807      // Check if we can reference this property.
1808      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1809        return ExprError();
1810
1811      // If we found a getter then this may be a valid dot-reference, we
1812      // will look for the matching setter, in case it is needed.
1813      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1814                                                       &Member);
1815      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1816      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1817      if (!Setter) {
1818        // If this reference is in an @implementation, also check for 'private'
1819        // methods.
1820        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1821          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1822            if (ObjCImplementationDecl *ImpDecl =
1823                  ObjCImplementations[ClassDecl->getIdentifier()])
1824              Setter = ImpDecl->getInstanceMethod(SetterSel);
1825      }
1826      // Look through local category implementations associated with the class.
1827      if (!Setter) {
1828        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1829          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1830            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1831        }
1832      }
1833
1834      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1835        return ExprError();
1836
1837      // FIXME: we must check that the setter has property type.
1838      return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(),
1839                                      Setter, MemberLoc, BaseExpr));
1840    }
1841
1842    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1843      << &Member << BaseType);
1844  }
1845  // Handle properties on qualified "id" protocols.
1846  const ObjCQualifiedIdType *QIdTy;
1847  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1848    // Check protocols on qualified interfaces.
1849    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1850         E = QIdTy->qual_end(); I != E; ++I) {
1851      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1852        // Check the use of this declaration
1853        if (DiagnoseUseOfDecl(PD, MemberLoc))
1854          return ExprError();
1855
1856        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1857                                                       MemberLoc, BaseExpr));
1858      }
1859      // Also must look for a getter name which uses property syntax.
1860      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1861      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1862        // Check the use of this method.
1863        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1864          return ExprError();
1865
1866        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1867                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1868      }
1869    }
1870
1871    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1872                       << &Member << BaseType);
1873  }
1874  // Handle 'field access' to vectors, such as 'V.xx'.
1875  if (BaseType->isExtVectorType()) {
1876    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1877    if (ret.isNull())
1878      return ExprError();
1879    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1880                                                    MemberLoc));
1881  }
1882
1883  return ExprError(Diag(MemberLoc,
1884                        diag::err_typecheck_member_reference_struct_union)
1885                     << BaseType << BaseExpr->getSourceRange());
1886}
1887
1888/// ConvertArgumentsForCall - Converts the arguments specified in
1889/// Args/NumArgs to the parameter types of the function FDecl with
1890/// function prototype Proto. Call is the call expression itself, and
1891/// Fn is the function expression. For a C++ member function, this
1892/// routine does not attempt to convert the object argument. Returns
1893/// true if the call is ill-formed.
1894bool
1895Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1896                              FunctionDecl *FDecl,
1897                              const FunctionTypeProto *Proto,
1898                              Expr **Args, unsigned NumArgs,
1899                              SourceLocation RParenLoc) {
1900  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1901  // assignment, to the types of the corresponding parameter, ...
1902  unsigned NumArgsInProto = Proto->getNumArgs();
1903  unsigned NumArgsToCheck = NumArgs;
1904  bool Invalid = false;
1905
1906  // If too few arguments are available (and we don't have default
1907  // arguments for the remaining parameters), don't make the call.
1908  if (NumArgs < NumArgsInProto) {
1909    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1910      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1911        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1912    // Use default arguments for missing arguments
1913    NumArgsToCheck = NumArgsInProto;
1914    Call->setNumArgs(Context, NumArgsInProto);
1915  }
1916
1917  // If too many are passed and not variadic, error on the extras and drop
1918  // them.
1919  if (NumArgs > NumArgsInProto) {
1920    if (!Proto->isVariadic()) {
1921      Diag(Args[NumArgsInProto]->getLocStart(),
1922           diag::err_typecheck_call_too_many_args)
1923        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1924        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1925                       Args[NumArgs-1]->getLocEnd());
1926      // This deletes the extra arguments.
1927      Call->setNumArgs(Context, NumArgsInProto);
1928      Invalid = true;
1929    }
1930    NumArgsToCheck = NumArgsInProto;
1931  }
1932
1933  // Continue to check argument types (even if we have too few/many args).
1934  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1935    QualType ProtoArgType = Proto->getArgType(i);
1936
1937    Expr *Arg;
1938    if (i < NumArgs) {
1939      Arg = Args[i];
1940
1941      // Pass the argument.
1942      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1943        return true;
1944    } else
1945      // We already type-checked the argument, so we know it works.
1946      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
1947    QualType ArgType = Arg->getType();
1948
1949    Call->setArg(i, Arg);
1950  }
1951
1952  // If this is a variadic call, handle args passed through "...".
1953  if (Proto->isVariadic()) {
1954    VariadicCallType CallType = VariadicFunction;
1955    if (Fn->getType()->isBlockPointerType())
1956      CallType = VariadicBlock; // Block
1957    else if (isa<MemberExpr>(Fn))
1958      CallType = VariadicMethod;
1959
1960    // Promote the arguments (C99 6.5.2.2p7).
1961    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1962      Expr *Arg = Args[i];
1963      DefaultVariadicArgumentPromotion(Arg, CallType);
1964      Call->setArg(i, Arg);
1965    }
1966  }
1967
1968  return Invalid;
1969}
1970
1971/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1972/// This provides the location of the left/right parens and a list of comma
1973/// locations.
1974Action::OwningExprResult
1975Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
1976                    MultiExprArg args,
1977                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1978  unsigned NumArgs = args.size();
1979  Expr *Fn = static_cast<Expr *>(fn.release());
1980  Expr **Args = reinterpret_cast<Expr**>(args.release());
1981  assert(Fn && "no function call expression");
1982  FunctionDecl *FDecl = NULL;
1983  DeclarationName UnqualifiedName;
1984
1985  if (getLangOptions().CPlusPlus) {
1986    // Determine whether this is a dependent call inside a C++ template,
1987    // in which case we won't do any semantic analysis now.
1988    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
1989    bool Dependent = false;
1990    if (Fn->isTypeDependent())
1991      Dependent = true;
1992    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1993      Dependent = true;
1994
1995    if (Dependent)
1996      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
1997                                          Context.DependentTy, RParenLoc));
1998
1999    // Determine whether this is a call to an object (C++ [over.call.object]).
2000    if (Fn->getType()->isRecordType())
2001      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2002                                                CommaLocs, RParenLoc));
2003
2004    // Determine whether this is a call to a member function.
2005    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2006      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2007          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2008        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2009                                               CommaLocs, RParenLoc));
2010  }
2011
2012  // If we're directly calling a function, get the appropriate declaration.
2013  DeclRefExpr *DRExpr = NULL;
2014  Expr *FnExpr = Fn;
2015  bool ADL = true;
2016  while (true) {
2017    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2018      FnExpr = IcExpr->getSubExpr();
2019    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2020      // Parentheses around a function disable ADL
2021      // (C++0x [basic.lookup.argdep]p1).
2022      ADL = false;
2023      FnExpr = PExpr->getSubExpr();
2024    } else if (isa<UnaryOperator>(FnExpr) &&
2025               cast<UnaryOperator>(FnExpr)->getOpcode()
2026                 == UnaryOperator::AddrOf) {
2027      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2028    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2029      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2030      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2031      break;
2032    } else if (UnresolvedFunctionNameExpr *DepName
2033                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2034      UnqualifiedName = DepName->getName();
2035      break;
2036    } else {
2037      // Any kind of name that does not refer to a declaration (or
2038      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2039      ADL = false;
2040      break;
2041    }
2042  }
2043
2044  OverloadedFunctionDecl *Ovl = 0;
2045  if (DRExpr) {
2046    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2047    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2048  }
2049
2050  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2051    // We don't perform ADL for implicit declarations of builtins.
2052    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2053      ADL = false;
2054
2055    // We don't perform ADL in C.
2056    if (!getLangOptions().CPlusPlus)
2057      ADL = false;
2058
2059    if (Ovl || ADL) {
2060      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2061                                      UnqualifiedName, LParenLoc, Args,
2062                                      NumArgs, CommaLocs, RParenLoc, ADL);
2063      if (!FDecl)
2064        return ExprError();
2065
2066      // Update Fn to refer to the actual function selected.
2067      Expr *NewFn = 0;
2068      if (QualifiedDeclRefExpr *QDRExpr
2069            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2070        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2071                                                   QDRExpr->getLocation(),
2072                                                   false, false,
2073                                          QDRExpr->getSourceRange().getBegin());
2074      else
2075        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2076                                          Fn->getSourceRange().getBegin());
2077      Fn->Destroy(Context);
2078      Fn = NewFn;
2079    }
2080  }
2081
2082  // Promote the function operand.
2083  UsualUnaryConversions(Fn);
2084
2085  // Make the call expr early, before semantic checks.  This guarantees cleanup
2086  // of arguments and function on error.
2087  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2088                                                               Args, NumArgs,
2089                                                               Context.BoolTy,
2090                                                               RParenLoc));
2091
2092  const FunctionType *FuncT;
2093  if (!Fn->getType()->isBlockPointerType()) {
2094    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2095    // have type pointer to function".
2096    const PointerType *PT = Fn->getType()->getAsPointerType();
2097    if (PT == 0)
2098      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2099        << Fn->getType() << Fn->getSourceRange());
2100    FuncT = PT->getPointeeType()->getAsFunctionType();
2101  } else { // This is a block call.
2102    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2103                getAsFunctionType();
2104  }
2105  if (FuncT == 0)
2106    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2107      << Fn->getType() << Fn->getSourceRange());
2108
2109  // We know the result type of the call, set it.
2110  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2111
2112  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
2113    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2114                                RParenLoc))
2115      return ExprError();
2116  } else {
2117    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
2118
2119    // Promote the arguments (C99 6.5.2.2p6).
2120    for (unsigned i = 0; i != NumArgs; i++) {
2121      Expr *Arg = Args[i];
2122      DefaultArgumentPromotion(Arg);
2123      TheCall->setArg(i, Arg);
2124    }
2125  }
2126
2127  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2128    if (!Method->isStatic())
2129      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2130        << Fn->getSourceRange());
2131
2132  // Do special checking on direct calls to functions.
2133  if (FDecl)
2134    return CheckFunctionCall(FDecl, TheCall.take());
2135
2136  return Owned(TheCall.take());
2137}
2138
2139Action::OwningExprResult
2140Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2141                           SourceLocation RParenLoc, ExprArg InitExpr) {
2142  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2143  QualType literalType = QualType::getFromOpaquePtr(Ty);
2144  // FIXME: put back this assert when initializers are worked out.
2145  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2146  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2147
2148  if (literalType->isArrayType()) {
2149    if (literalType->isVariableArrayType())
2150      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2151        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2152  } else if (DiagnoseIncompleteType(LParenLoc, literalType,
2153                                    diag::err_typecheck_decl_incomplete_type,
2154                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2155    return ExprError();
2156
2157  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2158                            DeclarationName(), /*FIXME:DirectInit=*/false))
2159    return ExprError();
2160
2161  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2162  if (isFileScope) { // 6.5.2.5p3
2163    if (CheckForConstantInitializer(literalExpr, literalType))
2164      return ExprError();
2165  }
2166  InitExpr.release();
2167  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2168                                                 literalExpr, isFileScope));
2169}
2170
2171Action::OwningExprResult
2172Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2173                    InitListDesignations &Designators,
2174                    SourceLocation RBraceLoc) {
2175  unsigned NumInit = initlist.size();
2176  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2177
2178  // Semantic analysis for initializers is done by ActOnDeclarator() and
2179  // CheckInitializer() - it requires knowledge of the object being intialized.
2180
2181  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2182                                               RBraceLoc);
2183  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2184  return Owned(E);
2185}
2186
2187/// CheckCastTypes - Check type constraints for casting between types.
2188bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2189  UsualUnaryConversions(castExpr);
2190
2191  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2192  // type needs to be scalar.
2193  if (castType->isVoidType()) {
2194    // Cast to void allows any expr type.
2195  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2196    // We can't check any more until template instantiation time.
2197  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2198    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2199        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2200        (castType->isStructureType() || castType->isUnionType())) {
2201      // GCC struct/union extension: allow cast to self.
2202      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2203        << castType << castExpr->getSourceRange();
2204    } else if (castType->isUnionType()) {
2205      // GCC cast to union extension
2206      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2207      RecordDecl::field_iterator Field, FieldEnd;
2208      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2209           Field != FieldEnd; ++Field) {
2210        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2211            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2212          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2213            << castExpr->getSourceRange();
2214          break;
2215        }
2216      }
2217      if (Field == FieldEnd)
2218        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2219          << castExpr->getType() << castExpr->getSourceRange();
2220    } else {
2221      // Reject any other conversions to non-scalar types.
2222      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2223        << castType << castExpr->getSourceRange();
2224    }
2225  } else if (!castExpr->getType()->isScalarType() &&
2226             !castExpr->getType()->isVectorType()) {
2227    return Diag(castExpr->getLocStart(),
2228                diag::err_typecheck_expect_scalar_operand)
2229      << castExpr->getType() << castExpr->getSourceRange();
2230  } else if (castExpr->getType()->isVectorType()) {
2231    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2232      return true;
2233  } else if (castType->isVectorType()) {
2234    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2235      return true;
2236  }
2237  return false;
2238}
2239
2240bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2241  assert(VectorTy->isVectorType() && "Not a vector type!");
2242
2243  if (Ty->isVectorType() || Ty->isIntegerType()) {
2244    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2245      return Diag(R.getBegin(),
2246                  Ty->isVectorType() ?
2247                  diag::err_invalid_conversion_between_vectors :
2248                  diag::err_invalid_conversion_between_vector_and_integer)
2249        << VectorTy << Ty << R;
2250  } else
2251    return Diag(R.getBegin(),
2252                diag::err_invalid_conversion_between_vector_and_scalar)
2253      << VectorTy << Ty << R;
2254
2255  return false;
2256}
2257
2258Action::OwningExprResult
2259Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2260                    SourceLocation RParenLoc, ExprArg Op) {
2261  assert((Ty != 0) && (Op.get() != 0) &&
2262         "ActOnCastExpr(): missing type or expr");
2263
2264  Expr *castExpr = static_cast<Expr*>(Op.release());
2265  QualType castType = QualType::getFromOpaquePtr(Ty);
2266
2267  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2268    return ExprError();
2269  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2270                                            LParenLoc, RParenLoc));
2271}
2272
2273/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
2274/// In that case, lex = cond.
2275/// C99 6.5.15
2276QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2277                                        SourceLocation QuestionLoc) {
2278  UsualUnaryConversions(Cond);
2279  UsualUnaryConversions(LHS);
2280  UsualUnaryConversions(RHS);
2281  QualType CondTy = Cond->getType();
2282  QualType LHSTy = LHS->getType();
2283  QualType RHSTy = RHS->getType();
2284
2285  // first, check the condition.
2286  if (!Cond->isTypeDependent()) {
2287    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2288      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2289        << CondTy;
2290      return QualType();
2291    }
2292  }
2293
2294  // Now check the two expressions.
2295  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2296    return Context.DependentTy;
2297
2298  // If both operands have arithmetic type, do the usual arithmetic conversions
2299  // to find a common type: C99 6.5.15p3,5.
2300  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2301    UsualArithmeticConversions(LHS, RHS);
2302    return LHS->getType();
2303  }
2304
2305  // If both operands are the same structure or union type, the result is that
2306  // type.
2307  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2308    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2309      if (LHSRT->getDecl() == RHSRT->getDecl())
2310        // "If both the operands have structure or union type, the result has
2311        // that type."  This implies that CV qualifiers are dropped.
2312        return LHSTy.getUnqualifiedType();
2313  }
2314
2315  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2316  // The following || allows only one side to be void (a GCC-ism).
2317  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2318    if (!LHSTy->isVoidType())
2319      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2320        << RHS->getSourceRange();
2321    if (!RHSTy->isVoidType())
2322      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2323        << LHS->getSourceRange();
2324    ImpCastExprToType(LHS, Context.VoidTy);
2325    ImpCastExprToType(RHS, Context.VoidTy);
2326    return Context.VoidTy;
2327  }
2328  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2329  // the type of the other operand."
2330  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2331       Context.isObjCObjectPointerType(LHSTy)) &&
2332      RHS->isNullPointerConstant(Context)) {
2333    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2334    return LHSTy;
2335  }
2336  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2337       Context.isObjCObjectPointerType(RHSTy)) &&
2338      LHS->isNullPointerConstant(Context)) {
2339    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2340    return RHSTy;
2341  }
2342
2343  // Handle the case where both operands are pointers before we handle null
2344  // pointer constants in case both operands are null pointer constants.
2345  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2346    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2347      // get the "pointed to" types
2348      QualType lhptee = LHSPT->getPointeeType();
2349      QualType rhptee = RHSPT->getPointeeType();
2350
2351      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2352      if (lhptee->isVoidType() &&
2353          rhptee->isIncompleteOrObjectType()) {
2354        // Figure out necessary qualifiers (C99 6.5.15p6)
2355        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2356        QualType destType = Context.getPointerType(destPointee);
2357        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2358        ImpCastExprToType(RHS, destType); // promote to void*
2359        return destType;
2360      }
2361      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2362        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2363        QualType destType = Context.getPointerType(destPointee);
2364        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2365        ImpCastExprToType(RHS, destType); // promote to void*
2366        return destType;
2367      }
2368
2369      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2370        // Two identical pointer types are always compatible.
2371        return LHSTy;
2372      }
2373
2374      QualType compositeType = LHSTy;
2375
2376      // If either type is an Objective-C object type then check
2377      // compatibility according to Objective-C.
2378      if (Context.isObjCObjectPointerType(LHSTy) ||
2379          Context.isObjCObjectPointerType(RHSTy)) {
2380        // If both operands are interfaces and either operand can be
2381        // assigned to the other, use that type as the composite
2382        // type. This allows
2383        //   xxx ? (A*) a : (B*) b
2384        // where B is a subclass of A.
2385        //
2386        // Additionally, as for assignment, if either type is 'id'
2387        // allow silent coercion. Finally, if the types are
2388        // incompatible then make sure to use 'id' as the composite
2389        // type so the result is acceptable for sending messages to.
2390
2391        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2392        // It could return the composite type.
2393        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2394        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2395        if (LHSIface && RHSIface &&
2396            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2397          compositeType = LHSTy;
2398        } else if (LHSIface && RHSIface &&
2399                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2400          compositeType = RHSTy;
2401        } else if (Context.isObjCIdStructType(lhptee) ||
2402                   Context.isObjCIdStructType(rhptee)) {
2403          compositeType = Context.getObjCIdType();
2404        } else {
2405          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2406               << LHSTy << RHSTy
2407               << LHS->getSourceRange() << RHS->getSourceRange();
2408          QualType incompatTy = Context.getObjCIdType();
2409          ImpCastExprToType(LHS, incompatTy);
2410          ImpCastExprToType(RHS, incompatTy);
2411          return incompatTy;
2412        }
2413      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2414                                             rhptee.getUnqualifiedType())) {
2415        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2416          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2417        // In this situation, we assume void* type. No especially good
2418        // reason, but this is what gcc does, and we do have to pick
2419        // to get a consistent AST.
2420        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2421        ImpCastExprToType(LHS, incompatTy);
2422        ImpCastExprToType(RHS, incompatTy);
2423        return incompatTy;
2424      }
2425      // The pointer types are compatible.
2426      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2427      // differently qualified versions of compatible types, the result type is
2428      // a pointer to an appropriately qualified version of the *composite*
2429      // type.
2430      // FIXME: Need to calculate the composite type.
2431      // FIXME: Need to add qualifiers
2432      ImpCastExprToType(LHS, compositeType);
2433      ImpCastExprToType(RHS, compositeType);
2434      return compositeType;
2435    }
2436  }
2437
2438  // Selection between block pointer types is ok as long as they are the same.
2439  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2440      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2441    return LHSTy;
2442
2443  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2444  // evaluates to "struct objc_object *" (and is handled above when comparing
2445  // id with statically typed objects).
2446  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2447    // GCC allows qualified id and any Objective-C type to devolve to
2448    // id. Currently localizing to here until clear this should be
2449    // part of ObjCQualifiedIdTypesAreCompatible.
2450    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2451        (LHSTy->isObjCQualifiedIdType() &&
2452         Context.isObjCObjectPointerType(RHSTy)) ||
2453        (RHSTy->isObjCQualifiedIdType() &&
2454         Context.isObjCObjectPointerType(LHSTy))) {
2455      // FIXME: This is not the correct composite type. This only
2456      // happens to work because id can more or less be used anywhere,
2457      // however this may change the type of method sends.
2458      // FIXME: gcc adds some type-checking of the arguments and emits
2459      // (confusing) incompatible comparison warnings in some
2460      // cases. Investigate.
2461      QualType compositeType = Context.getObjCIdType();
2462      ImpCastExprToType(LHS, compositeType);
2463      ImpCastExprToType(RHS, compositeType);
2464      return compositeType;
2465    }
2466  }
2467
2468  // Otherwise, the operands are not compatible.
2469  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2470    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2471  return QualType();
2472}
2473
2474/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2475/// in the case of a the GNU conditional expr extension.
2476Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2477                                                  SourceLocation ColonLoc,
2478                                                  ExprArg Cond, ExprArg LHS,
2479                                                  ExprArg RHS) {
2480  Expr *CondExpr = (Expr *) Cond.get();
2481  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2482
2483  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2484  // was the condition.
2485  bool isLHSNull = LHSExpr == 0;
2486  if (isLHSNull)
2487    LHSExpr = CondExpr;
2488
2489  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2490                                             RHSExpr, QuestionLoc);
2491  if (result.isNull())
2492    return ExprError();
2493
2494  Cond.release();
2495  LHS.release();
2496  RHS.release();
2497  return Owned(new (Context) ConditionalOperator(CondExpr,
2498                                                 isLHSNull ? 0 : LHSExpr,
2499                                                 RHSExpr, result));
2500}
2501
2502
2503// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2504// being closely modeled after the C99 spec:-). The odd characteristic of this
2505// routine is it effectively iqnores the qualifiers on the top level pointee.
2506// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2507// FIXME: add a couple examples in this comment.
2508Sema::AssignConvertType
2509Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2510  QualType lhptee, rhptee;
2511
2512  // get the "pointed to" type (ignoring qualifiers at the top level)
2513  lhptee = lhsType->getAsPointerType()->getPointeeType();
2514  rhptee = rhsType->getAsPointerType()->getPointeeType();
2515
2516  // make sure we operate on the canonical type
2517  lhptee = Context.getCanonicalType(lhptee);
2518  rhptee = Context.getCanonicalType(rhptee);
2519
2520  AssignConvertType ConvTy = Compatible;
2521
2522  // C99 6.5.16.1p1: This following citation is common to constraints
2523  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2524  // qualifiers of the type *pointed to* by the right;
2525  // FIXME: Handle ExtQualType
2526  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2527    ConvTy = CompatiblePointerDiscardsQualifiers;
2528
2529  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2530  // incomplete type and the other is a pointer to a qualified or unqualified
2531  // version of void...
2532  if (lhptee->isVoidType()) {
2533    if (rhptee->isIncompleteOrObjectType())
2534      return ConvTy;
2535
2536    // As an extension, we allow cast to/from void* to function pointer.
2537    assert(rhptee->isFunctionType());
2538    return FunctionVoidPointer;
2539  }
2540
2541  if (rhptee->isVoidType()) {
2542    if (lhptee->isIncompleteOrObjectType())
2543      return ConvTy;
2544
2545    // As an extension, we allow cast to/from void* to function pointer.
2546    assert(lhptee->isFunctionType());
2547    return FunctionVoidPointer;
2548  }
2549  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2550  // unqualified versions of compatible types, ...
2551  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2552                                  rhptee.getUnqualifiedType()))
2553    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2554  return ConvTy;
2555}
2556
2557/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2558/// block pointer types are compatible or whether a block and normal pointer
2559/// are compatible. It is more restrict than comparing two function pointer
2560// types.
2561Sema::AssignConvertType
2562Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2563                                          QualType rhsType) {
2564  QualType lhptee, rhptee;
2565
2566  // get the "pointed to" type (ignoring qualifiers at the top level)
2567  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2568  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2569
2570  // make sure we operate on the canonical type
2571  lhptee = Context.getCanonicalType(lhptee);
2572  rhptee = Context.getCanonicalType(rhptee);
2573
2574  AssignConvertType ConvTy = Compatible;
2575
2576  // For blocks we enforce that qualifiers are identical.
2577  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2578    ConvTy = CompatiblePointerDiscardsQualifiers;
2579
2580  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2581    return IncompatibleBlockPointer;
2582  return ConvTy;
2583}
2584
2585/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2586/// has code to accommodate several GCC extensions when type checking
2587/// pointers. Here are some objectionable examples that GCC considers warnings:
2588///
2589///  int a, *pint;
2590///  short *pshort;
2591///  struct foo *pfoo;
2592///
2593///  pint = pshort; // warning: assignment from incompatible pointer type
2594///  a = pint; // warning: assignment makes integer from pointer without a cast
2595///  pint = a; // warning: assignment makes pointer from integer without a cast
2596///  pint = pfoo; // warning: assignment from incompatible pointer type
2597///
2598/// As a result, the code for dealing with pointers is more complex than the
2599/// C99 spec dictates.
2600///
2601Sema::AssignConvertType
2602Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2603  // Get canonical types.  We're not formatting these types, just comparing
2604  // them.
2605  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2606  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2607
2608  if (lhsType == rhsType)
2609    return Compatible; // Common case: fast path an exact match.
2610
2611  // If the left-hand side is a reference type, then we are in a
2612  // (rare!) case where we've allowed the use of references in C,
2613  // e.g., as a parameter type in a built-in function. In this case,
2614  // just make sure that the type referenced is compatible with the
2615  // right-hand side type. The caller is responsible for adjusting
2616  // lhsType so that the resulting expression does not have reference
2617  // type.
2618  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2619    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2620      return Compatible;
2621    return Incompatible;
2622  }
2623
2624  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2625    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2626      return Compatible;
2627    // Relax integer conversions like we do for pointers below.
2628    if (rhsType->isIntegerType())
2629      return IntToPointer;
2630    if (lhsType->isIntegerType())
2631      return PointerToInt;
2632    return IncompatibleObjCQualifiedId;
2633  }
2634
2635  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2636    // For ExtVector, allow vector splats; float -> <n x float>
2637    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2638      if (LV->getElementType() == rhsType)
2639        return Compatible;
2640
2641    // If we are allowing lax vector conversions, and LHS and RHS are both
2642    // vectors, the total size only needs to be the same. This is a bitcast;
2643    // no bits are changed but the result type is different.
2644    if (getLangOptions().LaxVectorConversions &&
2645        lhsType->isVectorType() && rhsType->isVectorType()) {
2646      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2647        return IncompatibleVectors;
2648    }
2649    return Incompatible;
2650  }
2651
2652  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2653    return Compatible;
2654
2655  if (isa<PointerType>(lhsType)) {
2656    if (rhsType->isIntegerType())
2657      return IntToPointer;
2658
2659    if (isa<PointerType>(rhsType))
2660      return CheckPointerTypesForAssignment(lhsType, rhsType);
2661
2662    if (rhsType->getAsBlockPointerType()) {
2663      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2664        return Compatible;
2665
2666      // Treat block pointers as objects.
2667      if (getLangOptions().ObjC1 &&
2668          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2669        return Compatible;
2670    }
2671    return Incompatible;
2672  }
2673
2674  if (isa<BlockPointerType>(lhsType)) {
2675    if (rhsType->isIntegerType())
2676      return IntToPointer;
2677
2678    // Treat block pointers as objects.
2679    if (getLangOptions().ObjC1 &&
2680        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2681      return Compatible;
2682
2683    if (rhsType->isBlockPointerType())
2684      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2685
2686    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2687      if (RHSPT->getPointeeType()->isVoidType())
2688        return Compatible;
2689    }
2690    return Incompatible;
2691  }
2692
2693  if (isa<PointerType>(rhsType)) {
2694    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2695    if (lhsType == Context.BoolTy)
2696      return Compatible;
2697
2698    if (lhsType->isIntegerType())
2699      return PointerToInt;
2700
2701    if (isa<PointerType>(lhsType))
2702      return CheckPointerTypesForAssignment(lhsType, rhsType);
2703
2704    if (isa<BlockPointerType>(lhsType) &&
2705        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2706      return Compatible;
2707    return Incompatible;
2708  }
2709
2710  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2711    if (Context.typesAreCompatible(lhsType, rhsType))
2712      return Compatible;
2713  }
2714  return Incompatible;
2715}
2716
2717Sema::AssignConvertType
2718Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2719  if (getLangOptions().CPlusPlus) {
2720    if (!lhsType->isRecordType()) {
2721      // C++ 5.17p3: If the left operand is not of class type, the
2722      // expression is implicitly converted (C++ 4) to the
2723      // cv-unqualified type of the left operand.
2724      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2725                                    "assigning"))
2726        return Incompatible;
2727      else
2728        return Compatible;
2729    }
2730
2731    // FIXME: Currently, we fall through and treat C++ classes like C
2732    // structures.
2733  }
2734
2735  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2736  // a null pointer constant.
2737  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2738       lhsType->isBlockPointerType())
2739      && rExpr->isNullPointerConstant(Context)) {
2740    ImpCastExprToType(rExpr, lhsType);
2741    return Compatible;
2742  }
2743
2744  // We don't allow conversion of non-null-pointer constants to integers.
2745  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2746    return IntToBlockPointer;
2747
2748  // This check seems unnatural, however it is necessary to ensure the proper
2749  // conversion of functions/arrays. If the conversion were done for all
2750  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2751  // expressions that surpress this implicit conversion (&, sizeof).
2752  //
2753  // Suppress this for references: C++ 8.5.3p5.
2754  if (!lhsType->isReferenceType())
2755    DefaultFunctionArrayConversion(rExpr);
2756
2757  Sema::AssignConvertType result =
2758    CheckAssignmentConstraints(lhsType, rExpr->getType());
2759
2760  // C99 6.5.16.1p2: The value of the right operand is converted to the
2761  // type of the assignment expression.
2762  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2763  // so that we can use references in built-in functions even in C.
2764  // The getNonReferenceType() call makes sure that the resulting expression
2765  // does not have reference type.
2766  if (rExpr->getType() != lhsType)
2767    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2768  return result;
2769}
2770
2771Sema::AssignConvertType
2772Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2773  return CheckAssignmentConstraints(lhsType, rhsType);
2774}
2775
2776QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2777  Diag(Loc, diag::err_typecheck_invalid_operands)
2778    << lex->getType() << rex->getType()
2779    << lex->getSourceRange() << rex->getSourceRange();
2780  return QualType();
2781}
2782
2783inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2784                                                              Expr *&rex) {
2785  // For conversion purposes, we ignore any qualifiers.
2786  // For example, "const float" and "float" are equivalent.
2787  QualType lhsType =
2788    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2789  QualType rhsType =
2790    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2791
2792  // If the vector types are identical, return.
2793  if (lhsType == rhsType)
2794    return lhsType;
2795
2796  // Handle the case of a vector & extvector type of the same size and element
2797  // type.  It would be nice if we only had one vector type someday.
2798  if (getLangOptions().LaxVectorConversions) {
2799    // FIXME: Should we warn here?
2800    if (const VectorType *LV = lhsType->getAsVectorType()) {
2801      if (const VectorType *RV = rhsType->getAsVectorType())
2802        if (LV->getElementType() == RV->getElementType() &&
2803            LV->getNumElements() == RV->getNumElements()) {
2804          return lhsType->isExtVectorType() ? lhsType : rhsType;
2805        }
2806    }
2807  }
2808
2809  // If the lhs is an extended vector and the rhs is a scalar of the same type
2810  // or a literal, promote the rhs to the vector type.
2811  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2812    QualType eltType = V->getElementType();
2813
2814    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2815        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2816        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2817      ImpCastExprToType(rex, lhsType);
2818      return lhsType;
2819    }
2820  }
2821
2822  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2823  // promote the lhs to the vector type.
2824  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2825    QualType eltType = V->getElementType();
2826
2827    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2828        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2829        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2830      ImpCastExprToType(lex, rhsType);
2831      return rhsType;
2832    }
2833  }
2834
2835  // You cannot convert between vector values of different size.
2836  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2837    << lex->getType() << rex->getType()
2838    << lex->getSourceRange() << rex->getSourceRange();
2839  return QualType();
2840}
2841
2842inline QualType Sema::CheckMultiplyDivideOperands(
2843  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2844{
2845  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2846    return CheckVectorOperands(Loc, lex, rex);
2847
2848  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2849
2850  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2851    return compType;
2852  return InvalidOperands(Loc, lex, rex);
2853}
2854
2855inline QualType Sema::CheckRemainderOperands(
2856  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2857{
2858  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2859    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2860      return CheckVectorOperands(Loc, lex, rex);
2861    return InvalidOperands(Loc, lex, rex);
2862  }
2863
2864  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2865
2866  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2867    return compType;
2868  return InvalidOperands(Loc, lex, rex);
2869}
2870
2871inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2872  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2873{
2874  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2875    return CheckVectorOperands(Loc, lex, rex);
2876
2877  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2878
2879  // handle the common case first (both operands are arithmetic).
2880  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2881    return compType;
2882
2883  // Put any potential pointer into PExp
2884  Expr* PExp = lex, *IExp = rex;
2885  if (IExp->getType()->isPointerType())
2886    std::swap(PExp, IExp);
2887
2888  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2889    if (IExp->getType()->isIntegerType()) {
2890      // Check for arithmetic on pointers to incomplete types
2891      if (!PTy->getPointeeType()->isObjectType()) {
2892        if (PTy->getPointeeType()->isVoidType()) {
2893          if (getLangOptions().CPlusPlus) {
2894            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
2895              << lex->getSourceRange() << rex->getSourceRange();
2896            return QualType();
2897          }
2898
2899          // GNU extension: arithmetic on pointer to void
2900          Diag(Loc, diag::ext_gnu_void_ptr)
2901            << lex->getSourceRange() << rex->getSourceRange();
2902        } else if (PTy->getPointeeType()->isFunctionType()) {
2903          if (getLangOptions().CPlusPlus) {
2904            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2905              << lex->getType() << lex->getSourceRange();
2906            return QualType();
2907          }
2908
2909          // GNU extension: arithmetic on pointer to function
2910          Diag(Loc, diag::ext_gnu_ptr_func_arith)
2911            << lex->getType() << lex->getSourceRange();
2912        } else {
2913          DiagnoseIncompleteType(Loc, PTy->getPointeeType(),
2914                                 diag::err_typecheck_arithmetic_incomplete_type,
2915                                 lex->getSourceRange(), SourceRange(),
2916                                 lex->getType());
2917          return QualType();
2918        }
2919      }
2920      return PExp->getType();
2921    }
2922  }
2923
2924  return InvalidOperands(Loc, lex, rex);
2925}
2926
2927// C99 6.5.6
2928QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2929                                        SourceLocation Loc, bool isCompAssign) {
2930  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2931    return CheckVectorOperands(Loc, lex, rex);
2932
2933  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2934
2935  // Enforce type constraints: C99 6.5.6p3.
2936
2937  // Handle the common case first (both operands are arithmetic).
2938  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2939    return compType;
2940
2941  // Either ptr - int   or   ptr - ptr.
2942  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2943    QualType lpointee = LHSPTy->getPointeeType();
2944
2945    // The LHS must be an object type, not incomplete, function, etc.
2946    if (!lpointee->isObjectType()) {
2947      // Handle the GNU void* extension.
2948      if (lpointee->isVoidType()) {
2949        Diag(Loc, diag::ext_gnu_void_ptr)
2950          << lex->getSourceRange() << rex->getSourceRange();
2951      } else if (lpointee->isFunctionType()) {
2952        if (getLangOptions().CPlusPlus) {
2953          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2954            << lex->getType() << lex->getSourceRange();
2955          return QualType();
2956        }
2957
2958        // GNU extension: arithmetic on pointer to function
2959        Diag(Loc, diag::ext_gnu_ptr_func_arith)
2960          << lex->getType() << lex->getSourceRange();
2961      } else {
2962        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2963          << lex->getType() << lex->getSourceRange();
2964        return QualType();
2965      }
2966    }
2967
2968    // The result type of a pointer-int computation is the pointer type.
2969    if (rex->getType()->isIntegerType())
2970      return lex->getType();
2971
2972    // Handle pointer-pointer subtractions.
2973    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2974      QualType rpointee = RHSPTy->getPointeeType();
2975
2976      // RHS must be an object type, unless void (GNU).
2977      if (!rpointee->isObjectType()) {
2978        // Handle the GNU void* extension.
2979        if (rpointee->isVoidType()) {
2980          if (!lpointee->isVoidType())
2981            Diag(Loc, diag::ext_gnu_void_ptr)
2982              << lex->getSourceRange() << rex->getSourceRange();
2983        } else if (rpointee->isFunctionType()) {
2984          if (getLangOptions().CPlusPlus) {
2985            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2986              << rex->getType() << rex->getSourceRange();
2987            return QualType();
2988          }
2989
2990          // GNU extension: arithmetic on pointer to function
2991          if (!lpointee->isFunctionType())
2992            Diag(Loc, diag::ext_gnu_ptr_func_arith)
2993              << lex->getType() << lex->getSourceRange();
2994        } else {
2995          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2996            << rex->getType() << rex->getSourceRange();
2997          return QualType();
2998        }
2999      }
3000
3001      // Pointee types must be compatible.
3002      if (!Context.typesAreCompatible(
3003              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3004              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3005        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3006          << lex->getType() << rex->getType()
3007          << lex->getSourceRange() << rex->getSourceRange();
3008        return QualType();
3009      }
3010
3011      return Context.getPointerDiffType();
3012    }
3013  }
3014
3015  return InvalidOperands(Loc, lex, rex);
3016}
3017
3018// C99 6.5.7
3019QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3020                                  bool isCompAssign) {
3021  // C99 6.5.7p2: Each of the operands shall have integer type.
3022  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3023    return InvalidOperands(Loc, lex, rex);
3024
3025  // Shifts don't perform usual arithmetic conversions, they just do integer
3026  // promotions on each operand. C99 6.5.7p3
3027  if (!isCompAssign)
3028    UsualUnaryConversions(lex);
3029  UsualUnaryConversions(rex);
3030
3031  // "The type of the result is that of the promoted left operand."
3032  return lex->getType();
3033}
3034
3035// C99 6.5.8
3036QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3037                                    bool isRelational) {
3038  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3039    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3040
3041  // C99 6.5.8p3 / C99 6.5.9p4
3042  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3043    UsualArithmeticConversions(lex, rex);
3044  else {
3045    UsualUnaryConversions(lex);
3046    UsualUnaryConversions(rex);
3047  }
3048  QualType lType = lex->getType();
3049  QualType rType = rex->getType();
3050
3051  // For non-floating point types, check for self-comparisons of the form
3052  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3053  // often indicate logic errors in the program.
3054  if (!lType->isFloatingType()) {
3055    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3056      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3057        if (DRL->getDecl() == DRR->getDecl())
3058          Diag(Loc, diag::warn_selfcomparison);
3059  }
3060
3061  // The result of comparisons is 'bool' in C++, 'int' in C.
3062  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
3063
3064  if (isRelational) {
3065    if (lType->isRealType() && rType->isRealType())
3066      return ResultTy;
3067  } else {
3068    // Check for comparisons of floating point operands using != and ==.
3069    if (lType->isFloatingType()) {
3070      assert (rType->isFloatingType());
3071      CheckFloatComparison(Loc,lex,rex);
3072    }
3073
3074    if (lType->isArithmeticType() && rType->isArithmeticType())
3075      return ResultTy;
3076  }
3077
3078  bool LHSIsNull = lex->isNullPointerConstant(Context);
3079  bool RHSIsNull = rex->isNullPointerConstant(Context);
3080
3081  // All of the following pointer related warnings are GCC extensions, except
3082  // when handling null pointer constants. One day, we can consider making them
3083  // errors (when -pedantic-errors is enabled).
3084  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3085    QualType LCanPointeeTy =
3086      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3087    QualType RCanPointeeTy =
3088      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3089
3090    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3091        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3092        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3093                                    RCanPointeeTy.getUnqualifiedType()) &&
3094        !Context.areComparableObjCPointerTypes(lType, rType)) {
3095      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3096        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3097    }
3098    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3099    return ResultTy;
3100  }
3101  // Handle block pointer types.
3102  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3103    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3104    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3105
3106    if (!LHSIsNull && !RHSIsNull &&
3107        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3108      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3109        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3110    }
3111    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3112    return ResultTy;
3113  }
3114  // Allow block pointers to be compared with null pointer constants.
3115  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3116      (lType->isPointerType() && rType->isBlockPointerType())) {
3117    if (!LHSIsNull && !RHSIsNull) {
3118      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3119        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3120    }
3121    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3122    return ResultTy;
3123  }
3124
3125  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3126    if (lType->isPointerType() || rType->isPointerType()) {
3127      const PointerType *LPT = lType->getAsPointerType();
3128      const PointerType *RPT = rType->getAsPointerType();
3129      bool LPtrToVoid = LPT ?
3130        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3131      bool RPtrToVoid = RPT ?
3132        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3133
3134      if (!LPtrToVoid && !RPtrToVoid &&
3135          !Context.typesAreCompatible(lType, rType)) {
3136        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3137          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3138        ImpCastExprToType(rex, lType);
3139        return ResultTy;
3140      }
3141      ImpCastExprToType(rex, lType);
3142      return ResultTy;
3143    }
3144    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3145      ImpCastExprToType(rex, lType);
3146      return ResultTy;
3147    } else {
3148      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3149        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3150          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3151        ImpCastExprToType(rex, lType);
3152        return ResultTy;
3153      }
3154    }
3155  }
3156  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3157       rType->isIntegerType()) {
3158    if (!RHSIsNull)
3159      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3160        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3161    ImpCastExprToType(rex, lType); // promote the integer to pointer
3162    return ResultTy;
3163  }
3164  if (lType->isIntegerType() &&
3165      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3166    if (!LHSIsNull)
3167      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3168        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3169    ImpCastExprToType(lex, rType); // promote the integer to pointer
3170    return ResultTy;
3171  }
3172  // Handle block pointers.
3173  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3174    if (!RHSIsNull)
3175      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3176        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3177    ImpCastExprToType(rex, lType); // promote the integer to pointer
3178    return ResultTy;
3179  }
3180  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3181    if (!LHSIsNull)
3182      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3183        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3184    ImpCastExprToType(lex, rType); // promote the integer to pointer
3185    return ResultTy;
3186  }
3187  return InvalidOperands(Loc, lex, rex);
3188}
3189
3190/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3191/// operates on extended vector types.  Instead of producing an IntTy result,
3192/// like a scalar comparison, a vector comparison produces a vector of integer
3193/// types.
3194QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3195                                          SourceLocation Loc,
3196                                          bool isRelational) {
3197  // Check to make sure we're operating on vectors of the same type and width,
3198  // Allowing one side to be a scalar of element type.
3199  QualType vType = CheckVectorOperands(Loc, lex, rex);
3200  if (vType.isNull())
3201    return vType;
3202
3203  QualType lType = lex->getType();
3204  QualType rType = rex->getType();
3205
3206  // For non-floating point types, check for self-comparisons of the form
3207  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3208  // often indicate logic errors in the program.
3209  if (!lType->isFloatingType()) {
3210    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3211      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3212        if (DRL->getDecl() == DRR->getDecl())
3213          Diag(Loc, diag::warn_selfcomparison);
3214  }
3215
3216  // Check for comparisons of floating point operands using != and ==.
3217  if (!isRelational && lType->isFloatingType()) {
3218    assert (rType->isFloatingType());
3219    CheckFloatComparison(Loc,lex,rex);
3220  }
3221
3222  // Return the type for the comparison, which is the same as vector type for
3223  // integer vectors, or an integer type of identical size and number of
3224  // elements for floating point vectors.
3225  if (lType->isIntegerType())
3226    return lType;
3227
3228  const VectorType *VTy = lType->getAsVectorType();
3229  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3230  if (TypeSize == Context.getTypeSize(Context.IntTy))
3231    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3232  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3233    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3234
3235  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3236         "Unhandled vector element size in vector compare");
3237  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3238}
3239
3240inline QualType Sema::CheckBitwiseOperands(
3241  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3242{
3243  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3244    return CheckVectorOperands(Loc, lex, rex);
3245
3246  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3247
3248  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3249    return compType;
3250  return InvalidOperands(Loc, lex, rex);
3251}
3252
3253inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3254  Expr *&lex, Expr *&rex, SourceLocation Loc)
3255{
3256  UsualUnaryConversions(lex);
3257  UsualUnaryConversions(rex);
3258
3259  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3260    return Context.IntTy;
3261  return InvalidOperands(Loc, lex, rex);
3262}
3263
3264/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3265/// is a read-only property; return true if so. A readonly property expression
3266/// depends on various declarations and thus must be treated specially.
3267///
3268static bool IsReadonlyProperty(Expr *E, Sema &S)
3269{
3270  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3271    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3272    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3273      QualType BaseType = PropExpr->getBase()->getType();
3274      if (const PointerType *PTy = BaseType->getAsPointerType())
3275        if (const ObjCInterfaceType *IFTy =
3276            PTy->getPointeeType()->getAsObjCInterfaceType())
3277          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3278            if (S.isPropertyReadonly(PDecl, IFace))
3279              return true;
3280    }
3281  }
3282  return false;
3283}
3284
3285/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3286/// emit an error and return true.  If so, return false.
3287static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3288  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3289  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3290    IsLV = Expr::MLV_ReadonlyProperty;
3291  if (IsLV == Expr::MLV_Valid)
3292    return false;
3293
3294  unsigned Diag = 0;
3295  bool NeedType = false;
3296  switch (IsLV) { // C99 6.5.16p2
3297  default: assert(0 && "Unknown result from isModifiableLvalue!");
3298  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3299  case Expr::MLV_ArrayType:
3300    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3301    NeedType = true;
3302    break;
3303  case Expr::MLV_NotObjectType:
3304    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3305    NeedType = true;
3306    break;
3307  case Expr::MLV_LValueCast:
3308    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3309    break;
3310  case Expr::MLV_InvalidExpression:
3311    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3312    break;
3313  case Expr::MLV_IncompleteType:
3314  case Expr::MLV_IncompleteVoidType:
3315    return S.DiagnoseIncompleteType(Loc, E->getType(),
3316                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3317                                    E->getSourceRange());
3318  case Expr::MLV_DuplicateVectorComponents:
3319    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3320    break;
3321  case Expr::MLV_NotBlockQualified:
3322    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3323    break;
3324  case Expr::MLV_ReadonlyProperty:
3325    Diag = diag::error_readonly_property_assignment;
3326    break;
3327  case Expr::MLV_NoSetterProperty:
3328    Diag = diag::error_nosetter_property_assignment;
3329    break;
3330  }
3331
3332  if (NeedType)
3333    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3334  else
3335    S.Diag(Loc, Diag) << E->getSourceRange();
3336  return true;
3337}
3338
3339
3340
3341// C99 6.5.16.1
3342QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3343                                       SourceLocation Loc,
3344                                       QualType CompoundType) {
3345  // Verify that LHS is a modifiable lvalue, and emit error if not.
3346  if (CheckForModifiableLvalue(LHS, Loc, *this))
3347    return QualType();
3348
3349  QualType LHSType = LHS->getType();
3350  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3351
3352  AssignConvertType ConvTy;
3353  if (CompoundType.isNull()) {
3354    // Simple assignment "x = y".
3355    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3356    // Special case of NSObject attributes on c-style pointer types.
3357    if (ConvTy == IncompatiblePointer &&
3358        ((Context.isObjCNSObjectType(LHSType) &&
3359          Context.isObjCObjectPointerType(RHSType)) ||
3360         (Context.isObjCNSObjectType(RHSType) &&
3361          Context.isObjCObjectPointerType(LHSType))))
3362      ConvTy = Compatible;
3363
3364    // If the RHS is a unary plus or minus, check to see if they = and + are
3365    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3366    // instead of "x += 4".
3367    Expr *RHSCheck = RHS;
3368    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3369      RHSCheck = ICE->getSubExpr();
3370    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3371      if ((UO->getOpcode() == UnaryOperator::Plus ||
3372           UO->getOpcode() == UnaryOperator::Minus) &&
3373          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3374          // Only if the two operators are exactly adjacent.
3375          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3376        Diag(Loc, diag::warn_not_compound_assign)
3377          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3378          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3379    }
3380  } else {
3381    // Compound assignment "x += y"
3382    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3383  }
3384
3385  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3386                               RHS, "assigning"))
3387    return QualType();
3388
3389  // C99 6.5.16p3: The type of an assignment expression is the type of the
3390  // left operand unless the left operand has qualified type, in which case
3391  // it is the unqualified version of the type of the left operand.
3392  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3393  // is converted to the type of the assignment expression (above).
3394  // C++ 5.17p1: the type of the assignment expression is that of its left
3395  // oprdu.
3396  return LHSType.getUnqualifiedType();
3397}
3398
3399// C99 6.5.17
3400QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3401  // FIXME: what is required for LHS?
3402
3403  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3404  DefaultFunctionArrayConversion(RHS);
3405  return RHS->getType();
3406}
3407
3408/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3409/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3410QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3411                                              bool isInc) {
3412  QualType ResType = Op->getType();
3413  assert(!ResType.isNull() && "no type for increment/decrement expression");
3414
3415  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3416    // Decrement of bool is not allowed.
3417    if (!isInc) {
3418      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3419      return QualType();
3420    }
3421    // Increment of bool sets it to true, but is deprecated.
3422    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3423  } else if (ResType->isRealType()) {
3424    // OK!
3425  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3426    // C99 6.5.2.4p2, 6.5.6p2
3427    if (PT->getPointeeType()->isObjectType()) {
3428      // Pointer to object is ok!
3429    } else if (PT->getPointeeType()->isVoidType()) {
3430      if (getLangOptions().CPlusPlus) {
3431        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3432          << Op->getSourceRange();
3433        return QualType();
3434      }
3435
3436      // Pointer to void is a GNU extension in C.
3437      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3438    } else if (PT->getPointeeType()->isFunctionType()) {
3439      if (getLangOptions().CPlusPlus) {
3440        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3441          << Op->getType() << Op->getSourceRange();
3442        return QualType();
3443      }
3444
3445      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3446        << ResType << Op->getSourceRange();
3447      return QualType();
3448    } else {
3449      DiagnoseIncompleteType(OpLoc, PT->getPointeeType(),
3450                             diag::err_typecheck_arithmetic_incomplete_type,
3451                             Op->getSourceRange(), SourceRange(),
3452                             ResType);
3453      return QualType();
3454    }
3455  } else if (ResType->isComplexType()) {
3456    // C99 does not support ++/-- on complex types, we allow as an extension.
3457    Diag(OpLoc, diag::ext_integer_increment_complex)
3458      << ResType << Op->getSourceRange();
3459  } else {
3460    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3461      << ResType << Op->getSourceRange();
3462    return QualType();
3463  }
3464  // At this point, we know we have a real, complex or pointer type.
3465  // Now make sure the operand is a modifiable lvalue.
3466  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3467    return QualType();
3468  return ResType;
3469}
3470
3471/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3472/// This routine allows us to typecheck complex/recursive expressions
3473/// where the declaration is needed for type checking. We only need to
3474/// handle cases when the expression references a function designator
3475/// or is an lvalue. Here are some examples:
3476///  - &(x) => x
3477///  - &*****f => f for f a function designator.
3478///  - &s.xx => s
3479///  - &s.zz[1].yy -> s, if zz is an array
3480///  - *(x + 1) -> x, if x is an array
3481///  - &"123"[2] -> 0
3482///  - & __real__ x -> x
3483static NamedDecl *getPrimaryDecl(Expr *E) {
3484  switch (E->getStmtClass()) {
3485  case Stmt::DeclRefExprClass:
3486  case Stmt::QualifiedDeclRefExprClass:
3487    return cast<DeclRefExpr>(E)->getDecl();
3488  case Stmt::MemberExprClass:
3489    // Fields cannot be declared with a 'register' storage class.
3490    // &X->f is always ok, even if X is declared register.
3491    if (cast<MemberExpr>(E)->isArrow())
3492      return 0;
3493    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3494  case Stmt::ArraySubscriptExprClass: {
3495    // &X[4] and &4[X] refers to X if X is not a pointer.
3496
3497    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3498    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3499    if (!VD || VD->getType()->isPointerType())
3500      return 0;
3501    else
3502      return VD;
3503  }
3504  case Stmt::UnaryOperatorClass: {
3505    UnaryOperator *UO = cast<UnaryOperator>(E);
3506
3507    switch(UO->getOpcode()) {
3508    case UnaryOperator::Deref: {
3509      // *(X + 1) refers to X if X is not a pointer.
3510      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3511        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3512        if (!VD || VD->getType()->isPointerType())
3513          return 0;
3514        return VD;
3515      }
3516      return 0;
3517    }
3518    case UnaryOperator::Real:
3519    case UnaryOperator::Imag:
3520    case UnaryOperator::Extension:
3521      return getPrimaryDecl(UO->getSubExpr());
3522    default:
3523      return 0;
3524    }
3525  }
3526  case Stmt::BinaryOperatorClass: {
3527    BinaryOperator *BO = cast<BinaryOperator>(E);
3528
3529    // Handle cases involving pointer arithmetic. The result of an
3530    // Assign or AddAssign is not an lvalue so they can be ignored.
3531
3532    // (x + n) or (n + x) => x
3533    if (BO->getOpcode() == BinaryOperator::Add) {
3534      if (BO->getLHS()->getType()->isPointerType()) {
3535        return getPrimaryDecl(BO->getLHS());
3536      } else if (BO->getRHS()->getType()->isPointerType()) {
3537        return getPrimaryDecl(BO->getRHS());
3538      }
3539    }
3540
3541    return 0;
3542  }
3543  case Stmt::ParenExprClass:
3544    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3545  case Stmt::ImplicitCastExprClass:
3546    // &X[4] when X is an array, has an implicit cast from array to pointer.
3547    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3548  default:
3549    return 0;
3550  }
3551}
3552
3553/// CheckAddressOfOperand - The operand of & must be either a function
3554/// designator or an lvalue designating an object. If it is an lvalue, the
3555/// object cannot be declared with storage class register or be a bit field.
3556/// Note: The usual conversions are *not* applied to the operand of the &
3557/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3558/// In C++, the operand might be an overloaded function name, in which case
3559/// we allow the '&' but retain the overloaded-function type.
3560QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3561  if (op->isTypeDependent())
3562    return Context.DependentTy;
3563
3564  if (getLangOptions().C99) {
3565    // Implement C99-only parts of addressof rules.
3566    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3567      if (uOp->getOpcode() == UnaryOperator::Deref)
3568        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3569        // (assuming the deref expression is valid).
3570        return uOp->getSubExpr()->getType();
3571    }
3572    // Technically, there should be a check for array subscript
3573    // expressions here, but the result of one is always an lvalue anyway.
3574  }
3575  NamedDecl *dcl = getPrimaryDecl(op);
3576  Expr::isLvalueResult lval = op->isLvalue(Context);
3577
3578  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3579    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3580      // FIXME: emit more specific diag...
3581      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3582        << op->getSourceRange();
3583      return QualType();
3584    }
3585  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3586    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3587      if (Field->isBitField()) {
3588        Diag(OpLoc, diag::err_typecheck_address_of)
3589          << "bit-field" << op->getSourceRange();
3590        return QualType();
3591      }
3592    }
3593  // Check for Apple extension for accessing vector components.
3594  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3595           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3596    Diag(OpLoc, diag::err_typecheck_address_of)
3597      << "vector element" << op->getSourceRange();
3598    return QualType();
3599  } else if (dcl) { // C99 6.5.3.2p1
3600    // We have an lvalue with a decl. Make sure the decl is not declared
3601    // with the register storage-class specifier.
3602    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3603      if (vd->getStorageClass() == VarDecl::Register) {
3604        Diag(OpLoc, diag::err_typecheck_address_of)
3605          << "register variable" << op->getSourceRange();
3606        return QualType();
3607      }
3608    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3609      return Context.OverloadTy;
3610    } else if (isa<FieldDecl>(dcl)) {
3611      // Okay: we can take the address of a field.
3612      // Could be a pointer to member, though, if there is an explicit
3613      // scope qualifier for the class.
3614      if (isa<QualifiedDeclRefExpr>(op)) {
3615        DeclContext *Ctx = dcl->getDeclContext();
3616        if (Ctx && Ctx->isRecord())
3617          return Context.getMemberPointerType(op->getType(),
3618                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3619      }
3620    } else if (isa<FunctionDecl>(dcl)) {
3621      // Okay: we can take the address of a function.
3622      // As above.
3623      if (isa<QualifiedDeclRefExpr>(op)) {
3624        DeclContext *Ctx = dcl->getDeclContext();
3625        if (Ctx && Ctx->isRecord())
3626          return Context.getMemberPointerType(op->getType(),
3627                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3628      }
3629    }
3630    else
3631      assert(0 && "Unknown/unexpected decl type");
3632  }
3633
3634  // If the operand has type "type", the result has type "pointer to type".
3635  return Context.getPointerType(op->getType());
3636}
3637
3638QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3639  UsualUnaryConversions(Op);
3640  QualType Ty = Op->getType();
3641
3642  // Note that per both C89 and C99, this is always legal, even if ptype is an
3643  // incomplete type or void.  It would be possible to warn about dereferencing
3644  // a void pointer, but it's completely well-defined, and such a warning is
3645  // unlikely to catch any mistakes.
3646  if (const PointerType *PT = Ty->getAsPointerType())
3647    return PT->getPointeeType();
3648
3649  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3650    << Ty << Op->getSourceRange();
3651  return QualType();
3652}
3653
3654static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3655  tok::TokenKind Kind) {
3656  BinaryOperator::Opcode Opc;
3657  switch (Kind) {
3658  default: assert(0 && "Unknown binop!");
3659  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3660  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3661  case tok::star:                 Opc = BinaryOperator::Mul; break;
3662  case tok::slash:                Opc = BinaryOperator::Div; break;
3663  case tok::percent:              Opc = BinaryOperator::Rem; break;
3664  case tok::plus:                 Opc = BinaryOperator::Add; break;
3665  case tok::minus:                Opc = BinaryOperator::Sub; break;
3666  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3667  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3668  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3669  case tok::less:                 Opc = BinaryOperator::LT; break;
3670  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3671  case tok::greater:              Opc = BinaryOperator::GT; break;
3672  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3673  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3674  case tok::amp:                  Opc = BinaryOperator::And; break;
3675  case tok::caret:                Opc = BinaryOperator::Xor; break;
3676  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3677  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3678  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3679  case tok::equal:                Opc = BinaryOperator::Assign; break;
3680  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3681  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3682  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3683  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3684  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3685  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3686  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3687  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3688  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3689  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3690  case tok::comma:                Opc = BinaryOperator::Comma; break;
3691  }
3692  return Opc;
3693}
3694
3695static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3696  tok::TokenKind Kind) {
3697  UnaryOperator::Opcode Opc;
3698  switch (Kind) {
3699  default: assert(0 && "Unknown unary op!");
3700  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3701  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3702  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3703  case tok::star:         Opc = UnaryOperator::Deref; break;
3704  case tok::plus:         Opc = UnaryOperator::Plus; break;
3705  case tok::minus:        Opc = UnaryOperator::Minus; break;
3706  case tok::tilde:        Opc = UnaryOperator::Not; break;
3707  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3708  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3709  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3710  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3711  }
3712  return Opc;
3713}
3714
3715/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3716/// operator @p Opc at location @c TokLoc. This routine only supports
3717/// built-in operations; ActOnBinOp handles overloaded operators.
3718Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3719                                                  unsigned Op,
3720                                                  Expr *lhs, Expr *rhs) {
3721  QualType ResultTy;  // Result type of the binary operator.
3722  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3723  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3724
3725  switch (Opc) {
3726  default:
3727    assert(0 && "Unknown binary expr!");
3728  case BinaryOperator::Assign:
3729    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3730    break;
3731  case BinaryOperator::PtrMemD:
3732  case BinaryOperator::PtrMemI:
3733    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3734                                            Opc == BinaryOperator::PtrMemI);
3735    break;
3736  case BinaryOperator::Mul:
3737  case BinaryOperator::Div:
3738    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3739    break;
3740  case BinaryOperator::Rem:
3741    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3742    break;
3743  case BinaryOperator::Add:
3744    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3745    break;
3746  case BinaryOperator::Sub:
3747    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3748    break;
3749  case BinaryOperator::Shl:
3750  case BinaryOperator::Shr:
3751    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3752    break;
3753  case BinaryOperator::LE:
3754  case BinaryOperator::LT:
3755  case BinaryOperator::GE:
3756  case BinaryOperator::GT:
3757    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3758    break;
3759  case BinaryOperator::EQ:
3760  case BinaryOperator::NE:
3761    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3762    break;
3763  case BinaryOperator::And:
3764  case BinaryOperator::Xor:
3765  case BinaryOperator::Or:
3766    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3767    break;
3768  case BinaryOperator::LAnd:
3769  case BinaryOperator::LOr:
3770    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3771    break;
3772  case BinaryOperator::MulAssign:
3773  case BinaryOperator::DivAssign:
3774    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3775    if (!CompTy.isNull())
3776      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3777    break;
3778  case BinaryOperator::RemAssign:
3779    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3780    if (!CompTy.isNull())
3781      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3782    break;
3783  case BinaryOperator::AddAssign:
3784    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3785    if (!CompTy.isNull())
3786      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3787    break;
3788  case BinaryOperator::SubAssign:
3789    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3790    if (!CompTy.isNull())
3791      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3792    break;
3793  case BinaryOperator::ShlAssign:
3794  case BinaryOperator::ShrAssign:
3795    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3796    if (!CompTy.isNull())
3797      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3798    break;
3799  case BinaryOperator::AndAssign:
3800  case BinaryOperator::XorAssign:
3801  case BinaryOperator::OrAssign:
3802    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3803    if (!CompTy.isNull())
3804      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3805    break;
3806  case BinaryOperator::Comma:
3807    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3808    break;
3809  }
3810  if (ResultTy.isNull())
3811    return ExprError();
3812  if (CompTy.isNull())
3813    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3814  else
3815    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3816                                                      CompTy, OpLoc));
3817}
3818
3819// Binary Operators.  'Tok' is the token for the operator.
3820Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3821                                          tok::TokenKind Kind,
3822                                          ExprArg LHS, ExprArg RHS) {
3823  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3824  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3825
3826  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3827  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3828
3829  // If either expression is type-dependent, just build the AST.
3830  // FIXME: We'll need to perform some caching of the result of name
3831  // lookup for operator+.
3832  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3833    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3834      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3835                                              Context.DependentTy,
3836                                              Context.DependentTy, TokLoc));
3837    else
3838      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc,
3839                                                Context.DependentTy, TokLoc));
3840  }
3841
3842  if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD &&
3843      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3844       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3845    // If this is one of the assignment operators, we only perform
3846    // overload resolution if the left-hand side is a class or
3847    // enumeration type (C++ [expr.ass]p3).
3848    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3849        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3850      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3851    }
3852
3853    // Determine which overloaded operator we're dealing with.
3854    static const OverloadedOperatorKind OverOps[] = {
3855      // Overloading .* is not possible.
3856      static_cast<OverloadedOperatorKind>(0), OO_ArrowStar,
3857      OO_Star, OO_Slash, OO_Percent,
3858      OO_Plus, OO_Minus,
3859      OO_LessLess, OO_GreaterGreater,
3860      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3861      OO_EqualEqual, OO_ExclaimEqual,
3862      OO_Amp,
3863      OO_Caret,
3864      OO_Pipe,
3865      OO_AmpAmp,
3866      OO_PipePipe,
3867      OO_Equal, OO_StarEqual,
3868      OO_SlashEqual, OO_PercentEqual,
3869      OO_PlusEqual, OO_MinusEqual,
3870      OO_LessLessEqual, OO_GreaterGreaterEqual,
3871      OO_AmpEqual, OO_CaretEqual,
3872      OO_PipeEqual,
3873      OO_Comma
3874    };
3875    OverloadedOperatorKind OverOp = OverOps[Opc];
3876
3877    // Add the appropriate overloaded operators (C++ [over.match.oper])
3878    // to the candidate set.
3879    OverloadCandidateSet CandidateSet;
3880    Expr *Args[2] = { lhs, rhs };
3881    if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet))
3882      return ExprError();
3883
3884    // Perform overload resolution.
3885    OverloadCandidateSet::iterator Best;
3886    switch (BestViableFunction(CandidateSet, Best)) {
3887    case OR_Success: {
3888      // We found a built-in operator or an overloaded operator.
3889      FunctionDecl *FnDecl = Best->Function;
3890
3891      if (FnDecl) {
3892        // We matched an overloaded operator. Build a call to that
3893        // operator.
3894
3895        // Convert the arguments.
3896        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3897          if (PerformObjectArgumentInitialization(lhs, Method) ||
3898              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3899                                        "passing"))
3900            return ExprError();
3901        } else {
3902          // Convert the arguments.
3903          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3904                                        "passing") ||
3905              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3906                                        "passing"))
3907            return ExprError();
3908        }
3909
3910        // Determine the result type
3911        QualType ResultTy
3912          = FnDecl->getType()->getAsFunctionType()->getResultType();
3913        ResultTy = ResultTy.getNonReferenceType();
3914
3915        // Build the actual expression node.
3916        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3917                                                 SourceLocation());
3918        UsualUnaryConversions(FnExpr);
3919
3920        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
3921                                                       ResultTy, TokLoc));
3922      } else {
3923        // We matched a built-in operator. Convert the arguments, then
3924        // break out so that we will build the appropriate built-in
3925        // operator node.
3926        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
3927                                      Best->Conversions[0], "passing") ||
3928            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
3929                                      Best->Conversions[1], "passing"))
3930          return ExprError();
3931
3932        break;
3933      }
3934    }
3935
3936    case OR_No_Viable_Function:
3937      // No viable function; fall through to handling this as a
3938      // built-in operator, which will produce an error message for us.
3939      break;
3940
3941    case OR_Ambiguous:
3942      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3943          << BinaryOperator::getOpcodeStr(Opc)
3944          << lhs->getSourceRange() << rhs->getSourceRange();
3945      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3946      return ExprError();
3947
3948    case OR_Deleted:
3949      Diag(TokLoc, diag::err_ovl_deleted_oper)
3950        << Best->Function->isDeleted()
3951        << BinaryOperator::getOpcodeStr(Opc)
3952        << lhs->getSourceRange() << rhs->getSourceRange();
3953      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3954      return ExprError();
3955    }
3956
3957    // Either we found no viable overloaded operator or we matched a
3958    // built-in operator. In either case, fall through to trying to
3959    // build a built-in operation.
3960  }
3961
3962  // Build a built-in binary operation.
3963  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3964}
3965
3966// Unary Operators.  'Tok' is the token for the operator.
3967Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3968                                            tok::TokenKind Op, ExprArg input) {
3969  // FIXME: Input is modified later, but smart pointer not reassigned.
3970  Expr *Input = (Expr*)input.get();
3971  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3972
3973  if (getLangOptions().CPlusPlus &&
3974      (Input->getType()->isRecordType()
3975       || Input->getType()->isEnumeralType())) {
3976    // Determine which overloaded operator we're dealing with.
3977    static const OverloadedOperatorKind OverOps[] = {
3978      OO_None, OO_None,
3979      OO_PlusPlus, OO_MinusMinus,
3980      OO_Amp, OO_Star,
3981      OO_Plus, OO_Minus,
3982      OO_Tilde, OO_Exclaim,
3983      OO_None, OO_None,
3984      OO_None,
3985      OO_None
3986    };
3987    OverloadedOperatorKind OverOp = OverOps[Opc];
3988
3989    // Add the appropriate overloaded operators (C++ [over.match.oper])
3990    // to the candidate set.
3991    OverloadCandidateSet CandidateSet;
3992    if (OverOp != OO_None &&
3993        AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet))
3994      return ExprError();
3995
3996    // Perform overload resolution.
3997    OverloadCandidateSet::iterator Best;
3998    switch (BestViableFunction(CandidateSet, Best)) {
3999    case OR_Success: {
4000      // We found a built-in operator or an overloaded operator.
4001      FunctionDecl *FnDecl = Best->Function;
4002
4003      if (FnDecl) {
4004        // We matched an overloaded operator. Build a call to that
4005        // operator.
4006
4007        // Convert the arguments.
4008        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4009          if (PerformObjectArgumentInitialization(Input, Method))
4010            return ExprError();
4011        } else {
4012          // Convert the arguments.
4013          if (PerformCopyInitialization(Input,
4014                                        FnDecl->getParamDecl(0)->getType(),
4015                                        "passing"))
4016            return ExprError();
4017        }
4018
4019        // Determine the result type
4020        QualType ResultTy
4021          = FnDecl->getType()->getAsFunctionType()->getResultType();
4022        ResultTy = ResultTy.getNonReferenceType();
4023
4024        // Build the actual expression node.
4025        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4026                                                 SourceLocation());
4027        UsualUnaryConversions(FnExpr);
4028
4029        input.release();
4030        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input,
4031                                                       1, ResultTy, OpLoc));
4032      } else {
4033        // We matched a built-in operator. Convert the arguments, then
4034        // break out so that we will build the appropriate built-in
4035        // operator node.
4036        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4037                                      Best->Conversions[0], "passing"))
4038          return ExprError();
4039
4040        break;
4041      }
4042    }
4043
4044    case OR_No_Viable_Function:
4045      // No viable function; fall through to handling this as a
4046      // built-in operator, which will produce an error message for us.
4047      break;
4048
4049    case OR_Ambiguous:
4050      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4051          << UnaryOperator::getOpcodeStr(Opc)
4052          << Input->getSourceRange();
4053      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4054      return ExprError();
4055
4056    case OR_Deleted:
4057      Diag(OpLoc, diag::err_ovl_deleted_oper)
4058        << Best->Function->isDeleted()
4059        << UnaryOperator::getOpcodeStr(Opc)
4060        << Input->getSourceRange();
4061      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4062      return ExprError();
4063    }
4064
4065    // Either we found no viable overloaded operator or we matched a
4066    // built-in operator. In either case, fall through to trying to
4067    // build a built-in operation.
4068  }
4069
4070  QualType resultType;
4071  switch (Opc) {
4072  default:
4073    assert(0 && "Unimplemented unary expr!");
4074  case UnaryOperator::PreInc:
4075  case UnaryOperator::PreDec:
4076    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4077                                                Opc == UnaryOperator::PreInc);
4078    break;
4079  case UnaryOperator::AddrOf:
4080    resultType = CheckAddressOfOperand(Input, OpLoc);
4081    break;
4082  case UnaryOperator::Deref:
4083    DefaultFunctionArrayConversion(Input);
4084    resultType = CheckIndirectionOperand(Input, OpLoc);
4085    break;
4086  case UnaryOperator::Plus:
4087  case UnaryOperator::Minus:
4088    UsualUnaryConversions(Input);
4089    resultType = Input->getType();
4090    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4091      break;
4092    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4093             resultType->isEnumeralType())
4094      break;
4095    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4096             Opc == UnaryOperator::Plus &&
4097             resultType->isPointerType())
4098      break;
4099
4100    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4101      << resultType << Input->getSourceRange());
4102  case UnaryOperator::Not: // bitwise complement
4103    UsualUnaryConversions(Input);
4104    resultType = Input->getType();
4105    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4106    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4107      // C99 does not support '~' for complex conjugation.
4108      Diag(OpLoc, diag::ext_integer_complement_complex)
4109        << resultType << Input->getSourceRange();
4110    else if (!resultType->isIntegerType())
4111      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4112        << resultType << Input->getSourceRange());
4113    break;
4114  case UnaryOperator::LNot: // logical negation
4115    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4116    DefaultFunctionArrayConversion(Input);
4117    resultType = Input->getType();
4118    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4119      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4120        << resultType << Input->getSourceRange());
4121    // LNot always has type int. C99 6.5.3.3p5.
4122    // In C++, it's bool. C++ 5.3.1p8
4123    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4124    break;
4125  case UnaryOperator::Real:
4126  case UnaryOperator::Imag:
4127    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4128    break;
4129  case UnaryOperator::Extension:
4130    resultType = Input->getType();
4131    break;
4132  }
4133  if (resultType.isNull())
4134    return ExprError();
4135  input.release();
4136  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4137}
4138
4139/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4140Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4141                                      SourceLocation LabLoc,
4142                                      IdentifierInfo *LabelII) {
4143  // Look up the record for this label identifier.
4144  LabelStmt *&LabelDecl = LabelMap[LabelII];
4145
4146  // If we haven't seen this label yet, create a forward reference. It
4147  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4148  if (LabelDecl == 0)
4149    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4150
4151  // Create the AST node.  The address of a label always has type 'void*'.
4152  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4153                                     Context.getPointerType(Context.VoidTy));
4154}
4155
4156Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
4157                                     SourceLocation RPLoc) { // "({..})"
4158  Stmt *SubStmt = static_cast<Stmt*>(substmt);
4159  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4160  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4161
4162  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4163  if (isFileScope) {
4164    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
4165  }
4166
4167  // FIXME: there are a variety of strange constraints to enforce here, for
4168  // example, it is not possible to goto into a stmt expression apparently.
4169  // More semantic analysis is needed.
4170
4171  // FIXME: the last statement in the compount stmt has its value used.  We
4172  // should not warn about it being unused.
4173
4174  // If there are sub stmts in the compound stmt, take the type of the last one
4175  // as the type of the stmtexpr.
4176  QualType Ty = Context.VoidTy;
4177
4178  if (!Compound->body_empty()) {
4179    Stmt *LastStmt = Compound->body_back();
4180    // If LastStmt is a label, skip down through into the body.
4181    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4182      LastStmt = Label->getSubStmt();
4183
4184    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4185      Ty = LastExpr->getType();
4186  }
4187
4188  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
4189}
4190
4191Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4192                                            SourceLocation BuiltinLoc,
4193                                            SourceLocation TypeLoc,
4194                                            TypeTy *argty,
4195                                            OffsetOfComponent *CompPtr,
4196                                            unsigned NumComponents,
4197                                            SourceLocation RPLoc) {
4198  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4199  assert(!ArgTy.isNull() && "Missing type argument!");
4200
4201  // We must have at least one component that refers to the type, and the first
4202  // one is known to be a field designator.  Verify that the ArgTy represents
4203  // a struct/union/class.
4204  if (!ArgTy->isRecordType())
4205    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
4206
4207  // Otherwise, create a compound literal expression as the base, and
4208  // iteratively process the offsetof designators.
4209  InitListExpr *IList =
4210      new (Context) InitListExpr(SourceLocation(), 0, 0, SourceLocation());
4211  IList->setType(ArgTy);
4212  Expr *Res =
4213      new (Context) CompoundLiteralExpr(SourceLocation(), ArgTy, IList, false);
4214
4215  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4216  // GCC extension, diagnose them.
4217  if (NumComponents != 1)
4218    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4219      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4220
4221  for (unsigned i = 0; i != NumComponents; ++i) {
4222    const OffsetOfComponent &OC = CompPtr[i];
4223    if (OC.isBrackets) {
4224      // Offset of an array sub-field.  TODO: Should we allow vector elements?
4225      const ArrayType *AT = Context.getAsArrayType(Res->getType());
4226      if (!AT) {
4227        Res->Destroy(Context);
4228        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
4229      }
4230
4231      // FIXME: C++: Verify that operator[] isn't overloaded.
4232
4233      // C99 6.5.2.1p1
4234      Expr *Idx = static_cast<Expr*>(OC.U.E);
4235      if (!Idx->getType()->isIntegerType())
4236        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4237          << Idx->getSourceRange();
4238
4239      Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4240                                             OC.LocEnd);
4241      continue;
4242    }
4243
4244    const RecordType *RC = Res->getType()->getAsRecordType();
4245    if (!RC) {
4246      Res->Destroy(Context);
4247      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
4248    }
4249
4250    // Get the decl corresponding to this.
4251    RecordDecl *RD = RC->getDecl();
4252    FieldDecl *MemberDecl
4253      = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4254                                                        LookupMemberName)
4255                                      .getAsDecl());
4256    if (!MemberDecl)
4257      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4258       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4259
4260    // FIXME: C++: Verify that MemberDecl isn't a static field.
4261    // FIXME: Verify that MemberDecl isn't a bitfield.
4262    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4263    // matter here.
4264    Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4265                                   MemberDecl->getType().getNonReferenceType());
4266  }
4267
4268  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4269                                     Context.getSizeType(), BuiltinLoc);
4270}
4271
4272
4273Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4274                                                TypeTy *arg1, TypeTy *arg2,
4275                                                SourceLocation RPLoc) {
4276  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4277  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4278
4279  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4280
4281  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4282                                           argT2, RPLoc);
4283}
4284
4285Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4286                                       ExprTy *expr1, ExprTy *expr2,
4287                                       SourceLocation RPLoc) {
4288  Expr *CondExpr = static_cast<Expr*>(cond);
4289  Expr *LHSExpr = static_cast<Expr*>(expr1);
4290  Expr *RHSExpr = static_cast<Expr*>(expr2);
4291
4292  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4293
4294  // The conditional expression is required to be a constant expression.
4295  llvm::APSInt condEval(32);
4296  SourceLocation ExpLoc;
4297  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4298    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4299      << CondExpr->getSourceRange();
4300
4301  // If the condition is > zero, then the AST type is the same as the LSHExpr.
4302  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
4303                                               RHSExpr->getType();
4304  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4305                                  resType, RPLoc);
4306}
4307
4308//===----------------------------------------------------------------------===//
4309// Clang Extensions.
4310//===----------------------------------------------------------------------===//
4311
4312/// ActOnBlockStart - This callback is invoked when a block literal is started.
4313void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4314  // Analyze block parameters.
4315  BlockSemaInfo *BSI = new BlockSemaInfo();
4316
4317  // Add BSI to CurBlock.
4318  BSI->PrevBlockInfo = CurBlock;
4319  CurBlock = BSI;
4320
4321  BSI->ReturnType = 0;
4322  BSI->TheScope = BlockScope;
4323  BSI->hasBlockDeclRefExprs = false;
4324
4325  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4326  PushDeclContext(BlockScope, BSI->TheDecl);
4327}
4328
4329void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4330  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4331
4332  if (ParamInfo.getNumTypeObjects() == 0
4333      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4334    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4335
4336    // The type is entirely optional as well, if none, use DependentTy.
4337    if (T.isNull())
4338      T = Context.DependentTy;
4339
4340    // The parameter list is optional, if there was none, assume ().
4341    if (!T->isFunctionType())
4342      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4343
4344    CurBlock->hasPrototype = true;
4345    CurBlock->isVariadic = false;
4346    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4347      .getTypePtr();
4348
4349    if (!RetTy->isDependentType())
4350      CurBlock->ReturnType = RetTy;
4351    return;
4352  }
4353
4354  // Analyze arguments to block.
4355  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4356         "Not a function declarator!");
4357  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4358
4359  CurBlock->hasPrototype = FTI.hasPrototype;
4360  CurBlock->isVariadic = true;
4361
4362  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4363  // no arguments, not a function that takes a single void argument.
4364  if (FTI.hasPrototype &&
4365      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4366      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4367        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4368    // empty arg list, don't push any params.
4369    CurBlock->isVariadic = false;
4370  } else if (FTI.hasPrototype) {
4371    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4372      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4373    CurBlock->isVariadic = FTI.isVariadic;
4374    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4375
4376    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4377      .getTypePtr();
4378
4379    if (!RetTy->isDependentType())
4380      CurBlock->ReturnType = RetTy;
4381  }
4382  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4383
4384  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4385       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4386    // If this has an identifier, add it to the scope stack.
4387    if ((*AI)->getIdentifier())
4388      PushOnScopeChains(*AI, CurBlock->TheScope);
4389}
4390
4391/// ActOnBlockError - If there is an error parsing a block, this callback
4392/// is invoked to pop the information about the block from the action impl.
4393void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4394  // Ensure that CurBlock is deleted.
4395  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4396
4397  // Pop off CurBlock, handle nested blocks.
4398  CurBlock = CurBlock->PrevBlockInfo;
4399
4400  // FIXME: Delete the ParmVarDecl objects as well???
4401
4402}
4403
4404/// ActOnBlockStmtExpr - This is called when the body of a block statement
4405/// literal was successfully completed.  ^(int x){...}
4406Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4407                                          Scope *CurScope) {
4408  // Ensure that CurBlock is deleted.
4409  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4410  ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body));
4411
4412  PopDeclContext();
4413
4414  // Pop off CurBlock, handle nested blocks.
4415  CurBlock = CurBlock->PrevBlockInfo;
4416
4417  QualType RetTy = Context.VoidTy;
4418  if (BSI->ReturnType)
4419    RetTy = QualType(BSI->ReturnType, 0);
4420
4421  llvm::SmallVector<QualType, 8> ArgTypes;
4422  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4423    ArgTypes.push_back(BSI->Params[i]->getType());
4424
4425  QualType BlockTy;
4426  if (!BSI->hasPrototype)
4427    BlockTy = Context.getFunctionTypeNoProto(RetTy);
4428  else
4429    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4430                                      BSI->isVariadic, 0);
4431
4432  BlockTy = Context.getBlockPointerType(BlockTy);
4433
4434  BSI->TheDecl->setBody(Body.take());
4435  return new (Context) BlockExpr(BSI->TheDecl, BlockTy, BSI->hasBlockDeclRefExprs);
4436}
4437
4438Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4439                                  ExprTy *expr, TypeTy *type,
4440                                  SourceLocation RPLoc) {
4441  Expr *E = static_cast<Expr*>(expr);
4442  QualType T = QualType::getFromOpaquePtr(type);
4443
4444  InitBuiltinVaListType();
4445
4446  // Get the va_list type
4447  QualType VaListType = Context.getBuiltinVaListType();
4448  // Deal with implicit array decay; for example, on x86-64,
4449  // va_list is an array, but it's supposed to decay to
4450  // a pointer for va_arg.
4451  if (VaListType->isArrayType())
4452    VaListType = Context.getArrayDecayedType(VaListType);
4453  // Make sure the input expression also decays appropriately.
4454  UsualUnaryConversions(E);
4455
4456  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4457    return Diag(E->getLocStart(),
4458                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4459      << E->getType() << E->getSourceRange();
4460
4461  // FIXME: Warn if a non-POD type is passed in.
4462
4463  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4464}
4465
4466Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4467  // The type of __null will be int or long, depending on the size of
4468  // pointers on the target.
4469  QualType Ty;
4470  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4471    Ty = Context.IntTy;
4472  else
4473    Ty = Context.LongTy;
4474
4475  return new (Context) GNUNullExpr(Ty, TokenLoc);
4476}
4477
4478bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4479                                    SourceLocation Loc,
4480                                    QualType DstType, QualType SrcType,
4481                                    Expr *SrcExpr, const char *Flavor) {
4482  // Decode the result (notice that AST's are still created for extensions).
4483  bool isInvalid = false;
4484  unsigned DiagKind;
4485  switch (ConvTy) {
4486  default: assert(0 && "Unknown conversion type");
4487  case Compatible: return false;
4488  case PointerToInt:
4489    DiagKind = diag::ext_typecheck_convert_pointer_int;
4490    break;
4491  case IntToPointer:
4492    DiagKind = diag::ext_typecheck_convert_int_pointer;
4493    break;
4494  case IncompatiblePointer:
4495    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4496    break;
4497  case FunctionVoidPointer:
4498    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4499    break;
4500  case CompatiblePointerDiscardsQualifiers:
4501    // If the qualifiers lost were because we were applying the
4502    // (deprecated) C++ conversion from a string literal to a char*
4503    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4504    // Ideally, this check would be performed in
4505    // CheckPointerTypesForAssignment. However, that would require a
4506    // bit of refactoring (so that the second argument is an
4507    // expression, rather than a type), which should be done as part
4508    // of a larger effort to fix CheckPointerTypesForAssignment for
4509    // C++ semantics.
4510    if (getLangOptions().CPlusPlus &&
4511        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4512      return false;
4513    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4514    break;
4515  case IntToBlockPointer:
4516    DiagKind = diag::err_int_to_block_pointer;
4517    break;
4518  case IncompatibleBlockPointer:
4519    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4520    break;
4521  case IncompatibleObjCQualifiedId:
4522    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4523    // it can give a more specific diagnostic.
4524    DiagKind = diag::warn_incompatible_qualified_id;
4525    break;
4526  case IncompatibleVectors:
4527    DiagKind = diag::warn_incompatible_vectors;
4528    break;
4529  case Incompatible:
4530    DiagKind = diag::err_typecheck_convert_incompatible;
4531    isInvalid = true;
4532    break;
4533  }
4534
4535  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4536    << SrcExpr->getSourceRange();
4537  return isInvalid;
4538}
4539
4540bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4541{
4542  Expr::EvalResult EvalResult;
4543
4544  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4545      EvalResult.HasSideEffects) {
4546    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4547
4548    if (EvalResult.Diag) {
4549      // We only show the note if it's not the usual "invalid subexpression"
4550      // or if it's actually in a subexpression.
4551      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4552          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4553        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4554    }
4555
4556    return true;
4557  }
4558
4559  if (EvalResult.Diag) {
4560    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4561      E->getSourceRange();
4562
4563    // Print the reason it's not a constant.
4564    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4565      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4566  }
4567
4568  if (Result)
4569    *Result = EvalResult.Val.getInt();
4570  return false;
4571}
4572