SemaExpr.cpp revision 1faf7c1d3cde66fc92834d1aa08bcfd8e6e2815a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Designator.h"
28#include "clang/Parse/Scope.h"
29#include "clang/Parse/Template.h"
30using namespace clang;
31
32
33/// \brief Determine whether the use of this declaration is valid, and
34/// emit any corresponding diagnostics.
35///
36/// This routine diagnoses various problems with referencing
37/// declarations that can occur when using a declaration. For example,
38/// it might warn if a deprecated or unavailable declaration is being
39/// used, or produce an error (and return true) if a C++0x deleted
40/// function is being used.
41///
42/// If IgnoreDeprecated is set to true, this should not want about deprecated
43/// decls.
44///
45/// \returns true if there was an error (this declaration cannot be
46/// referenced), false otherwise.
47///
48bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
49  // See if the decl is deprecated.
50  if (D->getAttr<DeprecatedAttr>()) {
51    EmitDeprecationWarning(D, Loc);
52  }
53
54  // See if the decl is unavailable
55  if (D->getAttr<UnavailableAttr>()) {
56    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
57    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
58  }
59
60  // See if this is a deleted function.
61  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
62    if (FD->isDeleted()) {
63      Diag(Loc, diag::err_deleted_function_use);
64      Diag(D->getLocation(), diag::note_unavailable_here) << true;
65      return true;
66    }
67  }
68
69  return false;
70}
71
72/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
73/// (and other functions in future), which have been declared with sentinel
74/// attribute. It warns if call does not have the sentinel argument.
75///
76void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
77                                 Expr **Args, unsigned NumArgs) {
78  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
79  if (!attr)
80    return;
81  int sentinelPos = attr->getSentinel();
82  int nullPos = attr->getNullPos();
83
84  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
85  // base class. Then we won't be needing two versions of the same code.
86  unsigned int i = 0;
87  bool warnNotEnoughArgs = false;
88  int isMethod = 0;
89  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
90    // skip over named parameters.
91    ObjCMethodDecl::param_iterator P, E = MD->param_end();
92    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
93      if (nullPos)
94        --nullPos;
95      else
96        ++i;
97    }
98    warnNotEnoughArgs = (P != E || i >= NumArgs);
99    isMethod = 1;
100  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
101    // skip over named parameters.
102    ObjCMethodDecl::param_iterator P, E = FD->param_end();
103    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
104      if (nullPos)
105        --nullPos;
106      else
107        ++i;
108    }
109    warnNotEnoughArgs = (P != E || i >= NumArgs);
110  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
111    // block or function pointer call.
112    QualType Ty = V->getType();
113    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
114      const FunctionType *FT = Ty->isFunctionPointerType()
115      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
116      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
117      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
118        unsigned NumArgsInProto = Proto->getNumArgs();
119        unsigned k;
120        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
121          if (nullPos)
122            --nullPos;
123          else
124            ++i;
125        }
126        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
127      }
128      if (Ty->isBlockPointerType())
129        isMethod = 2;
130    } else
131      return;
132  } else
133    return;
134
135  if (warnNotEnoughArgs) {
136    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
137    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
138    return;
139  }
140  int sentinel = i;
141  while (sentinelPos > 0 && i < NumArgs-1) {
142    --sentinelPos;
143    ++i;
144  }
145  if (sentinelPos > 0) {
146    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
147    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
148    return;
149  }
150  while (i < NumArgs-1) {
151    ++i;
152    ++sentinel;
153  }
154  Expr *sentinelExpr = Args[sentinel];
155  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
156                       (!sentinelExpr->getType()->isPointerType() ||
157                        !sentinelExpr->isNullPointerConstant(Context,
158                                            Expr::NPC_ValueDependentIsNull)))) {
159    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161  }
162  return;
163}
164
165SourceRange Sema::getExprRange(ExprTy *E) const {
166  Expr *Ex = (Expr *)E;
167  return Ex? Ex->getSourceRange() : SourceRange();
168}
169
170//===----------------------------------------------------------------------===//
171//  Standard Promotions and Conversions
172//===----------------------------------------------------------------------===//
173
174/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
175void Sema::DefaultFunctionArrayConversion(Expr *&E) {
176  QualType Ty = E->getType();
177  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
178
179  if (Ty->isFunctionType())
180    ImpCastExprToType(E, Context.getPointerType(Ty),
181                      CastExpr::CK_FunctionToPointerDecay);
182  else if (Ty->isArrayType()) {
183    // In C90 mode, arrays only promote to pointers if the array expression is
184    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
185    // type 'array of type' is converted to an expression that has type 'pointer
186    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
187    // that has type 'array of type' ...".  The relevant change is "an lvalue"
188    // (C90) to "an expression" (C99).
189    //
190    // C++ 4.2p1:
191    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
192    // T" can be converted to an rvalue of type "pointer to T".
193    //
194    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
195        E->isLvalue(Context) == Expr::LV_Valid)
196      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
197                        CastExpr::CK_ArrayToPointerDecay);
198  }
199}
200
201/// UsualUnaryConversions - Performs various conversions that are common to most
202/// operators (C99 6.3). The conversions of array and function types are
203/// sometimes surpressed. For example, the array->pointer conversion doesn't
204/// apply if the array is an argument to the sizeof or address (&) operators.
205/// In these instances, this routine should *not* be called.
206Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
207  QualType Ty = Expr->getType();
208  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
209
210  // C99 6.3.1.1p2:
211  //
212  //   The following may be used in an expression wherever an int or
213  //   unsigned int may be used:
214  //     - an object or expression with an integer type whose integer
215  //       conversion rank is less than or equal to the rank of int
216  //       and unsigned int.
217  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
218  //
219  //   If an int can represent all values of the original type, the
220  //   value is converted to an int; otherwise, it is converted to an
221  //   unsigned int. These are called the integer promotions. All
222  //   other types are unchanged by the integer promotions.
223  QualType PTy = Context.isPromotableBitField(Expr);
224  if (!PTy.isNull()) {
225    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
226    return Expr;
227  }
228  if (Ty->isPromotableIntegerType()) {
229    QualType PT = Context.getPromotedIntegerType(Ty);
230    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
231    return Expr;
232  }
233
234  DefaultFunctionArrayConversion(Expr);
235  return Expr;
236}
237
238/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
239/// do not have a prototype. Arguments that have type float are promoted to
240/// double. All other argument types are converted by UsualUnaryConversions().
241void Sema::DefaultArgumentPromotion(Expr *&Expr) {
242  QualType Ty = Expr->getType();
243  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
244
245  // If this is a 'float' (CVR qualified or typedef) promote to double.
246  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
247    if (BT->getKind() == BuiltinType::Float)
248      return ImpCastExprToType(Expr, Context.DoubleTy,
249                               CastExpr::CK_FloatingCast);
250
251  UsualUnaryConversions(Expr);
252}
253
254/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
255/// will warn if the resulting type is not a POD type, and rejects ObjC
256/// interfaces passed by value.  This returns true if the argument type is
257/// completely illegal.
258bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
259  DefaultArgumentPromotion(Expr);
260
261  if (Expr->getType()->isObjCInterfaceType()) {
262    Diag(Expr->getLocStart(),
263         diag::err_cannot_pass_objc_interface_to_vararg)
264      << Expr->getType() << CT;
265    return true;
266  }
267
268  if (!Expr->getType()->isPODType())
269    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
270      << Expr->getType() << CT;
271
272  return false;
273}
274
275
276/// UsualArithmeticConversions - Performs various conversions that are common to
277/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
278/// routine returns the first non-arithmetic type found. The client is
279/// responsible for emitting appropriate error diagnostics.
280/// FIXME: verify the conversion rules for "complex int" are consistent with
281/// GCC.
282QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
283                                          bool isCompAssign) {
284  if (!isCompAssign)
285    UsualUnaryConversions(lhsExpr);
286
287  UsualUnaryConversions(rhsExpr);
288
289  // For conversion purposes, we ignore any qualifiers.
290  // For example, "const float" and "float" are equivalent.
291  QualType lhs =
292    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
293  QualType rhs =
294    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
295
296  // If both types are identical, no conversion is needed.
297  if (lhs == rhs)
298    return lhs;
299
300  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
301  // The caller can deal with this (e.g. pointer + int).
302  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
303    return lhs;
304
305  // Perform bitfield promotions.
306  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
307  if (!LHSBitfieldPromoteTy.isNull())
308    lhs = LHSBitfieldPromoteTy;
309  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
310  if (!RHSBitfieldPromoteTy.isNull())
311    rhs = RHSBitfieldPromoteTy;
312
313  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
314  if (!isCompAssign)
315    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
316  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
317  return destType;
318}
319
320//===----------------------------------------------------------------------===//
321//  Semantic Analysis for various Expression Types
322//===----------------------------------------------------------------------===//
323
324
325/// ActOnStringLiteral - The specified tokens were lexed as pasted string
326/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
327/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
328/// multiple tokens.  However, the common case is that StringToks points to one
329/// string.
330///
331Action::OwningExprResult
332Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
333  assert(NumStringToks && "Must have at least one string!");
334
335  StringLiteralParser Literal(StringToks, NumStringToks, PP);
336  if (Literal.hadError)
337    return ExprError();
338
339  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
340  for (unsigned i = 0; i != NumStringToks; ++i)
341    StringTokLocs.push_back(StringToks[i].getLocation());
342
343  QualType StrTy = Context.CharTy;
344  if (Literal.AnyWide) StrTy = Context.getWCharType();
345  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
346
347  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
348  if (getLangOptions().CPlusPlus)
349    StrTy.addConst();
350
351  // Get an array type for the string, according to C99 6.4.5.  This includes
352  // the nul terminator character as well as the string length for pascal
353  // strings.
354  StrTy = Context.getConstantArrayType(StrTy,
355                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
356                                       ArrayType::Normal, 0);
357
358  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
359  return Owned(StringLiteral::Create(Context, Literal.GetString(),
360                                     Literal.GetStringLength(),
361                                     Literal.AnyWide, StrTy,
362                                     &StringTokLocs[0],
363                                     StringTokLocs.size()));
364}
365
366/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
367/// CurBlock to VD should cause it to be snapshotted (as we do for auto
368/// variables defined outside the block) or false if this is not needed (e.g.
369/// for values inside the block or for globals).
370///
371/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
372/// up-to-date.
373///
374static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
375                                              ValueDecl *VD) {
376  // If the value is defined inside the block, we couldn't snapshot it even if
377  // we wanted to.
378  if (CurBlock->TheDecl == VD->getDeclContext())
379    return false;
380
381  // If this is an enum constant or function, it is constant, don't snapshot.
382  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
383    return false;
384
385  // If this is a reference to an extern, static, or global variable, no need to
386  // snapshot it.
387  // FIXME: What about 'const' variables in C++?
388  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
389    if (!Var->hasLocalStorage())
390      return false;
391
392  // Blocks that have these can't be constant.
393  CurBlock->hasBlockDeclRefExprs = true;
394
395  // If we have nested blocks, the decl may be declared in an outer block (in
396  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
397  // be defined outside all of the current blocks (in which case the blocks do
398  // all get the bit).  Walk the nesting chain.
399  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
400       NextBlock = NextBlock->PrevBlockInfo) {
401    // If we found the defining block for the variable, don't mark the block as
402    // having a reference outside it.
403    if (NextBlock->TheDecl == VD->getDeclContext())
404      break;
405
406    // Otherwise, the DeclRef from the inner block causes the outer one to need
407    // a snapshot as well.
408    NextBlock->hasBlockDeclRefExprs = true;
409  }
410
411  return true;
412}
413
414
415
416/// BuildDeclRefExpr - Build a DeclRefExpr.
417Sema::OwningExprResult
418Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
419                       const CXXScopeSpec *SS) {
420  assert(!isa<OverloadedFunctionDecl>(D));
421
422  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
423    Diag(Loc,
424         diag::err_auto_variable_cannot_appear_in_own_initializer)
425      << D->getDeclName();
426    return ExprError();
427  }
428
429  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
430    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
431      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
432        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
433          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
434            << D->getIdentifier() << FD->getDeclName();
435          Diag(D->getLocation(), diag::note_local_variable_declared_here)
436            << D->getIdentifier();
437          return ExprError();
438        }
439      }
440    }
441  }
442
443  MarkDeclarationReferenced(Loc, D);
444
445  return Owned(DeclRefExpr::Create(Context,
446                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
447                                   SS? SS->getRange() : SourceRange(),
448                                   D, Loc, Ty));
449}
450
451/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
452/// variable corresponding to the anonymous union or struct whose type
453/// is Record.
454static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
455                                             RecordDecl *Record) {
456  assert(Record->isAnonymousStructOrUnion() &&
457         "Record must be an anonymous struct or union!");
458
459  // FIXME: Once Decls are directly linked together, this will be an O(1)
460  // operation rather than a slow walk through DeclContext's vector (which
461  // itself will be eliminated). DeclGroups might make this even better.
462  DeclContext *Ctx = Record->getDeclContext();
463  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
464                               DEnd = Ctx->decls_end();
465       D != DEnd; ++D) {
466    if (*D == Record) {
467      // The object for the anonymous struct/union directly
468      // follows its type in the list of declarations.
469      ++D;
470      assert(D != DEnd && "Missing object for anonymous record");
471      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
472      return *D;
473    }
474  }
475
476  assert(false && "Missing object for anonymous record");
477  return 0;
478}
479
480/// \brief Given a field that represents a member of an anonymous
481/// struct/union, build the path from that field's context to the
482/// actual member.
483///
484/// Construct the sequence of field member references we'll have to
485/// perform to get to the field in the anonymous union/struct. The
486/// list of members is built from the field outward, so traverse it
487/// backwards to go from an object in the current context to the field
488/// we found.
489///
490/// \returns The variable from which the field access should begin,
491/// for an anonymous struct/union that is not a member of another
492/// class. Otherwise, returns NULL.
493VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
494                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
495  assert(Field->getDeclContext()->isRecord() &&
496         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
497         && "Field must be stored inside an anonymous struct or union");
498
499  Path.push_back(Field);
500  VarDecl *BaseObject = 0;
501  DeclContext *Ctx = Field->getDeclContext();
502  do {
503    RecordDecl *Record = cast<RecordDecl>(Ctx);
504    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
505    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
506      Path.push_back(AnonField);
507    else {
508      BaseObject = cast<VarDecl>(AnonObject);
509      break;
510    }
511    Ctx = Ctx->getParent();
512  } while (Ctx->isRecord() &&
513           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
514
515  return BaseObject;
516}
517
518Sema::OwningExprResult
519Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
520                                               FieldDecl *Field,
521                                               Expr *BaseObjectExpr,
522                                               SourceLocation OpLoc) {
523  llvm::SmallVector<FieldDecl *, 4> AnonFields;
524  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
525                                                            AnonFields);
526
527  // Build the expression that refers to the base object, from
528  // which we will build a sequence of member references to each
529  // of the anonymous union objects and, eventually, the field we
530  // found via name lookup.
531  bool BaseObjectIsPointer = false;
532  Qualifiers BaseQuals;
533  if (BaseObject) {
534    // BaseObject is an anonymous struct/union variable (and is,
535    // therefore, not part of another non-anonymous record).
536    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
537    MarkDeclarationReferenced(Loc, BaseObject);
538    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
539                                               SourceLocation());
540    BaseQuals
541      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
542  } else if (BaseObjectExpr) {
543    // The caller provided the base object expression. Determine
544    // whether its a pointer and whether it adds any qualifiers to the
545    // anonymous struct/union fields we're looking into.
546    QualType ObjectType = BaseObjectExpr->getType();
547    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
548      BaseObjectIsPointer = true;
549      ObjectType = ObjectPtr->getPointeeType();
550    }
551    BaseQuals
552      = Context.getCanonicalType(ObjectType).getQualifiers();
553  } else {
554    // We've found a member of an anonymous struct/union that is
555    // inside a non-anonymous struct/union, so in a well-formed
556    // program our base object expression is "this".
557    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
558      if (!MD->isStatic()) {
559        QualType AnonFieldType
560          = Context.getTagDeclType(
561                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
562        QualType ThisType = Context.getTagDeclType(MD->getParent());
563        if ((Context.getCanonicalType(AnonFieldType)
564               == Context.getCanonicalType(ThisType)) ||
565            IsDerivedFrom(ThisType, AnonFieldType)) {
566          // Our base object expression is "this".
567          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
568                                                     MD->getThisType(Context));
569          BaseObjectIsPointer = true;
570        }
571      } else {
572        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
573          << Field->getDeclName());
574      }
575      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
576    }
577
578    if (!BaseObjectExpr)
579      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
580        << Field->getDeclName());
581  }
582
583  // Build the implicit member references to the field of the
584  // anonymous struct/union.
585  Expr *Result = BaseObjectExpr;
586  Qualifiers ResultQuals = BaseQuals;
587  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
588         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
589       FI != FIEnd; ++FI) {
590    QualType MemberType = (*FI)->getType();
591    Qualifiers MemberTypeQuals =
592      Context.getCanonicalType(MemberType).getQualifiers();
593
594    // CVR attributes from the base are picked up by members,
595    // except that 'mutable' members don't pick up 'const'.
596    if ((*FI)->isMutable())
597      ResultQuals.removeConst();
598
599    // GC attributes are never picked up by members.
600    ResultQuals.removeObjCGCAttr();
601
602    // TR 18037 does not allow fields to be declared with address spaces.
603    assert(!MemberTypeQuals.hasAddressSpace());
604
605    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
606    if (NewQuals != MemberTypeQuals)
607      MemberType = Context.getQualifiedType(MemberType, NewQuals);
608
609    MarkDeclarationReferenced(Loc, *FI);
610    // FIXME: Might this end up being a qualified name?
611    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
612                                      OpLoc, MemberType);
613    BaseObjectIsPointer = false;
614    ResultQuals = NewQuals;
615  }
616
617  return Owned(Result);
618}
619
620static void DecomposeTemplateName(LookupResult &R, TemplateName TName) {
621  if (TemplateDecl *TD = TName.getAsTemplateDecl())
622    R.addDecl(TD);
623  else if (OverloadedFunctionDecl *OD
624             = TName.getAsOverloadedFunctionDecl())
625    for (OverloadIterator I(OD), E; I != E; ++I)
626      R.addDecl(*I);
627
628  R.resolveKind();
629}
630
631Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
632                                               const CXXScopeSpec &SS,
633                                               UnqualifiedId &Id,
634                                               bool HasTrailingLParen,
635                                               bool isAddressOfOperand) {
636  assert(!(isAddressOfOperand && HasTrailingLParen) &&
637         "cannot be direct & operand and have a trailing lparen");
638
639  if (SS.isInvalid())
640    return ExprError();
641
642  TemplateArgumentListInfo ExplicitTemplateArgs;
643
644  // Decompose the UnqualifiedId into the following data.
645  DeclarationName Name;
646  SourceLocation NameLoc;
647  const TemplateArgumentListInfo *TemplateArgs;
648  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
649    ExplicitTemplateArgs.setLAngleLoc(Id.TemplateId->LAngleLoc);
650    ExplicitTemplateArgs.setRAngleLoc(Id.TemplateId->RAngleLoc);
651
652    ASTTemplateArgsPtr TemplateArgsPtr(*this,
653                                       Id.TemplateId->getTemplateArgs(),
654                                       Id.TemplateId->NumArgs);
655    translateTemplateArguments(TemplateArgsPtr, ExplicitTemplateArgs);
656    TemplateArgsPtr.release();
657
658    TemplateName TName =
659      TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
660
661    Name = Context.getNameForTemplate(TName);
662    NameLoc = Id.TemplateId->TemplateNameLoc;
663    TemplateArgs = &ExplicitTemplateArgs;
664  } else {
665    Name = GetNameFromUnqualifiedId(Id);
666    NameLoc = Id.StartLocation;
667    TemplateArgs = 0;
668  }
669
670  IdentifierInfo *II = Name.getAsIdentifierInfo();
671
672  // C++ [temp.dep.expr]p3:
673  //   An id-expression is type-dependent if it contains:
674  //     -- a nested-name-specifier that contains a class-name that
675  //        names a dependent type.
676  // Determine whether this is a member of an unknown specialization;
677  // we need to handle these differently.
678  if (SS.isSet() && !computeDeclContext(SS, false)) {
679    bool CheckForImplicitMember = !isAddressOfOperand;
680
681    return ActOnDependentIdExpression(SS, Name, NameLoc,
682                                      CheckForImplicitMember,
683                                      TemplateArgs);
684  }
685
686  // Perform the required lookup.
687  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
688  if (TemplateArgs) {
689    TemplateName TName =
690      TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
691
692    // Just re-use the lookup done by isTemplateName.
693    DecomposeTemplateName(R, TName);
694  } else {
695    LookupParsedName(R, S, &SS, true);
696
697    // If this reference is in an Objective-C method, then we need to do
698    // some special Objective-C lookup, too.
699    if (!SS.isSet() && II && getCurMethodDecl()) {
700      OwningExprResult E(LookupInObjCMethod(R, S, II));
701      if (E.isInvalid())
702        return ExprError();
703
704      Expr *Ex = E.takeAs<Expr>();
705      if (Ex) return Owned(Ex);
706    }
707  }
708
709  if (R.isAmbiguous())
710    return ExprError();
711
712  // Determine whether this name might be a candidate for
713  // argument-dependent lookup.
714  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
715
716  if (R.empty() && !ADL) {
717    // Otherwise, this could be an implicitly declared function reference (legal
718    // in C90, extension in C99, forbidden in C++).
719    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
720      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
721      if (D) R.addDecl(D);
722    }
723
724    // If this name wasn't predeclared and if this is not a function
725    // call, diagnose the problem.
726    if (R.empty()) {
727      if (!SS.isEmpty())
728        return ExprError(Diag(NameLoc, diag::err_no_member)
729                           << Name << computeDeclContext(SS, false)
730                           << SS.getRange());
731      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
732               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
733        return ExprError(Diag(NameLoc, diag::err_undeclared_use)
734                           << Name);
735      else
736        return ExprError(Diag(NameLoc, diag::err_undeclared_var_use) << Name);
737    }
738  }
739
740  // This is guaranteed from this point on.
741  assert(!R.empty() || ADL);
742
743  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
744    // Warn about constructs like:
745    //   if (void *X = foo()) { ... } else { X }.
746    // In the else block, the pointer is always false.
747
748    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
749      Scope *CheckS = S;
750      while (CheckS && CheckS->getControlParent()) {
751        if (CheckS->isWithinElse() &&
752            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
753          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
754            << Var->getDeclName()
755            << (Var->getType()->isPointerType()? 2 :
756                Var->getType()->isBooleanType()? 1 : 0));
757          break;
758        }
759
760        // Move to the parent of this scope.
761        CheckS = CheckS->getParent();
762      }
763    }
764  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
765    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
766      // C99 DR 316 says that, if a function type comes from a
767      // function definition (without a prototype), that type is only
768      // used for checking compatibility. Therefore, when referencing
769      // the function, we pretend that we don't have the full function
770      // type.
771      if (DiagnoseUseOfDecl(Func, NameLoc))
772        return ExprError();
773
774      QualType T = Func->getType();
775      QualType NoProtoType = T;
776      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
777        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
778      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
779    }
780  }
781
782  // &SomeClass::foo is an abstract member reference, regardless of
783  // the nature of foo, but &SomeClass::foo(...) is not.  If this is
784  // *not* an abstract member reference, and any of the results is a
785  // class member (which necessarily means they're all class members),
786  // then we make an implicit member reference instead.
787  //
788  // This check considers all the same information as the "needs ADL"
789  // check, but there's no simple logical relationship other than the
790  // fact that they can never be simultaneously true.  We could
791  // calculate them both in one pass if that proves important for
792  // performance.
793  if (!ADL) {
794    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
795
796    if (!isAbstractMemberPointer && !R.empty() &&
797        isa<CXXRecordDecl>((*R.begin())->getDeclContext())) {
798      return BuildImplicitMemberReferenceExpr(SS, R, TemplateArgs);
799    }
800  }
801
802  if (TemplateArgs)
803    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
804
805  return BuildDeclarationNameExpr(SS, R, ADL);
806}
807
808/// ActOnDeclarationNameExpr - Build a C++ qualified declaration name,
809/// generally during template instantiation.  There's a large number
810/// of things which don't need to be done along this path.
811Sema::OwningExprResult
812Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
813                                        DeclarationName Name,
814                                        SourceLocation NameLoc) {
815  DeclContext *DC;
816  if (!(DC = computeDeclContext(SS, false)) ||
817      DC->isDependentContext() ||
818      RequireCompleteDeclContext(SS))
819    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
820
821  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
822  LookupQualifiedName(R, DC);
823
824  if (R.isAmbiguous())
825    return ExprError();
826
827  if (R.empty()) {
828    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
829    return ExprError();
830  }
831
832  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
833}
834
835/// LookupInObjCMethod - The parser has read a name in, and Sema has
836/// detected that we're currently inside an ObjC method.  Perform some
837/// additional lookup.
838///
839/// Ideally, most of this would be done by lookup, but there's
840/// actually quite a lot of extra work involved.
841///
842/// Returns a null sentinel to indicate trivial success.
843Sema::OwningExprResult
844Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
845                         IdentifierInfo *II) {
846  SourceLocation Loc = Lookup.getNameLoc();
847
848  // There are two cases to handle here.  1) scoped lookup could have failed,
849  // in which case we should look for an ivar.  2) scoped lookup could have
850  // found a decl, but that decl is outside the current instance method (i.e.
851  // a global variable).  In these two cases, we do a lookup for an ivar with
852  // this name, if the lookup sucedes, we replace it our current decl.
853
854  // If we're in a class method, we don't normally want to look for
855  // ivars.  But if we don't find anything else, and there's an
856  // ivar, that's an error.
857  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
858
859  bool LookForIvars;
860  if (Lookup.empty())
861    LookForIvars = true;
862  else if (IsClassMethod)
863    LookForIvars = false;
864  else
865    LookForIvars = (Lookup.isSingleResult() &&
866                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
867
868  if (LookForIvars) {
869    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
870    ObjCInterfaceDecl *ClassDeclared;
871    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
872      // Diagnose using an ivar in a class method.
873      if (IsClassMethod)
874        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
875                         << IV->getDeclName());
876
877      // If we're referencing an invalid decl, just return this as a silent
878      // error node.  The error diagnostic was already emitted on the decl.
879      if (IV->isInvalidDecl())
880        return ExprError();
881
882      // Check if referencing a field with __attribute__((deprecated)).
883      if (DiagnoseUseOfDecl(IV, Loc))
884        return ExprError();
885
886      // Diagnose the use of an ivar outside of the declaring class.
887      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
888          ClassDeclared != IFace)
889        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
890
891      // FIXME: This should use a new expr for a direct reference, don't
892      // turn this into Self->ivar, just return a BareIVarExpr or something.
893      IdentifierInfo &II = Context.Idents.get("self");
894      UnqualifiedId SelfName;
895      SelfName.setIdentifier(&II, SourceLocation());
896      CXXScopeSpec SelfScopeSpec;
897      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
898                                                    SelfName, false, false);
899      MarkDeclarationReferenced(Loc, IV);
900      return Owned(new (Context)
901                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
902                                   SelfExpr.takeAs<Expr>(), true, true));
903    }
904  } else if (getCurMethodDecl()->isInstanceMethod()) {
905    // We should warn if a local variable hides an ivar.
906    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
907    ObjCInterfaceDecl *ClassDeclared;
908    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
909      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
910          IFace == ClassDeclared)
911        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
912    }
913  }
914
915  // Needed to implement property "super.method" notation.
916  if (Lookup.empty() && II->isStr("super")) {
917    QualType T;
918
919    if (getCurMethodDecl()->isInstanceMethod())
920      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
921                                    getCurMethodDecl()->getClassInterface()));
922    else
923      T = Context.getObjCClassType();
924    return Owned(new (Context) ObjCSuperExpr(Loc, T));
925  }
926
927  // Sentinel value saying that we didn't do anything special.
928  return Owned((Expr*) 0);
929}
930
931/// \brief Cast member's object to its own class if necessary.
932bool
933Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
934  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
935    if (CXXRecordDecl *RD =
936        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
937      QualType DestType =
938        Context.getCanonicalType(Context.getTypeDeclType(RD));
939      if (DestType->isDependentType() || From->getType()->isDependentType())
940        return false;
941      QualType FromRecordType = From->getType();
942      QualType DestRecordType = DestType;
943      if (FromRecordType->getAs<PointerType>()) {
944        DestType = Context.getPointerType(DestType);
945        FromRecordType = FromRecordType->getPointeeType();
946      }
947      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
948          CheckDerivedToBaseConversion(FromRecordType,
949                                       DestRecordType,
950                                       From->getSourceRange().getBegin(),
951                                       From->getSourceRange()))
952        return true;
953      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
954                        /*isLvalue=*/true);
955    }
956  return false;
957}
958
959/// \brief Build a MemberExpr AST node.
960static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
961                                   const CXXScopeSpec *SS, NamedDecl *Member,
962                                   SourceLocation Loc, QualType Ty,
963                          const TemplateArgumentListInfo *TemplateArgs = 0) {
964  NestedNameSpecifier *Qualifier = 0;
965  SourceRange QualifierRange;
966  if (SS && SS->isSet()) {
967    Qualifier = (NestedNameSpecifier *) SS->getScopeRep();
968    QualifierRange = SS->getRange();
969  }
970
971  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
972                            Member, Loc, TemplateArgs, Ty);
973}
974
975/// Builds an implicit member access expression from the given
976/// unqualified lookup set, which is known to contain only class
977/// members.
978Sema::OwningExprResult
979Sema::BuildImplicitMemberReferenceExpr(const CXXScopeSpec &SS,
980                                       LookupResult &R,
981                              const TemplateArgumentListInfo *TemplateArgs) {
982  assert(!R.empty() && !R.isAmbiguous());
983
984  NamedDecl *D = R.getAsSingleDecl(Context);
985  SourceLocation Loc = R.getNameLoc();
986
987  // We may have found a field within an anonymous union or struct
988  // (C++ [class.union]).
989  // FIXME: This needs to happen post-isImplicitMemberReference?
990  // FIXME: template-ids inside anonymous structs?
991  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
992    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
993      return BuildAnonymousStructUnionMemberReference(Loc, FD);
994
995  QualType ThisType;
996  QualType MemberType;
997  if (isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) {
998    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
999    MarkDeclarationReferenced(Loc, D);
1000    if (PerformObjectMemberConversion(This, D))
1001      return ExprError();
1002
1003    bool ShouldCheckUse = true;
1004    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1005      // Don't diagnose the use of a virtual member function unless it's
1006      // explicitly qualified.
1007      if (MD->isVirtual() && !SS.isSet())
1008        ShouldCheckUse = false;
1009    }
1010
1011    if (ShouldCheckUse && DiagnoseUseOfDecl(D, Loc))
1012      return ExprError();
1013    return Owned(BuildMemberExpr(Context, This, true, &SS, D, Loc, MemberType,
1014                                 TemplateArgs));
1015  }
1016
1017  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1018    if (!Method->isStatic())
1019      return ExprError(Diag(Loc, diag::err_member_call_without_object));
1020  }
1021
1022  if (isa<FieldDecl>(D)) {
1023    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1024      if (MD->isStatic()) {
1025        // "invalid use of member 'x' in static member function"
1026        Diag(Loc, diag::err_invalid_member_use_in_static_method)
1027          << D->getDeclName();
1028        return ExprError();
1029      }
1030    }
1031
1032    // Any other ways we could have found the field in a well-formed
1033    // program would have been turned into implicit member expressions
1034    // above.
1035    Diag(Loc, diag::err_invalid_non_static_member_use)
1036      << D->getDeclName();
1037    return ExprError();
1038  }
1039
1040  // We're not in an implicit member-reference context, but the lookup
1041  // results might not require an instance.  Try to build a non-member
1042  // decl reference.
1043  if (TemplateArgs)
1044    return BuildTemplateIdExpr(SS, R, /* ADL */ false, *TemplateArgs);
1045
1046  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1047}
1048
1049bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1050                                      const LookupResult &R,
1051                                      bool HasTrailingLParen) {
1052  // Only when used directly as the postfix-expression of a call.
1053  if (!HasTrailingLParen)
1054    return false;
1055
1056  // Never if a scope specifier was provided.
1057  if (SS.isSet())
1058    return false;
1059
1060  // Only in C++ or ObjC++.
1061  if (!getLangOptions().CPlusPlus)
1062    return false;
1063
1064  // Turn off ADL when we find certain kinds of declarations during
1065  // normal lookup:
1066  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1067    NamedDecl *D = *I;
1068
1069    // C++0x [basic.lookup.argdep]p3:
1070    //     -- a declaration of a class member
1071    // Since using decls preserve this property, we check this on the
1072    // original decl.
1073    if (D->getDeclContext()->isRecord())
1074      return false;
1075
1076    // C++0x [basic.lookup.argdep]p3:
1077    //     -- a block-scope function declaration that is not a
1078    //        using-declaration
1079    // NOTE: we also trigger this for function templates (in fact, we
1080    // don't check the decl type at all, since all other decl types
1081    // turn off ADL anyway).
1082    if (isa<UsingShadowDecl>(D))
1083      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1084    else if (D->getDeclContext()->isFunctionOrMethod())
1085      return false;
1086
1087    // C++0x [basic.lookup.argdep]p3:
1088    //     -- a declaration that is neither a function or a function
1089    //        template
1090    // And also for builtin functions.
1091    if (isa<FunctionDecl>(D)) {
1092      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1093
1094      // But also builtin functions.
1095      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1096        return false;
1097    } else if (!isa<FunctionTemplateDecl>(D))
1098      return false;
1099  }
1100
1101  return true;
1102}
1103
1104
1105/// Diagnoses obvious problems with the use of the given declaration
1106/// as an expression.  This is only actually called for lookups that
1107/// were not overloaded, and it doesn't promise that the declaration
1108/// will in fact be used.
1109static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1110  if (isa<TypedefDecl>(D)) {
1111    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1112    return true;
1113  }
1114
1115  if (isa<ObjCInterfaceDecl>(D)) {
1116    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1117    return true;
1118  }
1119
1120  if (isa<NamespaceDecl>(D)) {
1121    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1122    return true;
1123  }
1124
1125  return false;
1126}
1127
1128Sema::OwningExprResult
1129Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1130                               LookupResult &R,
1131                               bool NeedsADL) {
1132  assert(R.getResultKind() != LookupResult::FoundUnresolvedValue);
1133
1134  // If this isn't an overloaded result and we don't need ADL, just
1135  // build an ordinary singleton decl ref.
1136  if (!NeedsADL && !R.isOverloadedResult())
1137    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1138
1139  // We only need to check the declaration if there's exactly one
1140  // result, because in the overloaded case the results can only be
1141  // functions and function templates.
1142  if (R.isSingleResult() &&
1143      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1144    return ExprError();
1145
1146  bool Dependent
1147    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1148  UnresolvedLookupExpr *ULE
1149    = UnresolvedLookupExpr::Create(Context, Dependent,
1150                                   (NestedNameSpecifier*) SS.getScopeRep(),
1151                                   SS.getRange(),
1152                                   R.getLookupName(), R.getNameLoc(),
1153                                   NeedsADL, R.isOverloadedResult());
1154  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1155    ULE->addDecl(*I);
1156
1157  return Owned(ULE);
1158}
1159
1160
1161/// \brief Complete semantic analysis for a reference to the given declaration.
1162Sema::OwningExprResult
1163Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1164                               SourceLocation Loc, NamedDecl *D) {
1165  assert(D && "Cannot refer to a NULL declaration");
1166  assert(!isa<FunctionTemplateDecl>(D) &&
1167         "Cannot refer unambiguously to a function template");
1168  DeclarationName Name = D->getDeclName();
1169
1170  if (CheckDeclInExpr(*this, Loc, D))
1171    return ExprError();
1172
1173  ValueDecl *VD = cast<ValueDecl>(D);
1174
1175  // Check whether this declaration can be used. Note that we suppress
1176  // this check when we're going to perform argument-dependent lookup
1177  // on this function name, because this might not be the function
1178  // that overload resolution actually selects.
1179  if (DiagnoseUseOfDecl(VD, Loc))
1180    return ExprError();
1181
1182  // Only create DeclRefExpr's for valid Decl's.
1183  if (VD->isInvalidDecl())
1184    return ExprError();
1185
1186  // If the identifier reference is inside a block, and it refers to a value
1187  // that is outside the block, create a BlockDeclRefExpr instead of a
1188  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1189  // the block is formed.
1190  //
1191  // We do not do this for things like enum constants, global variables, etc,
1192  // as they do not get snapshotted.
1193  //
1194  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1195    MarkDeclarationReferenced(Loc, VD);
1196    QualType ExprTy = VD->getType().getNonReferenceType();
1197    // The BlocksAttr indicates the variable is bound by-reference.
1198    if (VD->getAttr<BlocksAttr>())
1199      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1200    // This is to record that a 'const' was actually synthesize and added.
1201    bool constAdded = !ExprTy.isConstQualified();
1202    // Variable will be bound by-copy, make it const within the closure.
1203
1204    ExprTy.addConst();
1205    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1206                                                constAdded));
1207  }
1208  // If this reference is not in a block or if the referenced variable is
1209  // within the block, create a normal DeclRefExpr.
1210
1211  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1212}
1213
1214Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1215                                                 tok::TokenKind Kind) {
1216  PredefinedExpr::IdentType IT;
1217
1218  switch (Kind) {
1219  default: assert(0 && "Unknown simple primary expr!");
1220  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1221  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1222  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1223  }
1224
1225  // Pre-defined identifiers are of type char[x], where x is the length of the
1226  // string.
1227
1228  Decl *currentDecl = getCurFunctionOrMethodDecl();
1229  if (!currentDecl) {
1230    Diag(Loc, diag::ext_predef_outside_function);
1231    currentDecl = Context.getTranslationUnitDecl();
1232  }
1233
1234  QualType ResTy;
1235  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1236    ResTy = Context.DependentTy;
1237  } else {
1238    unsigned Length =
1239      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1240
1241    llvm::APInt LengthI(32, Length + 1);
1242    ResTy = Context.CharTy.withConst();
1243    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1244  }
1245  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1246}
1247
1248Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1249  llvm::SmallString<16> CharBuffer;
1250  CharBuffer.resize(Tok.getLength());
1251  const char *ThisTokBegin = &CharBuffer[0];
1252  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1253
1254  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1255                            Tok.getLocation(), PP);
1256  if (Literal.hadError())
1257    return ExprError();
1258
1259  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1260
1261  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1262                                              Literal.isWide(),
1263                                              type, Tok.getLocation()));
1264}
1265
1266Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1267  // Fast path for a single digit (which is quite common).  A single digit
1268  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1269  if (Tok.getLength() == 1) {
1270    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1271    unsigned IntSize = Context.Target.getIntWidth();
1272    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1273                    Context.IntTy, Tok.getLocation()));
1274  }
1275
1276  llvm::SmallString<512> IntegerBuffer;
1277  // Add padding so that NumericLiteralParser can overread by one character.
1278  IntegerBuffer.resize(Tok.getLength()+1);
1279  const char *ThisTokBegin = &IntegerBuffer[0];
1280
1281  // Get the spelling of the token, which eliminates trigraphs, etc.
1282  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1283
1284  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1285                               Tok.getLocation(), PP);
1286  if (Literal.hadError)
1287    return ExprError();
1288
1289  Expr *Res;
1290
1291  if (Literal.isFloatingLiteral()) {
1292    QualType Ty;
1293    if (Literal.isFloat)
1294      Ty = Context.FloatTy;
1295    else if (!Literal.isLong)
1296      Ty = Context.DoubleTy;
1297    else
1298      Ty = Context.LongDoubleTy;
1299
1300    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1301
1302    // isExact will be set by GetFloatValue().
1303    bool isExact = false;
1304    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1305    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1306
1307  } else if (!Literal.isIntegerLiteral()) {
1308    return ExprError();
1309  } else {
1310    QualType Ty;
1311
1312    // long long is a C99 feature.
1313    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1314        Literal.isLongLong)
1315      Diag(Tok.getLocation(), diag::ext_longlong);
1316
1317    // Get the value in the widest-possible width.
1318    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1319
1320    if (Literal.GetIntegerValue(ResultVal)) {
1321      // If this value didn't fit into uintmax_t, warn and force to ull.
1322      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1323      Ty = Context.UnsignedLongLongTy;
1324      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1325             "long long is not intmax_t?");
1326    } else {
1327      // If this value fits into a ULL, try to figure out what else it fits into
1328      // according to the rules of C99 6.4.4.1p5.
1329
1330      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1331      // be an unsigned int.
1332      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1333
1334      // Check from smallest to largest, picking the smallest type we can.
1335      unsigned Width = 0;
1336      if (!Literal.isLong && !Literal.isLongLong) {
1337        // Are int/unsigned possibilities?
1338        unsigned IntSize = Context.Target.getIntWidth();
1339
1340        // Does it fit in a unsigned int?
1341        if (ResultVal.isIntN(IntSize)) {
1342          // Does it fit in a signed int?
1343          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1344            Ty = Context.IntTy;
1345          else if (AllowUnsigned)
1346            Ty = Context.UnsignedIntTy;
1347          Width = IntSize;
1348        }
1349      }
1350
1351      // Are long/unsigned long possibilities?
1352      if (Ty.isNull() && !Literal.isLongLong) {
1353        unsigned LongSize = Context.Target.getLongWidth();
1354
1355        // Does it fit in a unsigned long?
1356        if (ResultVal.isIntN(LongSize)) {
1357          // Does it fit in a signed long?
1358          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1359            Ty = Context.LongTy;
1360          else if (AllowUnsigned)
1361            Ty = Context.UnsignedLongTy;
1362          Width = LongSize;
1363        }
1364      }
1365
1366      // Finally, check long long if needed.
1367      if (Ty.isNull()) {
1368        unsigned LongLongSize = Context.Target.getLongLongWidth();
1369
1370        // Does it fit in a unsigned long long?
1371        if (ResultVal.isIntN(LongLongSize)) {
1372          // Does it fit in a signed long long?
1373          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1374            Ty = Context.LongLongTy;
1375          else if (AllowUnsigned)
1376            Ty = Context.UnsignedLongLongTy;
1377          Width = LongLongSize;
1378        }
1379      }
1380
1381      // If we still couldn't decide a type, we probably have something that
1382      // does not fit in a signed long long, but has no U suffix.
1383      if (Ty.isNull()) {
1384        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1385        Ty = Context.UnsignedLongLongTy;
1386        Width = Context.Target.getLongLongWidth();
1387      }
1388
1389      if (ResultVal.getBitWidth() != Width)
1390        ResultVal.trunc(Width);
1391    }
1392    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1393  }
1394
1395  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1396  if (Literal.isImaginary)
1397    Res = new (Context) ImaginaryLiteral(Res,
1398                                        Context.getComplexType(Res->getType()));
1399
1400  return Owned(Res);
1401}
1402
1403Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1404                                              SourceLocation R, ExprArg Val) {
1405  Expr *E = Val.takeAs<Expr>();
1406  assert((E != 0) && "ActOnParenExpr() missing expr");
1407  return Owned(new (Context) ParenExpr(L, R, E));
1408}
1409
1410/// The UsualUnaryConversions() function is *not* called by this routine.
1411/// See C99 6.3.2.1p[2-4] for more details.
1412bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1413                                     SourceLocation OpLoc,
1414                                     const SourceRange &ExprRange,
1415                                     bool isSizeof) {
1416  if (exprType->isDependentType())
1417    return false;
1418
1419  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1420  //   the result is the size of the referenced type."
1421  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1422  //   result shall be the alignment of the referenced type."
1423  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1424    exprType = Ref->getPointeeType();
1425
1426  // C99 6.5.3.4p1:
1427  if (exprType->isFunctionType()) {
1428    // alignof(function) is allowed as an extension.
1429    if (isSizeof)
1430      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1431    return false;
1432  }
1433
1434  // Allow sizeof(void)/alignof(void) as an extension.
1435  if (exprType->isVoidType()) {
1436    Diag(OpLoc, diag::ext_sizeof_void_type)
1437      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1438    return false;
1439  }
1440
1441  if (RequireCompleteType(OpLoc, exprType,
1442                          isSizeof ? diag::err_sizeof_incomplete_type :
1443                          PDiag(diag::err_alignof_incomplete_type)
1444                            << ExprRange))
1445    return true;
1446
1447  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1448  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1449    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1450      << exprType << isSizeof << ExprRange;
1451    return true;
1452  }
1453
1454  return false;
1455}
1456
1457bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1458                            const SourceRange &ExprRange) {
1459  E = E->IgnoreParens();
1460
1461  // alignof decl is always ok.
1462  if (isa<DeclRefExpr>(E))
1463    return false;
1464
1465  // Cannot know anything else if the expression is dependent.
1466  if (E->isTypeDependent())
1467    return false;
1468
1469  if (E->getBitField()) {
1470    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1471    return true;
1472  }
1473
1474  // Alignment of a field access is always okay, so long as it isn't a
1475  // bit-field.
1476  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1477    if (isa<FieldDecl>(ME->getMemberDecl()))
1478      return false;
1479
1480  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1481}
1482
1483/// \brief Build a sizeof or alignof expression given a type operand.
1484Action::OwningExprResult
1485Sema::CreateSizeOfAlignOfExpr(DeclaratorInfo *DInfo,
1486                              SourceLocation OpLoc,
1487                              bool isSizeOf, SourceRange R) {
1488  if (!DInfo)
1489    return ExprError();
1490
1491  QualType T = DInfo->getType();
1492
1493  if (!T->isDependentType() &&
1494      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1495    return ExprError();
1496
1497  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1498  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, DInfo,
1499                                               Context.getSizeType(), OpLoc,
1500                                               R.getEnd()));
1501}
1502
1503/// \brief Build a sizeof or alignof expression given an expression
1504/// operand.
1505Action::OwningExprResult
1506Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1507                              bool isSizeOf, SourceRange R) {
1508  // Verify that the operand is valid.
1509  bool isInvalid = false;
1510  if (E->isTypeDependent()) {
1511    // Delay type-checking for type-dependent expressions.
1512  } else if (!isSizeOf) {
1513    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1514  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1515    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1516    isInvalid = true;
1517  } else {
1518    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1519  }
1520
1521  if (isInvalid)
1522    return ExprError();
1523
1524  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1525  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1526                                               Context.getSizeType(), OpLoc,
1527                                               R.getEnd()));
1528}
1529
1530/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1531/// the same for @c alignof and @c __alignof
1532/// Note that the ArgRange is invalid if isType is false.
1533Action::OwningExprResult
1534Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1535                             void *TyOrEx, const SourceRange &ArgRange) {
1536  // If error parsing type, ignore.
1537  if (TyOrEx == 0) return ExprError();
1538
1539  if (isType) {
1540    DeclaratorInfo *DInfo;
1541    (void) GetTypeFromParser(TyOrEx, &DInfo);
1542    return CreateSizeOfAlignOfExpr(DInfo, OpLoc, isSizeof, ArgRange);
1543  }
1544
1545  Expr *ArgEx = (Expr *)TyOrEx;
1546  Action::OwningExprResult Result
1547    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1548
1549  if (Result.isInvalid())
1550    DeleteExpr(ArgEx);
1551
1552  return move(Result);
1553}
1554
1555QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1556  if (V->isTypeDependent())
1557    return Context.DependentTy;
1558
1559  // These operators return the element type of a complex type.
1560  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1561    return CT->getElementType();
1562
1563  // Otherwise they pass through real integer and floating point types here.
1564  if (V->getType()->isArithmeticType())
1565    return V->getType();
1566
1567  // Reject anything else.
1568  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1569    << (isReal ? "__real" : "__imag");
1570  return QualType();
1571}
1572
1573
1574
1575Action::OwningExprResult
1576Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1577                          tok::TokenKind Kind, ExprArg Input) {
1578  UnaryOperator::Opcode Opc;
1579  switch (Kind) {
1580  default: assert(0 && "Unknown unary op!");
1581  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1582  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1583  }
1584
1585  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
1586}
1587
1588Action::OwningExprResult
1589Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1590                              ExprArg Idx, SourceLocation RLoc) {
1591  // Since this might be a postfix expression, get rid of ParenListExprs.
1592  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1593
1594  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1595       *RHSExp = static_cast<Expr*>(Idx.get());
1596
1597  if (getLangOptions().CPlusPlus &&
1598      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1599    Base.release();
1600    Idx.release();
1601    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1602                                                  Context.DependentTy, RLoc));
1603  }
1604
1605  if (getLangOptions().CPlusPlus &&
1606      (LHSExp->getType()->isRecordType() ||
1607       LHSExp->getType()->isEnumeralType() ||
1608       RHSExp->getType()->isRecordType() ||
1609       RHSExp->getType()->isEnumeralType())) {
1610    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
1611  }
1612
1613  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
1614}
1615
1616
1617Action::OwningExprResult
1618Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
1619                                     ExprArg Idx, SourceLocation RLoc) {
1620  Expr *LHSExp = static_cast<Expr*>(Base.get());
1621  Expr *RHSExp = static_cast<Expr*>(Idx.get());
1622
1623  // Perform default conversions.
1624  DefaultFunctionArrayConversion(LHSExp);
1625  DefaultFunctionArrayConversion(RHSExp);
1626
1627  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1628
1629  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1630  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1631  // in the subscript position. As a result, we need to derive the array base
1632  // and index from the expression types.
1633  Expr *BaseExpr, *IndexExpr;
1634  QualType ResultType;
1635  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1636    BaseExpr = LHSExp;
1637    IndexExpr = RHSExp;
1638    ResultType = Context.DependentTy;
1639  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1640    BaseExpr = LHSExp;
1641    IndexExpr = RHSExp;
1642    ResultType = PTy->getPointeeType();
1643  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1644     // Handle the uncommon case of "123[Ptr]".
1645    BaseExpr = RHSExp;
1646    IndexExpr = LHSExp;
1647    ResultType = PTy->getPointeeType();
1648  } else if (const ObjCObjectPointerType *PTy =
1649               LHSTy->getAs<ObjCObjectPointerType>()) {
1650    BaseExpr = LHSExp;
1651    IndexExpr = RHSExp;
1652    ResultType = PTy->getPointeeType();
1653  } else if (const ObjCObjectPointerType *PTy =
1654               RHSTy->getAs<ObjCObjectPointerType>()) {
1655     // Handle the uncommon case of "123[Ptr]".
1656    BaseExpr = RHSExp;
1657    IndexExpr = LHSExp;
1658    ResultType = PTy->getPointeeType();
1659  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
1660    BaseExpr = LHSExp;    // vectors: V[123]
1661    IndexExpr = RHSExp;
1662
1663    // FIXME: need to deal with const...
1664    ResultType = VTy->getElementType();
1665  } else if (LHSTy->isArrayType()) {
1666    // If we see an array that wasn't promoted by
1667    // DefaultFunctionArrayConversion, it must be an array that
1668    // wasn't promoted because of the C90 rule that doesn't
1669    // allow promoting non-lvalue arrays.  Warn, then
1670    // force the promotion here.
1671    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1672        LHSExp->getSourceRange();
1673    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
1674                      CastExpr::CK_ArrayToPointerDecay);
1675    LHSTy = LHSExp->getType();
1676
1677    BaseExpr = LHSExp;
1678    IndexExpr = RHSExp;
1679    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1680  } else if (RHSTy->isArrayType()) {
1681    // Same as previous, except for 123[f().a] case
1682    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1683        RHSExp->getSourceRange();
1684    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
1685                      CastExpr::CK_ArrayToPointerDecay);
1686    RHSTy = RHSExp->getType();
1687
1688    BaseExpr = RHSExp;
1689    IndexExpr = LHSExp;
1690    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1691  } else {
1692    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1693       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1694  }
1695  // C99 6.5.2.1p1
1696  if (!(IndexExpr->getType()->isIntegerType() &&
1697        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1698    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1699                     << IndexExpr->getSourceRange());
1700
1701  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
1702       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
1703         && !IndexExpr->isTypeDependent())
1704    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
1705
1706  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1707  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1708  // type. Note that Functions are not objects, and that (in C99 parlance)
1709  // incomplete types are not object types.
1710  if (ResultType->isFunctionType()) {
1711    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1712      << ResultType << BaseExpr->getSourceRange();
1713    return ExprError();
1714  }
1715
1716  if (!ResultType->isDependentType() &&
1717      RequireCompleteType(LLoc, ResultType,
1718                          PDiag(diag::err_subscript_incomplete_type)
1719                            << BaseExpr->getSourceRange()))
1720    return ExprError();
1721
1722  // Diagnose bad cases where we step over interface counts.
1723  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1724    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1725      << ResultType << BaseExpr->getSourceRange();
1726    return ExprError();
1727  }
1728
1729  Base.release();
1730  Idx.release();
1731  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1732                                                ResultType, RLoc));
1733}
1734
1735QualType Sema::
1736CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1737                        const IdentifierInfo *CompName,
1738                        SourceLocation CompLoc) {
1739  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
1740  // see FIXME there.
1741  //
1742  // FIXME: This logic can be greatly simplified by splitting it along
1743  // halving/not halving and reworking the component checking.
1744  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
1745
1746  // The vector accessor can't exceed the number of elements.
1747  const char *compStr = CompName->getNameStart();
1748
1749  // This flag determines whether or not the component is one of the four
1750  // special names that indicate a subset of exactly half the elements are
1751  // to be selected.
1752  bool HalvingSwizzle = false;
1753
1754  // This flag determines whether or not CompName has an 's' char prefix,
1755  // indicating that it is a string of hex values to be used as vector indices.
1756  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1757
1758  // Check that we've found one of the special components, or that the component
1759  // names must come from the same set.
1760  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1761      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1762    HalvingSwizzle = true;
1763  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1764    do
1765      compStr++;
1766    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1767  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1768    do
1769      compStr++;
1770    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1771  }
1772
1773  if (!HalvingSwizzle && *compStr) {
1774    // We didn't get to the end of the string. This means the component names
1775    // didn't come from the same set *or* we encountered an illegal name.
1776    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1777      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1778    return QualType();
1779  }
1780
1781  // Ensure no component accessor exceeds the width of the vector type it
1782  // operates on.
1783  if (!HalvingSwizzle) {
1784    compStr = CompName->getNameStart();
1785
1786    if (HexSwizzle)
1787      compStr++;
1788
1789    while (*compStr) {
1790      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1791        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1792          << baseType << SourceRange(CompLoc);
1793        return QualType();
1794      }
1795    }
1796  }
1797
1798  // If this is a halving swizzle, verify that the base type has an even
1799  // number of elements.
1800  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1801    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1802      << baseType << SourceRange(CompLoc);
1803    return QualType();
1804  }
1805
1806  // The component accessor looks fine - now we need to compute the actual type.
1807  // The vector type is implied by the component accessor. For example,
1808  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1809  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1810  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1811  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1812                                     : CompName->getLength();
1813  if (HexSwizzle)
1814    CompSize--;
1815
1816  if (CompSize == 1)
1817    return vecType->getElementType();
1818
1819  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1820  // Now look up the TypeDefDecl from the vector type. Without this,
1821  // diagostics look bad. We want extended vector types to appear built-in.
1822  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1823    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1824      return Context.getTypedefType(ExtVectorDecls[i]);
1825  }
1826  return VT; // should never get here (a typedef type should always be found).
1827}
1828
1829static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1830                                                IdentifierInfo *Member,
1831                                                const Selector &Sel,
1832                                                ASTContext &Context) {
1833
1834  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1835    return PD;
1836  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1837    return OMD;
1838
1839  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1840       E = PDecl->protocol_end(); I != E; ++I) {
1841    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1842                                                     Context))
1843      return D;
1844  }
1845  return 0;
1846}
1847
1848static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1849                                IdentifierInfo *Member,
1850                                const Selector &Sel,
1851                                ASTContext &Context) {
1852  // Check protocols on qualified interfaces.
1853  Decl *GDecl = 0;
1854  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1855       E = QIdTy->qual_end(); I != E; ++I) {
1856    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1857      GDecl = PD;
1858      break;
1859    }
1860    // Also must look for a getter name which uses property syntax.
1861    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1862      GDecl = OMD;
1863      break;
1864    }
1865  }
1866  if (!GDecl) {
1867    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1868         E = QIdTy->qual_end(); I != E; ++I) {
1869      // Search in the protocol-qualifier list of current protocol.
1870      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1871      if (GDecl)
1872        return GDecl;
1873    }
1874  }
1875  return GDecl;
1876}
1877
1878Action::OwningExprResult
1879Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1880                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1881                               DeclarationName MemberName,
1882                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1883                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS,
1884                               NamedDecl *FirstQualifierInScope) {
1885  if (SS && SS->isInvalid())
1886    return ExprError();
1887
1888  // Since this might be a postfix expression, get rid of ParenListExprs.
1889  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1890
1891  Expr *BaseExpr = Base.takeAs<Expr>();
1892  assert(BaseExpr && "no base expression");
1893
1894  // Perform default conversions.
1895  DefaultFunctionArrayConversion(BaseExpr);
1896
1897  QualType BaseType = BaseExpr->getType();
1898
1899  // If the user is trying to apply -> or . to a function pointer
1900  // type, it's probably because the forgot parentheses to call that
1901  // function. Suggest the addition of those parentheses, build the
1902  // call, and continue on.
1903  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1904    if (const FunctionProtoType *Fun
1905          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
1906      QualType ResultTy = Fun->getResultType();
1907      if (Fun->getNumArgs() == 0 &&
1908          ((OpKind == tok::period && ResultTy->isRecordType()) ||
1909           (OpKind == tok::arrow && ResultTy->isPointerType() &&
1910            ResultTy->getAs<PointerType>()->getPointeeType()
1911                                                          ->isRecordType()))) {
1912        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
1913        Diag(Loc, diag::err_member_reference_needs_call)
1914          << QualType(Fun, 0)
1915          << CodeModificationHint::CreateInsertion(Loc, "()");
1916
1917        OwningExprResult NewBase
1918          = ActOnCallExpr(S, ExprArg(*this, BaseExpr), Loc,
1919                          MultiExprArg(*this, 0, 0), 0, Loc);
1920        if (NewBase.isInvalid())
1921          return move(NewBase);
1922
1923        BaseExpr = NewBase.takeAs<Expr>();
1924        DefaultFunctionArrayConversion(BaseExpr);
1925        BaseType = BaseExpr->getType();
1926      }
1927    }
1928  }
1929
1930  // If this is an Objective-C pseudo-builtin and a definition is provided then
1931  // use that.
1932  if (BaseType->isObjCIdType()) {
1933    // We have an 'id' type. Rather than fall through, we check if this
1934    // is a reference to 'isa'.
1935    if (BaseType != Context.ObjCIdRedefinitionType) {
1936      BaseType = Context.ObjCIdRedefinitionType;
1937      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1938    }
1939  }
1940  assert(!BaseType.isNull() && "no type for member expression");
1941
1942  // Handle properties on ObjC 'Class' types.
1943  if (OpKind == tok::period && BaseType->isObjCClassType()) {
1944    // Also must look for a getter name which uses property syntax.
1945    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1946    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1947    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1948      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1949      ObjCMethodDecl *Getter;
1950      // FIXME: need to also look locally in the implementation.
1951      if ((Getter = IFace->lookupClassMethod(Sel))) {
1952        // Check the use of this method.
1953        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1954          return ExprError();
1955      }
1956      // If we found a getter then this may be a valid dot-reference, we
1957      // will look for the matching setter, in case it is needed.
1958      Selector SetterSel =
1959      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1960                                         PP.getSelectorTable(), Member);
1961      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1962      if (!Setter) {
1963        // If this reference is in an @implementation, also check for 'private'
1964        // methods.
1965        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
1966      }
1967      // Look through local category implementations associated with the class.
1968      if (!Setter)
1969        Setter = IFace->getCategoryClassMethod(SetterSel);
1970
1971      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1972        return ExprError();
1973
1974      if (Getter || Setter) {
1975        QualType PType;
1976
1977        if (Getter)
1978          PType = Getter->getResultType();
1979        else
1980          // Get the expression type from Setter's incoming parameter.
1981          PType = (*(Setter->param_end() -1))->getType();
1982        // FIXME: we must check that the setter has property type.
1983        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
1984                                                  PType,
1985                                                  Setter, MemberLoc, BaseExpr));
1986      }
1987      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1988                       << MemberName << BaseType);
1989    }
1990  }
1991
1992  if (BaseType->isObjCClassType() &&
1993      BaseType != Context.ObjCClassRedefinitionType) {
1994    BaseType = Context.ObjCClassRedefinitionType;
1995    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1996  }
1997
1998  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1999  // must have pointer type, and the accessed type is the pointee.
2000  if (OpKind == tok::arrow) {
2001    if (BaseType->isDependentType()) {
2002      NestedNameSpecifier *Qualifier = 0;
2003      if (SS) {
2004        Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2005        if (!FirstQualifierInScope)
2006          FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2007      }
2008
2009      return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, true,
2010                                                   OpLoc, Qualifier,
2011                                            SS? SS->getRange() : SourceRange(),
2012                                                   FirstQualifierInScope,
2013                                                   MemberName,
2014                                                   MemberLoc,
2015                                                   ExplicitTemplateArgs));
2016    }
2017    else if (const PointerType *PT = BaseType->getAs<PointerType>())
2018      BaseType = PT->getPointeeType();
2019    else if (BaseType->isObjCObjectPointerType())
2020      ;
2021    else
2022      return ExprError(Diag(MemberLoc,
2023                            diag::err_typecheck_member_reference_arrow)
2024        << BaseType << BaseExpr->getSourceRange());
2025  } else if (BaseType->isDependentType()) {
2026      // Require that the base type isn't a pointer type
2027      // (so we'll report an error for)
2028      // T* t;
2029      // t.f;
2030      //
2031      // In Obj-C++, however, the above expression is valid, since it could be
2032      // accessing the 'f' property if T is an Obj-C interface. The extra check
2033      // allows this, while still reporting an error if T is a struct pointer.
2034      const PointerType *PT = BaseType->getAs<PointerType>();
2035
2036      if (!PT || (getLangOptions().ObjC1 &&
2037                  !PT->getPointeeType()->isRecordType())) {
2038        NestedNameSpecifier *Qualifier = 0;
2039        if (SS) {
2040          Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2041          if (!FirstQualifierInScope)
2042            FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2043        }
2044
2045        return Owned(CXXDependentScopeMemberExpr::Create(Context,
2046                                                     BaseExpr, false,
2047                                                     OpLoc,
2048                                                     Qualifier,
2049                                            SS? SS->getRange() : SourceRange(),
2050                                                     FirstQualifierInScope,
2051                                                     MemberName,
2052                                                     MemberLoc,
2053                                                     ExplicitTemplateArgs));
2054      }
2055    }
2056
2057  // Handle field access to simple records.  This also handles access to fields
2058  // of the ObjC 'id' struct.
2059  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2060    RecordDecl *RDecl = RTy->getDecl();
2061    if (RequireCompleteType(OpLoc, BaseType,
2062                            PDiag(diag::err_typecheck_incomplete_tag)
2063                              << BaseExpr->getSourceRange()))
2064      return ExprError();
2065
2066    DeclContext *DC = RDecl;
2067    if (SS && SS->isSet()) {
2068      // If the member name was a qualified-id, look into the
2069      // nested-name-specifier.
2070      DC = computeDeclContext(*SS, false);
2071
2072      if (!isa<TypeDecl>(DC)) {
2073        Diag(MemberLoc, diag::err_qualified_member_nonclass)
2074          << DC << SS->getRange();
2075        return ExprError();
2076      }
2077
2078      // FIXME: If DC is not computable, we should build a
2079      // CXXDependentScopeMemberExpr.
2080      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2081    }
2082
2083    // The record definition is complete, now make sure the member is valid.
2084    LookupResult Result(*this, MemberName, MemberLoc, LookupMemberName);
2085    LookupQualifiedName(Result, DC);
2086
2087    if (Result.empty())
2088      return ExprError(Diag(MemberLoc, diag::err_no_member)
2089               << MemberName << DC << BaseExpr->getSourceRange());
2090    if (Result.isAmbiguous())
2091      return ExprError();
2092
2093    NamedDecl *MemberDecl = Result.getAsSingleDecl(Context);
2094
2095    if (SS && SS->isSet()) {
2096      TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext());
2097      QualType BaseTypeCanon
2098        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2099      QualType MemberTypeCanon
2100        = Context.getCanonicalType(Context.getTypeDeclType(TyD));
2101
2102      if (BaseTypeCanon != MemberTypeCanon &&
2103          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2104        return ExprError(Diag(SS->getBeginLoc(),
2105                              diag::err_not_direct_base_or_virtual)
2106                         << MemberTypeCanon << BaseTypeCanon);
2107    }
2108
2109    // If the decl being referenced had an error, return an error for this
2110    // sub-expr without emitting another error, in order to avoid cascading
2111    // error cases.
2112    if (MemberDecl->isInvalidDecl())
2113      return ExprError();
2114
2115    bool ShouldCheckUse = true;
2116    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2117      // Don't diagnose the use of a virtual member function unless it's
2118      // explicitly qualified.
2119      if (MD->isVirtual() && (!SS || !SS->isSet()))
2120        ShouldCheckUse = false;
2121    }
2122
2123    // Check the use of this field
2124    if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2125      return ExprError();
2126
2127    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2128      // We may have found a field within an anonymous union or struct
2129      // (C++ [class.union]).
2130      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2131        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2132                                                        BaseExpr, OpLoc);
2133
2134      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2135      QualType MemberType = FD->getType();
2136      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2137        MemberType = Ref->getPointeeType();
2138      else {
2139        Qualifiers BaseQuals = BaseType.getQualifiers();
2140        BaseQuals.removeObjCGCAttr();
2141        if (FD->isMutable()) BaseQuals.removeConst();
2142
2143        Qualifiers MemberQuals
2144          = Context.getCanonicalType(MemberType).getQualifiers();
2145
2146        Qualifiers Combined = BaseQuals + MemberQuals;
2147        if (Combined != MemberQuals)
2148          MemberType = Context.getQualifiedType(MemberType, Combined);
2149      }
2150
2151      MarkDeclarationReferenced(MemberLoc, FD);
2152      if (PerformObjectMemberConversion(BaseExpr, FD))
2153        return ExprError();
2154      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2155                                   FD, MemberLoc, MemberType));
2156    }
2157
2158    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2159      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2160      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2161                                   Var, MemberLoc,
2162                                   Var->getType().getNonReferenceType()));
2163    }
2164    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2165      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2166      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2167                                   MemberFn, MemberLoc,
2168                                   MemberFn->getType()));
2169    }
2170    if (FunctionTemplateDecl *FunTmpl
2171          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2172      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2173
2174      if (ExplicitTemplateArgs)
2175        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2176                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2177                                       SS? SS->getRange() : SourceRange(),
2178                                        FunTmpl, MemberLoc,
2179                                        ExplicitTemplateArgs,
2180                                        Context.OverloadTy));
2181
2182      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2183                                   FunTmpl, MemberLoc,
2184                                   Context.OverloadTy));
2185    }
2186    if (OverloadedFunctionDecl *Ovl
2187          = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) {
2188      if (ExplicitTemplateArgs)
2189        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2190                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2191                                        SS? SS->getRange() : SourceRange(),
2192                                        Ovl, MemberLoc, ExplicitTemplateArgs,
2193                                        Context.OverloadTy));
2194
2195      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2196                                   Ovl, MemberLoc, Context.OverloadTy));
2197    }
2198    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2199      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2200      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2201                                   Enum, MemberLoc, Enum->getType()));
2202    }
2203    if (isa<TypeDecl>(MemberDecl))
2204      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2205        << MemberName << int(OpKind == tok::arrow));
2206
2207    // We found a declaration kind that we didn't expect. This is a
2208    // generic error message that tells the user that she can't refer
2209    // to this member with '.' or '->'.
2210    return ExprError(Diag(MemberLoc,
2211                          diag::err_typecheck_member_reference_unknown)
2212      << MemberName << int(OpKind == tok::arrow));
2213  }
2214
2215  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2216  // into a record type was handled above, any destructor we see here is a
2217  // pseudo-destructor.
2218  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2219    // C++ [expr.pseudo]p2:
2220    //   The left hand side of the dot operator shall be of scalar type. The
2221    //   left hand side of the arrow operator shall be of pointer to scalar
2222    //   type.
2223    if (!BaseType->isScalarType())
2224      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2225                     << BaseType << BaseExpr->getSourceRange());
2226
2227    //   [...] The type designated by the pseudo-destructor-name shall be the
2228    //   same as the object type.
2229    if (!MemberName.getCXXNameType()->isDependentType() &&
2230        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2231      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2232                     << BaseType << MemberName.getCXXNameType()
2233                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2234
2235    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2236    //   the form
2237    //
2238    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2239    //
2240    //   shall designate the same scalar type.
2241    //
2242    // FIXME: DPG can't see any way to trigger this particular clause, so it
2243    // isn't checked here.
2244
2245    // FIXME: We've lost the precise spelling of the type by going through
2246    // DeclarationName. Can we do better?
2247    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2248                                                       OpKind == tok::arrow,
2249                                                       OpLoc,
2250                            (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2251                                            SS? SS->getRange() : SourceRange(),
2252                                                   MemberName.getCXXNameType(),
2253                                                       MemberLoc));
2254  }
2255
2256  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2257  // (*Obj).ivar.
2258  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2259      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2260    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2261    const ObjCInterfaceType *IFaceT =
2262      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2263    if (IFaceT) {
2264      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2265
2266      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2267      ObjCInterfaceDecl *ClassDeclared;
2268      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2269
2270      if (IV) {
2271        // If the decl being referenced had an error, return an error for this
2272        // sub-expr without emitting another error, in order to avoid cascading
2273        // error cases.
2274        if (IV->isInvalidDecl())
2275          return ExprError();
2276
2277        // Check whether we can reference this field.
2278        if (DiagnoseUseOfDecl(IV, MemberLoc))
2279          return ExprError();
2280        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2281            IV->getAccessControl() != ObjCIvarDecl::Package) {
2282          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2283          if (ObjCMethodDecl *MD = getCurMethodDecl())
2284            ClassOfMethodDecl =  MD->getClassInterface();
2285          else if (ObjCImpDecl && getCurFunctionDecl()) {
2286            // Case of a c-function declared inside an objc implementation.
2287            // FIXME: For a c-style function nested inside an objc implementation
2288            // class, there is no implementation context available, so we pass
2289            // down the context as argument to this routine. Ideally, this context
2290            // need be passed down in the AST node and somehow calculated from the
2291            // AST for a function decl.
2292            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2293            if (ObjCImplementationDecl *IMPD =
2294                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2295              ClassOfMethodDecl = IMPD->getClassInterface();
2296            else if (ObjCCategoryImplDecl* CatImplClass =
2297                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2298              ClassOfMethodDecl = CatImplClass->getClassInterface();
2299          }
2300
2301          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2302            if (ClassDeclared != IDecl ||
2303                ClassOfMethodDecl != ClassDeclared)
2304              Diag(MemberLoc, diag::error_private_ivar_access)
2305                << IV->getDeclName();
2306          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2307            // @protected
2308            Diag(MemberLoc, diag::error_protected_ivar_access)
2309              << IV->getDeclName();
2310        }
2311
2312        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2313                                                   MemberLoc, BaseExpr,
2314                                                   OpKind == tok::arrow));
2315      }
2316      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2317                         << IDecl->getDeclName() << MemberName
2318                         << BaseExpr->getSourceRange());
2319    }
2320  }
2321  // Handle properties on 'id' and qualified "id".
2322  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2323                                BaseType->isObjCQualifiedIdType())) {
2324    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2325    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2326
2327    // Check protocols on qualified interfaces.
2328    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2329    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2330      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2331        // Check the use of this declaration
2332        if (DiagnoseUseOfDecl(PD, MemberLoc))
2333          return ExprError();
2334
2335        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2336                                                       MemberLoc, BaseExpr));
2337      }
2338      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2339        // Check the use of this method.
2340        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2341          return ExprError();
2342
2343        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2344                                                   OMD->getResultType(),
2345                                                   OMD, OpLoc, MemberLoc,
2346                                                   NULL, 0));
2347      }
2348    }
2349
2350    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2351                       << MemberName << BaseType);
2352  }
2353  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2354  // pointer to a (potentially qualified) interface type.
2355  const ObjCObjectPointerType *OPT;
2356  if (OpKind == tok::period &&
2357      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2358    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2359    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2360    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2361
2362    // Search for a declared property first.
2363    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2364      // Check whether we can reference this property.
2365      if (DiagnoseUseOfDecl(PD, MemberLoc))
2366        return ExprError();
2367      QualType ResTy = PD->getType();
2368      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2369      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2370      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2371        ResTy = Getter->getResultType();
2372      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2373                                                     MemberLoc, BaseExpr));
2374    }
2375    // Check protocols on qualified interfaces.
2376    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2377         E = OPT->qual_end(); I != E; ++I)
2378      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2379        // Check whether we can reference this property.
2380        if (DiagnoseUseOfDecl(PD, MemberLoc))
2381          return ExprError();
2382
2383        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2384                                                       MemberLoc, BaseExpr));
2385      }
2386    // If that failed, look for an "implicit" property by seeing if the nullary
2387    // selector is implemented.
2388
2389    // FIXME: The logic for looking up nullary and unary selectors should be
2390    // shared with the code in ActOnInstanceMessage.
2391
2392    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2393    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2394
2395    // If this reference is in an @implementation, check for 'private' methods.
2396    if (!Getter)
2397      Getter = IFace->lookupPrivateInstanceMethod(Sel);
2398
2399    // Look through local category implementations associated with the class.
2400    if (!Getter)
2401      Getter = IFace->getCategoryInstanceMethod(Sel);
2402    if (Getter) {
2403      // Check if we can reference this property.
2404      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2405        return ExprError();
2406    }
2407    // If we found a getter then this may be a valid dot-reference, we
2408    // will look for the matching setter, in case it is needed.
2409    Selector SetterSel =
2410      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2411                                         PP.getSelectorTable(), Member);
2412    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2413    if (!Setter) {
2414      // If this reference is in an @implementation, also check for 'private'
2415      // methods.
2416      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2417    }
2418    // Look through local category implementations associated with the class.
2419    if (!Setter)
2420      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2421
2422    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2423      return ExprError();
2424
2425    if (Getter || Setter) {
2426      QualType PType;
2427
2428      if (Getter)
2429        PType = Getter->getResultType();
2430      else
2431        // Get the expression type from Setter's incoming parameter.
2432        PType = (*(Setter->param_end() -1))->getType();
2433      // FIXME: we must check that the setter has property type.
2434      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2435                                      Setter, MemberLoc, BaseExpr));
2436    }
2437    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2438      << MemberName << BaseType);
2439  }
2440
2441  // Handle the following exceptional case (*Obj).isa.
2442  if (OpKind == tok::period &&
2443      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2444      MemberName.getAsIdentifierInfo()->isStr("isa"))
2445    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2446                                           Context.getObjCIdType()));
2447
2448  // Handle 'field access' to vectors, such as 'V.xx'.
2449  if (BaseType->isExtVectorType()) {
2450    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2451    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2452    if (ret.isNull())
2453      return ExprError();
2454    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2455                                                    MemberLoc));
2456  }
2457
2458  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2459    << BaseType << BaseExpr->getSourceRange();
2460
2461  return ExprError();
2462}
2463
2464Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg Base,
2465                                                   SourceLocation OpLoc,
2466                                                   tok::TokenKind OpKind,
2467                                                   const CXXScopeSpec &SS,
2468                                                   UnqualifiedId &Member,
2469                                                   DeclPtrTy ObjCImpDecl,
2470                                                   bool HasTrailingLParen) {
2471  if (Member.getKind() == UnqualifiedId::IK_TemplateId) {
2472    TemplateName Template
2473      = TemplateName::getFromVoidPointer(Member.TemplateId->Template);
2474
2475    // FIXME: We're going to end up looking up the template based on its name,
2476    // twice!
2477    DeclarationName Name;
2478    if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
2479      Name = ActualTemplate->getDeclName();
2480    else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
2481      Name = Ovl->getDeclName();
2482    else {
2483      DependentTemplateName *DTN = Template.getAsDependentTemplateName();
2484      if (DTN->isIdentifier())
2485        Name = DTN->getIdentifier();
2486      else
2487        Name = Context.DeclarationNames.getCXXOperatorName(DTN->getOperator());
2488    }
2489
2490    // Translate the parser's template argument list in our AST format.
2491    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2492                                       Member.TemplateId->getTemplateArgs(),
2493                                       Member.TemplateId->NumArgs);
2494
2495    TemplateArgumentListInfo TemplateArgs;
2496    TemplateArgs.setLAngleLoc(Member.TemplateId->LAngleLoc);
2497    TemplateArgs.setRAngleLoc(Member.TemplateId->RAngleLoc);
2498    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2499    TemplateArgsPtr.release();
2500
2501    // Do we have the save the actual template name? We might need it...
2502    return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2503                                    Member.TemplateId->TemplateNameLoc,
2504                                    Name, &TemplateArgs, DeclPtrTy(),
2505                                    &SS);
2506  }
2507
2508  // FIXME: We lose a lot of source information by mapping directly to the
2509  // DeclarationName.
2510  OwningExprResult Result
2511    = BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind,
2512                               Member.getSourceRange().getBegin(),
2513                               GetNameFromUnqualifiedId(Member),
2514                               ObjCImpDecl, &SS);
2515
2516  if (Result.isInvalid() || HasTrailingLParen ||
2517      Member.getKind() != UnqualifiedId::IK_DestructorName)
2518    return move(Result);
2519
2520  // The only way a reference to a destructor can be used is to
2521  // immediately call them. Since the next token is not a '(', produce a
2522  // diagnostic and build the call now.
2523  Expr *E = (Expr *)Result.get();
2524  SourceLocation ExpectedLParenLoc
2525    = PP.getLocForEndOfToken(Member.getSourceRange().getEnd());
2526  Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
2527    << isa<CXXPseudoDestructorExpr>(E)
2528    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
2529
2530  return ActOnCallExpr(0, move(Result), ExpectedLParenLoc,
2531                       MultiExprArg(*this, 0, 0), 0, ExpectedLParenLoc);
2532}
2533
2534Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2535                                                    FunctionDecl *FD,
2536                                                    ParmVarDecl *Param) {
2537  if (Param->hasUnparsedDefaultArg()) {
2538    Diag (CallLoc,
2539          diag::err_use_of_default_argument_to_function_declared_later) <<
2540      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2541    Diag(UnparsedDefaultArgLocs[Param],
2542          diag::note_default_argument_declared_here);
2543  } else {
2544    if (Param->hasUninstantiatedDefaultArg()) {
2545      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2546
2547      // Instantiate the expression.
2548      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2549
2550      InstantiatingTemplate Inst(*this, CallLoc, Param,
2551                                 ArgList.getInnermost().getFlatArgumentList(),
2552                                 ArgList.getInnermost().flat_size());
2553
2554      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2555      if (Result.isInvalid())
2556        return ExprError();
2557
2558      if (SetParamDefaultArgument(Param, move(Result),
2559                                  /*FIXME:EqualLoc*/
2560                                  UninstExpr->getSourceRange().getBegin()))
2561        return ExprError();
2562    }
2563
2564    Expr *DefaultExpr = Param->getDefaultArg();
2565
2566    // If the default expression creates temporaries, we need to
2567    // push them to the current stack of expression temporaries so they'll
2568    // be properly destroyed.
2569    if (CXXExprWithTemporaries *E
2570          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2571      assert(!E->shouldDestroyTemporaries() &&
2572             "Can't destroy temporaries in a default argument expr!");
2573      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2574        ExprTemporaries.push_back(E->getTemporary(I));
2575    }
2576  }
2577
2578  // We already type-checked the argument, so we know it works.
2579  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2580}
2581
2582/// ConvertArgumentsForCall - Converts the arguments specified in
2583/// Args/NumArgs to the parameter types of the function FDecl with
2584/// function prototype Proto. Call is the call expression itself, and
2585/// Fn is the function expression. For a C++ member function, this
2586/// routine does not attempt to convert the object argument. Returns
2587/// true if the call is ill-formed.
2588bool
2589Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2590                              FunctionDecl *FDecl,
2591                              const FunctionProtoType *Proto,
2592                              Expr **Args, unsigned NumArgs,
2593                              SourceLocation RParenLoc) {
2594  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2595  // assignment, to the types of the corresponding parameter, ...
2596  unsigned NumArgsInProto = Proto->getNumArgs();
2597  bool Invalid = false;
2598
2599  // If too few arguments are available (and we don't have default
2600  // arguments for the remaining parameters), don't make the call.
2601  if (NumArgs < NumArgsInProto) {
2602    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2603      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2604        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2605    Call->setNumArgs(Context, NumArgsInProto);
2606  }
2607
2608  // If too many are passed and not variadic, error on the extras and drop
2609  // them.
2610  if (NumArgs > NumArgsInProto) {
2611    if (!Proto->isVariadic()) {
2612      Diag(Args[NumArgsInProto]->getLocStart(),
2613           diag::err_typecheck_call_too_many_args)
2614        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2615        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2616                       Args[NumArgs-1]->getLocEnd());
2617      // This deletes the extra arguments.
2618      Call->setNumArgs(Context, NumArgsInProto);
2619      return true;
2620    }
2621  }
2622  llvm::SmallVector<Expr *, 8> AllArgs;
2623  VariadicCallType CallType =
2624    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
2625  if (Fn->getType()->isBlockPointerType())
2626    CallType = VariadicBlock; // Block
2627  else if (isa<MemberExpr>(Fn))
2628    CallType = VariadicMethod;
2629  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
2630                                   Proto, 0, Args, NumArgs, AllArgs, Fn, CallType);
2631  if (Invalid)
2632    return true;
2633  unsigned TotalNumArgs = AllArgs.size();
2634  for (unsigned i = 0; i < TotalNumArgs; ++i)
2635    Call->setArg(i, AllArgs[i]);
2636
2637  return false;
2638}
2639
2640bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
2641                                  FunctionDecl *FDecl,
2642                                  const FunctionProtoType *Proto,
2643                                  unsigned FirstProtoArg,
2644                                  Expr **Args, unsigned NumArgs,
2645                                  llvm::SmallVector<Expr *, 8> &AllArgs,
2646                                  Expr *Fn,
2647                                  VariadicCallType CallType) {
2648  unsigned NumArgsInProto = Proto->getNumArgs();
2649  unsigned NumArgsToCheck = NumArgs;
2650  bool Invalid = false;
2651  if (NumArgs != NumArgsInProto)
2652    // Use default arguments for missing arguments
2653    NumArgsToCheck = NumArgsInProto;
2654  unsigned ArgIx = 0;
2655  // Continue to check argument types (even if we have too few/many args).
2656  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
2657    QualType ProtoArgType = Proto->getArgType(i);
2658
2659    Expr *Arg;
2660    if (ArgIx < NumArgs) {
2661      Arg = Args[ArgIx++];
2662
2663      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2664                              ProtoArgType,
2665                              PDiag(diag::err_call_incomplete_argument)
2666                              << Arg->getSourceRange()))
2667        return true;
2668
2669      // Pass the argument.
2670      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2671        return true;
2672
2673      if (!ProtoArgType->isReferenceType())
2674        Arg = MaybeBindToTemporary(Arg).takeAs<Expr>();
2675    } else {
2676      ParmVarDecl *Param = FDecl->getParamDecl(i);
2677
2678      OwningExprResult ArgExpr =
2679        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
2680      if (ArgExpr.isInvalid())
2681        return true;
2682
2683      Arg = ArgExpr.takeAs<Expr>();
2684    }
2685    AllArgs.push_back(Arg);
2686  }
2687
2688  // If this is a variadic call, handle args passed through "...".
2689  if (CallType != VariadicDoesNotApply) {
2690    // Promote the arguments (C99 6.5.2.2p7).
2691    for (unsigned i = ArgIx; i < NumArgs; i++) {
2692      Expr *Arg = Args[i];
2693      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2694      AllArgs.push_back(Arg);
2695    }
2696  }
2697  return Invalid;
2698}
2699
2700/// \brief "Deconstruct" the function argument of a call expression to find
2701/// the underlying declaration (if any), the name of the called function,
2702/// whether argument-dependent lookup is available, whether it has explicit
2703/// template arguments, etc.
2704void Sema::DeconstructCallFunction(Expr *FnExpr,
2705                                   llvm::SmallVectorImpl<NamedDecl*> &Fns,
2706                                   DeclarationName &Name,
2707                                   NestedNameSpecifier *&Qualifier,
2708                                   SourceRange &QualifierRange,
2709                                   bool &ArgumentDependentLookup,
2710                                   bool &Overloaded,
2711                                   bool &HasExplicitTemplateArguments,
2712                           TemplateArgumentListInfo &ExplicitTemplateArgs) {
2713  // Set defaults for all of the output parameters.
2714  Name = DeclarationName();
2715  Qualifier = 0;
2716  QualifierRange = SourceRange();
2717  ArgumentDependentLookup = false;
2718  Overloaded = false;
2719  HasExplicitTemplateArguments = false;
2720
2721  // If we're directly calling a function, get the appropriate declaration.
2722  // Also, in C++, keep track of whether we should perform argument-dependent
2723  // lookup and whether there were any explicitly-specified template arguments.
2724  while (true) {
2725    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2726      FnExpr = IcExpr->getSubExpr();
2727    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2728      FnExpr = PExpr->getSubExpr();
2729    } else if (isa<UnaryOperator>(FnExpr) &&
2730               cast<UnaryOperator>(FnExpr)->getOpcode()
2731               == UnaryOperator::AddrOf) {
2732      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2733    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2734      Fns.push_back(cast<NamedDecl>(DRExpr->getDecl()));
2735      ArgumentDependentLookup = false;
2736      if ((Qualifier = DRExpr->getQualifier()))
2737        QualifierRange = DRExpr->getQualifierRange();
2738      break;
2739    } else if (UnresolvedLookupExpr *UnresLookup
2740               = dyn_cast<UnresolvedLookupExpr>(FnExpr)) {
2741      Name = UnresLookup->getName();
2742      Fns.append(UnresLookup->decls_begin(), UnresLookup->decls_end());
2743      ArgumentDependentLookup = UnresLookup->requiresADL();
2744      Overloaded = UnresLookup->isOverloaded();
2745      if ((Qualifier = UnresLookup->getQualifier()))
2746        QualifierRange = UnresLookup->getQualifierRange();
2747      if (UnresLookup->hasExplicitTemplateArgs()) {
2748        HasExplicitTemplateArguments = true;
2749        UnresLookup->copyTemplateArgumentsInto(ExplicitTemplateArgs);
2750      }
2751      break;
2752    } else {
2753      break;
2754    }
2755  }
2756}
2757
2758/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2759/// This provides the location of the left/right parens and a list of comma
2760/// locations.
2761Action::OwningExprResult
2762Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2763                    MultiExprArg args,
2764                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2765  unsigned NumArgs = args.size();
2766
2767  // Since this might be a postfix expression, get rid of ParenListExprs.
2768  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2769
2770  Expr *Fn = fn.takeAs<Expr>();
2771  Expr **Args = reinterpret_cast<Expr**>(args.release());
2772  assert(Fn && "no function call expression");
2773
2774  if (getLangOptions().CPlusPlus) {
2775    // If this is a pseudo-destructor expression, build the call immediately.
2776    if (isa<CXXPseudoDestructorExpr>(Fn)) {
2777      if (NumArgs > 0) {
2778        // Pseudo-destructor calls should not have any arguments.
2779        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
2780          << CodeModificationHint::CreateRemoval(
2781                                    SourceRange(Args[0]->getLocStart(),
2782                                                Args[NumArgs-1]->getLocEnd()));
2783
2784        for (unsigned I = 0; I != NumArgs; ++I)
2785          Args[I]->Destroy(Context);
2786
2787        NumArgs = 0;
2788      }
2789
2790      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
2791                                          RParenLoc));
2792    }
2793
2794    // Determine whether this is a dependent call inside a C++ template,
2795    // in which case we won't do any semantic analysis now.
2796    // FIXME: Will need to cache the results of name lookup (including ADL) in
2797    // Fn.
2798    bool Dependent = false;
2799    if (Fn->isTypeDependent())
2800      Dependent = true;
2801    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2802      Dependent = true;
2803
2804    if (Dependent)
2805      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2806                                          Context.DependentTy, RParenLoc));
2807
2808    // Determine whether this is a call to an object (C++ [over.call.object]).
2809    if (Fn->getType()->isRecordType())
2810      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2811                                                CommaLocs, RParenLoc));
2812
2813    // Determine whether this is a call to a member function.
2814    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2815      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2816      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2817          isa<CXXMethodDecl>(MemDecl) ||
2818          (isa<FunctionTemplateDecl>(MemDecl) &&
2819           isa<CXXMethodDecl>(
2820                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2821        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2822                                               CommaLocs, RParenLoc));
2823    }
2824
2825    // Determine whether this is a call to a pointer-to-member function.
2826    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) {
2827      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
2828          BO->getOpcode() == BinaryOperator::PtrMemI) {
2829        if (const FunctionProtoType *FPT =
2830              dyn_cast<FunctionProtoType>(BO->getType())) {
2831          QualType ResultTy = FPT->getResultType().getNonReferenceType();
2832
2833          ExprOwningPtr<CXXMemberCallExpr>
2834            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
2835                                                          NumArgs, ResultTy,
2836                                                          RParenLoc));
2837
2838          if (CheckCallReturnType(FPT->getResultType(),
2839                                  BO->getRHS()->getSourceRange().getBegin(),
2840                                  TheCall.get(), 0))
2841            return ExprError();
2842
2843          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
2844                                      RParenLoc))
2845            return ExprError();
2846
2847          return Owned(MaybeBindToTemporary(TheCall.release()).release());
2848        }
2849        return ExprError(Diag(Fn->getLocStart(),
2850                              diag::err_typecheck_call_not_function)
2851                              << Fn->getType() << Fn->getSourceRange());
2852      }
2853    }
2854  }
2855
2856  // If we're directly calling a function, get the appropriate declaration.
2857  // Also, in C++, keep track of whether we should perform argument-dependent
2858  // lookup and whether there were any explicitly-specified template arguments.
2859  llvm::SmallVector<NamedDecl*,8> Fns;
2860  DeclarationName UnqualifiedName;
2861  bool Overloaded;
2862  bool ADL;
2863  bool HasExplicitTemplateArgs = 0;
2864  TemplateArgumentListInfo ExplicitTemplateArgs;
2865  NestedNameSpecifier *Qualifier = 0;
2866  SourceRange QualifierRange;
2867  DeconstructCallFunction(Fn, Fns, UnqualifiedName, Qualifier, QualifierRange,
2868                          ADL, Overloaded, HasExplicitTemplateArgs,
2869                          ExplicitTemplateArgs);
2870
2871  NamedDecl *NDecl;    // the specific declaration we're calling, if applicable
2872  FunctionDecl *FDecl; // same, if it's known to be a function
2873
2874  if (Overloaded || ADL) {
2875#ifndef NDEBUG
2876    if (ADL) {
2877      // To do ADL, we must have found an unqualified name.
2878      assert(UnqualifiedName && "found no unqualified name for ADL");
2879
2880      // We don't perform ADL for implicit declarations of builtins.
2881      // Verify that this was correctly set up.
2882      if (Fns.size() == 1 && (FDecl = dyn_cast<FunctionDecl>(Fns[0])) &&
2883          FDecl->getBuiltinID() && FDecl->isImplicit())
2884        assert(0 && "performing ADL for builtin");
2885
2886      // We don't perform ADL in C.
2887      assert(getLangOptions().CPlusPlus && "ADL enabled in C");
2888    }
2889
2890    if (Overloaded) {
2891      // To be overloaded, we must either have multiple functions or
2892      // at least one function template (which is effectively an
2893      // infinite set of functions).
2894      assert((Fns.size() > 1 ||
2895              (Fns.size() == 1 &&
2896               isa<FunctionTemplateDecl>(Fns[0]->getUnderlyingDecl())))
2897             && "unrecognized overload situation");
2898    }
2899#endif
2900
2901    FDecl = ResolveOverloadedCallFn(Fn, Fns, UnqualifiedName,
2902                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
2903                                    LParenLoc, Args, NumArgs, CommaLocs,
2904                                    RParenLoc, ADL);
2905    if (!FDecl)
2906      return ExprError();
2907
2908    Fn = FixOverloadedFunctionReference(Fn, FDecl);
2909
2910    NDecl = FDecl;
2911  } else {
2912    assert(Fns.size() <= 1 && "overloaded without Overloaded flag");
2913    if (Fns.empty())
2914      NDecl = FDecl = 0;
2915    else {
2916      NDecl = Fns[0];
2917      FDecl = dyn_cast<FunctionDecl>(NDecl);
2918    }
2919  }
2920
2921  // Promote the function operand.
2922  UsualUnaryConversions(Fn);
2923
2924  // Make the call expr early, before semantic checks.  This guarantees cleanup
2925  // of arguments and function on error.
2926  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2927                                                               Args, NumArgs,
2928                                                               Context.BoolTy,
2929                                                               RParenLoc));
2930
2931  const FunctionType *FuncT;
2932  if (!Fn->getType()->isBlockPointerType()) {
2933    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2934    // have type pointer to function".
2935    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2936    if (PT == 0)
2937      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2938        << Fn->getType() << Fn->getSourceRange());
2939    FuncT = PT->getPointeeType()->getAs<FunctionType>();
2940  } else { // This is a block call.
2941    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2942                getAs<FunctionType>();
2943  }
2944  if (FuncT == 0)
2945    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2946      << Fn->getType() << Fn->getSourceRange());
2947
2948  // Check for a valid return type
2949  if (CheckCallReturnType(FuncT->getResultType(),
2950                          Fn->getSourceRange().getBegin(), TheCall.get(),
2951                          FDecl))
2952    return ExprError();
2953
2954  // We know the result type of the call, set it.
2955  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2956
2957  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2958    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2959                                RParenLoc))
2960      return ExprError();
2961  } else {
2962    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2963
2964    if (FDecl) {
2965      // Check if we have too few/too many template arguments, based
2966      // on our knowledge of the function definition.
2967      const FunctionDecl *Def = 0;
2968      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2969        const FunctionProtoType *Proto =
2970            Def->getType()->getAs<FunctionProtoType>();
2971        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2972          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2973            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2974        }
2975      }
2976    }
2977
2978    // Promote the arguments (C99 6.5.2.2p6).
2979    for (unsigned i = 0; i != NumArgs; i++) {
2980      Expr *Arg = Args[i];
2981      DefaultArgumentPromotion(Arg);
2982      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2983                              Arg->getType(),
2984                              PDiag(diag::err_call_incomplete_argument)
2985                                << Arg->getSourceRange()))
2986        return ExprError();
2987      TheCall->setArg(i, Arg);
2988    }
2989  }
2990
2991  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2992    if (!Method->isStatic())
2993      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2994        << Fn->getSourceRange());
2995
2996  // Check for sentinels
2997  if (NDecl)
2998    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2999
3000  // Do special checking on direct calls to functions.
3001  if (FDecl) {
3002    if (CheckFunctionCall(FDecl, TheCall.get()))
3003      return ExprError();
3004
3005    if (unsigned BuiltinID = FDecl->getBuiltinID())
3006      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3007  } else if (NDecl) {
3008    if (CheckBlockCall(NDecl, TheCall.get()))
3009      return ExprError();
3010  }
3011
3012  return MaybeBindToTemporary(TheCall.take());
3013}
3014
3015Action::OwningExprResult
3016Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3017                           SourceLocation RParenLoc, ExprArg InitExpr) {
3018  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3019  //FIXME: Preserve type source info.
3020  QualType literalType = GetTypeFromParser(Ty);
3021  // FIXME: put back this assert when initializers are worked out.
3022  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3023  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3024
3025  if (literalType->isArrayType()) {
3026    if (literalType->isVariableArrayType())
3027      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3028        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3029  } else if (!literalType->isDependentType() &&
3030             RequireCompleteType(LParenLoc, literalType,
3031                      PDiag(diag::err_typecheck_decl_incomplete_type)
3032                        << SourceRange(LParenLoc,
3033                                       literalExpr->getSourceRange().getEnd())))
3034    return ExprError();
3035
3036  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
3037                            DeclarationName(), /*FIXME:DirectInit=*/false))
3038    return ExprError();
3039
3040  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3041  if (isFileScope) { // 6.5.2.5p3
3042    if (CheckForConstantInitializer(literalExpr, literalType))
3043      return ExprError();
3044  }
3045  InitExpr.release();
3046  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
3047                                                 literalExpr, isFileScope));
3048}
3049
3050Action::OwningExprResult
3051Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3052                    SourceLocation RBraceLoc) {
3053  unsigned NumInit = initlist.size();
3054  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3055
3056  // Semantic analysis for initializers is done by ActOnDeclarator() and
3057  // CheckInitializer() - it requires knowledge of the object being intialized.
3058
3059  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3060                                               RBraceLoc);
3061  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3062  return Owned(E);
3063}
3064
3065static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3066                                            QualType SrcTy, QualType DestTy) {
3067  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3068    return CastExpr::CK_NoOp;
3069
3070  if (SrcTy->hasPointerRepresentation()) {
3071    if (DestTy->hasPointerRepresentation())
3072      return CastExpr::CK_BitCast;
3073    if (DestTy->isIntegerType())
3074      return CastExpr::CK_PointerToIntegral;
3075  }
3076
3077  if (SrcTy->isIntegerType()) {
3078    if (DestTy->isIntegerType())
3079      return CastExpr::CK_IntegralCast;
3080    if (DestTy->hasPointerRepresentation())
3081      return CastExpr::CK_IntegralToPointer;
3082    if (DestTy->isRealFloatingType())
3083      return CastExpr::CK_IntegralToFloating;
3084  }
3085
3086  if (SrcTy->isRealFloatingType()) {
3087    if (DestTy->isRealFloatingType())
3088      return CastExpr::CK_FloatingCast;
3089    if (DestTy->isIntegerType())
3090      return CastExpr::CK_FloatingToIntegral;
3091  }
3092
3093  // FIXME: Assert here.
3094  // assert(false && "Unhandled cast combination!");
3095  return CastExpr::CK_Unknown;
3096}
3097
3098/// CheckCastTypes - Check type constraints for casting between types.
3099bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3100                          CastExpr::CastKind& Kind,
3101                          CXXMethodDecl *& ConversionDecl,
3102                          bool FunctionalStyle) {
3103  if (getLangOptions().CPlusPlus)
3104    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3105                              ConversionDecl);
3106
3107  DefaultFunctionArrayConversion(castExpr);
3108
3109  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3110  // type needs to be scalar.
3111  if (castType->isVoidType()) {
3112    // Cast to void allows any expr type.
3113    Kind = CastExpr::CK_ToVoid;
3114    return false;
3115  }
3116
3117  if (!castType->isScalarType() && !castType->isVectorType()) {
3118    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3119        (castType->isStructureType() || castType->isUnionType())) {
3120      // GCC struct/union extension: allow cast to self.
3121      // FIXME: Check that the cast destination type is complete.
3122      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3123        << castType << castExpr->getSourceRange();
3124      Kind = CastExpr::CK_NoOp;
3125      return false;
3126    }
3127
3128    if (castType->isUnionType()) {
3129      // GCC cast to union extension
3130      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3131      RecordDecl::field_iterator Field, FieldEnd;
3132      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3133           Field != FieldEnd; ++Field) {
3134        if (Context.hasSameUnqualifiedType(Field->getType(),
3135                                           castExpr->getType())) {
3136          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3137            << castExpr->getSourceRange();
3138          break;
3139        }
3140      }
3141      if (Field == FieldEnd)
3142        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3143          << castExpr->getType() << castExpr->getSourceRange();
3144      Kind = CastExpr::CK_ToUnion;
3145      return false;
3146    }
3147
3148    // Reject any other conversions to non-scalar types.
3149    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3150      << castType << castExpr->getSourceRange();
3151  }
3152
3153  if (!castExpr->getType()->isScalarType() &&
3154      !castExpr->getType()->isVectorType()) {
3155    return Diag(castExpr->getLocStart(),
3156                diag::err_typecheck_expect_scalar_operand)
3157      << castExpr->getType() << castExpr->getSourceRange();
3158  }
3159
3160  if (castType->isExtVectorType())
3161    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3162
3163  if (castType->isVectorType())
3164    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3165  if (castExpr->getType()->isVectorType())
3166    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3167
3168  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3169    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3170
3171  if (isa<ObjCSelectorExpr>(castExpr))
3172    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3173
3174  if (!castType->isArithmeticType()) {
3175    QualType castExprType = castExpr->getType();
3176    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3177      return Diag(castExpr->getLocStart(),
3178                  diag::err_cast_pointer_from_non_pointer_int)
3179        << castExprType << castExpr->getSourceRange();
3180  } else if (!castExpr->getType()->isArithmeticType()) {
3181    if (!castType->isIntegralType() && castType->isArithmeticType())
3182      return Diag(castExpr->getLocStart(),
3183                  diag::err_cast_pointer_to_non_pointer_int)
3184        << castType << castExpr->getSourceRange();
3185  }
3186
3187  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3188  return false;
3189}
3190
3191bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3192                           CastExpr::CastKind &Kind) {
3193  assert(VectorTy->isVectorType() && "Not a vector type!");
3194
3195  if (Ty->isVectorType() || Ty->isIntegerType()) {
3196    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3197      return Diag(R.getBegin(),
3198                  Ty->isVectorType() ?
3199                  diag::err_invalid_conversion_between_vectors :
3200                  diag::err_invalid_conversion_between_vector_and_integer)
3201        << VectorTy << Ty << R;
3202  } else
3203    return Diag(R.getBegin(),
3204                diag::err_invalid_conversion_between_vector_and_scalar)
3205      << VectorTy << Ty << R;
3206
3207  Kind = CastExpr::CK_BitCast;
3208  return false;
3209}
3210
3211bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3212                              CastExpr::CastKind &Kind) {
3213  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3214
3215  QualType SrcTy = CastExpr->getType();
3216
3217  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3218  // an ExtVectorType.
3219  if (SrcTy->isVectorType()) {
3220    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3221      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3222        << DestTy << SrcTy << R;
3223    Kind = CastExpr::CK_BitCast;
3224    return false;
3225  }
3226
3227  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3228  // conversion will take place first from scalar to elt type, and then
3229  // splat from elt type to vector.
3230  if (SrcTy->isPointerType())
3231    return Diag(R.getBegin(),
3232                diag::err_invalid_conversion_between_vector_and_scalar)
3233      << DestTy << SrcTy << R;
3234
3235  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3236  ImpCastExprToType(CastExpr, DestElemTy,
3237                    getScalarCastKind(Context, SrcTy, DestElemTy));
3238
3239  Kind = CastExpr::CK_VectorSplat;
3240  return false;
3241}
3242
3243Action::OwningExprResult
3244Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3245                    SourceLocation RParenLoc, ExprArg Op) {
3246  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3247
3248  assert((Ty != 0) && (Op.get() != 0) &&
3249         "ActOnCastExpr(): missing type or expr");
3250
3251  Expr *castExpr = (Expr *)Op.get();
3252  //FIXME: Preserve type source info.
3253  QualType castType = GetTypeFromParser(Ty);
3254
3255  // If the Expr being casted is a ParenListExpr, handle it specially.
3256  if (isa<ParenListExpr>(castExpr))
3257    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3258  CXXMethodDecl *Method = 0;
3259  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3260                     Kind, Method))
3261    return ExprError();
3262
3263  if (Method) {
3264    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
3265                                                    Method, move(Op));
3266
3267    if (CastArg.isInvalid())
3268      return ExprError();
3269
3270    castExpr = CastArg.takeAs<Expr>();
3271  } else {
3272    Op.release();
3273  }
3274
3275  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3276                                            Kind, castExpr, castType,
3277                                            LParenLoc, RParenLoc));
3278}
3279
3280/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3281/// of comma binary operators.
3282Action::OwningExprResult
3283Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3284  Expr *expr = EA.takeAs<Expr>();
3285  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3286  if (!E)
3287    return Owned(expr);
3288
3289  OwningExprResult Result(*this, E->getExpr(0));
3290
3291  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3292    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3293                        Owned(E->getExpr(i)));
3294
3295  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3296}
3297
3298Action::OwningExprResult
3299Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3300                               SourceLocation RParenLoc, ExprArg Op,
3301                               QualType Ty) {
3302  ParenListExpr *PE = (ParenListExpr *)Op.get();
3303
3304  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3305  // then handle it as such.
3306  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3307    if (PE->getNumExprs() == 0) {
3308      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3309      return ExprError();
3310    }
3311
3312    llvm::SmallVector<Expr *, 8> initExprs;
3313    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3314      initExprs.push_back(PE->getExpr(i));
3315
3316    // FIXME: This means that pretty-printing the final AST will produce curly
3317    // braces instead of the original commas.
3318    Op.release();
3319    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3320                                                 initExprs.size(), RParenLoc);
3321    E->setType(Ty);
3322    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3323                                Owned(E));
3324  } else {
3325    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3326    // sequence of BinOp comma operators.
3327    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3328    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3329  }
3330}
3331
3332Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3333                                                  SourceLocation R,
3334                                                  MultiExprArg Val) {
3335  unsigned nexprs = Val.size();
3336  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3337  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3338  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3339  return Owned(expr);
3340}
3341
3342/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3343/// In that case, lhs = cond.
3344/// C99 6.5.15
3345QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3346                                        SourceLocation QuestionLoc) {
3347  // C++ is sufficiently different to merit its own checker.
3348  if (getLangOptions().CPlusPlus)
3349    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3350
3351  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
3352
3353  UsualUnaryConversions(Cond);
3354  UsualUnaryConversions(LHS);
3355  UsualUnaryConversions(RHS);
3356  QualType CondTy = Cond->getType();
3357  QualType LHSTy = LHS->getType();
3358  QualType RHSTy = RHS->getType();
3359
3360  // first, check the condition.
3361  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3362    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3363      << CondTy;
3364    return QualType();
3365  }
3366
3367  // Now check the two expressions.
3368  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3369    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3370
3371  // If both operands have arithmetic type, do the usual arithmetic conversions
3372  // to find a common type: C99 6.5.15p3,5.
3373  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3374    UsualArithmeticConversions(LHS, RHS);
3375    return LHS->getType();
3376  }
3377
3378  // If both operands are the same structure or union type, the result is that
3379  // type.
3380  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3381    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3382      if (LHSRT->getDecl() == RHSRT->getDecl())
3383        // "If both the operands have structure or union type, the result has
3384        // that type."  This implies that CV qualifiers are dropped.
3385        return LHSTy.getUnqualifiedType();
3386    // FIXME: Type of conditional expression must be complete in C mode.
3387  }
3388
3389  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3390  // The following || allows only one side to be void (a GCC-ism).
3391  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3392    if (!LHSTy->isVoidType())
3393      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3394        << RHS->getSourceRange();
3395    if (!RHSTy->isVoidType())
3396      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3397        << LHS->getSourceRange();
3398    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
3399    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
3400    return Context.VoidTy;
3401  }
3402  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3403  // the type of the other operand."
3404  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3405      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3406    // promote the null to a pointer.
3407    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
3408    return LHSTy;
3409  }
3410  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3411      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3412    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
3413    return RHSTy;
3414  }
3415  // Handle things like Class and struct objc_class*.  Here we case the result
3416  // to the pseudo-builtin, because that will be implicitly cast back to the
3417  // redefinition type if an attempt is made to access its fields.
3418  if (LHSTy->isObjCClassType() &&
3419      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3420    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3421    return LHSTy;
3422  }
3423  if (RHSTy->isObjCClassType() &&
3424      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3425    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3426    return RHSTy;
3427  }
3428  // And the same for struct objc_object* / id
3429  if (LHSTy->isObjCIdType() &&
3430      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3431    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3432    return LHSTy;
3433  }
3434  if (RHSTy->isObjCIdType() &&
3435      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3436    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3437    return RHSTy;
3438  }
3439  // Handle block pointer types.
3440  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3441    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3442      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3443        QualType destType = Context.getPointerType(Context.VoidTy);
3444        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3445        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3446        return destType;
3447      }
3448      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3449            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3450      return QualType();
3451    }
3452    // We have 2 block pointer types.
3453    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3454      // Two identical block pointer types are always compatible.
3455      return LHSTy;
3456    }
3457    // The block pointer types aren't identical, continue checking.
3458    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3459    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3460
3461    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3462                                    rhptee.getUnqualifiedType())) {
3463      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3464        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3465      // In this situation, we assume void* type. No especially good
3466      // reason, but this is what gcc does, and we do have to pick
3467      // to get a consistent AST.
3468      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3469      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3470      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3471      return incompatTy;
3472    }
3473    // The block pointer types are compatible.
3474    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3475    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3476    return LHSTy;
3477  }
3478  // Check constraints for Objective-C object pointers types.
3479  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3480
3481    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3482      // Two identical object pointer types are always compatible.
3483      return LHSTy;
3484    }
3485    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
3486    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
3487    QualType compositeType = LHSTy;
3488
3489    // If both operands are interfaces and either operand can be
3490    // assigned to the other, use that type as the composite
3491    // type. This allows
3492    //   xxx ? (A*) a : (B*) b
3493    // where B is a subclass of A.
3494    //
3495    // Additionally, as for assignment, if either type is 'id'
3496    // allow silent coercion. Finally, if the types are
3497    // incompatible then make sure to use 'id' as the composite
3498    // type so the result is acceptable for sending messages to.
3499
3500    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3501    // It could return the composite type.
3502    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3503      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3504    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3505      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3506    } else if ((LHSTy->isObjCQualifiedIdType() ||
3507                RHSTy->isObjCQualifiedIdType()) &&
3508                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3509      // Need to handle "id<xx>" explicitly.
3510      // GCC allows qualified id and any Objective-C type to devolve to
3511      // id. Currently localizing to here until clear this should be
3512      // part of ObjCQualifiedIdTypesAreCompatible.
3513      compositeType = Context.getObjCIdType();
3514    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3515      compositeType = Context.getObjCIdType();
3516    } else if (!(compositeType =
3517                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
3518      ;
3519    else {
3520      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3521        << LHSTy << RHSTy
3522        << LHS->getSourceRange() << RHS->getSourceRange();
3523      QualType incompatTy = Context.getObjCIdType();
3524      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3525      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3526      return incompatTy;
3527    }
3528    // The object pointer types are compatible.
3529    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
3530    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
3531    return compositeType;
3532  }
3533  // Check Objective-C object pointer types and 'void *'
3534  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3535    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3536    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3537    QualType destPointee
3538      = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3539    QualType destType = Context.getPointerType(destPointee);
3540    // Add qualifiers if necessary.
3541    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3542    // Promote to void*.
3543    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3544    return destType;
3545  }
3546  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3547    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3548    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3549    QualType destPointee
3550      = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3551    QualType destType = Context.getPointerType(destPointee);
3552    // Add qualifiers if necessary.
3553    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3554    // Promote to void*.
3555    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3556    return destType;
3557  }
3558  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3559  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3560    // get the "pointed to" types
3561    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3562    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3563
3564    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3565    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3566      // Figure out necessary qualifiers (C99 6.5.15p6)
3567      QualType destPointee
3568        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3569      QualType destType = Context.getPointerType(destPointee);
3570      // Add qualifiers if necessary.
3571      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3572      // Promote to void*.
3573      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3574      return destType;
3575    }
3576    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3577      QualType destPointee
3578        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3579      QualType destType = Context.getPointerType(destPointee);
3580      // Add qualifiers if necessary.
3581      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3582      // Promote to void*.
3583      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3584      return destType;
3585    }
3586
3587    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3588      // Two identical pointer types are always compatible.
3589      return LHSTy;
3590    }
3591    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3592                                    rhptee.getUnqualifiedType())) {
3593      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3594        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3595      // In this situation, we assume void* type. No especially good
3596      // reason, but this is what gcc does, and we do have to pick
3597      // to get a consistent AST.
3598      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3599      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3600      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3601      return incompatTy;
3602    }
3603    // The pointer types are compatible.
3604    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3605    // differently qualified versions of compatible types, the result type is
3606    // a pointer to an appropriately qualified version of the *composite*
3607    // type.
3608    // FIXME: Need to calculate the composite type.
3609    // FIXME: Need to add qualifiers
3610    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3611    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3612    return LHSTy;
3613  }
3614
3615  // GCC compatibility: soften pointer/integer mismatch.
3616  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3617    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3618      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3619    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
3620    return RHSTy;
3621  }
3622  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3623    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3624      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3625    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
3626    return LHSTy;
3627  }
3628
3629  // Otherwise, the operands are not compatible.
3630  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3631    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3632  return QualType();
3633}
3634
3635/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3636/// in the case of a the GNU conditional expr extension.
3637Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3638                                                  SourceLocation ColonLoc,
3639                                                  ExprArg Cond, ExprArg LHS,
3640                                                  ExprArg RHS) {
3641  Expr *CondExpr = (Expr *) Cond.get();
3642  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3643
3644  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3645  // was the condition.
3646  bool isLHSNull = LHSExpr == 0;
3647  if (isLHSNull)
3648    LHSExpr = CondExpr;
3649
3650  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3651                                             RHSExpr, QuestionLoc);
3652  if (result.isNull())
3653    return ExprError();
3654
3655  Cond.release();
3656  LHS.release();
3657  RHS.release();
3658  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3659                                                 isLHSNull ? 0 : LHSExpr,
3660                                                 ColonLoc, RHSExpr, result));
3661}
3662
3663// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3664// being closely modeled after the C99 spec:-). The odd characteristic of this
3665// routine is it effectively iqnores the qualifiers on the top level pointee.
3666// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3667// FIXME: add a couple examples in this comment.
3668Sema::AssignConvertType
3669Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3670  QualType lhptee, rhptee;
3671
3672  if ((lhsType->isObjCClassType() &&
3673       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3674     (rhsType->isObjCClassType() &&
3675       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3676      return Compatible;
3677  }
3678
3679  // get the "pointed to" type (ignoring qualifiers at the top level)
3680  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3681  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3682
3683  // make sure we operate on the canonical type
3684  lhptee = Context.getCanonicalType(lhptee);
3685  rhptee = Context.getCanonicalType(rhptee);
3686
3687  AssignConvertType ConvTy = Compatible;
3688
3689  // C99 6.5.16.1p1: This following citation is common to constraints
3690  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3691  // qualifiers of the type *pointed to* by the right;
3692  // FIXME: Handle ExtQualType
3693  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3694    ConvTy = CompatiblePointerDiscardsQualifiers;
3695
3696  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3697  // incomplete type and the other is a pointer to a qualified or unqualified
3698  // version of void...
3699  if (lhptee->isVoidType()) {
3700    if (rhptee->isIncompleteOrObjectType())
3701      return ConvTy;
3702
3703    // As an extension, we allow cast to/from void* to function pointer.
3704    assert(rhptee->isFunctionType());
3705    return FunctionVoidPointer;
3706  }
3707
3708  if (rhptee->isVoidType()) {
3709    if (lhptee->isIncompleteOrObjectType())
3710      return ConvTy;
3711
3712    // As an extension, we allow cast to/from void* to function pointer.
3713    assert(lhptee->isFunctionType());
3714    return FunctionVoidPointer;
3715  }
3716  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3717  // unqualified versions of compatible types, ...
3718  lhptee = lhptee.getUnqualifiedType();
3719  rhptee = rhptee.getUnqualifiedType();
3720  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3721    // Check if the pointee types are compatible ignoring the sign.
3722    // We explicitly check for char so that we catch "char" vs
3723    // "unsigned char" on systems where "char" is unsigned.
3724    if (lhptee->isCharType())
3725      lhptee = Context.UnsignedCharTy;
3726    else if (lhptee->isSignedIntegerType())
3727      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3728
3729    if (rhptee->isCharType())
3730      rhptee = Context.UnsignedCharTy;
3731    else if (rhptee->isSignedIntegerType())
3732      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3733
3734    if (lhptee == rhptee) {
3735      // Types are compatible ignoring the sign. Qualifier incompatibility
3736      // takes priority over sign incompatibility because the sign
3737      // warning can be disabled.
3738      if (ConvTy != Compatible)
3739        return ConvTy;
3740      return IncompatiblePointerSign;
3741    }
3742
3743    // If we are a multi-level pointer, it's possible that our issue is simply
3744    // one of qualification - e.g. char ** -> const char ** is not allowed. If
3745    // the eventual target type is the same and the pointers have the same
3746    // level of indirection, this must be the issue.
3747    if (lhptee->isPointerType() && rhptee->isPointerType()) {
3748      do {
3749        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
3750        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
3751
3752        lhptee = Context.getCanonicalType(lhptee);
3753        rhptee = Context.getCanonicalType(rhptee);
3754      } while (lhptee->isPointerType() && rhptee->isPointerType());
3755
3756      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
3757        return IncompatibleNestedPointerQualifiers;
3758    }
3759
3760    // General pointer incompatibility takes priority over qualifiers.
3761    return IncompatiblePointer;
3762  }
3763  return ConvTy;
3764}
3765
3766/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3767/// block pointer types are compatible or whether a block and normal pointer
3768/// are compatible. It is more restrict than comparing two function pointer
3769// types.
3770Sema::AssignConvertType
3771Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3772                                          QualType rhsType) {
3773  QualType lhptee, rhptee;
3774
3775  // get the "pointed to" type (ignoring qualifiers at the top level)
3776  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3777  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3778
3779  // make sure we operate on the canonical type
3780  lhptee = Context.getCanonicalType(lhptee);
3781  rhptee = Context.getCanonicalType(rhptee);
3782
3783  AssignConvertType ConvTy = Compatible;
3784
3785  // For blocks we enforce that qualifiers are identical.
3786  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
3787    ConvTy = CompatiblePointerDiscardsQualifiers;
3788
3789  if (!Context.typesAreCompatible(lhptee, rhptee))
3790    return IncompatibleBlockPointer;
3791  return ConvTy;
3792}
3793
3794/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3795/// has code to accommodate several GCC extensions when type checking
3796/// pointers. Here are some objectionable examples that GCC considers warnings:
3797///
3798///  int a, *pint;
3799///  short *pshort;
3800///  struct foo *pfoo;
3801///
3802///  pint = pshort; // warning: assignment from incompatible pointer type
3803///  a = pint; // warning: assignment makes integer from pointer without a cast
3804///  pint = a; // warning: assignment makes pointer from integer without a cast
3805///  pint = pfoo; // warning: assignment from incompatible pointer type
3806///
3807/// As a result, the code for dealing with pointers is more complex than the
3808/// C99 spec dictates.
3809///
3810Sema::AssignConvertType
3811Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3812  // Get canonical types.  We're not formatting these types, just comparing
3813  // them.
3814  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3815  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3816
3817  if (lhsType == rhsType)
3818    return Compatible; // Common case: fast path an exact match.
3819
3820  if ((lhsType->isObjCClassType() &&
3821       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3822     (rhsType->isObjCClassType() &&
3823       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3824      return Compatible;
3825  }
3826
3827  // If the left-hand side is a reference type, then we are in a
3828  // (rare!) case where we've allowed the use of references in C,
3829  // e.g., as a parameter type in a built-in function. In this case,
3830  // just make sure that the type referenced is compatible with the
3831  // right-hand side type. The caller is responsible for adjusting
3832  // lhsType so that the resulting expression does not have reference
3833  // type.
3834  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3835    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3836      return Compatible;
3837    return Incompatible;
3838  }
3839  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3840  // to the same ExtVector type.
3841  if (lhsType->isExtVectorType()) {
3842    if (rhsType->isExtVectorType())
3843      return lhsType == rhsType ? Compatible : Incompatible;
3844    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3845      return Compatible;
3846  }
3847
3848  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3849    // If we are allowing lax vector conversions, and LHS and RHS are both
3850    // vectors, the total size only needs to be the same. This is a bitcast;
3851    // no bits are changed but the result type is different.
3852    if (getLangOptions().LaxVectorConversions &&
3853        lhsType->isVectorType() && rhsType->isVectorType()) {
3854      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3855        return IncompatibleVectors;
3856    }
3857    return Incompatible;
3858  }
3859
3860  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3861    return Compatible;
3862
3863  if (isa<PointerType>(lhsType)) {
3864    if (rhsType->isIntegerType())
3865      return IntToPointer;
3866
3867    if (isa<PointerType>(rhsType))
3868      return CheckPointerTypesForAssignment(lhsType, rhsType);
3869
3870    // In general, C pointers are not compatible with ObjC object pointers.
3871    if (isa<ObjCObjectPointerType>(rhsType)) {
3872      if (lhsType->isVoidPointerType()) // an exception to the rule.
3873        return Compatible;
3874      return IncompatiblePointer;
3875    }
3876    if (rhsType->getAs<BlockPointerType>()) {
3877      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3878        return Compatible;
3879
3880      // Treat block pointers as objects.
3881      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3882        return Compatible;
3883    }
3884    return Incompatible;
3885  }
3886
3887  if (isa<BlockPointerType>(lhsType)) {
3888    if (rhsType->isIntegerType())
3889      return IntToBlockPointer;
3890
3891    // Treat block pointers as objects.
3892    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3893      return Compatible;
3894
3895    if (rhsType->isBlockPointerType())
3896      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3897
3898    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3899      if (RHSPT->getPointeeType()->isVoidType())
3900        return Compatible;
3901    }
3902    return Incompatible;
3903  }
3904
3905  if (isa<ObjCObjectPointerType>(lhsType)) {
3906    if (rhsType->isIntegerType())
3907      return IntToPointer;
3908
3909    // In general, C pointers are not compatible with ObjC object pointers.
3910    if (isa<PointerType>(rhsType)) {
3911      if (rhsType->isVoidPointerType()) // an exception to the rule.
3912        return Compatible;
3913      return IncompatiblePointer;
3914    }
3915    if (rhsType->isObjCObjectPointerType()) {
3916      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3917        return Compatible;
3918      if (Context.typesAreCompatible(lhsType, rhsType))
3919        return Compatible;
3920      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3921        return IncompatibleObjCQualifiedId;
3922      return IncompatiblePointer;
3923    }
3924    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3925      if (RHSPT->getPointeeType()->isVoidType())
3926        return Compatible;
3927    }
3928    // Treat block pointers as objects.
3929    if (rhsType->isBlockPointerType())
3930      return Compatible;
3931    return Incompatible;
3932  }
3933  if (isa<PointerType>(rhsType)) {
3934    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3935    if (lhsType == Context.BoolTy)
3936      return Compatible;
3937
3938    if (lhsType->isIntegerType())
3939      return PointerToInt;
3940
3941    if (isa<PointerType>(lhsType))
3942      return CheckPointerTypesForAssignment(lhsType, rhsType);
3943
3944    if (isa<BlockPointerType>(lhsType) &&
3945        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3946      return Compatible;
3947    return Incompatible;
3948  }
3949  if (isa<ObjCObjectPointerType>(rhsType)) {
3950    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3951    if (lhsType == Context.BoolTy)
3952      return Compatible;
3953
3954    if (lhsType->isIntegerType())
3955      return PointerToInt;
3956
3957    // In general, C pointers are not compatible with ObjC object pointers.
3958    if (isa<PointerType>(lhsType)) {
3959      if (lhsType->isVoidPointerType()) // an exception to the rule.
3960        return Compatible;
3961      return IncompatiblePointer;
3962    }
3963    if (isa<BlockPointerType>(lhsType) &&
3964        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3965      return Compatible;
3966    return Incompatible;
3967  }
3968
3969  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3970    if (Context.typesAreCompatible(lhsType, rhsType))
3971      return Compatible;
3972  }
3973  return Incompatible;
3974}
3975
3976/// \brief Constructs a transparent union from an expression that is
3977/// used to initialize the transparent union.
3978static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3979                                      QualType UnionType, FieldDecl *Field) {
3980  // Build an initializer list that designates the appropriate member
3981  // of the transparent union.
3982  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3983                                                   &E, 1,
3984                                                   SourceLocation());
3985  Initializer->setType(UnionType);
3986  Initializer->setInitializedFieldInUnion(Field);
3987
3988  // Build a compound literal constructing a value of the transparent
3989  // union type from this initializer list.
3990  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3991                                  false);
3992}
3993
3994Sema::AssignConvertType
3995Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3996  QualType FromType = rExpr->getType();
3997
3998  // If the ArgType is a Union type, we want to handle a potential
3999  // transparent_union GCC extension.
4000  const RecordType *UT = ArgType->getAsUnionType();
4001  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4002    return Incompatible;
4003
4004  // The field to initialize within the transparent union.
4005  RecordDecl *UD = UT->getDecl();
4006  FieldDecl *InitField = 0;
4007  // It's compatible if the expression matches any of the fields.
4008  for (RecordDecl::field_iterator it = UD->field_begin(),
4009         itend = UD->field_end();
4010       it != itend; ++it) {
4011    if (it->getType()->isPointerType()) {
4012      // If the transparent union contains a pointer type, we allow:
4013      // 1) void pointer
4014      // 2) null pointer constant
4015      if (FromType->isPointerType())
4016        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4017          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4018          InitField = *it;
4019          break;
4020        }
4021
4022      if (rExpr->isNullPointerConstant(Context,
4023                                       Expr::NPC_ValueDependentIsNull)) {
4024        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4025        InitField = *it;
4026        break;
4027      }
4028    }
4029
4030    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4031          == Compatible) {
4032      InitField = *it;
4033      break;
4034    }
4035  }
4036
4037  if (!InitField)
4038    return Incompatible;
4039
4040  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4041  return Compatible;
4042}
4043
4044Sema::AssignConvertType
4045Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4046  if (getLangOptions().CPlusPlus) {
4047    if (!lhsType->isRecordType()) {
4048      // C++ 5.17p3: If the left operand is not of class type, the
4049      // expression is implicitly converted (C++ 4) to the
4050      // cv-unqualified type of the left operand.
4051      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4052                                    "assigning"))
4053        return Incompatible;
4054      return Compatible;
4055    }
4056
4057    // FIXME: Currently, we fall through and treat C++ classes like C
4058    // structures.
4059  }
4060
4061  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4062  // a null pointer constant.
4063  if ((lhsType->isPointerType() ||
4064       lhsType->isObjCObjectPointerType() ||
4065       lhsType->isBlockPointerType())
4066      && rExpr->isNullPointerConstant(Context,
4067                                      Expr::NPC_ValueDependentIsNull)) {
4068    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4069    return Compatible;
4070  }
4071
4072  // This check seems unnatural, however it is necessary to ensure the proper
4073  // conversion of functions/arrays. If the conversion were done for all
4074  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4075  // expressions that surpress this implicit conversion (&, sizeof).
4076  //
4077  // Suppress this for references: C++ 8.5.3p5.
4078  if (!lhsType->isReferenceType())
4079    DefaultFunctionArrayConversion(rExpr);
4080
4081  Sema::AssignConvertType result =
4082    CheckAssignmentConstraints(lhsType, rExpr->getType());
4083
4084  // C99 6.5.16.1p2: The value of the right operand is converted to the
4085  // type of the assignment expression.
4086  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4087  // so that we can use references in built-in functions even in C.
4088  // The getNonReferenceType() call makes sure that the resulting expression
4089  // does not have reference type.
4090  if (result != Incompatible && rExpr->getType() != lhsType)
4091    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4092                      CastExpr::CK_Unknown);
4093  return result;
4094}
4095
4096QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4097  Diag(Loc, diag::err_typecheck_invalid_operands)
4098    << lex->getType() << rex->getType()
4099    << lex->getSourceRange() << rex->getSourceRange();
4100  return QualType();
4101}
4102
4103inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
4104                                                              Expr *&rex) {
4105  // For conversion purposes, we ignore any qualifiers.
4106  // For example, "const float" and "float" are equivalent.
4107  QualType lhsType =
4108    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4109  QualType rhsType =
4110    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4111
4112  // If the vector types are identical, return.
4113  if (lhsType == rhsType)
4114    return lhsType;
4115
4116  // Handle the case of a vector & extvector type of the same size and element
4117  // type.  It would be nice if we only had one vector type someday.
4118  if (getLangOptions().LaxVectorConversions) {
4119    // FIXME: Should we warn here?
4120    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4121      if (const VectorType *RV = rhsType->getAs<VectorType>())
4122        if (LV->getElementType() == RV->getElementType() &&
4123            LV->getNumElements() == RV->getNumElements()) {
4124          return lhsType->isExtVectorType() ? lhsType : rhsType;
4125        }
4126    }
4127  }
4128
4129  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4130  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4131  bool swapped = false;
4132  if (rhsType->isExtVectorType()) {
4133    swapped = true;
4134    std::swap(rex, lex);
4135    std::swap(rhsType, lhsType);
4136  }
4137
4138  // Handle the case of an ext vector and scalar.
4139  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4140    QualType EltTy = LV->getElementType();
4141    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4142      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4143        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4144        if (swapped) std::swap(rex, lex);
4145        return lhsType;
4146      }
4147    }
4148    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4149        rhsType->isRealFloatingType()) {
4150      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4151        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4152        if (swapped) std::swap(rex, lex);
4153        return lhsType;
4154      }
4155    }
4156  }
4157
4158  // Vectors of different size or scalar and non-ext-vector are errors.
4159  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4160    << lex->getType() << rex->getType()
4161    << lex->getSourceRange() << rex->getSourceRange();
4162  return QualType();
4163}
4164
4165inline QualType Sema::CheckMultiplyDivideOperands(
4166  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4167  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4168    return CheckVectorOperands(Loc, lex, rex);
4169
4170  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4171
4172  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4173    return compType;
4174  return InvalidOperands(Loc, lex, rex);
4175}
4176
4177inline QualType Sema::CheckRemainderOperands(
4178  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4179  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4180    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4181      return CheckVectorOperands(Loc, lex, rex);
4182    return InvalidOperands(Loc, lex, rex);
4183  }
4184
4185  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4186
4187  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4188    return compType;
4189  return InvalidOperands(Loc, lex, rex);
4190}
4191
4192inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
4193  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4194  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4195    QualType compType = CheckVectorOperands(Loc, lex, rex);
4196    if (CompLHSTy) *CompLHSTy = compType;
4197    return compType;
4198  }
4199
4200  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4201
4202  // handle the common case first (both operands are arithmetic).
4203  if (lex->getType()->isArithmeticType() &&
4204      rex->getType()->isArithmeticType()) {
4205    if (CompLHSTy) *CompLHSTy = compType;
4206    return compType;
4207  }
4208
4209  // Put any potential pointer into PExp
4210  Expr* PExp = lex, *IExp = rex;
4211  if (IExp->getType()->isAnyPointerType())
4212    std::swap(PExp, IExp);
4213
4214  if (PExp->getType()->isAnyPointerType()) {
4215
4216    if (IExp->getType()->isIntegerType()) {
4217      QualType PointeeTy = PExp->getType()->getPointeeType();
4218
4219      // Check for arithmetic on pointers to incomplete types.
4220      if (PointeeTy->isVoidType()) {
4221        if (getLangOptions().CPlusPlus) {
4222          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4223            << lex->getSourceRange() << rex->getSourceRange();
4224          return QualType();
4225        }
4226
4227        // GNU extension: arithmetic on pointer to void
4228        Diag(Loc, diag::ext_gnu_void_ptr)
4229          << lex->getSourceRange() << rex->getSourceRange();
4230      } else if (PointeeTy->isFunctionType()) {
4231        if (getLangOptions().CPlusPlus) {
4232          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4233            << lex->getType() << lex->getSourceRange();
4234          return QualType();
4235        }
4236
4237        // GNU extension: arithmetic on pointer to function
4238        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4239          << lex->getType() << lex->getSourceRange();
4240      } else {
4241        // Check if we require a complete type.
4242        if (((PExp->getType()->isPointerType() &&
4243              !PExp->getType()->isDependentType()) ||
4244              PExp->getType()->isObjCObjectPointerType()) &&
4245             RequireCompleteType(Loc, PointeeTy,
4246                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4247                             << PExp->getSourceRange()
4248                             << PExp->getType()))
4249          return QualType();
4250      }
4251      // Diagnose bad cases where we step over interface counts.
4252      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4253        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4254          << PointeeTy << PExp->getSourceRange();
4255        return QualType();
4256      }
4257
4258      if (CompLHSTy) {
4259        QualType LHSTy = Context.isPromotableBitField(lex);
4260        if (LHSTy.isNull()) {
4261          LHSTy = lex->getType();
4262          if (LHSTy->isPromotableIntegerType())
4263            LHSTy = Context.getPromotedIntegerType(LHSTy);
4264        }
4265        *CompLHSTy = LHSTy;
4266      }
4267      return PExp->getType();
4268    }
4269  }
4270
4271  return InvalidOperands(Loc, lex, rex);
4272}
4273
4274// C99 6.5.6
4275QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4276                                        SourceLocation Loc, QualType* CompLHSTy) {
4277  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4278    QualType compType = CheckVectorOperands(Loc, lex, rex);
4279    if (CompLHSTy) *CompLHSTy = compType;
4280    return compType;
4281  }
4282
4283  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4284
4285  // Enforce type constraints: C99 6.5.6p3.
4286
4287  // Handle the common case first (both operands are arithmetic).
4288  if (lex->getType()->isArithmeticType()
4289      && rex->getType()->isArithmeticType()) {
4290    if (CompLHSTy) *CompLHSTy = compType;
4291    return compType;
4292  }
4293
4294  // Either ptr - int   or   ptr - ptr.
4295  if (lex->getType()->isAnyPointerType()) {
4296    QualType lpointee = lex->getType()->getPointeeType();
4297
4298    // The LHS must be an completely-defined object type.
4299
4300    bool ComplainAboutVoid = false;
4301    Expr *ComplainAboutFunc = 0;
4302    if (lpointee->isVoidType()) {
4303      if (getLangOptions().CPlusPlus) {
4304        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4305          << lex->getSourceRange() << rex->getSourceRange();
4306        return QualType();
4307      }
4308
4309      // GNU C extension: arithmetic on pointer to void
4310      ComplainAboutVoid = true;
4311    } else if (lpointee->isFunctionType()) {
4312      if (getLangOptions().CPlusPlus) {
4313        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4314          << lex->getType() << lex->getSourceRange();
4315        return QualType();
4316      }
4317
4318      // GNU C extension: arithmetic on pointer to function
4319      ComplainAboutFunc = lex;
4320    } else if (!lpointee->isDependentType() &&
4321               RequireCompleteType(Loc, lpointee,
4322                                   PDiag(diag::err_typecheck_sub_ptr_object)
4323                                     << lex->getSourceRange()
4324                                     << lex->getType()))
4325      return QualType();
4326
4327    // Diagnose bad cases where we step over interface counts.
4328    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4329      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4330        << lpointee << lex->getSourceRange();
4331      return QualType();
4332    }
4333
4334    // The result type of a pointer-int computation is the pointer type.
4335    if (rex->getType()->isIntegerType()) {
4336      if (ComplainAboutVoid)
4337        Diag(Loc, diag::ext_gnu_void_ptr)
4338          << lex->getSourceRange() << rex->getSourceRange();
4339      if (ComplainAboutFunc)
4340        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4341          << ComplainAboutFunc->getType()
4342          << ComplainAboutFunc->getSourceRange();
4343
4344      if (CompLHSTy) *CompLHSTy = lex->getType();
4345      return lex->getType();
4346    }
4347
4348    // Handle pointer-pointer subtractions.
4349    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4350      QualType rpointee = RHSPTy->getPointeeType();
4351
4352      // RHS must be a completely-type object type.
4353      // Handle the GNU void* extension.
4354      if (rpointee->isVoidType()) {
4355        if (getLangOptions().CPlusPlus) {
4356          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4357            << lex->getSourceRange() << rex->getSourceRange();
4358          return QualType();
4359        }
4360
4361        ComplainAboutVoid = true;
4362      } else if (rpointee->isFunctionType()) {
4363        if (getLangOptions().CPlusPlus) {
4364          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4365            << rex->getType() << rex->getSourceRange();
4366          return QualType();
4367        }
4368
4369        // GNU extension: arithmetic on pointer to function
4370        if (!ComplainAboutFunc)
4371          ComplainAboutFunc = rex;
4372      } else if (!rpointee->isDependentType() &&
4373                 RequireCompleteType(Loc, rpointee,
4374                                     PDiag(diag::err_typecheck_sub_ptr_object)
4375                                       << rex->getSourceRange()
4376                                       << rex->getType()))
4377        return QualType();
4378
4379      if (getLangOptions().CPlusPlus) {
4380        // Pointee types must be the same: C++ [expr.add]
4381        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4382          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4383            << lex->getType() << rex->getType()
4384            << lex->getSourceRange() << rex->getSourceRange();
4385          return QualType();
4386        }
4387      } else {
4388        // Pointee types must be compatible C99 6.5.6p3
4389        if (!Context.typesAreCompatible(
4390                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4391                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4392          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4393            << lex->getType() << rex->getType()
4394            << lex->getSourceRange() << rex->getSourceRange();
4395          return QualType();
4396        }
4397      }
4398
4399      if (ComplainAboutVoid)
4400        Diag(Loc, diag::ext_gnu_void_ptr)
4401          << lex->getSourceRange() << rex->getSourceRange();
4402      if (ComplainAboutFunc)
4403        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4404          << ComplainAboutFunc->getType()
4405          << ComplainAboutFunc->getSourceRange();
4406
4407      if (CompLHSTy) *CompLHSTy = lex->getType();
4408      return Context.getPointerDiffType();
4409    }
4410  }
4411
4412  return InvalidOperands(Loc, lex, rex);
4413}
4414
4415// C99 6.5.7
4416QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4417                                  bool isCompAssign) {
4418  // C99 6.5.7p2: Each of the operands shall have integer type.
4419  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4420    return InvalidOperands(Loc, lex, rex);
4421
4422  // Vector shifts promote their scalar inputs to vector type.
4423  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4424    return CheckVectorOperands(Loc, lex, rex);
4425
4426  // Shifts don't perform usual arithmetic conversions, they just do integer
4427  // promotions on each operand. C99 6.5.7p3
4428  QualType LHSTy = Context.isPromotableBitField(lex);
4429  if (LHSTy.isNull()) {
4430    LHSTy = lex->getType();
4431    if (LHSTy->isPromotableIntegerType())
4432      LHSTy = Context.getPromotedIntegerType(LHSTy);
4433  }
4434  if (!isCompAssign)
4435    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
4436
4437  UsualUnaryConversions(rex);
4438
4439  // Sanity-check shift operands
4440  llvm::APSInt Right;
4441  // Check right/shifter operand
4442  if (!rex->isValueDependent() &&
4443      rex->isIntegerConstantExpr(Right, Context)) {
4444    if (Right.isNegative())
4445      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4446    else {
4447      llvm::APInt LeftBits(Right.getBitWidth(),
4448                          Context.getTypeSize(lex->getType()));
4449      if (Right.uge(LeftBits))
4450        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4451    }
4452  }
4453
4454  // "The type of the result is that of the promoted left operand."
4455  return LHSTy;
4456}
4457
4458/// \brief Implements -Wsign-compare.
4459///
4460/// \param lex the left-hand expression
4461/// \param rex the right-hand expression
4462/// \param OpLoc the location of the joining operator
4463/// \param Equality whether this is an "equality-like" join, which
4464///   suppresses the warning in some cases
4465void Sema::CheckSignCompare(Expr *lex, Expr *rex, SourceLocation OpLoc,
4466                            const PartialDiagnostic &PD, bool Equality) {
4467  // Don't warn if we're in an unevaluated context.
4468  if (ExprEvalContext == Unevaluated)
4469    return;
4470
4471  QualType lt = lex->getType(), rt = rex->getType();
4472
4473  // Only warn if both operands are integral.
4474  if (!lt->isIntegerType() || !rt->isIntegerType())
4475    return;
4476
4477  // If either expression is value-dependent, don't warn. We'll get another
4478  // chance at instantiation time.
4479  if (lex->isValueDependent() || rex->isValueDependent())
4480    return;
4481
4482  // The rule is that the signed operand becomes unsigned, so isolate the
4483  // signed operand.
4484  Expr *signedOperand, *unsignedOperand;
4485  if (lt->isSignedIntegerType()) {
4486    if (rt->isSignedIntegerType()) return;
4487    signedOperand = lex;
4488    unsignedOperand = rex;
4489  } else {
4490    if (!rt->isSignedIntegerType()) return;
4491    signedOperand = rex;
4492    unsignedOperand = lex;
4493  }
4494
4495  // If the unsigned type is strictly smaller than the signed type,
4496  // then (1) the result type will be signed and (2) the unsigned
4497  // value will fit fully within the signed type, and thus the result
4498  // of the comparison will be exact.
4499  if (Context.getIntWidth(signedOperand->getType()) >
4500      Context.getIntWidth(unsignedOperand->getType()))
4501    return;
4502
4503  // If the value is a non-negative integer constant, then the
4504  // signed->unsigned conversion won't change it.
4505  llvm::APSInt value;
4506  if (signedOperand->isIntegerConstantExpr(value, Context)) {
4507    assert(value.isSigned() && "result of signed expression not signed");
4508
4509    if (value.isNonNegative())
4510      return;
4511  }
4512
4513  if (Equality) {
4514    // For (in)equality comparisons, if the unsigned operand is a
4515    // constant which cannot collide with a overflowed signed operand,
4516    // then reinterpreting the signed operand as unsigned will not
4517    // change the result of the comparison.
4518    if (unsignedOperand->isIntegerConstantExpr(value, Context)) {
4519      assert(!value.isSigned() && "result of unsigned expression is signed");
4520
4521      // 2's complement:  test the top bit.
4522      if (value.isNonNegative())
4523        return;
4524    }
4525  }
4526
4527  Diag(OpLoc, PD)
4528    << lex->getType() << rex->getType()
4529    << lex->getSourceRange() << rex->getSourceRange();
4530}
4531
4532// C99 6.5.8, C++ [expr.rel]
4533QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4534                                    unsigned OpaqueOpc, bool isRelational) {
4535  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4536
4537  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4538    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4539
4540  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
4541                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
4542
4543  // C99 6.5.8p3 / C99 6.5.9p4
4544  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4545    UsualArithmeticConversions(lex, rex);
4546  else {
4547    UsualUnaryConversions(lex);
4548    UsualUnaryConversions(rex);
4549  }
4550  QualType lType = lex->getType();
4551  QualType rType = rex->getType();
4552
4553  if (!lType->isFloatingType()
4554      && !(lType->isBlockPointerType() && isRelational)) {
4555    // For non-floating point types, check for self-comparisons of the form
4556    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4557    // often indicate logic errors in the program.
4558    // NOTE: Don't warn about comparisons of enum constants. These can arise
4559    //  from macro expansions, and are usually quite deliberate.
4560    Expr *LHSStripped = lex->IgnoreParens();
4561    Expr *RHSStripped = rex->IgnoreParens();
4562    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4563      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4564        if (DRL->getDecl() == DRR->getDecl() &&
4565            !isa<EnumConstantDecl>(DRL->getDecl()))
4566          Diag(Loc, diag::warn_selfcomparison);
4567
4568    if (isa<CastExpr>(LHSStripped))
4569      LHSStripped = LHSStripped->IgnoreParenCasts();
4570    if (isa<CastExpr>(RHSStripped))
4571      RHSStripped = RHSStripped->IgnoreParenCasts();
4572
4573    // Warn about comparisons against a string constant (unless the other
4574    // operand is null), the user probably wants strcmp.
4575    Expr *literalString = 0;
4576    Expr *literalStringStripped = 0;
4577    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4578        !RHSStripped->isNullPointerConstant(Context,
4579                                            Expr::NPC_ValueDependentIsNull)) {
4580      literalString = lex;
4581      literalStringStripped = LHSStripped;
4582    } else if ((isa<StringLiteral>(RHSStripped) ||
4583                isa<ObjCEncodeExpr>(RHSStripped)) &&
4584               !LHSStripped->isNullPointerConstant(Context,
4585                                            Expr::NPC_ValueDependentIsNull)) {
4586      literalString = rex;
4587      literalStringStripped = RHSStripped;
4588    }
4589
4590    if (literalString) {
4591      std::string resultComparison;
4592      switch (Opc) {
4593      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4594      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4595      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4596      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4597      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4598      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4599      default: assert(false && "Invalid comparison operator");
4600      }
4601      Diag(Loc, diag::warn_stringcompare)
4602        << isa<ObjCEncodeExpr>(literalStringStripped)
4603        << literalString->getSourceRange()
4604        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4605        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4606                                                 "strcmp(")
4607        << CodeModificationHint::CreateInsertion(
4608                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4609                                       resultComparison);
4610    }
4611  }
4612
4613  // The result of comparisons is 'bool' in C++, 'int' in C.
4614  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4615
4616  if (isRelational) {
4617    if (lType->isRealType() && rType->isRealType())
4618      return ResultTy;
4619  } else {
4620    // Check for comparisons of floating point operands using != and ==.
4621    if (lType->isFloatingType()) {
4622      assert(rType->isFloatingType());
4623      CheckFloatComparison(Loc,lex,rex);
4624    }
4625
4626    if (lType->isArithmeticType() && rType->isArithmeticType())
4627      return ResultTy;
4628  }
4629
4630  bool LHSIsNull = lex->isNullPointerConstant(Context,
4631                                              Expr::NPC_ValueDependentIsNull);
4632  bool RHSIsNull = rex->isNullPointerConstant(Context,
4633                                              Expr::NPC_ValueDependentIsNull);
4634
4635  // All of the following pointer related warnings are GCC extensions, except
4636  // when handling null pointer constants. One day, we can consider making them
4637  // errors (when -pedantic-errors is enabled).
4638  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4639    QualType LCanPointeeTy =
4640      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4641    QualType RCanPointeeTy =
4642      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4643
4644    if (getLangOptions().CPlusPlus) {
4645      if (LCanPointeeTy == RCanPointeeTy)
4646        return ResultTy;
4647
4648      // C++ [expr.rel]p2:
4649      //   [...] Pointer conversions (4.10) and qualification
4650      //   conversions (4.4) are performed on pointer operands (or on
4651      //   a pointer operand and a null pointer constant) to bring
4652      //   them to their composite pointer type. [...]
4653      //
4654      // C++ [expr.eq]p1 uses the same notion for (in)equality
4655      // comparisons of pointers.
4656      QualType T = FindCompositePointerType(lex, rex);
4657      if (T.isNull()) {
4658        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4659          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4660        return QualType();
4661      }
4662
4663      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4664      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4665      return ResultTy;
4666    }
4667    // C99 6.5.9p2 and C99 6.5.8p2
4668    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4669                                   RCanPointeeTy.getUnqualifiedType())) {
4670      // Valid unless a relational comparison of function pointers
4671      if (isRelational && LCanPointeeTy->isFunctionType()) {
4672        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4673          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4674      }
4675    } else if (!isRelational &&
4676               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4677      // Valid unless comparison between non-null pointer and function pointer
4678      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4679          && !LHSIsNull && !RHSIsNull) {
4680        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4681          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4682      }
4683    } else {
4684      // Invalid
4685      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4686        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4687    }
4688    if (LCanPointeeTy != RCanPointeeTy)
4689      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4690    return ResultTy;
4691  }
4692
4693  if (getLangOptions().CPlusPlus) {
4694    // Comparison of pointers with null pointer constants and equality
4695    // comparisons of member pointers to null pointer constants.
4696    if (RHSIsNull &&
4697        (lType->isPointerType() ||
4698         (!isRelational && lType->isMemberPointerType()))) {
4699      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4700      return ResultTy;
4701    }
4702    if (LHSIsNull &&
4703        (rType->isPointerType() ||
4704         (!isRelational && rType->isMemberPointerType()))) {
4705      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4706      return ResultTy;
4707    }
4708
4709    // Comparison of member pointers.
4710    if (!isRelational &&
4711        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4712      // C++ [expr.eq]p2:
4713      //   In addition, pointers to members can be compared, or a pointer to
4714      //   member and a null pointer constant. Pointer to member conversions
4715      //   (4.11) and qualification conversions (4.4) are performed to bring
4716      //   them to a common type. If one operand is a null pointer constant,
4717      //   the common type is the type of the other operand. Otherwise, the
4718      //   common type is a pointer to member type similar (4.4) to the type
4719      //   of one of the operands, with a cv-qualification signature (4.4)
4720      //   that is the union of the cv-qualification signatures of the operand
4721      //   types.
4722      QualType T = FindCompositePointerType(lex, rex);
4723      if (T.isNull()) {
4724        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4725        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4726        return QualType();
4727      }
4728
4729      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4730      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4731      return ResultTy;
4732    }
4733
4734    // Comparison of nullptr_t with itself.
4735    if (lType->isNullPtrType() && rType->isNullPtrType())
4736      return ResultTy;
4737  }
4738
4739  // Handle block pointer types.
4740  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4741    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4742    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4743
4744    if (!LHSIsNull && !RHSIsNull &&
4745        !Context.typesAreCompatible(lpointee, rpointee)) {
4746      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4747        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4748    }
4749    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4750    return ResultTy;
4751  }
4752  // Allow block pointers to be compared with null pointer constants.
4753  if (!isRelational
4754      && ((lType->isBlockPointerType() && rType->isPointerType())
4755          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4756    if (!LHSIsNull && !RHSIsNull) {
4757      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4758             ->getPointeeType()->isVoidType())
4759            || (lType->isPointerType() && lType->getAs<PointerType>()
4760                ->getPointeeType()->isVoidType())))
4761        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4762          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4763    }
4764    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4765    return ResultTy;
4766  }
4767
4768  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4769    if (lType->isPointerType() || rType->isPointerType()) {
4770      const PointerType *LPT = lType->getAs<PointerType>();
4771      const PointerType *RPT = rType->getAs<PointerType>();
4772      bool LPtrToVoid = LPT ?
4773        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4774      bool RPtrToVoid = RPT ?
4775        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4776
4777      if (!LPtrToVoid && !RPtrToVoid &&
4778          !Context.typesAreCompatible(lType, rType)) {
4779        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4780          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4781      }
4782      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4783      return ResultTy;
4784    }
4785    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4786      if (!Context.areComparableObjCPointerTypes(lType, rType))
4787        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4788          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4789      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4790      return ResultTy;
4791    }
4792  }
4793  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4794    unsigned DiagID = 0;
4795    if (RHSIsNull) {
4796      if (isRelational)
4797        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4798    } else if (isRelational)
4799      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4800    else
4801      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4802
4803    if (DiagID) {
4804      Diag(Loc, DiagID)
4805        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4806    }
4807    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4808    return ResultTy;
4809  }
4810  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4811    unsigned DiagID = 0;
4812    if (LHSIsNull) {
4813      if (isRelational)
4814        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4815    } else if (isRelational)
4816      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4817    else
4818      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4819
4820    if (DiagID) {
4821      Diag(Loc, DiagID)
4822        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4823    }
4824    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4825    return ResultTy;
4826  }
4827  // Handle block pointers.
4828  if (!isRelational && RHSIsNull
4829      && lType->isBlockPointerType() && rType->isIntegerType()) {
4830    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4831    return ResultTy;
4832  }
4833  if (!isRelational && LHSIsNull
4834      && lType->isIntegerType() && rType->isBlockPointerType()) {
4835    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4836    return ResultTy;
4837  }
4838  return InvalidOperands(Loc, lex, rex);
4839}
4840
4841/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4842/// operates on extended vector types.  Instead of producing an IntTy result,
4843/// like a scalar comparison, a vector comparison produces a vector of integer
4844/// types.
4845QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4846                                          SourceLocation Loc,
4847                                          bool isRelational) {
4848  // Check to make sure we're operating on vectors of the same type and width,
4849  // Allowing one side to be a scalar of element type.
4850  QualType vType = CheckVectorOperands(Loc, lex, rex);
4851  if (vType.isNull())
4852    return vType;
4853
4854  QualType lType = lex->getType();
4855  QualType rType = rex->getType();
4856
4857  // For non-floating point types, check for self-comparisons of the form
4858  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4859  // often indicate logic errors in the program.
4860  if (!lType->isFloatingType()) {
4861    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4862      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4863        if (DRL->getDecl() == DRR->getDecl())
4864          Diag(Loc, diag::warn_selfcomparison);
4865  }
4866
4867  // Check for comparisons of floating point operands using != and ==.
4868  if (!isRelational && lType->isFloatingType()) {
4869    assert (rType->isFloatingType());
4870    CheckFloatComparison(Loc,lex,rex);
4871  }
4872
4873  // Return the type for the comparison, which is the same as vector type for
4874  // integer vectors, or an integer type of identical size and number of
4875  // elements for floating point vectors.
4876  if (lType->isIntegerType())
4877    return lType;
4878
4879  const VectorType *VTy = lType->getAs<VectorType>();
4880  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4881  if (TypeSize == Context.getTypeSize(Context.IntTy))
4882    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4883  if (TypeSize == Context.getTypeSize(Context.LongTy))
4884    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4885
4886  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4887         "Unhandled vector element size in vector compare");
4888  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4889}
4890
4891inline QualType Sema::CheckBitwiseOperands(
4892  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4893  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4894    return CheckVectorOperands(Loc, lex, rex);
4895
4896  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4897
4898  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4899    return compType;
4900  return InvalidOperands(Loc, lex, rex);
4901}
4902
4903inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4904  Expr *&lex, Expr *&rex, SourceLocation Loc) {
4905  if (!Context.getLangOptions().CPlusPlus) {
4906    UsualUnaryConversions(lex);
4907    UsualUnaryConversions(rex);
4908
4909    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
4910      return InvalidOperands(Loc, lex, rex);
4911
4912    return Context.IntTy;
4913  }
4914
4915  // C++ [expr.log.and]p1
4916  // C++ [expr.log.or]p1
4917  // The operands are both implicitly converted to type bool (clause 4).
4918  StandardConversionSequence LHS;
4919  if (!IsStandardConversion(lex, Context.BoolTy,
4920                            /*InOverloadResolution=*/false, LHS))
4921    return InvalidOperands(Loc, lex, rex);
4922
4923  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
4924                                "passing", /*IgnoreBaseAccess=*/false))
4925    return InvalidOperands(Loc, lex, rex);
4926
4927  StandardConversionSequence RHS;
4928  if (!IsStandardConversion(rex, Context.BoolTy,
4929                            /*InOverloadResolution=*/false, RHS))
4930    return InvalidOperands(Loc, lex, rex);
4931
4932  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
4933                                "passing", /*IgnoreBaseAccess=*/false))
4934    return InvalidOperands(Loc, lex, rex);
4935
4936  // C++ [expr.log.and]p2
4937  // C++ [expr.log.or]p2
4938  // The result is a bool.
4939  return Context.BoolTy;
4940}
4941
4942/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4943/// is a read-only property; return true if so. A readonly property expression
4944/// depends on various declarations and thus must be treated specially.
4945///
4946static bool IsReadonlyProperty(Expr *E, Sema &S) {
4947  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4948    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4949    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4950      QualType BaseType = PropExpr->getBase()->getType();
4951      if (const ObjCObjectPointerType *OPT =
4952            BaseType->getAsObjCInterfacePointerType())
4953        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4954          if (S.isPropertyReadonly(PDecl, IFace))
4955            return true;
4956    }
4957  }
4958  return false;
4959}
4960
4961/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4962/// emit an error and return true.  If so, return false.
4963static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4964  SourceLocation OrigLoc = Loc;
4965  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4966                                                              &Loc);
4967  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4968    IsLV = Expr::MLV_ReadonlyProperty;
4969  if (IsLV == Expr::MLV_Valid)
4970    return false;
4971
4972  unsigned Diag = 0;
4973  bool NeedType = false;
4974  switch (IsLV) { // C99 6.5.16p2
4975  default: assert(0 && "Unknown result from isModifiableLvalue!");
4976  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4977  case Expr::MLV_ArrayType:
4978    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4979    NeedType = true;
4980    break;
4981  case Expr::MLV_NotObjectType:
4982    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4983    NeedType = true;
4984    break;
4985  case Expr::MLV_LValueCast:
4986    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4987    break;
4988  case Expr::MLV_InvalidExpression:
4989    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4990    break;
4991  case Expr::MLV_IncompleteType:
4992  case Expr::MLV_IncompleteVoidType:
4993    return S.RequireCompleteType(Loc, E->getType(),
4994                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4995                  << E->getSourceRange());
4996  case Expr::MLV_DuplicateVectorComponents:
4997    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4998    break;
4999  case Expr::MLV_NotBlockQualified:
5000    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5001    break;
5002  case Expr::MLV_ReadonlyProperty:
5003    Diag = diag::error_readonly_property_assignment;
5004    break;
5005  case Expr::MLV_NoSetterProperty:
5006    Diag = diag::error_nosetter_property_assignment;
5007    break;
5008  }
5009
5010  SourceRange Assign;
5011  if (Loc != OrigLoc)
5012    Assign = SourceRange(OrigLoc, OrigLoc);
5013  if (NeedType)
5014    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5015  else
5016    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5017  return true;
5018}
5019
5020
5021
5022// C99 6.5.16.1
5023QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5024                                       SourceLocation Loc,
5025                                       QualType CompoundType) {
5026  // Verify that LHS is a modifiable lvalue, and emit error if not.
5027  if (CheckForModifiableLvalue(LHS, Loc, *this))
5028    return QualType();
5029
5030  QualType LHSType = LHS->getType();
5031  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5032
5033  AssignConvertType ConvTy;
5034  if (CompoundType.isNull()) {
5035    // Simple assignment "x = y".
5036    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5037    // Special case of NSObject attributes on c-style pointer types.
5038    if (ConvTy == IncompatiblePointer &&
5039        ((Context.isObjCNSObjectType(LHSType) &&
5040          RHSType->isObjCObjectPointerType()) ||
5041         (Context.isObjCNSObjectType(RHSType) &&
5042          LHSType->isObjCObjectPointerType())))
5043      ConvTy = Compatible;
5044
5045    // If the RHS is a unary plus or minus, check to see if they = and + are
5046    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5047    // instead of "x += 4".
5048    Expr *RHSCheck = RHS;
5049    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5050      RHSCheck = ICE->getSubExpr();
5051    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5052      if ((UO->getOpcode() == UnaryOperator::Plus ||
5053           UO->getOpcode() == UnaryOperator::Minus) &&
5054          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5055          // Only if the two operators are exactly adjacent.
5056          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5057          // And there is a space or other character before the subexpr of the
5058          // unary +/-.  We don't want to warn on "x=-1".
5059          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5060          UO->getSubExpr()->getLocStart().isFileID()) {
5061        Diag(Loc, diag::warn_not_compound_assign)
5062          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5063          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5064      }
5065    }
5066  } else {
5067    // Compound assignment "x += y"
5068    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5069  }
5070
5071  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5072                               RHS, "assigning"))
5073    return QualType();
5074
5075  // C99 6.5.16p3: The type of an assignment expression is the type of the
5076  // left operand unless the left operand has qualified type, in which case
5077  // it is the unqualified version of the type of the left operand.
5078  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5079  // is converted to the type of the assignment expression (above).
5080  // C++ 5.17p1: the type of the assignment expression is that of its left
5081  // operand.
5082  return LHSType.getUnqualifiedType();
5083}
5084
5085// C99 6.5.17
5086QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5087  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5088  DefaultFunctionArrayConversion(RHS);
5089
5090  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5091  // incomplete in C++).
5092
5093  return RHS->getType();
5094}
5095
5096/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5097/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5098QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5099                                              bool isInc) {
5100  if (Op->isTypeDependent())
5101    return Context.DependentTy;
5102
5103  QualType ResType = Op->getType();
5104  assert(!ResType.isNull() && "no type for increment/decrement expression");
5105
5106  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5107    // Decrement of bool is not allowed.
5108    if (!isInc) {
5109      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5110      return QualType();
5111    }
5112    // Increment of bool sets it to true, but is deprecated.
5113    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5114  } else if (ResType->isRealType()) {
5115    // OK!
5116  } else if (ResType->isAnyPointerType()) {
5117    QualType PointeeTy = ResType->getPointeeType();
5118
5119    // C99 6.5.2.4p2, 6.5.6p2
5120    if (PointeeTy->isVoidType()) {
5121      if (getLangOptions().CPlusPlus) {
5122        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5123          << Op->getSourceRange();
5124        return QualType();
5125      }
5126
5127      // Pointer to void is a GNU extension in C.
5128      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5129    } else if (PointeeTy->isFunctionType()) {
5130      if (getLangOptions().CPlusPlus) {
5131        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5132          << Op->getType() << Op->getSourceRange();
5133        return QualType();
5134      }
5135
5136      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5137        << ResType << Op->getSourceRange();
5138    } else if (RequireCompleteType(OpLoc, PointeeTy,
5139                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5140                             << Op->getSourceRange()
5141                             << ResType))
5142      return QualType();
5143    // Diagnose bad cases where we step over interface counts.
5144    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5145      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5146        << PointeeTy << Op->getSourceRange();
5147      return QualType();
5148    }
5149  } else if (ResType->isComplexType()) {
5150    // C99 does not support ++/-- on complex types, we allow as an extension.
5151    Diag(OpLoc, diag::ext_integer_increment_complex)
5152      << ResType << Op->getSourceRange();
5153  } else {
5154    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5155      << ResType << Op->getSourceRange();
5156    return QualType();
5157  }
5158  // At this point, we know we have a real, complex or pointer type.
5159  // Now make sure the operand is a modifiable lvalue.
5160  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5161    return QualType();
5162  return ResType;
5163}
5164
5165/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5166/// This routine allows us to typecheck complex/recursive expressions
5167/// where the declaration is needed for type checking. We only need to
5168/// handle cases when the expression references a function designator
5169/// or is an lvalue. Here are some examples:
5170///  - &(x) => x
5171///  - &*****f => f for f a function designator.
5172///  - &s.xx => s
5173///  - &s.zz[1].yy -> s, if zz is an array
5174///  - *(x + 1) -> x, if x is an array
5175///  - &"123"[2] -> 0
5176///  - & __real__ x -> x
5177static NamedDecl *getPrimaryDecl(Expr *E) {
5178  switch (E->getStmtClass()) {
5179  case Stmt::DeclRefExprClass:
5180    return cast<DeclRefExpr>(E)->getDecl();
5181  case Stmt::MemberExprClass:
5182    // If this is an arrow operator, the address is an offset from
5183    // the base's value, so the object the base refers to is
5184    // irrelevant.
5185    if (cast<MemberExpr>(E)->isArrow())
5186      return 0;
5187    // Otherwise, the expression refers to a part of the base
5188    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5189  case Stmt::ArraySubscriptExprClass: {
5190    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5191    // promotion of register arrays earlier.
5192    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5193    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5194      if (ICE->getSubExpr()->getType()->isArrayType())
5195        return getPrimaryDecl(ICE->getSubExpr());
5196    }
5197    return 0;
5198  }
5199  case Stmt::UnaryOperatorClass: {
5200    UnaryOperator *UO = cast<UnaryOperator>(E);
5201
5202    switch(UO->getOpcode()) {
5203    case UnaryOperator::Real:
5204    case UnaryOperator::Imag:
5205    case UnaryOperator::Extension:
5206      return getPrimaryDecl(UO->getSubExpr());
5207    default:
5208      return 0;
5209    }
5210  }
5211  case Stmt::ParenExprClass:
5212    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5213  case Stmt::ImplicitCastExprClass:
5214    // If the result of an implicit cast is an l-value, we care about
5215    // the sub-expression; otherwise, the result here doesn't matter.
5216    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5217  default:
5218    return 0;
5219  }
5220}
5221
5222/// CheckAddressOfOperand - The operand of & must be either a function
5223/// designator or an lvalue designating an object. If it is an lvalue, the
5224/// object cannot be declared with storage class register or be a bit field.
5225/// Note: The usual conversions are *not* applied to the operand of the &
5226/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5227/// In C++, the operand might be an overloaded function name, in which case
5228/// we allow the '&' but retain the overloaded-function type.
5229QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5230  // Make sure to ignore parentheses in subsequent checks
5231  op = op->IgnoreParens();
5232
5233  if (op->isTypeDependent())
5234    return Context.DependentTy;
5235
5236  if (getLangOptions().C99) {
5237    // Implement C99-only parts of addressof rules.
5238    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5239      if (uOp->getOpcode() == UnaryOperator::Deref)
5240        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5241        // (assuming the deref expression is valid).
5242        return uOp->getSubExpr()->getType();
5243    }
5244    // Technically, there should be a check for array subscript
5245    // expressions here, but the result of one is always an lvalue anyway.
5246  }
5247  NamedDecl *dcl = getPrimaryDecl(op);
5248  Expr::isLvalueResult lval = op->isLvalue(Context);
5249
5250  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5251    // C99 6.5.3.2p1
5252    // The operand must be either an l-value or a function designator
5253    if (!op->getType()->isFunctionType()) {
5254      // FIXME: emit more specific diag...
5255      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5256        << op->getSourceRange();
5257      return QualType();
5258    }
5259  } else if (op->getBitField()) { // C99 6.5.3.2p1
5260    // The operand cannot be a bit-field
5261    Diag(OpLoc, diag::err_typecheck_address_of)
5262      << "bit-field" << op->getSourceRange();
5263        return QualType();
5264  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5265           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5266    // The operand cannot be an element of a vector
5267    Diag(OpLoc, diag::err_typecheck_address_of)
5268      << "vector element" << op->getSourceRange();
5269    return QualType();
5270  } else if (isa<ObjCPropertyRefExpr>(op)) {
5271    // cannot take address of a property expression.
5272    Diag(OpLoc, diag::err_typecheck_address_of)
5273      << "property expression" << op->getSourceRange();
5274    return QualType();
5275  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5276    // FIXME: Can LHS ever be null here?
5277    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5278      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5279  } else if (isa<UnresolvedLookupExpr>(op)) {
5280    return Context.OverloadTy;
5281  } else if (dcl) { // C99 6.5.3.2p1
5282    // We have an lvalue with a decl. Make sure the decl is not declared
5283    // with the register storage-class specifier.
5284    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5285      if (vd->getStorageClass() == VarDecl::Register) {
5286        Diag(OpLoc, diag::err_typecheck_address_of)
5287          << "register variable" << op->getSourceRange();
5288        return QualType();
5289      }
5290    } else if (isa<FunctionTemplateDecl>(dcl)) {
5291      return Context.OverloadTy;
5292    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
5293      // Okay: we can take the address of a field.
5294      // Could be a pointer to member, though, if there is an explicit
5295      // scope qualifier for the class.
5296      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
5297        DeclContext *Ctx = dcl->getDeclContext();
5298        if (Ctx && Ctx->isRecord()) {
5299          if (FD->getType()->isReferenceType()) {
5300            Diag(OpLoc,
5301                 diag::err_cannot_form_pointer_to_member_of_reference_type)
5302              << FD->getDeclName() << FD->getType();
5303            return QualType();
5304          }
5305
5306          return Context.getMemberPointerType(op->getType(),
5307                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
5308        }
5309      }
5310    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
5311      // Okay: we can take the address of a function.
5312      // As above.
5313      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
5314          MD->isInstance())
5315        return Context.getMemberPointerType(op->getType(),
5316              Context.getTypeDeclType(MD->getParent()).getTypePtr());
5317    } else if (!isa<FunctionDecl>(dcl))
5318      assert(0 && "Unknown/unexpected decl type");
5319  }
5320
5321  if (lval == Expr::LV_IncompleteVoidType) {
5322    // Taking the address of a void variable is technically illegal, but we
5323    // allow it in cases which are otherwise valid.
5324    // Example: "extern void x; void* y = &x;".
5325    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
5326  }
5327
5328  // If the operand has type "type", the result has type "pointer to type".
5329  return Context.getPointerType(op->getType());
5330}
5331
5332QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
5333  if (Op->isTypeDependent())
5334    return Context.DependentTy;
5335
5336  UsualUnaryConversions(Op);
5337  QualType Ty = Op->getType();
5338
5339  // Note that per both C89 and C99, this is always legal, even if ptype is an
5340  // incomplete type or void.  It would be possible to warn about dereferencing
5341  // a void pointer, but it's completely well-defined, and such a warning is
5342  // unlikely to catch any mistakes.
5343  if (const PointerType *PT = Ty->getAs<PointerType>())
5344    return PT->getPointeeType();
5345
5346  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
5347    return OPT->getPointeeType();
5348
5349  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5350    << Ty << Op->getSourceRange();
5351  return QualType();
5352}
5353
5354static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5355  tok::TokenKind Kind) {
5356  BinaryOperator::Opcode Opc;
5357  switch (Kind) {
5358  default: assert(0 && "Unknown binop!");
5359  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5360  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5361  case tok::star:                 Opc = BinaryOperator::Mul; break;
5362  case tok::slash:                Opc = BinaryOperator::Div; break;
5363  case tok::percent:              Opc = BinaryOperator::Rem; break;
5364  case tok::plus:                 Opc = BinaryOperator::Add; break;
5365  case tok::minus:                Opc = BinaryOperator::Sub; break;
5366  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5367  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5368  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5369  case tok::less:                 Opc = BinaryOperator::LT; break;
5370  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5371  case tok::greater:              Opc = BinaryOperator::GT; break;
5372  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5373  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5374  case tok::amp:                  Opc = BinaryOperator::And; break;
5375  case tok::caret:                Opc = BinaryOperator::Xor; break;
5376  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5377  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5378  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5379  case tok::equal:                Opc = BinaryOperator::Assign; break;
5380  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5381  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5382  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5383  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5384  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5385  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5386  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5387  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5388  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5389  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5390  case tok::comma:                Opc = BinaryOperator::Comma; break;
5391  }
5392  return Opc;
5393}
5394
5395static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5396  tok::TokenKind Kind) {
5397  UnaryOperator::Opcode Opc;
5398  switch (Kind) {
5399  default: assert(0 && "Unknown unary op!");
5400  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5401  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5402  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5403  case tok::star:         Opc = UnaryOperator::Deref; break;
5404  case tok::plus:         Opc = UnaryOperator::Plus; break;
5405  case tok::minus:        Opc = UnaryOperator::Minus; break;
5406  case tok::tilde:        Opc = UnaryOperator::Not; break;
5407  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5408  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5409  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5410  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5411  }
5412  return Opc;
5413}
5414
5415/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5416/// operator @p Opc at location @c TokLoc. This routine only supports
5417/// built-in operations; ActOnBinOp handles overloaded operators.
5418Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5419                                                  unsigned Op,
5420                                                  Expr *lhs, Expr *rhs) {
5421  QualType ResultTy;     // Result type of the binary operator.
5422  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5423  // The following two variables are used for compound assignment operators
5424  QualType CompLHSTy;    // Type of LHS after promotions for computation
5425  QualType CompResultTy; // Type of computation result
5426
5427  switch (Opc) {
5428  case BinaryOperator::Assign:
5429    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5430    break;
5431  case BinaryOperator::PtrMemD:
5432  case BinaryOperator::PtrMemI:
5433    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5434                                            Opc == BinaryOperator::PtrMemI);
5435    break;
5436  case BinaryOperator::Mul:
5437  case BinaryOperator::Div:
5438    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5439    break;
5440  case BinaryOperator::Rem:
5441    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5442    break;
5443  case BinaryOperator::Add:
5444    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5445    break;
5446  case BinaryOperator::Sub:
5447    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5448    break;
5449  case BinaryOperator::Shl:
5450  case BinaryOperator::Shr:
5451    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5452    break;
5453  case BinaryOperator::LE:
5454  case BinaryOperator::LT:
5455  case BinaryOperator::GE:
5456  case BinaryOperator::GT:
5457    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5458    break;
5459  case BinaryOperator::EQ:
5460  case BinaryOperator::NE:
5461    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5462    break;
5463  case BinaryOperator::And:
5464  case BinaryOperator::Xor:
5465  case BinaryOperator::Or:
5466    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5467    break;
5468  case BinaryOperator::LAnd:
5469  case BinaryOperator::LOr:
5470    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5471    break;
5472  case BinaryOperator::MulAssign:
5473  case BinaryOperator::DivAssign:
5474    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5475    CompLHSTy = CompResultTy;
5476    if (!CompResultTy.isNull())
5477      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5478    break;
5479  case BinaryOperator::RemAssign:
5480    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5481    CompLHSTy = CompResultTy;
5482    if (!CompResultTy.isNull())
5483      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5484    break;
5485  case BinaryOperator::AddAssign:
5486    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5487    if (!CompResultTy.isNull())
5488      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5489    break;
5490  case BinaryOperator::SubAssign:
5491    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5492    if (!CompResultTy.isNull())
5493      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5494    break;
5495  case BinaryOperator::ShlAssign:
5496  case BinaryOperator::ShrAssign:
5497    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5498    CompLHSTy = CompResultTy;
5499    if (!CompResultTy.isNull())
5500      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5501    break;
5502  case BinaryOperator::AndAssign:
5503  case BinaryOperator::XorAssign:
5504  case BinaryOperator::OrAssign:
5505    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5506    CompLHSTy = CompResultTy;
5507    if (!CompResultTy.isNull())
5508      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5509    break;
5510  case BinaryOperator::Comma:
5511    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5512    break;
5513  }
5514  if (ResultTy.isNull())
5515    return ExprError();
5516  if (CompResultTy.isNull())
5517    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5518  else
5519    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5520                                                      CompLHSTy, CompResultTy,
5521                                                      OpLoc));
5522}
5523
5524/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
5525/// ParenRange in parentheses.
5526static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5527                               const PartialDiagnostic &PD,
5528                               SourceRange ParenRange)
5529{
5530  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5531  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
5532    // We can't display the parentheses, so just dig the
5533    // warning/error and return.
5534    Self.Diag(Loc, PD);
5535    return;
5536  }
5537
5538  Self.Diag(Loc, PD)
5539    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
5540    << CodeModificationHint::CreateInsertion(EndLoc, ")");
5541}
5542
5543/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
5544/// operators are mixed in a way that suggests that the programmer forgot that
5545/// comparison operators have higher precedence. The most typical example of
5546/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
5547static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5548                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
5549  typedef BinaryOperator BinOp;
5550  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
5551                rhsopc = static_cast<BinOp::Opcode>(-1);
5552  if (BinOp *BO = dyn_cast<BinOp>(lhs))
5553    lhsopc = BO->getOpcode();
5554  if (BinOp *BO = dyn_cast<BinOp>(rhs))
5555    rhsopc = BO->getOpcode();
5556
5557  // Subs are not binary operators.
5558  if (lhsopc == -1 && rhsopc == -1)
5559    return;
5560
5561  // Bitwise operations are sometimes used as eager logical ops.
5562  // Don't diagnose this.
5563  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
5564      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
5565    return;
5566
5567  if (BinOp::isComparisonOp(lhsopc))
5568    SuggestParentheses(Self, OpLoc,
5569      PDiag(diag::warn_precedence_bitwise_rel)
5570          << SourceRange(lhs->getLocStart(), OpLoc)
5571          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
5572      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
5573  else if (BinOp::isComparisonOp(rhsopc))
5574    SuggestParentheses(Self, OpLoc,
5575      PDiag(diag::warn_precedence_bitwise_rel)
5576          << SourceRange(OpLoc, rhs->getLocEnd())
5577          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
5578      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
5579}
5580
5581/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
5582/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
5583/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
5584static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5585                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
5586  if (BinaryOperator::isBitwiseOp(Opc))
5587    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
5588}
5589
5590// Binary Operators.  'Tok' is the token for the operator.
5591Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5592                                          tok::TokenKind Kind,
5593                                          ExprArg LHS, ExprArg RHS) {
5594  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5595  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5596
5597  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5598  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5599
5600  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
5601  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
5602
5603  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
5604}
5605
5606Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
5607                                          BinaryOperator::Opcode Opc,
5608                                          Expr *lhs, Expr *rhs) {
5609  if (getLangOptions().CPlusPlus &&
5610      (lhs->getType()->isOverloadableType() ||
5611       rhs->getType()->isOverloadableType())) {
5612    // Find all of the overloaded operators visible from this
5613    // point. We perform both an operator-name lookup from the local
5614    // scope and an argument-dependent lookup based on the types of
5615    // the arguments.
5616    FunctionSet Functions;
5617    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5618    if (OverOp != OO_None) {
5619      if (S)
5620        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5621                                     Functions);
5622      Expr *Args[2] = { lhs, rhs };
5623      DeclarationName OpName
5624        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5625      ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
5626    }
5627
5628    // Build the (potentially-overloaded, potentially-dependent)
5629    // binary operation.
5630    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
5631  }
5632
5633  // Build a built-in binary operation.
5634  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
5635}
5636
5637Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5638                                                    unsigned OpcIn,
5639                                                    ExprArg InputArg) {
5640  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5641
5642  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5643  Expr *Input = (Expr *)InputArg.get();
5644  QualType resultType;
5645  switch (Opc) {
5646  case UnaryOperator::OffsetOf:
5647    assert(false && "Invalid unary operator");
5648    break;
5649
5650  case UnaryOperator::PreInc:
5651  case UnaryOperator::PreDec:
5652  case UnaryOperator::PostInc:
5653  case UnaryOperator::PostDec:
5654    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5655                                                Opc == UnaryOperator::PreInc ||
5656                                                Opc == UnaryOperator::PostInc);
5657    break;
5658  case UnaryOperator::AddrOf:
5659    resultType = CheckAddressOfOperand(Input, OpLoc);
5660    break;
5661  case UnaryOperator::Deref:
5662    DefaultFunctionArrayConversion(Input);
5663    resultType = CheckIndirectionOperand(Input, OpLoc);
5664    break;
5665  case UnaryOperator::Plus:
5666  case UnaryOperator::Minus:
5667    UsualUnaryConversions(Input);
5668    resultType = Input->getType();
5669    if (resultType->isDependentType())
5670      break;
5671    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5672      break;
5673    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5674             resultType->isEnumeralType())
5675      break;
5676    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5677             Opc == UnaryOperator::Plus &&
5678             resultType->isPointerType())
5679      break;
5680
5681    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5682      << resultType << Input->getSourceRange());
5683  case UnaryOperator::Not: // bitwise complement
5684    UsualUnaryConversions(Input);
5685    resultType = Input->getType();
5686    if (resultType->isDependentType())
5687      break;
5688    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5689    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5690      // C99 does not support '~' for complex conjugation.
5691      Diag(OpLoc, diag::ext_integer_complement_complex)
5692        << resultType << Input->getSourceRange();
5693    else if (!resultType->isIntegerType())
5694      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5695        << resultType << Input->getSourceRange());
5696    break;
5697  case UnaryOperator::LNot: // logical negation
5698    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5699    DefaultFunctionArrayConversion(Input);
5700    resultType = Input->getType();
5701    if (resultType->isDependentType())
5702      break;
5703    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5704      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5705        << resultType << Input->getSourceRange());
5706    // LNot always has type int. C99 6.5.3.3p5.
5707    // In C++, it's bool. C++ 5.3.1p8
5708    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5709    break;
5710  case UnaryOperator::Real:
5711  case UnaryOperator::Imag:
5712    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5713    break;
5714  case UnaryOperator::Extension:
5715    resultType = Input->getType();
5716    break;
5717  }
5718  if (resultType.isNull())
5719    return ExprError();
5720
5721  InputArg.release();
5722  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5723}
5724
5725Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5726                                            UnaryOperator::Opcode Opc,
5727                                            ExprArg input) {
5728  Expr *Input = (Expr*)input.get();
5729  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
5730      Opc != UnaryOperator::Extension) {
5731    // Find all of the overloaded operators visible from this
5732    // point. We perform both an operator-name lookup from the local
5733    // scope and an argument-dependent lookup based on the types of
5734    // the arguments.
5735    FunctionSet Functions;
5736    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5737    if (OverOp != OO_None) {
5738      if (S)
5739        LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5740                                     Functions);
5741      DeclarationName OpName
5742        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5743      ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
5744    }
5745
5746    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5747  }
5748
5749  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5750}
5751
5752// Unary Operators.  'Tok' is the token for the operator.
5753Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5754                                            tok::TokenKind Op, ExprArg input) {
5755  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
5756}
5757
5758/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5759Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5760                                            SourceLocation LabLoc,
5761                                            IdentifierInfo *LabelII) {
5762  // Look up the record for this label identifier.
5763  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5764
5765  // If we haven't seen this label yet, create a forward reference. It
5766  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5767  if (LabelDecl == 0)
5768    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5769
5770  // Create the AST node.  The address of a label always has type 'void*'.
5771  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5772                                       Context.getPointerType(Context.VoidTy)));
5773}
5774
5775Sema::OwningExprResult
5776Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5777                    SourceLocation RPLoc) { // "({..})"
5778  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5779  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5780  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5781
5782  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5783  if (isFileScope)
5784    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5785
5786  // FIXME: there are a variety of strange constraints to enforce here, for
5787  // example, it is not possible to goto into a stmt expression apparently.
5788  // More semantic analysis is needed.
5789
5790  // If there are sub stmts in the compound stmt, take the type of the last one
5791  // as the type of the stmtexpr.
5792  QualType Ty = Context.VoidTy;
5793
5794  if (!Compound->body_empty()) {
5795    Stmt *LastStmt = Compound->body_back();
5796    // If LastStmt is a label, skip down through into the body.
5797    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5798      LastStmt = Label->getSubStmt();
5799
5800    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5801      Ty = LastExpr->getType();
5802  }
5803
5804  // FIXME: Check that expression type is complete/non-abstract; statement
5805  // expressions are not lvalues.
5806
5807  substmt.release();
5808  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5809}
5810
5811Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5812                                                  SourceLocation BuiltinLoc,
5813                                                  SourceLocation TypeLoc,
5814                                                  TypeTy *argty,
5815                                                  OffsetOfComponent *CompPtr,
5816                                                  unsigned NumComponents,
5817                                                  SourceLocation RPLoc) {
5818  // FIXME: This function leaks all expressions in the offset components on
5819  // error.
5820  // FIXME: Preserve type source info.
5821  QualType ArgTy = GetTypeFromParser(argty);
5822  assert(!ArgTy.isNull() && "Missing type argument!");
5823
5824  bool Dependent = ArgTy->isDependentType();
5825
5826  // We must have at least one component that refers to the type, and the first
5827  // one is known to be a field designator.  Verify that the ArgTy represents
5828  // a struct/union/class.
5829  if (!Dependent && !ArgTy->isRecordType())
5830    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5831
5832  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5833  // with an incomplete type would be illegal.
5834
5835  // Otherwise, create a null pointer as the base, and iteratively process
5836  // the offsetof designators.
5837  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5838  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5839  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5840                                    ArgTy, SourceLocation());
5841
5842  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5843  // GCC extension, diagnose them.
5844  // FIXME: This diagnostic isn't actually visible because the location is in
5845  // a system header!
5846  if (NumComponents != 1)
5847    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5848      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5849
5850  if (!Dependent) {
5851    bool DidWarnAboutNonPOD = false;
5852
5853    if (RequireCompleteType(TypeLoc, Res->getType(),
5854                            diag::err_offsetof_incomplete_type))
5855      return ExprError();
5856
5857    // FIXME: Dependent case loses a lot of information here. And probably
5858    // leaks like a sieve.
5859    for (unsigned i = 0; i != NumComponents; ++i) {
5860      const OffsetOfComponent &OC = CompPtr[i];
5861      if (OC.isBrackets) {
5862        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5863        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5864        if (!AT) {
5865          Res->Destroy(Context);
5866          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5867            << Res->getType());
5868        }
5869
5870        // FIXME: C++: Verify that operator[] isn't overloaded.
5871
5872        // Promote the array so it looks more like a normal array subscript
5873        // expression.
5874        DefaultFunctionArrayConversion(Res);
5875
5876        // C99 6.5.2.1p1
5877        Expr *Idx = static_cast<Expr*>(OC.U.E);
5878        // FIXME: Leaks Res
5879        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5880          return ExprError(Diag(Idx->getLocStart(),
5881                                diag::err_typecheck_subscript_not_integer)
5882            << Idx->getSourceRange());
5883
5884        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5885                                               OC.LocEnd);
5886        continue;
5887      }
5888
5889      const RecordType *RC = Res->getType()->getAs<RecordType>();
5890      if (!RC) {
5891        Res->Destroy(Context);
5892        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5893          << Res->getType());
5894      }
5895
5896      // Get the decl corresponding to this.
5897      RecordDecl *RD = RC->getDecl();
5898      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5899        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5900          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5901            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5902            << Res->getType());
5903          DidWarnAboutNonPOD = true;
5904        }
5905      }
5906
5907      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
5908      LookupQualifiedName(R, RD);
5909
5910      FieldDecl *MemberDecl
5911        = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context));
5912      // FIXME: Leaks Res
5913      if (!MemberDecl)
5914        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
5915         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
5916
5917      // FIXME: C++: Verify that MemberDecl isn't a static field.
5918      // FIXME: Verify that MemberDecl isn't a bitfield.
5919      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5920        Res = BuildAnonymousStructUnionMemberReference(
5921            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
5922      } else {
5923        // MemberDecl->getType() doesn't get the right qualifiers, but it
5924        // doesn't matter here.
5925        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5926                MemberDecl->getType().getNonReferenceType());
5927      }
5928    }
5929  }
5930
5931  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5932                                           Context.getSizeType(), BuiltinLoc));
5933}
5934
5935
5936Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5937                                                      TypeTy *arg1,TypeTy *arg2,
5938                                                      SourceLocation RPLoc) {
5939  // FIXME: Preserve type source info.
5940  QualType argT1 = GetTypeFromParser(arg1);
5941  QualType argT2 = GetTypeFromParser(arg2);
5942
5943  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5944
5945  if (getLangOptions().CPlusPlus) {
5946    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5947      << SourceRange(BuiltinLoc, RPLoc);
5948    return ExprError();
5949  }
5950
5951  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5952                                                 argT1, argT2, RPLoc));
5953}
5954
5955Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5956                                             ExprArg cond,
5957                                             ExprArg expr1, ExprArg expr2,
5958                                             SourceLocation RPLoc) {
5959  Expr *CondExpr = static_cast<Expr*>(cond.get());
5960  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5961  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5962
5963  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5964
5965  QualType resType;
5966  bool ValueDependent = false;
5967  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5968    resType = Context.DependentTy;
5969    ValueDependent = true;
5970  } else {
5971    // The conditional expression is required to be a constant expression.
5972    llvm::APSInt condEval(32);
5973    SourceLocation ExpLoc;
5974    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5975      return ExprError(Diag(ExpLoc,
5976                       diag::err_typecheck_choose_expr_requires_constant)
5977        << CondExpr->getSourceRange());
5978
5979    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5980    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5981    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
5982                                             : RHSExpr->isValueDependent();
5983  }
5984
5985  cond.release(); expr1.release(); expr2.release();
5986  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5987                                        resType, RPLoc,
5988                                        resType->isDependentType(),
5989                                        ValueDependent));
5990}
5991
5992//===----------------------------------------------------------------------===//
5993// Clang Extensions.
5994//===----------------------------------------------------------------------===//
5995
5996/// ActOnBlockStart - This callback is invoked when a block literal is started.
5997void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5998  // Analyze block parameters.
5999  BlockSemaInfo *BSI = new BlockSemaInfo();
6000
6001  // Add BSI to CurBlock.
6002  BSI->PrevBlockInfo = CurBlock;
6003  CurBlock = BSI;
6004
6005  BSI->ReturnType = QualType();
6006  BSI->TheScope = BlockScope;
6007  BSI->hasBlockDeclRefExprs = false;
6008  BSI->hasPrototype = false;
6009  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
6010  CurFunctionNeedsScopeChecking = false;
6011
6012  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
6013  PushDeclContext(BlockScope, BSI->TheDecl);
6014}
6015
6016void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6017  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6018
6019  if (ParamInfo.getNumTypeObjects() == 0
6020      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6021    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6022    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6023
6024    if (T->isArrayType()) {
6025      Diag(ParamInfo.getSourceRange().getBegin(),
6026           diag::err_block_returns_array);
6027      return;
6028    }
6029
6030    // The parameter list is optional, if there was none, assume ().
6031    if (!T->isFunctionType())
6032      T = Context.getFunctionType(T, NULL, 0, 0, 0);
6033
6034    CurBlock->hasPrototype = true;
6035    CurBlock->isVariadic = false;
6036    // Check for a valid sentinel attribute on this block.
6037    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6038      Diag(ParamInfo.getAttributes()->getLoc(),
6039           diag::warn_attribute_sentinel_not_variadic) << 1;
6040      // FIXME: remove the attribute.
6041    }
6042    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6043
6044    // Do not allow returning a objc interface by-value.
6045    if (RetTy->isObjCInterfaceType()) {
6046      Diag(ParamInfo.getSourceRange().getBegin(),
6047           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6048      return;
6049    }
6050    return;
6051  }
6052
6053  // Analyze arguments to block.
6054  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6055         "Not a function declarator!");
6056  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6057
6058  CurBlock->hasPrototype = FTI.hasPrototype;
6059  CurBlock->isVariadic = true;
6060
6061  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6062  // no arguments, not a function that takes a single void argument.
6063  if (FTI.hasPrototype &&
6064      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6065     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6066        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6067    // empty arg list, don't push any params.
6068    CurBlock->isVariadic = false;
6069  } else if (FTI.hasPrototype) {
6070    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
6071      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
6072    CurBlock->isVariadic = FTI.isVariadic;
6073  }
6074  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
6075                               CurBlock->Params.size());
6076  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6077  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6078  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6079       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
6080    // If this has an identifier, add it to the scope stack.
6081    if ((*AI)->getIdentifier())
6082      PushOnScopeChains(*AI, CurBlock->TheScope);
6083
6084  // Check for a valid sentinel attribute on this block.
6085  if (!CurBlock->isVariadic &&
6086      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6087    Diag(ParamInfo.getAttributes()->getLoc(),
6088         diag::warn_attribute_sentinel_not_variadic) << 1;
6089    // FIXME: remove the attribute.
6090  }
6091
6092  // Analyze the return type.
6093  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6094  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6095
6096  // Do not allow returning a objc interface by-value.
6097  if (RetTy->isObjCInterfaceType()) {
6098    Diag(ParamInfo.getSourceRange().getBegin(),
6099         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6100  } else if (!RetTy->isDependentType())
6101    CurBlock->ReturnType = RetTy;
6102}
6103
6104/// ActOnBlockError - If there is an error parsing a block, this callback
6105/// is invoked to pop the information about the block from the action impl.
6106void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6107  // Ensure that CurBlock is deleted.
6108  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
6109
6110  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
6111
6112  // Pop off CurBlock, handle nested blocks.
6113  PopDeclContext();
6114  CurBlock = CurBlock->PrevBlockInfo;
6115  // FIXME: Delete the ParmVarDecl objects as well???
6116}
6117
6118/// ActOnBlockStmtExpr - This is called when the body of a block statement
6119/// literal was successfully completed.  ^(int x){...}
6120Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6121                                                StmtArg body, Scope *CurScope) {
6122  // If blocks are disabled, emit an error.
6123  if (!LangOpts.Blocks)
6124    Diag(CaretLoc, diag::err_blocks_disable);
6125
6126  // Ensure that CurBlock is deleted.
6127  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6128
6129  PopDeclContext();
6130
6131  // Pop off CurBlock, handle nested blocks.
6132  CurBlock = CurBlock->PrevBlockInfo;
6133
6134  QualType RetTy = Context.VoidTy;
6135  if (!BSI->ReturnType.isNull())
6136    RetTy = BSI->ReturnType;
6137
6138  llvm::SmallVector<QualType, 8> ArgTypes;
6139  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6140    ArgTypes.push_back(BSI->Params[i]->getType());
6141
6142  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6143  QualType BlockTy;
6144  if (!BSI->hasPrototype)
6145    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6146                                      NoReturn);
6147  else
6148    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6149                                      BSI->isVariadic, 0, false, false, 0, 0,
6150                                      NoReturn);
6151
6152  // FIXME: Check that return/parameter types are complete/non-abstract
6153  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6154  BlockTy = Context.getBlockPointerType(BlockTy);
6155
6156  // If needed, diagnose invalid gotos and switches in the block.
6157  if (CurFunctionNeedsScopeChecking)
6158    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6159  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6160
6161  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6162  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
6163  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6164                                       BSI->hasBlockDeclRefExprs));
6165}
6166
6167Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6168                                        ExprArg expr, TypeTy *type,
6169                                        SourceLocation RPLoc) {
6170  QualType T = GetTypeFromParser(type);
6171  Expr *E = static_cast<Expr*>(expr.get());
6172  Expr *OrigExpr = E;
6173
6174  InitBuiltinVaListType();
6175
6176  // Get the va_list type
6177  QualType VaListType = Context.getBuiltinVaListType();
6178  if (VaListType->isArrayType()) {
6179    // Deal with implicit array decay; for example, on x86-64,
6180    // va_list is an array, but it's supposed to decay to
6181    // a pointer for va_arg.
6182    VaListType = Context.getArrayDecayedType(VaListType);
6183    // Make sure the input expression also decays appropriately.
6184    UsualUnaryConversions(E);
6185  } else {
6186    // Otherwise, the va_list argument must be an l-value because
6187    // it is modified by va_arg.
6188    if (!E->isTypeDependent() &&
6189        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6190      return ExprError();
6191  }
6192
6193  if (!E->isTypeDependent() &&
6194      !Context.hasSameType(VaListType, E->getType())) {
6195    return ExprError(Diag(E->getLocStart(),
6196                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6197      << OrigExpr->getType() << E->getSourceRange());
6198  }
6199
6200  // FIXME: Check that type is complete/non-abstract
6201  // FIXME: Warn if a non-POD type is passed in.
6202
6203  expr.release();
6204  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6205                                       RPLoc));
6206}
6207
6208Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6209  // The type of __null will be int or long, depending on the size of
6210  // pointers on the target.
6211  QualType Ty;
6212  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6213    Ty = Context.IntTy;
6214  else
6215    Ty = Context.LongTy;
6216
6217  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6218}
6219
6220static void
6221MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
6222                                          QualType DstType,
6223                                          Expr *SrcExpr,
6224                                          CodeModificationHint &Hint) {
6225  if (!SemaRef.getLangOptions().ObjC1)
6226    return;
6227
6228  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
6229  if (!PT)
6230    return;
6231
6232  // Check if the destination is of type 'id'.
6233  if (!PT->isObjCIdType()) {
6234    // Check if the destination is the 'NSString' interface.
6235    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
6236    if (!ID || !ID->getIdentifier()->isStr("NSString"))
6237      return;
6238  }
6239
6240  // Strip off any parens and casts.
6241  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
6242  if (!SL || SL->isWide())
6243    return;
6244
6245  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
6246}
6247
6248bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6249                                    SourceLocation Loc,
6250                                    QualType DstType, QualType SrcType,
6251                                    Expr *SrcExpr, const char *Flavor) {
6252  // Decode the result (notice that AST's are still created for extensions).
6253  bool isInvalid = false;
6254  unsigned DiagKind;
6255  CodeModificationHint Hint;
6256
6257  switch (ConvTy) {
6258  default: assert(0 && "Unknown conversion type");
6259  case Compatible: return false;
6260  case PointerToInt:
6261    DiagKind = diag::ext_typecheck_convert_pointer_int;
6262    break;
6263  case IntToPointer:
6264    DiagKind = diag::ext_typecheck_convert_int_pointer;
6265    break;
6266  case IncompatiblePointer:
6267    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
6268    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
6269    break;
6270  case IncompatiblePointerSign:
6271    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
6272    break;
6273  case FunctionVoidPointer:
6274    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
6275    break;
6276  case CompatiblePointerDiscardsQualifiers:
6277    // If the qualifiers lost were because we were applying the
6278    // (deprecated) C++ conversion from a string literal to a char*
6279    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
6280    // Ideally, this check would be performed in
6281    // CheckPointerTypesForAssignment. However, that would require a
6282    // bit of refactoring (so that the second argument is an
6283    // expression, rather than a type), which should be done as part
6284    // of a larger effort to fix CheckPointerTypesForAssignment for
6285    // C++ semantics.
6286    if (getLangOptions().CPlusPlus &&
6287        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
6288      return false;
6289    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
6290    break;
6291  case IncompatibleNestedPointerQualifiers:
6292    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
6293    break;
6294  case IntToBlockPointer:
6295    DiagKind = diag::err_int_to_block_pointer;
6296    break;
6297  case IncompatibleBlockPointer:
6298    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
6299    break;
6300  case IncompatibleObjCQualifiedId:
6301    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
6302    // it can give a more specific diagnostic.
6303    DiagKind = diag::warn_incompatible_qualified_id;
6304    break;
6305  case IncompatibleVectors:
6306    DiagKind = diag::warn_incompatible_vectors;
6307    break;
6308  case Incompatible:
6309    DiagKind = diag::err_typecheck_convert_incompatible;
6310    isInvalid = true;
6311    break;
6312  }
6313
6314  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
6315    << SrcExpr->getSourceRange() << Hint;
6316  return isInvalid;
6317}
6318
6319bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
6320  llvm::APSInt ICEResult;
6321  if (E->isIntegerConstantExpr(ICEResult, Context)) {
6322    if (Result)
6323      *Result = ICEResult;
6324    return false;
6325  }
6326
6327  Expr::EvalResult EvalResult;
6328
6329  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
6330      EvalResult.HasSideEffects) {
6331    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
6332
6333    if (EvalResult.Diag) {
6334      // We only show the note if it's not the usual "invalid subexpression"
6335      // or if it's actually in a subexpression.
6336      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
6337          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
6338        Diag(EvalResult.DiagLoc, EvalResult.Diag);
6339    }
6340
6341    return true;
6342  }
6343
6344  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
6345    E->getSourceRange();
6346
6347  if (EvalResult.Diag &&
6348      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
6349    Diag(EvalResult.DiagLoc, EvalResult.Diag);
6350
6351  if (Result)
6352    *Result = EvalResult.Val.getInt();
6353  return false;
6354}
6355
6356Sema::ExpressionEvaluationContext
6357Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
6358  // Introduce a new set of potentially referenced declarations to the stack.
6359  if (NewContext == PotentiallyPotentiallyEvaluated)
6360    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
6361
6362  std::swap(ExprEvalContext, NewContext);
6363  return NewContext;
6364}
6365
6366void
6367Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
6368                                     ExpressionEvaluationContext NewContext) {
6369  ExprEvalContext = NewContext;
6370
6371  if (OldContext == PotentiallyPotentiallyEvaluated) {
6372    // Mark any remaining declarations in the current position of the stack
6373    // as "referenced". If they were not meant to be referenced, semantic
6374    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
6375    PotentiallyReferencedDecls RemainingDecls;
6376    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
6377    PotentiallyReferencedDeclStack.pop_back();
6378
6379    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
6380                                           IEnd = RemainingDecls.end();
6381         I != IEnd; ++I)
6382      MarkDeclarationReferenced(I->first, I->second);
6383  }
6384}
6385
6386/// \brief Note that the given declaration was referenced in the source code.
6387///
6388/// This routine should be invoke whenever a given declaration is referenced
6389/// in the source code, and where that reference occurred. If this declaration
6390/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
6391/// C99 6.9p3), then the declaration will be marked as used.
6392///
6393/// \param Loc the location where the declaration was referenced.
6394///
6395/// \param D the declaration that has been referenced by the source code.
6396void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
6397  assert(D && "No declaration?");
6398
6399  if (D->isUsed())
6400    return;
6401
6402  // Mark a parameter or variable declaration "used", regardless of whether we're in a
6403  // template or not. The reason for this is that unevaluated expressions
6404  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
6405  // -Wunused-parameters)
6406  if (isa<ParmVarDecl>(D) ||
6407      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
6408    D->setUsed(true);
6409
6410  // Do not mark anything as "used" within a dependent context; wait for
6411  // an instantiation.
6412  if (CurContext->isDependentContext())
6413    return;
6414
6415  switch (ExprEvalContext) {
6416    case Unevaluated:
6417      // We are in an expression that is not potentially evaluated; do nothing.
6418      return;
6419
6420    case PotentiallyEvaluated:
6421      // We are in a potentially-evaluated expression, so this declaration is
6422      // "used"; handle this below.
6423      break;
6424
6425    case PotentiallyPotentiallyEvaluated:
6426      // We are in an expression that may be potentially evaluated; queue this
6427      // declaration reference until we know whether the expression is
6428      // potentially evaluated.
6429      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
6430      return;
6431  }
6432
6433  // Note that this declaration has been used.
6434  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
6435    unsigned TypeQuals;
6436    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
6437        if (!Constructor->isUsed())
6438          DefineImplicitDefaultConstructor(Loc, Constructor);
6439    } else if (Constructor->isImplicit() &&
6440               Constructor->isCopyConstructor(Context, TypeQuals)) {
6441      if (!Constructor->isUsed())
6442        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
6443    }
6444  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
6445    if (Destructor->isImplicit() && !Destructor->isUsed())
6446      DefineImplicitDestructor(Loc, Destructor);
6447
6448  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
6449    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
6450        MethodDecl->getOverloadedOperator() == OO_Equal) {
6451      if (!MethodDecl->isUsed())
6452        DefineImplicitOverloadedAssign(Loc, MethodDecl);
6453    }
6454  }
6455  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
6456    // Implicit instantiation of function templates and member functions of
6457    // class templates.
6458    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
6459      bool AlreadyInstantiated = false;
6460      if (FunctionTemplateSpecializationInfo *SpecInfo
6461                                = Function->getTemplateSpecializationInfo()) {
6462        if (SpecInfo->getPointOfInstantiation().isInvalid())
6463          SpecInfo->setPointOfInstantiation(Loc);
6464        else if (SpecInfo->getTemplateSpecializationKind()
6465                   == TSK_ImplicitInstantiation)
6466          AlreadyInstantiated = true;
6467      } else if (MemberSpecializationInfo *MSInfo
6468                                  = Function->getMemberSpecializationInfo()) {
6469        if (MSInfo->getPointOfInstantiation().isInvalid())
6470          MSInfo->setPointOfInstantiation(Loc);
6471        else if (MSInfo->getTemplateSpecializationKind()
6472                   == TSK_ImplicitInstantiation)
6473          AlreadyInstantiated = true;
6474      }
6475
6476      if (!AlreadyInstantiated)
6477        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
6478    }
6479
6480    // FIXME: keep track of references to static functions
6481    Function->setUsed(true);
6482    return;
6483  }
6484
6485  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
6486    // Implicit instantiation of static data members of class templates.
6487    if (Var->isStaticDataMember() &&
6488        Var->getInstantiatedFromStaticDataMember()) {
6489      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
6490      assert(MSInfo && "Missing member specialization information?");
6491      if (MSInfo->getPointOfInstantiation().isInvalid() &&
6492          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
6493        MSInfo->setPointOfInstantiation(Loc);
6494        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6495      }
6496    }
6497
6498    // FIXME: keep track of references to static data?
6499
6500    D->setUsed(true);
6501    return;
6502  }
6503}
6504
6505bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
6506                               CallExpr *CE, FunctionDecl *FD) {
6507  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
6508    return false;
6509
6510  PartialDiagnostic Note =
6511    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
6512    << FD->getDeclName() : PDiag();
6513  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
6514
6515  if (RequireCompleteType(Loc, ReturnType,
6516                          FD ?
6517                          PDiag(diag::err_call_function_incomplete_return)
6518                            << CE->getSourceRange() << FD->getDeclName() :
6519                          PDiag(diag::err_call_incomplete_return)
6520                            << CE->getSourceRange(),
6521                          std::make_pair(NoteLoc, Note)))
6522    return true;
6523
6524  return false;
6525}
6526
6527// Diagnose the common s/=/==/ typo.  Note that adding parentheses
6528// will prevent this condition from triggering, which is what we want.
6529void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
6530  SourceLocation Loc;
6531
6532  unsigned diagnostic = diag::warn_condition_is_assignment;
6533
6534  if (isa<BinaryOperator>(E)) {
6535    BinaryOperator *Op = cast<BinaryOperator>(E);
6536    if (Op->getOpcode() != BinaryOperator::Assign)
6537      return;
6538
6539    // Greylist some idioms by putting them into a warning subcategory.
6540    if (ObjCMessageExpr *ME
6541          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
6542      Selector Sel = ME->getSelector();
6543
6544      // self = [<foo> init...]
6545      if (isSelfExpr(Op->getLHS())
6546          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
6547        diagnostic = diag::warn_condition_is_idiomatic_assignment;
6548
6549      // <foo> = [<bar> nextObject]
6550      else if (Sel.isUnarySelector() &&
6551               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
6552        diagnostic = diag::warn_condition_is_idiomatic_assignment;
6553    }
6554
6555    Loc = Op->getOperatorLoc();
6556  } else if (isa<CXXOperatorCallExpr>(E)) {
6557    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
6558    if (Op->getOperator() != OO_Equal)
6559      return;
6560
6561    Loc = Op->getOperatorLoc();
6562  } else {
6563    // Not an assignment.
6564    return;
6565  }
6566
6567  SourceLocation Open = E->getSourceRange().getBegin();
6568  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
6569
6570  Diag(Loc, diagnostic)
6571    << E->getSourceRange()
6572    << CodeModificationHint::CreateInsertion(Open, "(")
6573    << CodeModificationHint::CreateInsertion(Close, ")");
6574}
6575
6576bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
6577  DiagnoseAssignmentAsCondition(E);
6578
6579  if (!E->isTypeDependent()) {
6580    DefaultFunctionArrayConversion(E);
6581
6582    QualType T = E->getType();
6583
6584    if (getLangOptions().CPlusPlus) {
6585      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
6586        return true;
6587    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
6588      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
6589        << T << E->getSourceRange();
6590      return true;
6591    }
6592  }
6593
6594  return false;
6595}
6596