SemaExpr.cpp revision 25990971b88779a28de14657560bf589e35e4743
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>()) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
92/// (and other functions in future), which have been declared with sentinel
93/// attribute. It warns if call does not have the sentinel argument.
94///
95void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
96                                 Expr **Args, unsigned NumArgs)
97{
98  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
99  if (!attr)
100    return;
101  int sentinelPos = attr->getSentinel();
102  int nullPos = attr->getNullPos();
103
104  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
105  // base class. Then we won't be needing two versions of the same code.
106  unsigned int i = 0;
107  bool warnNotEnoughArgs = false;
108  int isMethod = 0;
109  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = MD->param_end();
112    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119    isMethod = 1;
120  }
121  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  }
132  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
133    // block or function pointer call.
134    QualType Ty = V->getType();
135    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
136      const FunctionType *FT = Ty->isFunctionPointerType()
137      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
138      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
139      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
140        unsigned NumArgsInProto = Proto->getNumArgs();
141        unsigned k;
142        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
143          if (nullPos)
144            --nullPos;
145          else
146            ++i;
147        }
148        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
149      }
150      if (Ty->isBlockPointerType())
151        isMethod = 2;
152    }
153    else
154      return;
155  }
156  else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context))) {
181    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
182    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
183  }
184  return;
185}
186
187SourceRange Sema::getExprRange(ExprTy *E) const {
188  Expr *Ex = (Expr *)E;
189  return Ex? Ex->getSourceRange() : SourceRange();
190}
191
192//===----------------------------------------------------------------------===//
193//  Standard Promotions and Conversions
194//===----------------------------------------------------------------------===//
195
196/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
197void Sema::DefaultFunctionArrayConversion(Expr *&E) {
198  QualType Ty = E->getType();
199  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
200
201  if (Ty->isFunctionType())
202    ImpCastExprToType(E, Context.getPointerType(Ty));
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
218  }
219}
220
221/// \brief Whether this is a promotable bitfield reference according
222/// to C99 6.3.1.1p2, bullet 2.
223///
224/// \returns the type this bit-field will promote to, or NULL if no
225/// promotion occurs.
226static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
227  FieldDecl *Field = E->getBitField();
228  if (!Field)
229    return QualType();
230
231  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
232  if (!BT)
233    return QualType();
234
235  if (BT->getKind() != BuiltinType::Bool &&
236      BT->getKind() != BuiltinType::Int &&
237      BT->getKind() != BuiltinType::UInt)
238    return QualType();
239
240  llvm::APSInt BitWidthAP;
241  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
242    return QualType();
243
244  uint64_t BitWidth = BitWidthAP.getZExtValue();
245  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
246  if (BitWidth < IntSize ||
247      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
248    return Context.IntTy;
249
250  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
251    return Context.UnsignedIntTy;
252
253  return QualType();
254}
255
256/// UsualUnaryConversions - Performs various conversions that are common to most
257/// operators (C99 6.3). The conversions of array and function types are
258/// sometimes surpressed. For example, the array->pointer conversion doesn't
259/// apply if the array is an argument to the sizeof or address (&) operators.
260/// In these instances, this routine should *not* be called.
261Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
262  QualType Ty = Expr->getType();
263  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
264
265  // C99 6.3.1.1p2:
266  //
267  //   The following may be used in an expression wherever an int or
268  //   unsigned int may be used:
269  //     - an object or expression with an integer type whose integer
270  //       conversion rank is less than or equal to the rank of int
271  //       and unsigned int.
272  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
273  //
274  //   If an int can represent all values of the original type, the
275  //   value is converted to an int; otherwise, it is converted to an
276  //   unsigned int. These are called the integer promotions. All
277  //   other types are unchanged by the integer promotions.
278  if (Ty->isPromotableIntegerType()) {
279    ImpCastExprToType(Expr, Context.IntTy);
280    return Expr;
281  } else {
282    QualType T = isPromotableBitField(Expr, Context);
283    if (!T.isNull()) {
284      ImpCastExprToType(Expr, T);
285      return Expr;
286    }
287  }
288
289  DefaultFunctionArrayConversion(Expr);
290  return Expr;
291}
292
293/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
294/// do not have a prototype. Arguments that have type float are promoted to
295/// double. All other argument types are converted by UsualUnaryConversions().
296void Sema::DefaultArgumentPromotion(Expr *&Expr) {
297  QualType Ty = Expr->getType();
298  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
299
300  // If this is a 'float' (CVR qualified or typedef) promote to double.
301  if (const BuiltinType *BT = Ty->getAsBuiltinType())
302    if (BT->getKind() == BuiltinType::Float)
303      return ImpCastExprToType(Expr, Context.DoubleTy);
304
305  UsualUnaryConversions(Expr);
306}
307
308/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
309/// will warn if the resulting type is not a POD type, and rejects ObjC
310/// interfaces passed by value.  This returns true if the argument type is
311/// completely illegal.
312bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
313  DefaultArgumentPromotion(Expr);
314
315  if (Expr->getType()->isObjCInterfaceType()) {
316    Diag(Expr->getLocStart(),
317         diag::err_cannot_pass_objc_interface_to_vararg)
318      << Expr->getType() << CT;
319    return true;
320  }
321
322  if (!Expr->getType()->isPODType())
323    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
324      << Expr->getType() << CT;
325
326  return false;
327}
328
329
330/// UsualArithmeticConversions - Performs various conversions that are common to
331/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
332/// routine returns the first non-arithmetic type found. The client is
333/// responsible for emitting appropriate error diagnostics.
334/// FIXME: verify the conversion rules for "complex int" are consistent with
335/// GCC.
336QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
337                                          bool isCompAssign) {
338  if (!isCompAssign)
339    UsualUnaryConversions(lhsExpr);
340
341  UsualUnaryConversions(rhsExpr);
342
343  // For conversion purposes, we ignore any qualifiers.
344  // For example, "const float" and "float" are equivalent.
345  QualType lhs =
346    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
347  QualType rhs =
348    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
349
350  // If both types are identical, no conversion is needed.
351  if (lhs == rhs)
352    return lhs;
353
354  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
355  // The caller can deal with this (e.g. pointer + int).
356  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
357    return lhs;
358
359  // Perform bitfield promotions.
360  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
361  if (!LHSBitfieldPromoteTy.isNull())
362    lhs = LHSBitfieldPromoteTy;
363  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
364  if (!RHSBitfieldPromoteTy.isNull())
365    rhs = RHSBitfieldPromoteTy;
366
367  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
368  if (!isCompAssign)
369    ImpCastExprToType(lhsExpr, destType);
370  ImpCastExprToType(rhsExpr, destType);
371  return destType;
372}
373
374QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
375  // Perform the usual unary conversions. We do this early so that
376  // integral promotions to "int" can allow us to exit early, in the
377  // lhs == rhs check. Also, for conversion purposes, we ignore any
378  // qualifiers.  For example, "const float" and "float" are
379  // equivalent.
380  if (lhs->isPromotableIntegerType())
381    lhs = Context.IntTy;
382  else
383    lhs = lhs.getUnqualifiedType();
384  if (rhs->isPromotableIntegerType())
385    rhs = Context.IntTy;
386  else
387    rhs = rhs.getUnqualifiedType();
388
389  // If both types are identical, no conversion is needed.
390  if (lhs == rhs)
391    return lhs;
392
393  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
394  // The caller can deal with this (e.g. pointer + int).
395  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
396    return lhs;
397
398  // At this point, we have two different arithmetic types.
399
400  // Handle complex types first (C99 6.3.1.8p1).
401  if (lhs->isComplexType() || rhs->isComplexType()) {
402    // if we have an integer operand, the result is the complex type.
403    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
404      // convert the rhs to the lhs complex type.
405      return lhs;
406    }
407    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
408      // convert the lhs to the rhs complex type.
409      return rhs;
410    }
411    // This handles complex/complex, complex/float, or float/complex.
412    // When both operands are complex, the shorter operand is converted to the
413    // type of the longer, and that is the type of the result. This corresponds
414    // to what is done when combining two real floating-point operands.
415    // The fun begins when size promotion occur across type domains.
416    // From H&S 6.3.4: When one operand is complex and the other is a real
417    // floating-point type, the less precise type is converted, within it's
418    // real or complex domain, to the precision of the other type. For example,
419    // when combining a "long double" with a "double _Complex", the
420    // "double _Complex" is promoted to "long double _Complex".
421    int result = Context.getFloatingTypeOrder(lhs, rhs);
422
423    if (result > 0) { // The left side is bigger, convert rhs.
424      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
425    } else if (result < 0) { // The right side is bigger, convert lhs.
426      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
427    }
428    // At this point, lhs and rhs have the same rank/size. Now, make sure the
429    // domains match. This is a requirement for our implementation, C99
430    // does not require this promotion.
431    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
432      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
433        return rhs;
434      } else { // handle "_Complex double, double".
435        return lhs;
436      }
437    }
438    return lhs; // The domain/size match exactly.
439  }
440  // Now handle "real" floating types (i.e. float, double, long double).
441  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
442    // if we have an integer operand, the result is the real floating type.
443    if (rhs->isIntegerType()) {
444      // convert rhs to the lhs floating point type.
445      return lhs;
446    }
447    if (rhs->isComplexIntegerType()) {
448      // convert rhs to the complex floating point type.
449      return Context.getComplexType(lhs);
450    }
451    if (lhs->isIntegerType()) {
452      // convert lhs to the rhs floating point type.
453      return rhs;
454    }
455    if (lhs->isComplexIntegerType()) {
456      // convert lhs to the complex floating point type.
457      return Context.getComplexType(rhs);
458    }
459    // We have two real floating types, float/complex combos were handled above.
460    // Convert the smaller operand to the bigger result.
461    int result = Context.getFloatingTypeOrder(lhs, rhs);
462    if (result > 0) // convert the rhs
463      return lhs;
464    assert(result < 0 && "illegal float comparison");
465    return rhs;   // convert the lhs
466  }
467  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
468    // Handle GCC complex int extension.
469    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
470    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
471
472    if (lhsComplexInt && rhsComplexInt) {
473      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
474                                      rhsComplexInt->getElementType()) >= 0)
475        return lhs; // convert the rhs
476      return rhs;
477    } else if (lhsComplexInt && rhs->isIntegerType()) {
478      // convert the rhs to the lhs complex type.
479      return lhs;
480    } else if (rhsComplexInt && lhs->isIntegerType()) {
481      // convert the lhs to the rhs complex type.
482      return rhs;
483    }
484  }
485  // Finally, we have two differing integer types.
486  // The rules for this case are in C99 6.3.1.8
487  int compare = Context.getIntegerTypeOrder(lhs, rhs);
488  bool lhsSigned = lhs->isSignedIntegerType(),
489       rhsSigned = rhs->isSignedIntegerType();
490  QualType destType;
491  if (lhsSigned == rhsSigned) {
492    // Same signedness; use the higher-ranked type
493    destType = compare >= 0 ? lhs : rhs;
494  } else if (compare != (lhsSigned ? 1 : -1)) {
495    // The unsigned type has greater than or equal rank to the
496    // signed type, so use the unsigned type
497    destType = lhsSigned ? rhs : lhs;
498  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
499    // The two types are different widths; if we are here, that
500    // means the signed type is larger than the unsigned type, so
501    // use the signed type.
502    destType = lhsSigned ? lhs : rhs;
503  } else {
504    // The signed type is higher-ranked than the unsigned type,
505    // but isn't actually any bigger (like unsigned int and long
506    // on most 32-bit systems).  Use the unsigned type corresponding
507    // to the signed type.
508    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
509  }
510  return destType;
511}
512
513//===----------------------------------------------------------------------===//
514//  Semantic Analysis for various Expression Types
515//===----------------------------------------------------------------------===//
516
517
518/// ActOnStringLiteral - The specified tokens were lexed as pasted string
519/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
520/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
521/// multiple tokens.  However, the common case is that StringToks points to one
522/// string.
523///
524Action::OwningExprResult
525Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
526  assert(NumStringToks && "Must have at least one string!");
527
528  StringLiteralParser Literal(StringToks, NumStringToks, PP);
529  if (Literal.hadError)
530    return ExprError();
531
532  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
533  for (unsigned i = 0; i != NumStringToks; ++i)
534    StringTokLocs.push_back(StringToks[i].getLocation());
535
536  QualType StrTy = Context.CharTy;
537  if (Literal.AnyWide) StrTy = Context.getWCharType();
538  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
539
540  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
541  if (getLangOptions().CPlusPlus)
542    StrTy.addConst();
543
544  // Get an array type for the string, according to C99 6.4.5.  This includes
545  // the nul terminator character as well as the string length for pascal
546  // strings.
547  StrTy = Context.getConstantArrayType(StrTy,
548                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
549                                       ArrayType::Normal, 0);
550
551  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
552  return Owned(StringLiteral::Create(Context, Literal.GetString(),
553                                     Literal.GetStringLength(),
554                                     Literal.AnyWide, StrTy,
555                                     &StringTokLocs[0],
556                                     StringTokLocs.size()));
557}
558
559/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
560/// CurBlock to VD should cause it to be snapshotted (as we do for auto
561/// variables defined outside the block) or false if this is not needed (e.g.
562/// for values inside the block or for globals).
563///
564/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
565/// up-to-date.
566///
567static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
568                                              ValueDecl *VD) {
569  // If the value is defined inside the block, we couldn't snapshot it even if
570  // we wanted to.
571  if (CurBlock->TheDecl == VD->getDeclContext())
572    return false;
573
574  // If this is an enum constant or function, it is constant, don't snapshot.
575  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
576    return false;
577
578  // If this is a reference to an extern, static, or global variable, no need to
579  // snapshot it.
580  // FIXME: What about 'const' variables in C++?
581  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
582    if (!Var->hasLocalStorage())
583      return false;
584
585  // Blocks that have these can't be constant.
586  CurBlock->hasBlockDeclRefExprs = true;
587
588  // If we have nested blocks, the decl may be declared in an outer block (in
589  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
590  // be defined outside all of the current blocks (in which case the blocks do
591  // all get the bit).  Walk the nesting chain.
592  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
593       NextBlock = NextBlock->PrevBlockInfo) {
594    // If we found the defining block for the variable, don't mark the block as
595    // having a reference outside it.
596    if (NextBlock->TheDecl == VD->getDeclContext())
597      break;
598
599    // Otherwise, the DeclRef from the inner block causes the outer one to need
600    // a snapshot as well.
601    NextBlock->hasBlockDeclRefExprs = true;
602  }
603
604  return true;
605}
606
607
608
609/// ActOnIdentifierExpr - The parser read an identifier in expression context,
610/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
611/// identifier is used in a function call context.
612/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
613/// class or namespace that the identifier must be a member of.
614Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
615                                                 IdentifierInfo &II,
616                                                 bool HasTrailingLParen,
617                                                 const CXXScopeSpec *SS,
618                                                 bool isAddressOfOperand) {
619  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
620                                  isAddressOfOperand);
621}
622
623/// BuildDeclRefExpr - Build either a DeclRefExpr or a
624/// QualifiedDeclRefExpr based on whether or not SS is a
625/// nested-name-specifier.
626DeclRefExpr *
627Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
628                       bool TypeDependent, bool ValueDependent,
629                       const CXXScopeSpec *SS) {
630  if (SS && !SS->isEmpty()) {
631    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
632                                              ValueDependent, SS->getRange(),
633                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
634  } else
635    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
636}
637
638/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
639/// variable corresponding to the anonymous union or struct whose type
640/// is Record.
641static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
642                                             RecordDecl *Record) {
643  assert(Record->isAnonymousStructOrUnion() &&
644         "Record must be an anonymous struct or union!");
645
646  // FIXME: Once Decls are directly linked together, this will be an O(1)
647  // operation rather than a slow walk through DeclContext's vector (which
648  // itself will be eliminated). DeclGroups might make this even better.
649  DeclContext *Ctx = Record->getDeclContext();
650  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
651                               DEnd = Ctx->decls_end(Context);
652       D != DEnd; ++D) {
653    if (*D == Record) {
654      // The object for the anonymous struct/union directly
655      // follows its type in the list of declarations.
656      ++D;
657      assert(D != DEnd && "Missing object for anonymous record");
658      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
659      return *D;
660    }
661  }
662
663  assert(false && "Missing object for anonymous record");
664  return 0;
665}
666
667/// \brief Given a field that represents a member of an anonymous
668/// struct/union, build the path from that field's context to the
669/// actual member.
670///
671/// Construct the sequence of field member references we'll have to
672/// perform to get to the field in the anonymous union/struct. The
673/// list of members is built from the field outward, so traverse it
674/// backwards to go from an object in the current context to the field
675/// we found.
676///
677/// \returns The variable from which the field access should begin,
678/// for an anonymous struct/union that is not a member of another
679/// class. Otherwise, returns NULL.
680VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
681                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
682  assert(Field->getDeclContext()->isRecord() &&
683         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
684         && "Field must be stored inside an anonymous struct or union");
685
686  Path.push_back(Field);
687  VarDecl *BaseObject = 0;
688  DeclContext *Ctx = Field->getDeclContext();
689  do {
690    RecordDecl *Record = cast<RecordDecl>(Ctx);
691    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
692    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
693      Path.push_back(AnonField);
694    else {
695      BaseObject = cast<VarDecl>(AnonObject);
696      break;
697    }
698    Ctx = Ctx->getParent();
699  } while (Ctx->isRecord() &&
700           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
701
702  return BaseObject;
703}
704
705Sema::OwningExprResult
706Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
707                                               FieldDecl *Field,
708                                               Expr *BaseObjectExpr,
709                                               SourceLocation OpLoc) {
710  llvm::SmallVector<FieldDecl *, 4> AnonFields;
711  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
712                                                            AnonFields);
713
714  // Build the expression that refers to the base object, from
715  // which we will build a sequence of member references to each
716  // of the anonymous union objects and, eventually, the field we
717  // found via name lookup.
718  bool BaseObjectIsPointer = false;
719  unsigned ExtraQuals = 0;
720  if (BaseObject) {
721    // BaseObject is an anonymous struct/union variable (and is,
722    // therefore, not part of another non-anonymous record).
723    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
724    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
725                                               SourceLocation());
726    ExtraQuals
727      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
728  } else if (BaseObjectExpr) {
729    // The caller provided the base object expression. Determine
730    // whether its a pointer and whether it adds any qualifiers to the
731    // anonymous struct/union fields we're looking into.
732    QualType ObjectType = BaseObjectExpr->getType();
733    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
734      BaseObjectIsPointer = true;
735      ObjectType = ObjectPtr->getPointeeType();
736    }
737    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
738  } else {
739    // We've found a member of an anonymous struct/union that is
740    // inside a non-anonymous struct/union, so in a well-formed
741    // program our base object expression is "this".
742    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
743      if (!MD->isStatic()) {
744        QualType AnonFieldType
745          = Context.getTagDeclType(
746                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
747        QualType ThisType = Context.getTagDeclType(MD->getParent());
748        if ((Context.getCanonicalType(AnonFieldType)
749               == Context.getCanonicalType(ThisType)) ||
750            IsDerivedFrom(ThisType, AnonFieldType)) {
751          // Our base object expression is "this".
752          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
753                                                     MD->getThisType(Context));
754          BaseObjectIsPointer = true;
755        }
756      } else {
757        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
758          << Field->getDeclName());
759      }
760      ExtraQuals = MD->getTypeQualifiers();
761    }
762
763    if (!BaseObjectExpr)
764      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
765        << Field->getDeclName());
766  }
767
768  // Build the implicit member references to the field of the
769  // anonymous struct/union.
770  Expr *Result = BaseObjectExpr;
771  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
772         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
773       FI != FIEnd; ++FI) {
774    QualType MemberType = (*FI)->getType();
775    if (!(*FI)->isMutable()) {
776      unsigned combinedQualifiers
777        = MemberType.getCVRQualifiers() | ExtraQuals;
778      MemberType = MemberType.getQualifiedType(combinedQualifiers);
779    }
780    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
781                                      OpLoc, MemberType);
782    BaseObjectIsPointer = false;
783    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
784  }
785
786  return Owned(Result);
787}
788
789/// ActOnDeclarationNameExpr - The parser has read some kind of name
790/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
791/// performs lookup on that name and returns an expression that refers
792/// to that name. This routine isn't directly called from the parser,
793/// because the parser doesn't know about DeclarationName. Rather,
794/// this routine is called by ActOnIdentifierExpr,
795/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
796/// which form the DeclarationName from the corresponding syntactic
797/// forms.
798///
799/// HasTrailingLParen indicates whether this identifier is used in a
800/// function call context.  LookupCtx is only used for a C++
801/// qualified-id (foo::bar) to indicate the class or namespace that
802/// the identifier must be a member of.
803///
804/// isAddressOfOperand means that this expression is the direct operand
805/// of an address-of operator. This matters because this is the only
806/// situation where a qualified name referencing a non-static member may
807/// appear outside a member function of this class.
808Sema::OwningExprResult
809Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
810                               DeclarationName Name, bool HasTrailingLParen,
811                               const CXXScopeSpec *SS,
812                               bool isAddressOfOperand) {
813  // Could be enum-constant, value decl, instance variable, etc.
814  if (SS && SS->isInvalid())
815    return ExprError();
816
817  // C++ [temp.dep.expr]p3:
818  //   An id-expression is type-dependent if it contains:
819  //     -- a nested-name-specifier that contains a class-name that
820  //        names a dependent type.
821  if (SS && isDependentScopeSpecifier(*SS)) {
822    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
823                                                     Loc, SS->getRange(),
824                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
825  }
826
827  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
828                                         false, true, Loc);
829
830  if (Lookup.isAmbiguous()) {
831    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
832                            SS && SS->isSet() ? SS->getRange()
833                                              : SourceRange());
834    return ExprError();
835  }
836
837  NamedDecl *D = Lookup.getAsDecl();
838
839  // If this reference is in an Objective-C method, then ivar lookup happens as
840  // well.
841  IdentifierInfo *II = Name.getAsIdentifierInfo();
842  if (II && getCurMethodDecl()) {
843    // There are two cases to handle here.  1) scoped lookup could have failed,
844    // in which case we should look for an ivar.  2) scoped lookup could have
845    // found a decl, but that decl is outside the current instance method (i.e.
846    // a global variable).  In these two cases, we do a lookup for an ivar with
847    // this name, if the lookup sucedes, we replace it our current decl.
848    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
849      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
850      ObjCInterfaceDecl *ClassDeclared;
851      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
852                                                           ClassDeclared)) {
853        // Check if referencing a field with __attribute__((deprecated)).
854        if (DiagnoseUseOfDecl(IV, Loc))
855          return ExprError();
856
857        // If we're referencing an invalid decl, just return this as a silent
858        // error node.  The error diagnostic was already emitted on the decl.
859        if (IV->isInvalidDecl())
860          return ExprError();
861
862        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
863        // If a class method attemps to use a free standing ivar, this is
864        // an error.
865        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
866           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
867                           << IV->getDeclName());
868        // If a class method uses a global variable, even if an ivar with
869        // same name exists, use the global.
870        if (!IsClsMethod) {
871          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
872              ClassDeclared != IFace)
873           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
874          // FIXME: This should use a new expr for a direct reference, don't
875          // turn this into Self->ivar, just return a BareIVarExpr or something.
876          IdentifierInfo &II = Context.Idents.get("self");
877          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
878          return Owned(new (Context)
879                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
880                                       SelfExpr.takeAs<Expr>(), true, true));
881        }
882      }
883    }
884    else if (getCurMethodDecl()->isInstanceMethod()) {
885      // We should warn if a local variable hides an ivar.
886      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
887      ObjCInterfaceDecl *ClassDeclared;
888      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
889                                                           ClassDeclared)) {
890        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
891            IFace == ClassDeclared)
892          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
893      }
894    }
895    // Needed to implement property "super.method" notation.
896    if (D == 0 && II->isStr("super")) {
897      QualType T;
898
899      if (getCurMethodDecl()->isInstanceMethod())
900        T = Context.getPointerType(Context.getObjCInterfaceType(
901                                   getCurMethodDecl()->getClassInterface()));
902      else
903        T = Context.getObjCClassType();
904      return Owned(new (Context) ObjCSuperExpr(Loc, T));
905    }
906  }
907
908  // Determine whether this name might be a candidate for
909  // argument-dependent lookup.
910  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
911             HasTrailingLParen;
912
913  if (ADL && D == 0) {
914    // We've seen something of the form
915    //
916    //   identifier(
917    //
918    // and we did not find any entity by the name
919    // "identifier". However, this identifier is still subject to
920    // argument-dependent lookup, so keep track of the name.
921    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
922                                                          Context.OverloadTy,
923                                                          Loc));
924  }
925
926  if (D == 0) {
927    // Otherwise, this could be an implicitly declared function reference (legal
928    // in C90, extension in C99).
929    if (HasTrailingLParen && II &&
930        !getLangOptions().CPlusPlus) // Not in C++.
931      D = ImplicitlyDefineFunction(Loc, *II, S);
932    else {
933      // If this name wasn't predeclared and if this is not a function call,
934      // diagnose the problem.
935      if (SS && !SS->isEmpty())
936        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
937          << Name << SS->getRange());
938      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
939               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
940        return ExprError(Diag(Loc, diag::err_undeclared_use)
941          << Name.getAsString());
942      else
943        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
944    }
945  }
946
947  // If this is an expression of the form &Class::member, don't build an
948  // implicit member ref, because we want a pointer to the member in general,
949  // not any specific instance's member.
950  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
951    DeclContext *DC = computeDeclContext(*SS);
952    if (D && isa<CXXRecordDecl>(DC)) {
953      QualType DType;
954      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
955        DType = FD->getType().getNonReferenceType();
956      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
957        DType = Method->getType();
958      } else if (isa<OverloadedFunctionDecl>(D)) {
959        DType = Context.OverloadTy;
960      }
961      // Could be an inner type. That's diagnosed below, so ignore it here.
962      if (!DType.isNull()) {
963        // The pointer is type- and value-dependent if it points into something
964        // dependent.
965        bool Dependent = false;
966        for (; DC; DC = DC->getParent()) {
967          // FIXME: could stop early at namespace scope.
968          if (DC->isRecord()) {
969            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
970            if (Context.getTypeDeclType(Record)->isDependentType()) {
971              Dependent = true;
972              break;
973            }
974          }
975        }
976        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
977      }
978    }
979  }
980
981  // We may have found a field within an anonymous union or struct
982  // (C++ [class.union]).
983  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
984    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
985      return BuildAnonymousStructUnionMemberReference(Loc, FD);
986
987  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
988    if (!MD->isStatic()) {
989      // C++ [class.mfct.nonstatic]p2:
990      //   [...] if name lookup (3.4.1) resolves the name in the
991      //   id-expression to a nonstatic nontype member of class X or of
992      //   a base class of X, the id-expression is transformed into a
993      //   class member access expression (5.2.5) using (*this) (9.3.2)
994      //   as the postfix-expression to the left of the '.' operator.
995      DeclContext *Ctx = 0;
996      QualType MemberType;
997      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
998        Ctx = FD->getDeclContext();
999        MemberType = FD->getType();
1000
1001        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1002          MemberType = RefType->getPointeeType();
1003        else if (!FD->isMutable()) {
1004          unsigned combinedQualifiers
1005            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1006          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1007        }
1008      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1009        if (!Method->isStatic()) {
1010          Ctx = Method->getParent();
1011          MemberType = Method->getType();
1012        }
1013      } else if (OverloadedFunctionDecl *Ovl
1014                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1015        for (OverloadedFunctionDecl::function_iterator
1016               Func = Ovl->function_begin(),
1017               FuncEnd = Ovl->function_end();
1018             Func != FuncEnd; ++Func) {
1019          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1020            if (!DMethod->isStatic()) {
1021              Ctx = Ovl->getDeclContext();
1022              MemberType = Context.OverloadTy;
1023              break;
1024            }
1025        }
1026      }
1027
1028      if (Ctx && Ctx->isRecord()) {
1029        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1030        QualType ThisType = Context.getTagDeclType(MD->getParent());
1031        if ((Context.getCanonicalType(CtxType)
1032               == Context.getCanonicalType(ThisType)) ||
1033            IsDerivedFrom(ThisType, CtxType)) {
1034          // Build the implicit member access expression.
1035          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1036                                                 MD->getThisType(Context));
1037          return Owned(new (Context) MemberExpr(This, true, D,
1038                                                Loc, MemberType));
1039        }
1040      }
1041    }
1042  }
1043
1044  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1045    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1046      if (MD->isStatic())
1047        // "invalid use of member 'x' in static member function"
1048        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1049          << FD->getDeclName());
1050    }
1051
1052    // Any other ways we could have found the field in a well-formed
1053    // program would have been turned into implicit member expressions
1054    // above.
1055    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1056      << FD->getDeclName());
1057  }
1058
1059  if (isa<TypedefDecl>(D))
1060    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1061  if (isa<ObjCInterfaceDecl>(D))
1062    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1063  if (isa<NamespaceDecl>(D))
1064    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1065
1066  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1067  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1068    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1069                                  false, false, SS));
1070  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1071    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1072                                  false, false, SS));
1073  ValueDecl *VD = cast<ValueDecl>(D);
1074
1075  // Check whether this declaration can be used. Note that we suppress
1076  // this check when we're going to perform argument-dependent lookup
1077  // on this function name, because this might not be the function
1078  // that overload resolution actually selects.
1079  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1080    return ExprError();
1081
1082  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
1083    // Warn about constructs like:
1084    //   if (void *X = foo()) { ... } else { X }.
1085    // In the else block, the pointer is always false.
1086    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1087      Scope *CheckS = S;
1088      while (CheckS) {
1089        if (CheckS->isWithinElse() &&
1090            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1091          if (Var->getType()->isBooleanType())
1092            ExprError(Diag(Loc, diag::warn_value_always_false)
1093              << Var->getDeclName());
1094          else
1095            ExprError(Diag(Loc, diag::warn_value_always_zero)
1096              << Var->getDeclName());
1097          break;
1098        }
1099
1100        // Move up one more control parent to check again.
1101        CheckS = CheckS->getControlParent();
1102        if (CheckS)
1103          CheckS = CheckS->getParent();
1104      }
1105    }
1106  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
1107    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1108      // C99 DR 316 says that, if a function type comes from a
1109      // function definition (without a prototype), that type is only
1110      // used for checking compatibility. Therefore, when referencing
1111      // the function, we pretend that we don't have the full function
1112      // type.
1113      QualType T = Func->getType();
1114      QualType NoProtoType = T;
1115      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1116        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1117      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
1118    }
1119  }
1120
1121  // Only create DeclRefExpr's for valid Decl's.
1122  if (VD->isInvalidDecl())
1123    return ExprError();
1124
1125  // If the identifier reference is inside a block, and it refers to a value
1126  // that is outside the block, create a BlockDeclRefExpr instead of a
1127  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1128  // the block is formed.
1129  //
1130  // We do not do this for things like enum constants, global variables, etc,
1131  // as they do not get snapshotted.
1132  //
1133  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1134    QualType ExprTy = VD->getType().getNonReferenceType();
1135    // The BlocksAttr indicates the variable is bound by-reference.
1136    if (VD->getAttr<BlocksAttr>())
1137      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1138
1139    // Variable will be bound by-copy, make it const within the closure.
1140    ExprTy.addConst();
1141    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
1142  }
1143  // If this reference is not in a block or if the referenced variable is
1144  // within the block, create a normal DeclRefExpr.
1145
1146  bool TypeDependent = false;
1147  bool ValueDependent = false;
1148  if (getLangOptions().CPlusPlus) {
1149    // C++ [temp.dep.expr]p3:
1150    //   An id-expression is type-dependent if it contains:
1151    //     - an identifier that was declared with a dependent type,
1152    if (VD->getType()->isDependentType())
1153      TypeDependent = true;
1154    //     - FIXME: a template-id that is dependent,
1155    //     - a conversion-function-id that specifies a dependent type,
1156    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1157             Name.getCXXNameType()->isDependentType())
1158      TypeDependent = true;
1159    //     - a nested-name-specifier that contains a class-name that
1160    //       names a dependent type.
1161    else if (SS && !SS->isEmpty()) {
1162      for (DeclContext *DC = computeDeclContext(*SS);
1163           DC; DC = DC->getParent()) {
1164        // FIXME: could stop early at namespace scope.
1165        if (DC->isRecord()) {
1166          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1167          if (Context.getTypeDeclType(Record)->isDependentType()) {
1168            TypeDependent = true;
1169            break;
1170          }
1171        }
1172      }
1173    }
1174
1175    // C++ [temp.dep.constexpr]p2:
1176    //
1177    //   An identifier is value-dependent if it is:
1178    //     - a name declared with a dependent type,
1179    if (TypeDependent)
1180      ValueDependent = true;
1181    //     - the name of a non-type template parameter,
1182    else if (isa<NonTypeTemplateParmDecl>(VD))
1183      ValueDependent = true;
1184    //    - a constant with integral or enumeration type and is
1185    //      initialized with an expression that is value-dependent
1186    //      (FIXME!).
1187  }
1188
1189  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1190                                TypeDependent, ValueDependent, SS));
1191}
1192
1193Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1194                                                 tok::TokenKind Kind) {
1195  PredefinedExpr::IdentType IT;
1196
1197  switch (Kind) {
1198  default: assert(0 && "Unknown simple primary expr!");
1199  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1200  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1201  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1202  }
1203
1204  // Pre-defined identifiers are of type char[x], where x is the length of the
1205  // string.
1206  unsigned Length;
1207  if (FunctionDecl *FD = getCurFunctionDecl())
1208    Length = FD->getIdentifier()->getLength();
1209  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1210    Length = MD->getSynthesizedMethodSize();
1211  else {
1212    Diag(Loc, diag::ext_predef_outside_function);
1213    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1214    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1215  }
1216
1217
1218  llvm::APInt LengthI(32, Length + 1);
1219  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1220  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1221  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1222}
1223
1224Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1225  llvm::SmallString<16> CharBuffer;
1226  CharBuffer.resize(Tok.getLength());
1227  const char *ThisTokBegin = &CharBuffer[0];
1228  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1229
1230  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1231                            Tok.getLocation(), PP);
1232  if (Literal.hadError())
1233    return ExprError();
1234
1235  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1236
1237  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1238                                              Literal.isWide(),
1239                                              type, Tok.getLocation()));
1240}
1241
1242Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1243  // Fast path for a single digit (which is quite common).  A single digit
1244  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1245  if (Tok.getLength() == 1) {
1246    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1247    unsigned IntSize = Context.Target.getIntWidth();
1248    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1249                    Context.IntTy, Tok.getLocation()));
1250  }
1251
1252  llvm::SmallString<512> IntegerBuffer;
1253  // Add padding so that NumericLiteralParser can overread by one character.
1254  IntegerBuffer.resize(Tok.getLength()+1);
1255  const char *ThisTokBegin = &IntegerBuffer[0];
1256
1257  // Get the spelling of the token, which eliminates trigraphs, etc.
1258  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1259
1260  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1261                               Tok.getLocation(), PP);
1262  if (Literal.hadError)
1263    return ExprError();
1264
1265  Expr *Res;
1266
1267  if (Literal.isFloatingLiteral()) {
1268    QualType Ty;
1269    if (Literal.isFloat)
1270      Ty = Context.FloatTy;
1271    else if (!Literal.isLong)
1272      Ty = Context.DoubleTy;
1273    else
1274      Ty = Context.LongDoubleTy;
1275
1276    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1277
1278    // isExact will be set by GetFloatValue().
1279    bool isExact = false;
1280    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1281                                        &isExact, Ty, Tok.getLocation());
1282
1283  } else if (!Literal.isIntegerLiteral()) {
1284    return ExprError();
1285  } else {
1286    QualType Ty;
1287
1288    // long long is a C99 feature.
1289    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1290        Literal.isLongLong)
1291      Diag(Tok.getLocation(), diag::ext_longlong);
1292
1293    // Get the value in the widest-possible width.
1294    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1295
1296    if (Literal.GetIntegerValue(ResultVal)) {
1297      // If this value didn't fit into uintmax_t, warn and force to ull.
1298      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1299      Ty = Context.UnsignedLongLongTy;
1300      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1301             "long long is not intmax_t?");
1302    } else {
1303      // If this value fits into a ULL, try to figure out what else it fits into
1304      // according to the rules of C99 6.4.4.1p5.
1305
1306      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1307      // be an unsigned int.
1308      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1309
1310      // Check from smallest to largest, picking the smallest type we can.
1311      unsigned Width = 0;
1312      if (!Literal.isLong && !Literal.isLongLong) {
1313        // Are int/unsigned possibilities?
1314        unsigned IntSize = Context.Target.getIntWidth();
1315
1316        // Does it fit in a unsigned int?
1317        if (ResultVal.isIntN(IntSize)) {
1318          // Does it fit in a signed int?
1319          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1320            Ty = Context.IntTy;
1321          else if (AllowUnsigned)
1322            Ty = Context.UnsignedIntTy;
1323          Width = IntSize;
1324        }
1325      }
1326
1327      // Are long/unsigned long possibilities?
1328      if (Ty.isNull() && !Literal.isLongLong) {
1329        unsigned LongSize = Context.Target.getLongWidth();
1330
1331        // Does it fit in a unsigned long?
1332        if (ResultVal.isIntN(LongSize)) {
1333          // Does it fit in a signed long?
1334          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1335            Ty = Context.LongTy;
1336          else if (AllowUnsigned)
1337            Ty = Context.UnsignedLongTy;
1338          Width = LongSize;
1339        }
1340      }
1341
1342      // Finally, check long long if needed.
1343      if (Ty.isNull()) {
1344        unsigned LongLongSize = Context.Target.getLongLongWidth();
1345
1346        // Does it fit in a unsigned long long?
1347        if (ResultVal.isIntN(LongLongSize)) {
1348          // Does it fit in a signed long long?
1349          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1350            Ty = Context.LongLongTy;
1351          else if (AllowUnsigned)
1352            Ty = Context.UnsignedLongLongTy;
1353          Width = LongLongSize;
1354        }
1355      }
1356
1357      // If we still couldn't decide a type, we probably have something that
1358      // does not fit in a signed long long, but has no U suffix.
1359      if (Ty.isNull()) {
1360        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1361        Ty = Context.UnsignedLongLongTy;
1362        Width = Context.Target.getLongLongWidth();
1363      }
1364
1365      if (ResultVal.getBitWidth() != Width)
1366        ResultVal.trunc(Width);
1367    }
1368    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1369  }
1370
1371  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1372  if (Literal.isImaginary)
1373    Res = new (Context) ImaginaryLiteral(Res,
1374                                        Context.getComplexType(Res->getType()));
1375
1376  return Owned(Res);
1377}
1378
1379Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1380                                              SourceLocation R, ExprArg Val) {
1381  Expr *E = Val.takeAs<Expr>();
1382  assert((E != 0) && "ActOnParenExpr() missing expr");
1383  return Owned(new (Context) ParenExpr(L, R, E));
1384}
1385
1386/// The UsualUnaryConversions() function is *not* called by this routine.
1387/// See C99 6.3.2.1p[2-4] for more details.
1388bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1389                                     SourceLocation OpLoc,
1390                                     const SourceRange &ExprRange,
1391                                     bool isSizeof) {
1392  if (exprType->isDependentType())
1393    return false;
1394
1395  // C99 6.5.3.4p1:
1396  if (isa<FunctionType>(exprType)) {
1397    // alignof(function) is allowed as an extension.
1398    if (isSizeof)
1399      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1400    return false;
1401  }
1402
1403  // Allow sizeof(void)/alignof(void) as an extension.
1404  if (exprType->isVoidType()) {
1405    Diag(OpLoc, diag::ext_sizeof_void_type)
1406      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1407    return false;
1408  }
1409
1410  if (RequireCompleteType(OpLoc, exprType,
1411                          isSizeof ? diag::err_sizeof_incomplete_type :
1412                          diag::err_alignof_incomplete_type,
1413                          ExprRange))
1414    return true;
1415
1416  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1417  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1418    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1419      << exprType << isSizeof << ExprRange;
1420    return true;
1421  }
1422
1423  return false;
1424}
1425
1426bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1427                            const SourceRange &ExprRange) {
1428  E = E->IgnoreParens();
1429
1430  // alignof decl is always ok.
1431  if (isa<DeclRefExpr>(E))
1432    return false;
1433
1434  // Cannot know anything else if the expression is dependent.
1435  if (E->isTypeDependent())
1436    return false;
1437
1438  if (E->getBitField()) {
1439    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1440    return true;
1441  }
1442
1443  // Alignment of a field access is always okay, so long as it isn't a
1444  // bit-field.
1445  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1446    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1447      return false;
1448
1449  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1450}
1451
1452/// \brief Build a sizeof or alignof expression given a type operand.
1453Action::OwningExprResult
1454Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1455                              bool isSizeOf, SourceRange R) {
1456  if (T.isNull())
1457    return ExprError();
1458
1459  if (!T->isDependentType() &&
1460      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1461    return ExprError();
1462
1463  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1464  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1465                                               Context.getSizeType(), OpLoc,
1466                                               R.getEnd()));
1467}
1468
1469/// \brief Build a sizeof or alignof expression given an expression
1470/// operand.
1471Action::OwningExprResult
1472Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1473                              bool isSizeOf, SourceRange R) {
1474  // Verify that the operand is valid.
1475  bool isInvalid = false;
1476  if (E->isTypeDependent()) {
1477    // Delay type-checking for type-dependent expressions.
1478  } else if (!isSizeOf) {
1479    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1480  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1481    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1482    isInvalid = true;
1483  } else {
1484    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1485  }
1486
1487  if (isInvalid)
1488    return ExprError();
1489
1490  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1491  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1492                                               Context.getSizeType(), OpLoc,
1493                                               R.getEnd()));
1494}
1495
1496/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1497/// the same for @c alignof and @c __alignof
1498/// Note that the ArgRange is invalid if isType is false.
1499Action::OwningExprResult
1500Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1501                             void *TyOrEx, const SourceRange &ArgRange) {
1502  // If error parsing type, ignore.
1503  if (TyOrEx == 0) return ExprError();
1504
1505  if (isType) {
1506    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1507    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1508  }
1509
1510  // Get the end location.
1511  Expr *ArgEx = (Expr *)TyOrEx;
1512  Action::OwningExprResult Result
1513    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1514
1515  if (Result.isInvalid())
1516    DeleteExpr(ArgEx);
1517
1518  return move(Result);
1519}
1520
1521QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1522  if (V->isTypeDependent())
1523    return Context.DependentTy;
1524
1525  // These operators return the element type of a complex type.
1526  if (const ComplexType *CT = V->getType()->getAsComplexType())
1527    return CT->getElementType();
1528
1529  // Otherwise they pass through real integer and floating point types here.
1530  if (V->getType()->isArithmeticType())
1531    return V->getType();
1532
1533  // Reject anything else.
1534  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1535    << (isReal ? "__real" : "__imag");
1536  return QualType();
1537}
1538
1539
1540
1541Action::OwningExprResult
1542Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1543                          tok::TokenKind Kind, ExprArg Input) {
1544  Expr *Arg = (Expr *)Input.get();
1545
1546  UnaryOperator::Opcode Opc;
1547  switch (Kind) {
1548  default: assert(0 && "Unknown unary op!");
1549  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1550  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1551  }
1552
1553  if (getLangOptions().CPlusPlus &&
1554      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1555    // Which overloaded operator?
1556    OverloadedOperatorKind OverOp =
1557      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1558
1559    // C++ [over.inc]p1:
1560    //
1561    //     [...] If the function is a member function with one
1562    //     parameter (which shall be of type int) or a non-member
1563    //     function with two parameters (the second of which shall be
1564    //     of type int), it defines the postfix increment operator ++
1565    //     for objects of that type. When the postfix increment is
1566    //     called as a result of using the ++ operator, the int
1567    //     argument will have value zero.
1568    Expr *Args[2] = {
1569      Arg,
1570      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1571                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1572    };
1573
1574    // Build the candidate set for overloading
1575    OverloadCandidateSet CandidateSet;
1576    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1577
1578    // Perform overload resolution.
1579    OverloadCandidateSet::iterator Best;
1580    switch (BestViableFunction(CandidateSet, Best)) {
1581    case OR_Success: {
1582      // We found a built-in operator or an overloaded operator.
1583      FunctionDecl *FnDecl = Best->Function;
1584
1585      if (FnDecl) {
1586        // We matched an overloaded operator. Build a call to that
1587        // operator.
1588
1589        // Convert the arguments.
1590        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1591          if (PerformObjectArgumentInitialization(Arg, Method))
1592            return ExprError();
1593        } else {
1594          // Convert the arguments.
1595          if (PerformCopyInitialization(Arg,
1596                                        FnDecl->getParamDecl(0)->getType(),
1597                                        "passing"))
1598            return ExprError();
1599        }
1600
1601        // Determine the result type
1602        QualType ResultTy
1603          = FnDecl->getType()->getAsFunctionType()->getResultType();
1604        ResultTy = ResultTy.getNonReferenceType();
1605
1606        // Build the actual expression node.
1607        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1608                                                 SourceLocation());
1609        UsualUnaryConversions(FnExpr);
1610
1611        Input.release();
1612        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1613                                                       Args, 2, ResultTy,
1614                                                       OpLoc));
1615      } else {
1616        // We matched a built-in operator. Convert the arguments, then
1617        // break out so that we will build the appropriate built-in
1618        // operator node.
1619        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1620                                      "passing"))
1621          return ExprError();
1622
1623        break;
1624      }
1625    }
1626
1627    case OR_No_Viable_Function:
1628      // No viable function; fall through to handling this as a
1629      // built-in operator, which will produce an error message for us.
1630      break;
1631
1632    case OR_Ambiguous:
1633      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1634          << UnaryOperator::getOpcodeStr(Opc)
1635          << Arg->getSourceRange();
1636      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1637      return ExprError();
1638
1639    case OR_Deleted:
1640      Diag(OpLoc, diag::err_ovl_deleted_oper)
1641        << Best->Function->isDeleted()
1642        << UnaryOperator::getOpcodeStr(Opc)
1643        << Arg->getSourceRange();
1644      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1645      return ExprError();
1646    }
1647
1648    // Either we found no viable overloaded operator or we matched a
1649    // built-in operator. In either case, fall through to trying to
1650    // build a built-in operation.
1651  }
1652
1653  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1654                                                 Opc == UnaryOperator::PostInc);
1655  if (result.isNull())
1656    return ExprError();
1657  Input.release();
1658  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1659}
1660
1661Action::OwningExprResult
1662Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1663                              ExprArg Idx, SourceLocation RLoc) {
1664  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1665       *RHSExp = static_cast<Expr*>(Idx.get());
1666
1667  if (getLangOptions().CPlusPlus &&
1668      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1669    Base.release();
1670    Idx.release();
1671    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1672                                                  Context.DependentTy, RLoc));
1673  }
1674
1675  if (getLangOptions().CPlusPlus &&
1676      (LHSExp->getType()->isRecordType() ||
1677       LHSExp->getType()->isEnumeralType() ||
1678       RHSExp->getType()->isRecordType() ||
1679       RHSExp->getType()->isEnumeralType())) {
1680    // Add the appropriate overloaded operators (C++ [over.match.oper])
1681    // to the candidate set.
1682    OverloadCandidateSet CandidateSet;
1683    Expr *Args[2] = { LHSExp, RHSExp };
1684    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1685                          SourceRange(LLoc, RLoc));
1686
1687    // Perform overload resolution.
1688    OverloadCandidateSet::iterator Best;
1689    switch (BestViableFunction(CandidateSet, Best)) {
1690    case OR_Success: {
1691      // We found a built-in operator or an overloaded operator.
1692      FunctionDecl *FnDecl = Best->Function;
1693
1694      if (FnDecl) {
1695        // We matched an overloaded operator. Build a call to that
1696        // operator.
1697
1698        // Convert the arguments.
1699        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1700          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1701              PerformCopyInitialization(RHSExp,
1702                                        FnDecl->getParamDecl(0)->getType(),
1703                                        "passing"))
1704            return ExprError();
1705        } else {
1706          // Convert the arguments.
1707          if (PerformCopyInitialization(LHSExp,
1708                                        FnDecl->getParamDecl(0)->getType(),
1709                                        "passing") ||
1710              PerformCopyInitialization(RHSExp,
1711                                        FnDecl->getParamDecl(1)->getType(),
1712                                        "passing"))
1713            return ExprError();
1714        }
1715
1716        // Determine the result type
1717        QualType ResultTy
1718          = FnDecl->getType()->getAsFunctionType()->getResultType();
1719        ResultTy = ResultTy.getNonReferenceType();
1720
1721        // Build the actual expression node.
1722        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1723                                                 SourceLocation());
1724        UsualUnaryConversions(FnExpr);
1725
1726        Base.release();
1727        Idx.release();
1728        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1729                                                       FnExpr, Args, 2,
1730                                                       ResultTy, LLoc));
1731      } else {
1732        // We matched a built-in operator. Convert the arguments, then
1733        // break out so that we will build the appropriate built-in
1734        // operator node.
1735        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1736                                      "passing") ||
1737            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1738                                      "passing"))
1739          return ExprError();
1740
1741        break;
1742      }
1743    }
1744
1745    case OR_No_Viable_Function:
1746      // No viable function; fall through to handling this as a
1747      // built-in operator, which will produce an error message for us.
1748      break;
1749
1750    case OR_Ambiguous:
1751      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1752          << "[]"
1753          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1754      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1755      return ExprError();
1756
1757    case OR_Deleted:
1758      Diag(LLoc, diag::err_ovl_deleted_oper)
1759        << Best->Function->isDeleted()
1760        << "[]"
1761        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1762      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1763      return ExprError();
1764    }
1765
1766    // Either we found no viable overloaded operator or we matched a
1767    // built-in operator. In either case, fall through to trying to
1768    // build a built-in operation.
1769  }
1770
1771  // Perform default conversions.
1772  DefaultFunctionArrayConversion(LHSExp);
1773  DefaultFunctionArrayConversion(RHSExp);
1774
1775  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1776
1777  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1778  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1779  // in the subscript position. As a result, we need to derive the array base
1780  // and index from the expression types.
1781  Expr *BaseExpr, *IndexExpr;
1782  QualType ResultType;
1783  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1784    BaseExpr = LHSExp;
1785    IndexExpr = RHSExp;
1786    ResultType = Context.DependentTy;
1787  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1788    BaseExpr = LHSExp;
1789    IndexExpr = RHSExp;
1790    ResultType = PTy->getPointeeType();
1791  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1792     // Handle the uncommon case of "123[Ptr]".
1793    BaseExpr = RHSExp;
1794    IndexExpr = LHSExp;
1795    ResultType = PTy->getPointeeType();
1796  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1797    BaseExpr = LHSExp;    // vectors: V[123]
1798    IndexExpr = RHSExp;
1799
1800    // FIXME: need to deal with const...
1801    ResultType = VTy->getElementType();
1802  } else if (LHSTy->isArrayType()) {
1803    // If we see an array that wasn't promoted by
1804    // DefaultFunctionArrayConversion, it must be an array that
1805    // wasn't promoted because of the C90 rule that doesn't
1806    // allow promoting non-lvalue arrays.  Warn, then
1807    // force the promotion here.
1808    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1809        LHSExp->getSourceRange();
1810    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1811    LHSTy = LHSExp->getType();
1812
1813    BaseExpr = LHSExp;
1814    IndexExpr = RHSExp;
1815    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1816  } else if (RHSTy->isArrayType()) {
1817    // Same as previous, except for 123[f().a] case
1818    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1819        RHSExp->getSourceRange();
1820    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1821    RHSTy = RHSExp->getType();
1822
1823    BaseExpr = RHSExp;
1824    IndexExpr = LHSExp;
1825    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1826  } else {
1827    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1828       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1829  }
1830  // C99 6.5.2.1p1
1831  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1832    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1833                     << IndexExpr->getSourceRange());
1834
1835  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1836  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1837  // type. Note that Functions are not objects, and that (in C99 parlance)
1838  // incomplete types are not object types.
1839  if (ResultType->isFunctionType()) {
1840    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1841      << ResultType << BaseExpr->getSourceRange();
1842    return ExprError();
1843  }
1844
1845  if (!ResultType->isDependentType() &&
1846      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1847                          BaseExpr->getSourceRange()))
1848    return ExprError();
1849
1850  // Diagnose bad cases where we step over interface counts.
1851  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1852    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1853      << ResultType << BaseExpr->getSourceRange();
1854    return ExprError();
1855  }
1856
1857  Base.release();
1858  Idx.release();
1859  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1860                                                ResultType, RLoc));
1861}
1862
1863QualType Sema::
1864CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1865                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1866  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1867
1868  // The vector accessor can't exceed the number of elements.
1869  const char *compStr = CompName.getName();
1870
1871  // This flag determines whether or not the component is one of the four
1872  // special names that indicate a subset of exactly half the elements are
1873  // to be selected.
1874  bool HalvingSwizzle = false;
1875
1876  // This flag determines whether or not CompName has an 's' char prefix,
1877  // indicating that it is a string of hex values to be used as vector indices.
1878  bool HexSwizzle = *compStr == 's';
1879
1880  // Check that we've found one of the special components, or that the component
1881  // names must come from the same set.
1882  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1883      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1884    HalvingSwizzle = true;
1885  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1886    do
1887      compStr++;
1888    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1889  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1890    do
1891      compStr++;
1892    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1893  }
1894
1895  if (!HalvingSwizzle && *compStr) {
1896    // We didn't get to the end of the string. This means the component names
1897    // didn't come from the same set *or* we encountered an illegal name.
1898    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1899      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1900    return QualType();
1901  }
1902
1903  // Ensure no component accessor exceeds the width of the vector type it
1904  // operates on.
1905  if (!HalvingSwizzle) {
1906    compStr = CompName.getName();
1907
1908    if (HexSwizzle)
1909      compStr++;
1910
1911    while (*compStr) {
1912      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1913        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1914          << baseType << SourceRange(CompLoc);
1915        return QualType();
1916      }
1917    }
1918  }
1919
1920  // If this is a halving swizzle, verify that the base type has an even
1921  // number of elements.
1922  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1923    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1924      << baseType << SourceRange(CompLoc);
1925    return QualType();
1926  }
1927
1928  // The component accessor looks fine - now we need to compute the actual type.
1929  // The vector type is implied by the component accessor. For example,
1930  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1931  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1932  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1933  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1934                                     : CompName.getLength();
1935  if (HexSwizzle)
1936    CompSize--;
1937
1938  if (CompSize == 1)
1939    return vecType->getElementType();
1940
1941  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1942  // Now look up the TypeDefDecl from the vector type. Without this,
1943  // diagostics look bad. We want extended vector types to appear built-in.
1944  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1945    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1946      return Context.getTypedefType(ExtVectorDecls[i]);
1947  }
1948  return VT; // should never get here (a typedef type should always be found).
1949}
1950
1951static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1952                                                IdentifierInfo &Member,
1953                                                const Selector &Sel,
1954                                                ASTContext &Context) {
1955
1956  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1957    return PD;
1958  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1959    return OMD;
1960
1961  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1962       E = PDecl->protocol_end(); I != E; ++I) {
1963    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1964                                                     Context))
1965      return D;
1966  }
1967  return 0;
1968}
1969
1970static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1971                                IdentifierInfo &Member,
1972                                const Selector &Sel,
1973                                ASTContext &Context) {
1974  // Check protocols on qualified interfaces.
1975  Decl *GDecl = 0;
1976  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1977       E = QIdTy->qual_end(); I != E; ++I) {
1978    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
1979      GDecl = PD;
1980      break;
1981    }
1982    // Also must look for a getter name which uses property syntax.
1983    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
1984      GDecl = OMD;
1985      break;
1986    }
1987  }
1988  if (!GDecl) {
1989    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1990         E = QIdTy->qual_end(); I != E; ++I) {
1991      // Search in the protocol-qualifier list of current protocol.
1992      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1993      if (GDecl)
1994        return GDecl;
1995    }
1996  }
1997  return GDecl;
1998}
1999
2000/// FindMethodInNestedImplementations - Look up a method in current and
2001/// all base class implementations.
2002///
2003ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2004                                              const ObjCInterfaceDecl *IFace,
2005                                              const Selector &Sel) {
2006  ObjCMethodDecl *Method = 0;
2007  if (ObjCImplementationDecl *ImpDecl
2008        = LookupObjCImplementation(IFace->getIdentifier()))
2009    Method = ImpDecl->getInstanceMethod(Context, Sel);
2010
2011  if (!Method && IFace->getSuperClass())
2012    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2013  return Method;
2014}
2015
2016Action::OwningExprResult
2017Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2018                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2019                               IdentifierInfo &Member,
2020                               DeclPtrTy ObjCImpDecl) {
2021  Expr *BaseExpr = Base.takeAs<Expr>();
2022  assert(BaseExpr && "no record expression");
2023
2024  // Perform default conversions.
2025  DefaultFunctionArrayConversion(BaseExpr);
2026
2027  QualType BaseType = BaseExpr->getType();
2028  assert(!BaseType.isNull() && "no type for member expression");
2029
2030  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2031  // must have pointer type, and the accessed type is the pointee.
2032  if (OpKind == tok::arrow) {
2033    if (BaseType->isDependentType())
2034      // FIXME: This should not return a MemberExpr AST node, but a more
2035      // specialized one.
2036      return Owned(new (Context) MemberExpr(BaseExpr, true, 0,
2037                                            MemberLoc, Context.DependentTy));
2038    else if (const PointerType *PT = BaseType->getAsPointerType())
2039      BaseType = PT->getPointeeType();
2040    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2041      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2042                                            MemberLoc, Member));
2043    else
2044      return ExprError(Diag(MemberLoc,
2045                            diag::err_typecheck_member_reference_arrow)
2046        << BaseType << BaseExpr->getSourceRange());
2047  } else {
2048    if (BaseType->isDependentType()) {
2049      // Require that the base type isn't a pointer type
2050      // (so we'll report an error for)
2051      // T* t;
2052      // t.f;
2053      //
2054      // In Obj-C++, however, the above expression is valid, since it could be
2055      // accessing the 'f' property if T is an Obj-C interface. The extra check
2056      // allows this, while still reporting an error if T is a struct pointer.
2057      const PointerType *PT = BaseType->getAsPointerType();
2058
2059      if (!PT || (getLangOptions().ObjC1 &&
2060                  !PT->getPointeeType()->isRecordType()))
2061        // FIXME: This should not return a MemberExpr AST node, but a more
2062        // specialized one.
2063        return Owned(new (Context) MemberExpr(BaseExpr, false, 0,
2064                                              MemberLoc, Context.DependentTy));
2065    }
2066  }
2067
2068  // Handle field access to simple records.  This also handles access to fields
2069  // of the ObjC 'id' struct.
2070  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2071    RecordDecl *RDecl = RTy->getDecl();
2072    if (RequireCompleteType(OpLoc, BaseType,
2073                               diag::err_typecheck_incomplete_tag,
2074                               BaseExpr->getSourceRange()))
2075      return ExprError();
2076
2077    // The record definition is complete, now make sure the member is valid.
2078    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2079    LookupResult Result
2080      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2081                            LookupMemberName, false);
2082
2083    if (!Result)
2084      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2085               << &Member << BaseExpr->getSourceRange());
2086    if (Result.isAmbiguous()) {
2087      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2088                              MemberLoc, BaseExpr->getSourceRange());
2089      return ExprError();
2090    }
2091
2092    NamedDecl *MemberDecl = Result;
2093
2094    // If the decl being referenced had an error, return an error for this
2095    // sub-expr without emitting another error, in order to avoid cascading
2096    // error cases.
2097    if (MemberDecl->isInvalidDecl())
2098      return ExprError();
2099
2100    // Check the use of this field
2101    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2102      return ExprError();
2103
2104    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2105      // We may have found a field within an anonymous union or struct
2106      // (C++ [class.union]).
2107      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2108        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2109                                                        BaseExpr, OpLoc);
2110
2111      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2112      // FIXME: Handle address space modifiers
2113      QualType MemberType = FD->getType();
2114      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2115        MemberType = Ref->getPointeeType();
2116      else {
2117        unsigned combinedQualifiers =
2118          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2119        if (FD->isMutable())
2120          combinedQualifiers &= ~QualType::Const;
2121        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2122      }
2123
2124      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2125                                            MemberLoc, MemberType));
2126    }
2127
2128    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
2129      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2130                                            Var, MemberLoc,
2131                                         Var->getType().getNonReferenceType()));
2132    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
2133      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2134                                            MemberFn, MemberLoc,
2135                                            MemberFn->getType()));
2136    if (OverloadedFunctionDecl *Ovl
2137          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2138      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2139                                            MemberLoc, Context.OverloadTy));
2140    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
2141      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2142                                            Enum, MemberLoc, Enum->getType()));
2143    if (isa<TypeDecl>(MemberDecl))
2144      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2145        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2146
2147    // We found a declaration kind that we didn't expect. This is a
2148    // generic error message that tells the user that she can't refer
2149    // to this member with '.' or '->'.
2150    return ExprError(Diag(MemberLoc,
2151                          diag::err_typecheck_member_reference_unknown)
2152      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2153  }
2154
2155  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2156  // (*Obj).ivar.
2157  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2158    ObjCInterfaceDecl *ClassDeclared;
2159    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
2160                                                                   &Member,
2161                                                             ClassDeclared)) {
2162      // If the decl being referenced had an error, return an error for this
2163      // sub-expr without emitting another error, in order to avoid cascading
2164      // error cases.
2165      if (IV->isInvalidDecl())
2166        return ExprError();
2167
2168      // Check whether we can reference this field.
2169      if (DiagnoseUseOfDecl(IV, MemberLoc))
2170        return ExprError();
2171      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2172          IV->getAccessControl() != ObjCIvarDecl::Package) {
2173        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2174        if (ObjCMethodDecl *MD = getCurMethodDecl())
2175          ClassOfMethodDecl =  MD->getClassInterface();
2176        else if (ObjCImpDecl && getCurFunctionDecl()) {
2177          // Case of a c-function declared inside an objc implementation.
2178          // FIXME: For a c-style function nested inside an objc implementation
2179          // class, there is no implementation context available, so we pass
2180          // down the context as argument to this routine. Ideally, this context
2181          // need be passed down in the AST node and somehow calculated from the
2182          // AST for a function decl.
2183          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2184          if (ObjCImplementationDecl *IMPD =
2185              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2186            ClassOfMethodDecl = IMPD->getClassInterface();
2187          else if (ObjCCategoryImplDecl* CatImplClass =
2188                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2189            ClassOfMethodDecl = CatImplClass->getClassInterface();
2190        }
2191
2192        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2193          if (ClassDeclared != IFTy->getDecl() ||
2194              ClassOfMethodDecl != ClassDeclared)
2195            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2196        }
2197        // @protected
2198        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2199          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2200      }
2201
2202      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2203                                                 MemberLoc, BaseExpr,
2204                                                 OpKind == tok::arrow));
2205    }
2206    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2207                       << IFTy->getDecl()->getDeclName() << &Member
2208                       << BaseExpr->getSourceRange());
2209  }
2210
2211  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2212  // pointer to a (potentially qualified) interface type.
2213  const PointerType *PTy;
2214  const ObjCInterfaceType *IFTy;
2215  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2216      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2217    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2218
2219    // Search for a declared property first.
2220    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2221                                                              &Member)) {
2222      // Check whether we can reference this property.
2223      if (DiagnoseUseOfDecl(PD, MemberLoc))
2224        return ExprError();
2225      QualType ResTy = PD->getType();
2226      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2227      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2228      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2229        ResTy = Getter->getResultType();
2230      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2231                                                     MemberLoc, BaseExpr));
2232    }
2233
2234    // Check protocols on qualified interfaces.
2235    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2236         E = IFTy->qual_end(); I != E; ++I)
2237      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2238                                                               &Member)) {
2239        // Check whether we can reference this property.
2240        if (DiagnoseUseOfDecl(PD, MemberLoc))
2241          return ExprError();
2242
2243        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2244                                                       MemberLoc, BaseExpr));
2245      }
2246
2247    // If that failed, look for an "implicit" property by seeing if the nullary
2248    // selector is implemented.
2249
2250    // FIXME: The logic for looking up nullary and unary selectors should be
2251    // shared with the code in ActOnInstanceMessage.
2252
2253    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2254    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2255
2256    // If this reference is in an @implementation, check for 'private' methods.
2257    if (!Getter)
2258      Getter = FindMethodInNestedImplementations(IFace, Sel);
2259
2260    // Look through local category implementations associated with the class.
2261    if (!Getter) {
2262      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2263        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2264          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2265      }
2266    }
2267    if (Getter) {
2268      // Check if we can reference this property.
2269      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2270        return ExprError();
2271    }
2272    // If we found a getter then this may be a valid dot-reference, we
2273    // will look for the matching setter, in case it is needed.
2274    Selector SetterSel =
2275      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2276                                         PP.getSelectorTable(), &Member);
2277    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2278    if (!Setter) {
2279      // If this reference is in an @implementation, also check for 'private'
2280      // methods.
2281      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2282    }
2283    // Look through local category implementations associated with the class.
2284    if (!Setter) {
2285      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2286        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2287          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2288      }
2289    }
2290
2291    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2292      return ExprError();
2293
2294    if (Getter || Setter) {
2295      QualType PType;
2296
2297      if (Getter)
2298        PType = Getter->getResultType();
2299      else {
2300        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2301             E = Setter->param_end(); PI != E; ++PI)
2302          PType = (*PI)->getType();
2303      }
2304      // FIXME: we must check that the setter has property type.
2305      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2306                                      Setter, MemberLoc, BaseExpr));
2307    }
2308    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2309      << &Member << BaseType);
2310  }
2311  // Handle properties on qualified "id" protocols.
2312  const ObjCQualifiedIdType *QIdTy;
2313  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2314    // Check protocols on qualified interfaces.
2315    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2316    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2317      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2318        // Check the use of this declaration
2319        if (DiagnoseUseOfDecl(PD, MemberLoc))
2320          return ExprError();
2321
2322        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2323                                                       MemberLoc, BaseExpr));
2324      }
2325      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2326        // Check the use of this method.
2327        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2328          return ExprError();
2329
2330        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2331                                                   OMD->getResultType(),
2332                                                   OMD, OpLoc, MemberLoc,
2333                                                   NULL, 0));
2334      }
2335    }
2336
2337    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2338                       << &Member << BaseType);
2339  }
2340  // Handle properties on ObjC 'Class' types.
2341  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2342    // Also must look for a getter name which uses property syntax.
2343    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2344    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2345      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2346      ObjCMethodDecl *Getter;
2347      // FIXME: need to also look locally in the implementation.
2348      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2349        // Check the use of this method.
2350        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2351          return ExprError();
2352      }
2353      // If we found a getter then this may be a valid dot-reference, we
2354      // will look for the matching setter, in case it is needed.
2355      Selector SetterSel =
2356        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2357                                           PP.getSelectorTable(), &Member);
2358      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2359      if (!Setter) {
2360        // If this reference is in an @implementation, also check for 'private'
2361        // methods.
2362        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2363      }
2364      // Look through local category implementations associated with the class.
2365      if (!Setter) {
2366        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2367          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2368            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2369        }
2370      }
2371
2372      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2373        return ExprError();
2374
2375      if (Getter || Setter) {
2376        QualType PType;
2377
2378        if (Getter)
2379          PType = Getter->getResultType();
2380        else {
2381          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2382               E = Setter->param_end(); PI != E; ++PI)
2383            PType = (*PI)->getType();
2384        }
2385        // FIXME: we must check that the setter has property type.
2386        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2387                                        Setter, MemberLoc, BaseExpr));
2388      }
2389      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2390        << &Member << BaseType);
2391    }
2392  }
2393
2394  // Handle 'field access' to vectors, such as 'V.xx'.
2395  if (BaseType->isExtVectorType()) {
2396    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2397    if (ret.isNull())
2398      return ExprError();
2399    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2400                                                    MemberLoc));
2401  }
2402
2403  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2404    << BaseType << BaseExpr->getSourceRange();
2405
2406  // If the user is trying to apply -> or . to a function or function
2407  // pointer, it's probably because they forgot parentheses to call
2408  // the function. Suggest the addition of those parentheses.
2409  if (BaseType == Context.OverloadTy ||
2410      BaseType->isFunctionType() ||
2411      (BaseType->isPointerType() &&
2412       BaseType->getAsPointerType()->isFunctionType())) {
2413    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2414    Diag(Loc, diag::note_member_reference_needs_call)
2415      << CodeModificationHint::CreateInsertion(Loc, "()");
2416  }
2417
2418  return ExprError();
2419}
2420
2421/// ConvertArgumentsForCall - Converts the arguments specified in
2422/// Args/NumArgs to the parameter types of the function FDecl with
2423/// function prototype Proto. Call is the call expression itself, and
2424/// Fn is the function expression. For a C++ member function, this
2425/// routine does not attempt to convert the object argument. Returns
2426/// true if the call is ill-formed.
2427bool
2428Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2429                              FunctionDecl *FDecl,
2430                              const FunctionProtoType *Proto,
2431                              Expr **Args, unsigned NumArgs,
2432                              SourceLocation RParenLoc) {
2433  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2434  // assignment, to the types of the corresponding parameter, ...
2435  unsigned NumArgsInProto = Proto->getNumArgs();
2436  unsigned NumArgsToCheck = NumArgs;
2437  bool Invalid = false;
2438
2439  // If too few arguments are available (and we don't have default
2440  // arguments for the remaining parameters), don't make the call.
2441  if (NumArgs < NumArgsInProto) {
2442    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2443      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2444        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2445    // Use default arguments for missing arguments
2446    NumArgsToCheck = NumArgsInProto;
2447    Call->setNumArgs(Context, NumArgsInProto);
2448  }
2449
2450  // If too many are passed and not variadic, error on the extras and drop
2451  // them.
2452  if (NumArgs > NumArgsInProto) {
2453    if (!Proto->isVariadic()) {
2454      Diag(Args[NumArgsInProto]->getLocStart(),
2455           diag::err_typecheck_call_too_many_args)
2456        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2457        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2458                       Args[NumArgs-1]->getLocEnd());
2459      // This deletes the extra arguments.
2460      Call->setNumArgs(Context, NumArgsInProto);
2461      Invalid = true;
2462    }
2463    NumArgsToCheck = NumArgsInProto;
2464  }
2465
2466  // Continue to check argument types (even if we have too few/many args).
2467  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2468    QualType ProtoArgType = Proto->getArgType(i);
2469
2470    Expr *Arg;
2471    if (i < NumArgs) {
2472      Arg = Args[i];
2473
2474      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2475                              ProtoArgType,
2476                              diag::err_call_incomplete_argument,
2477                              Arg->getSourceRange()))
2478        return true;
2479
2480      // Pass the argument.
2481      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2482        return true;
2483    } else
2484      // We already type-checked the argument, so we know it works.
2485      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2486    QualType ArgType = Arg->getType();
2487
2488    Call->setArg(i, Arg);
2489  }
2490
2491  // If this is a variadic call, handle args passed through "...".
2492  if (Proto->isVariadic()) {
2493    VariadicCallType CallType = VariadicFunction;
2494    if (Fn->getType()->isBlockPointerType())
2495      CallType = VariadicBlock; // Block
2496    else if (isa<MemberExpr>(Fn))
2497      CallType = VariadicMethod;
2498
2499    // Promote the arguments (C99 6.5.2.2p7).
2500    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2501      Expr *Arg = Args[i];
2502      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2503      Call->setArg(i, Arg);
2504    }
2505  }
2506
2507  return Invalid;
2508}
2509
2510/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2511/// This provides the location of the left/right parens and a list of comma
2512/// locations.
2513Action::OwningExprResult
2514Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2515                    MultiExprArg args,
2516                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2517  unsigned NumArgs = args.size();
2518  Expr *Fn = fn.takeAs<Expr>();
2519  Expr **Args = reinterpret_cast<Expr**>(args.release());
2520  assert(Fn && "no function call expression");
2521  FunctionDecl *FDecl = NULL;
2522  NamedDecl *NDecl = NULL;
2523  DeclarationName UnqualifiedName;
2524
2525  if (getLangOptions().CPlusPlus) {
2526    // Determine whether this is a dependent call inside a C++ template,
2527    // in which case we won't do any semantic analysis now.
2528    // FIXME: Will need to cache the results of name lookup (including ADL) in
2529    // Fn.
2530    bool Dependent = false;
2531    if (Fn->isTypeDependent())
2532      Dependent = true;
2533    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2534      Dependent = true;
2535
2536    if (Dependent)
2537      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2538                                          Context.DependentTy, RParenLoc));
2539
2540    // Determine whether this is a call to an object (C++ [over.call.object]).
2541    if (Fn->getType()->isRecordType())
2542      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2543                                                CommaLocs, RParenLoc));
2544
2545    // Determine whether this is a call to a member function.
2546    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2547      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2548          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2549        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2550                                               CommaLocs, RParenLoc));
2551  }
2552
2553  // If we're directly calling a function, get the appropriate declaration.
2554  DeclRefExpr *DRExpr = NULL;
2555  Expr *FnExpr = Fn;
2556  bool ADL = true;
2557  while (true) {
2558    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2559      FnExpr = IcExpr->getSubExpr();
2560    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2561      // Parentheses around a function disable ADL
2562      // (C++0x [basic.lookup.argdep]p1).
2563      ADL = false;
2564      FnExpr = PExpr->getSubExpr();
2565    } else if (isa<UnaryOperator>(FnExpr) &&
2566               cast<UnaryOperator>(FnExpr)->getOpcode()
2567                 == UnaryOperator::AddrOf) {
2568      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2569    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2570      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2571      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2572      break;
2573    } else if (UnresolvedFunctionNameExpr *DepName
2574                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2575      UnqualifiedName = DepName->getName();
2576      break;
2577    } else {
2578      // Any kind of name that does not refer to a declaration (or
2579      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2580      ADL = false;
2581      break;
2582    }
2583  }
2584
2585  OverloadedFunctionDecl *Ovl = 0;
2586  if (DRExpr) {
2587    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2588    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2589    NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2590  }
2591
2592  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2593    // We don't perform ADL for implicit declarations of builtins.
2594    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2595      ADL = false;
2596
2597    // We don't perform ADL in C.
2598    if (!getLangOptions().CPlusPlus)
2599      ADL = false;
2600
2601    if (Ovl || ADL) {
2602      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2603                                      UnqualifiedName, LParenLoc, Args,
2604                                      NumArgs, CommaLocs, RParenLoc, ADL);
2605      if (!FDecl)
2606        return ExprError();
2607
2608      // Update Fn to refer to the actual function selected.
2609      Expr *NewFn = 0;
2610      if (QualifiedDeclRefExpr *QDRExpr
2611            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2612        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2613                                                   QDRExpr->getLocation(),
2614                                                   false, false,
2615                                                 QDRExpr->getQualifierRange(),
2616                                                   QDRExpr->getQualifier());
2617      else
2618        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2619                                          Fn->getSourceRange().getBegin());
2620      Fn->Destroy(Context);
2621      Fn = NewFn;
2622    }
2623  }
2624
2625  // Promote the function operand.
2626  UsualUnaryConversions(Fn);
2627
2628  // Make the call expr early, before semantic checks.  This guarantees cleanup
2629  // of arguments and function on error.
2630  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2631                                                               Args, NumArgs,
2632                                                               Context.BoolTy,
2633                                                               RParenLoc));
2634
2635  const FunctionType *FuncT;
2636  if (!Fn->getType()->isBlockPointerType()) {
2637    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2638    // have type pointer to function".
2639    const PointerType *PT = Fn->getType()->getAsPointerType();
2640    if (PT == 0)
2641      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2642        << Fn->getType() << Fn->getSourceRange());
2643    FuncT = PT->getPointeeType()->getAsFunctionType();
2644  } else { // This is a block call.
2645    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2646                getAsFunctionType();
2647  }
2648  if (FuncT == 0)
2649    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2650      << Fn->getType() << Fn->getSourceRange());
2651
2652  // Check for a valid return type
2653  if (!FuncT->getResultType()->isVoidType() &&
2654      RequireCompleteType(Fn->getSourceRange().getBegin(),
2655                          FuncT->getResultType(),
2656                          diag::err_call_incomplete_return,
2657                          TheCall->getSourceRange()))
2658    return ExprError();
2659
2660  // We know the result type of the call, set it.
2661  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2662
2663  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2664    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2665                                RParenLoc))
2666      return ExprError();
2667  } else {
2668    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2669
2670    if (FDecl) {
2671      // Check if we have too few/too many template arguments, based
2672      // on our knowledge of the function definition.
2673      const FunctionDecl *Def = 0;
2674      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size())
2675        Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2676          << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2677    }
2678
2679    // Promote the arguments (C99 6.5.2.2p6).
2680    for (unsigned i = 0; i != NumArgs; i++) {
2681      Expr *Arg = Args[i];
2682      DefaultArgumentPromotion(Arg);
2683      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2684                              Arg->getType(),
2685                              diag::err_call_incomplete_argument,
2686                              Arg->getSourceRange()))
2687        return ExprError();
2688      TheCall->setArg(i, Arg);
2689    }
2690  }
2691
2692  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2693    if (!Method->isStatic())
2694      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2695        << Fn->getSourceRange());
2696
2697  // Check for sentinels
2698  if (NDecl)
2699    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2700  // Do special checking on direct calls to functions.
2701  if (FDecl)
2702    return CheckFunctionCall(FDecl, TheCall.take());
2703  if (NDecl)
2704    return CheckBlockCall(NDecl, TheCall.take());
2705
2706  return Owned(TheCall.take());
2707}
2708
2709Action::OwningExprResult
2710Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2711                           SourceLocation RParenLoc, ExprArg InitExpr) {
2712  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2713  QualType literalType = QualType::getFromOpaquePtr(Ty);
2714  // FIXME: put back this assert when initializers are worked out.
2715  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2716  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2717
2718  if (literalType->isArrayType()) {
2719    if (literalType->isVariableArrayType())
2720      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2721        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2722  } else if (RequireCompleteType(LParenLoc, literalType,
2723                                    diag::err_typecheck_decl_incomplete_type,
2724                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2725    return ExprError();
2726
2727  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2728                            DeclarationName(), /*FIXME:DirectInit=*/false))
2729    return ExprError();
2730
2731  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2732  if (isFileScope) { // 6.5.2.5p3
2733    if (CheckForConstantInitializer(literalExpr, literalType))
2734      return ExprError();
2735  }
2736  InitExpr.release();
2737  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2738                                                 literalExpr, isFileScope));
2739}
2740
2741Action::OwningExprResult
2742Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2743                    SourceLocation RBraceLoc) {
2744  unsigned NumInit = initlist.size();
2745  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2746
2747  // Semantic analysis for initializers is done by ActOnDeclarator() and
2748  // CheckInitializer() - it requires knowledge of the object being intialized.
2749
2750  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2751                                               RBraceLoc);
2752  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2753  return Owned(E);
2754}
2755
2756/// CheckCastTypes - Check type constraints for casting between types.
2757bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2758  UsualUnaryConversions(castExpr);
2759
2760  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2761  // type needs to be scalar.
2762  if (castType->isVoidType()) {
2763    // Cast to void allows any expr type.
2764  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2765    // We can't check any more until template instantiation time.
2766  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2767    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2768        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2769        (castType->isStructureType() || castType->isUnionType())) {
2770      // GCC struct/union extension: allow cast to self.
2771      // FIXME: Check that the cast destination type is complete.
2772      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2773        << castType << castExpr->getSourceRange();
2774    } else if (castType->isUnionType()) {
2775      // GCC cast to union extension
2776      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2777      RecordDecl::field_iterator Field, FieldEnd;
2778      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2779           Field != FieldEnd; ++Field) {
2780        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2781            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2782          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2783            << castExpr->getSourceRange();
2784          break;
2785        }
2786      }
2787      if (Field == FieldEnd)
2788        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2789          << castExpr->getType() << castExpr->getSourceRange();
2790    } else {
2791      // Reject any other conversions to non-scalar types.
2792      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2793        << castType << castExpr->getSourceRange();
2794    }
2795  } else if (!castExpr->getType()->isScalarType() &&
2796             !castExpr->getType()->isVectorType()) {
2797    return Diag(castExpr->getLocStart(),
2798                diag::err_typecheck_expect_scalar_operand)
2799      << castExpr->getType() << castExpr->getSourceRange();
2800  } else if (castExpr->getType()->isVectorType()) {
2801    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2802      return true;
2803  } else if (castType->isVectorType()) {
2804    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2805      return true;
2806  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2807    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2808  } else if (!castType->isArithmeticType()) {
2809    QualType castExprType = castExpr->getType();
2810    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2811      return Diag(castExpr->getLocStart(),
2812                  diag::err_cast_pointer_from_non_pointer_int)
2813        << castExprType << castExpr->getSourceRange();
2814  } else if (!castExpr->getType()->isArithmeticType()) {
2815    if (!castType->isIntegralType() && castType->isArithmeticType())
2816      return Diag(castExpr->getLocStart(),
2817                  diag::err_cast_pointer_to_non_pointer_int)
2818        << castType << castExpr->getSourceRange();
2819  }
2820  return false;
2821}
2822
2823bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2824  assert(VectorTy->isVectorType() && "Not a vector type!");
2825
2826  if (Ty->isVectorType() || Ty->isIntegerType()) {
2827    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2828      return Diag(R.getBegin(),
2829                  Ty->isVectorType() ?
2830                  diag::err_invalid_conversion_between_vectors :
2831                  diag::err_invalid_conversion_between_vector_and_integer)
2832        << VectorTy << Ty << R;
2833  } else
2834    return Diag(R.getBegin(),
2835                diag::err_invalid_conversion_between_vector_and_scalar)
2836      << VectorTy << Ty << R;
2837
2838  return false;
2839}
2840
2841Action::OwningExprResult
2842Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2843                    SourceLocation RParenLoc, ExprArg Op) {
2844  assert((Ty != 0) && (Op.get() != 0) &&
2845         "ActOnCastExpr(): missing type or expr");
2846
2847  Expr *castExpr = Op.takeAs<Expr>();
2848  QualType castType = QualType::getFromOpaquePtr(Ty);
2849
2850  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2851    return ExprError();
2852  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2853                                            LParenLoc, RParenLoc));
2854}
2855
2856/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2857/// In that case, lhs = cond.
2858/// C99 6.5.15
2859QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2860                                        SourceLocation QuestionLoc) {
2861  // C++ is sufficiently different to merit its own checker.
2862  if (getLangOptions().CPlusPlus)
2863    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2864
2865  UsualUnaryConversions(Cond);
2866  UsualUnaryConversions(LHS);
2867  UsualUnaryConversions(RHS);
2868  QualType CondTy = Cond->getType();
2869  QualType LHSTy = LHS->getType();
2870  QualType RHSTy = RHS->getType();
2871
2872  // first, check the condition.
2873  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2874    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2875      << CondTy;
2876    return QualType();
2877  }
2878
2879  // Now check the two expressions.
2880
2881  // If both operands have arithmetic type, do the usual arithmetic conversions
2882  // to find a common type: C99 6.5.15p3,5.
2883  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2884    UsualArithmeticConversions(LHS, RHS);
2885    return LHS->getType();
2886  }
2887
2888  // If both operands are the same structure or union type, the result is that
2889  // type.
2890  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2891    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2892      if (LHSRT->getDecl() == RHSRT->getDecl())
2893        // "If both the operands have structure or union type, the result has
2894        // that type."  This implies that CV qualifiers are dropped.
2895        return LHSTy.getUnqualifiedType();
2896    // FIXME: Type of conditional expression must be complete in C mode.
2897  }
2898
2899  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2900  // The following || allows only one side to be void (a GCC-ism).
2901  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2902    if (!LHSTy->isVoidType())
2903      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2904        << RHS->getSourceRange();
2905    if (!RHSTy->isVoidType())
2906      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2907        << LHS->getSourceRange();
2908    ImpCastExprToType(LHS, Context.VoidTy);
2909    ImpCastExprToType(RHS, Context.VoidTy);
2910    return Context.VoidTy;
2911  }
2912  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2913  // the type of the other operand."
2914  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2915       Context.isObjCObjectPointerType(LHSTy)) &&
2916      RHS->isNullPointerConstant(Context)) {
2917    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2918    return LHSTy;
2919  }
2920  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2921       Context.isObjCObjectPointerType(RHSTy)) &&
2922      LHS->isNullPointerConstant(Context)) {
2923    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2924    return RHSTy;
2925  }
2926
2927  const PointerType *LHSPT = LHSTy->getAsPointerType();
2928  const PointerType *RHSPT = RHSTy->getAsPointerType();
2929  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
2930  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
2931
2932  // Handle the case where both operands are pointers before we handle null
2933  // pointer constants in case both operands are null pointer constants.
2934  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
2935    // get the "pointed to" types
2936    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
2937                       : LHSBPT->getPointeeType());
2938      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
2939                         : RHSBPT->getPointeeType());
2940
2941    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2942    if (lhptee->isVoidType()
2943        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
2944      // Figure out necessary qualifiers (C99 6.5.15p6)
2945      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2946      QualType destType = Context.getPointerType(destPointee);
2947      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2948      ImpCastExprToType(RHS, destType); // promote to void*
2949      return destType;
2950    }
2951    if (rhptee->isVoidType()
2952        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
2953      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2954      QualType destType = Context.getPointerType(destPointee);
2955      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2956      ImpCastExprToType(RHS, destType); // promote to void*
2957      return destType;
2958    }
2959
2960    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
2961    if (sameKind
2962        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2963      // Two identical pointer types are always compatible.
2964      return LHSTy;
2965    }
2966
2967    QualType compositeType = LHSTy;
2968
2969    // If either type is an Objective-C object type then check
2970    // compatibility according to Objective-C.
2971    if (Context.isObjCObjectPointerType(LHSTy) ||
2972        Context.isObjCObjectPointerType(RHSTy)) {
2973      // If both operands are interfaces and either operand can be
2974      // assigned to the other, use that type as the composite
2975      // type. This allows
2976      //   xxx ? (A*) a : (B*) b
2977      // where B is a subclass of A.
2978      //
2979      // Additionally, as for assignment, if either type is 'id'
2980      // allow silent coercion. Finally, if the types are
2981      // incompatible then make sure to use 'id' as the composite
2982      // type so the result is acceptable for sending messages to.
2983
2984      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2985      // It could return the composite type.
2986      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2987      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2988      if (LHSIface && RHSIface &&
2989          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2990        compositeType = LHSTy;
2991      } else if (LHSIface && RHSIface &&
2992                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2993        compositeType = RHSTy;
2994      } else if (Context.isObjCIdStructType(lhptee) ||
2995                 Context.isObjCIdStructType(rhptee)) {
2996        compositeType = Context.getObjCIdType();
2997      } else if (LHSBPT || RHSBPT) {
2998        if (!sameKind
2999            || !Context.typesAreBlockCompatible(lhptee.getUnqualifiedType(),
3000                                                rhptee.getUnqualifiedType()))
3001          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3002            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3003        return QualType();
3004      } else {
3005        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3006          << LHSTy << RHSTy
3007          << LHS->getSourceRange() << RHS->getSourceRange();
3008        QualType incompatTy = Context.getObjCIdType();
3009        ImpCastExprToType(LHS, incompatTy);
3010        ImpCastExprToType(RHS, incompatTy);
3011        return incompatTy;
3012      }
3013    } else if (!sameKind
3014               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3015                                              rhptee.getUnqualifiedType())) {
3016      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3017        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3018      // In this situation, we assume void* type. No especially good
3019      // reason, but this is what gcc does, and we do have to pick
3020      // to get a consistent AST.
3021      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3022      ImpCastExprToType(LHS, incompatTy);
3023      ImpCastExprToType(RHS, incompatTy);
3024      return incompatTy;
3025    }
3026    // The pointer types are compatible.
3027    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3028    // differently qualified versions of compatible types, the result type is
3029    // a pointer to an appropriately qualified version of the *composite*
3030    // type.
3031    // FIXME: Need to calculate the composite type.
3032    // FIXME: Need to add qualifiers
3033    ImpCastExprToType(LHS, compositeType);
3034    ImpCastExprToType(RHS, compositeType);
3035    return compositeType;
3036  }
3037
3038  // GCC compatibility: soften pointer/integer mismatch.
3039  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3040    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3041      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3042    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3043    return RHSTy;
3044  }
3045  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3046    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3047      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3048    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3049    return LHSTy;
3050  }
3051
3052  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3053  // evaluates to "struct objc_object *" (and is handled above when comparing
3054  // id with statically typed objects).
3055  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3056    // GCC allows qualified id and any Objective-C type to devolve to
3057    // id. Currently localizing to here until clear this should be
3058    // part of ObjCQualifiedIdTypesAreCompatible.
3059    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3060        (LHSTy->isObjCQualifiedIdType() &&
3061         Context.isObjCObjectPointerType(RHSTy)) ||
3062        (RHSTy->isObjCQualifiedIdType() &&
3063         Context.isObjCObjectPointerType(LHSTy))) {
3064      // FIXME: This is not the correct composite type. This only happens to
3065      // work because id can more or less be used anywhere, however this may
3066      // change the type of method sends.
3067
3068      // FIXME: gcc adds some type-checking of the arguments and emits
3069      // (confusing) incompatible comparison warnings in some
3070      // cases. Investigate.
3071      QualType compositeType = Context.getObjCIdType();
3072      ImpCastExprToType(LHS, compositeType);
3073      ImpCastExprToType(RHS, compositeType);
3074      return compositeType;
3075    }
3076  }
3077
3078  // Otherwise, the operands are not compatible.
3079  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3080    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3081  return QualType();
3082}
3083
3084/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3085/// in the case of a the GNU conditional expr extension.
3086Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3087                                                  SourceLocation ColonLoc,
3088                                                  ExprArg Cond, ExprArg LHS,
3089                                                  ExprArg RHS) {
3090  Expr *CondExpr = (Expr *) Cond.get();
3091  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3092
3093  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3094  // was the condition.
3095  bool isLHSNull = LHSExpr == 0;
3096  if (isLHSNull)
3097    LHSExpr = CondExpr;
3098
3099  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3100                                             RHSExpr, QuestionLoc);
3101  if (result.isNull())
3102    return ExprError();
3103
3104  Cond.release();
3105  LHS.release();
3106  RHS.release();
3107  return Owned(new (Context) ConditionalOperator(CondExpr,
3108                                                 isLHSNull ? 0 : LHSExpr,
3109                                                 RHSExpr, result));
3110}
3111
3112
3113// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3114// being closely modeled after the C99 spec:-). The odd characteristic of this
3115// routine is it effectively iqnores the qualifiers on the top level pointee.
3116// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3117// FIXME: add a couple examples in this comment.
3118Sema::AssignConvertType
3119Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3120  QualType lhptee, rhptee;
3121
3122  // get the "pointed to" type (ignoring qualifiers at the top level)
3123  lhptee = lhsType->getAsPointerType()->getPointeeType();
3124  rhptee = rhsType->getAsPointerType()->getPointeeType();
3125
3126  // make sure we operate on the canonical type
3127  lhptee = Context.getCanonicalType(lhptee);
3128  rhptee = Context.getCanonicalType(rhptee);
3129
3130  AssignConvertType ConvTy = Compatible;
3131
3132  // C99 6.5.16.1p1: This following citation is common to constraints
3133  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3134  // qualifiers of the type *pointed to* by the right;
3135  // FIXME: Handle ExtQualType
3136  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3137    ConvTy = CompatiblePointerDiscardsQualifiers;
3138
3139  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3140  // incomplete type and the other is a pointer to a qualified or unqualified
3141  // version of void...
3142  if (lhptee->isVoidType()) {
3143    if (rhptee->isIncompleteOrObjectType())
3144      return ConvTy;
3145
3146    // As an extension, we allow cast to/from void* to function pointer.
3147    assert(rhptee->isFunctionType());
3148    return FunctionVoidPointer;
3149  }
3150
3151  if (rhptee->isVoidType()) {
3152    if (lhptee->isIncompleteOrObjectType())
3153      return ConvTy;
3154
3155    // As an extension, we allow cast to/from void* to function pointer.
3156    assert(lhptee->isFunctionType());
3157    return FunctionVoidPointer;
3158  }
3159  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3160  // unqualified versions of compatible types, ...
3161  lhptee = lhptee.getUnqualifiedType();
3162  rhptee = rhptee.getUnqualifiedType();
3163  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3164    // Check if the pointee types are compatible ignoring the sign.
3165    // We explicitly check for char so that we catch "char" vs
3166    // "unsigned char" on systems where "char" is unsigned.
3167    if (lhptee->isCharType()) {
3168      lhptee = Context.UnsignedCharTy;
3169    } else if (lhptee->isSignedIntegerType()) {
3170      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3171    }
3172    if (rhptee->isCharType()) {
3173      rhptee = Context.UnsignedCharTy;
3174    } else if (rhptee->isSignedIntegerType()) {
3175      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3176    }
3177    if (lhptee == rhptee) {
3178      // Types are compatible ignoring the sign. Qualifier incompatibility
3179      // takes priority over sign incompatibility because the sign
3180      // warning can be disabled.
3181      if (ConvTy != Compatible)
3182        return ConvTy;
3183      return IncompatiblePointerSign;
3184    }
3185    // General pointer incompatibility takes priority over qualifiers.
3186    return IncompatiblePointer;
3187  }
3188  return ConvTy;
3189}
3190
3191/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3192/// block pointer types are compatible or whether a block and normal pointer
3193/// are compatible. It is more restrict than comparing two function pointer
3194// types.
3195Sema::AssignConvertType
3196Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3197                                          QualType rhsType) {
3198  QualType lhptee, rhptee;
3199
3200  // get the "pointed to" type (ignoring qualifiers at the top level)
3201  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3202  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3203
3204  // make sure we operate on the canonical type
3205  lhptee = Context.getCanonicalType(lhptee);
3206  rhptee = Context.getCanonicalType(rhptee);
3207
3208  AssignConvertType ConvTy = Compatible;
3209
3210  // For blocks we enforce that qualifiers are identical.
3211  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3212    ConvTy = CompatiblePointerDiscardsQualifiers;
3213
3214  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
3215    return IncompatibleBlockPointer;
3216  return ConvTy;
3217}
3218
3219/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3220/// has code to accommodate several GCC extensions when type checking
3221/// pointers. Here are some objectionable examples that GCC considers warnings:
3222///
3223///  int a, *pint;
3224///  short *pshort;
3225///  struct foo *pfoo;
3226///
3227///  pint = pshort; // warning: assignment from incompatible pointer type
3228///  a = pint; // warning: assignment makes integer from pointer without a cast
3229///  pint = a; // warning: assignment makes pointer from integer without a cast
3230///  pint = pfoo; // warning: assignment from incompatible pointer type
3231///
3232/// As a result, the code for dealing with pointers is more complex than the
3233/// C99 spec dictates.
3234///
3235Sema::AssignConvertType
3236Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3237  // Get canonical types.  We're not formatting these types, just comparing
3238  // them.
3239  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3240  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3241
3242  if (lhsType == rhsType)
3243    return Compatible; // Common case: fast path an exact match.
3244
3245  // If the left-hand side is a reference type, then we are in a
3246  // (rare!) case where we've allowed the use of references in C,
3247  // e.g., as a parameter type in a built-in function. In this case,
3248  // just make sure that the type referenced is compatible with the
3249  // right-hand side type. The caller is responsible for adjusting
3250  // lhsType so that the resulting expression does not have reference
3251  // type.
3252  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3253    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3254      return Compatible;
3255    return Incompatible;
3256  }
3257
3258  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3259    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3260      return Compatible;
3261    // Relax integer conversions like we do for pointers below.
3262    if (rhsType->isIntegerType())
3263      return IntToPointer;
3264    if (lhsType->isIntegerType())
3265      return PointerToInt;
3266    return IncompatibleObjCQualifiedId;
3267  }
3268
3269  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3270    // For ExtVector, allow vector splats; float -> <n x float>
3271    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3272      if (LV->getElementType() == rhsType)
3273        return Compatible;
3274
3275    // If we are allowing lax vector conversions, and LHS and RHS are both
3276    // vectors, the total size only needs to be the same. This is a bitcast;
3277    // no bits are changed but the result type is different.
3278    if (getLangOptions().LaxVectorConversions &&
3279        lhsType->isVectorType() && rhsType->isVectorType()) {
3280      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3281        return IncompatibleVectors;
3282    }
3283    return Incompatible;
3284  }
3285
3286  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3287    return Compatible;
3288
3289  if (isa<PointerType>(lhsType)) {
3290    if (rhsType->isIntegerType())
3291      return IntToPointer;
3292
3293    if (isa<PointerType>(rhsType))
3294      return CheckPointerTypesForAssignment(lhsType, rhsType);
3295
3296    if (rhsType->getAsBlockPointerType()) {
3297      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3298        return Compatible;
3299
3300      // Treat block pointers as objects.
3301      if (getLangOptions().ObjC1 &&
3302          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3303        return Compatible;
3304    }
3305    return Incompatible;
3306  }
3307
3308  if (isa<BlockPointerType>(lhsType)) {
3309    if (rhsType->isIntegerType())
3310      return IntToBlockPointer;
3311
3312    // Treat block pointers as objects.
3313    if (getLangOptions().ObjC1 &&
3314        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3315      return Compatible;
3316
3317    if (rhsType->isBlockPointerType())
3318      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3319
3320    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3321      if (RHSPT->getPointeeType()->isVoidType())
3322        return Compatible;
3323    }
3324    return Incompatible;
3325  }
3326
3327  if (isa<PointerType>(rhsType)) {
3328    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3329    if (lhsType == Context.BoolTy)
3330      return Compatible;
3331
3332    if (lhsType->isIntegerType())
3333      return PointerToInt;
3334
3335    if (isa<PointerType>(lhsType))
3336      return CheckPointerTypesForAssignment(lhsType, rhsType);
3337
3338    if (isa<BlockPointerType>(lhsType) &&
3339        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3340      return Compatible;
3341    return Incompatible;
3342  }
3343
3344  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3345    if (Context.typesAreCompatible(lhsType, rhsType))
3346      return Compatible;
3347  }
3348  return Incompatible;
3349}
3350
3351/// \brief Constructs a transparent union from an expression that is
3352/// used to initialize the transparent union.
3353static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3354                                      QualType UnionType, FieldDecl *Field) {
3355  // Build an initializer list that designates the appropriate member
3356  // of the transparent union.
3357  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3358                                                   &E, 1,
3359                                                   SourceLocation());
3360  Initializer->setType(UnionType);
3361  Initializer->setInitializedFieldInUnion(Field);
3362
3363  // Build a compound literal constructing a value of the transparent
3364  // union type from this initializer list.
3365  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3366                                  false);
3367}
3368
3369Sema::AssignConvertType
3370Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3371  QualType FromType = rExpr->getType();
3372
3373  // If the ArgType is a Union type, we want to handle a potential
3374  // transparent_union GCC extension.
3375  const RecordType *UT = ArgType->getAsUnionType();
3376  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3377    return Incompatible;
3378
3379  // The field to initialize within the transparent union.
3380  RecordDecl *UD = UT->getDecl();
3381  FieldDecl *InitField = 0;
3382  // It's compatible if the expression matches any of the fields.
3383  for (RecordDecl::field_iterator it = UD->field_begin(Context),
3384         itend = UD->field_end(Context);
3385       it != itend; ++it) {
3386    if (it->getType()->isPointerType()) {
3387      // If the transparent union contains a pointer type, we allow:
3388      // 1) void pointer
3389      // 2) null pointer constant
3390      if (FromType->isPointerType())
3391        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3392          ImpCastExprToType(rExpr, it->getType());
3393          InitField = *it;
3394          break;
3395        }
3396
3397      if (rExpr->isNullPointerConstant(Context)) {
3398        ImpCastExprToType(rExpr, it->getType());
3399        InitField = *it;
3400        break;
3401      }
3402    }
3403
3404    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3405          == Compatible) {
3406      InitField = *it;
3407      break;
3408    }
3409  }
3410
3411  if (!InitField)
3412    return Incompatible;
3413
3414  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3415  return Compatible;
3416}
3417
3418Sema::AssignConvertType
3419Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3420  if (getLangOptions().CPlusPlus) {
3421    if (!lhsType->isRecordType()) {
3422      // C++ 5.17p3: If the left operand is not of class type, the
3423      // expression is implicitly converted (C++ 4) to the
3424      // cv-unqualified type of the left operand.
3425      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3426                                    "assigning"))
3427        return Incompatible;
3428      return Compatible;
3429    }
3430
3431    // FIXME: Currently, we fall through and treat C++ classes like C
3432    // structures.
3433  }
3434
3435  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3436  // a null pointer constant.
3437  if ((lhsType->isPointerType() ||
3438       lhsType->isObjCQualifiedIdType() ||
3439       lhsType->isBlockPointerType())
3440      && rExpr->isNullPointerConstant(Context)) {
3441    ImpCastExprToType(rExpr, lhsType);
3442    return Compatible;
3443  }
3444
3445  // This check seems unnatural, however it is necessary to ensure the proper
3446  // conversion of functions/arrays. If the conversion were done for all
3447  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3448  // expressions that surpress this implicit conversion (&, sizeof).
3449  //
3450  // Suppress this for references: C++ 8.5.3p5.
3451  if (!lhsType->isReferenceType())
3452    DefaultFunctionArrayConversion(rExpr);
3453
3454  Sema::AssignConvertType result =
3455    CheckAssignmentConstraints(lhsType, rExpr->getType());
3456
3457  // C99 6.5.16.1p2: The value of the right operand is converted to the
3458  // type of the assignment expression.
3459  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3460  // so that we can use references in built-in functions even in C.
3461  // The getNonReferenceType() call makes sure that the resulting expression
3462  // does not have reference type.
3463  if (result != Incompatible && rExpr->getType() != lhsType)
3464    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3465  return result;
3466}
3467
3468QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3469  Diag(Loc, diag::err_typecheck_invalid_operands)
3470    << lex->getType() << rex->getType()
3471    << lex->getSourceRange() << rex->getSourceRange();
3472  return QualType();
3473}
3474
3475inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3476                                                              Expr *&rex) {
3477  // For conversion purposes, we ignore any qualifiers.
3478  // For example, "const float" and "float" are equivalent.
3479  QualType lhsType =
3480    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3481  QualType rhsType =
3482    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3483
3484  // If the vector types are identical, return.
3485  if (lhsType == rhsType)
3486    return lhsType;
3487
3488  // Handle the case of a vector & extvector type of the same size and element
3489  // type.  It would be nice if we only had one vector type someday.
3490  if (getLangOptions().LaxVectorConversions) {
3491    // FIXME: Should we warn here?
3492    if (const VectorType *LV = lhsType->getAsVectorType()) {
3493      if (const VectorType *RV = rhsType->getAsVectorType())
3494        if (LV->getElementType() == RV->getElementType() &&
3495            LV->getNumElements() == RV->getNumElements()) {
3496          return lhsType->isExtVectorType() ? lhsType : rhsType;
3497        }
3498    }
3499  }
3500
3501  // If the lhs is an extended vector and the rhs is a scalar of the same type
3502  // or a literal, promote the rhs to the vector type.
3503  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3504    QualType eltType = V->getElementType();
3505
3506    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3507        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3508        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3509      ImpCastExprToType(rex, lhsType);
3510      return lhsType;
3511    }
3512  }
3513
3514  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3515  // promote the lhs to the vector type.
3516  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3517    QualType eltType = V->getElementType();
3518
3519    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3520        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3521        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3522      ImpCastExprToType(lex, rhsType);
3523      return rhsType;
3524    }
3525  }
3526
3527  // You cannot convert between vector values of different size.
3528  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3529    << lex->getType() << rex->getType()
3530    << lex->getSourceRange() << rex->getSourceRange();
3531  return QualType();
3532}
3533
3534inline QualType Sema::CheckMultiplyDivideOperands(
3535  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3536{
3537  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3538    return CheckVectorOperands(Loc, lex, rex);
3539
3540  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3541
3542  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3543    return compType;
3544  return InvalidOperands(Loc, lex, rex);
3545}
3546
3547inline QualType Sema::CheckRemainderOperands(
3548  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3549{
3550  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3551    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3552      return CheckVectorOperands(Loc, lex, rex);
3553    return InvalidOperands(Loc, lex, rex);
3554  }
3555
3556  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3557
3558  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3559    return compType;
3560  return InvalidOperands(Loc, lex, rex);
3561}
3562
3563inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3564  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3565{
3566  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3567    QualType compType = CheckVectorOperands(Loc, lex, rex);
3568    if (CompLHSTy) *CompLHSTy = compType;
3569    return compType;
3570  }
3571
3572  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3573
3574  // handle the common case first (both operands are arithmetic).
3575  if (lex->getType()->isArithmeticType() &&
3576      rex->getType()->isArithmeticType()) {
3577    if (CompLHSTy) *CompLHSTy = compType;
3578    return compType;
3579  }
3580
3581  // Put any potential pointer into PExp
3582  Expr* PExp = lex, *IExp = rex;
3583  if (IExp->getType()->isPointerType())
3584    std::swap(PExp, IExp);
3585
3586  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3587    if (IExp->getType()->isIntegerType()) {
3588      QualType PointeeTy = PTy->getPointeeType();
3589      // Check for arithmetic on pointers to incomplete types.
3590      if (PointeeTy->isVoidType()) {
3591        if (getLangOptions().CPlusPlus) {
3592          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3593            << lex->getSourceRange() << rex->getSourceRange();
3594          return QualType();
3595        }
3596
3597        // GNU extension: arithmetic on pointer to void
3598        Diag(Loc, diag::ext_gnu_void_ptr)
3599          << lex->getSourceRange() << rex->getSourceRange();
3600      } else if (PointeeTy->isFunctionType()) {
3601        if (getLangOptions().CPlusPlus) {
3602          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3603            << lex->getType() << lex->getSourceRange();
3604          return QualType();
3605        }
3606
3607        // GNU extension: arithmetic on pointer to function
3608        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3609          << lex->getType() << lex->getSourceRange();
3610      } else if (!PTy->isDependentType() &&
3611                 RequireCompleteType(Loc, PointeeTy,
3612                                diag::err_typecheck_arithmetic_incomplete_type,
3613                                     PExp->getSourceRange(), SourceRange(),
3614                                     PExp->getType()))
3615        return QualType();
3616
3617      // Diagnose bad cases where we step over interface counts.
3618      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3619        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3620          << PointeeTy << PExp->getSourceRange();
3621        return QualType();
3622      }
3623
3624      if (CompLHSTy) {
3625        QualType LHSTy = lex->getType();
3626        if (LHSTy->isPromotableIntegerType())
3627          LHSTy = Context.IntTy;
3628        else {
3629          QualType T = isPromotableBitField(lex, Context);
3630          if (!T.isNull())
3631            LHSTy = T;
3632        }
3633
3634        *CompLHSTy = LHSTy;
3635      }
3636      return PExp->getType();
3637    }
3638  }
3639
3640  return InvalidOperands(Loc, lex, rex);
3641}
3642
3643// C99 6.5.6
3644QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3645                                        SourceLocation Loc, QualType* CompLHSTy) {
3646  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3647    QualType compType = CheckVectorOperands(Loc, lex, rex);
3648    if (CompLHSTy) *CompLHSTy = compType;
3649    return compType;
3650  }
3651
3652  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3653
3654  // Enforce type constraints: C99 6.5.6p3.
3655
3656  // Handle the common case first (both operands are arithmetic).
3657  if (lex->getType()->isArithmeticType()
3658      && rex->getType()->isArithmeticType()) {
3659    if (CompLHSTy) *CompLHSTy = compType;
3660    return compType;
3661  }
3662
3663  // Either ptr - int   or   ptr - ptr.
3664  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3665    QualType lpointee = LHSPTy->getPointeeType();
3666
3667    // The LHS must be an completely-defined object type.
3668
3669    bool ComplainAboutVoid = false;
3670    Expr *ComplainAboutFunc = 0;
3671    if (lpointee->isVoidType()) {
3672      if (getLangOptions().CPlusPlus) {
3673        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3674          << lex->getSourceRange() << rex->getSourceRange();
3675        return QualType();
3676      }
3677
3678      // GNU C extension: arithmetic on pointer to void
3679      ComplainAboutVoid = true;
3680    } else if (lpointee->isFunctionType()) {
3681      if (getLangOptions().CPlusPlus) {
3682        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3683          << lex->getType() << lex->getSourceRange();
3684        return QualType();
3685      }
3686
3687      // GNU C extension: arithmetic on pointer to function
3688      ComplainAboutFunc = lex;
3689    } else if (!lpointee->isDependentType() &&
3690               RequireCompleteType(Loc, lpointee,
3691                                   diag::err_typecheck_sub_ptr_object,
3692                                   lex->getSourceRange(),
3693                                   SourceRange(),
3694                                   lex->getType()))
3695      return QualType();
3696
3697    // Diagnose bad cases where we step over interface counts.
3698    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3699      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3700        << lpointee << lex->getSourceRange();
3701      return QualType();
3702    }
3703
3704    // The result type of a pointer-int computation is the pointer type.
3705    if (rex->getType()->isIntegerType()) {
3706      if (ComplainAboutVoid)
3707        Diag(Loc, diag::ext_gnu_void_ptr)
3708          << lex->getSourceRange() << rex->getSourceRange();
3709      if (ComplainAboutFunc)
3710        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3711          << ComplainAboutFunc->getType()
3712          << ComplainAboutFunc->getSourceRange();
3713
3714      if (CompLHSTy) *CompLHSTy = lex->getType();
3715      return lex->getType();
3716    }
3717
3718    // Handle pointer-pointer subtractions.
3719    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3720      QualType rpointee = RHSPTy->getPointeeType();
3721
3722      // RHS must be a completely-type object type.
3723      // Handle the GNU void* extension.
3724      if (rpointee->isVoidType()) {
3725        if (getLangOptions().CPlusPlus) {
3726          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3727            << lex->getSourceRange() << rex->getSourceRange();
3728          return QualType();
3729        }
3730
3731        ComplainAboutVoid = true;
3732      } else if (rpointee->isFunctionType()) {
3733        if (getLangOptions().CPlusPlus) {
3734          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3735            << rex->getType() << rex->getSourceRange();
3736          return QualType();
3737        }
3738
3739        // GNU extension: arithmetic on pointer to function
3740        if (!ComplainAboutFunc)
3741          ComplainAboutFunc = rex;
3742      } else if (!rpointee->isDependentType() &&
3743                 RequireCompleteType(Loc, rpointee,
3744                                     diag::err_typecheck_sub_ptr_object,
3745                                     rex->getSourceRange(),
3746                                     SourceRange(),
3747                                     rex->getType()))
3748        return QualType();
3749
3750      if (getLangOptions().CPlusPlus) {
3751        // Pointee types must be the same: C++ [expr.add]
3752        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3753          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3754            << lex->getType() << rex->getType()
3755            << lex->getSourceRange() << rex->getSourceRange();
3756          return QualType();
3757        }
3758      } else {
3759        // Pointee types must be compatible C99 6.5.6p3
3760        if (!Context.typesAreCompatible(
3761                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3762                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3763          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3764            << lex->getType() << rex->getType()
3765            << lex->getSourceRange() << rex->getSourceRange();
3766          return QualType();
3767        }
3768      }
3769
3770      if (ComplainAboutVoid)
3771        Diag(Loc, diag::ext_gnu_void_ptr)
3772          << lex->getSourceRange() << rex->getSourceRange();
3773      if (ComplainAboutFunc)
3774        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3775          << ComplainAboutFunc->getType()
3776          << ComplainAboutFunc->getSourceRange();
3777
3778      if (CompLHSTy) *CompLHSTy = lex->getType();
3779      return Context.getPointerDiffType();
3780    }
3781  }
3782
3783  return InvalidOperands(Loc, lex, rex);
3784}
3785
3786// C99 6.5.7
3787QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3788                                  bool isCompAssign) {
3789  // C99 6.5.7p2: Each of the operands shall have integer type.
3790  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3791    return InvalidOperands(Loc, lex, rex);
3792
3793  // Shifts don't perform usual arithmetic conversions, they just do integer
3794  // promotions on each operand. C99 6.5.7p3
3795  QualType LHSTy;
3796  if (lex->getType()->isPromotableIntegerType())
3797    LHSTy = Context.IntTy;
3798  else {
3799    LHSTy = isPromotableBitField(lex, Context);
3800    if (LHSTy.isNull())
3801      LHSTy = lex->getType();
3802  }
3803  if (!isCompAssign)
3804    ImpCastExprToType(lex, LHSTy);
3805
3806  UsualUnaryConversions(rex);
3807
3808  // "The type of the result is that of the promoted left operand."
3809  return LHSTy;
3810}
3811
3812// C99 6.5.8, C++ [expr.rel]
3813QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3814                                    unsigned OpaqueOpc, bool isRelational) {
3815  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3816
3817  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3818    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3819
3820  // C99 6.5.8p3 / C99 6.5.9p4
3821  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3822    UsualArithmeticConversions(lex, rex);
3823  else {
3824    UsualUnaryConversions(lex);
3825    UsualUnaryConversions(rex);
3826  }
3827  QualType lType = lex->getType();
3828  QualType rType = rex->getType();
3829
3830  if (!lType->isFloatingType()
3831      && !(lType->isBlockPointerType() && isRelational)) {
3832    // For non-floating point types, check for self-comparisons of the form
3833    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3834    // often indicate logic errors in the program.
3835    // NOTE: Don't warn about comparisons of enum constants. These can arise
3836    //  from macro expansions, and are usually quite deliberate.
3837    Expr *LHSStripped = lex->IgnoreParens();
3838    Expr *RHSStripped = rex->IgnoreParens();
3839    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3840      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3841        if (DRL->getDecl() == DRR->getDecl() &&
3842            !isa<EnumConstantDecl>(DRL->getDecl()))
3843          Diag(Loc, diag::warn_selfcomparison);
3844
3845    if (isa<CastExpr>(LHSStripped))
3846      LHSStripped = LHSStripped->IgnoreParenCasts();
3847    if (isa<CastExpr>(RHSStripped))
3848      RHSStripped = RHSStripped->IgnoreParenCasts();
3849
3850    // Warn about comparisons against a string constant (unless the other
3851    // operand is null), the user probably wants strcmp.
3852    Expr *literalString = 0;
3853    Expr *literalStringStripped = 0;
3854    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3855        !RHSStripped->isNullPointerConstant(Context)) {
3856      literalString = lex;
3857      literalStringStripped = LHSStripped;
3858    }
3859    else if ((isa<StringLiteral>(RHSStripped) ||
3860              isa<ObjCEncodeExpr>(RHSStripped)) &&
3861             !LHSStripped->isNullPointerConstant(Context)) {
3862      literalString = rex;
3863      literalStringStripped = RHSStripped;
3864    }
3865
3866    if (literalString) {
3867      std::string resultComparison;
3868      switch (Opc) {
3869      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3870      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3871      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3872      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3873      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3874      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3875      default: assert(false && "Invalid comparison operator");
3876      }
3877      Diag(Loc, diag::warn_stringcompare)
3878        << isa<ObjCEncodeExpr>(literalStringStripped)
3879        << literalString->getSourceRange()
3880        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3881        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3882                                                 "strcmp(")
3883        << CodeModificationHint::CreateInsertion(
3884                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3885                                       resultComparison);
3886    }
3887  }
3888
3889  // The result of comparisons is 'bool' in C++, 'int' in C.
3890  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3891
3892  if (isRelational) {
3893    if (lType->isRealType() && rType->isRealType())
3894      return ResultTy;
3895  } else {
3896    // Check for comparisons of floating point operands using != and ==.
3897    if (lType->isFloatingType()) {
3898      assert(rType->isFloatingType());
3899      CheckFloatComparison(Loc,lex,rex);
3900    }
3901
3902    if (lType->isArithmeticType() && rType->isArithmeticType())
3903      return ResultTy;
3904  }
3905
3906  bool LHSIsNull = lex->isNullPointerConstant(Context);
3907  bool RHSIsNull = rex->isNullPointerConstant(Context);
3908
3909  // All of the following pointer related warnings are GCC extensions, except
3910  // when handling null pointer constants. One day, we can consider making them
3911  // errors (when -pedantic-errors is enabled).
3912  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3913    QualType LCanPointeeTy =
3914      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3915    QualType RCanPointeeTy =
3916      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3917
3918    // Simple check: if the pointee types are identical, we're done.
3919    if (LCanPointeeTy == RCanPointeeTy)
3920      return ResultTy;
3921
3922    if (getLangOptions().CPlusPlus) {
3923      // C++ [expr.rel]p2:
3924      //   [...] Pointer conversions (4.10) and qualification
3925      //   conversions (4.4) are performed on pointer operands (or on
3926      //   a pointer operand and a null pointer constant) to bring
3927      //   them to their composite pointer type. [...]
3928      //
3929      // C++ [expr.eq]p2 uses the same notion for (in)equality
3930      // comparisons of pointers.
3931      QualType T = FindCompositePointerType(lex, rex);
3932      if (T.isNull()) {
3933        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
3934          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3935        return QualType();
3936      }
3937
3938      ImpCastExprToType(lex, T);
3939      ImpCastExprToType(rex, T);
3940      return ResultTy;
3941    }
3942
3943    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3944        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3945        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3946                                    RCanPointeeTy.getUnqualifiedType()) &&
3947        !Context.areComparableObjCPointerTypes(lType, rType)) {
3948      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3949        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3950    }
3951    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3952    return ResultTy;
3953  }
3954  // C++ allows comparison of pointers with null pointer constants.
3955  if (getLangOptions().CPlusPlus) {
3956    if (lType->isPointerType() && RHSIsNull) {
3957      ImpCastExprToType(rex, lType);
3958      return ResultTy;
3959    }
3960    if (rType->isPointerType() && LHSIsNull) {
3961      ImpCastExprToType(lex, rType);
3962      return ResultTy;
3963    }
3964    // And comparison of nullptr_t with itself.
3965    if (lType->isNullPtrType() && rType->isNullPtrType())
3966      return ResultTy;
3967  }
3968  // Handle block pointer types.
3969  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
3970    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3971    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3972
3973    if (!LHSIsNull && !RHSIsNull &&
3974        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3975      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3976        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3977    }
3978    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3979    return ResultTy;
3980  }
3981  // Allow block pointers to be compared with null pointer constants.
3982  if (!isRelational
3983      && ((lType->isBlockPointerType() && rType->isPointerType())
3984          || (lType->isPointerType() && rType->isBlockPointerType()))) {
3985    if (!LHSIsNull && !RHSIsNull) {
3986      if (!((rType->isPointerType() && rType->getAsPointerType()
3987             ->getPointeeType()->isVoidType())
3988            || (lType->isPointerType() && lType->getAsPointerType()
3989                ->getPointeeType()->isVoidType())))
3990        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3991          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3992    }
3993    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3994    return ResultTy;
3995  }
3996
3997  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3998    if (lType->isPointerType() || rType->isPointerType()) {
3999      const PointerType *LPT = lType->getAsPointerType();
4000      const PointerType *RPT = rType->getAsPointerType();
4001      bool LPtrToVoid = LPT ?
4002        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4003      bool RPtrToVoid = RPT ?
4004        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4005
4006      if (!LPtrToVoid && !RPtrToVoid &&
4007          !Context.typesAreCompatible(lType, rType)) {
4008        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4009          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4010        ImpCastExprToType(rex, lType);
4011        return ResultTy;
4012      }
4013      ImpCastExprToType(rex, lType);
4014      return ResultTy;
4015    }
4016    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4017      ImpCastExprToType(rex, lType);
4018      return ResultTy;
4019    } else {
4020      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4021        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4022          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4023        ImpCastExprToType(rex, lType);
4024        return ResultTy;
4025      }
4026    }
4027  }
4028  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4029       rType->isIntegerType()) {
4030    if (!RHSIsNull)
4031      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4032        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4033    ImpCastExprToType(rex, lType); // promote the integer to pointer
4034    return ResultTy;
4035  }
4036  if (lType->isIntegerType() &&
4037      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4038    if (!LHSIsNull)
4039      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4040        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4041    ImpCastExprToType(lex, rType); // promote the integer to pointer
4042    return ResultTy;
4043  }
4044  // Handle block pointers.
4045  if (!isRelational && RHSIsNull
4046      && lType->isBlockPointerType() && rType->isIntegerType()) {
4047    ImpCastExprToType(rex, lType); // promote the integer to pointer
4048    return ResultTy;
4049  }
4050  if (!isRelational && LHSIsNull
4051      && lType->isIntegerType() && rType->isBlockPointerType()) {
4052    ImpCastExprToType(lex, rType); // promote the integer to pointer
4053    return ResultTy;
4054  }
4055  return InvalidOperands(Loc, lex, rex);
4056}
4057
4058/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4059/// operates on extended vector types.  Instead of producing an IntTy result,
4060/// like a scalar comparison, a vector comparison produces a vector of integer
4061/// types.
4062QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4063                                          SourceLocation Loc,
4064                                          bool isRelational) {
4065  // Check to make sure we're operating on vectors of the same type and width,
4066  // Allowing one side to be a scalar of element type.
4067  QualType vType = CheckVectorOperands(Loc, lex, rex);
4068  if (vType.isNull())
4069    return vType;
4070
4071  QualType lType = lex->getType();
4072  QualType rType = rex->getType();
4073
4074  // For non-floating point types, check for self-comparisons of the form
4075  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4076  // often indicate logic errors in the program.
4077  if (!lType->isFloatingType()) {
4078    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4079      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4080        if (DRL->getDecl() == DRR->getDecl())
4081          Diag(Loc, diag::warn_selfcomparison);
4082  }
4083
4084  // Check for comparisons of floating point operands using != and ==.
4085  if (!isRelational && lType->isFloatingType()) {
4086    assert (rType->isFloatingType());
4087    CheckFloatComparison(Loc,lex,rex);
4088  }
4089
4090  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4091  // just reject all vector comparisons for now.
4092  if (1) {
4093    Diag(Loc, diag::err_typecheck_vector_comparison)
4094      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4095    return QualType();
4096  }
4097
4098  // Return the type for the comparison, which is the same as vector type for
4099  // integer vectors, or an integer type of identical size and number of
4100  // elements for floating point vectors.
4101  if (lType->isIntegerType())
4102    return lType;
4103
4104  const VectorType *VTy = lType->getAsVectorType();
4105  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4106  if (TypeSize == Context.getTypeSize(Context.IntTy))
4107    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4108  if (TypeSize == Context.getTypeSize(Context.LongTy))
4109    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4110
4111  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4112         "Unhandled vector element size in vector compare");
4113  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4114}
4115
4116inline QualType Sema::CheckBitwiseOperands(
4117  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4118{
4119  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4120    return CheckVectorOperands(Loc, lex, rex);
4121
4122  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4123
4124  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4125    return compType;
4126  return InvalidOperands(Loc, lex, rex);
4127}
4128
4129inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4130  Expr *&lex, Expr *&rex, SourceLocation Loc)
4131{
4132  UsualUnaryConversions(lex);
4133  UsualUnaryConversions(rex);
4134
4135  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4136    return Context.IntTy;
4137  return InvalidOperands(Loc, lex, rex);
4138}
4139
4140/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4141/// is a read-only property; return true if so. A readonly property expression
4142/// depends on various declarations and thus must be treated specially.
4143///
4144static bool IsReadonlyProperty(Expr *E, Sema &S)
4145{
4146  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4147    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4148    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4149      QualType BaseType = PropExpr->getBase()->getType();
4150      if (const PointerType *PTy = BaseType->getAsPointerType())
4151        if (const ObjCInterfaceType *IFTy =
4152            PTy->getPointeeType()->getAsObjCInterfaceType())
4153          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4154            if (S.isPropertyReadonly(PDecl, IFace))
4155              return true;
4156    }
4157  }
4158  return false;
4159}
4160
4161/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4162/// emit an error and return true.  If so, return false.
4163static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4164  SourceLocation OrigLoc = Loc;
4165  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4166                                                              &Loc);
4167  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4168    IsLV = Expr::MLV_ReadonlyProperty;
4169  if (IsLV == Expr::MLV_Valid)
4170    return false;
4171
4172  unsigned Diag = 0;
4173  bool NeedType = false;
4174  switch (IsLV) { // C99 6.5.16p2
4175  default: assert(0 && "Unknown result from isModifiableLvalue!");
4176  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4177  case Expr::MLV_ArrayType:
4178    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4179    NeedType = true;
4180    break;
4181  case Expr::MLV_NotObjectType:
4182    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4183    NeedType = true;
4184    break;
4185  case Expr::MLV_LValueCast:
4186    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4187    break;
4188  case Expr::MLV_InvalidExpression:
4189    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4190    break;
4191  case Expr::MLV_IncompleteType:
4192  case Expr::MLV_IncompleteVoidType:
4193    return S.RequireCompleteType(Loc, E->getType(),
4194                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4195                                    E->getSourceRange());
4196  case Expr::MLV_DuplicateVectorComponents:
4197    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4198    break;
4199  case Expr::MLV_NotBlockQualified:
4200    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4201    break;
4202  case Expr::MLV_ReadonlyProperty:
4203    Diag = diag::error_readonly_property_assignment;
4204    break;
4205  case Expr::MLV_NoSetterProperty:
4206    Diag = diag::error_nosetter_property_assignment;
4207    break;
4208  }
4209
4210  SourceRange Assign;
4211  if (Loc != OrigLoc)
4212    Assign = SourceRange(OrigLoc, OrigLoc);
4213  if (NeedType)
4214    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4215  else
4216    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4217  return true;
4218}
4219
4220
4221
4222// C99 6.5.16.1
4223QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4224                                       SourceLocation Loc,
4225                                       QualType CompoundType) {
4226  // Verify that LHS is a modifiable lvalue, and emit error if not.
4227  if (CheckForModifiableLvalue(LHS, Loc, *this))
4228    return QualType();
4229
4230  QualType LHSType = LHS->getType();
4231  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4232
4233  AssignConvertType ConvTy;
4234  if (CompoundType.isNull()) {
4235    // Simple assignment "x = y".
4236    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4237    // Special case of NSObject attributes on c-style pointer types.
4238    if (ConvTy == IncompatiblePointer &&
4239        ((Context.isObjCNSObjectType(LHSType) &&
4240          Context.isObjCObjectPointerType(RHSType)) ||
4241         (Context.isObjCNSObjectType(RHSType) &&
4242          Context.isObjCObjectPointerType(LHSType))))
4243      ConvTy = Compatible;
4244
4245    // If the RHS is a unary plus or minus, check to see if they = and + are
4246    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4247    // instead of "x += 4".
4248    Expr *RHSCheck = RHS;
4249    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4250      RHSCheck = ICE->getSubExpr();
4251    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4252      if ((UO->getOpcode() == UnaryOperator::Plus ||
4253           UO->getOpcode() == UnaryOperator::Minus) &&
4254          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4255          // Only if the two operators are exactly adjacent.
4256          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4257          // And there is a space or other character before the subexpr of the
4258          // unary +/-.  We don't want to warn on "x=-1".
4259          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4260          UO->getSubExpr()->getLocStart().isFileID()) {
4261        Diag(Loc, diag::warn_not_compound_assign)
4262          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4263          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4264      }
4265    }
4266  } else {
4267    // Compound assignment "x += y"
4268    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4269  }
4270
4271  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4272                               RHS, "assigning"))
4273    return QualType();
4274
4275  // C99 6.5.16p3: The type of an assignment expression is the type of the
4276  // left operand unless the left operand has qualified type, in which case
4277  // it is the unqualified version of the type of the left operand.
4278  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4279  // is converted to the type of the assignment expression (above).
4280  // C++ 5.17p1: the type of the assignment expression is that of its left
4281  // operand.
4282  return LHSType.getUnqualifiedType();
4283}
4284
4285// C99 6.5.17
4286QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4287  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4288  DefaultFunctionArrayConversion(RHS);
4289
4290  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4291  // incomplete in C++).
4292
4293  return RHS->getType();
4294}
4295
4296/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4297/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4298QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4299                                              bool isInc) {
4300  if (Op->isTypeDependent())
4301    return Context.DependentTy;
4302
4303  QualType ResType = Op->getType();
4304  assert(!ResType.isNull() && "no type for increment/decrement expression");
4305
4306  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4307    // Decrement of bool is not allowed.
4308    if (!isInc) {
4309      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4310      return QualType();
4311    }
4312    // Increment of bool sets it to true, but is deprecated.
4313    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4314  } else if (ResType->isRealType()) {
4315    // OK!
4316  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4317    // C99 6.5.2.4p2, 6.5.6p2
4318    if (PT->getPointeeType()->isVoidType()) {
4319      if (getLangOptions().CPlusPlus) {
4320        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4321          << Op->getSourceRange();
4322        return QualType();
4323      }
4324
4325      // Pointer to void is a GNU extension in C.
4326      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4327    } else if (PT->getPointeeType()->isFunctionType()) {
4328      if (getLangOptions().CPlusPlus) {
4329        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4330          << Op->getType() << Op->getSourceRange();
4331        return QualType();
4332      }
4333
4334      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4335        << ResType << Op->getSourceRange();
4336    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4337                               diag::err_typecheck_arithmetic_incomplete_type,
4338                                   Op->getSourceRange(), SourceRange(),
4339                                   ResType))
4340      return QualType();
4341  } else if (ResType->isComplexType()) {
4342    // C99 does not support ++/-- on complex types, we allow as an extension.
4343    Diag(OpLoc, diag::ext_integer_increment_complex)
4344      << ResType << Op->getSourceRange();
4345  } else {
4346    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4347      << ResType << Op->getSourceRange();
4348    return QualType();
4349  }
4350  // At this point, we know we have a real, complex or pointer type.
4351  // Now make sure the operand is a modifiable lvalue.
4352  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4353    return QualType();
4354  return ResType;
4355}
4356
4357/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4358/// This routine allows us to typecheck complex/recursive expressions
4359/// where the declaration is needed for type checking. We only need to
4360/// handle cases when the expression references a function designator
4361/// or is an lvalue. Here are some examples:
4362///  - &(x) => x
4363///  - &*****f => f for f a function designator.
4364///  - &s.xx => s
4365///  - &s.zz[1].yy -> s, if zz is an array
4366///  - *(x + 1) -> x, if x is an array
4367///  - &"123"[2] -> 0
4368///  - & __real__ x -> x
4369static NamedDecl *getPrimaryDecl(Expr *E) {
4370  switch (E->getStmtClass()) {
4371  case Stmt::DeclRefExprClass:
4372  case Stmt::QualifiedDeclRefExprClass:
4373    return cast<DeclRefExpr>(E)->getDecl();
4374  case Stmt::MemberExprClass:
4375    // If this is an arrow operator, the address is an offset from
4376    // the base's value, so the object the base refers to is
4377    // irrelevant.
4378    if (cast<MemberExpr>(E)->isArrow())
4379      return 0;
4380    // Otherwise, the expression refers to a part of the base
4381    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4382  case Stmt::ArraySubscriptExprClass: {
4383    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4384    // promotion of register arrays earlier.
4385    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4386    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4387      if (ICE->getSubExpr()->getType()->isArrayType())
4388        return getPrimaryDecl(ICE->getSubExpr());
4389    }
4390    return 0;
4391  }
4392  case Stmt::UnaryOperatorClass: {
4393    UnaryOperator *UO = cast<UnaryOperator>(E);
4394
4395    switch(UO->getOpcode()) {
4396    case UnaryOperator::Real:
4397    case UnaryOperator::Imag:
4398    case UnaryOperator::Extension:
4399      return getPrimaryDecl(UO->getSubExpr());
4400    default:
4401      return 0;
4402    }
4403  }
4404  case Stmt::ParenExprClass:
4405    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4406  case Stmt::ImplicitCastExprClass:
4407    // If the result of an implicit cast is an l-value, we care about
4408    // the sub-expression; otherwise, the result here doesn't matter.
4409    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4410  default:
4411    return 0;
4412  }
4413}
4414
4415/// CheckAddressOfOperand - The operand of & must be either a function
4416/// designator or an lvalue designating an object. If it is an lvalue, the
4417/// object cannot be declared with storage class register or be a bit field.
4418/// Note: The usual conversions are *not* applied to the operand of the &
4419/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4420/// In C++, the operand might be an overloaded function name, in which case
4421/// we allow the '&' but retain the overloaded-function type.
4422QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4423  // Make sure to ignore parentheses in subsequent checks
4424  op = op->IgnoreParens();
4425
4426  if (op->isTypeDependent())
4427    return Context.DependentTy;
4428
4429  if (getLangOptions().C99) {
4430    // Implement C99-only parts of addressof rules.
4431    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4432      if (uOp->getOpcode() == UnaryOperator::Deref)
4433        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4434        // (assuming the deref expression is valid).
4435        return uOp->getSubExpr()->getType();
4436    }
4437    // Technically, there should be a check for array subscript
4438    // expressions here, but the result of one is always an lvalue anyway.
4439  }
4440  NamedDecl *dcl = getPrimaryDecl(op);
4441  Expr::isLvalueResult lval = op->isLvalue(Context);
4442
4443  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4444    // C99 6.5.3.2p1
4445    // The operand must be either an l-value or a function designator
4446    if (!op->getType()->isFunctionType()) {
4447      // FIXME: emit more specific diag...
4448      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4449        << op->getSourceRange();
4450      return QualType();
4451    }
4452  } else if (op->getBitField()) { // C99 6.5.3.2p1
4453    // The operand cannot be a bit-field
4454    Diag(OpLoc, diag::err_typecheck_address_of)
4455      << "bit-field" << op->getSourceRange();
4456        return QualType();
4457  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4458           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4459    // The operand cannot be an element of a vector
4460    Diag(OpLoc, diag::err_typecheck_address_of)
4461      << "vector element" << op->getSourceRange();
4462    return QualType();
4463  } else if (dcl) { // C99 6.5.3.2p1
4464    // We have an lvalue with a decl. Make sure the decl is not declared
4465    // with the register storage-class specifier.
4466    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4467      if (vd->getStorageClass() == VarDecl::Register) {
4468        Diag(OpLoc, diag::err_typecheck_address_of)
4469          << "register variable" << op->getSourceRange();
4470        return QualType();
4471      }
4472    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4473      return Context.OverloadTy;
4474    } else if (isa<FieldDecl>(dcl)) {
4475      // Okay: we can take the address of a field.
4476      // Could be a pointer to member, though, if there is an explicit
4477      // scope qualifier for the class.
4478      if (isa<QualifiedDeclRefExpr>(op)) {
4479        DeclContext *Ctx = dcl->getDeclContext();
4480        if (Ctx && Ctx->isRecord())
4481          return Context.getMemberPointerType(op->getType(),
4482                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4483      }
4484    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4485      // Okay: we can take the address of a function.
4486      // As above.
4487      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4488        return Context.getMemberPointerType(op->getType(),
4489              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4490    } else if (!isa<FunctionDecl>(dcl))
4491      assert(0 && "Unknown/unexpected decl type");
4492  }
4493
4494  if (lval == Expr::LV_IncompleteVoidType) {
4495    // Taking the address of a void variable is technically illegal, but we
4496    // allow it in cases which are otherwise valid.
4497    // Example: "extern void x; void* y = &x;".
4498    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4499  }
4500
4501  // If the operand has type "type", the result has type "pointer to type".
4502  return Context.getPointerType(op->getType());
4503}
4504
4505QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4506  if (Op->isTypeDependent())
4507    return Context.DependentTy;
4508
4509  UsualUnaryConversions(Op);
4510  QualType Ty = Op->getType();
4511
4512  // Note that per both C89 and C99, this is always legal, even if ptype is an
4513  // incomplete type or void.  It would be possible to warn about dereferencing
4514  // a void pointer, but it's completely well-defined, and such a warning is
4515  // unlikely to catch any mistakes.
4516  if (const PointerType *PT = Ty->getAsPointerType())
4517    return PT->getPointeeType();
4518
4519  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4520    << Ty << Op->getSourceRange();
4521  return QualType();
4522}
4523
4524static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4525  tok::TokenKind Kind) {
4526  BinaryOperator::Opcode Opc;
4527  switch (Kind) {
4528  default: assert(0 && "Unknown binop!");
4529  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4530  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4531  case tok::star:                 Opc = BinaryOperator::Mul; break;
4532  case tok::slash:                Opc = BinaryOperator::Div; break;
4533  case tok::percent:              Opc = BinaryOperator::Rem; break;
4534  case tok::plus:                 Opc = BinaryOperator::Add; break;
4535  case tok::minus:                Opc = BinaryOperator::Sub; break;
4536  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4537  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4538  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4539  case tok::less:                 Opc = BinaryOperator::LT; break;
4540  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4541  case tok::greater:              Opc = BinaryOperator::GT; break;
4542  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4543  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4544  case tok::amp:                  Opc = BinaryOperator::And; break;
4545  case tok::caret:                Opc = BinaryOperator::Xor; break;
4546  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4547  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4548  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4549  case tok::equal:                Opc = BinaryOperator::Assign; break;
4550  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4551  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4552  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4553  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4554  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4555  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4556  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4557  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4558  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4559  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4560  case tok::comma:                Opc = BinaryOperator::Comma; break;
4561  }
4562  return Opc;
4563}
4564
4565static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4566  tok::TokenKind Kind) {
4567  UnaryOperator::Opcode Opc;
4568  switch (Kind) {
4569  default: assert(0 && "Unknown unary op!");
4570  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4571  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4572  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4573  case tok::star:         Opc = UnaryOperator::Deref; break;
4574  case tok::plus:         Opc = UnaryOperator::Plus; break;
4575  case tok::minus:        Opc = UnaryOperator::Minus; break;
4576  case tok::tilde:        Opc = UnaryOperator::Not; break;
4577  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4578  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4579  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4580  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4581  }
4582  return Opc;
4583}
4584
4585/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4586/// operator @p Opc at location @c TokLoc. This routine only supports
4587/// built-in operations; ActOnBinOp handles overloaded operators.
4588Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4589                                                  unsigned Op,
4590                                                  Expr *lhs, Expr *rhs) {
4591  QualType ResultTy;     // Result type of the binary operator.
4592  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4593  // The following two variables are used for compound assignment operators
4594  QualType CompLHSTy;    // Type of LHS after promotions for computation
4595  QualType CompResultTy; // Type of computation result
4596
4597  switch (Opc) {
4598  case BinaryOperator::Assign:
4599    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4600    break;
4601  case BinaryOperator::PtrMemD:
4602  case BinaryOperator::PtrMemI:
4603    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4604                                            Opc == BinaryOperator::PtrMemI);
4605    break;
4606  case BinaryOperator::Mul:
4607  case BinaryOperator::Div:
4608    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4609    break;
4610  case BinaryOperator::Rem:
4611    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4612    break;
4613  case BinaryOperator::Add:
4614    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4615    break;
4616  case BinaryOperator::Sub:
4617    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4618    break;
4619  case BinaryOperator::Shl:
4620  case BinaryOperator::Shr:
4621    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4622    break;
4623  case BinaryOperator::LE:
4624  case BinaryOperator::LT:
4625  case BinaryOperator::GE:
4626  case BinaryOperator::GT:
4627    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4628    break;
4629  case BinaryOperator::EQ:
4630  case BinaryOperator::NE:
4631    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4632    break;
4633  case BinaryOperator::And:
4634  case BinaryOperator::Xor:
4635  case BinaryOperator::Or:
4636    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4637    break;
4638  case BinaryOperator::LAnd:
4639  case BinaryOperator::LOr:
4640    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4641    break;
4642  case BinaryOperator::MulAssign:
4643  case BinaryOperator::DivAssign:
4644    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4645    CompLHSTy = CompResultTy;
4646    if (!CompResultTy.isNull())
4647      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4648    break;
4649  case BinaryOperator::RemAssign:
4650    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4651    CompLHSTy = CompResultTy;
4652    if (!CompResultTy.isNull())
4653      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4654    break;
4655  case BinaryOperator::AddAssign:
4656    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4657    if (!CompResultTy.isNull())
4658      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4659    break;
4660  case BinaryOperator::SubAssign:
4661    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4662    if (!CompResultTy.isNull())
4663      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4664    break;
4665  case BinaryOperator::ShlAssign:
4666  case BinaryOperator::ShrAssign:
4667    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4668    CompLHSTy = CompResultTy;
4669    if (!CompResultTy.isNull())
4670      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4671    break;
4672  case BinaryOperator::AndAssign:
4673  case BinaryOperator::XorAssign:
4674  case BinaryOperator::OrAssign:
4675    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4676    CompLHSTy = CompResultTy;
4677    if (!CompResultTy.isNull())
4678      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4679    break;
4680  case BinaryOperator::Comma:
4681    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4682    break;
4683  }
4684  if (ResultTy.isNull())
4685    return ExprError();
4686  if (CompResultTy.isNull())
4687    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4688  else
4689    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4690                                                      CompLHSTy, CompResultTy,
4691                                                      OpLoc));
4692}
4693
4694// Binary Operators.  'Tok' is the token for the operator.
4695Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4696                                          tok::TokenKind Kind,
4697                                          ExprArg LHS, ExprArg RHS) {
4698  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4699  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4700
4701  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4702  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4703
4704  if (getLangOptions().CPlusPlus &&
4705      (lhs->getType()->isOverloadableType() ||
4706       rhs->getType()->isOverloadableType())) {
4707    // Find all of the overloaded operators visible from this
4708    // point. We perform both an operator-name lookup from the local
4709    // scope and an argument-dependent lookup based on the types of
4710    // the arguments.
4711    FunctionSet Functions;
4712    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4713    if (OverOp != OO_None) {
4714      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4715                                   Functions);
4716      Expr *Args[2] = { lhs, rhs };
4717      DeclarationName OpName
4718        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4719      ArgumentDependentLookup(OpName, Args, 2, Functions);
4720    }
4721
4722    // Build the (potentially-overloaded, potentially-dependent)
4723    // binary operation.
4724    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4725  }
4726
4727  // Build a built-in binary operation.
4728  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4729}
4730
4731Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4732                                                    unsigned OpcIn,
4733                                                    ExprArg InputArg) {
4734  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4735
4736  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4737  Expr *Input = (Expr *)InputArg.get();
4738  QualType resultType;
4739  switch (Opc) {
4740  case UnaryOperator::PostInc:
4741  case UnaryOperator::PostDec:
4742  case UnaryOperator::OffsetOf:
4743    assert(false && "Invalid unary operator");
4744    break;
4745
4746  case UnaryOperator::PreInc:
4747  case UnaryOperator::PreDec:
4748    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4749                                                Opc == UnaryOperator::PreInc);
4750    break;
4751  case UnaryOperator::AddrOf:
4752    resultType = CheckAddressOfOperand(Input, OpLoc);
4753    break;
4754  case UnaryOperator::Deref:
4755    DefaultFunctionArrayConversion(Input);
4756    resultType = CheckIndirectionOperand(Input, OpLoc);
4757    break;
4758  case UnaryOperator::Plus:
4759  case UnaryOperator::Minus:
4760    UsualUnaryConversions(Input);
4761    resultType = Input->getType();
4762    if (resultType->isDependentType())
4763      break;
4764    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4765      break;
4766    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4767             resultType->isEnumeralType())
4768      break;
4769    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4770             Opc == UnaryOperator::Plus &&
4771             resultType->isPointerType())
4772      break;
4773
4774    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4775      << resultType << Input->getSourceRange());
4776  case UnaryOperator::Not: // bitwise complement
4777    UsualUnaryConversions(Input);
4778    resultType = Input->getType();
4779    if (resultType->isDependentType())
4780      break;
4781    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4782    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4783      // C99 does not support '~' for complex conjugation.
4784      Diag(OpLoc, diag::ext_integer_complement_complex)
4785        << resultType << Input->getSourceRange();
4786    else if (!resultType->isIntegerType())
4787      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4788        << resultType << Input->getSourceRange());
4789    break;
4790  case UnaryOperator::LNot: // logical negation
4791    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4792    DefaultFunctionArrayConversion(Input);
4793    resultType = Input->getType();
4794    if (resultType->isDependentType())
4795      break;
4796    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4797      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4798        << resultType << Input->getSourceRange());
4799    // LNot always has type int. C99 6.5.3.3p5.
4800    // In C++, it's bool. C++ 5.3.1p8
4801    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4802    break;
4803  case UnaryOperator::Real:
4804  case UnaryOperator::Imag:
4805    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4806    break;
4807  case UnaryOperator::Extension:
4808    resultType = Input->getType();
4809    break;
4810  }
4811  if (resultType.isNull())
4812    return ExprError();
4813
4814  InputArg.release();
4815  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4816}
4817
4818// Unary Operators.  'Tok' is the token for the operator.
4819Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4820                                            tok::TokenKind Op, ExprArg input) {
4821  Expr *Input = (Expr*)input.get();
4822  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4823
4824  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4825    // Find all of the overloaded operators visible from this
4826    // point. We perform both an operator-name lookup from the local
4827    // scope and an argument-dependent lookup based on the types of
4828    // the arguments.
4829    FunctionSet Functions;
4830    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4831    if (OverOp != OO_None) {
4832      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4833                                   Functions);
4834      DeclarationName OpName
4835        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4836      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4837    }
4838
4839    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4840  }
4841
4842  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4843}
4844
4845/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4846Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4847                                            SourceLocation LabLoc,
4848                                            IdentifierInfo *LabelII) {
4849  // Look up the record for this label identifier.
4850  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4851
4852  // If we haven't seen this label yet, create a forward reference. It
4853  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4854  if (LabelDecl == 0)
4855    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4856
4857  // Create the AST node.  The address of a label always has type 'void*'.
4858  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4859                                       Context.getPointerType(Context.VoidTy)));
4860}
4861
4862Sema::OwningExprResult
4863Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4864                    SourceLocation RPLoc) { // "({..})"
4865  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4866  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4867  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4868
4869  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4870  if (isFileScope)
4871    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4872
4873  // FIXME: there are a variety of strange constraints to enforce here, for
4874  // example, it is not possible to goto into a stmt expression apparently.
4875  // More semantic analysis is needed.
4876
4877  // If there are sub stmts in the compound stmt, take the type of the last one
4878  // as the type of the stmtexpr.
4879  QualType Ty = Context.VoidTy;
4880
4881  if (!Compound->body_empty()) {
4882    Stmt *LastStmt = Compound->body_back();
4883    // If LastStmt is a label, skip down through into the body.
4884    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4885      LastStmt = Label->getSubStmt();
4886
4887    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4888      Ty = LastExpr->getType();
4889  }
4890
4891  // FIXME: Check that expression type is complete/non-abstract; statement
4892  // expressions are not lvalues.
4893
4894  substmt.release();
4895  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4896}
4897
4898Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4899                                                  SourceLocation BuiltinLoc,
4900                                                  SourceLocation TypeLoc,
4901                                                  TypeTy *argty,
4902                                                  OffsetOfComponent *CompPtr,
4903                                                  unsigned NumComponents,
4904                                                  SourceLocation RPLoc) {
4905  // FIXME: This function leaks all expressions in the offset components on
4906  // error.
4907  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4908  assert(!ArgTy.isNull() && "Missing type argument!");
4909
4910  bool Dependent = ArgTy->isDependentType();
4911
4912  // We must have at least one component that refers to the type, and the first
4913  // one is known to be a field designator.  Verify that the ArgTy represents
4914  // a struct/union/class.
4915  if (!Dependent && !ArgTy->isRecordType())
4916    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4917
4918  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4919  // with an incomplete type would be illegal.
4920
4921  // Otherwise, create a null pointer as the base, and iteratively process
4922  // the offsetof designators.
4923  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4924  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4925  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4926                                    ArgTy, SourceLocation());
4927
4928  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4929  // GCC extension, diagnose them.
4930  // FIXME: This diagnostic isn't actually visible because the location is in
4931  // a system header!
4932  if (NumComponents != 1)
4933    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4934      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4935
4936  if (!Dependent) {
4937    bool DidWarnAboutNonPOD = false;
4938
4939    // FIXME: Dependent case loses a lot of information here. And probably
4940    // leaks like a sieve.
4941    for (unsigned i = 0; i != NumComponents; ++i) {
4942      const OffsetOfComponent &OC = CompPtr[i];
4943      if (OC.isBrackets) {
4944        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4945        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4946        if (!AT) {
4947          Res->Destroy(Context);
4948          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4949            << Res->getType());
4950        }
4951
4952        // FIXME: C++: Verify that operator[] isn't overloaded.
4953
4954        // Promote the array so it looks more like a normal array subscript
4955        // expression.
4956        DefaultFunctionArrayConversion(Res);
4957
4958        // C99 6.5.2.1p1
4959        Expr *Idx = static_cast<Expr*>(OC.U.E);
4960        // FIXME: Leaks Res
4961        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4962          return ExprError(Diag(Idx->getLocStart(),
4963                                diag::err_typecheck_subscript_not_integer)
4964            << Idx->getSourceRange());
4965
4966        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4967                                               OC.LocEnd);
4968        continue;
4969      }
4970
4971      const RecordType *RC = Res->getType()->getAsRecordType();
4972      if (!RC) {
4973        Res->Destroy(Context);
4974        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4975          << Res->getType());
4976      }
4977
4978      // Get the decl corresponding to this.
4979      RecordDecl *RD = RC->getDecl();
4980      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4981        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
4982          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
4983            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
4984            << Res->getType());
4985          DidWarnAboutNonPOD = true;
4986        }
4987      }
4988
4989      FieldDecl *MemberDecl
4990        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4991                                                          LookupMemberName)
4992                                        .getAsDecl());
4993      // FIXME: Leaks Res
4994      if (!MemberDecl)
4995        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
4996         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
4997
4998      // FIXME: C++: Verify that MemberDecl isn't a static field.
4999      // FIXME: Verify that MemberDecl isn't a bitfield.
5000      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5001        Res = BuildAnonymousStructUnionMemberReference(
5002            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5003      } else {
5004        // MemberDecl->getType() doesn't get the right qualifiers, but it
5005        // doesn't matter here.
5006        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5007                MemberDecl->getType().getNonReferenceType());
5008      }
5009    }
5010  }
5011
5012  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5013                                           Context.getSizeType(), BuiltinLoc));
5014}
5015
5016
5017Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5018                                                      TypeTy *arg1,TypeTy *arg2,
5019                                                      SourceLocation RPLoc) {
5020  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5021  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5022
5023  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5024
5025  if (getLangOptions().CPlusPlus) {
5026    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5027      << SourceRange(BuiltinLoc, RPLoc);
5028    return ExprError();
5029  }
5030
5031  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5032                                                 argT1, argT2, RPLoc));
5033}
5034
5035Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5036                                             ExprArg cond,
5037                                             ExprArg expr1, ExprArg expr2,
5038                                             SourceLocation RPLoc) {
5039  Expr *CondExpr = static_cast<Expr*>(cond.get());
5040  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5041  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5042
5043  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5044
5045  QualType resType;
5046  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5047    resType = Context.DependentTy;
5048  } else {
5049    // The conditional expression is required to be a constant expression.
5050    llvm::APSInt condEval(32);
5051    SourceLocation ExpLoc;
5052    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5053      return ExprError(Diag(ExpLoc,
5054                       diag::err_typecheck_choose_expr_requires_constant)
5055        << CondExpr->getSourceRange());
5056
5057    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5058    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5059  }
5060
5061  cond.release(); expr1.release(); expr2.release();
5062  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5063                                        resType, RPLoc));
5064}
5065
5066//===----------------------------------------------------------------------===//
5067// Clang Extensions.
5068//===----------------------------------------------------------------------===//
5069
5070/// ActOnBlockStart - This callback is invoked when a block literal is started.
5071void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5072  // Analyze block parameters.
5073  BlockSemaInfo *BSI = new BlockSemaInfo();
5074
5075  // Add BSI to CurBlock.
5076  BSI->PrevBlockInfo = CurBlock;
5077  CurBlock = BSI;
5078
5079  BSI->ReturnType = 0;
5080  BSI->TheScope = BlockScope;
5081  BSI->hasBlockDeclRefExprs = false;
5082  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5083  CurFunctionNeedsScopeChecking = false;
5084
5085  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5086  PushDeclContext(BlockScope, BSI->TheDecl);
5087}
5088
5089void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5090  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5091
5092  if (ParamInfo.getNumTypeObjects() == 0
5093      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5094    ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
5095    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5096
5097    if (T->isArrayType()) {
5098      Diag(ParamInfo.getSourceRange().getBegin(),
5099           diag::err_block_returns_array);
5100      return;
5101    }
5102
5103    // The parameter list is optional, if there was none, assume ().
5104    if (!T->isFunctionType())
5105      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5106
5107    CurBlock->hasPrototype = true;
5108    CurBlock->isVariadic = false;
5109    // Check for a valid sentinel attribute on this block.
5110    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5111      Diag(ParamInfo.getAttributes()->getLoc(),
5112           diag::warn_attribute_sentinel_not_variadic) << 1;
5113      // FIXME: remove the attribute.
5114    }
5115    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5116
5117    // Do not allow returning a objc interface by-value.
5118    if (RetTy->isObjCInterfaceType()) {
5119      Diag(ParamInfo.getSourceRange().getBegin(),
5120           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5121      return;
5122    }
5123    return;
5124  }
5125
5126  // Analyze arguments to block.
5127  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5128         "Not a function declarator!");
5129  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5130
5131  CurBlock->hasPrototype = FTI.hasPrototype;
5132  CurBlock->isVariadic = true;
5133
5134  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5135  // no arguments, not a function that takes a single void argument.
5136  if (FTI.hasPrototype &&
5137      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5138     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5139        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5140    // empty arg list, don't push any params.
5141    CurBlock->isVariadic = false;
5142  } else if (FTI.hasPrototype) {
5143    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5144      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5145    CurBlock->isVariadic = FTI.isVariadic;
5146  }
5147  CurBlock->TheDecl->setParams(Context, &CurBlock->Params[0],
5148                               CurBlock->Params.size());
5149  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5150  ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
5151  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5152       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5153    // If this has an identifier, add it to the scope stack.
5154    if ((*AI)->getIdentifier())
5155      PushOnScopeChains(*AI, CurBlock->TheScope);
5156
5157  // Check for a valid sentinel attribute on this block.
5158  if (!CurBlock->isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5159    Diag(ParamInfo.getAttributes()->getLoc(),
5160         diag::warn_attribute_sentinel_not_variadic) << 1;
5161    // FIXME: remove the attribute.
5162  }
5163
5164  // Analyze the return type.
5165  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5166  QualType RetTy = T->getAsFunctionType()->getResultType();
5167
5168  // Do not allow returning a objc interface by-value.
5169  if (RetTy->isObjCInterfaceType()) {
5170    Diag(ParamInfo.getSourceRange().getBegin(),
5171         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5172  } else if (!RetTy->isDependentType())
5173    CurBlock->ReturnType = RetTy.getTypePtr();
5174}
5175
5176/// ActOnBlockError - If there is an error parsing a block, this callback
5177/// is invoked to pop the information about the block from the action impl.
5178void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5179  // Ensure that CurBlock is deleted.
5180  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5181
5182  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5183
5184  // Pop off CurBlock, handle nested blocks.
5185  PopDeclContext();
5186  CurBlock = CurBlock->PrevBlockInfo;
5187  // FIXME: Delete the ParmVarDecl objects as well???
5188}
5189
5190/// ActOnBlockStmtExpr - This is called when the body of a block statement
5191/// literal was successfully completed.  ^(int x){...}
5192Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5193                                                StmtArg body, Scope *CurScope) {
5194  // If blocks are disabled, emit an error.
5195  if (!LangOpts.Blocks)
5196    Diag(CaretLoc, diag::err_blocks_disable);
5197
5198  // Ensure that CurBlock is deleted.
5199  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5200
5201  PopDeclContext();
5202
5203  // Pop off CurBlock, handle nested blocks.
5204  CurBlock = CurBlock->PrevBlockInfo;
5205
5206  QualType RetTy = Context.VoidTy;
5207  if (BSI->ReturnType)
5208    RetTy = QualType(BSI->ReturnType, 0);
5209
5210  llvm::SmallVector<QualType, 8> ArgTypes;
5211  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5212    ArgTypes.push_back(BSI->Params[i]->getType());
5213
5214  QualType BlockTy;
5215  if (!BSI->hasPrototype)
5216    BlockTy = Context.getFunctionNoProtoType(RetTy);
5217  else
5218    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
5219                                      BSI->isVariadic, 0);
5220
5221  // FIXME: Check that return/parameter types are complete/non-abstract
5222
5223  BlockTy = Context.getBlockPointerType(BlockTy);
5224
5225  // If needed, diagnose invalid gotos and switches in the block.
5226  if (CurFunctionNeedsScopeChecking)
5227    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5228  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5229
5230  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5231  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5232                                       BSI->hasBlockDeclRefExprs));
5233}
5234
5235Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5236                                        ExprArg expr, TypeTy *type,
5237                                        SourceLocation RPLoc) {
5238  QualType T = QualType::getFromOpaquePtr(type);
5239  Expr *E = static_cast<Expr*>(expr.get());
5240  Expr *OrigExpr = E;
5241
5242  InitBuiltinVaListType();
5243
5244  // Get the va_list type
5245  QualType VaListType = Context.getBuiltinVaListType();
5246  if (VaListType->isArrayType()) {
5247    // Deal with implicit array decay; for example, on x86-64,
5248    // va_list is an array, but it's supposed to decay to
5249    // a pointer for va_arg.
5250    VaListType = Context.getArrayDecayedType(VaListType);
5251    // Make sure the input expression also decays appropriately.
5252    UsualUnaryConversions(E);
5253  } else {
5254    // Otherwise, the va_list argument must be an l-value because
5255    // it is modified by va_arg.
5256    if (!E->isTypeDependent() &&
5257        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5258      return ExprError();
5259  }
5260
5261  if (!E->isTypeDependent() &&
5262      !Context.hasSameType(VaListType, E->getType())) {
5263    return ExprError(Diag(E->getLocStart(),
5264                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5265      << OrigExpr->getType() << E->getSourceRange());
5266  }
5267
5268  // FIXME: Check that type is complete/non-abstract
5269  // FIXME: Warn if a non-POD type is passed in.
5270
5271  expr.release();
5272  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5273                                       RPLoc));
5274}
5275
5276Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5277  // The type of __null will be int or long, depending on the size of
5278  // pointers on the target.
5279  QualType Ty;
5280  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5281    Ty = Context.IntTy;
5282  else
5283    Ty = Context.LongTy;
5284
5285  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5286}
5287
5288bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5289                                    SourceLocation Loc,
5290                                    QualType DstType, QualType SrcType,
5291                                    Expr *SrcExpr, const char *Flavor) {
5292  // Decode the result (notice that AST's are still created for extensions).
5293  bool isInvalid = false;
5294  unsigned DiagKind;
5295  switch (ConvTy) {
5296  default: assert(0 && "Unknown conversion type");
5297  case Compatible: return false;
5298  case PointerToInt:
5299    DiagKind = diag::ext_typecheck_convert_pointer_int;
5300    break;
5301  case IntToPointer:
5302    DiagKind = diag::ext_typecheck_convert_int_pointer;
5303    break;
5304  case IncompatiblePointer:
5305    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5306    break;
5307  case IncompatiblePointerSign:
5308    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5309    break;
5310  case FunctionVoidPointer:
5311    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5312    break;
5313  case CompatiblePointerDiscardsQualifiers:
5314    // If the qualifiers lost were because we were applying the
5315    // (deprecated) C++ conversion from a string literal to a char*
5316    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5317    // Ideally, this check would be performed in
5318    // CheckPointerTypesForAssignment. However, that would require a
5319    // bit of refactoring (so that the second argument is an
5320    // expression, rather than a type), which should be done as part
5321    // of a larger effort to fix CheckPointerTypesForAssignment for
5322    // C++ semantics.
5323    if (getLangOptions().CPlusPlus &&
5324        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5325      return false;
5326    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5327    break;
5328  case IntToBlockPointer:
5329    DiagKind = diag::err_int_to_block_pointer;
5330    break;
5331  case IncompatibleBlockPointer:
5332    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5333    break;
5334  case IncompatibleObjCQualifiedId:
5335    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5336    // it can give a more specific diagnostic.
5337    DiagKind = diag::warn_incompatible_qualified_id;
5338    break;
5339  case IncompatibleVectors:
5340    DiagKind = diag::warn_incompatible_vectors;
5341    break;
5342  case Incompatible:
5343    DiagKind = diag::err_typecheck_convert_incompatible;
5344    isInvalid = true;
5345    break;
5346  }
5347
5348  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5349    << SrcExpr->getSourceRange();
5350  return isInvalid;
5351}
5352
5353bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5354  llvm::APSInt ICEResult;
5355  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5356    if (Result)
5357      *Result = ICEResult;
5358    return false;
5359  }
5360
5361  Expr::EvalResult EvalResult;
5362
5363  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5364      EvalResult.HasSideEffects) {
5365    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5366
5367    if (EvalResult.Diag) {
5368      // We only show the note if it's not the usual "invalid subexpression"
5369      // or if it's actually in a subexpression.
5370      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5371          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5372        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5373    }
5374
5375    return true;
5376  }
5377
5378  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5379    E->getSourceRange();
5380
5381  if (EvalResult.Diag &&
5382      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5383    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5384
5385  if (Result)
5386    *Result = EvalResult.Val.getInt();
5387  return false;
5388}
5389