SemaExpr.cpp revision 2885775090f6b4b011ce8b1cb6045e3b2202e9a1
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
91/// (and other functions in future), which have been declared with sentinel
92/// attribute. It warns if call does not have the sentinel argument.
93///
94void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
95                                 Expr **Args, unsigned NumArgs)
96{
97  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
98  if (!attr)
99    return;
100  int sentinelPos = attr->getSentinel();
101  int nullPos = attr->getNullPos();
102
103  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
104  // base class. Then we won't be needing two versions of the same code.
105  unsigned int i = 0;
106  bool warnNotEnoughArgs = false;
107  int isMethod = 0;
108  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
109    // skip over named parameters.
110    ObjCMethodDecl::param_iterator P, E = MD->param_end();
111    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
112      if (nullPos)
113        --nullPos;
114      else
115        ++i;
116    }
117    warnNotEnoughArgs = (P != E || i >= NumArgs);
118    isMethod = 1;
119  }
120  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
121    // skip over named parameters.
122    ObjCMethodDecl::param_iterator P, E = FD->param_end();
123    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
124      if (nullPos)
125        --nullPos;
126      else
127        ++i;
128    }
129    warnNotEnoughArgs = (P != E || i >= NumArgs);
130  }
131  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
132    // block or function pointer call.
133    QualType Ty = V->getType();
134    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
135      const FunctionType *FT = Ty->isFunctionPointerType()
136      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
137      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
138      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
139        unsigned NumArgsInProto = Proto->getNumArgs();
140        unsigned k;
141        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
142          if (nullPos)
143            --nullPos;
144          else
145            ++i;
146        }
147        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
148      }
149      if (Ty->isBlockPointerType())
150        isMethod = 2;
151    }
152    else
153      return;
154  }
155  else
156    return;
157
158  if (warnNotEnoughArgs) {
159    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161    return;
162  }
163  int sentinel = i;
164  while (sentinelPos > 0 && i < NumArgs-1) {
165    --sentinelPos;
166    ++i;
167  }
168  if (sentinelPos > 0) {
169    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
170    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
171    return;
172  }
173  while (i < NumArgs-1) {
174    ++i;
175    ++sentinel;
176  }
177  Expr *sentinelExpr = Args[sentinel];
178  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
179                       !sentinelExpr->isNullPointerConstant(Context))) {
180    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
181    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
182  }
183  return;
184}
185
186SourceRange Sema::getExprRange(ExprTy *E) const {
187  Expr *Ex = (Expr *)E;
188  return Ex? Ex->getSourceRange() : SourceRange();
189}
190
191//===----------------------------------------------------------------------===//
192//  Standard Promotions and Conversions
193//===----------------------------------------------------------------------===//
194
195/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
196void Sema::DefaultFunctionArrayConversion(Expr *&E) {
197  QualType Ty = E->getType();
198  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
199
200  if (Ty->isFunctionType())
201    ImpCastExprToType(E, Context.getPointerType(Ty));
202  else if (Ty->isArrayType()) {
203    // In C90 mode, arrays only promote to pointers if the array expression is
204    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
205    // type 'array of type' is converted to an expression that has type 'pointer
206    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
207    // that has type 'array of type' ...".  The relevant change is "an lvalue"
208    // (C90) to "an expression" (C99).
209    //
210    // C++ 4.2p1:
211    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
212    // T" can be converted to an rvalue of type "pointer to T".
213    //
214    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
215        E->isLvalue(Context) == Expr::LV_Valid)
216      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
217  }
218}
219
220/// \brief Whether this is a promotable bitfield reference according
221/// to C99 6.3.1.1p2, bullet 2.
222///
223/// \returns the type this bit-field will promote to, or NULL if no
224/// promotion occurs.
225static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
226  FieldDecl *Field = E->getBitField();
227  if (!Field)
228    return QualType();
229
230  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
231  if (!BT)
232    return QualType();
233
234  if (BT->getKind() != BuiltinType::Bool &&
235      BT->getKind() != BuiltinType::Int &&
236      BT->getKind() != BuiltinType::UInt)
237    return QualType();
238
239  llvm::APSInt BitWidthAP;
240  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
241    return QualType();
242
243  uint64_t BitWidth = BitWidthAP.getZExtValue();
244  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
245  if (BitWidth < IntSize ||
246      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
247    return Context.IntTy;
248
249  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
250    return Context.UnsignedIntTy;
251
252  return QualType();
253}
254
255/// UsualUnaryConversions - Performs various conversions that are common to most
256/// operators (C99 6.3). The conversions of array and function types are
257/// sometimes surpressed. For example, the array->pointer conversion doesn't
258/// apply if the array is an argument to the sizeof or address (&) operators.
259/// In these instances, this routine should *not* be called.
260Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
261  QualType Ty = Expr->getType();
262  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
263
264  // C99 6.3.1.1p2:
265  //
266  //   The following may be used in an expression wherever an int or
267  //   unsigned int may be used:
268  //     - an object or expression with an integer type whose integer
269  //       conversion rank is less than or equal to the rank of int
270  //       and unsigned int.
271  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
272  //
273  //   If an int can represent all values of the original type, the
274  //   value is converted to an int; otherwise, it is converted to an
275  //   unsigned int. These are called the integer promotions. All
276  //   other types are unchanged by the integer promotions.
277  if (Ty->isPromotableIntegerType()) {
278    ImpCastExprToType(Expr, Context.IntTy);
279    return Expr;
280  } else {
281    QualType T = isPromotableBitField(Expr, Context);
282    if (!T.isNull()) {
283      ImpCastExprToType(Expr, T);
284      return Expr;
285    }
286  }
287
288  DefaultFunctionArrayConversion(Expr);
289  return Expr;
290}
291
292/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
293/// do not have a prototype. Arguments that have type float are promoted to
294/// double. All other argument types are converted by UsualUnaryConversions().
295void Sema::DefaultArgumentPromotion(Expr *&Expr) {
296  QualType Ty = Expr->getType();
297  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
298
299  // If this is a 'float' (CVR qualified or typedef) promote to double.
300  if (const BuiltinType *BT = Ty->getAsBuiltinType())
301    if (BT->getKind() == BuiltinType::Float)
302      return ImpCastExprToType(Expr, Context.DoubleTy);
303
304  UsualUnaryConversions(Expr);
305}
306
307/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
308/// will warn if the resulting type is not a POD type, and rejects ObjC
309/// interfaces passed by value.  This returns true if the argument type is
310/// completely illegal.
311bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
312  DefaultArgumentPromotion(Expr);
313
314  if (Expr->getType()->isObjCInterfaceType()) {
315    Diag(Expr->getLocStart(),
316         diag::err_cannot_pass_objc_interface_to_vararg)
317      << Expr->getType() << CT;
318    return true;
319  }
320
321  if (!Expr->getType()->isPODType())
322    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
323      << Expr->getType() << CT;
324
325  return false;
326}
327
328
329/// UsualArithmeticConversions - Performs various conversions that are common to
330/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
331/// routine returns the first non-arithmetic type found. The client is
332/// responsible for emitting appropriate error diagnostics.
333/// FIXME: verify the conversion rules for "complex int" are consistent with
334/// GCC.
335QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
336                                          bool isCompAssign) {
337  if (!isCompAssign)
338    UsualUnaryConversions(lhsExpr);
339
340  UsualUnaryConversions(rhsExpr);
341
342  // For conversion purposes, we ignore any qualifiers.
343  // For example, "const float" and "float" are equivalent.
344  QualType lhs =
345    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
346  QualType rhs =
347    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
348
349  // If both types are identical, no conversion is needed.
350  if (lhs == rhs)
351    return lhs;
352
353  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
354  // The caller can deal with this (e.g. pointer + int).
355  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
356    return lhs;
357
358  // Perform bitfield promotions.
359  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
360  if (!LHSBitfieldPromoteTy.isNull())
361    lhs = LHSBitfieldPromoteTy;
362  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
363  if (!RHSBitfieldPromoteTy.isNull())
364    rhs = RHSBitfieldPromoteTy;
365
366  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
367  if (!isCompAssign)
368    ImpCastExprToType(lhsExpr, destType);
369  ImpCastExprToType(rhsExpr, destType);
370  return destType;
371}
372
373QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
374  // Perform the usual unary conversions. We do this early so that
375  // integral promotions to "int" can allow us to exit early, in the
376  // lhs == rhs check. Also, for conversion purposes, we ignore any
377  // qualifiers.  For example, "const float" and "float" are
378  // equivalent.
379  if (lhs->isPromotableIntegerType())
380    lhs = Context.IntTy;
381  else
382    lhs = lhs.getUnqualifiedType();
383  if (rhs->isPromotableIntegerType())
384    rhs = Context.IntTy;
385  else
386    rhs = rhs.getUnqualifiedType();
387
388  // If both types are identical, no conversion is needed.
389  if (lhs == rhs)
390    return lhs;
391
392  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
393  // The caller can deal with this (e.g. pointer + int).
394  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
395    return lhs;
396
397  // At this point, we have two different arithmetic types.
398
399  // Handle complex types first (C99 6.3.1.8p1).
400  if (lhs->isComplexType() || rhs->isComplexType()) {
401    // if we have an integer operand, the result is the complex type.
402    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
403      // convert the rhs to the lhs complex type.
404      return lhs;
405    }
406    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
407      // convert the lhs to the rhs complex type.
408      return rhs;
409    }
410    // This handles complex/complex, complex/float, or float/complex.
411    // When both operands are complex, the shorter operand is converted to the
412    // type of the longer, and that is the type of the result. This corresponds
413    // to what is done when combining two real floating-point operands.
414    // The fun begins when size promotion occur across type domains.
415    // From H&S 6.3.4: When one operand is complex and the other is a real
416    // floating-point type, the less precise type is converted, within it's
417    // real or complex domain, to the precision of the other type. For example,
418    // when combining a "long double" with a "double _Complex", the
419    // "double _Complex" is promoted to "long double _Complex".
420    int result = Context.getFloatingTypeOrder(lhs, rhs);
421
422    if (result > 0) { // The left side is bigger, convert rhs.
423      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
424    } else if (result < 0) { // The right side is bigger, convert lhs.
425      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
426    }
427    // At this point, lhs and rhs have the same rank/size. Now, make sure the
428    // domains match. This is a requirement for our implementation, C99
429    // does not require this promotion.
430    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
431      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
432        return rhs;
433      } else { // handle "_Complex double, double".
434        return lhs;
435      }
436    }
437    return lhs; // The domain/size match exactly.
438  }
439  // Now handle "real" floating types (i.e. float, double, long double).
440  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
441    // if we have an integer operand, the result is the real floating type.
442    if (rhs->isIntegerType()) {
443      // convert rhs to the lhs floating point type.
444      return lhs;
445    }
446    if (rhs->isComplexIntegerType()) {
447      // convert rhs to the complex floating point type.
448      return Context.getComplexType(lhs);
449    }
450    if (lhs->isIntegerType()) {
451      // convert lhs to the rhs floating point type.
452      return rhs;
453    }
454    if (lhs->isComplexIntegerType()) {
455      // convert lhs to the complex floating point type.
456      return Context.getComplexType(rhs);
457    }
458    // We have two real floating types, float/complex combos were handled above.
459    // Convert the smaller operand to the bigger result.
460    int result = Context.getFloatingTypeOrder(lhs, rhs);
461    if (result > 0) // convert the rhs
462      return lhs;
463    assert(result < 0 && "illegal float comparison");
464    return rhs;   // convert the lhs
465  }
466  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
467    // Handle GCC complex int extension.
468    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
469    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
470
471    if (lhsComplexInt && rhsComplexInt) {
472      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
473                                      rhsComplexInt->getElementType()) >= 0)
474        return lhs; // convert the rhs
475      return rhs;
476    } else if (lhsComplexInt && rhs->isIntegerType()) {
477      // convert the rhs to the lhs complex type.
478      return lhs;
479    } else if (rhsComplexInt && lhs->isIntegerType()) {
480      // convert the lhs to the rhs complex type.
481      return rhs;
482    }
483  }
484  // Finally, we have two differing integer types.
485  // The rules for this case are in C99 6.3.1.8
486  int compare = Context.getIntegerTypeOrder(lhs, rhs);
487  bool lhsSigned = lhs->isSignedIntegerType(),
488       rhsSigned = rhs->isSignedIntegerType();
489  QualType destType;
490  if (lhsSigned == rhsSigned) {
491    // Same signedness; use the higher-ranked type
492    destType = compare >= 0 ? lhs : rhs;
493  } else if (compare != (lhsSigned ? 1 : -1)) {
494    // The unsigned type has greater than or equal rank to the
495    // signed type, so use the unsigned type
496    destType = lhsSigned ? rhs : lhs;
497  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
498    // The two types are different widths; if we are here, that
499    // means the signed type is larger than the unsigned type, so
500    // use the signed type.
501    destType = lhsSigned ? lhs : rhs;
502  } else {
503    // The signed type is higher-ranked than the unsigned type,
504    // but isn't actually any bigger (like unsigned int and long
505    // on most 32-bit systems).  Use the unsigned type corresponding
506    // to the signed type.
507    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
508  }
509  return destType;
510}
511
512//===----------------------------------------------------------------------===//
513//  Semantic Analysis for various Expression Types
514//===----------------------------------------------------------------------===//
515
516
517/// ActOnStringLiteral - The specified tokens were lexed as pasted string
518/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
519/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
520/// multiple tokens.  However, the common case is that StringToks points to one
521/// string.
522///
523Action::OwningExprResult
524Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
525  assert(NumStringToks && "Must have at least one string!");
526
527  StringLiteralParser Literal(StringToks, NumStringToks, PP);
528  if (Literal.hadError)
529    return ExprError();
530
531  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
532  for (unsigned i = 0; i != NumStringToks; ++i)
533    StringTokLocs.push_back(StringToks[i].getLocation());
534
535  QualType StrTy = Context.CharTy;
536  if (Literal.AnyWide) StrTy = Context.getWCharType();
537  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
538
539  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
540  if (getLangOptions().CPlusPlus)
541    StrTy.addConst();
542
543  // Get an array type for the string, according to C99 6.4.5.  This includes
544  // the nul terminator character as well as the string length for pascal
545  // strings.
546  StrTy = Context.getConstantArrayType(StrTy,
547                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
548                                       ArrayType::Normal, 0);
549
550  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
551  return Owned(StringLiteral::Create(Context, Literal.GetString(),
552                                     Literal.GetStringLength(),
553                                     Literal.AnyWide, StrTy,
554                                     &StringTokLocs[0],
555                                     StringTokLocs.size()));
556}
557
558/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
559/// CurBlock to VD should cause it to be snapshotted (as we do for auto
560/// variables defined outside the block) or false if this is not needed (e.g.
561/// for values inside the block or for globals).
562///
563/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
564/// up-to-date.
565///
566static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
567                                              ValueDecl *VD) {
568  // If the value is defined inside the block, we couldn't snapshot it even if
569  // we wanted to.
570  if (CurBlock->TheDecl == VD->getDeclContext())
571    return false;
572
573  // If this is an enum constant or function, it is constant, don't snapshot.
574  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
575    return false;
576
577  // If this is a reference to an extern, static, or global variable, no need to
578  // snapshot it.
579  // FIXME: What about 'const' variables in C++?
580  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
581    if (!Var->hasLocalStorage())
582      return false;
583
584  // Blocks that have these can't be constant.
585  CurBlock->hasBlockDeclRefExprs = true;
586
587  // If we have nested blocks, the decl may be declared in an outer block (in
588  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
589  // be defined outside all of the current blocks (in which case the blocks do
590  // all get the bit).  Walk the nesting chain.
591  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
592       NextBlock = NextBlock->PrevBlockInfo) {
593    // If we found the defining block for the variable, don't mark the block as
594    // having a reference outside it.
595    if (NextBlock->TheDecl == VD->getDeclContext())
596      break;
597
598    // Otherwise, the DeclRef from the inner block causes the outer one to need
599    // a snapshot as well.
600    NextBlock->hasBlockDeclRefExprs = true;
601  }
602
603  return true;
604}
605
606
607
608/// ActOnIdentifierExpr - The parser read an identifier in expression context,
609/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
610/// identifier is used in a function call context.
611/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
612/// class or namespace that the identifier must be a member of.
613Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
614                                                 IdentifierInfo &II,
615                                                 bool HasTrailingLParen,
616                                                 const CXXScopeSpec *SS,
617                                                 bool isAddressOfOperand) {
618  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
619                                  isAddressOfOperand);
620}
621
622/// BuildDeclRefExpr - Build either a DeclRefExpr or a
623/// QualifiedDeclRefExpr based on whether or not SS is a
624/// nested-name-specifier.
625Sema::OwningExprResult
626Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
627                       bool TypeDependent, bool ValueDependent,
628                       const CXXScopeSpec *SS) {
629  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
630    Diag(Loc,
631         diag::err_auto_variable_cannot_appear_in_own_initializer)
632      << D->getDeclName();
633    return ExprError();
634  }
635
636  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
637    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
638      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
639        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
640          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
641            << D->getIdentifier() << FD->getDeclName();
642          Diag(D->getLocation(), diag::note_local_variable_declared_here)
643            << D->getIdentifier();
644          return ExprError();
645        }
646      }
647    }
648  }
649
650  MarkDeclarationReferenced(Loc, D);
651
652  Expr *E;
653  if (SS && !SS->isEmpty()) {
654    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
655                                          ValueDependent, SS->getRange(),
656                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
657  } else
658    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
659
660  return Owned(E);
661}
662
663/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
664/// variable corresponding to the anonymous union or struct whose type
665/// is Record.
666static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
667                                             RecordDecl *Record) {
668  assert(Record->isAnonymousStructOrUnion() &&
669         "Record must be an anonymous struct or union!");
670
671  // FIXME: Once Decls are directly linked together, this will be an O(1)
672  // operation rather than a slow walk through DeclContext's vector (which
673  // itself will be eliminated). DeclGroups might make this even better.
674  DeclContext *Ctx = Record->getDeclContext();
675  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
676                               DEnd = Ctx->decls_end();
677       D != DEnd; ++D) {
678    if (*D == Record) {
679      // The object for the anonymous struct/union directly
680      // follows its type in the list of declarations.
681      ++D;
682      assert(D != DEnd && "Missing object for anonymous record");
683      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
684      return *D;
685    }
686  }
687
688  assert(false && "Missing object for anonymous record");
689  return 0;
690}
691
692/// \brief Given a field that represents a member of an anonymous
693/// struct/union, build the path from that field's context to the
694/// actual member.
695///
696/// Construct the sequence of field member references we'll have to
697/// perform to get to the field in the anonymous union/struct. The
698/// list of members is built from the field outward, so traverse it
699/// backwards to go from an object in the current context to the field
700/// we found.
701///
702/// \returns The variable from which the field access should begin,
703/// for an anonymous struct/union that is not a member of another
704/// class. Otherwise, returns NULL.
705VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
706                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
707  assert(Field->getDeclContext()->isRecord() &&
708         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
709         && "Field must be stored inside an anonymous struct or union");
710
711  Path.push_back(Field);
712  VarDecl *BaseObject = 0;
713  DeclContext *Ctx = Field->getDeclContext();
714  do {
715    RecordDecl *Record = cast<RecordDecl>(Ctx);
716    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
717    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
718      Path.push_back(AnonField);
719    else {
720      BaseObject = cast<VarDecl>(AnonObject);
721      break;
722    }
723    Ctx = Ctx->getParent();
724  } while (Ctx->isRecord() &&
725           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
726
727  return BaseObject;
728}
729
730Sema::OwningExprResult
731Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
732                                               FieldDecl *Field,
733                                               Expr *BaseObjectExpr,
734                                               SourceLocation OpLoc) {
735  llvm::SmallVector<FieldDecl *, 4> AnonFields;
736  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
737                                                            AnonFields);
738
739  // Build the expression that refers to the base object, from
740  // which we will build a sequence of member references to each
741  // of the anonymous union objects and, eventually, the field we
742  // found via name lookup.
743  bool BaseObjectIsPointer = false;
744  unsigned ExtraQuals = 0;
745  if (BaseObject) {
746    // BaseObject is an anonymous struct/union variable (and is,
747    // therefore, not part of another non-anonymous record).
748    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
749    MarkDeclarationReferenced(Loc, BaseObject);
750    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
751                                               SourceLocation());
752    ExtraQuals
753      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
754  } else if (BaseObjectExpr) {
755    // The caller provided the base object expression. Determine
756    // whether its a pointer and whether it adds any qualifiers to the
757    // anonymous struct/union fields we're looking into.
758    QualType ObjectType = BaseObjectExpr->getType();
759    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
760      BaseObjectIsPointer = true;
761      ObjectType = ObjectPtr->getPointeeType();
762    }
763    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
764  } else {
765    // We've found a member of an anonymous struct/union that is
766    // inside a non-anonymous struct/union, so in a well-formed
767    // program our base object expression is "this".
768    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
769      if (!MD->isStatic()) {
770        QualType AnonFieldType
771          = Context.getTagDeclType(
772                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
773        QualType ThisType = Context.getTagDeclType(MD->getParent());
774        if ((Context.getCanonicalType(AnonFieldType)
775               == Context.getCanonicalType(ThisType)) ||
776            IsDerivedFrom(ThisType, AnonFieldType)) {
777          // Our base object expression is "this".
778          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
779                                                     MD->getThisType(Context));
780          BaseObjectIsPointer = true;
781        }
782      } else {
783        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
784          << Field->getDeclName());
785      }
786      ExtraQuals = MD->getTypeQualifiers();
787    }
788
789    if (!BaseObjectExpr)
790      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
791        << Field->getDeclName());
792  }
793
794  // Build the implicit member references to the field of the
795  // anonymous struct/union.
796  Expr *Result = BaseObjectExpr;
797  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
798         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
799       FI != FIEnd; ++FI) {
800    QualType MemberType = (*FI)->getType();
801    if (!(*FI)->isMutable()) {
802      unsigned combinedQualifiers
803        = MemberType.getCVRQualifiers() | ExtraQuals;
804      MemberType = MemberType.getQualifiedType(combinedQualifiers);
805    }
806    MarkDeclarationReferenced(Loc, *FI);
807    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
808                                      OpLoc, MemberType);
809    BaseObjectIsPointer = false;
810    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
811  }
812
813  return Owned(Result);
814}
815
816/// ActOnDeclarationNameExpr - The parser has read some kind of name
817/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
818/// performs lookup on that name and returns an expression that refers
819/// to that name. This routine isn't directly called from the parser,
820/// because the parser doesn't know about DeclarationName. Rather,
821/// this routine is called by ActOnIdentifierExpr,
822/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
823/// which form the DeclarationName from the corresponding syntactic
824/// forms.
825///
826/// HasTrailingLParen indicates whether this identifier is used in a
827/// function call context.  LookupCtx is only used for a C++
828/// qualified-id (foo::bar) to indicate the class or namespace that
829/// the identifier must be a member of.
830///
831/// isAddressOfOperand means that this expression is the direct operand
832/// of an address-of operator. This matters because this is the only
833/// situation where a qualified name referencing a non-static member may
834/// appear outside a member function of this class.
835Sema::OwningExprResult
836Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
837                               DeclarationName Name, bool HasTrailingLParen,
838                               const CXXScopeSpec *SS,
839                               bool isAddressOfOperand) {
840  // Could be enum-constant, value decl, instance variable, etc.
841  if (SS && SS->isInvalid())
842    return ExprError();
843
844  // C++ [temp.dep.expr]p3:
845  //   An id-expression is type-dependent if it contains:
846  //     -- a nested-name-specifier that contains a class-name that
847  //        names a dependent type.
848  // FIXME: Member of the current instantiation.
849  if (SS && isDependentScopeSpecifier(*SS)) {
850    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
851                                                     Loc, SS->getRange(),
852                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
853  }
854
855  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
856                                         false, true, Loc);
857
858  if (Lookup.isAmbiguous()) {
859    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
860                            SS && SS->isSet() ? SS->getRange()
861                                              : SourceRange());
862    return ExprError();
863  }
864
865  NamedDecl *D = Lookup.getAsDecl();
866
867  // If this reference is in an Objective-C method, then ivar lookup happens as
868  // well.
869  IdentifierInfo *II = Name.getAsIdentifierInfo();
870  if (II && getCurMethodDecl()) {
871    // There are two cases to handle here.  1) scoped lookup could have failed,
872    // in which case we should look for an ivar.  2) scoped lookup could have
873    // found a decl, but that decl is outside the current instance method (i.e.
874    // a global variable).  In these two cases, we do a lookup for an ivar with
875    // this name, if the lookup sucedes, we replace it our current decl.
876    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
877      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
878      ObjCInterfaceDecl *ClassDeclared;
879      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
880        // Check if referencing a field with __attribute__((deprecated)).
881        if (DiagnoseUseOfDecl(IV, Loc))
882          return ExprError();
883
884        // If we're referencing an invalid decl, just return this as a silent
885        // error node.  The error diagnostic was already emitted on the decl.
886        if (IV->isInvalidDecl())
887          return ExprError();
888
889        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
890        // If a class method attemps to use a free standing ivar, this is
891        // an error.
892        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
893           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
894                           << IV->getDeclName());
895        // If a class method uses a global variable, even if an ivar with
896        // same name exists, use the global.
897        if (!IsClsMethod) {
898          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
899              ClassDeclared != IFace)
900           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
901          // FIXME: This should use a new expr for a direct reference, don't
902          // turn this into Self->ivar, just return a BareIVarExpr or something.
903          IdentifierInfo &II = Context.Idents.get("self");
904          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
905          MarkDeclarationReferenced(Loc, IV);
906          return Owned(new (Context)
907                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
908                                       SelfExpr.takeAs<Expr>(), true, true));
909        }
910      }
911    }
912    else if (getCurMethodDecl()->isInstanceMethod()) {
913      // We should warn if a local variable hides an ivar.
914      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
915      ObjCInterfaceDecl *ClassDeclared;
916      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
917        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
918            IFace == ClassDeclared)
919          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
920      }
921    }
922    // Needed to implement property "super.method" notation.
923    if (D == 0 && II->isStr("super")) {
924      QualType T;
925
926      if (getCurMethodDecl()->isInstanceMethod())
927        T = Context.getPointerType(Context.getObjCInterfaceType(
928                                   getCurMethodDecl()->getClassInterface()));
929      else
930        T = Context.getObjCClassType();
931      return Owned(new (Context) ObjCSuperExpr(Loc, T));
932    }
933  }
934
935  // Determine whether this name might be a candidate for
936  // argument-dependent lookup.
937  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
938             HasTrailingLParen;
939
940  if (ADL && D == 0) {
941    // We've seen something of the form
942    //
943    //   identifier(
944    //
945    // and we did not find any entity by the name
946    // "identifier". However, this identifier is still subject to
947    // argument-dependent lookup, so keep track of the name.
948    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
949                                                          Context.OverloadTy,
950                                                          Loc));
951  }
952
953  if (D == 0) {
954    // Otherwise, this could be an implicitly declared function reference (legal
955    // in C90, extension in C99).
956    if (HasTrailingLParen && II &&
957        !getLangOptions().CPlusPlus) // Not in C++.
958      D = ImplicitlyDefineFunction(Loc, *II, S);
959    else {
960      // If this name wasn't predeclared and if this is not a function call,
961      // diagnose the problem.
962      if (SS && !SS->isEmpty())
963        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
964          << Name << SS->getRange());
965      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
966               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
967        return ExprError(Diag(Loc, diag::err_undeclared_use)
968          << Name.getAsString());
969      else
970        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
971    }
972  }
973
974  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
975    // Warn about constructs like:
976    //   if (void *X = foo()) { ... } else { X }.
977    // In the else block, the pointer is always false.
978
979    // FIXME: In a template instantiation, we don't have scope
980    // information to check this property.
981    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
982      Scope *CheckS = S;
983      while (CheckS) {
984        if (CheckS->isWithinElse() &&
985            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
986          if (Var->getType()->isBooleanType())
987            ExprError(Diag(Loc, diag::warn_value_always_false)
988                      << Var->getDeclName());
989          else
990            ExprError(Diag(Loc, diag::warn_value_always_zero)
991                      << Var->getDeclName());
992          break;
993        }
994
995        // Move up one more control parent to check again.
996        CheckS = CheckS->getControlParent();
997        if (CheckS)
998          CheckS = CheckS->getParent();
999      }
1000    }
1001  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
1002    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1003      // C99 DR 316 says that, if a function type comes from a
1004      // function definition (without a prototype), that type is only
1005      // used for checking compatibility. Therefore, when referencing
1006      // the function, we pretend that we don't have the full function
1007      // type.
1008      if (DiagnoseUseOfDecl(Func, Loc))
1009        return ExprError();
1010
1011      QualType T = Func->getType();
1012      QualType NoProtoType = T;
1013      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1014        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1015      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
1016    }
1017  }
1018
1019  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
1020}
1021
1022/// \brief Complete semantic analysis for a reference to the given declaration.
1023Sema::OwningExprResult
1024Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
1025                               bool HasTrailingLParen,
1026                               const CXXScopeSpec *SS,
1027                               bool isAddressOfOperand) {
1028  assert(D && "Cannot refer to a NULL declaration");
1029  DeclarationName Name = D->getDeclName();
1030
1031  // If this is an expression of the form &Class::member, don't build an
1032  // implicit member ref, because we want a pointer to the member in general,
1033  // not any specific instance's member.
1034  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
1035    DeclContext *DC = computeDeclContext(*SS);
1036    if (D && isa<CXXRecordDecl>(DC)) {
1037      QualType DType;
1038      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1039        DType = FD->getType().getNonReferenceType();
1040      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1041        DType = Method->getType();
1042      } else if (isa<OverloadedFunctionDecl>(D)) {
1043        DType = Context.OverloadTy;
1044      }
1045      // Could be an inner type. That's diagnosed below, so ignore it here.
1046      if (!DType.isNull()) {
1047        // The pointer is type- and value-dependent if it points into something
1048        // dependent.
1049        bool Dependent = DC->isDependentContext();
1050        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
1051      }
1052    }
1053  }
1054
1055  // We may have found a field within an anonymous union or struct
1056  // (C++ [class.union]).
1057  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
1058    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1059      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1060
1061  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1062    if (!MD->isStatic()) {
1063      // C++ [class.mfct.nonstatic]p2:
1064      //   [...] if name lookup (3.4.1) resolves the name in the
1065      //   id-expression to a nonstatic nontype member of class X or of
1066      //   a base class of X, the id-expression is transformed into a
1067      //   class member access expression (5.2.5) using (*this) (9.3.2)
1068      //   as the postfix-expression to the left of the '.' operator.
1069      DeclContext *Ctx = 0;
1070      QualType MemberType;
1071      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1072        Ctx = FD->getDeclContext();
1073        MemberType = FD->getType();
1074
1075        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1076          MemberType = RefType->getPointeeType();
1077        else if (!FD->isMutable()) {
1078          unsigned combinedQualifiers
1079            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1080          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1081        }
1082      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1083        if (!Method->isStatic()) {
1084          Ctx = Method->getParent();
1085          MemberType = Method->getType();
1086        }
1087      } else if (OverloadedFunctionDecl *Ovl
1088                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1089        for (OverloadedFunctionDecl::function_iterator
1090               Func = Ovl->function_begin(),
1091               FuncEnd = Ovl->function_end();
1092             Func != FuncEnd; ++Func) {
1093          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1094            if (!DMethod->isStatic()) {
1095              Ctx = Ovl->getDeclContext();
1096              MemberType = Context.OverloadTy;
1097              break;
1098            }
1099        }
1100      }
1101
1102      if (Ctx && Ctx->isRecord()) {
1103        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1104        QualType ThisType = Context.getTagDeclType(MD->getParent());
1105        if ((Context.getCanonicalType(CtxType)
1106               == Context.getCanonicalType(ThisType)) ||
1107            IsDerivedFrom(ThisType, CtxType)) {
1108          // Build the implicit member access expression.
1109          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1110                                                 MD->getThisType(Context));
1111          MarkDeclarationReferenced(Loc, D);
1112          return Owned(new (Context) MemberExpr(This, true, D,
1113                                                Loc, MemberType));
1114        }
1115      }
1116    }
1117  }
1118
1119  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1120    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1121      if (MD->isStatic())
1122        // "invalid use of member 'x' in static member function"
1123        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1124          << FD->getDeclName());
1125    }
1126
1127    // Any other ways we could have found the field in a well-formed
1128    // program would have been turned into implicit member expressions
1129    // above.
1130    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1131      << FD->getDeclName());
1132  }
1133
1134  if (isa<TypedefDecl>(D))
1135    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1136  if (isa<ObjCInterfaceDecl>(D))
1137    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1138  if (isa<NamespaceDecl>(D))
1139    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1140
1141  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1142  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1143    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1144                           false, false, SS);
1145  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1146    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1147                            false, false, SS);
1148  ValueDecl *VD = cast<ValueDecl>(D);
1149
1150  // Check whether this declaration can be used. Note that we suppress
1151  // this check when we're going to perform argument-dependent lookup
1152  // on this function name, because this might not be the function
1153  // that overload resolution actually selects.
1154  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1155             HasTrailingLParen;
1156  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1157    return ExprError();
1158
1159  // Only create DeclRefExpr's for valid Decl's.
1160  if (VD->isInvalidDecl())
1161    return ExprError();
1162
1163  // If the identifier reference is inside a block, and it refers to a value
1164  // that is outside the block, create a BlockDeclRefExpr instead of a
1165  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1166  // the block is formed.
1167  //
1168  // We do not do this for things like enum constants, global variables, etc,
1169  // as they do not get snapshotted.
1170  //
1171  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1172    MarkDeclarationReferenced(Loc, VD);
1173    QualType ExprTy = VD->getType().getNonReferenceType();
1174    // The BlocksAttr indicates the variable is bound by-reference.
1175    if (VD->getAttr<BlocksAttr>())
1176      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1177    // This is to record that a 'const' was actually synthesize and added.
1178    bool constAdded = !ExprTy.isConstQualified();
1179    // Variable will be bound by-copy, make it const within the closure.
1180
1181    ExprTy.addConst();
1182    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1183                                                constAdded));
1184  }
1185  // If this reference is not in a block or if the referenced variable is
1186  // within the block, create a normal DeclRefExpr.
1187
1188  bool TypeDependent = false;
1189  bool ValueDependent = false;
1190  if (getLangOptions().CPlusPlus) {
1191    // C++ [temp.dep.expr]p3:
1192    //   An id-expression is type-dependent if it contains:
1193    //     - an identifier that was declared with a dependent type,
1194    if (VD->getType()->isDependentType())
1195      TypeDependent = true;
1196    //     - FIXME: a template-id that is dependent,
1197    //     - a conversion-function-id that specifies a dependent type,
1198    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1199             Name.getCXXNameType()->isDependentType())
1200      TypeDependent = true;
1201    //     - a nested-name-specifier that contains a class-name that
1202    //       names a dependent type.
1203    else if (SS && !SS->isEmpty()) {
1204      for (DeclContext *DC = computeDeclContext(*SS);
1205           DC; DC = DC->getParent()) {
1206        // FIXME: could stop early at namespace scope.
1207        if (DC->isRecord()) {
1208          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1209          if (Context.getTypeDeclType(Record)->isDependentType()) {
1210            TypeDependent = true;
1211            break;
1212          }
1213        }
1214      }
1215    }
1216
1217    // C++ [temp.dep.constexpr]p2:
1218    //
1219    //   An identifier is value-dependent if it is:
1220    //     - a name declared with a dependent type,
1221    if (TypeDependent)
1222      ValueDependent = true;
1223    //     - the name of a non-type template parameter,
1224    else if (isa<NonTypeTemplateParmDecl>(VD))
1225      ValueDependent = true;
1226    //    - a constant with integral or enumeration type and is
1227    //      initialized with an expression that is value-dependent
1228    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1229      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1230          Dcl->getInit()) {
1231        ValueDependent = Dcl->getInit()->isValueDependent();
1232      }
1233    }
1234  }
1235
1236  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1237                          TypeDependent, ValueDependent, SS);
1238}
1239
1240Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1241                                                 tok::TokenKind Kind) {
1242  PredefinedExpr::IdentType IT;
1243
1244  switch (Kind) {
1245  default: assert(0 && "Unknown simple primary expr!");
1246  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1247  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1248  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1249  }
1250
1251  // Pre-defined identifiers are of type char[x], where x is the length of the
1252  // string.
1253  unsigned Length;
1254  if (FunctionDecl *FD = getCurFunctionDecl())
1255    Length = FD->getIdentifier()->getLength();
1256  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1257    Length = MD->getSynthesizedMethodSize();
1258  else {
1259    Diag(Loc, diag::ext_predef_outside_function);
1260    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1261    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1262  }
1263
1264
1265  llvm::APInt LengthI(32, Length + 1);
1266  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1267  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1268  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1269}
1270
1271Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1272  llvm::SmallString<16> CharBuffer;
1273  CharBuffer.resize(Tok.getLength());
1274  const char *ThisTokBegin = &CharBuffer[0];
1275  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1276
1277  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1278                            Tok.getLocation(), PP);
1279  if (Literal.hadError())
1280    return ExprError();
1281
1282  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1283
1284  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1285                                              Literal.isWide(),
1286                                              type, Tok.getLocation()));
1287}
1288
1289Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1290  // Fast path for a single digit (which is quite common).  A single digit
1291  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1292  if (Tok.getLength() == 1) {
1293    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1294    unsigned IntSize = Context.Target.getIntWidth();
1295    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1296                    Context.IntTy, Tok.getLocation()));
1297  }
1298
1299  llvm::SmallString<512> IntegerBuffer;
1300  // Add padding so that NumericLiteralParser can overread by one character.
1301  IntegerBuffer.resize(Tok.getLength()+1);
1302  const char *ThisTokBegin = &IntegerBuffer[0];
1303
1304  // Get the spelling of the token, which eliminates trigraphs, etc.
1305  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1306
1307  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1308                               Tok.getLocation(), PP);
1309  if (Literal.hadError)
1310    return ExprError();
1311
1312  Expr *Res;
1313
1314  if (Literal.isFloatingLiteral()) {
1315    QualType Ty;
1316    if (Literal.isFloat)
1317      Ty = Context.FloatTy;
1318    else if (!Literal.isLong)
1319      Ty = Context.DoubleTy;
1320    else
1321      Ty = Context.LongDoubleTy;
1322
1323    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1324
1325    // isExact will be set by GetFloatValue().
1326    bool isExact = false;
1327    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1328    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1329
1330  } else if (!Literal.isIntegerLiteral()) {
1331    return ExprError();
1332  } else {
1333    QualType Ty;
1334
1335    // long long is a C99 feature.
1336    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1337        Literal.isLongLong)
1338      Diag(Tok.getLocation(), diag::ext_longlong);
1339
1340    // Get the value in the widest-possible width.
1341    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1342
1343    if (Literal.GetIntegerValue(ResultVal)) {
1344      // If this value didn't fit into uintmax_t, warn and force to ull.
1345      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1346      Ty = Context.UnsignedLongLongTy;
1347      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1348             "long long is not intmax_t?");
1349    } else {
1350      // If this value fits into a ULL, try to figure out what else it fits into
1351      // according to the rules of C99 6.4.4.1p5.
1352
1353      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1354      // be an unsigned int.
1355      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1356
1357      // Check from smallest to largest, picking the smallest type we can.
1358      unsigned Width = 0;
1359      if (!Literal.isLong && !Literal.isLongLong) {
1360        // Are int/unsigned possibilities?
1361        unsigned IntSize = Context.Target.getIntWidth();
1362
1363        // Does it fit in a unsigned int?
1364        if (ResultVal.isIntN(IntSize)) {
1365          // Does it fit in a signed int?
1366          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1367            Ty = Context.IntTy;
1368          else if (AllowUnsigned)
1369            Ty = Context.UnsignedIntTy;
1370          Width = IntSize;
1371        }
1372      }
1373
1374      // Are long/unsigned long possibilities?
1375      if (Ty.isNull() && !Literal.isLongLong) {
1376        unsigned LongSize = Context.Target.getLongWidth();
1377
1378        // Does it fit in a unsigned long?
1379        if (ResultVal.isIntN(LongSize)) {
1380          // Does it fit in a signed long?
1381          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1382            Ty = Context.LongTy;
1383          else if (AllowUnsigned)
1384            Ty = Context.UnsignedLongTy;
1385          Width = LongSize;
1386        }
1387      }
1388
1389      // Finally, check long long if needed.
1390      if (Ty.isNull()) {
1391        unsigned LongLongSize = Context.Target.getLongLongWidth();
1392
1393        // Does it fit in a unsigned long long?
1394        if (ResultVal.isIntN(LongLongSize)) {
1395          // Does it fit in a signed long long?
1396          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1397            Ty = Context.LongLongTy;
1398          else if (AllowUnsigned)
1399            Ty = Context.UnsignedLongLongTy;
1400          Width = LongLongSize;
1401        }
1402      }
1403
1404      // If we still couldn't decide a type, we probably have something that
1405      // does not fit in a signed long long, but has no U suffix.
1406      if (Ty.isNull()) {
1407        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1408        Ty = Context.UnsignedLongLongTy;
1409        Width = Context.Target.getLongLongWidth();
1410      }
1411
1412      if (ResultVal.getBitWidth() != Width)
1413        ResultVal.trunc(Width);
1414    }
1415    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1416  }
1417
1418  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1419  if (Literal.isImaginary)
1420    Res = new (Context) ImaginaryLiteral(Res,
1421                                        Context.getComplexType(Res->getType()));
1422
1423  return Owned(Res);
1424}
1425
1426Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1427                                              SourceLocation R, ExprArg Val) {
1428  Expr *E = Val.takeAs<Expr>();
1429  assert((E != 0) && "ActOnParenExpr() missing expr");
1430  return Owned(new (Context) ParenExpr(L, R, E));
1431}
1432
1433/// The UsualUnaryConversions() function is *not* called by this routine.
1434/// See C99 6.3.2.1p[2-4] for more details.
1435bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1436                                     SourceLocation OpLoc,
1437                                     const SourceRange &ExprRange,
1438                                     bool isSizeof) {
1439  if (exprType->isDependentType())
1440    return false;
1441
1442  // C99 6.5.3.4p1:
1443  if (isa<FunctionType>(exprType)) {
1444    // alignof(function) is allowed as an extension.
1445    if (isSizeof)
1446      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1447    return false;
1448  }
1449
1450  // Allow sizeof(void)/alignof(void) as an extension.
1451  if (exprType->isVoidType()) {
1452    Diag(OpLoc, diag::ext_sizeof_void_type)
1453      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1454    return false;
1455  }
1456
1457  if (RequireCompleteType(OpLoc, exprType,
1458                          isSizeof ? diag::err_sizeof_incomplete_type :
1459                          diag::err_alignof_incomplete_type,
1460                          ExprRange))
1461    return true;
1462
1463  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1464  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1465    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1466      << exprType << isSizeof << ExprRange;
1467    return true;
1468  }
1469
1470  return false;
1471}
1472
1473bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1474                            const SourceRange &ExprRange) {
1475  E = E->IgnoreParens();
1476
1477  // alignof decl is always ok.
1478  if (isa<DeclRefExpr>(E))
1479    return false;
1480
1481  // Cannot know anything else if the expression is dependent.
1482  if (E->isTypeDependent())
1483    return false;
1484
1485  if (E->getBitField()) {
1486    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1487    return true;
1488  }
1489
1490  // Alignment of a field access is always okay, so long as it isn't a
1491  // bit-field.
1492  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1493    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1494      return false;
1495
1496  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1497}
1498
1499/// \brief Build a sizeof or alignof expression given a type operand.
1500Action::OwningExprResult
1501Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1502                              bool isSizeOf, SourceRange R) {
1503  if (T.isNull())
1504    return ExprError();
1505
1506  if (!T->isDependentType() &&
1507      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1508    return ExprError();
1509
1510  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1511  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1512                                               Context.getSizeType(), OpLoc,
1513                                               R.getEnd()));
1514}
1515
1516/// \brief Build a sizeof or alignof expression given an expression
1517/// operand.
1518Action::OwningExprResult
1519Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1520                              bool isSizeOf, SourceRange R) {
1521  // Verify that the operand is valid.
1522  bool isInvalid = false;
1523  if (E->isTypeDependent()) {
1524    // Delay type-checking for type-dependent expressions.
1525  } else if (!isSizeOf) {
1526    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1527  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1528    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1529    isInvalid = true;
1530  } else {
1531    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1532  }
1533
1534  if (isInvalid)
1535    return ExprError();
1536
1537  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1538  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1539                                               Context.getSizeType(), OpLoc,
1540                                               R.getEnd()));
1541}
1542
1543/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1544/// the same for @c alignof and @c __alignof
1545/// Note that the ArgRange is invalid if isType is false.
1546Action::OwningExprResult
1547Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1548                             void *TyOrEx, const SourceRange &ArgRange) {
1549  // If error parsing type, ignore.
1550  if (TyOrEx == 0) return ExprError();
1551
1552  if (isType) {
1553    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1554    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1555  }
1556
1557  // Get the end location.
1558  Expr *ArgEx = (Expr *)TyOrEx;
1559  Action::OwningExprResult Result
1560    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1561
1562  if (Result.isInvalid())
1563    DeleteExpr(ArgEx);
1564
1565  return move(Result);
1566}
1567
1568QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1569  if (V->isTypeDependent())
1570    return Context.DependentTy;
1571
1572  // These operators return the element type of a complex type.
1573  if (const ComplexType *CT = V->getType()->getAsComplexType())
1574    return CT->getElementType();
1575
1576  // Otherwise they pass through real integer and floating point types here.
1577  if (V->getType()->isArithmeticType())
1578    return V->getType();
1579
1580  // Reject anything else.
1581  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1582    << (isReal ? "__real" : "__imag");
1583  return QualType();
1584}
1585
1586
1587
1588Action::OwningExprResult
1589Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1590                          tok::TokenKind Kind, ExprArg Input) {
1591  Expr *Arg = (Expr *)Input.get();
1592
1593  UnaryOperator::Opcode Opc;
1594  switch (Kind) {
1595  default: assert(0 && "Unknown unary op!");
1596  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1597  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1598  }
1599
1600  if (getLangOptions().CPlusPlus &&
1601      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1602    // Which overloaded operator?
1603    OverloadedOperatorKind OverOp =
1604      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1605
1606    // C++ [over.inc]p1:
1607    //
1608    //     [...] If the function is a member function with one
1609    //     parameter (which shall be of type int) or a non-member
1610    //     function with two parameters (the second of which shall be
1611    //     of type int), it defines the postfix increment operator ++
1612    //     for objects of that type. When the postfix increment is
1613    //     called as a result of using the ++ operator, the int
1614    //     argument will have value zero.
1615    Expr *Args[2] = {
1616      Arg,
1617      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1618                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1619    };
1620
1621    // Build the candidate set for overloading
1622    OverloadCandidateSet CandidateSet;
1623    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1624
1625    // Perform overload resolution.
1626    OverloadCandidateSet::iterator Best;
1627    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1628    case OR_Success: {
1629      // We found a built-in operator or an overloaded operator.
1630      FunctionDecl *FnDecl = Best->Function;
1631
1632      if (FnDecl) {
1633        // We matched an overloaded operator. Build a call to that
1634        // operator.
1635
1636        // Convert the arguments.
1637        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1638          if (PerformObjectArgumentInitialization(Arg, Method))
1639            return ExprError();
1640        } else {
1641          // Convert the arguments.
1642          if (PerformCopyInitialization(Arg,
1643                                        FnDecl->getParamDecl(0)->getType(),
1644                                        "passing"))
1645            return ExprError();
1646        }
1647
1648        // Determine the result type
1649        QualType ResultTy
1650          = FnDecl->getType()->getAsFunctionType()->getResultType();
1651        ResultTy = ResultTy.getNonReferenceType();
1652
1653        // Build the actual expression node.
1654        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1655                                                 SourceLocation());
1656        UsualUnaryConversions(FnExpr);
1657
1658        Input.release();
1659        Args[0] = Arg;
1660        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1661                                                       Args, 2, ResultTy,
1662                                                       OpLoc));
1663      } else {
1664        // We matched a built-in operator. Convert the arguments, then
1665        // break out so that we will build the appropriate built-in
1666        // operator node.
1667        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1668                                      "passing"))
1669          return ExprError();
1670
1671        break;
1672      }
1673    }
1674
1675    case OR_No_Viable_Function:
1676      // No viable function; fall through to handling this as a
1677      // built-in operator, which will produce an error message for us.
1678      break;
1679
1680    case OR_Ambiguous:
1681      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1682          << UnaryOperator::getOpcodeStr(Opc)
1683          << Arg->getSourceRange();
1684      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1685      return ExprError();
1686
1687    case OR_Deleted:
1688      Diag(OpLoc, diag::err_ovl_deleted_oper)
1689        << Best->Function->isDeleted()
1690        << UnaryOperator::getOpcodeStr(Opc)
1691        << Arg->getSourceRange();
1692      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1693      return ExprError();
1694    }
1695
1696    // Either we found no viable overloaded operator or we matched a
1697    // built-in operator. In either case, fall through to trying to
1698    // build a built-in operation.
1699  }
1700
1701  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1702                                                 Opc == UnaryOperator::PostInc);
1703  if (result.isNull())
1704    return ExprError();
1705  Input.release();
1706  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1707}
1708
1709Action::OwningExprResult
1710Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1711                              ExprArg Idx, SourceLocation RLoc) {
1712  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1713       *RHSExp = static_cast<Expr*>(Idx.get());
1714
1715  if (getLangOptions().CPlusPlus &&
1716      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1717    Base.release();
1718    Idx.release();
1719    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1720                                                  Context.DependentTy, RLoc));
1721  }
1722
1723  if (getLangOptions().CPlusPlus &&
1724      (LHSExp->getType()->isRecordType() ||
1725       LHSExp->getType()->isEnumeralType() ||
1726       RHSExp->getType()->isRecordType() ||
1727       RHSExp->getType()->isEnumeralType())) {
1728    // Add the appropriate overloaded operators (C++ [over.match.oper])
1729    // to the candidate set.
1730    OverloadCandidateSet CandidateSet;
1731    Expr *Args[2] = { LHSExp, RHSExp };
1732    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1733                          SourceRange(LLoc, RLoc));
1734
1735    // Perform overload resolution.
1736    OverloadCandidateSet::iterator Best;
1737    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1738    case OR_Success: {
1739      // We found a built-in operator or an overloaded operator.
1740      FunctionDecl *FnDecl = Best->Function;
1741
1742      if (FnDecl) {
1743        // We matched an overloaded operator. Build a call to that
1744        // operator.
1745
1746        // Convert the arguments.
1747        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1748          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1749              PerformCopyInitialization(RHSExp,
1750                                        FnDecl->getParamDecl(0)->getType(),
1751                                        "passing"))
1752            return ExprError();
1753        } else {
1754          // Convert the arguments.
1755          if (PerformCopyInitialization(LHSExp,
1756                                        FnDecl->getParamDecl(0)->getType(),
1757                                        "passing") ||
1758              PerformCopyInitialization(RHSExp,
1759                                        FnDecl->getParamDecl(1)->getType(),
1760                                        "passing"))
1761            return ExprError();
1762        }
1763
1764        // Determine the result type
1765        QualType ResultTy
1766          = FnDecl->getType()->getAsFunctionType()->getResultType();
1767        ResultTy = ResultTy.getNonReferenceType();
1768
1769        // Build the actual expression node.
1770        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1771                                                 SourceLocation());
1772        UsualUnaryConversions(FnExpr);
1773
1774        Base.release();
1775        Idx.release();
1776        Args[0] = LHSExp;
1777        Args[1] = RHSExp;
1778        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1779                                                       FnExpr, Args, 2,
1780                                                       ResultTy, LLoc));
1781      } else {
1782        // We matched a built-in operator. Convert the arguments, then
1783        // break out so that we will build the appropriate built-in
1784        // operator node.
1785        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1786                                      "passing") ||
1787            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1788                                      "passing"))
1789          return ExprError();
1790
1791        break;
1792      }
1793    }
1794
1795    case OR_No_Viable_Function:
1796      // No viable function; fall through to handling this as a
1797      // built-in operator, which will produce an error message for us.
1798      break;
1799
1800    case OR_Ambiguous:
1801      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1802          << "[]"
1803          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1804      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1805      return ExprError();
1806
1807    case OR_Deleted:
1808      Diag(LLoc, diag::err_ovl_deleted_oper)
1809        << Best->Function->isDeleted()
1810        << "[]"
1811        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1812      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1813      return ExprError();
1814    }
1815
1816    // Either we found no viable overloaded operator or we matched a
1817    // built-in operator. In either case, fall through to trying to
1818    // build a built-in operation.
1819  }
1820
1821  // Perform default conversions.
1822  DefaultFunctionArrayConversion(LHSExp);
1823  DefaultFunctionArrayConversion(RHSExp);
1824
1825  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1826
1827  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1828  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1829  // in the subscript position. As a result, we need to derive the array base
1830  // and index from the expression types.
1831  Expr *BaseExpr, *IndexExpr;
1832  QualType ResultType;
1833  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1834    BaseExpr = LHSExp;
1835    IndexExpr = RHSExp;
1836    ResultType = Context.DependentTy;
1837  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1838    BaseExpr = LHSExp;
1839    IndexExpr = RHSExp;
1840    ResultType = PTy->getPointeeType();
1841  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1842     // Handle the uncommon case of "123[Ptr]".
1843    BaseExpr = RHSExp;
1844    IndexExpr = LHSExp;
1845    ResultType = PTy->getPointeeType();
1846  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1847    BaseExpr = LHSExp;    // vectors: V[123]
1848    IndexExpr = RHSExp;
1849
1850    // FIXME: need to deal with const...
1851    ResultType = VTy->getElementType();
1852  } else if (LHSTy->isArrayType()) {
1853    // If we see an array that wasn't promoted by
1854    // DefaultFunctionArrayConversion, it must be an array that
1855    // wasn't promoted because of the C90 rule that doesn't
1856    // allow promoting non-lvalue arrays.  Warn, then
1857    // force the promotion here.
1858    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1859        LHSExp->getSourceRange();
1860    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1861    LHSTy = LHSExp->getType();
1862
1863    BaseExpr = LHSExp;
1864    IndexExpr = RHSExp;
1865    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1866  } else if (RHSTy->isArrayType()) {
1867    // Same as previous, except for 123[f().a] case
1868    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1869        RHSExp->getSourceRange();
1870    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1871    RHSTy = RHSExp->getType();
1872
1873    BaseExpr = RHSExp;
1874    IndexExpr = LHSExp;
1875    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1876  } else {
1877    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1878       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1879  }
1880  // C99 6.5.2.1p1
1881  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1882    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1883                     << IndexExpr->getSourceRange());
1884
1885  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1886  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1887  // type. Note that Functions are not objects, and that (in C99 parlance)
1888  // incomplete types are not object types.
1889  if (ResultType->isFunctionType()) {
1890    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1891      << ResultType << BaseExpr->getSourceRange();
1892    return ExprError();
1893  }
1894
1895  if (!ResultType->isDependentType() &&
1896      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1897                          BaseExpr->getSourceRange()))
1898    return ExprError();
1899
1900  // Diagnose bad cases where we step over interface counts.
1901  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1902    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1903      << ResultType << BaseExpr->getSourceRange();
1904    return ExprError();
1905  }
1906
1907  Base.release();
1908  Idx.release();
1909  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1910                                                ResultType, RLoc));
1911}
1912
1913QualType Sema::
1914CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1915                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1916  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1917
1918  // The vector accessor can't exceed the number of elements.
1919  const char *compStr = CompName.getName();
1920
1921  // This flag determines whether or not the component is one of the four
1922  // special names that indicate a subset of exactly half the elements are
1923  // to be selected.
1924  bool HalvingSwizzle = false;
1925
1926  // This flag determines whether or not CompName has an 's' char prefix,
1927  // indicating that it is a string of hex values to be used as vector indices.
1928  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1929
1930  // Check that we've found one of the special components, or that the component
1931  // names must come from the same set.
1932  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1933      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1934    HalvingSwizzle = true;
1935  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1936    do
1937      compStr++;
1938    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1939  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1940    do
1941      compStr++;
1942    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1943  }
1944
1945  if (!HalvingSwizzle && *compStr) {
1946    // We didn't get to the end of the string. This means the component names
1947    // didn't come from the same set *or* we encountered an illegal name.
1948    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1949      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1950    return QualType();
1951  }
1952
1953  // Ensure no component accessor exceeds the width of the vector type it
1954  // operates on.
1955  if (!HalvingSwizzle) {
1956    compStr = CompName.getName();
1957
1958    if (HexSwizzle)
1959      compStr++;
1960
1961    while (*compStr) {
1962      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1963        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1964          << baseType << SourceRange(CompLoc);
1965        return QualType();
1966      }
1967    }
1968  }
1969
1970  // If this is a halving swizzle, verify that the base type has an even
1971  // number of elements.
1972  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1973    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1974      << baseType << SourceRange(CompLoc);
1975    return QualType();
1976  }
1977
1978  // The component accessor looks fine - now we need to compute the actual type.
1979  // The vector type is implied by the component accessor. For example,
1980  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1981  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1982  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1983  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1984                                     : CompName.getLength();
1985  if (HexSwizzle)
1986    CompSize--;
1987
1988  if (CompSize == 1)
1989    return vecType->getElementType();
1990
1991  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1992  // Now look up the TypeDefDecl from the vector type. Without this,
1993  // diagostics look bad. We want extended vector types to appear built-in.
1994  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1995    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1996      return Context.getTypedefType(ExtVectorDecls[i]);
1997  }
1998  return VT; // should never get here (a typedef type should always be found).
1999}
2000
2001static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2002                                                IdentifierInfo &Member,
2003                                                const Selector &Sel,
2004                                                ASTContext &Context) {
2005
2006  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
2007    return PD;
2008  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2009    return OMD;
2010
2011  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2012       E = PDecl->protocol_end(); I != E; ++I) {
2013    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2014                                                     Context))
2015      return D;
2016  }
2017  return 0;
2018}
2019
2020static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2021                                IdentifierInfo &Member,
2022                                const Selector &Sel,
2023                                ASTContext &Context) {
2024  // Check protocols on qualified interfaces.
2025  Decl *GDecl = 0;
2026  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2027       E = QIdTy->qual_end(); I != E; ++I) {
2028    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2029      GDecl = PD;
2030      break;
2031    }
2032    // Also must look for a getter name which uses property syntax.
2033    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2034      GDecl = OMD;
2035      break;
2036    }
2037  }
2038  if (!GDecl) {
2039    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2040         E = QIdTy->qual_end(); I != E; ++I) {
2041      // Search in the protocol-qualifier list of current protocol.
2042      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2043      if (GDecl)
2044        return GDecl;
2045    }
2046  }
2047  return GDecl;
2048}
2049
2050/// FindMethodInNestedImplementations - Look up a method in current and
2051/// all base class implementations.
2052///
2053ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2054                                              const ObjCInterfaceDecl *IFace,
2055                                              const Selector &Sel) {
2056  ObjCMethodDecl *Method = 0;
2057  if (ObjCImplementationDecl *ImpDecl
2058        = LookupObjCImplementation(IFace->getIdentifier()))
2059    Method = ImpDecl->getInstanceMethod(Sel);
2060
2061  if (!Method && IFace->getSuperClass())
2062    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2063  return Method;
2064}
2065
2066Action::OwningExprResult
2067Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2068                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2069                               IdentifierInfo &Member,
2070                               DeclPtrTy ObjCImpDecl) {
2071  Expr *BaseExpr = Base.takeAs<Expr>();
2072  assert(BaseExpr && "no record expression");
2073
2074  // Perform default conversions.
2075  DefaultFunctionArrayConversion(BaseExpr);
2076
2077  QualType BaseType = BaseExpr->getType();
2078  assert(!BaseType.isNull() && "no type for member expression");
2079
2080  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2081  // must have pointer type, and the accessed type is the pointee.
2082  if (OpKind == tok::arrow) {
2083    if (BaseType->isDependentType())
2084      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2085                                                         BaseExpr, true,
2086                                                         OpLoc,
2087                                                     DeclarationName(&Member),
2088                                                         MemberLoc));
2089    else if (const PointerType *PT = BaseType->getAsPointerType())
2090      BaseType = PT->getPointeeType();
2091    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2092      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2093                                            MemberLoc, Member));
2094    else
2095      return ExprError(Diag(MemberLoc,
2096                            diag::err_typecheck_member_reference_arrow)
2097        << BaseType << BaseExpr->getSourceRange());
2098  } else {
2099    if (BaseType->isDependentType()) {
2100      // Require that the base type isn't a pointer type
2101      // (so we'll report an error for)
2102      // T* t;
2103      // t.f;
2104      //
2105      // In Obj-C++, however, the above expression is valid, since it could be
2106      // accessing the 'f' property if T is an Obj-C interface. The extra check
2107      // allows this, while still reporting an error if T is a struct pointer.
2108      const PointerType *PT = BaseType->getAsPointerType();
2109
2110      if (!PT || (getLangOptions().ObjC1 &&
2111                  !PT->getPointeeType()->isRecordType()))
2112        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2113                                                           BaseExpr, false,
2114                                                           OpLoc,
2115                                                     DeclarationName(&Member),
2116                                                           MemberLoc));
2117    }
2118  }
2119
2120  // Handle field access to simple records.  This also handles access to fields
2121  // of the ObjC 'id' struct.
2122  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2123    RecordDecl *RDecl = RTy->getDecl();
2124    if (RequireCompleteType(OpLoc, BaseType,
2125                               diag::err_typecheck_incomplete_tag,
2126                               BaseExpr->getSourceRange()))
2127      return ExprError();
2128
2129    // The record definition is complete, now make sure the member is valid.
2130    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2131    LookupResult Result
2132      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2133                            LookupMemberName, false);
2134
2135    if (!Result)
2136      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2137               << &Member << BaseExpr->getSourceRange());
2138    if (Result.isAmbiguous()) {
2139      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2140                              MemberLoc, BaseExpr->getSourceRange());
2141      return ExprError();
2142    }
2143
2144    NamedDecl *MemberDecl = Result;
2145
2146    // If the decl being referenced had an error, return an error for this
2147    // sub-expr without emitting another error, in order to avoid cascading
2148    // error cases.
2149    if (MemberDecl->isInvalidDecl())
2150      return ExprError();
2151
2152    // Check the use of this field
2153    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2154      return ExprError();
2155
2156    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2157      // We may have found a field within an anonymous union or struct
2158      // (C++ [class.union]).
2159      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2160        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2161                                                        BaseExpr, OpLoc);
2162
2163      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2164      // FIXME: Handle address space modifiers
2165      QualType MemberType = FD->getType();
2166      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2167        MemberType = Ref->getPointeeType();
2168      else {
2169        unsigned combinedQualifiers =
2170          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2171        if (FD->isMutable())
2172          combinedQualifiers &= ~QualType::Const;
2173        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2174      }
2175
2176      MarkDeclarationReferenced(MemberLoc, FD);
2177      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2178                                            MemberLoc, MemberType));
2179    }
2180
2181    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2182      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2183      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2184                                            Var, MemberLoc,
2185                                         Var->getType().getNonReferenceType()));
2186    }
2187    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2188      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2189      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2190                                            MemberFn, MemberLoc,
2191                                            MemberFn->getType()));
2192    }
2193    if (OverloadedFunctionDecl *Ovl
2194          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2195      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2196                                            MemberLoc, Context.OverloadTy));
2197    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2198      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2199      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2200                                            Enum, MemberLoc, Enum->getType()));
2201    }
2202    if (isa<TypeDecl>(MemberDecl))
2203      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2204        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2205
2206    // We found a declaration kind that we didn't expect. This is a
2207    // generic error message that tells the user that she can't refer
2208    // to this member with '.' or '->'.
2209    return ExprError(Diag(MemberLoc,
2210                          diag::err_typecheck_member_reference_unknown)
2211      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2212  }
2213
2214  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2215  // (*Obj).ivar.
2216  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2217    ObjCInterfaceDecl *ClassDeclared;
2218    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member,
2219                                                             ClassDeclared)) {
2220      // If the decl being referenced had an error, return an error for this
2221      // sub-expr without emitting another error, in order to avoid cascading
2222      // error cases.
2223      if (IV->isInvalidDecl())
2224        return ExprError();
2225
2226      // Check whether we can reference this field.
2227      if (DiagnoseUseOfDecl(IV, MemberLoc))
2228        return ExprError();
2229      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2230          IV->getAccessControl() != ObjCIvarDecl::Package) {
2231        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2232        if (ObjCMethodDecl *MD = getCurMethodDecl())
2233          ClassOfMethodDecl =  MD->getClassInterface();
2234        else if (ObjCImpDecl && getCurFunctionDecl()) {
2235          // Case of a c-function declared inside an objc implementation.
2236          // FIXME: For a c-style function nested inside an objc implementation
2237          // class, there is no implementation context available, so we pass
2238          // down the context as argument to this routine. Ideally, this context
2239          // need be passed down in the AST node and somehow calculated from the
2240          // AST for a function decl.
2241          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2242          if (ObjCImplementationDecl *IMPD =
2243              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2244            ClassOfMethodDecl = IMPD->getClassInterface();
2245          else if (ObjCCategoryImplDecl* CatImplClass =
2246                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2247            ClassOfMethodDecl = CatImplClass->getClassInterface();
2248        }
2249
2250        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2251          if (ClassDeclared != IFTy->getDecl() ||
2252              ClassOfMethodDecl != ClassDeclared)
2253            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2254        }
2255        // @protected
2256        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2257          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2258      }
2259
2260      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2261                                                 MemberLoc, BaseExpr,
2262                                                 OpKind == tok::arrow));
2263    }
2264    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2265                       << IFTy->getDecl()->getDeclName() << &Member
2266                       << BaseExpr->getSourceRange());
2267  }
2268
2269  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2270  // pointer to a (potentially qualified) interface type.
2271  const PointerType *PTy;
2272  const ObjCInterfaceType *IFTy;
2273  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2274      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2275    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2276
2277    // Search for a declared property first.
2278    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
2279      // Check whether we can reference this property.
2280      if (DiagnoseUseOfDecl(PD, MemberLoc))
2281        return ExprError();
2282      QualType ResTy = PD->getType();
2283      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2284      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2285      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2286        ResTy = Getter->getResultType();
2287      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2288                                                     MemberLoc, BaseExpr));
2289    }
2290
2291    // Check protocols on qualified interfaces.
2292    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2293         E = IFTy->qual_end(); I != E; ++I)
2294      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2295        // Check whether we can reference this property.
2296        if (DiagnoseUseOfDecl(PD, MemberLoc))
2297          return ExprError();
2298
2299        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2300                                                       MemberLoc, BaseExpr));
2301      }
2302
2303    // If that failed, look for an "implicit" property by seeing if the nullary
2304    // selector is implemented.
2305
2306    // FIXME: The logic for looking up nullary and unary selectors should be
2307    // shared with the code in ActOnInstanceMessage.
2308
2309    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2310    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2311
2312    // If this reference is in an @implementation, check for 'private' methods.
2313    if (!Getter)
2314      Getter = FindMethodInNestedImplementations(IFace, Sel);
2315
2316    // Look through local category implementations associated with the class.
2317    if (!Getter) {
2318      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2319        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2320          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
2321      }
2322    }
2323    if (Getter) {
2324      // Check if we can reference this property.
2325      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2326        return ExprError();
2327    }
2328    // If we found a getter then this may be a valid dot-reference, we
2329    // will look for the matching setter, in case it is needed.
2330    Selector SetterSel =
2331      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2332                                         PP.getSelectorTable(), &Member);
2333    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2334    if (!Setter) {
2335      // If this reference is in an @implementation, also check for 'private'
2336      // methods.
2337      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2338    }
2339    // Look through local category implementations associated with the class.
2340    if (!Setter) {
2341      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2342        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2343          Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
2344      }
2345    }
2346
2347    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2348      return ExprError();
2349
2350    if (Getter || Setter) {
2351      QualType PType;
2352
2353      if (Getter)
2354        PType = Getter->getResultType();
2355      else {
2356        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2357             E = Setter->param_end(); PI != E; ++PI)
2358          PType = (*PI)->getType();
2359      }
2360      // FIXME: we must check that the setter has property type.
2361      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2362                                      Setter, MemberLoc, BaseExpr));
2363    }
2364    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2365      << &Member << BaseType);
2366  }
2367  // Handle properties on qualified "id" protocols.
2368  const ObjCObjectPointerType *QIdTy;
2369  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2370    // Check protocols on qualified interfaces.
2371    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2372    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2373      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2374        // Check the use of this declaration
2375        if (DiagnoseUseOfDecl(PD, MemberLoc))
2376          return ExprError();
2377
2378        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2379                                                       MemberLoc, BaseExpr));
2380      }
2381      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2382        // Check the use of this method.
2383        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2384          return ExprError();
2385
2386        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2387                                                   OMD->getResultType(),
2388                                                   OMD, OpLoc, MemberLoc,
2389                                                   NULL, 0));
2390      }
2391    }
2392
2393    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2394                       << &Member << BaseType);
2395  }
2396  // Handle properties on ObjC 'Class' types.
2397  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2398    // Also must look for a getter name which uses property syntax.
2399    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2400    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2401      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2402      ObjCMethodDecl *Getter;
2403      // FIXME: need to also look locally in the implementation.
2404      if ((Getter = IFace->lookupClassMethod(Sel))) {
2405        // Check the use of this method.
2406        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2407          return ExprError();
2408      }
2409      // If we found a getter then this may be a valid dot-reference, we
2410      // will look for the matching setter, in case it is needed.
2411      Selector SetterSel =
2412        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2413                                           PP.getSelectorTable(), &Member);
2414      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2415      if (!Setter) {
2416        // If this reference is in an @implementation, also check for 'private'
2417        // methods.
2418        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2419      }
2420      // Look through local category implementations associated with the class.
2421      if (!Setter) {
2422        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2423          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2424            Setter = ObjCCategoryImpls[i]->getClassMethod(SetterSel);
2425        }
2426      }
2427
2428      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2429        return ExprError();
2430
2431      if (Getter || Setter) {
2432        QualType PType;
2433
2434        if (Getter)
2435          PType = Getter->getResultType();
2436        else {
2437          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2438               E = Setter->param_end(); PI != E; ++PI)
2439            PType = (*PI)->getType();
2440        }
2441        // FIXME: we must check that the setter has property type.
2442        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2443                                        Setter, MemberLoc, BaseExpr));
2444      }
2445      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2446        << &Member << BaseType);
2447    }
2448  }
2449
2450  // Handle 'field access' to vectors, such as 'V.xx'.
2451  if (BaseType->isExtVectorType()) {
2452    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2453    if (ret.isNull())
2454      return ExprError();
2455    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2456                                                    MemberLoc));
2457  }
2458
2459  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2460    << BaseType << BaseExpr->getSourceRange();
2461
2462  // If the user is trying to apply -> or . to a function or function
2463  // pointer, it's probably because they forgot parentheses to call
2464  // the function. Suggest the addition of those parentheses.
2465  if (BaseType == Context.OverloadTy ||
2466      BaseType->isFunctionType() ||
2467      (BaseType->isPointerType() &&
2468       BaseType->getAsPointerType()->isFunctionType())) {
2469    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2470    Diag(Loc, diag::note_member_reference_needs_call)
2471      << CodeModificationHint::CreateInsertion(Loc, "()");
2472  }
2473
2474  return ExprError();
2475}
2476
2477/// ConvertArgumentsForCall - Converts the arguments specified in
2478/// Args/NumArgs to the parameter types of the function FDecl with
2479/// function prototype Proto. Call is the call expression itself, and
2480/// Fn is the function expression. For a C++ member function, this
2481/// routine does not attempt to convert the object argument. Returns
2482/// true if the call is ill-formed.
2483bool
2484Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2485                              FunctionDecl *FDecl,
2486                              const FunctionProtoType *Proto,
2487                              Expr **Args, unsigned NumArgs,
2488                              SourceLocation RParenLoc) {
2489  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2490  // assignment, to the types of the corresponding parameter, ...
2491  unsigned NumArgsInProto = Proto->getNumArgs();
2492  unsigned NumArgsToCheck = NumArgs;
2493  bool Invalid = false;
2494
2495  // If too few arguments are available (and we don't have default
2496  // arguments for the remaining parameters), don't make the call.
2497  if (NumArgs < NumArgsInProto) {
2498    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2499      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2500        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2501    // Use default arguments for missing arguments
2502    NumArgsToCheck = NumArgsInProto;
2503    Call->setNumArgs(Context, NumArgsInProto);
2504  }
2505
2506  // If too many are passed and not variadic, error on the extras and drop
2507  // them.
2508  if (NumArgs > NumArgsInProto) {
2509    if (!Proto->isVariadic()) {
2510      Diag(Args[NumArgsInProto]->getLocStart(),
2511           diag::err_typecheck_call_too_many_args)
2512        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2513        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2514                       Args[NumArgs-1]->getLocEnd());
2515      // This deletes the extra arguments.
2516      Call->setNumArgs(Context, NumArgsInProto);
2517      Invalid = true;
2518    }
2519    NumArgsToCheck = NumArgsInProto;
2520  }
2521
2522  // Continue to check argument types (even if we have too few/many args).
2523  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2524    QualType ProtoArgType = Proto->getArgType(i);
2525
2526    Expr *Arg;
2527    if (i < NumArgs) {
2528      Arg = Args[i];
2529
2530      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2531                              ProtoArgType,
2532                              diag::err_call_incomplete_argument,
2533                              Arg->getSourceRange()))
2534        return true;
2535
2536      // Pass the argument.
2537      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2538        return true;
2539    } else {
2540      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2541        Diag (Call->getSourceRange().getBegin(),
2542              diag::err_use_of_default_argument_to_function_declared_later) <<
2543        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2544        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2545              diag::note_default_argument_declared_here);
2546      } else {
2547        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2548
2549        // If the default expression creates temporaries, we need to
2550        // push them to the current stack of expression temporaries so they'll
2551        // be properly destroyed.
2552        if (CXXExprWithTemporaries *E
2553              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2554          assert(!E->shouldDestroyTemporaries() &&
2555                 "Can't destroy temporaries in a default argument expr!");
2556          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2557            ExprTemporaries.push_back(E->getTemporary(I));
2558        }
2559      }
2560
2561      // We already type-checked the argument, so we know it works.
2562      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2563    }
2564
2565    QualType ArgType = Arg->getType();
2566
2567    Call->setArg(i, Arg);
2568  }
2569
2570  // If this is a variadic call, handle args passed through "...".
2571  if (Proto->isVariadic()) {
2572    VariadicCallType CallType = VariadicFunction;
2573    if (Fn->getType()->isBlockPointerType())
2574      CallType = VariadicBlock; // Block
2575    else if (isa<MemberExpr>(Fn))
2576      CallType = VariadicMethod;
2577
2578    // Promote the arguments (C99 6.5.2.2p7).
2579    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2580      Expr *Arg = Args[i];
2581      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2582      Call->setArg(i, Arg);
2583    }
2584  }
2585
2586  return Invalid;
2587}
2588
2589/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2590/// This provides the location of the left/right parens and a list of comma
2591/// locations.
2592Action::OwningExprResult
2593Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2594                    MultiExprArg args,
2595                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2596  unsigned NumArgs = args.size();
2597  Expr *Fn = fn.takeAs<Expr>();
2598  Expr **Args = reinterpret_cast<Expr**>(args.release());
2599  assert(Fn && "no function call expression");
2600  FunctionDecl *FDecl = NULL;
2601  NamedDecl *NDecl = NULL;
2602  DeclarationName UnqualifiedName;
2603
2604  if (getLangOptions().CPlusPlus) {
2605    // Determine whether this is a dependent call inside a C++ template,
2606    // in which case we won't do any semantic analysis now.
2607    // FIXME: Will need to cache the results of name lookup (including ADL) in
2608    // Fn.
2609    bool Dependent = false;
2610    if (Fn->isTypeDependent())
2611      Dependent = true;
2612    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2613      Dependent = true;
2614
2615    if (Dependent)
2616      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2617                                          Context.DependentTy, RParenLoc));
2618
2619    // Determine whether this is a call to an object (C++ [over.call.object]).
2620    if (Fn->getType()->isRecordType())
2621      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2622                                                CommaLocs, RParenLoc));
2623
2624    // Determine whether this is a call to a member function.
2625    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2626      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2627      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2628          isa<CXXMethodDecl>(MemDecl) ||
2629          (isa<FunctionTemplateDecl>(MemDecl) &&
2630           isa<CXXMethodDecl>(
2631                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2632        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2633                                               CommaLocs, RParenLoc));
2634    }
2635  }
2636
2637  // If we're directly calling a function, get the appropriate declaration.
2638  Expr *FnExpr = Fn;
2639  bool ADL = true;
2640  while (true) {
2641    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2642      FnExpr = IcExpr->getSubExpr();
2643    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2644      // Parentheses around a function disable ADL
2645      // (C++0x [basic.lookup.argdep]p1).
2646      ADL = false;
2647      FnExpr = PExpr->getSubExpr();
2648    } else if (isa<UnaryOperator>(FnExpr) &&
2649               cast<UnaryOperator>(FnExpr)->getOpcode()
2650                 == UnaryOperator::AddrOf) {
2651      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2652    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2653      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2654      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2655      NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2656      break;
2657    } else if (UnresolvedFunctionNameExpr *DepName
2658                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2659      UnqualifiedName = DepName->getName();
2660      break;
2661    } else if (TemplateIdRefExpr *TemplateIdRef
2662                 = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2663      NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2664      break;
2665    } else {
2666      // Any kind of name that does not refer to a declaration (or
2667      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2668      ADL = false;
2669      break;
2670    }
2671  }
2672
2673  OverloadedFunctionDecl *Ovl = 0;
2674  FunctionTemplateDecl *FunctionTemplate = 0;
2675  if (NDecl) {
2676    FDecl = dyn_cast<FunctionDecl>(NDecl);
2677    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2678      FDecl = FunctionTemplate->getTemplatedDecl();
2679    else
2680      FDecl = dyn_cast<FunctionDecl>(NDecl);
2681    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2682  }
2683
2684  if (Ovl || FunctionTemplate ||
2685      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2686    // We don't perform ADL for implicit declarations of builtins.
2687    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2688      ADL = false;
2689
2690    // We don't perform ADL in C.
2691    if (!getLangOptions().CPlusPlus)
2692      ADL = false;
2693
2694    if (Ovl || FunctionTemplate || ADL) {
2695      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName, LParenLoc,
2696                                      Args, NumArgs, CommaLocs, RParenLoc, ADL);
2697      if (!FDecl)
2698        return ExprError();
2699
2700      // Update Fn to refer to the actual function selected.
2701      Expr *NewFn = 0;
2702      if (QualifiedDeclRefExpr *QDRExpr
2703            = dyn_cast<QualifiedDeclRefExpr>(FnExpr))
2704        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2705                                                   QDRExpr->getLocation(),
2706                                                   false, false,
2707                                                 QDRExpr->getQualifierRange(),
2708                                                   QDRExpr->getQualifier());
2709      else
2710        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2711                                          Fn->getSourceRange().getBegin());
2712      Fn->Destroy(Context);
2713      Fn = NewFn;
2714    }
2715  }
2716
2717  // Promote the function operand.
2718  UsualUnaryConversions(Fn);
2719
2720  // Make the call expr early, before semantic checks.  This guarantees cleanup
2721  // of arguments and function on error.
2722  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2723                                                               Args, NumArgs,
2724                                                               Context.BoolTy,
2725                                                               RParenLoc));
2726
2727  const FunctionType *FuncT;
2728  if (!Fn->getType()->isBlockPointerType()) {
2729    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2730    // have type pointer to function".
2731    const PointerType *PT = Fn->getType()->getAsPointerType();
2732    if (PT == 0)
2733      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2734        << Fn->getType() << Fn->getSourceRange());
2735    FuncT = PT->getPointeeType()->getAsFunctionType();
2736  } else { // This is a block call.
2737    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2738                getAsFunctionType();
2739  }
2740  if (FuncT == 0)
2741    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2742      << Fn->getType() << Fn->getSourceRange());
2743
2744  // Check for a valid return type
2745  if (!FuncT->getResultType()->isVoidType() &&
2746      RequireCompleteType(Fn->getSourceRange().getBegin(),
2747                          FuncT->getResultType(),
2748                          diag::err_call_incomplete_return,
2749                          TheCall->getSourceRange()))
2750    return ExprError();
2751
2752  // We know the result type of the call, set it.
2753  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2754
2755  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2756    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2757                                RParenLoc))
2758      return ExprError();
2759  } else {
2760    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2761
2762    if (FDecl) {
2763      // Check if we have too few/too many template arguments, based
2764      // on our knowledge of the function definition.
2765      const FunctionDecl *Def = 0;
2766      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2767        const FunctionProtoType *Proto =
2768            Def->getType()->getAsFunctionProtoType();
2769        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2770          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2771            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2772        }
2773      }
2774    }
2775
2776    // Promote the arguments (C99 6.5.2.2p6).
2777    for (unsigned i = 0; i != NumArgs; i++) {
2778      Expr *Arg = Args[i];
2779      DefaultArgumentPromotion(Arg);
2780      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2781                              Arg->getType(),
2782                              diag::err_call_incomplete_argument,
2783                              Arg->getSourceRange()))
2784        return ExprError();
2785      TheCall->setArg(i, Arg);
2786    }
2787  }
2788
2789  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2790    if (!Method->isStatic())
2791      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2792        << Fn->getSourceRange());
2793
2794  // Check for sentinels
2795  if (NDecl)
2796    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2797  // Do special checking on direct calls to functions.
2798  if (FDecl)
2799    return CheckFunctionCall(FDecl, TheCall.take());
2800  if (NDecl)
2801    return CheckBlockCall(NDecl, TheCall.take());
2802
2803  return Owned(TheCall.take());
2804}
2805
2806Action::OwningExprResult
2807Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2808                           SourceLocation RParenLoc, ExprArg InitExpr) {
2809  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2810  QualType literalType = QualType::getFromOpaquePtr(Ty);
2811  // FIXME: put back this assert when initializers are worked out.
2812  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2813  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2814
2815  if (literalType->isArrayType()) {
2816    if (literalType->isVariableArrayType())
2817      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2818        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2819  } else if (!literalType->isDependentType() &&
2820             RequireCompleteType(LParenLoc, literalType,
2821                                 diag::err_typecheck_decl_incomplete_type,
2822                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2823    return ExprError();
2824
2825  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2826                            DeclarationName(), /*FIXME:DirectInit=*/false))
2827    return ExprError();
2828
2829  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2830  if (isFileScope) { // 6.5.2.5p3
2831    if (CheckForConstantInitializer(literalExpr, literalType))
2832      return ExprError();
2833  }
2834  InitExpr.release();
2835  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2836                                                 literalExpr, isFileScope));
2837}
2838
2839Action::OwningExprResult
2840Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2841                    SourceLocation RBraceLoc) {
2842  unsigned NumInit = initlist.size();
2843  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2844
2845  // Semantic analysis for initializers is done by ActOnDeclarator() and
2846  // CheckInitializer() - it requires knowledge of the object being intialized.
2847
2848  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2849                                               RBraceLoc);
2850  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2851  return Owned(E);
2852}
2853
2854/// CheckCastTypes - Check type constraints for casting between types.
2855bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2856  UsualUnaryConversions(castExpr);
2857
2858  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2859  // type needs to be scalar.
2860  if (castType->isVoidType()) {
2861    // Cast to void allows any expr type.
2862  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2863    // We can't check any more until template instantiation time.
2864  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2865    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2866        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2867        (castType->isStructureType() || castType->isUnionType())) {
2868      // GCC struct/union extension: allow cast to self.
2869      // FIXME: Check that the cast destination type is complete.
2870      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2871        << castType << castExpr->getSourceRange();
2872    } else if (castType->isUnionType()) {
2873      // GCC cast to union extension
2874      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2875      RecordDecl::field_iterator Field, FieldEnd;
2876      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2877           Field != FieldEnd; ++Field) {
2878        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2879            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2880          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2881            << castExpr->getSourceRange();
2882          break;
2883        }
2884      }
2885      if (Field == FieldEnd)
2886        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2887          << castExpr->getType() << castExpr->getSourceRange();
2888    } else {
2889      // Reject any other conversions to non-scalar types.
2890      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2891        << castType << castExpr->getSourceRange();
2892    }
2893  } else if (!castExpr->getType()->isScalarType() &&
2894             !castExpr->getType()->isVectorType()) {
2895    return Diag(castExpr->getLocStart(),
2896                diag::err_typecheck_expect_scalar_operand)
2897      << castExpr->getType() << castExpr->getSourceRange();
2898  } else if (castType->isExtVectorType()) {
2899    if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
2900      return true;
2901  } else if (castType->isVectorType()) {
2902    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2903      return true;
2904  } else if (castExpr->getType()->isVectorType()) {
2905    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2906      return true;
2907  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2908    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2909  } else if (!castType->isArithmeticType()) {
2910    QualType castExprType = castExpr->getType();
2911    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2912      return Diag(castExpr->getLocStart(),
2913                  diag::err_cast_pointer_from_non_pointer_int)
2914        << castExprType << castExpr->getSourceRange();
2915  } else if (!castExpr->getType()->isArithmeticType()) {
2916    if (!castType->isIntegralType() && castType->isArithmeticType())
2917      return Diag(castExpr->getLocStart(),
2918                  diag::err_cast_pointer_to_non_pointer_int)
2919        << castType << castExpr->getSourceRange();
2920  }
2921  if (isa<ObjCSelectorExpr>(castExpr))
2922    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
2923  return false;
2924}
2925
2926bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2927  assert(VectorTy->isVectorType() && "Not a vector type!");
2928
2929  if (Ty->isVectorType() || Ty->isIntegerType()) {
2930    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2931      return Diag(R.getBegin(),
2932                  Ty->isVectorType() ?
2933                  diag::err_invalid_conversion_between_vectors :
2934                  diag::err_invalid_conversion_between_vector_and_integer)
2935        << VectorTy << Ty << R;
2936  } else
2937    return Diag(R.getBegin(),
2938                diag::err_invalid_conversion_between_vector_and_scalar)
2939      << VectorTy << Ty << R;
2940
2941  return false;
2942}
2943
2944bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
2945  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
2946
2947  // If SrcTy is a VectorType, the total size must match to explicitly cast to
2948  // an ExtVectorType.
2949  if (SrcTy->isVectorType()) {
2950    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
2951      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
2952        << DestTy << SrcTy << R;
2953    return false;
2954  }
2955
2956  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
2957  // conversion will take place first from scalar to elt type, and then
2958  // splat from elt type to vector.
2959  if (SrcTy->isPointerType())
2960    return Diag(R.getBegin(),
2961                diag::err_invalid_conversion_between_vector_and_scalar)
2962      << DestTy << SrcTy << R;
2963  return false;
2964}
2965
2966Action::OwningExprResult
2967Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2968                    SourceLocation RParenLoc, ExprArg Op) {
2969  assert((Ty != 0) && (Op.get() != 0) &&
2970         "ActOnCastExpr(): missing type or expr");
2971
2972  Expr *castExpr = Op.takeAs<Expr>();
2973  QualType castType = QualType::getFromOpaquePtr(Ty);
2974
2975  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2976    return ExprError();
2977  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2978                                            LParenLoc, RParenLoc));
2979}
2980
2981/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2982/// In that case, lhs = cond.
2983/// C99 6.5.15
2984QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2985                                        SourceLocation QuestionLoc) {
2986  // C++ is sufficiently different to merit its own checker.
2987  if (getLangOptions().CPlusPlus)
2988    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2989
2990  UsualUnaryConversions(Cond);
2991  UsualUnaryConversions(LHS);
2992  UsualUnaryConversions(RHS);
2993  QualType CondTy = Cond->getType();
2994  QualType LHSTy = LHS->getType();
2995  QualType RHSTy = RHS->getType();
2996
2997  // first, check the condition.
2998  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2999    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3000      << CondTy;
3001    return QualType();
3002  }
3003
3004  // Now check the two expressions.
3005
3006  // If both operands have arithmetic type, do the usual arithmetic conversions
3007  // to find a common type: C99 6.5.15p3,5.
3008  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3009    UsualArithmeticConversions(LHS, RHS);
3010    return LHS->getType();
3011  }
3012
3013  // If both operands are the same structure or union type, the result is that
3014  // type.
3015  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
3016    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
3017      if (LHSRT->getDecl() == RHSRT->getDecl())
3018        // "If both the operands have structure or union type, the result has
3019        // that type."  This implies that CV qualifiers are dropped.
3020        return LHSTy.getUnqualifiedType();
3021    // FIXME: Type of conditional expression must be complete in C mode.
3022  }
3023
3024  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3025  // The following || allows only one side to be void (a GCC-ism).
3026  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3027    if (!LHSTy->isVoidType())
3028      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3029        << RHS->getSourceRange();
3030    if (!RHSTy->isVoidType())
3031      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3032        << LHS->getSourceRange();
3033    ImpCastExprToType(LHS, Context.VoidTy);
3034    ImpCastExprToType(RHS, Context.VoidTy);
3035    return Context.VoidTy;
3036  }
3037  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3038  // the type of the other operand."
3039  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
3040       Context.isObjCObjectPointerType(LHSTy)) &&
3041      RHS->isNullPointerConstant(Context)) {
3042    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
3043    return LHSTy;
3044  }
3045  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
3046       Context.isObjCObjectPointerType(RHSTy)) &&
3047      LHS->isNullPointerConstant(Context)) {
3048    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
3049    return RHSTy;
3050  }
3051
3052  const PointerType *LHSPT = LHSTy->getAsPointerType();
3053  const PointerType *RHSPT = RHSTy->getAsPointerType();
3054  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
3055  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
3056
3057  // Handle the case where both operands are pointers before we handle null
3058  // pointer constants in case both operands are null pointer constants.
3059  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
3060    // get the "pointed to" types
3061    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
3062                       : LHSBPT->getPointeeType());
3063      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
3064                         : RHSBPT->getPointeeType());
3065
3066    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3067    if (lhptee->isVoidType()
3068        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
3069      // Figure out necessary qualifiers (C99 6.5.15p6)
3070      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3071      QualType destType = Context.getPointerType(destPointee);
3072      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3073      ImpCastExprToType(RHS, destType); // promote to void*
3074      return destType;
3075    }
3076    if (rhptee->isVoidType()
3077        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
3078      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3079      QualType destType = Context.getPointerType(destPointee);
3080      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3081      ImpCastExprToType(RHS, destType); // promote to void*
3082      return destType;
3083    }
3084
3085    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
3086    if (sameKind
3087        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3088      // Two identical pointer types are always compatible.
3089      return LHSTy;
3090    }
3091
3092    QualType compositeType = LHSTy;
3093
3094    // If either type is an Objective-C object type then check
3095    // compatibility according to Objective-C.
3096    if (Context.isObjCObjectPointerType(LHSTy) ||
3097        Context.isObjCObjectPointerType(RHSTy)) {
3098      // If both operands are interfaces and either operand can be
3099      // assigned to the other, use that type as the composite
3100      // type. This allows
3101      //   xxx ? (A*) a : (B*) b
3102      // where B is a subclass of A.
3103      //
3104      // Additionally, as for assignment, if either type is 'id'
3105      // allow silent coercion. Finally, if the types are
3106      // incompatible then make sure to use 'id' as the composite
3107      // type so the result is acceptable for sending messages to.
3108
3109      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3110      // It could return the composite type.
3111      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
3112      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
3113      if (LHSIface && RHSIface &&
3114          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
3115        compositeType = LHSTy;
3116      } else if (LHSIface && RHSIface &&
3117                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
3118        compositeType = RHSTy;
3119      } else if (Context.isObjCIdStructType(lhptee) ||
3120                 Context.isObjCIdStructType(rhptee)) {
3121        compositeType = Context.getObjCIdType();
3122      } else if (LHSBPT || RHSBPT) {
3123        if (!sameKind
3124            || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3125                                           rhptee.getUnqualifiedType()))
3126          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3127            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3128        return QualType();
3129      } else {
3130        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3131          << LHSTy << RHSTy
3132          << LHS->getSourceRange() << RHS->getSourceRange();
3133        QualType incompatTy = Context.getObjCIdType();
3134        ImpCastExprToType(LHS, incompatTy);
3135        ImpCastExprToType(RHS, incompatTy);
3136        return incompatTy;
3137      }
3138    } else if (!sameKind
3139               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3140                                              rhptee.getUnqualifiedType())) {
3141      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3142        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3143      // In this situation, we assume void* type. No especially good
3144      // reason, but this is what gcc does, and we do have to pick
3145      // to get a consistent AST.
3146      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3147      ImpCastExprToType(LHS, incompatTy);
3148      ImpCastExprToType(RHS, incompatTy);
3149      return incompatTy;
3150    }
3151    // The pointer types are compatible.
3152    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3153    // differently qualified versions of compatible types, the result type is
3154    // a pointer to an appropriately qualified version of the *composite*
3155    // type.
3156    // FIXME: Need to calculate the composite type.
3157    // FIXME: Need to add qualifiers
3158    ImpCastExprToType(LHS, compositeType);
3159    ImpCastExprToType(RHS, compositeType);
3160    return compositeType;
3161  }
3162
3163  // GCC compatibility: soften pointer/integer mismatch.
3164  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3165    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3166      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3167    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3168    return RHSTy;
3169  }
3170  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3171    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3172      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3173    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3174    return LHSTy;
3175  }
3176
3177  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3178  // evaluates to "struct objc_object *" (and is handled above when comparing
3179  // id with statically typed objects).
3180  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3181    // GCC allows qualified id and any Objective-C type to devolve to
3182    // id. Currently localizing to here until clear this should be
3183    // part of ObjCQualifiedIdTypesAreCompatible.
3184    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3185        (LHSTy->isObjCQualifiedIdType() &&
3186         Context.isObjCObjectPointerType(RHSTy)) ||
3187        (RHSTy->isObjCQualifiedIdType() &&
3188         Context.isObjCObjectPointerType(LHSTy))) {
3189      // FIXME: This is not the correct composite type. This only happens to
3190      // work because id can more or less be used anywhere, however this may
3191      // change the type of method sends.
3192
3193      // FIXME: gcc adds some type-checking of the arguments and emits
3194      // (confusing) incompatible comparison warnings in some
3195      // cases. Investigate.
3196      QualType compositeType = Context.getObjCIdType();
3197      ImpCastExprToType(LHS, compositeType);
3198      ImpCastExprToType(RHS, compositeType);
3199      return compositeType;
3200    }
3201  }
3202
3203  // Otherwise, the operands are not compatible.
3204  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3205    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3206  return QualType();
3207}
3208
3209/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3210/// in the case of a the GNU conditional expr extension.
3211Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3212                                                  SourceLocation ColonLoc,
3213                                                  ExprArg Cond, ExprArg LHS,
3214                                                  ExprArg RHS) {
3215  Expr *CondExpr = (Expr *) Cond.get();
3216  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3217
3218  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3219  // was the condition.
3220  bool isLHSNull = LHSExpr == 0;
3221  if (isLHSNull)
3222    LHSExpr = CondExpr;
3223
3224  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3225                                             RHSExpr, QuestionLoc);
3226  if (result.isNull())
3227    return ExprError();
3228
3229  Cond.release();
3230  LHS.release();
3231  RHS.release();
3232  return Owned(new (Context) ConditionalOperator(CondExpr,
3233                                                 isLHSNull ? 0 : LHSExpr,
3234                                                 RHSExpr, result));
3235}
3236
3237
3238// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3239// being closely modeled after the C99 spec:-). The odd characteristic of this
3240// routine is it effectively iqnores the qualifiers on the top level pointee.
3241// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3242// FIXME: add a couple examples in this comment.
3243Sema::AssignConvertType
3244Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3245  QualType lhptee, rhptee;
3246
3247  // get the "pointed to" type (ignoring qualifiers at the top level)
3248  lhptee = lhsType->getAsPointerType()->getPointeeType();
3249  rhptee = rhsType->getAsPointerType()->getPointeeType();
3250
3251  // make sure we operate on the canonical type
3252  lhptee = Context.getCanonicalType(lhptee);
3253  rhptee = Context.getCanonicalType(rhptee);
3254
3255  AssignConvertType ConvTy = Compatible;
3256
3257  // C99 6.5.16.1p1: This following citation is common to constraints
3258  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3259  // qualifiers of the type *pointed to* by the right;
3260  // FIXME: Handle ExtQualType
3261  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3262    ConvTy = CompatiblePointerDiscardsQualifiers;
3263
3264  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3265  // incomplete type and the other is a pointer to a qualified or unqualified
3266  // version of void...
3267  if (lhptee->isVoidType()) {
3268    if (rhptee->isIncompleteOrObjectType())
3269      return ConvTy;
3270
3271    // As an extension, we allow cast to/from void* to function pointer.
3272    assert(rhptee->isFunctionType());
3273    return FunctionVoidPointer;
3274  }
3275
3276  if (rhptee->isVoidType()) {
3277    if (lhptee->isIncompleteOrObjectType())
3278      return ConvTy;
3279
3280    // As an extension, we allow cast to/from void* to function pointer.
3281    assert(lhptee->isFunctionType());
3282    return FunctionVoidPointer;
3283  }
3284  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3285  // unqualified versions of compatible types, ...
3286  lhptee = lhptee.getUnqualifiedType();
3287  rhptee = rhptee.getUnqualifiedType();
3288  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3289    // Check if the pointee types are compatible ignoring the sign.
3290    // We explicitly check for char so that we catch "char" vs
3291    // "unsigned char" on systems where "char" is unsigned.
3292    if (lhptee->isCharType()) {
3293      lhptee = Context.UnsignedCharTy;
3294    } else if (lhptee->isSignedIntegerType()) {
3295      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3296    }
3297    if (rhptee->isCharType()) {
3298      rhptee = Context.UnsignedCharTy;
3299    } else if (rhptee->isSignedIntegerType()) {
3300      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3301    }
3302    if (lhptee == rhptee) {
3303      // Types are compatible ignoring the sign. Qualifier incompatibility
3304      // takes priority over sign incompatibility because the sign
3305      // warning can be disabled.
3306      if (ConvTy != Compatible)
3307        return ConvTy;
3308      return IncompatiblePointerSign;
3309    }
3310    // General pointer incompatibility takes priority over qualifiers.
3311    return IncompatiblePointer;
3312  }
3313  return ConvTy;
3314}
3315
3316/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3317/// block pointer types are compatible or whether a block and normal pointer
3318/// are compatible. It is more restrict than comparing two function pointer
3319// types.
3320Sema::AssignConvertType
3321Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3322                                          QualType rhsType) {
3323  QualType lhptee, rhptee;
3324
3325  // get the "pointed to" type (ignoring qualifiers at the top level)
3326  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3327  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3328
3329  // make sure we operate on the canonical type
3330  lhptee = Context.getCanonicalType(lhptee);
3331  rhptee = Context.getCanonicalType(rhptee);
3332
3333  AssignConvertType ConvTy = Compatible;
3334
3335  // For blocks we enforce that qualifiers are identical.
3336  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3337    ConvTy = CompatiblePointerDiscardsQualifiers;
3338
3339  if (!Context.typesAreCompatible(lhptee, rhptee))
3340    return IncompatibleBlockPointer;
3341  return ConvTy;
3342}
3343
3344/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3345/// has code to accommodate several GCC extensions when type checking
3346/// pointers. Here are some objectionable examples that GCC considers warnings:
3347///
3348///  int a, *pint;
3349///  short *pshort;
3350///  struct foo *pfoo;
3351///
3352///  pint = pshort; // warning: assignment from incompatible pointer type
3353///  a = pint; // warning: assignment makes integer from pointer without a cast
3354///  pint = a; // warning: assignment makes pointer from integer without a cast
3355///  pint = pfoo; // warning: assignment from incompatible pointer type
3356///
3357/// As a result, the code for dealing with pointers is more complex than the
3358/// C99 spec dictates.
3359///
3360Sema::AssignConvertType
3361Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3362  // Get canonical types.  We're not formatting these types, just comparing
3363  // them.
3364  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3365  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3366
3367  if (lhsType == rhsType)
3368    return Compatible; // Common case: fast path an exact match.
3369
3370  // If the left-hand side is a reference type, then we are in a
3371  // (rare!) case where we've allowed the use of references in C,
3372  // e.g., as a parameter type in a built-in function. In this case,
3373  // just make sure that the type referenced is compatible with the
3374  // right-hand side type. The caller is responsible for adjusting
3375  // lhsType so that the resulting expression does not have reference
3376  // type.
3377  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3378    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3379      return Compatible;
3380    return Incompatible;
3381  }
3382
3383  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3384    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3385      return Compatible;
3386    // Relax integer conversions like we do for pointers below.
3387    if (rhsType->isIntegerType())
3388      return IntToPointer;
3389    if (lhsType->isIntegerType())
3390      return PointerToInt;
3391    return IncompatibleObjCQualifiedId;
3392  }
3393
3394  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3395  // to the same ExtVector type.
3396  if (lhsType->isExtVectorType()) {
3397    if (rhsType->isExtVectorType())
3398      return lhsType == rhsType ? Compatible : Incompatible;
3399    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3400      return Compatible;
3401  }
3402
3403  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3404    // If we are allowing lax vector conversions, and LHS and RHS are both
3405    // vectors, the total size only needs to be the same. This is a bitcast;
3406    // no bits are changed but the result type is different.
3407    if (getLangOptions().LaxVectorConversions &&
3408        lhsType->isVectorType() && rhsType->isVectorType()) {
3409      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3410        return IncompatibleVectors;
3411    }
3412    return Incompatible;
3413  }
3414
3415  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3416    return Compatible;
3417
3418  if (isa<PointerType>(lhsType)) {
3419    if (rhsType->isIntegerType())
3420      return IntToPointer;
3421
3422    if (isa<PointerType>(rhsType))
3423      return CheckPointerTypesForAssignment(lhsType, rhsType);
3424
3425    if (rhsType->getAsBlockPointerType()) {
3426      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3427        return Compatible;
3428
3429      // Treat block pointers as objects.
3430      if (getLangOptions().ObjC1 &&
3431          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3432        return Compatible;
3433    }
3434    return Incompatible;
3435  }
3436
3437  if (isa<BlockPointerType>(lhsType)) {
3438    if (rhsType->isIntegerType())
3439      return IntToBlockPointer;
3440
3441    // Treat block pointers as objects.
3442    if (getLangOptions().ObjC1 &&
3443        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3444      return Compatible;
3445
3446    if (rhsType->isBlockPointerType())
3447      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3448
3449    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3450      if (RHSPT->getPointeeType()->isVoidType())
3451        return Compatible;
3452    }
3453    return Incompatible;
3454  }
3455
3456  if (isa<PointerType>(rhsType)) {
3457    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3458    if (lhsType == Context.BoolTy)
3459      return Compatible;
3460
3461    if (lhsType->isIntegerType())
3462      return PointerToInt;
3463
3464    if (isa<PointerType>(lhsType))
3465      return CheckPointerTypesForAssignment(lhsType, rhsType);
3466
3467    if (isa<BlockPointerType>(lhsType) &&
3468        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3469      return Compatible;
3470    return Incompatible;
3471  }
3472
3473  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3474    if (Context.typesAreCompatible(lhsType, rhsType))
3475      return Compatible;
3476  }
3477  return Incompatible;
3478}
3479
3480/// \brief Constructs a transparent union from an expression that is
3481/// used to initialize the transparent union.
3482static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3483                                      QualType UnionType, FieldDecl *Field) {
3484  // Build an initializer list that designates the appropriate member
3485  // of the transparent union.
3486  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3487                                                   &E, 1,
3488                                                   SourceLocation());
3489  Initializer->setType(UnionType);
3490  Initializer->setInitializedFieldInUnion(Field);
3491
3492  // Build a compound literal constructing a value of the transparent
3493  // union type from this initializer list.
3494  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3495                                  false);
3496}
3497
3498Sema::AssignConvertType
3499Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3500  QualType FromType = rExpr->getType();
3501
3502  // If the ArgType is a Union type, we want to handle a potential
3503  // transparent_union GCC extension.
3504  const RecordType *UT = ArgType->getAsUnionType();
3505  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3506    return Incompatible;
3507
3508  // The field to initialize within the transparent union.
3509  RecordDecl *UD = UT->getDecl();
3510  FieldDecl *InitField = 0;
3511  // It's compatible if the expression matches any of the fields.
3512  for (RecordDecl::field_iterator it = UD->field_begin(),
3513         itend = UD->field_end();
3514       it != itend; ++it) {
3515    if (it->getType()->isPointerType()) {
3516      // If the transparent union contains a pointer type, we allow:
3517      // 1) void pointer
3518      // 2) null pointer constant
3519      if (FromType->isPointerType())
3520        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3521          ImpCastExprToType(rExpr, it->getType());
3522          InitField = *it;
3523          break;
3524        }
3525
3526      if (rExpr->isNullPointerConstant(Context)) {
3527        ImpCastExprToType(rExpr, it->getType());
3528        InitField = *it;
3529        break;
3530      }
3531    }
3532
3533    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3534          == Compatible) {
3535      InitField = *it;
3536      break;
3537    }
3538  }
3539
3540  if (!InitField)
3541    return Incompatible;
3542
3543  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3544  return Compatible;
3545}
3546
3547Sema::AssignConvertType
3548Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3549  if (getLangOptions().CPlusPlus) {
3550    if (!lhsType->isRecordType()) {
3551      // C++ 5.17p3: If the left operand is not of class type, the
3552      // expression is implicitly converted (C++ 4) to the
3553      // cv-unqualified type of the left operand.
3554      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3555                                    "assigning"))
3556        return Incompatible;
3557      return Compatible;
3558    }
3559
3560    // FIXME: Currently, we fall through and treat C++ classes like C
3561    // structures.
3562  }
3563
3564  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3565  // a null pointer constant.
3566  if ((lhsType->isPointerType() ||
3567       lhsType->isObjCQualifiedIdType() ||
3568       lhsType->isBlockPointerType())
3569      && rExpr->isNullPointerConstant(Context)) {
3570    ImpCastExprToType(rExpr, lhsType);
3571    return Compatible;
3572  }
3573
3574  // This check seems unnatural, however it is necessary to ensure the proper
3575  // conversion of functions/arrays. If the conversion were done for all
3576  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3577  // expressions that surpress this implicit conversion (&, sizeof).
3578  //
3579  // Suppress this for references: C++ 8.5.3p5.
3580  if (!lhsType->isReferenceType())
3581    DefaultFunctionArrayConversion(rExpr);
3582
3583  Sema::AssignConvertType result =
3584    CheckAssignmentConstraints(lhsType, rExpr->getType());
3585
3586  // C99 6.5.16.1p2: The value of the right operand is converted to the
3587  // type of the assignment expression.
3588  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3589  // so that we can use references in built-in functions even in C.
3590  // The getNonReferenceType() call makes sure that the resulting expression
3591  // does not have reference type.
3592  if (result != Incompatible && rExpr->getType() != lhsType)
3593    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3594  return result;
3595}
3596
3597QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3598  Diag(Loc, diag::err_typecheck_invalid_operands)
3599    << lex->getType() << rex->getType()
3600    << lex->getSourceRange() << rex->getSourceRange();
3601  return QualType();
3602}
3603
3604inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3605                                                              Expr *&rex) {
3606  // For conversion purposes, we ignore any qualifiers.
3607  // For example, "const float" and "float" are equivalent.
3608  QualType lhsType =
3609    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3610  QualType rhsType =
3611    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3612
3613  // If the vector types are identical, return.
3614  if (lhsType == rhsType)
3615    return lhsType;
3616
3617  // Handle the case of a vector & extvector type of the same size and element
3618  // type.  It would be nice if we only had one vector type someday.
3619  if (getLangOptions().LaxVectorConversions) {
3620    // FIXME: Should we warn here?
3621    if (const VectorType *LV = lhsType->getAsVectorType()) {
3622      if (const VectorType *RV = rhsType->getAsVectorType())
3623        if (LV->getElementType() == RV->getElementType() &&
3624            LV->getNumElements() == RV->getNumElements()) {
3625          return lhsType->isExtVectorType() ? lhsType : rhsType;
3626        }
3627    }
3628  }
3629
3630  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
3631  // swap back (so that we don't reverse the inputs to a subtract, for instance.
3632  bool swapped = false;
3633  if (rhsType->isExtVectorType()) {
3634    swapped = true;
3635    std::swap(rex, lex);
3636    std::swap(rhsType, lhsType);
3637  }
3638
3639  // Handle the case of an ext vector and scalar.
3640  if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
3641    QualType EltTy = LV->getElementType();
3642    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
3643      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
3644        ImpCastExprToType(rex, lhsType);
3645        if (swapped) std::swap(rex, lex);
3646        return lhsType;
3647      }
3648    }
3649    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
3650        rhsType->isRealFloatingType()) {
3651      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
3652        ImpCastExprToType(rex, lhsType);
3653        if (swapped) std::swap(rex, lex);
3654        return lhsType;
3655      }
3656    }
3657  }
3658
3659  // Vectors of different size or scalar and non-ext-vector are errors.
3660  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3661    << lex->getType() << rex->getType()
3662    << lex->getSourceRange() << rex->getSourceRange();
3663  return QualType();
3664}
3665
3666inline QualType Sema::CheckMultiplyDivideOperands(
3667  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3668{
3669  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3670    return CheckVectorOperands(Loc, lex, rex);
3671
3672  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3673
3674  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3675    return compType;
3676  return InvalidOperands(Loc, lex, rex);
3677}
3678
3679inline QualType Sema::CheckRemainderOperands(
3680  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3681{
3682  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3683    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3684      return CheckVectorOperands(Loc, lex, rex);
3685    return InvalidOperands(Loc, lex, rex);
3686  }
3687
3688  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3689
3690  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3691    return compType;
3692  return InvalidOperands(Loc, lex, rex);
3693}
3694
3695inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3696  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3697{
3698  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3699    QualType compType = CheckVectorOperands(Loc, lex, rex);
3700    if (CompLHSTy) *CompLHSTy = compType;
3701    return compType;
3702  }
3703
3704  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3705
3706  // handle the common case first (both operands are arithmetic).
3707  if (lex->getType()->isArithmeticType() &&
3708      rex->getType()->isArithmeticType()) {
3709    if (CompLHSTy) *CompLHSTy = compType;
3710    return compType;
3711  }
3712
3713  // Put any potential pointer into PExp
3714  Expr* PExp = lex, *IExp = rex;
3715  if (IExp->getType()->isPointerType())
3716    std::swap(PExp, IExp);
3717
3718  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3719    if (IExp->getType()->isIntegerType()) {
3720      QualType PointeeTy = PTy->getPointeeType();
3721      // Check for arithmetic on pointers to incomplete types.
3722      if (PointeeTy->isVoidType()) {
3723        if (getLangOptions().CPlusPlus) {
3724          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3725            << lex->getSourceRange() << rex->getSourceRange();
3726          return QualType();
3727        }
3728
3729        // GNU extension: arithmetic on pointer to void
3730        Diag(Loc, diag::ext_gnu_void_ptr)
3731          << lex->getSourceRange() << rex->getSourceRange();
3732      } else if (PointeeTy->isFunctionType()) {
3733        if (getLangOptions().CPlusPlus) {
3734          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3735            << lex->getType() << lex->getSourceRange();
3736          return QualType();
3737        }
3738
3739        // GNU extension: arithmetic on pointer to function
3740        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3741          << lex->getType() << lex->getSourceRange();
3742      } else if (!PTy->isDependentType() &&
3743                 RequireCompleteType(Loc, PointeeTy,
3744                                diag::err_typecheck_arithmetic_incomplete_type,
3745                                     PExp->getSourceRange(), SourceRange(),
3746                                     PExp->getType()))
3747        return QualType();
3748
3749      // Diagnose bad cases where we step over interface counts.
3750      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3751        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3752          << PointeeTy << PExp->getSourceRange();
3753        return QualType();
3754      }
3755
3756      if (CompLHSTy) {
3757        QualType LHSTy = lex->getType();
3758        if (LHSTy->isPromotableIntegerType())
3759          LHSTy = Context.IntTy;
3760        else {
3761          QualType T = isPromotableBitField(lex, Context);
3762          if (!T.isNull())
3763            LHSTy = T;
3764        }
3765
3766        *CompLHSTy = LHSTy;
3767      }
3768      return PExp->getType();
3769    }
3770  }
3771
3772  return InvalidOperands(Loc, lex, rex);
3773}
3774
3775// C99 6.5.6
3776QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3777                                        SourceLocation Loc, QualType* CompLHSTy) {
3778  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3779    QualType compType = CheckVectorOperands(Loc, lex, rex);
3780    if (CompLHSTy) *CompLHSTy = compType;
3781    return compType;
3782  }
3783
3784  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3785
3786  // Enforce type constraints: C99 6.5.6p3.
3787
3788  // Handle the common case first (both operands are arithmetic).
3789  if (lex->getType()->isArithmeticType()
3790      && rex->getType()->isArithmeticType()) {
3791    if (CompLHSTy) *CompLHSTy = compType;
3792    return compType;
3793  }
3794
3795  // Either ptr - int   or   ptr - ptr.
3796  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3797    QualType lpointee = LHSPTy->getPointeeType();
3798
3799    // The LHS must be an completely-defined object type.
3800
3801    bool ComplainAboutVoid = false;
3802    Expr *ComplainAboutFunc = 0;
3803    if (lpointee->isVoidType()) {
3804      if (getLangOptions().CPlusPlus) {
3805        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3806          << lex->getSourceRange() << rex->getSourceRange();
3807        return QualType();
3808      }
3809
3810      // GNU C extension: arithmetic on pointer to void
3811      ComplainAboutVoid = true;
3812    } else if (lpointee->isFunctionType()) {
3813      if (getLangOptions().CPlusPlus) {
3814        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3815          << lex->getType() << lex->getSourceRange();
3816        return QualType();
3817      }
3818
3819      // GNU C extension: arithmetic on pointer to function
3820      ComplainAboutFunc = lex;
3821    } else if (!lpointee->isDependentType() &&
3822               RequireCompleteType(Loc, lpointee,
3823                                   diag::err_typecheck_sub_ptr_object,
3824                                   lex->getSourceRange(),
3825                                   SourceRange(),
3826                                   lex->getType()))
3827      return QualType();
3828
3829    // Diagnose bad cases where we step over interface counts.
3830    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3831      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3832        << lpointee << lex->getSourceRange();
3833      return QualType();
3834    }
3835
3836    // The result type of a pointer-int computation is the pointer type.
3837    if (rex->getType()->isIntegerType()) {
3838      if (ComplainAboutVoid)
3839        Diag(Loc, diag::ext_gnu_void_ptr)
3840          << lex->getSourceRange() << rex->getSourceRange();
3841      if (ComplainAboutFunc)
3842        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3843          << ComplainAboutFunc->getType()
3844          << ComplainAboutFunc->getSourceRange();
3845
3846      if (CompLHSTy) *CompLHSTy = lex->getType();
3847      return lex->getType();
3848    }
3849
3850    // Handle pointer-pointer subtractions.
3851    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3852      QualType rpointee = RHSPTy->getPointeeType();
3853
3854      // RHS must be a completely-type object type.
3855      // Handle the GNU void* extension.
3856      if (rpointee->isVoidType()) {
3857        if (getLangOptions().CPlusPlus) {
3858          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3859            << lex->getSourceRange() << rex->getSourceRange();
3860          return QualType();
3861        }
3862
3863        ComplainAboutVoid = true;
3864      } else if (rpointee->isFunctionType()) {
3865        if (getLangOptions().CPlusPlus) {
3866          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3867            << rex->getType() << rex->getSourceRange();
3868          return QualType();
3869        }
3870
3871        // GNU extension: arithmetic on pointer to function
3872        if (!ComplainAboutFunc)
3873          ComplainAboutFunc = rex;
3874      } else if (!rpointee->isDependentType() &&
3875                 RequireCompleteType(Loc, rpointee,
3876                                     diag::err_typecheck_sub_ptr_object,
3877                                     rex->getSourceRange(),
3878                                     SourceRange(),
3879                                     rex->getType()))
3880        return QualType();
3881
3882      if (getLangOptions().CPlusPlus) {
3883        // Pointee types must be the same: C++ [expr.add]
3884        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3885          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3886            << lex->getType() << rex->getType()
3887            << lex->getSourceRange() << rex->getSourceRange();
3888          return QualType();
3889        }
3890      } else {
3891        // Pointee types must be compatible C99 6.5.6p3
3892        if (!Context.typesAreCompatible(
3893                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3894                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3895          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3896            << lex->getType() << rex->getType()
3897            << lex->getSourceRange() << rex->getSourceRange();
3898          return QualType();
3899        }
3900      }
3901
3902      if (ComplainAboutVoid)
3903        Diag(Loc, diag::ext_gnu_void_ptr)
3904          << lex->getSourceRange() << rex->getSourceRange();
3905      if (ComplainAboutFunc)
3906        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3907          << ComplainAboutFunc->getType()
3908          << ComplainAboutFunc->getSourceRange();
3909
3910      if (CompLHSTy) *CompLHSTy = lex->getType();
3911      return Context.getPointerDiffType();
3912    }
3913  }
3914
3915  return InvalidOperands(Loc, lex, rex);
3916}
3917
3918// C99 6.5.7
3919QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3920                                  bool isCompAssign) {
3921  // C99 6.5.7p2: Each of the operands shall have integer type.
3922  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3923    return InvalidOperands(Loc, lex, rex);
3924
3925  // Shifts don't perform usual arithmetic conversions, they just do integer
3926  // promotions on each operand. C99 6.5.7p3
3927  QualType LHSTy;
3928  if (lex->getType()->isPromotableIntegerType())
3929    LHSTy = Context.IntTy;
3930  else {
3931    LHSTy = isPromotableBitField(lex, Context);
3932    if (LHSTy.isNull())
3933      LHSTy = lex->getType();
3934  }
3935  if (!isCompAssign)
3936    ImpCastExprToType(lex, LHSTy);
3937
3938  UsualUnaryConversions(rex);
3939
3940  // "The type of the result is that of the promoted left operand."
3941  return LHSTy;
3942}
3943
3944// C99 6.5.8, C++ [expr.rel]
3945QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3946                                    unsigned OpaqueOpc, bool isRelational) {
3947  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3948
3949  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3950    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3951
3952  // C99 6.5.8p3 / C99 6.5.9p4
3953  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3954    UsualArithmeticConversions(lex, rex);
3955  else {
3956    UsualUnaryConversions(lex);
3957    UsualUnaryConversions(rex);
3958  }
3959  QualType lType = lex->getType();
3960  QualType rType = rex->getType();
3961
3962  if (!lType->isFloatingType()
3963      && !(lType->isBlockPointerType() && isRelational)) {
3964    // For non-floating point types, check for self-comparisons of the form
3965    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3966    // often indicate logic errors in the program.
3967    // NOTE: Don't warn about comparisons of enum constants. These can arise
3968    //  from macro expansions, and are usually quite deliberate.
3969    Expr *LHSStripped = lex->IgnoreParens();
3970    Expr *RHSStripped = rex->IgnoreParens();
3971    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3972      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3973        if (DRL->getDecl() == DRR->getDecl() &&
3974            !isa<EnumConstantDecl>(DRL->getDecl()))
3975          Diag(Loc, diag::warn_selfcomparison);
3976
3977    if (isa<CastExpr>(LHSStripped))
3978      LHSStripped = LHSStripped->IgnoreParenCasts();
3979    if (isa<CastExpr>(RHSStripped))
3980      RHSStripped = RHSStripped->IgnoreParenCasts();
3981
3982    // Warn about comparisons against a string constant (unless the other
3983    // operand is null), the user probably wants strcmp.
3984    Expr *literalString = 0;
3985    Expr *literalStringStripped = 0;
3986    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3987        !RHSStripped->isNullPointerConstant(Context)) {
3988      literalString = lex;
3989      literalStringStripped = LHSStripped;
3990    }
3991    else if ((isa<StringLiteral>(RHSStripped) ||
3992              isa<ObjCEncodeExpr>(RHSStripped)) &&
3993             !LHSStripped->isNullPointerConstant(Context)) {
3994      literalString = rex;
3995      literalStringStripped = RHSStripped;
3996    }
3997
3998    if (literalString) {
3999      std::string resultComparison;
4000      switch (Opc) {
4001      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4002      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4003      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4004      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4005      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4006      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4007      default: assert(false && "Invalid comparison operator");
4008      }
4009      Diag(Loc, diag::warn_stringcompare)
4010        << isa<ObjCEncodeExpr>(literalStringStripped)
4011        << literalString->getSourceRange()
4012        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4013        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4014                                                 "strcmp(")
4015        << CodeModificationHint::CreateInsertion(
4016                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4017                                       resultComparison);
4018    }
4019  }
4020
4021  // The result of comparisons is 'bool' in C++, 'int' in C.
4022  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4023
4024  if (isRelational) {
4025    if (lType->isRealType() && rType->isRealType())
4026      return ResultTy;
4027  } else {
4028    // Check for comparisons of floating point operands using != and ==.
4029    if (lType->isFloatingType()) {
4030      assert(rType->isFloatingType());
4031      CheckFloatComparison(Loc,lex,rex);
4032    }
4033
4034    if (lType->isArithmeticType() && rType->isArithmeticType())
4035      return ResultTy;
4036  }
4037
4038  bool LHSIsNull = lex->isNullPointerConstant(Context);
4039  bool RHSIsNull = rex->isNullPointerConstant(Context);
4040
4041  // All of the following pointer related warnings are GCC extensions, except
4042  // when handling null pointer constants. One day, we can consider making them
4043  // errors (when -pedantic-errors is enabled).
4044  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4045    QualType LCanPointeeTy =
4046      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
4047    QualType RCanPointeeTy =
4048      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
4049
4050    if (rType->isFunctionPointerType() || lType->isFunctionPointerType()) {
4051      if (isRelational) {
4052        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4053          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4054      }
4055    }
4056    if (((!LHSIsNull || isRelational) && LCanPointeeTy->isVoidType()) !=
4057        ((!RHSIsNull || isRelational) && RCanPointeeTy->isVoidType())) {
4058      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4059        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4060    }
4061    // Simple check: if the pointee types are identical, we're done.
4062    if (LCanPointeeTy == RCanPointeeTy)
4063      return ResultTy;
4064
4065    if (getLangOptions().CPlusPlus) {
4066      // C++ [expr.rel]p2:
4067      //   [...] Pointer conversions (4.10) and qualification
4068      //   conversions (4.4) are performed on pointer operands (or on
4069      //   a pointer operand and a null pointer constant) to bring
4070      //   them to their composite pointer type. [...]
4071      //
4072      // C++ [expr.eq]p2 uses the same notion for (in)equality
4073      // comparisons of pointers.
4074      QualType T = FindCompositePointerType(lex, rex);
4075      if (T.isNull()) {
4076        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4077          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4078        return QualType();
4079      }
4080
4081      ImpCastExprToType(lex, T);
4082      ImpCastExprToType(rex, T);
4083      return ResultTy;
4084    }
4085
4086    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
4087        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
4088        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4089                                    RCanPointeeTy.getUnqualifiedType()) &&
4090        !Context.areComparableObjCPointerTypes(lType, rType)) {
4091      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4092        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4093    }
4094    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4095    return ResultTy;
4096  }
4097  // C++ allows comparison of pointers with null pointer constants.
4098  if (getLangOptions().CPlusPlus) {
4099    if (lType->isPointerType() && RHSIsNull) {
4100      ImpCastExprToType(rex, lType);
4101      return ResultTy;
4102    }
4103    if (rType->isPointerType() && LHSIsNull) {
4104      ImpCastExprToType(lex, rType);
4105      return ResultTy;
4106    }
4107    // And comparison of nullptr_t with itself.
4108    if (lType->isNullPtrType() && rType->isNullPtrType())
4109      return ResultTy;
4110  }
4111  // Handle block pointer types.
4112  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4113    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
4114    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
4115
4116    if (!LHSIsNull && !RHSIsNull &&
4117        !Context.typesAreCompatible(lpointee, rpointee)) {
4118      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4119        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4120    }
4121    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4122    return ResultTy;
4123  }
4124  // Allow block pointers to be compared with null pointer constants.
4125  if (!isRelational
4126      && ((lType->isBlockPointerType() && rType->isPointerType())
4127          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4128    if (!LHSIsNull && !RHSIsNull) {
4129      if (!((rType->isPointerType() && rType->getAsPointerType()
4130             ->getPointeeType()->isVoidType())
4131            || (lType->isPointerType() && lType->getAsPointerType()
4132                ->getPointeeType()->isVoidType())))
4133        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4134          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4135    }
4136    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4137    return ResultTy;
4138  }
4139
4140  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
4141    if (lType->isPointerType() || rType->isPointerType()) {
4142      const PointerType *LPT = lType->getAsPointerType();
4143      const PointerType *RPT = rType->getAsPointerType();
4144      bool LPtrToVoid = LPT ?
4145        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4146      bool RPtrToVoid = RPT ?
4147        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4148
4149      if (!LPtrToVoid && !RPtrToVoid &&
4150          !Context.typesAreCompatible(lType, rType)) {
4151        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4152          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4153        ImpCastExprToType(rex, lType);
4154        return ResultTy;
4155      }
4156      ImpCastExprToType(rex, lType);
4157      return ResultTy;
4158    }
4159    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4160      ImpCastExprToType(rex, lType);
4161      return ResultTy;
4162    } else {
4163      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4164        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4165          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4166        ImpCastExprToType(rex, lType);
4167        return ResultTy;
4168      }
4169    }
4170  }
4171  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4172       rType->isIntegerType()) {
4173    if (isRelational)
4174      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4175        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4176    else if (!RHSIsNull)
4177      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4178        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4179    ImpCastExprToType(rex, lType); // promote the integer to pointer
4180    return ResultTy;
4181  }
4182  if (lType->isIntegerType() &&
4183      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4184    if (isRelational)
4185      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4186        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4187    else if (!LHSIsNull)
4188      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4189        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4190    ImpCastExprToType(lex, rType); // promote the integer to pointer
4191    return ResultTy;
4192  }
4193  // Handle block pointers.
4194  if (!isRelational && RHSIsNull
4195      && lType->isBlockPointerType() && rType->isIntegerType()) {
4196    ImpCastExprToType(rex, lType); // promote the integer to pointer
4197    return ResultTy;
4198  }
4199  if (!isRelational && LHSIsNull
4200      && lType->isIntegerType() && rType->isBlockPointerType()) {
4201    ImpCastExprToType(lex, rType); // promote the integer to pointer
4202    return ResultTy;
4203  }
4204  return InvalidOperands(Loc, lex, rex);
4205}
4206
4207/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4208/// operates on extended vector types.  Instead of producing an IntTy result,
4209/// like a scalar comparison, a vector comparison produces a vector of integer
4210/// types.
4211QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4212                                          SourceLocation Loc,
4213                                          bool isRelational) {
4214  // Check to make sure we're operating on vectors of the same type and width,
4215  // Allowing one side to be a scalar of element type.
4216  QualType vType = CheckVectorOperands(Loc, lex, rex);
4217  if (vType.isNull())
4218    return vType;
4219
4220  QualType lType = lex->getType();
4221  QualType rType = rex->getType();
4222
4223  // For non-floating point types, check for self-comparisons of the form
4224  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4225  // often indicate logic errors in the program.
4226  if (!lType->isFloatingType()) {
4227    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4228      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4229        if (DRL->getDecl() == DRR->getDecl())
4230          Diag(Loc, diag::warn_selfcomparison);
4231  }
4232
4233  // Check for comparisons of floating point operands using != and ==.
4234  if (!isRelational && lType->isFloatingType()) {
4235    assert (rType->isFloatingType());
4236    CheckFloatComparison(Loc,lex,rex);
4237  }
4238
4239  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4240  // just reject all vector comparisons for now.
4241  if (1) {
4242    Diag(Loc, diag::err_typecheck_vector_comparison)
4243      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4244    return QualType();
4245  }
4246
4247  // Return the type for the comparison, which is the same as vector type for
4248  // integer vectors, or an integer type of identical size and number of
4249  // elements for floating point vectors.
4250  if (lType->isIntegerType())
4251    return lType;
4252
4253  const VectorType *VTy = lType->getAsVectorType();
4254  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4255  if (TypeSize == Context.getTypeSize(Context.IntTy))
4256    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4257  if (TypeSize == Context.getTypeSize(Context.LongTy))
4258    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4259
4260  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4261         "Unhandled vector element size in vector compare");
4262  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4263}
4264
4265inline QualType Sema::CheckBitwiseOperands(
4266  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4267{
4268  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4269    return CheckVectorOperands(Loc, lex, rex);
4270
4271  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4272
4273  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4274    return compType;
4275  return InvalidOperands(Loc, lex, rex);
4276}
4277
4278inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4279  Expr *&lex, Expr *&rex, SourceLocation Loc)
4280{
4281  UsualUnaryConversions(lex);
4282  UsualUnaryConversions(rex);
4283
4284  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4285    return Context.IntTy;
4286  return InvalidOperands(Loc, lex, rex);
4287}
4288
4289/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4290/// is a read-only property; return true if so. A readonly property expression
4291/// depends on various declarations and thus must be treated specially.
4292///
4293static bool IsReadonlyProperty(Expr *E, Sema &S)
4294{
4295  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4296    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4297    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4298      QualType BaseType = PropExpr->getBase()->getType();
4299      if (const PointerType *PTy = BaseType->getAsPointerType())
4300        if (const ObjCInterfaceType *IFTy =
4301            PTy->getPointeeType()->getAsObjCInterfaceType())
4302          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4303            if (S.isPropertyReadonly(PDecl, IFace))
4304              return true;
4305    }
4306  }
4307  return false;
4308}
4309
4310/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4311/// emit an error and return true.  If so, return false.
4312static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4313  SourceLocation OrigLoc = Loc;
4314  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4315                                                              &Loc);
4316  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4317    IsLV = Expr::MLV_ReadonlyProperty;
4318  if (IsLV == Expr::MLV_Valid)
4319    return false;
4320
4321  unsigned Diag = 0;
4322  bool NeedType = false;
4323  switch (IsLV) { // C99 6.5.16p2
4324  default: assert(0 && "Unknown result from isModifiableLvalue!");
4325  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4326  case Expr::MLV_ArrayType:
4327    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4328    NeedType = true;
4329    break;
4330  case Expr::MLV_NotObjectType:
4331    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4332    NeedType = true;
4333    break;
4334  case Expr::MLV_LValueCast:
4335    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4336    break;
4337  case Expr::MLV_InvalidExpression:
4338    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4339    break;
4340  case Expr::MLV_IncompleteType:
4341  case Expr::MLV_IncompleteVoidType:
4342    return S.RequireCompleteType(Loc, E->getType(),
4343                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4344                                    E->getSourceRange());
4345  case Expr::MLV_DuplicateVectorComponents:
4346    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4347    break;
4348  case Expr::MLV_NotBlockQualified:
4349    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4350    break;
4351  case Expr::MLV_ReadonlyProperty:
4352    Diag = diag::error_readonly_property_assignment;
4353    break;
4354  case Expr::MLV_NoSetterProperty:
4355    Diag = diag::error_nosetter_property_assignment;
4356    break;
4357  }
4358
4359  SourceRange Assign;
4360  if (Loc != OrigLoc)
4361    Assign = SourceRange(OrigLoc, OrigLoc);
4362  if (NeedType)
4363    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4364  else
4365    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4366  return true;
4367}
4368
4369
4370
4371// C99 6.5.16.1
4372QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4373                                       SourceLocation Loc,
4374                                       QualType CompoundType) {
4375  // Verify that LHS is a modifiable lvalue, and emit error if not.
4376  if (CheckForModifiableLvalue(LHS, Loc, *this))
4377    return QualType();
4378
4379  QualType LHSType = LHS->getType();
4380  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4381
4382  AssignConvertType ConvTy;
4383  if (CompoundType.isNull()) {
4384    // Simple assignment "x = y".
4385    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4386    // Special case of NSObject attributes on c-style pointer types.
4387    if (ConvTy == IncompatiblePointer &&
4388        ((Context.isObjCNSObjectType(LHSType) &&
4389          Context.isObjCObjectPointerType(RHSType)) ||
4390         (Context.isObjCNSObjectType(RHSType) &&
4391          Context.isObjCObjectPointerType(LHSType))))
4392      ConvTy = Compatible;
4393
4394    // If the RHS is a unary plus or minus, check to see if they = and + are
4395    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4396    // instead of "x += 4".
4397    Expr *RHSCheck = RHS;
4398    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4399      RHSCheck = ICE->getSubExpr();
4400    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4401      if ((UO->getOpcode() == UnaryOperator::Plus ||
4402           UO->getOpcode() == UnaryOperator::Minus) &&
4403          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4404          // Only if the two operators are exactly adjacent.
4405          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4406          // And there is a space or other character before the subexpr of the
4407          // unary +/-.  We don't want to warn on "x=-1".
4408          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4409          UO->getSubExpr()->getLocStart().isFileID()) {
4410        Diag(Loc, diag::warn_not_compound_assign)
4411          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4412          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4413      }
4414    }
4415  } else {
4416    // Compound assignment "x += y"
4417    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4418  }
4419
4420  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4421                               RHS, "assigning"))
4422    return QualType();
4423
4424  // C99 6.5.16p3: The type of an assignment expression is the type of the
4425  // left operand unless the left operand has qualified type, in which case
4426  // it is the unqualified version of the type of the left operand.
4427  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4428  // is converted to the type of the assignment expression (above).
4429  // C++ 5.17p1: the type of the assignment expression is that of its left
4430  // operand.
4431  return LHSType.getUnqualifiedType();
4432}
4433
4434// C99 6.5.17
4435QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4436  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4437  DefaultFunctionArrayConversion(RHS);
4438
4439  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4440  // incomplete in C++).
4441
4442  return RHS->getType();
4443}
4444
4445/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4446/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4447QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4448                                              bool isInc) {
4449  if (Op->isTypeDependent())
4450    return Context.DependentTy;
4451
4452  QualType ResType = Op->getType();
4453  assert(!ResType.isNull() && "no type for increment/decrement expression");
4454
4455  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4456    // Decrement of bool is not allowed.
4457    if (!isInc) {
4458      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4459      return QualType();
4460    }
4461    // Increment of bool sets it to true, but is deprecated.
4462    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4463  } else if (ResType->isRealType()) {
4464    // OK!
4465  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4466    // C99 6.5.2.4p2, 6.5.6p2
4467    if (PT->getPointeeType()->isVoidType()) {
4468      if (getLangOptions().CPlusPlus) {
4469        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4470          << Op->getSourceRange();
4471        return QualType();
4472      }
4473
4474      // Pointer to void is a GNU extension in C.
4475      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4476    } else if (PT->getPointeeType()->isFunctionType()) {
4477      if (getLangOptions().CPlusPlus) {
4478        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4479          << Op->getType() << Op->getSourceRange();
4480        return QualType();
4481      }
4482
4483      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4484        << ResType << Op->getSourceRange();
4485    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4486                               diag::err_typecheck_arithmetic_incomplete_type,
4487                                   Op->getSourceRange(), SourceRange(),
4488                                   ResType))
4489      return QualType();
4490  } else if (ResType->isComplexType()) {
4491    // C99 does not support ++/-- on complex types, we allow as an extension.
4492    Diag(OpLoc, diag::ext_integer_increment_complex)
4493      << ResType << Op->getSourceRange();
4494  } else {
4495    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4496      << ResType << Op->getSourceRange();
4497    return QualType();
4498  }
4499  // At this point, we know we have a real, complex or pointer type.
4500  // Now make sure the operand is a modifiable lvalue.
4501  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4502    return QualType();
4503  return ResType;
4504}
4505
4506/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4507/// This routine allows us to typecheck complex/recursive expressions
4508/// where the declaration is needed for type checking. We only need to
4509/// handle cases when the expression references a function designator
4510/// or is an lvalue. Here are some examples:
4511///  - &(x) => x
4512///  - &*****f => f for f a function designator.
4513///  - &s.xx => s
4514///  - &s.zz[1].yy -> s, if zz is an array
4515///  - *(x + 1) -> x, if x is an array
4516///  - &"123"[2] -> 0
4517///  - & __real__ x -> x
4518static NamedDecl *getPrimaryDecl(Expr *E) {
4519  switch (E->getStmtClass()) {
4520  case Stmt::DeclRefExprClass:
4521  case Stmt::QualifiedDeclRefExprClass:
4522    return cast<DeclRefExpr>(E)->getDecl();
4523  case Stmt::MemberExprClass:
4524    // If this is an arrow operator, the address is an offset from
4525    // the base's value, so the object the base refers to is
4526    // irrelevant.
4527    if (cast<MemberExpr>(E)->isArrow())
4528      return 0;
4529    // Otherwise, the expression refers to a part of the base
4530    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4531  case Stmt::ArraySubscriptExprClass: {
4532    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4533    // promotion of register arrays earlier.
4534    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4535    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4536      if (ICE->getSubExpr()->getType()->isArrayType())
4537        return getPrimaryDecl(ICE->getSubExpr());
4538    }
4539    return 0;
4540  }
4541  case Stmt::UnaryOperatorClass: {
4542    UnaryOperator *UO = cast<UnaryOperator>(E);
4543
4544    switch(UO->getOpcode()) {
4545    case UnaryOperator::Real:
4546    case UnaryOperator::Imag:
4547    case UnaryOperator::Extension:
4548      return getPrimaryDecl(UO->getSubExpr());
4549    default:
4550      return 0;
4551    }
4552  }
4553  case Stmt::ParenExprClass:
4554    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4555  case Stmt::ImplicitCastExprClass:
4556    // If the result of an implicit cast is an l-value, we care about
4557    // the sub-expression; otherwise, the result here doesn't matter.
4558    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4559  default:
4560    return 0;
4561  }
4562}
4563
4564/// CheckAddressOfOperand - The operand of & must be either a function
4565/// designator or an lvalue designating an object. If it is an lvalue, the
4566/// object cannot be declared with storage class register or be a bit field.
4567/// Note: The usual conversions are *not* applied to the operand of the &
4568/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4569/// In C++, the operand might be an overloaded function name, in which case
4570/// we allow the '&' but retain the overloaded-function type.
4571QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4572  // Make sure to ignore parentheses in subsequent checks
4573  op = op->IgnoreParens();
4574
4575  if (op->isTypeDependent())
4576    return Context.DependentTy;
4577
4578  if (getLangOptions().C99) {
4579    // Implement C99-only parts of addressof rules.
4580    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4581      if (uOp->getOpcode() == UnaryOperator::Deref)
4582        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4583        // (assuming the deref expression is valid).
4584        return uOp->getSubExpr()->getType();
4585    }
4586    // Technically, there should be a check for array subscript
4587    // expressions here, but the result of one is always an lvalue anyway.
4588  }
4589  NamedDecl *dcl = getPrimaryDecl(op);
4590  Expr::isLvalueResult lval = op->isLvalue(Context);
4591
4592  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4593    // C99 6.5.3.2p1
4594    // The operand must be either an l-value or a function designator
4595    if (!op->getType()->isFunctionType()) {
4596      // FIXME: emit more specific diag...
4597      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4598        << op->getSourceRange();
4599      return QualType();
4600    }
4601  } else if (op->getBitField()) { // C99 6.5.3.2p1
4602    // The operand cannot be a bit-field
4603    Diag(OpLoc, diag::err_typecheck_address_of)
4604      << "bit-field" << op->getSourceRange();
4605        return QualType();
4606  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4607           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4608    // The operand cannot be an element of a vector
4609    Diag(OpLoc, diag::err_typecheck_address_of)
4610      << "vector element" << op->getSourceRange();
4611    return QualType();
4612  } else if (dcl) { // C99 6.5.3.2p1
4613    // We have an lvalue with a decl. Make sure the decl is not declared
4614    // with the register storage-class specifier.
4615    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4616      if (vd->getStorageClass() == VarDecl::Register) {
4617        Diag(OpLoc, diag::err_typecheck_address_of)
4618          << "register variable" << op->getSourceRange();
4619        return QualType();
4620      }
4621    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4622      return Context.OverloadTy;
4623    } else if (isa<FieldDecl>(dcl)) {
4624      // Okay: we can take the address of a field.
4625      // Could be a pointer to member, though, if there is an explicit
4626      // scope qualifier for the class.
4627      if (isa<QualifiedDeclRefExpr>(op)) {
4628        DeclContext *Ctx = dcl->getDeclContext();
4629        if (Ctx && Ctx->isRecord())
4630          return Context.getMemberPointerType(op->getType(),
4631                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4632      }
4633    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4634      // Okay: we can take the address of a function.
4635      // As above.
4636      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4637        return Context.getMemberPointerType(op->getType(),
4638              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4639    } else if (!isa<FunctionDecl>(dcl))
4640      assert(0 && "Unknown/unexpected decl type");
4641  }
4642
4643  if (lval == Expr::LV_IncompleteVoidType) {
4644    // Taking the address of a void variable is technically illegal, but we
4645    // allow it in cases which are otherwise valid.
4646    // Example: "extern void x; void* y = &x;".
4647    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4648  }
4649
4650  // If the operand has type "type", the result has type "pointer to type".
4651  return Context.getPointerType(op->getType());
4652}
4653
4654QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4655  if (Op->isTypeDependent())
4656    return Context.DependentTy;
4657
4658  UsualUnaryConversions(Op);
4659  QualType Ty = Op->getType();
4660
4661  // Note that per both C89 and C99, this is always legal, even if ptype is an
4662  // incomplete type or void.  It would be possible to warn about dereferencing
4663  // a void pointer, but it's completely well-defined, and such a warning is
4664  // unlikely to catch any mistakes.
4665  if (const PointerType *PT = Ty->getAsPointerType())
4666    return PT->getPointeeType();
4667
4668  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4669    << Ty << Op->getSourceRange();
4670  return QualType();
4671}
4672
4673static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4674  tok::TokenKind Kind) {
4675  BinaryOperator::Opcode Opc;
4676  switch (Kind) {
4677  default: assert(0 && "Unknown binop!");
4678  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4679  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4680  case tok::star:                 Opc = BinaryOperator::Mul; break;
4681  case tok::slash:                Opc = BinaryOperator::Div; break;
4682  case tok::percent:              Opc = BinaryOperator::Rem; break;
4683  case tok::plus:                 Opc = BinaryOperator::Add; break;
4684  case tok::minus:                Opc = BinaryOperator::Sub; break;
4685  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4686  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4687  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4688  case tok::less:                 Opc = BinaryOperator::LT; break;
4689  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4690  case tok::greater:              Opc = BinaryOperator::GT; break;
4691  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4692  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4693  case tok::amp:                  Opc = BinaryOperator::And; break;
4694  case tok::caret:                Opc = BinaryOperator::Xor; break;
4695  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4696  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4697  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4698  case tok::equal:                Opc = BinaryOperator::Assign; break;
4699  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4700  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4701  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4702  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4703  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4704  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4705  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4706  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4707  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4708  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4709  case tok::comma:                Opc = BinaryOperator::Comma; break;
4710  }
4711  return Opc;
4712}
4713
4714static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4715  tok::TokenKind Kind) {
4716  UnaryOperator::Opcode Opc;
4717  switch (Kind) {
4718  default: assert(0 && "Unknown unary op!");
4719  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4720  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4721  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4722  case tok::star:         Opc = UnaryOperator::Deref; break;
4723  case tok::plus:         Opc = UnaryOperator::Plus; break;
4724  case tok::minus:        Opc = UnaryOperator::Minus; break;
4725  case tok::tilde:        Opc = UnaryOperator::Not; break;
4726  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4727  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4728  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4729  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4730  }
4731  return Opc;
4732}
4733
4734/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4735/// operator @p Opc at location @c TokLoc. This routine only supports
4736/// built-in operations; ActOnBinOp handles overloaded operators.
4737Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4738                                                  unsigned Op,
4739                                                  Expr *lhs, Expr *rhs) {
4740  QualType ResultTy;     // Result type of the binary operator.
4741  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4742  // The following two variables are used for compound assignment operators
4743  QualType CompLHSTy;    // Type of LHS after promotions for computation
4744  QualType CompResultTy; // Type of computation result
4745
4746  switch (Opc) {
4747  case BinaryOperator::Assign:
4748    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4749    break;
4750  case BinaryOperator::PtrMemD:
4751  case BinaryOperator::PtrMemI:
4752    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4753                                            Opc == BinaryOperator::PtrMemI);
4754    break;
4755  case BinaryOperator::Mul:
4756  case BinaryOperator::Div:
4757    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4758    break;
4759  case BinaryOperator::Rem:
4760    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4761    break;
4762  case BinaryOperator::Add:
4763    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4764    break;
4765  case BinaryOperator::Sub:
4766    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4767    break;
4768  case BinaryOperator::Shl:
4769  case BinaryOperator::Shr:
4770    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4771    break;
4772  case BinaryOperator::LE:
4773  case BinaryOperator::LT:
4774  case BinaryOperator::GE:
4775  case BinaryOperator::GT:
4776    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4777    break;
4778  case BinaryOperator::EQ:
4779  case BinaryOperator::NE:
4780    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4781    break;
4782  case BinaryOperator::And:
4783  case BinaryOperator::Xor:
4784  case BinaryOperator::Or:
4785    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4786    break;
4787  case BinaryOperator::LAnd:
4788  case BinaryOperator::LOr:
4789    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4790    break;
4791  case BinaryOperator::MulAssign:
4792  case BinaryOperator::DivAssign:
4793    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4794    CompLHSTy = CompResultTy;
4795    if (!CompResultTy.isNull())
4796      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4797    break;
4798  case BinaryOperator::RemAssign:
4799    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4800    CompLHSTy = CompResultTy;
4801    if (!CompResultTy.isNull())
4802      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4803    break;
4804  case BinaryOperator::AddAssign:
4805    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4806    if (!CompResultTy.isNull())
4807      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4808    break;
4809  case BinaryOperator::SubAssign:
4810    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4811    if (!CompResultTy.isNull())
4812      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4813    break;
4814  case BinaryOperator::ShlAssign:
4815  case BinaryOperator::ShrAssign:
4816    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4817    CompLHSTy = CompResultTy;
4818    if (!CompResultTy.isNull())
4819      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4820    break;
4821  case BinaryOperator::AndAssign:
4822  case BinaryOperator::XorAssign:
4823  case BinaryOperator::OrAssign:
4824    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4825    CompLHSTy = CompResultTy;
4826    if (!CompResultTy.isNull())
4827      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4828    break;
4829  case BinaryOperator::Comma:
4830    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4831    break;
4832  }
4833  if (ResultTy.isNull())
4834    return ExprError();
4835  if (CompResultTy.isNull())
4836    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4837  else
4838    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4839                                                      CompLHSTy, CompResultTy,
4840                                                      OpLoc));
4841}
4842
4843// Binary Operators.  'Tok' is the token for the operator.
4844Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4845                                          tok::TokenKind Kind,
4846                                          ExprArg LHS, ExprArg RHS) {
4847  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4848  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4849
4850  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4851  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4852
4853  if (getLangOptions().CPlusPlus &&
4854      (lhs->getType()->isOverloadableType() ||
4855       rhs->getType()->isOverloadableType())) {
4856    // Find all of the overloaded operators visible from this
4857    // point. We perform both an operator-name lookup from the local
4858    // scope and an argument-dependent lookup based on the types of
4859    // the arguments.
4860    FunctionSet Functions;
4861    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4862    if (OverOp != OO_None) {
4863      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4864                                   Functions);
4865      Expr *Args[2] = { lhs, rhs };
4866      DeclarationName OpName
4867        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4868      ArgumentDependentLookup(OpName, Args, 2, Functions);
4869    }
4870
4871    // Build the (potentially-overloaded, potentially-dependent)
4872    // binary operation.
4873    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4874  }
4875
4876  // Build a built-in binary operation.
4877  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4878}
4879
4880Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4881                                                    unsigned OpcIn,
4882                                                    ExprArg InputArg) {
4883  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4884
4885  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4886  Expr *Input = (Expr *)InputArg.get();
4887  QualType resultType;
4888  switch (Opc) {
4889  case UnaryOperator::PostInc:
4890  case UnaryOperator::PostDec:
4891  case UnaryOperator::OffsetOf:
4892    assert(false && "Invalid unary operator");
4893    break;
4894
4895  case UnaryOperator::PreInc:
4896  case UnaryOperator::PreDec:
4897    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4898                                                Opc == UnaryOperator::PreInc);
4899    break;
4900  case UnaryOperator::AddrOf:
4901    resultType = CheckAddressOfOperand(Input, OpLoc);
4902    break;
4903  case UnaryOperator::Deref:
4904    DefaultFunctionArrayConversion(Input);
4905    resultType = CheckIndirectionOperand(Input, OpLoc);
4906    break;
4907  case UnaryOperator::Plus:
4908  case UnaryOperator::Minus:
4909    UsualUnaryConversions(Input);
4910    resultType = Input->getType();
4911    if (resultType->isDependentType())
4912      break;
4913    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4914      break;
4915    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4916             resultType->isEnumeralType())
4917      break;
4918    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4919             Opc == UnaryOperator::Plus &&
4920             resultType->isPointerType())
4921      break;
4922
4923    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4924      << resultType << Input->getSourceRange());
4925  case UnaryOperator::Not: // bitwise complement
4926    UsualUnaryConversions(Input);
4927    resultType = Input->getType();
4928    if (resultType->isDependentType())
4929      break;
4930    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4931    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4932      // C99 does not support '~' for complex conjugation.
4933      Diag(OpLoc, diag::ext_integer_complement_complex)
4934        << resultType << Input->getSourceRange();
4935    else if (!resultType->isIntegerType())
4936      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4937        << resultType << Input->getSourceRange());
4938    break;
4939  case UnaryOperator::LNot: // logical negation
4940    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4941    DefaultFunctionArrayConversion(Input);
4942    resultType = Input->getType();
4943    if (resultType->isDependentType())
4944      break;
4945    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4946      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4947        << resultType << Input->getSourceRange());
4948    // LNot always has type int. C99 6.5.3.3p5.
4949    // In C++, it's bool. C++ 5.3.1p8
4950    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4951    break;
4952  case UnaryOperator::Real:
4953  case UnaryOperator::Imag:
4954    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4955    break;
4956  case UnaryOperator::Extension:
4957    resultType = Input->getType();
4958    break;
4959  }
4960  if (resultType.isNull())
4961    return ExprError();
4962
4963  InputArg.release();
4964  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4965}
4966
4967// Unary Operators.  'Tok' is the token for the operator.
4968Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4969                                            tok::TokenKind Op, ExprArg input) {
4970  Expr *Input = (Expr*)input.get();
4971  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4972
4973  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4974    // Find all of the overloaded operators visible from this
4975    // point. We perform both an operator-name lookup from the local
4976    // scope and an argument-dependent lookup based on the types of
4977    // the arguments.
4978    FunctionSet Functions;
4979    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4980    if (OverOp != OO_None) {
4981      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4982                                   Functions);
4983      DeclarationName OpName
4984        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4985      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4986    }
4987
4988    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4989  }
4990
4991  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4992}
4993
4994/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4995Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4996                                            SourceLocation LabLoc,
4997                                            IdentifierInfo *LabelII) {
4998  // Look up the record for this label identifier.
4999  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5000
5001  // If we haven't seen this label yet, create a forward reference. It
5002  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5003  if (LabelDecl == 0)
5004    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5005
5006  // Create the AST node.  The address of a label always has type 'void*'.
5007  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5008                                       Context.getPointerType(Context.VoidTy)));
5009}
5010
5011Sema::OwningExprResult
5012Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5013                    SourceLocation RPLoc) { // "({..})"
5014  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5015  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5016  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5017
5018  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5019  if (isFileScope)
5020    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5021
5022  // FIXME: there are a variety of strange constraints to enforce here, for
5023  // example, it is not possible to goto into a stmt expression apparently.
5024  // More semantic analysis is needed.
5025
5026  // If there are sub stmts in the compound stmt, take the type of the last one
5027  // as the type of the stmtexpr.
5028  QualType Ty = Context.VoidTy;
5029
5030  if (!Compound->body_empty()) {
5031    Stmt *LastStmt = Compound->body_back();
5032    // If LastStmt is a label, skip down through into the body.
5033    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5034      LastStmt = Label->getSubStmt();
5035
5036    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5037      Ty = LastExpr->getType();
5038  }
5039
5040  // FIXME: Check that expression type is complete/non-abstract; statement
5041  // expressions are not lvalues.
5042
5043  substmt.release();
5044  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5045}
5046
5047Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5048                                                  SourceLocation BuiltinLoc,
5049                                                  SourceLocation TypeLoc,
5050                                                  TypeTy *argty,
5051                                                  OffsetOfComponent *CompPtr,
5052                                                  unsigned NumComponents,
5053                                                  SourceLocation RPLoc) {
5054  // FIXME: This function leaks all expressions in the offset components on
5055  // error.
5056  QualType ArgTy = QualType::getFromOpaquePtr(argty);
5057  assert(!ArgTy.isNull() && "Missing type argument!");
5058
5059  bool Dependent = ArgTy->isDependentType();
5060
5061  // We must have at least one component that refers to the type, and the first
5062  // one is known to be a field designator.  Verify that the ArgTy represents
5063  // a struct/union/class.
5064  if (!Dependent && !ArgTy->isRecordType())
5065    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5066
5067  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5068  // with an incomplete type would be illegal.
5069
5070  // Otherwise, create a null pointer as the base, and iteratively process
5071  // the offsetof designators.
5072  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5073  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5074  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5075                                    ArgTy, SourceLocation());
5076
5077  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5078  // GCC extension, diagnose them.
5079  // FIXME: This diagnostic isn't actually visible because the location is in
5080  // a system header!
5081  if (NumComponents != 1)
5082    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5083      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5084
5085  if (!Dependent) {
5086    bool DidWarnAboutNonPOD = false;
5087
5088    // FIXME: Dependent case loses a lot of information here. And probably
5089    // leaks like a sieve.
5090    for (unsigned i = 0; i != NumComponents; ++i) {
5091      const OffsetOfComponent &OC = CompPtr[i];
5092      if (OC.isBrackets) {
5093        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5094        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5095        if (!AT) {
5096          Res->Destroy(Context);
5097          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5098            << Res->getType());
5099        }
5100
5101        // FIXME: C++: Verify that operator[] isn't overloaded.
5102
5103        // Promote the array so it looks more like a normal array subscript
5104        // expression.
5105        DefaultFunctionArrayConversion(Res);
5106
5107        // C99 6.5.2.1p1
5108        Expr *Idx = static_cast<Expr*>(OC.U.E);
5109        // FIXME: Leaks Res
5110        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5111          return ExprError(Diag(Idx->getLocStart(),
5112                                diag::err_typecheck_subscript_not_integer)
5113            << Idx->getSourceRange());
5114
5115        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5116                                               OC.LocEnd);
5117        continue;
5118      }
5119
5120      const RecordType *RC = Res->getType()->getAsRecordType();
5121      if (!RC) {
5122        Res->Destroy(Context);
5123        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5124          << Res->getType());
5125      }
5126
5127      // Get the decl corresponding to this.
5128      RecordDecl *RD = RC->getDecl();
5129      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5130        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5131          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5132            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5133            << Res->getType());
5134          DidWarnAboutNonPOD = true;
5135        }
5136      }
5137
5138      FieldDecl *MemberDecl
5139        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5140                                                          LookupMemberName)
5141                                        .getAsDecl());
5142      // FIXME: Leaks Res
5143      if (!MemberDecl)
5144        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5145         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5146
5147      // FIXME: C++: Verify that MemberDecl isn't a static field.
5148      // FIXME: Verify that MemberDecl isn't a bitfield.
5149      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5150        Res = BuildAnonymousStructUnionMemberReference(
5151            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5152      } else {
5153        // MemberDecl->getType() doesn't get the right qualifiers, but it
5154        // doesn't matter here.
5155        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5156                MemberDecl->getType().getNonReferenceType());
5157      }
5158    }
5159  }
5160
5161  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5162                                           Context.getSizeType(), BuiltinLoc));
5163}
5164
5165
5166Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5167                                                      TypeTy *arg1,TypeTy *arg2,
5168                                                      SourceLocation RPLoc) {
5169  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5170  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5171
5172  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5173
5174  if (getLangOptions().CPlusPlus) {
5175    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5176      << SourceRange(BuiltinLoc, RPLoc);
5177    return ExprError();
5178  }
5179
5180  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5181                                                 argT1, argT2, RPLoc));
5182}
5183
5184Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5185                                             ExprArg cond,
5186                                             ExprArg expr1, ExprArg expr2,
5187                                             SourceLocation RPLoc) {
5188  Expr *CondExpr = static_cast<Expr*>(cond.get());
5189  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5190  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5191
5192  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5193
5194  QualType resType;
5195  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5196    resType = Context.DependentTy;
5197  } else {
5198    // The conditional expression is required to be a constant expression.
5199    llvm::APSInt condEval(32);
5200    SourceLocation ExpLoc;
5201    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5202      return ExprError(Diag(ExpLoc,
5203                       diag::err_typecheck_choose_expr_requires_constant)
5204        << CondExpr->getSourceRange());
5205
5206    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5207    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5208  }
5209
5210  cond.release(); expr1.release(); expr2.release();
5211  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5212                                        resType, RPLoc));
5213}
5214
5215//===----------------------------------------------------------------------===//
5216// Clang Extensions.
5217//===----------------------------------------------------------------------===//
5218
5219/// ActOnBlockStart - This callback is invoked when a block literal is started.
5220void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5221  // Analyze block parameters.
5222  BlockSemaInfo *BSI = new BlockSemaInfo();
5223
5224  // Add BSI to CurBlock.
5225  BSI->PrevBlockInfo = CurBlock;
5226  CurBlock = BSI;
5227
5228  BSI->ReturnType = QualType();
5229  BSI->TheScope = BlockScope;
5230  BSI->hasBlockDeclRefExprs = false;
5231  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5232  CurFunctionNeedsScopeChecking = false;
5233
5234  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5235  PushDeclContext(BlockScope, BSI->TheDecl);
5236}
5237
5238void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5239  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5240
5241  if (ParamInfo.getNumTypeObjects() == 0
5242      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5243    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5244    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5245
5246    if (T->isArrayType()) {
5247      Diag(ParamInfo.getSourceRange().getBegin(),
5248           diag::err_block_returns_array);
5249      return;
5250    }
5251
5252    // The parameter list is optional, if there was none, assume ().
5253    if (!T->isFunctionType())
5254      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5255
5256    CurBlock->hasPrototype = true;
5257    CurBlock->isVariadic = false;
5258    // Check for a valid sentinel attribute on this block.
5259    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5260      Diag(ParamInfo.getAttributes()->getLoc(),
5261           diag::warn_attribute_sentinel_not_variadic) << 1;
5262      // FIXME: remove the attribute.
5263    }
5264    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5265
5266    // Do not allow returning a objc interface by-value.
5267    if (RetTy->isObjCInterfaceType()) {
5268      Diag(ParamInfo.getSourceRange().getBegin(),
5269           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5270      return;
5271    }
5272    return;
5273  }
5274
5275  // Analyze arguments to block.
5276  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5277         "Not a function declarator!");
5278  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5279
5280  CurBlock->hasPrototype = FTI.hasPrototype;
5281  CurBlock->isVariadic = true;
5282
5283  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5284  // no arguments, not a function that takes a single void argument.
5285  if (FTI.hasPrototype &&
5286      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5287     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5288        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5289    // empty arg list, don't push any params.
5290    CurBlock->isVariadic = false;
5291  } else if (FTI.hasPrototype) {
5292    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5293      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5294    CurBlock->isVariadic = FTI.isVariadic;
5295  }
5296  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5297                               CurBlock->Params.size());
5298  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5299  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5300  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5301       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5302    // If this has an identifier, add it to the scope stack.
5303    if ((*AI)->getIdentifier())
5304      PushOnScopeChains(*AI, CurBlock->TheScope);
5305
5306  // Check for a valid sentinel attribute on this block.
5307  if (!CurBlock->isVariadic &&
5308      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5309    Diag(ParamInfo.getAttributes()->getLoc(),
5310         diag::warn_attribute_sentinel_not_variadic) << 1;
5311    // FIXME: remove the attribute.
5312  }
5313
5314  // Analyze the return type.
5315  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5316  QualType RetTy = T->getAsFunctionType()->getResultType();
5317
5318  // Do not allow returning a objc interface by-value.
5319  if (RetTy->isObjCInterfaceType()) {
5320    Diag(ParamInfo.getSourceRange().getBegin(),
5321         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5322  } else if (!RetTy->isDependentType())
5323    CurBlock->ReturnType = RetTy;
5324}
5325
5326/// ActOnBlockError - If there is an error parsing a block, this callback
5327/// is invoked to pop the information about the block from the action impl.
5328void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5329  // Ensure that CurBlock is deleted.
5330  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5331
5332  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5333
5334  // Pop off CurBlock, handle nested blocks.
5335  PopDeclContext();
5336  CurBlock = CurBlock->PrevBlockInfo;
5337  // FIXME: Delete the ParmVarDecl objects as well???
5338}
5339
5340/// ActOnBlockStmtExpr - This is called when the body of a block statement
5341/// literal was successfully completed.  ^(int x){...}
5342Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5343                                                StmtArg body, Scope *CurScope) {
5344  // If blocks are disabled, emit an error.
5345  if (!LangOpts.Blocks)
5346    Diag(CaretLoc, diag::err_blocks_disable);
5347
5348  // Ensure that CurBlock is deleted.
5349  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5350
5351  PopDeclContext();
5352
5353  // Pop off CurBlock, handle nested blocks.
5354  CurBlock = CurBlock->PrevBlockInfo;
5355
5356  QualType RetTy = Context.VoidTy;
5357  if (!BSI->ReturnType.isNull())
5358    RetTy = BSI->ReturnType;
5359
5360  llvm::SmallVector<QualType, 8> ArgTypes;
5361  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5362    ArgTypes.push_back(BSI->Params[i]->getType());
5363
5364  QualType BlockTy;
5365  if (!BSI->hasPrototype)
5366    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
5367  else
5368    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5369                                      BSI->isVariadic, 0);
5370
5371  // FIXME: Check that return/parameter types are complete/non-abstract
5372  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5373  BlockTy = Context.getBlockPointerType(BlockTy);
5374
5375  // If needed, diagnose invalid gotos and switches in the block.
5376  if (CurFunctionNeedsScopeChecking)
5377    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5378  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5379
5380  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5381  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5382                                       BSI->hasBlockDeclRefExprs));
5383}
5384
5385Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5386                                        ExprArg expr, TypeTy *type,
5387                                        SourceLocation RPLoc) {
5388  QualType T = QualType::getFromOpaquePtr(type);
5389  Expr *E = static_cast<Expr*>(expr.get());
5390  Expr *OrigExpr = E;
5391
5392  InitBuiltinVaListType();
5393
5394  // Get the va_list type
5395  QualType VaListType = Context.getBuiltinVaListType();
5396  if (VaListType->isArrayType()) {
5397    // Deal with implicit array decay; for example, on x86-64,
5398    // va_list is an array, but it's supposed to decay to
5399    // a pointer for va_arg.
5400    VaListType = Context.getArrayDecayedType(VaListType);
5401    // Make sure the input expression also decays appropriately.
5402    UsualUnaryConversions(E);
5403  } else {
5404    // Otherwise, the va_list argument must be an l-value because
5405    // it is modified by va_arg.
5406    if (!E->isTypeDependent() &&
5407        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5408      return ExprError();
5409  }
5410
5411  if (!E->isTypeDependent() &&
5412      !Context.hasSameType(VaListType, E->getType())) {
5413    return ExprError(Diag(E->getLocStart(),
5414                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5415      << OrigExpr->getType() << E->getSourceRange());
5416  }
5417
5418  // FIXME: Check that type is complete/non-abstract
5419  // FIXME: Warn if a non-POD type is passed in.
5420
5421  expr.release();
5422  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5423                                       RPLoc));
5424}
5425
5426Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5427  // The type of __null will be int or long, depending on the size of
5428  // pointers on the target.
5429  QualType Ty;
5430  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5431    Ty = Context.IntTy;
5432  else
5433    Ty = Context.LongTy;
5434
5435  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5436}
5437
5438bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5439                                    SourceLocation Loc,
5440                                    QualType DstType, QualType SrcType,
5441                                    Expr *SrcExpr, const char *Flavor) {
5442  // Decode the result (notice that AST's are still created for extensions).
5443  bool isInvalid = false;
5444  unsigned DiagKind;
5445  switch (ConvTy) {
5446  default: assert(0 && "Unknown conversion type");
5447  case Compatible: return false;
5448  case PointerToInt:
5449    DiagKind = diag::ext_typecheck_convert_pointer_int;
5450    break;
5451  case IntToPointer:
5452    DiagKind = diag::ext_typecheck_convert_int_pointer;
5453    break;
5454  case IncompatiblePointer:
5455    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5456    break;
5457  case IncompatiblePointerSign:
5458    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5459    break;
5460  case FunctionVoidPointer:
5461    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5462    break;
5463  case CompatiblePointerDiscardsQualifiers:
5464    // If the qualifiers lost were because we were applying the
5465    // (deprecated) C++ conversion from a string literal to a char*
5466    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5467    // Ideally, this check would be performed in
5468    // CheckPointerTypesForAssignment. However, that would require a
5469    // bit of refactoring (so that the second argument is an
5470    // expression, rather than a type), which should be done as part
5471    // of a larger effort to fix CheckPointerTypesForAssignment for
5472    // C++ semantics.
5473    if (getLangOptions().CPlusPlus &&
5474        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5475      return false;
5476    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5477    break;
5478  case IntToBlockPointer:
5479    DiagKind = diag::err_int_to_block_pointer;
5480    break;
5481  case IncompatibleBlockPointer:
5482    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5483    break;
5484  case IncompatibleObjCQualifiedId:
5485    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5486    // it can give a more specific diagnostic.
5487    DiagKind = diag::warn_incompatible_qualified_id;
5488    break;
5489  case IncompatibleVectors:
5490    DiagKind = diag::warn_incompatible_vectors;
5491    break;
5492  case Incompatible:
5493    DiagKind = diag::err_typecheck_convert_incompatible;
5494    isInvalid = true;
5495    break;
5496  }
5497
5498  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5499    << SrcExpr->getSourceRange();
5500  return isInvalid;
5501}
5502
5503bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5504  llvm::APSInt ICEResult;
5505  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5506    if (Result)
5507      *Result = ICEResult;
5508    return false;
5509  }
5510
5511  Expr::EvalResult EvalResult;
5512
5513  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5514      EvalResult.HasSideEffects) {
5515    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5516
5517    if (EvalResult.Diag) {
5518      // We only show the note if it's not the usual "invalid subexpression"
5519      // or if it's actually in a subexpression.
5520      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5521          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5522        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5523    }
5524
5525    return true;
5526  }
5527
5528  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5529    E->getSourceRange();
5530
5531  if (EvalResult.Diag &&
5532      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5533    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5534
5535  if (Result)
5536    *Result = EvalResult.Val.getInt();
5537  return false;
5538}
5539
5540Sema::ExpressionEvaluationContext
5541Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5542  // Introduce a new set of potentially referenced declarations to the stack.
5543  if (NewContext == PotentiallyPotentiallyEvaluated)
5544    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5545
5546  std::swap(ExprEvalContext, NewContext);
5547  return NewContext;
5548}
5549
5550void
5551Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5552                                     ExpressionEvaluationContext NewContext) {
5553  ExprEvalContext = NewContext;
5554
5555  if (OldContext == PotentiallyPotentiallyEvaluated) {
5556    // Mark any remaining declarations in the current position of the stack
5557    // as "referenced". If they were not meant to be referenced, semantic
5558    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5559    PotentiallyReferencedDecls RemainingDecls;
5560    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5561    PotentiallyReferencedDeclStack.pop_back();
5562
5563    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5564                                           IEnd = RemainingDecls.end();
5565         I != IEnd; ++I)
5566      MarkDeclarationReferenced(I->first, I->second);
5567  }
5568}
5569
5570/// \brief Note that the given declaration was referenced in the source code.
5571///
5572/// This routine should be invoke whenever a given declaration is referenced
5573/// in the source code, and where that reference occurred. If this declaration
5574/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5575/// C99 6.9p3), then the declaration will be marked as used.
5576///
5577/// \param Loc the location where the declaration was referenced.
5578///
5579/// \param D the declaration that has been referenced by the source code.
5580void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5581  assert(D && "No declaration?");
5582
5583  if (D->isUsed())
5584    return;
5585
5586  // Mark a parameter declaration "used", regardless of whether we're in a
5587  // template or not.
5588  if (isa<ParmVarDecl>(D))
5589    D->setUsed(true);
5590
5591  // Do not mark anything as "used" within a dependent context; wait for
5592  // an instantiation.
5593  if (CurContext->isDependentContext())
5594    return;
5595
5596  switch (ExprEvalContext) {
5597    case Unevaluated:
5598      // We are in an expression that is not potentially evaluated; do nothing.
5599      return;
5600
5601    case PotentiallyEvaluated:
5602      // We are in a potentially-evaluated expression, so this declaration is
5603      // "used"; handle this below.
5604      break;
5605
5606    case PotentiallyPotentiallyEvaluated:
5607      // We are in an expression that may be potentially evaluated; queue this
5608      // declaration reference until we know whether the expression is
5609      // potentially evaluated.
5610      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5611      return;
5612  }
5613
5614  // Note that this declaration has been used.
5615  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5616    unsigned TypeQuals;
5617    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5618        if (!Constructor->isUsed())
5619          DefineImplicitDefaultConstructor(Loc, Constructor);
5620    }
5621    else if (Constructor->isImplicit() &&
5622             Constructor->isCopyConstructor(Context, TypeQuals)) {
5623      if (!Constructor->isUsed())
5624        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5625    }
5626  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
5627    if (Destructor->isImplicit() && !Destructor->isUsed())
5628      DefineImplicitDestructor(Loc, Destructor);
5629
5630  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
5631    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
5632        MethodDecl->getOverloadedOperator() == OO_Equal) {
5633      if (!MethodDecl->isUsed())
5634        DefineImplicitOverloadedAssign(Loc, MethodDecl);
5635    }
5636  }
5637  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5638    // Implicit instantiation of function templates and member functions of
5639    // class templates.
5640    if (!Function->getBody()) {
5641      // FIXME: distinguish between implicit instantiations of function
5642      // templates and explicit specializations (the latter don't get
5643      // instantiated, naturally).
5644      if (Function->getInstantiatedFromMemberFunction() ||
5645          Function->getPrimaryTemplate())
5646        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
5647    }
5648
5649
5650    // FIXME: keep track of references to static functions
5651    Function->setUsed(true);
5652    return;
5653  }
5654
5655  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5656    (void)Var;
5657    // FIXME: implicit template instantiation
5658    // FIXME: keep track of references to static data?
5659    D->setUsed(true);
5660  }
5661}
5662
5663