SemaExpr.cpp revision 299b884d22f1356e0fe3ebbfb3a68a546bb6056a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaUtil.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/OwningPtr.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32//  Standard Promotions and Conversions
33//===----------------------------------------------------------------------===//
34
35/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
36/// do not have a prototype. Arguments that have type float are promoted to
37/// double. All other argument types are converted by UsualUnaryConversions().
38void Sema::DefaultArgumentPromotion(Expr *&Expr) {
39  QualType Ty = Expr->getType();
40  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
41
42  // If this is a 'float' (CVR qualified or typedef) promote to double.
43  if (const BuiltinType *BT = Ty->getAsBuiltinType())
44    if (BT->getKind() == BuiltinType::Float)
45      return ImpCastExprToType(Expr, Context.DoubleTy);
46
47  UsualUnaryConversions(Expr);
48}
49
50/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
51void Sema::DefaultFunctionArrayConversion(Expr *&E) {
52  QualType Ty = E->getType();
53  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
54
55  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
56    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
57    Ty = E->getType();
58  }
59  if (Ty->isFunctionType())
60    ImpCastExprToType(E, Context.getPointerType(Ty));
61  else if (Ty->isArrayType())
62    ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
63}
64
65/// UsualUnaryConversions - Performs various conversions that are common to most
66/// operators (C99 6.3). The conversions of array and function types are
67/// sometimes surpressed. For example, the array->pointer conversion doesn't
68/// apply if the array is an argument to the sizeof or address (&) operators.
69/// In these instances, this routine should *not* be called.
70Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
71  QualType Ty = Expr->getType();
72  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
73
74  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
75    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
76    Ty = Expr->getType();
77  }
78  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
79    ImpCastExprToType(Expr, Context.IntTy);
80  else
81    DefaultFunctionArrayConversion(Expr);
82
83  return Expr;
84}
85
86/// UsualArithmeticConversions - Performs various conversions that are common to
87/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
88/// routine returns the first non-arithmetic type found. The client is
89/// responsible for emitting appropriate error diagnostics.
90/// FIXME: verify the conversion rules for "complex int" are consistent with
91/// GCC.
92QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
93                                          bool isCompAssign) {
94  if (!isCompAssign) {
95    UsualUnaryConversions(lhsExpr);
96    UsualUnaryConversions(rhsExpr);
97  }
98  // For conversion purposes, we ignore any qualifiers.
99  // For example, "const float" and "float" are equivalent.
100  QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
101  QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
102
103  // If both types are identical, no conversion is needed.
104  if (lhs == rhs)
105    return lhs;
106
107  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
108  // The caller can deal with this (e.g. pointer + int).
109  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
110    return lhs;
111
112  // At this point, we have two different arithmetic types.
113
114  // Handle complex types first (C99 6.3.1.8p1).
115  if (lhs->isComplexType() || rhs->isComplexType()) {
116    // if we have an integer operand, the result is the complex type.
117    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
118      // convert the rhs to the lhs complex type.
119      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
120      return lhs;
121    }
122    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
123      // convert the lhs to the rhs complex type.
124      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
125      return rhs;
126    }
127    // This handles complex/complex, complex/float, or float/complex.
128    // When both operands are complex, the shorter operand is converted to the
129    // type of the longer, and that is the type of the result. This corresponds
130    // to what is done when combining two real floating-point operands.
131    // The fun begins when size promotion occur across type domains.
132    // From H&S 6.3.4: When one operand is complex and the other is a real
133    // floating-point type, the less precise type is converted, within it's
134    // real or complex domain, to the precision of the other type. For example,
135    // when combining a "long double" with a "double _Complex", the
136    // "double _Complex" is promoted to "long double _Complex".
137    int result = Context.getFloatingTypeOrder(lhs, rhs);
138
139    if (result > 0) { // The left side is bigger, convert rhs.
140      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
141      if (!isCompAssign)
142        ImpCastExprToType(rhsExpr, rhs);
143    } else if (result < 0) { // The right side is bigger, convert lhs.
144      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
145      if (!isCompAssign)
146        ImpCastExprToType(lhsExpr, lhs);
147    }
148    // At this point, lhs and rhs have the same rank/size. Now, make sure the
149    // domains match. This is a requirement for our implementation, C99
150    // does not require this promotion.
151    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
152      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
153        if (!isCompAssign)
154          ImpCastExprToType(lhsExpr, rhs);
155        return rhs;
156      } else { // handle "_Complex double, double".
157        if (!isCompAssign)
158          ImpCastExprToType(rhsExpr, lhs);
159        return lhs;
160      }
161    }
162    return lhs; // The domain/size match exactly.
163  }
164  // Now handle "real" floating types (i.e. float, double, long double).
165  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
166    // if we have an integer operand, the result is the real floating type.
167    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
168      // convert rhs to the lhs floating point type.
169      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
170      return lhs;
171    }
172    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
173      // convert lhs to the rhs floating point type.
174      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
175      return rhs;
176    }
177    // We have two real floating types, float/complex combos were handled above.
178    // Convert the smaller operand to the bigger result.
179    int result = Context.getFloatingTypeOrder(lhs, rhs);
180
181    if (result > 0) { // convert the rhs
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (result < 0) { // convert the lhs
186      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
187      return rhs;
188    }
189    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
190  }
191  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
192    // Handle GCC complex int extension.
193    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
194    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
195
196    if (lhsComplexInt && rhsComplexInt) {
197      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
198                                      rhsComplexInt->getElementType()) >= 0) {
199        // convert the rhs
200        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
201        return lhs;
202      }
203      if (!isCompAssign)
204        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
205      return rhs;
206    } else if (lhsComplexInt && rhs->isIntegerType()) {
207      // convert the rhs to the lhs complex type.
208      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
209      return lhs;
210    } else if (rhsComplexInt && lhs->isIntegerType()) {
211      // convert the lhs to the rhs complex type.
212      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
213      return rhs;
214    }
215  }
216  // Finally, we have two differing integer types.
217  // The rules for this case are in C99 6.3.1.8
218  int compare = Context.getIntegerTypeOrder(lhs, rhs);
219  bool lhsSigned = lhs->isSignedIntegerType(),
220       rhsSigned = rhs->isSignedIntegerType();
221  QualType destType;
222  if (lhsSigned == rhsSigned) {
223    // Same signedness; use the higher-ranked type
224    destType = compare >= 0 ? lhs : rhs;
225  } else if (compare != (lhsSigned ? 1 : -1)) {
226    // The unsigned type has greater than or equal rank to the
227    // signed type, so use the unsigned type
228    destType = lhsSigned ? rhs : lhs;
229  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
230    // The two types are different widths; if we are here, that
231    // means the signed type is larger than the unsigned type, so
232    // use the signed type.
233    destType = lhsSigned ? lhs : rhs;
234  } else {
235    // The signed type is higher-ranked than the unsigned type,
236    // but isn't actually any bigger (like unsigned int and long
237    // on most 32-bit systems).  Use the unsigned type corresponding
238    // to the signed type.
239    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
240  }
241  if (!isCompAssign) {
242    ImpCastExprToType(lhsExpr, destType);
243    ImpCastExprToType(rhsExpr, destType);
244  }
245  return destType;
246}
247
248//===----------------------------------------------------------------------===//
249//  Semantic Analysis for various Expression Types
250//===----------------------------------------------------------------------===//
251
252
253/// ActOnStringLiteral - The specified tokens were lexed as pasted string
254/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
255/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
256/// multiple tokens.  However, the common case is that StringToks points to one
257/// string.
258///
259Action::ExprResult
260Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
261  assert(NumStringToks && "Must have at least one string!");
262
263  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
264  if (Literal.hadError)
265    return ExprResult(true);
266
267  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
268  for (unsigned i = 0; i != NumStringToks; ++i)
269    StringTokLocs.push_back(StringToks[i].getLocation());
270
271  // Verify that pascal strings aren't too large.
272  if (Literal.Pascal && Literal.GetStringLength() > 256)
273    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
274                SourceRange(StringToks[0].getLocation(),
275                            StringToks[NumStringToks-1].getLocation()));
276
277  QualType StrTy = Context.CharTy;
278  if (Literal.AnyWide) StrTy = Context.getWcharType();
279  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
280
281  // Get an array type for the string, according to C99 6.4.5.  This includes
282  // the nul terminator character as well as the string length for pascal
283  // strings.
284  StrTy = Context.getConstantArrayType(StrTy,
285                                   llvm::APInt(32, Literal.GetStringLength()+1),
286                                       ArrayType::Normal, 0);
287
288  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
289  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
290                           Literal.AnyWide, StrTy,
291                           StringToks[0].getLocation(),
292                           StringToks[NumStringToks-1].getLocation());
293}
294
295
296/// ActOnIdentifierExpr - The parser read an identifier in expression context,
297/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
298/// identifier is used in a function call context.
299Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
300                                           IdentifierInfo &II,
301                                           bool HasTrailingLParen) {
302  // Could be enum-constant, value decl, instance variable, etc.
303  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
304
305  // If this reference is in an Objective-C method, then ivar lookup happens as
306  // well.
307  if (getCurMethodDecl()) {
308    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
309    // There are two cases to handle here.  1) scoped lookup could have failed,
310    // in which case we should look for an ivar.  2) scoped lookup could have
311    // found a decl, but that decl is outside the current method (i.e. a global
312    // variable).  In these two cases, we do a lookup for an ivar with this
313    // name, if the lookup suceeds, we replace it our current decl.
314    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
315      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
316      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
317        // FIXME: This should use a new expr for a direct reference, don't turn
318        // this into Self->ivar, just return a BareIVarExpr or something.
319        IdentifierInfo &II = Context.Idents.get("self");
320        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
321        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
322                                 static_cast<Expr*>(SelfExpr.Val), true, true);
323      }
324    }
325    if (SD == 0 && !strcmp(II.getName(), "super")) {
326      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
327                     getCurMethodDecl()->getClassInterface()));
328      return new ObjCSuperRefExpr(T, Loc);
329    }
330  }
331
332  if (D == 0) {
333    // Otherwise, this could be an implicitly declared function reference (legal
334    // in C90, extension in C99).
335    if (HasTrailingLParen &&
336        !getLangOptions().CPlusPlus) // Not in C++.
337      D = ImplicitlyDefineFunction(Loc, II, S);
338    else {
339      // If this name wasn't predeclared and if this is not a function call,
340      // diagnose the problem.
341      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
342    }
343  }
344
345  if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
346    // check if referencing an identifier with __attribute__((deprecated)).
347    if (VD->getAttr<DeprecatedAttr>())
348      Diag(Loc, diag::warn_deprecated, VD->getName());
349
350    // Only create DeclRefExpr's for valid Decl's.
351    if (VD->isInvalidDecl())
352      return true;
353    return new DeclRefExpr(VD, VD->getType(), Loc);
354  }
355
356  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
357    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
358      if (MD->isStatic())
359        // "invalid use of member 'x' in static member function"
360        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
361                    FD->getName());
362      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
363        // "invalid use of nonstatic data member 'x'"
364        return Diag(Loc, diag::err_invalid_non_static_member_use,
365                    FD->getName());
366
367      if (FD->isInvalidDecl())
368        return true;
369
370      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
371      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
372      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
373                            true, FD, Loc, FD->getType());
374    }
375
376    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
377  }
378
379  if (isa<TypedefDecl>(D))
380    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
381  if (isa<ObjCInterfaceDecl>(D))
382    return Diag(Loc, diag::err_unexpected_interface, II.getName());
383  if (isa<NamespaceDecl>(D))
384    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
385
386  assert(0 && "Invalid decl");
387  abort();
388}
389
390Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
391                                           tok::TokenKind Kind) {
392  PreDefinedExpr::IdentType IT;
393
394  switch (Kind) {
395  default: assert(0 && "Unknown simple primary expr!");
396  case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
397  case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
398  case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
399  }
400
401  // Verify that this is in a function context.
402  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
403    return Diag(Loc, diag::err_predef_outside_function);
404
405  // Pre-defined identifiers are of type char[x], where x is the length of the
406  // string.
407  unsigned Length;
408  if (getCurFunctionDecl())
409    Length = getCurFunctionDecl()->getIdentifier()->getLength();
410  else
411    Length = getCurMethodDecl()->getSynthesizedMethodSize();
412
413  llvm::APInt LengthI(32, Length + 1);
414  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
415  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
416  return new PreDefinedExpr(Loc, ResTy, IT);
417}
418
419Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
420  llvm::SmallString<16> CharBuffer;
421  CharBuffer.resize(Tok.getLength());
422  const char *ThisTokBegin = &CharBuffer[0];
423  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
424
425  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
426                            Tok.getLocation(), PP);
427  if (Literal.hadError())
428    return ExprResult(true);
429
430  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
431
432  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
433                              Tok.getLocation());
434}
435
436Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
437  // fast path for a single digit (which is quite common). A single digit
438  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
439  if (Tok.getLength() == 1) {
440    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
441
442    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
443    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
444                                         Context.IntTy,
445                                         Tok.getLocation()));
446  }
447  llvm::SmallString<512> IntegerBuffer;
448  IntegerBuffer.resize(Tok.getLength());
449  const char *ThisTokBegin = &IntegerBuffer[0];
450
451  // Get the spelling of the token, which eliminates trigraphs, etc.
452  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
453  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
454                               Tok.getLocation(), PP);
455  if (Literal.hadError)
456    return ExprResult(true);
457
458  Expr *Res;
459
460  if (Literal.isFloatingLiteral()) {
461    QualType Ty;
462    if (Literal.isFloat)
463      Ty = Context.FloatTy;
464    else if (!Literal.isLong)
465      Ty = Context.DoubleTy;
466    else
467      Ty = Context.LongDoubleTy;
468
469    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
470
471    // isExact will be set by GetFloatValue().
472    bool isExact = false;
473    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
474                              Ty, Tok.getLocation());
475
476  } else if (!Literal.isIntegerLiteral()) {
477    return ExprResult(true);
478  } else {
479    QualType Ty;
480
481    // long long is a C99 feature.
482    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
483        Literal.isLongLong)
484      Diag(Tok.getLocation(), diag::ext_longlong);
485
486    // Get the value in the widest-possible width.
487    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
488
489    if (Literal.GetIntegerValue(ResultVal)) {
490      // If this value didn't fit into uintmax_t, warn and force to ull.
491      Diag(Tok.getLocation(), diag::warn_integer_too_large);
492      Ty = Context.UnsignedLongLongTy;
493      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
494             "long long is not intmax_t?");
495    } else {
496      // If this value fits into a ULL, try to figure out what else it fits into
497      // according to the rules of C99 6.4.4.1p5.
498
499      // Octal, Hexadecimal, and integers with a U suffix are allowed to
500      // be an unsigned int.
501      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
502
503      // Check from smallest to largest, picking the smallest type we can.
504      unsigned Width = 0;
505      if (!Literal.isLong && !Literal.isLongLong) {
506        // Are int/unsigned possibilities?
507        unsigned IntSize = Context.Target.getIntWidth();
508
509        // Does it fit in a unsigned int?
510        if (ResultVal.isIntN(IntSize)) {
511          // Does it fit in a signed int?
512          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
513            Ty = Context.IntTy;
514          else if (AllowUnsigned)
515            Ty = Context.UnsignedIntTy;
516          Width = IntSize;
517        }
518      }
519
520      // Are long/unsigned long possibilities?
521      if (Ty.isNull() && !Literal.isLongLong) {
522        unsigned LongSize = Context.Target.getLongWidth();
523
524        // Does it fit in a unsigned long?
525        if (ResultVal.isIntN(LongSize)) {
526          // Does it fit in a signed long?
527          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
528            Ty = Context.LongTy;
529          else if (AllowUnsigned)
530            Ty = Context.UnsignedLongTy;
531          Width = LongSize;
532        }
533      }
534
535      // Finally, check long long if needed.
536      if (Ty.isNull()) {
537        unsigned LongLongSize = Context.Target.getLongLongWidth();
538
539        // Does it fit in a unsigned long long?
540        if (ResultVal.isIntN(LongLongSize)) {
541          // Does it fit in a signed long long?
542          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
543            Ty = Context.LongLongTy;
544          else if (AllowUnsigned)
545            Ty = Context.UnsignedLongLongTy;
546          Width = LongLongSize;
547        }
548      }
549
550      // If we still couldn't decide a type, we probably have something that
551      // does not fit in a signed long long, but has no U suffix.
552      if (Ty.isNull()) {
553        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
554        Ty = Context.UnsignedLongLongTy;
555        Width = Context.Target.getLongLongWidth();
556      }
557
558      if (ResultVal.getBitWidth() != Width)
559        ResultVal.trunc(Width);
560    }
561
562    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
563  }
564
565  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
566  if (Literal.isImaginary)
567    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
568
569  return Res;
570}
571
572Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
573                                        ExprTy *Val) {
574  Expr *E = (Expr *)Val;
575  assert((E != 0) && "ActOnParenExpr() missing expr");
576  return new ParenExpr(L, R, E);
577}
578
579/// The UsualUnaryConversions() function is *not* called by this routine.
580/// See C99 6.3.2.1p[2-4] for more details.
581QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
582                                         SourceLocation OpLoc, bool isSizeof) {
583  // C99 6.5.3.4p1:
584  if (isa<FunctionType>(exprType) && isSizeof)
585    // alignof(function) is allowed.
586    Diag(OpLoc, diag::ext_sizeof_function_type);
587  else if (exprType->isVoidType())
588    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
589  else if (exprType->isIncompleteType()) {
590    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
591                           diag::err_alignof_incomplete_type,
592         exprType.getAsString());
593    return QualType(); // error
594  }
595  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
596  return Context.getSizeType();
597}
598
599Action::ExprResult Sema::
600ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
601                           SourceLocation LPLoc, TypeTy *Ty,
602                           SourceLocation RPLoc) {
603  // If error parsing type, ignore.
604  if (Ty == 0) return true;
605
606  // Verify that this is a valid expression.
607  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
608
609  QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
610
611  if (resultType.isNull())
612    return true;
613  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
614}
615
616QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
617  DefaultFunctionArrayConversion(V);
618
619  // These operators return the element type of a complex type.
620  if (const ComplexType *CT = V->getType()->getAsComplexType())
621    return CT->getElementType();
622
623  // Otherwise they pass through real integer and floating point types here.
624  if (V->getType()->isArithmeticType())
625    return V->getType();
626
627  // Reject anything else.
628  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
629  return QualType();
630}
631
632
633
634Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
635                                             tok::TokenKind Kind,
636                                             ExprTy *Input) {
637  UnaryOperator::Opcode Opc;
638  switch (Kind) {
639  default: assert(0 && "Unknown unary op!");
640  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
641  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
642  }
643  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
644  if (result.isNull())
645    return true;
646  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
647}
648
649Action::ExprResult Sema::
650ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
651                        ExprTy *Idx, SourceLocation RLoc) {
652  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
653
654  // Perform default conversions.
655  DefaultFunctionArrayConversion(LHSExp);
656  DefaultFunctionArrayConversion(RHSExp);
657
658  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
659
660  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
661  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
662  // in the subscript position. As a result, we need to derive the array base
663  // and index from the expression types.
664  Expr *BaseExpr, *IndexExpr;
665  QualType ResultType;
666  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
667    BaseExpr = LHSExp;
668    IndexExpr = RHSExp;
669    // FIXME: need to deal with const...
670    ResultType = PTy->getPointeeType();
671  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
672     // Handle the uncommon case of "123[Ptr]".
673    BaseExpr = RHSExp;
674    IndexExpr = LHSExp;
675    // FIXME: need to deal with const...
676    ResultType = PTy->getPointeeType();
677  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
678    BaseExpr = LHSExp;    // vectors: V[123]
679    IndexExpr = RHSExp;
680
681    // Component access limited to variables (reject vec4.rg[1]).
682    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
683        !isa<ExtVectorElementExpr>(BaseExpr))
684      return Diag(LLoc, diag::err_ext_vector_component_access,
685                  SourceRange(LLoc, RLoc));
686    // FIXME: need to deal with const...
687    ResultType = VTy->getElementType();
688  } else {
689    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
690                RHSExp->getSourceRange());
691  }
692  // C99 6.5.2.1p1
693  if (!IndexExpr->getType()->isIntegerType())
694    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
695                IndexExpr->getSourceRange());
696
697  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
698  // the following check catches trying to index a pointer to a function (e.g.
699  // void (*)(int)) and pointers to incomplete types.  Functions are not
700  // objects in C99.
701  if (!ResultType->isObjectType())
702    return Diag(BaseExpr->getLocStart(),
703                diag::err_typecheck_subscript_not_object,
704                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
705
706  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
707}
708
709QualType Sema::
710CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
711                        IdentifierInfo &CompName, SourceLocation CompLoc) {
712  const ExtVectorType *vecType = baseType->getAsExtVectorType();
713
714  // This flag determines whether or not the component is to be treated as a
715  // special name, or a regular GLSL-style component access.
716  bool SpecialComponent = false;
717
718  // The vector accessor can't exceed the number of elements.
719  const char *compStr = CompName.getName();
720  if (strlen(compStr) > vecType->getNumElements()) {
721    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
722                baseType.getAsString(), SourceRange(CompLoc));
723    return QualType();
724  }
725
726  // Check that we've found one of the special components, or that the component
727  // names must come from the same set.
728  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
729      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
730    SpecialComponent = true;
731  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
732    do
733      compStr++;
734    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
735  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
736    do
737      compStr++;
738    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
739  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
740    do
741      compStr++;
742    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
743  }
744
745  if (!SpecialComponent && *compStr) {
746    // We didn't get to the end of the string. This means the component names
747    // didn't come from the same set *or* we encountered an illegal name.
748    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
749         std::string(compStr,compStr+1), SourceRange(CompLoc));
750    return QualType();
751  }
752  // Each component accessor can't exceed the vector type.
753  compStr = CompName.getName();
754  while (*compStr) {
755    if (vecType->isAccessorWithinNumElements(*compStr))
756      compStr++;
757    else
758      break;
759  }
760  if (!SpecialComponent && *compStr) {
761    // We didn't get to the end of the string. This means a component accessor
762    // exceeds the number of elements in the vector.
763    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
764                baseType.getAsString(), SourceRange(CompLoc));
765    return QualType();
766  }
767
768  // If we have a special component name, verify that the current vector length
769  // is an even number, since all special component names return exactly half
770  // the elements.
771  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
772    return QualType();
773  }
774
775  // The component accessor looks fine - now we need to compute the actual type.
776  // The vector type is implied by the component accessor. For example,
777  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
778  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
779  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
780                                       : strlen(CompName.getName());
781  if (CompSize == 1)
782    return vecType->getElementType();
783
784  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
785  // Now look up the TypeDefDecl from the vector type. Without this,
786  // diagostics look bad. We want extended vector types to appear built-in.
787  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
788    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
789      return Context.getTypedefType(ExtVectorDecls[i]);
790  }
791  return VT; // should never get here (a typedef type should always be found).
792}
793
794Action::ExprResult Sema::
795ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
796                         tok::TokenKind OpKind, SourceLocation MemberLoc,
797                         IdentifierInfo &Member) {
798  Expr *BaseExpr = static_cast<Expr *>(Base);
799  assert(BaseExpr && "no record expression");
800
801  // Perform default conversions.
802  DefaultFunctionArrayConversion(BaseExpr);
803
804  QualType BaseType = BaseExpr->getType();
805  assert(!BaseType.isNull() && "no type for member expression");
806
807  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
808  // must have pointer type, and the accessed type is the pointee.
809  if (OpKind == tok::arrow) {
810    if (const PointerType *PT = BaseType->getAsPointerType())
811      BaseType = PT->getPointeeType();
812    else
813      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
814                  BaseType.getAsString(), BaseExpr->getSourceRange());
815  }
816
817  // Handle field access to simple records.  This also handles access to fields
818  // of the ObjC 'id' struct.
819  if (const RecordType *RTy = BaseType->getAsRecordType()) {
820    RecordDecl *RDecl = RTy->getDecl();
821    if (RTy->isIncompleteType())
822      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
823                  BaseExpr->getSourceRange());
824    // The record definition is complete, now make sure the member is valid.
825    FieldDecl *MemberDecl = RDecl->getMember(&Member);
826    if (!MemberDecl)
827      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
828                  BaseExpr->getSourceRange());
829
830    // Figure out the type of the member; see C99 6.5.2.3p3
831    // FIXME: Handle address space modifiers
832    QualType MemberType = MemberDecl->getType();
833    unsigned combinedQualifiers =
834        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
835    MemberType = MemberType.getQualifiedType(combinedQualifiers);
836
837    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
838                          MemberLoc, MemberType);
839  }
840
841  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
842  // (*Obj).ivar.
843  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
844    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
845      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
846                                 OpKind == tok::arrow);
847    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
848                IFTy->getDecl()->getName(), Member.getName(),
849                BaseExpr->getSourceRange());
850  }
851
852  // Handle Objective-C property access, which is "Obj.property" where Obj is a
853  // pointer to a (potentially qualified) interface type.
854  const PointerType *PTy;
855  const ObjCInterfaceType *IFTy;
856  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
857      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
858    ObjCInterfaceDecl *IFace = IFTy->getDecl();
859
860    // FIXME: The logic for looking up nullary and unary selectors should be
861    // shared with the code in ActOnInstanceMessage.
862
863    // Before we look for explicit property declarations, we check for
864    // nullary methods (which allow '.' notation).
865    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
866    if (ObjCMethodDecl *MD = IFace->lookupInstanceMethod(Sel))
867      return new ObjCPropertyRefExpr(MD, MD->getResultType(),
868                                     MemberLoc, BaseExpr);
869
870    // If this reference is in an @implementation, check for 'private' methods.
871    if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
872      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
873        if (ObjCImplementationDecl *ImpDecl =
874              ObjCImplementations[ClassDecl->getIdentifier()])
875          if (ObjCMethodDecl *MD = ImpDecl->getInstanceMethod(Sel))
876            return new ObjCPropertyRefExpr(MD, MD->getResultType(),
877                                           MemberLoc, BaseExpr);
878    }
879
880    // FIXME: Need to deal with setter methods that take 1 argument. E.g.:
881    // @interface NSBundle : NSObject {}
882    // - (NSString *)bundlePath;
883    // - (void)setBundlePath:(NSString *)x;
884    // @end
885    // void someMethod() { frameworkBundle.bundlePath = 0; }
886    //
887    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
888      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
889
890    // Lastly, check protocols on qualified interfaces.
891    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
892         E = IFTy->qual_end(); I != E; ++I)
893      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
894        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
895  }
896
897  // Handle 'field access' to vectors, such as 'V.xx'.
898  if (BaseType->isExtVectorType() && OpKind == tok::period) {
899    // Component access limited to variables (reject vec4.rg.g).
900    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
901        !isa<ExtVectorElementExpr>(BaseExpr))
902      return Diag(MemberLoc, diag::err_ext_vector_component_access,
903                  BaseExpr->getSourceRange());
904    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
905    if (ret.isNull())
906      return true;
907    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
908  }
909
910  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
911              BaseType.getAsString(), BaseExpr->getSourceRange());
912}
913
914/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
915/// This provides the location of the left/right parens and a list of comma
916/// locations.
917Action::ExprResult Sema::
918ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
919              ExprTy **args, unsigned NumArgs,
920              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
921  Expr *Fn = static_cast<Expr *>(fn);
922  Expr **Args = reinterpret_cast<Expr**>(args);
923  assert(Fn && "no function call expression");
924  FunctionDecl *FDecl = NULL;
925
926  // Promote the function operand.
927  UsualUnaryConversions(Fn);
928
929  // If we're directly calling a function, get the declaration for
930  // that function.
931  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
932    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
933      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
934
935  // Make the call expr early, before semantic checks.  This guarantees cleanup
936  // of arguments and function on error.
937  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
938                                                 Context.BoolTy, RParenLoc));
939
940  // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
941  // type pointer to function".
942  const PointerType *PT = Fn->getType()->getAsPointerType();
943  if (PT == 0)
944    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
945                SourceRange(Fn->getLocStart(), RParenLoc));
946  const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
947  if (FuncT == 0)
948    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
949                SourceRange(Fn->getLocStart(), RParenLoc));
950
951  // We know the result type of the call, set it.
952  TheCall->setType(FuncT->getResultType());
953
954  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
955    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
956    // assignment, to the types of the corresponding parameter, ...
957    unsigned NumArgsInProto = Proto->getNumArgs();
958    unsigned NumArgsToCheck = NumArgs;
959
960    // If too few arguments are available (and we don't have default
961    // arguments for the remaining parameters), don't make the call.
962    if (NumArgs < NumArgsInProto) {
963      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
964        // Use default arguments for missing arguments
965        NumArgsToCheck = NumArgsInProto;
966        TheCall->setNumArgs(NumArgsInProto);
967      } else
968        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
969                    Fn->getSourceRange());
970    }
971
972    // If too many are passed and not variadic, error on the extras and drop
973    // them.
974    if (NumArgs > NumArgsInProto) {
975      if (!Proto->isVariadic()) {
976        Diag(Args[NumArgsInProto]->getLocStart(),
977             diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
978             SourceRange(Args[NumArgsInProto]->getLocStart(),
979                         Args[NumArgs-1]->getLocEnd()));
980        // This deletes the extra arguments.
981        TheCall->setNumArgs(NumArgsInProto);
982      }
983      NumArgsToCheck = NumArgsInProto;
984    }
985
986    // Continue to check argument types (even if we have too few/many args).
987    for (unsigned i = 0; i != NumArgsToCheck; i++) {
988      QualType ProtoArgType = Proto->getArgType(i);
989
990      Expr *Arg;
991      if (i < NumArgs)
992        Arg = Args[i];
993      else
994        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
995      QualType ArgType = Arg->getType();
996
997      // Compute implicit casts from the operand to the formal argument type.
998      AssignConvertType ConvTy =
999        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1000      TheCall->setArg(i, Arg);
1001
1002      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1003                                   ArgType, Arg, "passing"))
1004        return true;
1005    }
1006
1007    // If this is a variadic call, handle args passed through "...".
1008    if (Proto->isVariadic()) {
1009      // Promote the arguments (C99 6.5.2.2p7).
1010      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1011        Expr *Arg = Args[i];
1012        DefaultArgumentPromotion(Arg);
1013        TheCall->setArg(i, Arg);
1014      }
1015    }
1016  } else {
1017    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1018
1019    // Promote the arguments (C99 6.5.2.2p6).
1020    for (unsigned i = 0; i != NumArgs; i++) {
1021      Expr *Arg = Args[i];
1022      DefaultArgumentPromotion(Arg);
1023      TheCall->setArg(i, Arg);
1024    }
1025  }
1026
1027  // Do special checking on direct calls to functions.
1028  if (FDecl)
1029    return CheckFunctionCall(FDecl, TheCall.take());
1030
1031  return TheCall.take();
1032}
1033
1034Action::ExprResult Sema::
1035ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1036                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1037  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1038  QualType literalType = QualType::getFromOpaquePtr(Ty);
1039  // FIXME: put back this assert when initializers are worked out.
1040  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1041  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1042
1043  if (literalType->isArrayType()) {
1044    if (literalType->getAsVariableArrayType())
1045      return Diag(LParenLoc,
1046                  diag::err_variable_object_no_init,
1047                  SourceRange(LParenLoc,
1048                              literalExpr->getSourceRange().getEnd()));
1049  } else if (literalType->isIncompleteType()) {
1050    return Diag(LParenLoc,
1051                diag::err_typecheck_decl_incomplete_type,
1052                literalType.getAsString(),
1053                SourceRange(LParenLoc,
1054                            literalExpr->getSourceRange().getEnd()));
1055  }
1056
1057  if (CheckInitializerTypes(literalExpr, literalType))
1058    return true;
1059
1060  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1061  if (isFileScope) { // 6.5.2.5p3
1062    if (CheckForConstantInitializer(literalExpr, literalType))
1063      return true;
1064  }
1065  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1066}
1067
1068Action::ExprResult Sema::
1069ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1070              SourceLocation RBraceLoc) {
1071  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1072
1073  // Semantic analysis for initializers is done by ActOnDeclarator() and
1074  // CheckInitializer() - it requires knowledge of the object being intialized.
1075
1076  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1077  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1078  return E;
1079}
1080
1081bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1082  assert(VectorTy->isVectorType() && "Not a vector type!");
1083
1084  if (Ty->isVectorType() || Ty->isIntegerType()) {
1085    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1086      return Diag(R.getBegin(),
1087                  Ty->isVectorType() ?
1088                  diag::err_invalid_conversion_between_vectors :
1089                  diag::err_invalid_conversion_between_vector_and_integer,
1090                  VectorTy.getAsString().c_str(),
1091                  Ty.getAsString().c_str(), R);
1092  } else
1093    return Diag(R.getBegin(),
1094                diag::err_invalid_conversion_between_vector_and_scalar,
1095                VectorTy.getAsString().c_str(),
1096                Ty.getAsString().c_str(), R);
1097
1098  return false;
1099}
1100
1101Action::ExprResult Sema::
1102ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1103              SourceLocation RParenLoc, ExprTy *Op) {
1104  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1105
1106  Expr *castExpr = static_cast<Expr*>(Op);
1107  QualType castType = QualType::getFromOpaquePtr(Ty);
1108
1109  UsualUnaryConversions(castExpr);
1110
1111  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1112  // type needs to be scalar.
1113  if (!castType->isVoidType()) {  // Cast to void allows any expr type.
1114    if (!castType->isScalarType() && !castType->isVectorType()) {
1115      // GCC struct/union extension.
1116      if (castType == castExpr->getType() &&
1117          castType->isStructureType() || castType->isUnionType()) {
1118        Diag(LParenLoc, diag::ext_typecheck_cast_nonscalar,
1119             SourceRange(LParenLoc, RParenLoc));
1120        return new CastExpr(castType, castExpr, LParenLoc);
1121      } else
1122        return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
1123                    castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
1124    }
1125    if (!castExpr->getType()->isScalarType() &&
1126        !castExpr->getType()->isVectorType())
1127      return Diag(castExpr->getLocStart(),
1128                  diag::err_typecheck_expect_scalar_operand,
1129                  castExpr->getType().getAsString(),castExpr->getSourceRange());
1130
1131    if (castExpr->getType()->isVectorType()) {
1132      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
1133                          castExpr->getType(), castType))
1134        return true;
1135    } else if (castType->isVectorType()) {
1136      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
1137                          castType, castExpr->getType()))
1138        return true;
1139    }
1140  }
1141  return new CastExpr(castType, castExpr, LParenLoc);
1142}
1143
1144/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1145/// In that case, lex = cond.
1146inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1147  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1148  UsualUnaryConversions(cond);
1149  UsualUnaryConversions(lex);
1150  UsualUnaryConversions(rex);
1151  QualType condT = cond->getType();
1152  QualType lexT = lex->getType();
1153  QualType rexT = rex->getType();
1154
1155  // first, check the condition.
1156  if (!condT->isScalarType()) { // C99 6.5.15p2
1157    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1158         condT.getAsString());
1159    return QualType();
1160  }
1161
1162  // Now check the two expressions.
1163
1164  // If both operands have arithmetic type, do the usual arithmetic conversions
1165  // to find a common type: C99 6.5.15p3,5.
1166  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1167    UsualArithmeticConversions(lex, rex);
1168    return lex->getType();
1169  }
1170
1171  // If both operands are the same structure or union type, the result is that
1172  // type.
1173  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1174    if (const RecordType *RHSRT = rexT->getAsRecordType())
1175      if (LHSRT->getDecl() == RHSRT->getDecl())
1176        // "If both the operands have structure or union type, the result has
1177        // that type."  This implies that CV qualifiers are dropped.
1178        return lexT.getUnqualifiedType();
1179  }
1180
1181  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1182  // The following || allows only one side to be void (a GCC-ism).
1183  if (lexT->isVoidType() || rexT->isVoidType()) {
1184    if (!lexT->isVoidType())
1185      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1186           rex->getSourceRange());
1187    if (!rexT->isVoidType())
1188      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1189           lex->getSourceRange());
1190    ImpCastExprToType(lex, Context.VoidTy);
1191    ImpCastExprToType(rex, Context.VoidTy);
1192    return Context.VoidTy;
1193  }
1194  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1195  // the type of the other operand."
1196  if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
1197    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1198    return lexT;
1199  }
1200  if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
1201    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1202    return rexT;
1203  }
1204  // Handle the case where both operands are pointers before we handle null
1205  // pointer constants in case both operands are null pointer constants.
1206  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1207    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1208      // get the "pointed to" types
1209      QualType lhptee = LHSPT->getPointeeType();
1210      QualType rhptee = RHSPT->getPointeeType();
1211
1212      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1213      if (lhptee->isVoidType() &&
1214          rhptee->isIncompleteOrObjectType()) {
1215        // Figure out necessary qualifiers (C99 6.5.15p6)
1216        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1217        QualType destType = Context.getPointerType(destPointee);
1218        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1219        ImpCastExprToType(rex, destType); // promote to void*
1220        return destType;
1221      }
1222      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1223        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1224        QualType destType = Context.getPointerType(destPointee);
1225        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1226        ImpCastExprToType(rex, destType); // promote to void*
1227        return destType;
1228      }
1229
1230      if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1231                                      rhptee.getUnqualifiedType())) {
1232        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1233             lexT.getAsString(), rexT.getAsString(),
1234             lex->getSourceRange(), rex->getSourceRange());
1235        // In this situation, we assume void* type. No especially good
1236        // reason, but this is what gcc does, and we do have to pick
1237        // to get a consistent AST.
1238        QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
1239        ImpCastExprToType(lex, voidPtrTy);
1240        ImpCastExprToType(rex, voidPtrTy);
1241        return voidPtrTy;
1242      }
1243      // The pointer types are compatible.
1244      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1245      // differently qualified versions of compatible types, the result type is
1246      // a pointer to an appropriately qualified version of the *composite*
1247      // type.
1248      // FIXME: Need to calculate the composite type.
1249      // FIXME: Need to add qualifiers
1250      QualType compositeType = lexT;
1251      ImpCastExprToType(lex, compositeType);
1252      ImpCastExprToType(rex, compositeType);
1253      return compositeType;
1254    }
1255  }
1256  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1257  // evaluates to "struct objc_object *" (and is handled above when comparing
1258  // id with statically typed objects). FIXME: Do we need an ImpCastExprToType?
1259  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1260    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true))
1261      return Context.getObjCIdType();
1262  }
1263  // Otherwise, the operands are not compatible.
1264  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1265       lexT.getAsString(), rexT.getAsString(),
1266       lex->getSourceRange(), rex->getSourceRange());
1267  return QualType();
1268}
1269
1270/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1271/// in the case of a the GNU conditional expr extension.
1272Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1273                                            SourceLocation ColonLoc,
1274                                            ExprTy *Cond, ExprTy *LHS,
1275                                            ExprTy *RHS) {
1276  Expr *CondExpr = (Expr *) Cond;
1277  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1278
1279  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1280  // was the condition.
1281  bool isLHSNull = LHSExpr == 0;
1282  if (isLHSNull)
1283    LHSExpr = CondExpr;
1284
1285  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1286                                             RHSExpr, QuestionLoc);
1287  if (result.isNull())
1288    return true;
1289  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1290                                 RHSExpr, result);
1291}
1292
1293
1294// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1295// being closely modeled after the C99 spec:-). The odd characteristic of this
1296// routine is it effectively iqnores the qualifiers on the top level pointee.
1297// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1298// FIXME: add a couple examples in this comment.
1299Sema::AssignConvertType
1300Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1301  QualType lhptee, rhptee;
1302
1303  // get the "pointed to" type (ignoring qualifiers at the top level)
1304  lhptee = lhsType->getAsPointerType()->getPointeeType();
1305  rhptee = rhsType->getAsPointerType()->getPointeeType();
1306
1307  // make sure we operate on the canonical type
1308  lhptee = lhptee.getCanonicalType();
1309  rhptee = rhptee.getCanonicalType();
1310
1311  AssignConvertType ConvTy = Compatible;
1312
1313  // C99 6.5.16.1p1: This following citation is common to constraints
1314  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1315  // qualifiers of the type *pointed to* by the right;
1316  // FIXME: Handle ASQualType
1317  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1318       rhptee.getCVRQualifiers())
1319    ConvTy = CompatiblePointerDiscardsQualifiers;
1320
1321  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1322  // incomplete type and the other is a pointer to a qualified or unqualified
1323  // version of void...
1324  if (lhptee->isVoidType()) {
1325    if (rhptee->isIncompleteOrObjectType())
1326      return ConvTy;
1327
1328    // As an extension, we allow cast to/from void* to function pointer.
1329    assert(rhptee->isFunctionType());
1330    return FunctionVoidPointer;
1331  }
1332
1333  if (rhptee->isVoidType()) {
1334    if (lhptee->isIncompleteOrObjectType())
1335      return ConvTy;
1336
1337    // As an extension, we allow cast to/from void* to function pointer.
1338    assert(lhptee->isFunctionType());
1339    return FunctionVoidPointer;
1340  }
1341
1342  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1343  // unqualified versions of compatible types, ...
1344  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1345                                  rhptee.getUnqualifiedType()))
1346    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1347  return ConvTy;
1348}
1349
1350/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1351/// has code to accommodate several GCC extensions when type checking
1352/// pointers. Here are some objectionable examples that GCC considers warnings:
1353///
1354///  int a, *pint;
1355///  short *pshort;
1356///  struct foo *pfoo;
1357///
1358///  pint = pshort; // warning: assignment from incompatible pointer type
1359///  a = pint; // warning: assignment makes integer from pointer without a cast
1360///  pint = a; // warning: assignment makes pointer from integer without a cast
1361///  pint = pfoo; // warning: assignment from incompatible pointer type
1362///
1363/// As a result, the code for dealing with pointers is more complex than the
1364/// C99 spec dictates.
1365///
1366Sema::AssignConvertType
1367Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1368  // Get canonical types.  We're not formatting these types, just comparing
1369  // them.
1370  lhsType = lhsType.getCanonicalType().getUnqualifiedType();
1371  rhsType = rhsType.getCanonicalType().getUnqualifiedType();
1372
1373  if (lhsType == rhsType)
1374    return Compatible; // Common case: fast path an exact match.
1375
1376  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1377    if (Context.typesAreCompatible(lhsType, rhsType))
1378      return Compatible;
1379    return Incompatible;
1380  }
1381
1382  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1383    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1384      return Compatible;
1385    // Relax integer conversions like we do for pointers below.
1386    if (rhsType->isIntegerType())
1387      return IntToPointer;
1388    if (lhsType->isIntegerType())
1389      return PointerToInt;
1390    return Incompatible;
1391  }
1392
1393  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1394    // For ExtVector, allow vector splats; float -> <n x float>
1395    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1396      if (LV->getElementType() == rhsType)
1397        return Compatible;
1398
1399    // If we are allowing lax vector conversions, and LHS and RHS are both
1400    // vectors, the total size only needs to be the same. This is a bitcast;
1401    // no bits are changed but the result type is different.
1402    if (getLangOptions().LaxVectorConversions &&
1403        lhsType->isVectorType() && rhsType->isVectorType()) {
1404      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1405        return Compatible;
1406    }
1407    return Incompatible;
1408  }
1409
1410  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1411    return Compatible;
1412
1413  if (isa<PointerType>(lhsType)) {
1414    if (rhsType->isIntegerType())
1415      return IntToPointer;
1416
1417    if (isa<PointerType>(rhsType))
1418      return CheckPointerTypesForAssignment(lhsType, rhsType);
1419    return Incompatible;
1420  }
1421
1422  if (isa<PointerType>(rhsType)) {
1423    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1424    if (lhsType == Context.BoolTy)
1425      return Compatible;
1426
1427    if (lhsType->isIntegerType())
1428      return PointerToInt;
1429
1430    if (isa<PointerType>(lhsType))
1431      return CheckPointerTypesForAssignment(lhsType, rhsType);
1432    return Incompatible;
1433  }
1434
1435  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1436    if (Context.typesAreCompatible(lhsType, rhsType))
1437      return Compatible;
1438  }
1439  return Incompatible;
1440}
1441
1442Sema::AssignConvertType
1443Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1444  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1445  // a null pointer constant.
1446  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
1447      && rExpr->isNullPointerConstant(Context)) {
1448    ImpCastExprToType(rExpr, lhsType);
1449    return Compatible;
1450  }
1451  // This check seems unnatural, however it is necessary to ensure the proper
1452  // conversion of functions/arrays. If the conversion were done for all
1453  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1454  // expressions that surpress this implicit conversion (&, sizeof).
1455  //
1456  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1457  // are better understood.
1458  if (!lhsType->isReferenceType())
1459    DefaultFunctionArrayConversion(rExpr);
1460
1461  Sema::AssignConvertType result =
1462    CheckAssignmentConstraints(lhsType, rExpr->getType());
1463
1464  // C99 6.5.16.1p2: The value of the right operand is converted to the
1465  // type of the assignment expression.
1466  if (rExpr->getType() != lhsType)
1467    ImpCastExprToType(rExpr, lhsType);
1468  return result;
1469}
1470
1471Sema::AssignConvertType
1472Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1473  return CheckAssignmentConstraints(lhsType, rhsType);
1474}
1475
1476QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1477  Diag(loc, diag::err_typecheck_invalid_operands,
1478       lex->getType().getAsString(), rex->getType().getAsString(),
1479       lex->getSourceRange(), rex->getSourceRange());
1480  return QualType();
1481}
1482
1483inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1484                                                              Expr *&rex) {
1485  // For conversion purposes, we ignore any qualifiers.
1486  // For example, "const float" and "float" are equivalent.
1487  QualType lhsType = lex->getType().getCanonicalType().getUnqualifiedType();
1488  QualType rhsType = rex->getType().getCanonicalType().getUnqualifiedType();
1489
1490  // If the vector types are identical, return.
1491  if (lhsType == rhsType)
1492    return lhsType;
1493
1494  // Handle the case of a vector & extvector type of the same size and element
1495  // type.  It would be nice if we only had one vector type someday.
1496  if (getLangOptions().LaxVectorConversions)
1497    if (const VectorType *LV = lhsType->getAsVectorType())
1498      if (const VectorType *RV = rhsType->getAsVectorType())
1499        if (LV->getElementType() == RV->getElementType() &&
1500            LV->getNumElements() == RV->getNumElements())
1501          return lhsType->isExtVectorType() ? lhsType : rhsType;
1502
1503  // If the lhs is an extended vector and the rhs is a scalar of the same type
1504  // or a literal, promote the rhs to the vector type.
1505  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1506    QualType eltType = V->getElementType();
1507
1508    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1509        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1510        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1511      ImpCastExprToType(rex, lhsType);
1512      return lhsType;
1513    }
1514  }
1515
1516  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1517  // promote the lhs to the vector type.
1518  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1519    QualType eltType = V->getElementType();
1520
1521    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1522        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1523        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1524      ImpCastExprToType(lex, rhsType);
1525      return rhsType;
1526    }
1527  }
1528
1529  // You cannot convert between vector values of different size.
1530  Diag(loc, diag::err_typecheck_vector_not_convertable,
1531       lex->getType().getAsString(), rex->getType().getAsString(),
1532       lex->getSourceRange(), rex->getSourceRange());
1533  return QualType();
1534}
1535
1536inline QualType Sema::CheckMultiplyDivideOperands(
1537  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1538{
1539  QualType lhsType = lex->getType(), rhsType = rex->getType();
1540
1541  if (lhsType->isVectorType() || rhsType->isVectorType())
1542    return CheckVectorOperands(loc, lex, rex);
1543
1544  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1545
1546  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1547    return compType;
1548  return InvalidOperands(loc, lex, rex);
1549}
1550
1551inline QualType Sema::CheckRemainderOperands(
1552  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1553{
1554  QualType lhsType = lex->getType(), rhsType = rex->getType();
1555
1556  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1557
1558  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1559    return compType;
1560  return InvalidOperands(loc, lex, rex);
1561}
1562
1563inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1564  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1565{
1566  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1567    return CheckVectorOperands(loc, lex, rex);
1568
1569  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1570
1571  // handle the common case first (both operands are arithmetic).
1572  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1573    return compType;
1574
1575  // Put any potential pointer into PExp
1576  Expr* PExp = lex, *IExp = rex;
1577  if (IExp->getType()->isPointerType())
1578    std::swap(PExp, IExp);
1579
1580  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1581    if (IExp->getType()->isIntegerType()) {
1582      // Check for arithmetic on pointers to incomplete types
1583      if (!PTy->getPointeeType()->isObjectType()) {
1584        if (PTy->getPointeeType()->isVoidType()) {
1585          Diag(loc, diag::ext_gnu_void_ptr,
1586               lex->getSourceRange(), rex->getSourceRange());
1587        } else {
1588          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1589               lex->getType().getAsString(), lex->getSourceRange());
1590          return QualType();
1591        }
1592      }
1593      return PExp->getType();
1594    }
1595  }
1596
1597  return InvalidOperands(loc, lex, rex);
1598}
1599
1600// C99 6.5.6
1601QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1602                                        SourceLocation loc, bool isCompAssign) {
1603  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1604    return CheckVectorOperands(loc, lex, rex);
1605
1606  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1607
1608  // Enforce type constraints: C99 6.5.6p3.
1609
1610  // Handle the common case first (both operands are arithmetic).
1611  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1612    return compType;
1613
1614  // Either ptr - int   or   ptr - ptr.
1615  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1616    QualType lpointee = LHSPTy->getPointeeType();
1617
1618    // The LHS must be an object type, not incomplete, function, etc.
1619    if (!lpointee->isObjectType()) {
1620      // Handle the GNU void* extension.
1621      if (lpointee->isVoidType()) {
1622        Diag(loc, diag::ext_gnu_void_ptr,
1623             lex->getSourceRange(), rex->getSourceRange());
1624      } else {
1625        Diag(loc, diag::err_typecheck_sub_ptr_object,
1626             lex->getType().getAsString(), lex->getSourceRange());
1627        return QualType();
1628      }
1629    }
1630
1631    // The result type of a pointer-int computation is the pointer type.
1632    if (rex->getType()->isIntegerType())
1633      return lex->getType();
1634
1635    // Handle pointer-pointer subtractions.
1636    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1637      QualType rpointee = RHSPTy->getPointeeType();
1638
1639      // RHS must be an object type, unless void (GNU).
1640      if (!rpointee->isObjectType()) {
1641        // Handle the GNU void* extension.
1642        if (rpointee->isVoidType()) {
1643          if (!lpointee->isVoidType())
1644            Diag(loc, diag::ext_gnu_void_ptr,
1645                 lex->getSourceRange(), rex->getSourceRange());
1646        } else {
1647          Diag(loc, diag::err_typecheck_sub_ptr_object,
1648               rex->getType().getAsString(), rex->getSourceRange());
1649          return QualType();
1650        }
1651      }
1652
1653      // Pointee types must be compatible.
1654      if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1655                                      rpointee.getUnqualifiedType())) {
1656        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1657             lex->getType().getAsString(), rex->getType().getAsString(),
1658             lex->getSourceRange(), rex->getSourceRange());
1659        return QualType();
1660      }
1661
1662      return Context.getPointerDiffType();
1663    }
1664  }
1665
1666  return InvalidOperands(loc, lex, rex);
1667}
1668
1669// C99 6.5.7
1670QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1671                                  bool isCompAssign) {
1672  // C99 6.5.7p2: Each of the operands shall have integer type.
1673  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1674    return InvalidOperands(loc, lex, rex);
1675
1676  // Shifts don't perform usual arithmetic conversions, they just do integer
1677  // promotions on each operand. C99 6.5.7p3
1678  if (!isCompAssign)
1679    UsualUnaryConversions(lex);
1680  UsualUnaryConversions(rex);
1681
1682  // "The type of the result is that of the promoted left operand."
1683  return lex->getType();
1684}
1685
1686// C99 6.5.8
1687QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1688                                    bool isRelational) {
1689  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1690    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1691
1692  // C99 6.5.8p3 / C99 6.5.9p4
1693  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1694    UsualArithmeticConversions(lex, rex);
1695  else {
1696    UsualUnaryConversions(lex);
1697    UsualUnaryConversions(rex);
1698  }
1699  QualType lType = lex->getType();
1700  QualType rType = rex->getType();
1701
1702  // For non-floating point types, check for self-comparisons of the form
1703  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1704  // often indicate logic errors in the program.
1705  if (!lType->isFloatingType()) {
1706    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1707      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1708        if (DRL->getDecl() == DRR->getDecl())
1709          Diag(loc, diag::warn_selfcomparison);
1710  }
1711
1712  if (isRelational) {
1713    if (lType->isRealType() && rType->isRealType())
1714      return Context.IntTy;
1715  } else {
1716    // Check for comparisons of floating point operands using != and ==.
1717    if (lType->isFloatingType()) {
1718      assert (rType->isFloatingType());
1719      CheckFloatComparison(loc,lex,rex);
1720    }
1721
1722    if (lType->isArithmeticType() && rType->isArithmeticType())
1723      return Context.IntTy;
1724  }
1725
1726  bool LHSIsNull = lex->isNullPointerConstant(Context);
1727  bool RHSIsNull = rex->isNullPointerConstant(Context);
1728
1729  // All of the following pointer related warnings are GCC extensions, except
1730  // when handling null pointer constants. One day, we can consider making them
1731  // errors (when -pedantic-errors is enabled).
1732  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
1733    QualType LCanPointeeTy =
1734      lType->getAsPointerType()->getPointeeType().getCanonicalType();
1735    QualType RCanPointeeTy =
1736      rType->getAsPointerType()->getPointeeType().getCanonicalType();
1737
1738    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
1739        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
1740        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
1741                                    RCanPointeeTy.getUnqualifiedType())) {
1742      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1743           lType.getAsString(), rType.getAsString(),
1744           lex->getSourceRange(), rex->getSourceRange());
1745    }
1746    ImpCastExprToType(rex, lType); // promote the pointer to pointer
1747    return Context.IntTy;
1748  }
1749  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
1750    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
1751      ImpCastExprToType(rex, lType);
1752      return Context.IntTy;
1753    }
1754  }
1755  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
1756       rType->isIntegerType()) {
1757    if (!RHSIsNull)
1758      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1759           lType.getAsString(), rType.getAsString(),
1760           lex->getSourceRange(), rex->getSourceRange());
1761    ImpCastExprToType(rex, lType); // promote the integer to pointer
1762    return Context.IntTy;
1763  }
1764  if (lType->isIntegerType() &&
1765      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
1766    if (!LHSIsNull)
1767      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1768           lType.getAsString(), rType.getAsString(),
1769           lex->getSourceRange(), rex->getSourceRange());
1770    ImpCastExprToType(lex, rType); // promote the integer to pointer
1771    return Context.IntTy;
1772  }
1773  return InvalidOperands(loc, lex, rex);
1774}
1775
1776/// CheckVectorCompareOperands - vector comparisons are a clang extension that
1777/// operates on extended vector types.  Instead of producing an IntTy result,
1778/// like a scalar comparison, a vector comparison produces a vector of integer
1779/// types.
1780QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
1781                                          SourceLocation loc,
1782                                          bool isRelational) {
1783  // Check to make sure we're operating on vectors of the same type and width,
1784  // Allowing one side to be a scalar of element type.
1785  QualType vType = CheckVectorOperands(loc, lex, rex);
1786  if (vType.isNull())
1787    return vType;
1788
1789  QualType lType = lex->getType();
1790  QualType rType = rex->getType();
1791
1792  // For non-floating point types, check for self-comparisons of the form
1793  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1794  // often indicate logic errors in the program.
1795  if (!lType->isFloatingType()) {
1796    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1797      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1798        if (DRL->getDecl() == DRR->getDecl())
1799          Diag(loc, diag::warn_selfcomparison);
1800  }
1801
1802  // Check for comparisons of floating point operands using != and ==.
1803  if (!isRelational && lType->isFloatingType()) {
1804    assert (rType->isFloatingType());
1805    CheckFloatComparison(loc,lex,rex);
1806  }
1807
1808  // Return the type for the comparison, which is the same as vector type for
1809  // integer vectors, or an integer type of identical size and number of
1810  // elements for floating point vectors.
1811  if (lType->isIntegerType())
1812    return lType;
1813
1814  const VectorType *VTy = lType->getAsVectorType();
1815
1816  // FIXME: need to deal with non-32b int / non-64b long long
1817  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
1818  if (TypeSize == 32) {
1819    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
1820  }
1821  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
1822  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
1823}
1824
1825inline QualType Sema::CheckBitwiseOperands(
1826  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1827{
1828  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1829    return CheckVectorOperands(loc, lex, rex);
1830
1831  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1832
1833  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1834    return compType;
1835  return InvalidOperands(loc, lex, rex);
1836}
1837
1838inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1839  Expr *&lex, Expr *&rex, SourceLocation loc)
1840{
1841  UsualUnaryConversions(lex);
1842  UsualUnaryConversions(rex);
1843
1844  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
1845    return Context.IntTy;
1846  return InvalidOperands(loc, lex, rex);
1847}
1848
1849inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1850  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
1851{
1852  QualType lhsType = lex->getType();
1853  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1854  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1855
1856  switch (mlval) { // C99 6.5.16p2
1857  case Expr::MLV_Valid:
1858    break;
1859  case Expr::MLV_ConstQualified:
1860    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1861    return QualType();
1862  case Expr::MLV_ArrayType:
1863    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1864         lhsType.getAsString(), lex->getSourceRange());
1865    return QualType();
1866  case Expr::MLV_NotObjectType:
1867    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1868         lhsType.getAsString(), lex->getSourceRange());
1869    return QualType();
1870  case Expr::MLV_InvalidExpression:
1871    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1872         lex->getSourceRange());
1873    return QualType();
1874  case Expr::MLV_IncompleteType:
1875  case Expr::MLV_IncompleteVoidType:
1876    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1877         lhsType.getAsString(), lex->getSourceRange());
1878    return QualType();
1879  case Expr::MLV_DuplicateVectorComponents:
1880    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1881         lex->getSourceRange());
1882    return QualType();
1883  }
1884
1885  AssignConvertType ConvTy;
1886  if (compoundType.isNull())
1887    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
1888  else
1889    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
1890
1891  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
1892                               rex, "assigning"))
1893    return QualType();
1894
1895  // C99 6.5.16p3: The type of an assignment expression is the type of the
1896  // left operand unless the left operand has qualified type, in which case
1897  // it is the unqualified version of the type of the left operand.
1898  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1899  // is converted to the type of the assignment expression (above).
1900  // C++ 5.17p1: the type of the assignment expression is that of its left
1901  // oprdu.
1902  return lhsType.getUnqualifiedType();
1903}
1904
1905inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1906  Expr *&lex, Expr *&rex, SourceLocation loc) {
1907
1908  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
1909  DefaultFunctionArrayConversion(rex);
1910  return rex->getType();
1911}
1912
1913/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1914/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1915QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1916  QualType resType = op->getType();
1917  assert(!resType.isNull() && "no type for increment/decrement expression");
1918
1919  // C99 6.5.2.4p1: We allow complex as a GCC extension.
1920  if (const PointerType *pt = resType->getAsPointerType()) {
1921    if (pt->getPointeeType()->isVoidType()) {
1922      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
1923    } else if (!pt->getPointeeType()->isObjectType()) {
1924      // C99 6.5.2.4p2, 6.5.6p2
1925      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1926           resType.getAsString(), op->getSourceRange());
1927      return QualType();
1928    }
1929  } else if (!resType->isRealType()) {
1930    if (resType->isComplexType())
1931      // C99 does not support ++/-- on complex types.
1932      Diag(OpLoc, diag::ext_integer_increment_complex,
1933           resType.getAsString(), op->getSourceRange());
1934    else {
1935      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1936           resType.getAsString(), op->getSourceRange());
1937      return QualType();
1938    }
1939  }
1940  // At this point, we know we have a real, complex or pointer type.
1941  // Now make sure the operand is a modifiable lvalue.
1942  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1943  if (mlval != Expr::MLV_Valid) {
1944    // FIXME: emit a more precise diagnostic...
1945    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1946         op->getSourceRange());
1947    return QualType();
1948  }
1949  return resType;
1950}
1951
1952/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
1953/// This routine allows us to typecheck complex/recursive expressions
1954/// where the declaration is needed for type checking. Here are some
1955/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1956static ValueDecl *getPrimaryDecl(Expr *E) {
1957  switch (E->getStmtClass()) {
1958  case Stmt::DeclRefExprClass:
1959    return cast<DeclRefExpr>(E)->getDecl();
1960  case Stmt::MemberExprClass:
1961    // Fields cannot be declared with a 'register' storage class.
1962    // &X->f is always ok, even if X is declared register.
1963    if (cast<MemberExpr>(E)->isArrow())
1964      return 0;
1965    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
1966  case Stmt::ArraySubscriptExprClass: {
1967    // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
1968
1969    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
1970    if (!VD || VD->getType()->isPointerType())
1971      return 0;
1972    else
1973      return VD;
1974  }
1975  case Stmt::UnaryOperatorClass:
1976    return getPrimaryDecl(cast<UnaryOperator>(E)->getSubExpr());
1977  case Stmt::ParenExprClass:
1978    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
1979  case Stmt::ImplicitCastExprClass:
1980    // &X[4] when X is an array, has an implicit cast from array to pointer.
1981    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
1982  default:
1983    return 0;
1984  }
1985}
1986
1987/// CheckAddressOfOperand - The operand of & must be either a function
1988/// designator or an lvalue designating an object. If it is an lvalue, the
1989/// object cannot be declared with storage class register or be a bit field.
1990/// Note: The usual conversions are *not* applied to the operand of the &
1991/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1992QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1993  if (getLangOptions().C99) {
1994    // Implement C99-only parts of addressof rules.
1995    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
1996      if (uOp->getOpcode() == UnaryOperator::Deref)
1997        // Per C99 6.5.3.2, the address of a deref always returns a valid result
1998        // (assuming the deref expression is valid).
1999        return uOp->getSubExpr()->getType();
2000    }
2001    // Technically, there should be a check for array subscript
2002    // expressions here, but the result of one is always an lvalue anyway.
2003  }
2004  ValueDecl *dcl = getPrimaryDecl(op);
2005  Expr::isLvalueResult lval = op->isLvalue();
2006
2007  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2008    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2009      // FIXME: emit more specific diag...
2010      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2011           op->getSourceRange());
2012      return QualType();
2013    }
2014  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2015    if (MemExpr->getMemberDecl()->isBitField()) {
2016      Diag(OpLoc, diag::err_typecheck_address_of,
2017           std::string("bit-field"), op->getSourceRange());
2018      return QualType();
2019    }
2020  // Check for Apple extension for accessing vector components.
2021  } else if (isa<ArraySubscriptExpr>(op) &&
2022           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2023    Diag(OpLoc, diag::err_typecheck_address_of,
2024         std::string("vector"), op->getSourceRange());
2025    return QualType();
2026  } else if (dcl) { // C99 6.5.3.2p1
2027    // We have an lvalue with a decl. Make sure the decl is not declared
2028    // with the register storage-class specifier.
2029    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2030      if (vd->getStorageClass() == VarDecl::Register) {
2031        Diag(OpLoc, diag::err_typecheck_address_of,
2032             std::string("register variable"), op->getSourceRange());
2033        return QualType();
2034      }
2035    } else
2036      assert(0 && "Unknown/unexpected decl type");
2037  }
2038  // If the operand has type "type", the result has type "pointer to type".
2039  return Context.getPointerType(op->getType());
2040}
2041
2042QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2043  UsualUnaryConversions(op);
2044  QualType qType = op->getType();
2045
2046  if (const PointerType *PT = qType->getAsPointerType()) {
2047    // Note that per both C89 and C99, this is always legal, even
2048    // if ptype is an incomplete type or void.
2049    // It would be possible to warn about dereferencing a
2050    // void pointer, but it's completely well-defined,
2051    // and such a warning is unlikely to catch any mistakes.
2052    return PT->getPointeeType();
2053  }
2054  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2055       qType.getAsString(), op->getSourceRange());
2056  return QualType();
2057}
2058
2059static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2060  tok::TokenKind Kind) {
2061  BinaryOperator::Opcode Opc;
2062  switch (Kind) {
2063  default: assert(0 && "Unknown binop!");
2064  case tok::star:                 Opc = BinaryOperator::Mul; break;
2065  case tok::slash:                Opc = BinaryOperator::Div; break;
2066  case tok::percent:              Opc = BinaryOperator::Rem; break;
2067  case tok::plus:                 Opc = BinaryOperator::Add; break;
2068  case tok::minus:                Opc = BinaryOperator::Sub; break;
2069  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2070  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2071  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2072  case tok::less:                 Opc = BinaryOperator::LT; break;
2073  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2074  case tok::greater:              Opc = BinaryOperator::GT; break;
2075  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2076  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2077  case tok::amp:                  Opc = BinaryOperator::And; break;
2078  case tok::caret:                Opc = BinaryOperator::Xor; break;
2079  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2080  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2081  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2082  case tok::equal:                Opc = BinaryOperator::Assign; break;
2083  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2084  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2085  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2086  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2087  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2088  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2089  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2090  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2091  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2092  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2093  case tok::comma:                Opc = BinaryOperator::Comma; break;
2094  }
2095  return Opc;
2096}
2097
2098static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2099  tok::TokenKind Kind) {
2100  UnaryOperator::Opcode Opc;
2101  switch (Kind) {
2102  default: assert(0 && "Unknown unary op!");
2103  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2104  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2105  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2106  case tok::star:         Opc = UnaryOperator::Deref; break;
2107  case tok::plus:         Opc = UnaryOperator::Plus; break;
2108  case tok::minus:        Opc = UnaryOperator::Minus; break;
2109  case tok::tilde:        Opc = UnaryOperator::Not; break;
2110  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2111  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2112  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2113  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2114  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2115  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2116  }
2117  return Opc;
2118}
2119
2120// Binary Operators.  'Tok' is the token for the operator.
2121Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2122                                    ExprTy *LHS, ExprTy *RHS) {
2123  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2124  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2125
2126  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2127  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2128
2129  QualType ResultTy;  // Result type of the binary operator.
2130  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2131
2132  switch (Opc) {
2133  default:
2134    assert(0 && "Unknown binary expr!");
2135  case BinaryOperator::Assign:
2136    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2137    break;
2138  case BinaryOperator::Mul:
2139  case BinaryOperator::Div:
2140    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2141    break;
2142  case BinaryOperator::Rem:
2143    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2144    break;
2145  case BinaryOperator::Add:
2146    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2147    break;
2148  case BinaryOperator::Sub:
2149    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2150    break;
2151  case BinaryOperator::Shl:
2152  case BinaryOperator::Shr:
2153    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2154    break;
2155  case BinaryOperator::LE:
2156  case BinaryOperator::LT:
2157  case BinaryOperator::GE:
2158  case BinaryOperator::GT:
2159    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2160    break;
2161  case BinaryOperator::EQ:
2162  case BinaryOperator::NE:
2163    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2164    break;
2165  case BinaryOperator::And:
2166  case BinaryOperator::Xor:
2167  case BinaryOperator::Or:
2168    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2169    break;
2170  case BinaryOperator::LAnd:
2171  case BinaryOperator::LOr:
2172    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2173    break;
2174  case BinaryOperator::MulAssign:
2175  case BinaryOperator::DivAssign:
2176    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2177    if (!CompTy.isNull())
2178      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2179    break;
2180  case BinaryOperator::RemAssign:
2181    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2182    if (!CompTy.isNull())
2183      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2184    break;
2185  case BinaryOperator::AddAssign:
2186    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2187    if (!CompTy.isNull())
2188      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2189    break;
2190  case BinaryOperator::SubAssign:
2191    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2192    if (!CompTy.isNull())
2193      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2194    break;
2195  case BinaryOperator::ShlAssign:
2196  case BinaryOperator::ShrAssign:
2197    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2198    if (!CompTy.isNull())
2199      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2200    break;
2201  case BinaryOperator::AndAssign:
2202  case BinaryOperator::XorAssign:
2203  case BinaryOperator::OrAssign:
2204    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2205    if (!CompTy.isNull())
2206      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2207    break;
2208  case BinaryOperator::Comma:
2209    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2210    break;
2211  }
2212  if (ResultTy.isNull())
2213    return true;
2214  if (CompTy.isNull())
2215    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2216  else
2217    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2218}
2219
2220// Unary Operators.  'Tok' is the token for the operator.
2221Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2222                                      ExprTy *input) {
2223  Expr *Input = (Expr*)input;
2224  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2225  QualType resultType;
2226  switch (Opc) {
2227  default:
2228    assert(0 && "Unimplemented unary expr!");
2229  case UnaryOperator::PreInc:
2230  case UnaryOperator::PreDec:
2231    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2232    break;
2233  case UnaryOperator::AddrOf:
2234    resultType = CheckAddressOfOperand(Input, OpLoc);
2235    break;
2236  case UnaryOperator::Deref:
2237    DefaultFunctionArrayConversion(Input);
2238    resultType = CheckIndirectionOperand(Input, OpLoc);
2239    break;
2240  case UnaryOperator::Plus:
2241  case UnaryOperator::Minus:
2242    UsualUnaryConversions(Input);
2243    resultType = Input->getType();
2244    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2245      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2246                  resultType.getAsString());
2247    break;
2248  case UnaryOperator::Not: // bitwise complement
2249    UsualUnaryConversions(Input);
2250    resultType = Input->getType();
2251    // C99 6.5.3.3p1. We allow complex as a GCC extension.
2252    if (!resultType->isIntegerType()) {
2253      if (resultType->isComplexType())
2254        // C99 does not support '~' for complex conjugation.
2255        Diag(OpLoc, diag::ext_integer_complement_complex,
2256                    resultType.getAsString());
2257      else
2258        return Diag(OpLoc, diag::err_typecheck_unary_expr,
2259                    resultType.getAsString());
2260    }
2261    break;
2262  case UnaryOperator::LNot: // logical negation
2263    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2264    DefaultFunctionArrayConversion(Input);
2265    resultType = Input->getType();
2266    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2267      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2268                  resultType.getAsString());
2269    // LNot always has type int. C99 6.5.3.3p5.
2270    resultType = Context.IntTy;
2271    break;
2272  case UnaryOperator::SizeOf:
2273    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
2274    break;
2275  case UnaryOperator::AlignOf:
2276    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
2277    break;
2278  case UnaryOperator::Real:
2279  case UnaryOperator::Imag:
2280    resultType = CheckRealImagOperand(Input, OpLoc);
2281    break;
2282  case UnaryOperator::Extension:
2283    resultType = Input->getType();
2284    break;
2285  }
2286  if (resultType.isNull())
2287    return true;
2288  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2289}
2290
2291/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2292Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2293                                      SourceLocation LabLoc,
2294                                      IdentifierInfo *LabelII) {
2295  // Look up the record for this label identifier.
2296  LabelStmt *&LabelDecl = LabelMap[LabelII];
2297
2298  // If we haven't seen this label yet, create a forward reference.
2299  if (LabelDecl == 0)
2300    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2301
2302  // Create the AST node.  The address of a label always has type 'void*'.
2303  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2304                           Context.getPointerType(Context.VoidTy));
2305}
2306
2307Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2308                                     SourceLocation RPLoc) { // "({..})"
2309  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2310  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2311  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2312
2313  // FIXME: there are a variety of strange constraints to enforce here, for
2314  // example, it is not possible to goto into a stmt expression apparently.
2315  // More semantic analysis is needed.
2316
2317  // FIXME: the last statement in the compount stmt has its value used.  We
2318  // should not warn about it being unused.
2319
2320  // If there are sub stmts in the compound stmt, take the type of the last one
2321  // as the type of the stmtexpr.
2322  QualType Ty = Context.VoidTy;
2323
2324  if (!Compound->body_empty())
2325    if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
2326      Ty = LastExpr->getType();
2327
2328  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2329}
2330
2331Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2332                                            SourceLocation TypeLoc,
2333                                            TypeTy *argty,
2334                                            OffsetOfComponent *CompPtr,
2335                                            unsigned NumComponents,
2336                                            SourceLocation RPLoc) {
2337  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2338  assert(!ArgTy.isNull() && "Missing type argument!");
2339
2340  // We must have at least one component that refers to the type, and the first
2341  // one is known to be a field designator.  Verify that the ArgTy represents
2342  // a struct/union/class.
2343  if (!ArgTy->isRecordType())
2344    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2345
2346  // Otherwise, create a compound literal expression as the base, and
2347  // iteratively process the offsetof designators.
2348  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2349
2350  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2351  // GCC extension, diagnose them.
2352  if (NumComponents != 1)
2353    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2354         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2355
2356  for (unsigned i = 0; i != NumComponents; ++i) {
2357    const OffsetOfComponent &OC = CompPtr[i];
2358    if (OC.isBrackets) {
2359      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2360      const ArrayType *AT = Res->getType()->getAsArrayType();
2361      if (!AT) {
2362        delete Res;
2363        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2364                    Res->getType().getAsString());
2365      }
2366
2367      // FIXME: C++: Verify that operator[] isn't overloaded.
2368
2369      // C99 6.5.2.1p1
2370      Expr *Idx = static_cast<Expr*>(OC.U.E);
2371      if (!Idx->getType()->isIntegerType())
2372        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2373                    Idx->getSourceRange());
2374
2375      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2376      continue;
2377    }
2378
2379    const RecordType *RC = Res->getType()->getAsRecordType();
2380    if (!RC) {
2381      delete Res;
2382      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2383                  Res->getType().getAsString());
2384    }
2385
2386    // Get the decl corresponding to this.
2387    RecordDecl *RD = RC->getDecl();
2388    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2389    if (!MemberDecl)
2390      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2391                  OC.U.IdentInfo->getName(),
2392                  SourceRange(OC.LocStart, OC.LocEnd));
2393
2394    // FIXME: C++: Verify that MemberDecl isn't a static field.
2395    // FIXME: Verify that MemberDecl isn't a bitfield.
2396    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2397    // matter here.
2398    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2399  }
2400
2401  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2402                           BuiltinLoc);
2403}
2404
2405
2406Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2407                                                TypeTy *arg1, TypeTy *arg2,
2408                                                SourceLocation RPLoc) {
2409  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2410  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2411
2412  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2413
2414  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2415}
2416
2417Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2418                                       ExprTy *expr1, ExprTy *expr2,
2419                                       SourceLocation RPLoc) {
2420  Expr *CondExpr = static_cast<Expr*>(cond);
2421  Expr *LHSExpr = static_cast<Expr*>(expr1);
2422  Expr *RHSExpr = static_cast<Expr*>(expr2);
2423
2424  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2425
2426  // The conditional expression is required to be a constant expression.
2427  llvm::APSInt condEval(32);
2428  SourceLocation ExpLoc;
2429  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2430    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2431                 CondExpr->getSourceRange());
2432
2433  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2434  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2435                                               RHSExpr->getType();
2436  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2437}
2438
2439/// ExprsMatchFnType - return true if the Exprs in array Args have
2440/// QualTypes that match the QualTypes of the arguments of the FnType.
2441/// The number of arguments has already been validated to match the number of
2442/// arguments in FnType.
2443static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
2444  unsigned NumParams = FnType->getNumArgs();
2445  for (unsigned i = 0; i != NumParams; ++i) {
2446    QualType ExprTy = Args[i]->getType().getCanonicalType();
2447    QualType ParmTy = FnType->getArgType(i).getCanonicalType();
2448
2449    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2450      return false;
2451  }
2452  return true;
2453}
2454
2455Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2456                                         SourceLocation *CommaLocs,
2457                                         SourceLocation BuiltinLoc,
2458                                         SourceLocation RParenLoc) {
2459  // __builtin_overload requires at least 2 arguments
2460  if (NumArgs < 2)
2461    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2462                SourceRange(BuiltinLoc, RParenLoc));
2463
2464  // The first argument is required to be a constant expression.  It tells us
2465  // the number of arguments to pass to each of the functions to be overloaded.
2466  Expr **Args = reinterpret_cast<Expr**>(args);
2467  Expr *NParamsExpr = Args[0];
2468  llvm::APSInt constEval(32);
2469  SourceLocation ExpLoc;
2470  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2471    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2472                NParamsExpr->getSourceRange());
2473
2474  // Verify that the number of parameters is > 0
2475  unsigned NumParams = constEval.getZExtValue();
2476  if (NumParams == 0)
2477    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2478                NParamsExpr->getSourceRange());
2479  // Verify that we have at least 1 + NumParams arguments to the builtin.
2480  if ((NumParams + 1) > NumArgs)
2481    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2482                SourceRange(BuiltinLoc, RParenLoc));
2483
2484  // Figure out the return type, by matching the args to one of the functions
2485  // listed after the parameters.
2486  OverloadExpr *OE = 0;
2487  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2488    // UsualUnaryConversions will convert the function DeclRefExpr into a
2489    // pointer to function.
2490    Expr *Fn = UsualUnaryConversions(Args[i]);
2491    FunctionTypeProto *FnType = 0;
2492    if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
2493      QualType PointeeType = PT->getPointeeType().getCanonicalType();
2494      FnType = dyn_cast<FunctionTypeProto>(PointeeType);
2495    }
2496
2497    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2498    // parameters, and the number of parameters must match the value passed to
2499    // the builtin.
2500    if (!FnType || (FnType->getNumArgs() != NumParams))
2501      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2502                  Fn->getSourceRange());
2503
2504    // Scan the parameter list for the FunctionType, checking the QualType of
2505    // each parameter against the QualTypes of the arguments to the builtin.
2506    // If they match, return a new OverloadExpr.
2507    if (ExprsMatchFnType(Args+1, FnType)) {
2508      if (OE)
2509        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2510                    OE->getFn()->getSourceRange());
2511      // Remember our match, and continue processing the remaining arguments
2512      // to catch any errors.
2513      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2514                            BuiltinLoc, RParenLoc);
2515    }
2516  }
2517  // Return the newly created OverloadExpr node, if we succeded in matching
2518  // exactly one of the candidate functions.
2519  if (OE)
2520    return OE;
2521
2522  // If we didn't find a matching function Expr in the __builtin_overload list
2523  // the return an error.
2524  std::string typeNames;
2525  for (unsigned i = 0; i != NumParams; ++i) {
2526    if (i != 0) typeNames += ", ";
2527    typeNames += Args[i+1]->getType().getAsString();
2528  }
2529
2530  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2531              SourceRange(BuiltinLoc, RParenLoc));
2532}
2533
2534Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2535                                  ExprTy *expr, TypeTy *type,
2536                                  SourceLocation RPLoc) {
2537  Expr *E = static_cast<Expr*>(expr);
2538  QualType T = QualType::getFromOpaquePtr(type);
2539
2540  InitBuiltinVaListType();
2541
2542  if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
2543      != Compatible)
2544    return Diag(E->getLocStart(),
2545                diag::err_first_argument_to_va_arg_not_of_type_va_list,
2546                E->getType().getAsString(),
2547                E->getSourceRange());
2548
2549  // FIXME: Warn if a non-POD type is passed in.
2550
2551  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
2552}
2553
2554bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
2555                                    SourceLocation Loc,
2556                                    QualType DstType, QualType SrcType,
2557                                    Expr *SrcExpr, const char *Flavor) {
2558  // Decode the result (notice that AST's are still created for extensions).
2559  bool isInvalid = false;
2560  unsigned DiagKind;
2561  switch (ConvTy) {
2562  default: assert(0 && "Unknown conversion type");
2563  case Compatible: return false;
2564  case PointerToInt:
2565    DiagKind = diag::ext_typecheck_convert_pointer_int;
2566    break;
2567  case IntToPointer:
2568    DiagKind = diag::ext_typecheck_convert_int_pointer;
2569    break;
2570  case IncompatiblePointer:
2571    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
2572    break;
2573  case FunctionVoidPointer:
2574    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
2575    break;
2576  case CompatiblePointerDiscardsQualifiers:
2577    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
2578    break;
2579  case Incompatible:
2580    DiagKind = diag::err_typecheck_convert_incompatible;
2581    isInvalid = true;
2582    break;
2583  }
2584
2585  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
2586       SrcExpr->getSourceRange());
2587  return isInvalid;
2588}
2589