SemaExpr.cpp revision 2a984cad5ac3fdceeff2bd99daa7b90979313475
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Designator.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Template.h"
39using namespace clang;
40using namespace sema;
41
42
43/// \brief Determine whether the use of this declaration is valid, and
44/// emit any corresponding diagnostics.
45///
46/// This routine diagnoses various problems with referencing
47/// declarations that can occur when using a declaration. For example,
48/// it might warn if a deprecated or unavailable declaration is being
49/// used, or produce an error (and return true) if a C++0x deleted
50/// function is being used.
51///
52/// If IgnoreDeprecated is set to true, this should not want about deprecated
53/// decls.
54///
55/// \returns true if there was an error (this declaration cannot be
56/// referenced), false otherwise.
57///
58bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
59  // See if the decl is deprecated.
60  if (const DeprecatedAttr *DA = D->getAttr<DeprecatedAttr>())
61    EmitDeprecationWarning(D, DA->getMessage(), Loc);
62
63  // See if the decl is unavailable
64  if (const UnavailableAttr *UA = D->getAttr<UnavailableAttr>()) {
65    if (UA->getMessage().empty())
66      Diag(Loc, diag::err_unavailable) << D->getDeclName();
67    else
68      Diag(Loc, diag::err_unavailable_message)
69        << D->getDeclName() << UA->getMessage();
70    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  return false;
83}
84
85/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
86/// (and other functions in future), which have been declared with sentinel
87/// attribute. It warns if call does not have the sentinel argument.
88///
89void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
90                                 Expr **Args, unsigned NumArgs) {
91  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
92  if (!attr)
93    return;
94
95  // FIXME: In C++0x, if any of the arguments are parameter pack
96  // expansions, we can't check for the sentinel now.
97  int sentinelPos = attr->getSentinel();
98  int nullPos = attr->getNullPos();
99
100  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
101  // base class. Then we won't be needing two versions of the same code.
102  unsigned int i = 0;
103  bool warnNotEnoughArgs = false;
104  int isMethod = 0;
105  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
106    // skip over named parameters.
107    ObjCMethodDecl::param_iterator P, E = MD->param_end();
108    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
109      if (nullPos)
110        --nullPos;
111      else
112        ++i;
113    }
114    warnNotEnoughArgs = (P != E || i >= NumArgs);
115    isMethod = 1;
116  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
117    // skip over named parameters.
118    ObjCMethodDecl::param_iterator P, E = FD->param_end();
119    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
120      if (nullPos)
121        --nullPos;
122      else
123        ++i;
124    }
125    warnNotEnoughArgs = (P != E || i >= NumArgs);
126  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
127    // block or function pointer call.
128    QualType Ty = V->getType();
129    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
130      const FunctionType *FT = Ty->isFunctionPointerType()
131      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
132      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
133      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
134        unsigned NumArgsInProto = Proto->getNumArgs();
135        unsigned k;
136        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
137          if (nullPos)
138            --nullPos;
139          else
140            ++i;
141        }
142        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
143      }
144      if (Ty->isBlockPointerType())
145        isMethod = 2;
146    } else
147      return;
148  } else
149    return;
150
151  if (warnNotEnoughArgs) {
152    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
153    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
154    return;
155  }
156  int sentinel = i;
157  while (sentinelPos > 0 && i < NumArgs-1) {
158    --sentinelPos;
159    ++i;
160  }
161  if (sentinelPos > 0) {
162    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
163    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
164    return;
165  }
166  while (i < NumArgs-1) {
167    ++i;
168    ++sentinel;
169  }
170  Expr *sentinelExpr = Args[sentinel];
171  if (!sentinelExpr) return;
172  if (sentinelExpr->isTypeDependent()) return;
173  if (sentinelExpr->isValueDependent()) return;
174  if (sentinelExpr->getType()->isAnyPointerType() &&
175      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
176                                            Expr::NPC_ValueDependentIsNull))
177    return;
178
179  // Unfortunately, __null has type 'int'.
180  if (isa<GNUNullExpr>(sentinelExpr)) return;
181
182  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
183  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
184}
185
186SourceRange Sema::getExprRange(ExprTy *E) const {
187  Expr *Ex = (Expr *)E;
188  return Ex? Ex->getSourceRange() : SourceRange();
189}
190
191//===----------------------------------------------------------------------===//
192//  Standard Promotions and Conversions
193//===----------------------------------------------------------------------===//
194
195/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
196void Sema::DefaultFunctionArrayConversion(Expr *&E) {
197  QualType Ty = E->getType();
198  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
199
200  if (Ty->isFunctionType())
201    ImpCastExprToType(E, Context.getPointerType(Ty),
202                      CK_FunctionToPointerDecay);
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
218                        CK_ArrayToPointerDecay);
219  }
220}
221
222void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
223  DefaultFunctionArrayConversion(E);
224
225  QualType Ty = E->getType();
226  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
227  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
228      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
229      E->isLvalue(Context) == Expr::LV_Valid) {
230    // C++ [conv.lval]p1:
231    //   [...] If T is a non-class type, the type of the rvalue is the
232    //   cv-unqualified version of T. Otherwise, the type of the
233    //   rvalue is T
234    //
235    // C99 6.3.2.1p2:
236    //   If the lvalue has qualified type, the value has the unqualified
237    //   version of the type of the lvalue; otherwise, the value has the
238    //   type of the lvalue.
239    ImpCastExprToType(E, Ty.getUnqualifiedType(), CK_NoOp);
240  }
241}
242
243
244/// UsualUnaryConversions - Performs various conversions that are common to most
245/// operators (C99 6.3). The conversions of array and function types are
246/// sometimes surpressed. For example, the array->pointer conversion doesn't
247/// apply if the array is an argument to the sizeof or address (&) operators.
248/// In these instances, this routine should *not* be called.
249Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
250  QualType Ty = Expr->getType();
251  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
252
253  // C99 6.3.1.1p2:
254  //
255  //   The following may be used in an expression wherever an int or
256  //   unsigned int may be used:
257  //     - an object or expression with an integer type whose integer
258  //       conversion rank is less than or equal to the rank of int
259  //       and unsigned int.
260  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
261  //
262  //   If an int can represent all values of the original type, the
263  //   value is converted to an int; otherwise, it is converted to an
264  //   unsigned int. These are called the integer promotions. All
265  //   other types are unchanged by the integer promotions.
266  QualType PTy = Context.isPromotableBitField(Expr);
267  if (!PTy.isNull()) {
268    ImpCastExprToType(Expr, PTy, CK_IntegralCast);
269    return Expr;
270  }
271  if (Ty->isPromotableIntegerType()) {
272    QualType PT = Context.getPromotedIntegerType(Ty);
273    ImpCastExprToType(Expr, PT, CK_IntegralCast);
274    return Expr;
275  }
276
277  DefaultFunctionArrayLvalueConversion(Expr);
278  return Expr;
279}
280
281/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
282/// do not have a prototype. Arguments that have type float are promoted to
283/// double. All other argument types are converted by UsualUnaryConversions().
284void Sema::DefaultArgumentPromotion(Expr *&Expr) {
285  QualType Ty = Expr->getType();
286  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
287
288  // If this is a 'float' (CVR qualified or typedef) promote to double.
289  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
290    return ImpCastExprToType(Expr, Context.DoubleTy,
291                             CK_FloatingCast);
292
293  UsualUnaryConversions(Expr);
294}
295
296/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
297/// will warn if the resulting type is not a POD type, and rejects ObjC
298/// interfaces passed by value.  This returns true if the argument type is
299/// completely illegal.
300bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
301                                            FunctionDecl *FDecl) {
302  DefaultArgumentPromotion(Expr);
303
304  // __builtin_va_start takes the second argument as a "varargs" argument, but
305  // it doesn't actually do anything with it.  It doesn't need to be non-pod
306  // etc.
307  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
308    return false;
309
310  if (Expr->getType()->isObjCObjectType() &&
311      DiagRuntimeBehavior(Expr->getLocStart(),
312        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
313          << Expr->getType() << CT))
314    return true;
315
316  if (!Expr->getType()->isPODType() &&
317      DiagRuntimeBehavior(Expr->getLocStart(),
318                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
319                            << Expr->getType() << CT))
320    return true;
321
322  return false;
323}
324
325
326/// UsualArithmeticConversions - Performs various conversions that are common to
327/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
328/// routine returns the first non-arithmetic type found. The client is
329/// responsible for emitting appropriate error diagnostics.
330/// FIXME: verify the conversion rules for "complex int" are consistent with
331/// GCC.
332QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
333                                          bool isCompAssign) {
334  if (!isCompAssign)
335    UsualUnaryConversions(lhsExpr);
336
337  UsualUnaryConversions(rhsExpr);
338
339  // For conversion purposes, we ignore any qualifiers.
340  // For example, "const float" and "float" are equivalent.
341  QualType lhs =
342    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
343  QualType rhs =
344    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
345
346  // If both types are identical, no conversion is needed.
347  if (lhs == rhs)
348    return lhs;
349
350  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
351  // The caller can deal with this (e.g. pointer + int).
352  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
353    return lhs;
354
355  // Perform bitfield promotions.
356  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
357  if (!LHSBitfieldPromoteTy.isNull())
358    lhs = LHSBitfieldPromoteTy;
359  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
360  if (!RHSBitfieldPromoteTy.isNull())
361    rhs = RHSBitfieldPromoteTy;
362
363  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
364  if (!isCompAssign)
365    ImpCastExprToType(lhsExpr, destType, CK_Unknown);
366  ImpCastExprToType(rhsExpr, destType, CK_Unknown);
367  return destType;
368}
369
370//===----------------------------------------------------------------------===//
371//  Semantic Analysis for various Expression Types
372//===----------------------------------------------------------------------===//
373
374
375/// ActOnStringLiteral - The specified tokens were lexed as pasted string
376/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
377/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
378/// multiple tokens.  However, the common case is that StringToks points to one
379/// string.
380///
381ExprResult
382Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
383  assert(NumStringToks && "Must have at least one string!");
384
385  StringLiteralParser Literal(StringToks, NumStringToks, PP);
386  if (Literal.hadError)
387    return ExprError();
388
389  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
390  for (unsigned i = 0; i != NumStringToks; ++i)
391    StringTokLocs.push_back(StringToks[i].getLocation());
392
393  QualType StrTy = Context.CharTy;
394  if (Literal.AnyWide) StrTy = Context.getWCharType();
395  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
396
397  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
398  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
399    StrTy.addConst();
400
401  // Get an array type for the string, according to C99 6.4.5.  This includes
402  // the nul terminator character as well as the string length for pascal
403  // strings.
404  StrTy = Context.getConstantArrayType(StrTy,
405                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
406                                       ArrayType::Normal, 0);
407
408  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
409  return Owned(StringLiteral::Create(Context, Literal.GetString(),
410                                     Literal.GetStringLength(),
411                                     Literal.AnyWide, StrTy,
412                                     &StringTokLocs[0],
413                                     StringTokLocs.size()));
414}
415
416/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
417/// CurBlock to VD should cause it to be snapshotted (as we do for auto
418/// variables defined outside the block) or false if this is not needed (e.g.
419/// for values inside the block or for globals).
420///
421/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
422/// up-to-date.
423///
424static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
425                                              ValueDecl *VD) {
426  // If the value is defined inside the block, we couldn't snapshot it even if
427  // we wanted to.
428  if (CurBlock->TheDecl == VD->getDeclContext())
429    return false;
430
431  // If this is an enum constant or function, it is constant, don't snapshot.
432  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
433    return false;
434
435  // If this is a reference to an extern, static, or global variable, no need to
436  // snapshot it.
437  // FIXME: What about 'const' variables in C++?
438  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
439    if (!Var->hasLocalStorage())
440      return false;
441
442  // Blocks that have these can't be constant.
443  CurBlock->hasBlockDeclRefExprs = true;
444
445  // If we have nested blocks, the decl may be declared in an outer block (in
446  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
447  // be defined outside all of the current blocks (in which case the blocks do
448  // all get the bit).  Walk the nesting chain.
449  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
450    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
451
452    if (!NextBlock)
453      continue;
454
455    // If we found the defining block for the variable, don't mark the block as
456    // having a reference outside it.
457    if (NextBlock->TheDecl == VD->getDeclContext())
458      break;
459
460    // Otherwise, the DeclRef from the inner block causes the outer one to need
461    // a snapshot as well.
462    NextBlock->hasBlockDeclRefExprs = true;
463  }
464
465  return true;
466}
467
468
469ExprResult
470Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
471                       const CXXScopeSpec *SS) {
472  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
473  return BuildDeclRefExpr(D, Ty, NameInfo, SS);
474}
475
476/// BuildDeclRefExpr - Build a DeclRefExpr.
477ExprResult
478Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
479                       const DeclarationNameInfo &NameInfo,
480                       const CXXScopeSpec *SS) {
481  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
482    Diag(NameInfo.getLoc(),
483         diag::err_auto_variable_cannot_appear_in_own_initializer)
484      << D->getDeclName();
485    return ExprError();
486  }
487
488  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
489    if (isa<NonTypeTemplateParmDecl>(VD)) {
490      // Non-type template parameters can be referenced anywhere they are
491      // visible.
492      Ty = Ty.getNonLValueExprType(Context);
493    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
494      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
495        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
496          Diag(NameInfo.getLoc(),
497               diag::err_reference_to_local_var_in_enclosing_function)
498            << D->getIdentifier() << FD->getDeclName();
499          Diag(D->getLocation(), diag::note_local_variable_declared_here)
500            << D->getIdentifier();
501          return ExprError();
502        }
503      }
504    }
505  }
506
507  MarkDeclarationReferenced(NameInfo.getLoc(), D);
508
509  return Owned(DeclRefExpr::Create(Context,
510                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
511                                   SS? SS->getRange() : SourceRange(),
512                                   D, NameInfo, Ty));
513}
514
515/// \brief Given a field that represents a member of an anonymous
516/// struct/union, build the path from that field's context to the
517/// actual member.
518///
519/// Construct the sequence of field member references we'll have to
520/// perform to get to the field in the anonymous union/struct. The
521/// list of members is built from the field outward, so traverse it
522/// backwards to go from an object in the current context to the field
523/// we found.
524///
525/// \returns The variable from which the field access should begin,
526/// for an anonymous struct/union that is not a member of another
527/// class. Otherwise, returns NULL.
528VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
529                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
530  assert(Field->getDeclContext()->isRecord() &&
531         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
532         && "Field must be stored inside an anonymous struct or union");
533
534  Path.push_back(Field);
535  VarDecl *BaseObject = 0;
536  DeclContext *Ctx = Field->getDeclContext();
537  do {
538    RecordDecl *Record = cast<RecordDecl>(Ctx);
539    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
540    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
541      Path.push_back(AnonField);
542    else {
543      BaseObject = cast<VarDecl>(AnonObject);
544      break;
545    }
546    Ctx = Ctx->getParent();
547  } while (Ctx->isRecord() &&
548           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
549
550  return BaseObject;
551}
552
553ExprResult
554Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
555                                               FieldDecl *Field,
556                                               Expr *BaseObjectExpr,
557                                               SourceLocation OpLoc) {
558  llvm::SmallVector<FieldDecl *, 4> AnonFields;
559  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
560                                                            AnonFields);
561
562  // Build the expression that refers to the base object, from
563  // which we will build a sequence of member references to each
564  // of the anonymous union objects and, eventually, the field we
565  // found via name lookup.
566  bool BaseObjectIsPointer = false;
567  Qualifiers BaseQuals;
568  if (BaseObject) {
569    // BaseObject is an anonymous struct/union variable (and is,
570    // therefore, not part of another non-anonymous record).
571    MarkDeclarationReferenced(Loc, BaseObject);
572    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
573                                               SourceLocation());
574    BaseQuals
575      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
576  } else if (BaseObjectExpr) {
577    // The caller provided the base object expression. Determine
578    // whether its a pointer and whether it adds any qualifiers to the
579    // anonymous struct/union fields we're looking into.
580    QualType ObjectType = BaseObjectExpr->getType();
581    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
582      BaseObjectIsPointer = true;
583      ObjectType = ObjectPtr->getPointeeType();
584    }
585    BaseQuals
586      = Context.getCanonicalType(ObjectType).getQualifiers();
587  } else {
588    // We've found a member of an anonymous struct/union that is
589    // inside a non-anonymous struct/union, so in a well-formed
590    // program our base object expression is "this".
591    DeclContext *DC = getFunctionLevelDeclContext();
592    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
593      if (!MD->isStatic()) {
594        QualType AnonFieldType
595          = Context.getTagDeclType(
596                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
597        QualType ThisType = Context.getTagDeclType(MD->getParent());
598        if ((Context.getCanonicalType(AnonFieldType)
599               == Context.getCanonicalType(ThisType)) ||
600            IsDerivedFrom(ThisType, AnonFieldType)) {
601          // Our base object expression is "this".
602          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
603                                                     MD->getThisType(Context),
604                                                     /*isImplicit=*/true);
605          BaseObjectIsPointer = true;
606        }
607      } else {
608        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
609          << Field->getDeclName());
610      }
611      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
612    }
613
614    if (!BaseObjectExpr)
615      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
616        << Field->getDeclName());
617  }
618
619  // Build the implicit member references to the field of the
620  // anonymous struct/union.
621  Expr *Result = BaseObjectExpr;
622  Qualifiers ResultQuals = BaseQuals;
623  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
624         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
625       FI != FIEnd; ++FI) {
626    QualType MemberType = (*FI)->getType();
627    Qualifiers MemberTypeQuals =
628      Context.getCanonicalType(MemberType).getQualifiers();
629
630    // CVR attributes from the base are picked up by members,
631    // except that 'mutable' members don't pick up 'const'.
632    if ((*FI)->isMutable())
633      ResultQuals.removeConst();
634
635    // GC attributes are never picked up by members.
636    ResultQuals.removeObjCGCAttr();
637
638    // TR 18037 does not allow fields to be declared with address spaces.
639    assert(!MemberTypeQuals.hasAddressSpace());
640
641    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
642    if (NewQuals != MemberTypeQuals)
643      MemberType = Context.getQualifiedType(MemberType, NewQuals);
644
645    MarkDeclarationReferenced(Loc, *FI);
646    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
647    // FIXME: Might this end up being a qualified name?
648    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
649                                      OpLoc, MemberType);
650    BaseObjectIsPointer = false;
651    ResultQuals = NewQuals;
652  }
653
654  return Owned(Result);
655}
656
657/// Decomposes the given name into a DeclarationNameInfo, its location, and
658/// possibly a list of template arguments.
659///
660/// If this produces template arguments, it is permitted to call
661/// DecomposeTemplateName.
662///
663/// This actually loses a lot of source location information for
664/// non-standard name kinds; we should consider preserving that in
665/// some way.
666static void DecomposeUnqualifiedId(Sema &SemaRef,
667                                   const UnqualifiedId &Id,
668                                   TemplateArgumentListInfo &Buffer,
669                                   DeclarationNameInfo &NameInfo,
670                             const TemplateArgumentListInfo *&TemplateArgs) {
671  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
672    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
673    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
674
675    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
676                                       Id.TemplateId->getTemplateArgs(),
677                                       Id.TemplateId->NumArgs);
678    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
679    TemplateArgsPtr.release();
680
681    TemplateName TName = Id.TemplateId->Template.get();
682    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
683    NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
684    TemplateArgs = &Buffer;
685  } else {
686    NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
687    TemplateArgs = 0;
688  }
689}
690
691/// Determines whether the given record is "fully-formed" at the given
692/// location, i.e. whether a qualified lookup into it is assured of
693/// getting consistent results already.
694static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
695  if (!Record->hasDefinition())
696    return false;
697
698  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
699         E = Record->bases_end(); I != E; ++I) {
700    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
701    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
702    if (!BaseRT) return false;
703
704    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
705    if (!BaseRecord->hasDefinition() ||
706        !IsFullyFormedScope(SemaRef, BaseRecord))
707      return false;
708  }
709
710  return true;
711}
712
713/// Determines if the given class is provably not derived from all of
714/// the prospective base classes.
715static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
716                                     CXXRecordDecl *Record,
717                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
718  if (Bases.count(Record->getCanonicalDecl()))
719    return false;
720
721  RecordDecl *RD = Record->getDefinition();
722  if (!RD) return false;
723  Record = cast<CXXRecordDecl>(RD);
724
725  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
726         E = Record->bases_end(); I != E; ++I) {
727    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
728    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
729    if (!BaseRT) return false;
730
731    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
732    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
733      return false;
734  }
735
736  return true;
737}
738
739enum IMAKind {
740  /// The reference is definitely not an instance member access.
741  IMA_Static,
742
743  /// The reference may be an implicit instance member access.
744  IMA_Mixed,
745
746  /// The reference may be to an instance member, but it is invalid if
747  /// so, because the context is not an instance method.
748  IMA_Mixed_StaticContext,
749
750  /// The reference may be to an instance member, but it is invalid if
751  /// so, because the context is from an unrelated class.
752  IMA_Mixed_Unrelated,
753
754  /// The reference is definitely an implicit instance member access.
755  IMA_Instance,
756
757  /// The reference may be to an unresolved using declaration.
758  IMA_Unresolved,
759
760  /// The reference may be to an unresolved using declaration and the
761  /// context is not an instance method.
762  IMA_Unresolved_StaticContext,
763
764  /// The reference is to a member of an anonymous structure in a
765  /// non-class context.
766  IMA_AnonymousMember,
767
768  /// All possible referrents are instance members and the current
769  /// context is not an instance method.
770  IMA_Error_StaticContext,
771
772  /// All possible referrents are instance members of an unrelated
773  /// class.
774  IMA_Error_Unrelated
775};
776
777/// The given lookup names class member(s) and is not being used for
778/// an address-of-member expression.  Classify the type of access
779/// according to whether it's possible that this reference names an
780/// instance member.  This is best-effort; it is okay to
781/// conservatively answer "yes", in which case some errors will simply
782/// not be caught until template-instantiation.
783static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
784                                            const LookupResult &R) {
785  assert(!R.empty() && (*R.begin())->isCXXClassMember());
786
787  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
788  bool isStaticContext =
789    (!isa<CXXMethodDecl>(DC) ||
790     cast<CXXMethodDecl>(DC)->isStatic());
791
792  if (R.isUnresolvableResult())
793    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
794
795  // Collect all the declaring classes of instance members we find.
796  bool hasNonInstance = false;
797  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
798  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
799    NamedDecl *D = *I;
800    if (D->isCXXInstanceMember()) {
801      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
802
803      // If this is a member of an anonymous record, move out to the
804      // innermost non-anonymous struct or union.  If there isn't one,
805      // that's a special case.
806      while (R->isAnonymousStructOrUnion()) {
807        R = dyn_cast<CXXRecordDecl>(R->getParent());
808        if (!R) return IMA_AnonymousMember;
809      }
810      Classes.insert(R->getCanonicalDecl());
811    }
812    else
813      hasNonInstance = true;
814  }
815
816  // If we didn't find any instance members, it can't be an implicit
817  // member reference.
818  if (Classes.empty())
819    return IMA_Static;
820
821  // If the current context is not an instance method, it can't be
822  // an implicit member reference.
823  if (isStaticContext)
824    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
825
826  // If we can prove that the current context is unrelated to all the
827  // declaring classes, it can't be an implicit member reference (in
828  // which case it's an error if any of those members are selected).
829  if (IsProvablyNotDerivedFrom(SemaRef,
830                               cast<CXXMethodDecl>(DC)->getParent(),
831                               Classes))
832    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
833
834  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
835}
836
837/// Diagnose a reference to a field with no object available.
838static void DiagnoseInstanceReference(Sema &SemaRef,
839                                      const CXXScopeSpec &SS,
840                                      const LookupResult &R) {
841  SourceLocation Loc = R.getNameLoc();
842  SourceRange Range(Loc);
843  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
844
845  if (R.getAsSingle<FieldDecl>()) {
846    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
847      if (MD->isStatic()) {
848        // "invalid use of member 'x' in static member function"
849        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
850          << Range << R.getLookupName();
851        return;
852      }
853    }
854
855    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
856      << R.getLookupName() << Range;
857    return;
858  }
859
860  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
861}
862
863/// Diagnose an empty lookup.
864///
865/// \return false if new lookup candidates were found
866bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
867                               CorrectTypoContext CTC) {
868  DeclarationName Name = R.getLookupName();
869
870  unsigned diagnostic = diag::err_undeclared_var_use;
871  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
872  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
873      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
874      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
875    diagnostic = diag::err_undeclared_use;
876    diagnostic_suggest = diag::err_undeclared_use_suggest;
877  }
878
879  // If the original lookup was an unqualified lookup, fake an
880  // unqualified lookup.  This is useful when (for example) the
881  // original lookup would not have found something because it was a
882  // dependent name.
883  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
884       DC; DC = DC->getParent()) {
885    if (isa<CXXRecordDecl>(DC)) {
886      LookupQualifiedName(R, DC);
887
888      if (!R.empty()) {
889        // Don't give errors about ambiguities in this lookup.
890        R.suppressDiagnostics();
891
892        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
893        bool isInstance = CurMethod &&
894                          CurMethod->isInstance() &&
895                          DC == CurMethod->getParent();
896
897        // Give a code modification hint to insert 'this->'.
898        // TODO: fixit for inserting 'Base<T>::' in the other cases.
899        // Actually quite difficult!
900        if (isInstance) {
901          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
902              CallsUndergoingInstantiation.back()->getCallee());
903          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
904              CurMethod->getInstantiatedFromMemberFunction());
905          if (DepMethod) {
906            Diag(R.getNameLoc(), diagnostic) << Name
907              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
908            QualType DepThisType = DepMethod->getThisType(Context);
909            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
910                                       R.getNameLoc(), DepThisType, false);
911            TemplateArgumentListInfo TList;
912            if (ULE->hasExplicitTemplateArgs())
913              ULE->copyTemplateArgumentsInto(TList);
914            CXXDependentScopeMemberExpr *DepExpr =
915                CXXDependentScopeMemberExpr::Create(
916                    Context, DepThis, DepThisType, true, SourceLocation(),
917                    ULE->getQualifier(), ULE->getQualifierRange(), NULL,
918                    R.getLookupNameInfo(), &TList);
919            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
920          } else {
921            // FIXME: we should be able to handle this case too. It is correct
922            // to add this-> here. This is a workaround for PR7947.
923            Diag(R.getNameLoc(), diagnostic) << Name;
924          }
925        } else {
926          Diag(R.getNameLoc(), diagnostic) << Name;
927        }
928
929        // Do we really want to note all of these?
930        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
931          Diag((*I)->getLocation(), diag::note_dependent_var_use);
932
933        // Tell the callee to try to recover.
934        return false;
935      }
936
937      R.clear();
938    }
939  }
940
941  // We didn't find anything, so try to correct for a typo.
942  DeclarationName Corrected;
943  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
944    if (!R.empty()) {
945      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
946        if (SS.isEmpty())
947          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
948            << FixItHint::CreateReplacement(R.getNameLoc(),
949                                            R.getLookupName().getAsString());
950        else
951          Diag(R.getNameLoc(), diag::err_no_member_suggest)
952            << Name << computeDeclContext(SS, false) << R.getLookupName()
953            << SS.getRange()
954            << FixItHint::CreateReplacement(R.getNameLoc(),
955                                            R.getLookupName().getAsString());
956        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
957          Diag(ND->getLocation(), diag::note_previous_decl)
958            << ND->getDeclName();
959
960        // Tell the callee to try to recover.
961        return false;
962      }
963
964      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
965        // FIXME: If we ended up with a typo for a type name or
966        // Objective-C class name, we're in trouble because the parser
967        // is in the wrong place to recover. Suggest the typo
968        // correction, but don't make it a fix-it since we're not going
969        // to recover well anyway.
970        if (SS.isEmpty())
971          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
972        else
973          Diag(R.getNameLoc(), diag::err_no_member_suggest)
974            << Name << computeDeclContext(SS, false) << R.getLookupName()
975            << SS.getRange();
976
977        // Don't try to recover; it won't work.
978        return true;
979      }
980    } else {
981      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
982      // because we aren't able to recover.
983      if (SS.isEmpty())
984        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
985      else
986        Diag(R.getNameLoc(), diag::err_no_member_suggest)
987        << Name << computeDeclContext(SS, false) << Corrected
988        << SS.getRange();
989      return true;
990    }
991    R.clear();
992  }
993
994  // Emit a special diagnostic for failed member lookups.
995  // FIXME: computing the declaration context might fail here (?)
996  if (!SS.isEmpty()) {
997    Diag(R.getNameLoc(), diag::err_no_member)
998      << Name << computeDeclContext(SS, false)
999      << SS.getRange();
1000    return true;
1001  }
1002
1003  // Give up, we can't recover.
1004  Diag(R.getNameLoc(), diagnostic) << Name;
1005  return true;
1006}
1007
1008static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
1009                                                       IdentifierInfo *II,
1010                                                       SourceLocation NameLoc) {
1011  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1012  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1013  if (!IDecl)
1014    return 0;
1015  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1016  if (!ClassImpDecl)
1017    return 0;
1018  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1019  if (!property)
1020    return 0;
1021  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1022    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
1023      return 0;
1024  return property;
1025}
1026
1027static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
1028                                               LookupResult &Lookup,
1029                                               IdentifierInfo *II,
1030                                               SourceLocation NameLoc) {
1031  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1032  bool LookForIvars;
1033  if (Lookup.empty())
1034    LookForIvars = true;
1035  else if (CurMeth->isClassMethod())
1036    LookForIvars = false;
1037  else
1038    LookForIvars = (Lookup.isSingleResult() &&
1039                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1040  if (!LookForIvars)
1041    return 0;
1042
1043  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1044  if (!IDecl)
1045    return 0;
1046  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1047  if (!ClassImpDecl)
1048    return 0;
1049  bool DynamicImplSeen = false;
1050  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1051  if (!property)
1052    return 0;
1053  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1054    DynamicImplSeen =
1055      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1056  if (!DynamicImplSeen) {
1057    QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
1058    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
1059                                              NameLoc,
1060                                              II, PropType, /*Dinfo=*/0,
1061                                              ObjCIvarDecl::Protected,
1062                                              (Expr *)0, true);
1063    ClassImpDecl->addDecl(Ivar);
1064    IDecl->makeDeclVisibleInContext(Ivar, false);
1065    property->setPropertyIvarDecl(Ivar);
1066    return Ivar;
1067  }
1068  return 0;
1069}
1070
1071ExprResult Sema::ActOnIdExpression(Scope *S,
1072                                   CXXScopeSpec &SS,
1073                                   UnqualifiedId &Id,
1074                                   bool HasTrailingLParen,
1075                                   bool isAddressOfOperand) {
1076  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1077         "cannot be direct & operand and have a trailing lparen");
1078
1079  if (SS.isInvalid())
1080    return ExprError();
1081
1082  TemplateArgumentListInfo TemplateArgsBuffer;
1083
1084  // Decompose the UnqualifiedId into the following data.
1085  DeclarationNameInfo NameInfo;
1086  const TemplateArgumentListInfo *TemplateArgs;
1087  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1088
1089  DeclarationName Name = NameInfo.getName();
1090  IdentifierInfo *II = Name.getAsIdentifierInfo();
1091  SourceLocation NameLoc = NameInfo.getLoc();
1092
1093  // C++ [temp.dep.expr]p3:
1094  //   An id-expression is type-dependent if it contains:
1095  //     -- an identifier that was declared with a dependent type,
1096  //        (note: handled after lookup)
1097  //     -- a template-id that is dependent,
1098  //        (note: handled in BuildTemplateIdExpr)
1099  //     -- a conversion-function-id that specifies a dependent type,
1100  //     -- a nested-name-specifier that contains a class-name that
1101  //        names a dependent type.
1102  // Determine whether this is a member of an unknown specialization;
1103  // we need to handle these differently.
1104  bool DependentID = false;
1105  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1106      Name.getCXXNameType()->isDependentType()) {
1107    DependentID = true;
1108  } else if (SS.isSet()) {
1109    DeclContext *DC = computeDeclContext(SS, false);
1110    if (DC) {
1111      if (RequireCompleteDeclContext(SS, DC))
1112        return ExprError();
1113      // FIXME: We should be checking whether DC is the current instantiation.
1114      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
1115        DependentID = !IsFullyFormedScope(*this, RD);
1116    } else {
1117      DependentID = true;
1118    }
1119  }
1120
1121  if (DependentID) {
1122    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1123                                      TemplateArgs);
1124  }
1125  bool IvarLookupFollowUp = false;
1126  // Perform the required lookup.
1127  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1128  if (TemplateArgs) {
1129    // Lookup the template name again to correctly establish the context in
1130    // which it was found. This is really unfortunate as we already did the
1131    // lookup to determine that it was a template name in the first place. If
1132    // this becomes a performance hit, we can work harder to preserve those
1133    // results until we get here but it's likely not worth it.
1134    bool MemberOfUnknownSpecialization;
1135    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1136                       MemberOfUnknownSpecialization);
1137  } else {
1138    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1139    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1140
1141    // If this reference is in an Objective-C method, then we need to do
1142    // some special Objective-C lookup, too.
1143    if (IvarLookupFollowUp) {
1144      ExprResult E(LookupInObjCMethod(R, S, II, true));
1145      if (E.isInvalid())
1146        return ExprError();
1147
1148      Expr *Ex = E.takeAs<Expr>();
1149      if (Ex) return Owned(Ex);
1150      // Synthesize ivars lazily
1151      if (getLangOptions().ObjCNonFragileABI2) {
1152        if (SynthesizeProvisionalIvar(*this, R, II, NameLoc))
1153          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1154                                   isAddressOfOperand);
1155      }
1156      // for further use, this must be set to false if in class method.
1157      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1158    }
1159  }
1160
1161  if (R.isAmbiguous())
1162    return ExprError();
1163
1164  // Determine whether this name might be a candidate for
1165  // argument-dependent lookup.
1166  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1167
1168  if (R.empty() && !ADL) {
1169    // Otherwise, this could be an implicitly declared function reference (legal
1170    // in C90, extension in C99, forbidden in C++).
1171    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1172      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1173      if (D) R.addDecl(D);
1174    }
1175
1176    // If this name wasn't predeclared and if this is not a function
1177    // call, diagnose the problem.
1178    if (R.empty()) {
1179      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1180        return ExprError();
1181
1182      assert(!R.empty() &&
1183             "DiagnoseEmptyLookup returned false but added no results");
1184
1185      // If we found an Objective-C instance variable, let
1186      // LookupInObjCMethod build the appropriate expression to
1187      // reference the ivar.
1188      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1189        R.clear();
1190        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1191        assert(E.isInvalid() || E.get());
1192        return move(E);
1193      }
1194    }
1195  }
1196
1197  // This is guaranteed from this point on.
1198  assert(!R.empty() || ADL);
1199
1200  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1201    if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
1202        !getLangOptions().ObjCNonFragileABI2 &&
1203        Var->isFileVarDecl()) {
1204      ObjCPropertyDecl *Property =
1205        OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
1206      if (Property) {
1207        Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
1208        Diag(Property->getLocation(), diag::note_property_declare);
1209        Diag(Var->getLocation(), diag::note_global_declared_at);
1210      }
1211    }
1212  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1213    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1214      // C99 DR 316 says that, if a function type comes from a
1215      // function definition (without a prototype), that type is only
1216      // used for checking compatibility. Therefore, when referencing
1217      // the function, we pretend that we don't have the full function
1218      // type.
1219      if (DiagnoseUseOfDecl(Func, NameLoc))
1220        return ExprError();
1221
1222      QualType T = Func->getType();
1223      QualType NoProtoType = T;
1224      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1225        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1226                                                     Proto->getExtInfo());
1227      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1228    }
1229  }
1230
1231  // Check whether this might be a C++ implicit instance member access.
1232  // C++ [class.mfct.non-static]p3:
1233  //   When an id-expression that is not part of a class member access
1234  //   syntax and not used to form a pointer to member is used in the
1235  //   body of a non-static member function of class X, if name lookup
1236  //   resolves the name in the id-expression to a non-static non-type
1237  //   member of some class C, the id-expression is transformed into a
1238  //   class member access expression using (*this) as the
1239  //   postfix-expression to the left of the . operator.
1240  //
1241  // But we don't actually need to do this for '&' operands if R
1242  // resolved to a function or overloaded function set, because the
1243  // expression is ill-formed if it actually works out to be a
1244  // non-static member function:
1245  //
1246  // C++ [expr.ref]p4:
1247  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1248  //   [t]he expression can be used only as the left-hand operand of a
1249  //   member function call.
1250  //
1251  // There are other safeguards against such uses, but it's important
1252  // to get this right here so that we don't end up making a
1253  // spuriously dependent expression if we're inside a dependent
1254  // instance method.
1255  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1256    bool MightBeImplicitMember;
1257    if (!isAddressOfOperand)
1258      MightBeImplicitMember = true;
1259    else if (!SS.isEmpty())
1260      MightBeImplicitMember = false;
1261    else if (R.isOverloadedResult())
1262      MightBeImplicitMember = false;
1263    else if (R.isUnresolvableResult())
1264      MightBeImplicitMember = true;
1265    else
1266      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl());
1267
1268    if (MightBeImplicitMember)
1269      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1270  }
1271
1272  if (TemplateArgs)
1273    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1274
1275  return BuildDeclarationNameExpr(SS, R, ADL);
1276}
1277
1278/// Builds an expression which might be an implicit member expression.
1279ExprResult
1280Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1281                                      LookupResult &R,
1282                                const TemplateArgumentListInfo *TemplateArgs) {
1283  switch (ClassifyImplicitMemberAccess(*this, R)) {
1284  case IMA_Instance:
1285    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1286
1287  case IMA_AnonymousMember:
1288    assert(R.isSingleResult());
1289    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1290                                                    R.getAsSingle<FieldDecl>());
1291
1292  case IMA_Mixed:
1293  case IMA_Mixed_Unrelated:
1294  case IMA_Unresolved:
1295    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1296
1297  case IMA_Static:
1298  case IMA_Mixed_StaticContext:
1299  case IMA_Unresolved_StaticContext:
1300    if (TemplateArgs)
1301      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1302    return BuildDeclarationNameExpr(SS, R, false);
1303
1304  case IMA_Error_StaticContext:
1305  case IMA_Error_Unrelated:
1306    DiagnoseInstanceReference(*this, SS, R);
1307    return ExprError();
1308  }
1309
1310  llvm_unreachable("unexpected instance member access kind");
1311  return ExprError();
1312}
1313
1314/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1315/// declaration name, generally during template instantiation.
1316/// There's a large number of things which don't need to be done along
1317/// this path.
1318ExprResult
1319Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1320                                        const DeclarationNameInfo &NameInfo) {
1321  DeclContext *DC;
1322  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1323    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1324
1325  if (RequireCompleteDeclContext(SS, DC))
1326    return ExprError();
1327
1328  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1329  LookupQualifiedName(R, DC);
1330
1331  if (R.isAmbiguous())
1332    return ExprError();
1333
1334  if (R.empty()) {
1335    Diag(NameInfo.getLoc(), diag::err_no_member)
1336      << NameInfo.getName() << DC << SS.getRange();
1337    return ExprError();
1338  }
1339
1340  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1341}
1342
1343/// LookupInObjCMethod - The parser has read a name in, and Sema has
1344/// detected that we're currently inside an ObjC method.  Perform some
1345/// additional lookup.
1346///
1347/// Ideally, most of this would be done by lookup, but there's
1348/// actually quite a lot of extra work involved.
1349///
1350/// Returns a null sentinel to indicate trivial success.
1351ExprResult
1352Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1353                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1354  SourceLocation Loc = Lookup.getNameLoc();
1355  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1356
1357  // There are two cases to handle here.  1) scoped lookup could have failed,
1358  // in which case we should look for an ivar.  2) scoped lookup could have
1359  // found a decl, but that decl is outside the current instance method (i.e.
1360  // a global variable).  In these two cases, we do a lookup for an ivar with
1361  // this name, if the lookup sucedes, we replace it our current decl.
1362
1363  // If we're in a class method, we don't normally want to look for
1364  // ivars.  But if we don't find anything else, and there's an
1365  // ivar, that's an error.
1366  bool IsClassMethod = CurMethod->isClassMethod();
1367
1368  bool LookForIvars;
1369  if (Lookup.empty())
1370    LookForIvars = true;
1371  else if (IsClassMethod)
1372    LookForIvars = false;
1373  else
1374    LookForIvars = (Lookup.isSingleResult() &&
1375                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1376  ObjCInterfaceDecl *IFace = 0;
1377  if (LookForIvars) {
1378    IFace = CurMethod->getClassInterface();
1379    ObjCInterfaceDecl *ClassDeclared;
1380    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1381      // Diagnose using an ivar in a class method.
1382      if (IsClassMethod)
1383        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1384                         << IV->getDeclName());
1385
1386      // If we're referencing an invalid decl, just return this as a silent
1387      // error node.  The error diagnostic was already emitted on the decl.
1388      if (IV->isInvalidDecl())
1389        return ExprError();
1390
1391      // Check if referencing a field with __attribute__((deprecated)).
1392      if (DiagnoseUseOfDecl(IV, Loc))
1393        return ExprError();
1394
1395      // Diagnose the use of an ivar outside of the declaring class.
1396      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1397          ClassDeclared != IFace)
1398        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1399
1400      // FIXME: This should use a new expr for a direct reference, don't
1401      // turn this into Self->ivar, just return a BareIVarExpr or something.
1402      IdentifierInfo &II = Context.Idents.get("self");
1403      UnqualifiedId SelfName;
1404      SelfName.setIdentifier(&II, SourceLocation());
1405      CXXScopeSpec SelfScopeSpec;
1406      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1407                                              SelfName, false, false);
1408      if (SelfExpr.isInvalid())
1409        return ExprError();
1410
1411      MarkDeclarationReferenced(Loc, IV);
1412      return Owned(new (Context)
1413                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1414                                   SelfExpr.takeAs<Expr>(), true, true));
1415    }
1416  } else if (CurMethod->isInstanceMethod()) {
1417    // We should warn if a local variable hides an ivar.
1418    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1419    ObjCInterfaceDecl *ClassDeclared;
1420    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1421      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1422          IFace == ClassDeclared)
1423        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1424    }
1425  }
1426
1427  if (Lookup.empty() && II && AllowBuiltinCreation) {
1428    // FIXME. Consolidate this with similar code in LookupName.
1429    if (unsigned BuiltinID = II->getBuiltinID()) {
1430      if (!(getLangOptions().CPlusPlus &&
1431            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1432        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1433                                           S, Lookup.isForRedeclaration(),
1434                                           Lookup.getNameLoc());
1435        if (D) Lookup.addDecl(D);
1436      }
1437    }
1438  }
1439  // Sentinel value saying that we didn't do anything special.
1440  return Owned((Expr*) 0);
1441}
1442
1443/// \brief Cast a base object to a member's actual type.
1444///
1445/// Logically this happens in three phases:
1446///
1447/// * First we cast from the base type to the naming class.
1448///   The naming class is the class into which we were looking
1449///   when we found the member;  it's the qualifier type if a
1450///   qualifier was provided, and otherwise it's the base type.
1451///
1452/// * Next we cast from the naming class to the declaring class.
1453///   If the member we found was brought into a class's scope by
1454///   a using declaration, this is that class;  otherwise it's
1455///   the class declaring the member.
1456///
1457/// * Finally we cast from the declaring class to the "true"
1458///   declaring class of the member.  This conversion does not
1459///   obey access control.
1460bool
1461Sema::PerformObjectMemberConversion(Expr *&From,
1462                                    NestedNameSpecifier *Qualifier,
1463                                    NamedDecl *FoundDecl,
1464                                    NamedDecl *Member) {
1465  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1466  if (!RD)
1467    return false;
1468
1469  QualType DestRecordType;
1470  QualType DestType;
1471  QualType FromRecordType;
1472  QualType FromType = From->getType();
1473  bool PointerConversions = false;
1474  if (isa<FieldDecl>(Member)) {
1475    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1476
1477    if (FromType->getAs<PointerType>()) {
1478      DestType = Context.getPointerType(DestRecordType);
1479      FromRecordType = FromType->getPointeeType();
1480      PointerConversions = true;
1481    } else {
1482      DestType = DestRecordType;
1483      FromRecordType = FromType;
1484    }
1485  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1486    if (Method->isStatic())
1487      return false;
1488
1489    DestType = Method->getThisType(Context);
1490    DestRecordType = DestType->getPointeeType();
1491
1492    if (FromType->getAs<PointerType>()) {
1493      FromRecordType = FromType->getPointeeType();
1494      PointerConversions = true;
1495    } else {
1496      FromRecordType = FromType;
1497      DestType = DestRecordType;
1498    }
1499  } else {
1500    // No conversion necessary.
1501    return false;
1502  }
1503
1504  if (DestType->isDependentType() || FromType->isDependentType())
1505    return false;
1506
1507  // If the unqualified types are the same, no conversion is necessary.
1508  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1509    return false;
1510
1511  SourceRange FromRange = From->getSourceRange();
1512  SourceLocation FromLoc = FromRange.getBegin();
1513
1514  ExprValueKind VK = CastCategory(From);
1515
1516  // C++ [class.member.lookup]p8:
1517  //   [...] Ambiguities can often be resolved by qualifying a name with its
1518  //   class name.
1519  //
1520  // If the member was a qualified name and the qualified referred to a
1521  // specific base subobject type, we'll cast to that intermediate type
1522  // first and then to the object in which the member is declared. That allows
1523  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1524  //
1525  //   class Base { public: int x; };
1526  //   class Derived1 : public Base { };
1527  //   class Derived2 : public Base { };
1528  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1529  //
1530  //   void VeryDerived::f() {
1531  //     x = 17; // error: ambiguous base subobjects
1532  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1533  //   }
1534  if (Qualifier) {
1535    QualType QType = QualType(Qualifier->getAsType(), 0);
1536    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1537    assert(QType->isRecordType() && "lookup done with non-record type");
1538
1539    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1540
1541    // In C++98, the qualifier type doesn't actually have to be a base
1542    // type of the object type, in which case we just ignore it.
1543    // Otherwise build the appropriate casts.
1544    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1545      CXXCastPath BasePath;
1546      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1547                                       FromLoc, FromRange, &BasePath))
1548        return true;
1549
1550      if (PointerConversions)
1551        QType = Context.getPointerType(QType);
1552      ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
1553                        VK, &BasePath);
1554
1555      FromType = QType;
1556      FromRecordType = QRecordType;
1557
1558      // If the qualifier type was the same as the destination type,
1559      // we're done.
1560      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1561        return false;
1562    }
1563  }
1564
1565  bool IgnoreAccess = false;
1566
1567  // If we actually found the member through a using declaration, cast
1568  // down to the using declaration's type.
1569  //
1570  // Pointer equality is fine here because only one declaration of a
1571  // class ever has member declarations.
1572  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1573    assert(isa<UsingShadowDecl>(FoundDecl));
1574    QualType URecordType = Context.getTypeDeclType(
1575                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1576
1577    // We only need to do this if the naming-class to declaring-class
1578    // conversion is non-trivial.
1579    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1580      assert(IsDerivedFrom(FromRecordType, URecordType));
1581      CXXCastPath BasePath;
1582      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1583                                       FromLoc, FromRange, &BasePath))
1584        return true;
1585
1586      QualType UType = URecordType;
1587      if (PointerConversions)
1588        UType = Context.getPointerType(UType);
1589      ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
1590                        VK, &BasePath);
1591      FromType = UType;
1592      FromRecordType = URecordType;
1593    }
1594
1595    // We don't do access control for the conversion from the
1596    // declaring class to the true declaring class.
1597    IgnoreAccess = true;
1598  }
1599
1600  CXXCastPath BasePath;
1601  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1602                                   FromLoc, FromRange, &BasePath,
1603                                   IgnoreAccess))
1604    return true;
1605
1606  ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
1607                    VK, &BasePath);
1608  return false;
1609}
1610
1611/// \brief Build a MemberExpr AST node.
1612static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1613                                   const CXXScopeSpec &SS, ValueDecl *Member,
1614                                   DeclAccessPair FoundDecl,
1615                                   const DeclarationNameInfo &MemberNameInfo,
1616                                   QualType Ty,
1617                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1618  NestedNameSpecifier *Qualifier = 0;
1619  SourceRange QualifierRange;
1620  if (SS.isSet()) {
1621    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1622    QualifierRange = SS.getRange();
1623  }
1624
1625  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1626                            Member, FoundDecl, MemberNameInfo,
1627                            TemplateArgs, Ty);
1628}
1629
1630/// Builds an implicit member access expression.  The current context
1631/// is known to be an instance method, and the given unqualified lookup
1632/// set is known to contain only instance members, at least one of which
1633/// is from an appropriate type.
1634ExprResult
1635Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1636                              LookupResult &R,
1637                              const TemplateArgumentListInfo *TemplateArgs,
1638                              bool IsKnownInstance) {
1639  assert(!R.empty() && !R.isAmbiguous());
1640
1641  SourceLocation Loc = R.getNameLoc();
1642
1643  // We may have found a field within an anonymous union or struct
1644  // (C++ [class.union]).
1645  // FIXME: This needs to happen post-isImplicitMemberReference?
1646  // FIXME: template-ids inside anonymous structs?
1647  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1648    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1649      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1650
1651  // If this is known to be an instance access, go ahead and build a
1652  // 'this' expression now.
1653  DeclContext *DC = getFunctionLevelDeclContext();
1654  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1655  Expr *This = 0; // null signifies implicit access
1656  if (IsKnownInstance) {
1657    SourceLocation Loc = R.getNameLoc();
1658    if (SS.getRange().isValid())
1659      Loc = SS.getRange().getBegin();
1660    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1661  }
1662
1663  return BuildMemberReferenceExpr(This, ThisType,
1664                                  /*OpLoc*/ SourceLocation(),
1665                                  /*IsArrow*/ true,
1666                                  SS,
1667                                  /*FirstQualifierInScope*/ 0,
1668                                  R, TemplateArgs);
1669}
1670
1671bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1672                                      const LookupResult &R,
1673                                      bool HasTrailingLParen) {
1674  // Only when used directly as the postfix-expression of a call.
1675  if (!HasTrailingLParen)
1676    return false;
1677
1678  // Never if a scope specifier was provided.
1679  if (SS.isSet())
1680    return false;
1681
1682  // Only in C++ or ObjC++.
1683  if (!getLangOptions().CPlusPlus)
1684    return false;
1685
1686  // Turn off ADL when we find certain kinds of declarations during
1687  // normal lookup:
1688  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1689    NamedDecl *D = *I;
1690
1691    // C++0x [basic.lookup.argdep]p3:
1692    //     -- a declaration of a class member
1693    // Since using decls preserve this property, we check this on the
1694    // original decl.
1695    if (D->isCXXClassMember())
1696      return false;
1697
1698    // C++0x [basic.lookup.argdep]p3:
1699    //     -- a block-scope function declaration that is not a
1700    //        using-declaration
1701    // NOTE: we also trigger this for function templates (in fact, we
1702    // don't check the decl type at all, since all other decl types
1703    // turn off ADL anyway).
1704    if (isa<UsingShadowDecl>(D))
1705      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1706    else if (D->getDeclContext()->isFunctionOrMethod())
1707      return false;
1708
1709    // C++0x [basic.lookup.argdep]p3:
1710    //     -- a declaration that is neither a function or a function
1711    //        template
1712    // And also for builtin functions.
1713    if (isa<FunctionDecl>(D)) {
1714      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1715
1716      // But also builtin functions.
1717      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1718        return false;
1719    } else if (!isa<FunctionTemplateDecl>(D))
1720      return false;
1721  }
1722
1723  return true;
1724}
1725
1726
1727/// Diagnoses obvious problems with the use of the given declaration
1728/// as an expression.  This is only actually called for lookups that
1729/// were not overloaded, and it doesn't promise that the declaration
1730/// will in fact be used.
1731static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1732  if (isa<TypedefDecl>(D)) {
1733    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1734    return true;
1735  }
1736
1737  if (isa<ObjCInterfaceDecl>(D)) {
1738    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1739    return true;
1740  }
1741
1742  if (isa<NamespaceDecl>(D)) {
1743    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1744    return true;
1745  }
1746
1747  return false;
1748}
1749
1750ExprResult
1751Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1752                               LookupResult &R,
1753                               bool NeedsADL) {
1754  // If this is a single, fully-resolved result and we don't need ADL,
1755  // just build an ordinary singleton decl ref.
1756  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1757    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
1758                                    R.getFoundDecl());
1759
1760  // We only need to check the declaration if there's exactly one
1761  // result, because in the overloaded case the results can only be
1762  // functions and function templates.
1763  if (R.isSingleResult() &&
1764      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1765    return ExprError();
1766
1767  // Otherwise, just build an unresolved lookup expression.  Suppress
1768  // any lookup-related diagnostics; we'll hash these out later, when
1769  // we've picked a target.
1770  R.suppressDiagnostics();
1771
1772  bool Dependent
1773    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1774  UnresolvedLookupExpr *ULE
1775    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1776                                   (NestedNameSpecifier*) SS.getScopeRep(),
1777                                   SS.getRange(), R.getLookupNameInfo(),
1778                                   NeedsADL, R.isOverloadedResult(),
1779                                   R.begin(), R.end());
1780
1781  return Owned(ULE);
1782}
1783
1784
1785/// \brief Complete semantic analysis for a reference to the given declaration.
1786ExprResult
1787Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1788                               const DeclarationNameInfo &NameInfo,
1789                               NamedDecl *D) {
1790  assert(D && "Cannot refer to a NULL declaration");
1791  assert(!isa<FunctionTemplateDecl>(D) &&
1792         "Cannot refer unambiguously to a function template");
1793
1794  SourceLocation Loc = NameInfo.getLoc();
1795  if (CheckDeclInExpr(*this, Loc, D))
1796    return ExprError();
1797
1798  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1799    // Specifically diagnose references to class templates that are missing
1800    // a template argument list.
1801    Diag(Loc, diag::err_template_decl_ref)
1802      << Template << SS.getRange();
1803    Diag(Template->getLocation(), diag::note_template_decl_here);
1804    return ExprError();
1805  }
1806
1807  // Make sure that we're referring to a value.
1808  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1809  if (!VD) {
1810    Diag(Loc, diag::err_ref_non_value)
1811      << D << SS.getRange();
1812    Diag(D->getLocation(), diag::note_declared_at);
1813    return ExprError();
1814  }
1815
1816  // Check whether this declaration can be used. Note that we suppress
1817  // this check when we're going to perform argument-dependent lookup
1818  // on this function name, because this might not be the function
1819  // that overload resolution actually selects.
1820  if (DiagnoseUseOfDecl(VD, Loc))
1821    return ExprError();
1822
1823  // Only create DeclRefExpr's for valid Decl's.
1824  if (VD->isInvalidDecl())
1825    return ExprError();
1826
1827  // If the identifier reference is inside a block, and it refers to a value
1828  // that is outside the block, create a BlockDeclRefExpr instead of a
1829  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1830  // the block is formed.
1831  //
1832  // We do not do this for things like enum constants, global variables, etc,
1833  // as they do not get snapshotted.
1834  //
1835  if (getCurBlock() &&
1836      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1837    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1838      Diag(Loc, diag::err_ref_vm_type);
1839      Diag(D->getLocation(), diag::note_declared_at);
1840      return ExprError();
1841    }
1842
1843    if (VD->getType()->isArrayType()) {
1844      Diag(Loc, diag::err_ref_array_type);
1845      Diag(D->getLocation(), diag::note_declared_at);
1846      return ExprError();
1847    }
1848
1849    MarkDeclarationReferenced(Loc, VD);
1850    QualType ExprTy = VD->getType().getNonReferenceType();
1851    // The BlocksAttr indicates the variable is bound by-reference.
1852    if (VD->getAttr<BlocksAttr>())
1853      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1854    // This is to record that a 'const' was actually synthesize and added.
1855    bool constAdded = !ExprTy.isConstQualified();
1856    // Variable will be bound by-copy, make it const within the closure.
1857
1858    ExprTy.addConst();
1859    QualType T = VD->getType();
1860    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
1861                                                            ExprTy, Loc, false,
1862                                                            constAdded);
1863    if (getLangOptions().CPlusPlus) {
1864      if (!T->isDependentType() && !T->isReferenceType()) {
1865        Expr *E = new (Context)
1866                    DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
1867                                          SourceLocation());
1868
1869        ExprResult Res = PerformCopyInitialization(
1870                          InitializedEntity::InitializeBlock(VD->getLocation(),
1871                                                         T, false),
1872                                                         SourceLocation(),
1873                                                         Owned(E));
1874        if (!Res.isInvalid()) {
1875          Res = MaybeCreateCXXExprWithTemporaries(Res.get());
1876          Expr *Init = Res.takeAs<Expr>();
1877          BDRE->setCopyConstructorExpr(Init);
1878        }
1879      }
1880    }
1881    return Owned(BDRE);
1882  }
1883  // If this reference is not in a block or if the referenced variable is
1884  // within the block, create a normal DeclRefExpr.
1885
1886  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
1887                          NameInfo, &SS);
1888}
1889
1890ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1891                                                 tok::TokenKind Kind) {
1892  PredefinedExpr::IdentType IT;
1893
1894  switch (Kind) {
1895  default: assert(0 && "Unknown simple primary expr!");
1896  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1897  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1898  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1899  }
1900
1901  // Pre-defined identifiers are of type char[x], where x is the length of the
1902  // string.
1903
1904  Decl *currentDecl = getCurFunctionOrMethodDecl();
1905  if (!currentDecl && getCurBlock())
1906    currentDecl = getCurBlock()->TheDecl;
1907  if (!currentDecl) {
1908    Diag(Loc, diag::ext_predef_outside_function);
1909    currentDecl = Context.getTranslationUnitDecl();
1910  }
1911
1912  QualType ResTy;
1913  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1914    ResTy = Context.DependentTy;
1915  } else {
1916    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1917
1918    llvm::APInt LengthI(32, Length + 1);
1919    ResTy = Context.CharTy.withConst();
1920    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1921  }
1922  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1923}
1924
1925ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1926  llvm::SmallString<16> CharBuffer;
1927  bool Invalid = false;
1928  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1929  if (Invalid)
1930    return ExprError();
1931
1932  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1933                            PP);
1934  if (Literal.hadError())
1935    return ExprError();
1936
1937  QualType Ty;
1938  if (!getLangOptions().CPlusPlus)
1939    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1940  else if (Literal.isWide())
1941    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1942  else if (Literal.isMultiChar())
1943    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1944  else
1945    Ty = Context.CharTy;  // 'x' -> char in C++
1946
1947  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1948                                              Literal.isWide(),
1949                                              Ty, Tok.getLocation()));
1950}
1951
1952ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1953  // Fast path for a single digit (which is quite common).  A single digit
1954  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1955  if (Tok.getLength() == 1) {
1956    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1957    unsigned IntSize = Context.Target.getIntWidth();
1958    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
1959                    Context.IntTy, Tok.getLocation()));
1960  }
1961
1962  llvm::SmallString<512> IntegerBuffer;
1963  // Add padding so that NumericLiteralParser can overread by one character.
1964  IntegerBuffer.resize(Tok.getLength()+1);
1965  const char *ThisTokBegin = &IntegerBuffer[0];
1966
1967  // Get the spelling of the token, which eliminates trigraphs, etc.
1968  bool Invalid = false;
1969  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1970  if (Invalid)
1971    return ExprError();
1972
1973  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1974                               Tok.getLocation(), PP);
1975  if (Literal.hadError)
1976    return ExprError();
1977
1978  Expr *Res;
1979
1980  if (Literal.isFloatingLiteral()) {
1981    QualType Ty;
1982    if (Literal.isFloat)
1983      Ty = Context.FloatTy;
1984    else if (!Literal.isLong)
1985      Ty = Context.DoubleTy;
1986    else
1987      Ty = Context.LongDoubleTy;
1988
1989    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1990
1991    using llvm::APFloat;
1992    APFloat Val(Format);
1993
1994    APFloat::opStatus result = Literal.GetFloatValue(Val);
1995
1996    // Overflow is always an error, but underflow is only an error if
1997    // we underflowed to zero (APFloat reports denormals as underflow).
1998    if ((result & APFloat::opOverflow) ||
1999        ((result & APFloat::opUnderflow) && Val.isZero())) {
2000      unsigned diagnostic;
2001      llvm::SmallString<20> buffer;
2002      if (result & APFloat::opOverflow) {
2003        diagnostic = diag::warn_float_overflow;
2004        APFloat::getLargest(Format).toString(buffer);
2005      } else {
2006        diagnostic = diag::warn_float_underflow;
2007        APFloat::getSmallest(Format).toString(buffer);
2008      }
2009
2010      Diag(Tok.getLocation(), diagnostic)
2011        << Ty
2012        << llvm::StringRef(buffer.data(), buffer.size());
2013    }
2014
2015    bool isExact = (result == APFloat::opOK);
2016    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2017
2018  } else if (!Literal.isIntegerLiteral()) {
2019    return ExprError();
2020  } else {
2021    QualType Ty;
2022
2023    // long long is a C99 feature.
2024    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2025        Literal.isLongLong)
2026      Diag(Tok.getLocation(), diag::ext_longlong);
2027
2028    // Get the value in the widest-possible width.
2029    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2030
2031    if (Literal.GetIntegerValue(ResultVal)) {
2032      // If this value didn't fit into uintmax_t, warn and force to ull.
2033      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2034      Ty = Context.UnsignedLongLongTy;
2035      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2036             "long long is not intmax_t?");
2037    } else {
2038      // If this value fits into a ULL, try to figure out what else it fits into
2039      // according to the rules of C99 6.4.4.1p5.
2040
2041      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2042      // be an unsigned int.
2043      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2044
2045      // Check from smallest to largest, picking the smallest type we can.
2046      unsigned Width = 0;
2047      if (!Literal.isLong && !Literal.isLongLong) {
2048        // Are int/unsigned possibilities?
2049        unsigned IntSize = Context.Target.getIntWidth();
2050
2051        // Does it fit in a unsigned int?
2052        if (ResultVal.isIntN(IntSize)) {
2053          // Does it fit in a signed int?
2054          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2055            Ty = Context.IntTy;
2056          else if (AllowUnsigned)
2057            Ty = Context.UnsignedIntTy;
2058          Width = IntSize;
2059        }
2060      }
2061
2062      // Are long/unsigned long possibilities?
2063      if (Ty.isNull() && !Literal.isLongLong) {
2064        unsigned LongSize = Context.Target.getLongWidth();
2065
2066        // Does it fit in a unsigned long?
2067        if (ResultVal.isIntN(LongSize)) {
2068          // Does it fit in a signed long?
2069          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2070            Ty = Context.LongTy;
2071          else if (AllowUnsigned)
2072            Ty = Context.UnsignedLongTy;
2073          Width = LongSize;
2074        }
2075      }
2076
2077      // Finally, check long long if needed.
2078      if (Ty.isNull()) {
2079        unsigned LongLongSize = Context.Target.getLongLongWidth();
2080
2081        // Does it fit in a unsigned long long?
2082        if (ResultVal.isIntN(LongLongSize)) {
2083          // Does it fit in a signed long long?
2084          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
2085            Ty = Context.LongLongTy;
2086          else if (AllowUnsigned)
2087            Ty = Context.UnsignedLongLongTy;
2088          Width = LongLongSize;
2089        }
2090      }
2091
2092      // If we still couldn't decide a type, we probably have something that
2093      // does not fit in a signed long long, but has no U suffix.
2094      if (Ty.isNull()) {
2095        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2096        Ty = Context.UnsignedLongLongTy;
2097        Width = Context.Target.getLongLongWidth();
2098      }
2099
2100      if (ResultVal.getBitWidth() != Width)
2101        ResultVal.trunc(Width);
2102    }
2103    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2104  }
2105
2106  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2107  if (Literal.isImaginary)
2108    Res = new (Context) ImaginaryLiteral(Res,
2109                                        Context.getComplexType(Res->getType()));
2110
2111  return Owned(Res);
2112}
2113
2114ExprResult Sema::ActOnParenExpr(SourceLocation L,
2115                                              SourceLocation R, Expr *E) {
2116  assert((E != 0) && "ActOnParenExpr() missing expr");
2117  return Owned(new (Context) ParenExpr(L, R, E));
2118}
2119
2120/// The UsualUnaryConversions() function is *not* called by this routine.
2121/// See C99 6.3.2.1p[2-4] for more details.
2122bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2123                                     SourceLocation OpLoc,
2124                                     SourceRange ExprRange,
2125                                     bool isSizeof) {
2126  if (exprType->isDependentType())
2127    return false;
2128
2129  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2130  //   the result is the size of the referenced type."
2131  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2132  //   result shall be the alignment of the referenced type."
2133  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2134    exprType = Ref->getPointeeType();
2135
2136  // C99 6.5.3.4p1:
2137  if (exprType->isFunctionType()) {
2138    // alignof(function) is allowed as an extension.
2139    if (isSizeof)
2140      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2141    return false;
2142  }
2143
2144  // Allow sizeof(void)/alignof(void) as an extension.
2145  if (exprType->isVoidType()) {
2146    Diag(OpLoc, diag::ext_sizeof_void_type)
2147      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2148    return false;
2149  }
2150
2151  if (RequireCompleteType(OpLoc, exprType,
2152                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2153                          << int(!isSizeof) << ExprRange))
2154    return true;
2155
2156  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2157  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2158    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2159      << exprType << isSizeof << ExprRange;
2160    return true;
2161  }
2162
2163  return false;
2164}
2165
2166static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
2167                             SourceRange ExprRange) {
2168  E = E->IgnoreParens();
2169
2170  // alignof decl is always ok.
2171  if (isa<DeclRefExpr>(E))
2172    return false;
2173
2174  // Cannot know anything else if the expression is dependent.
2175  if (E->isTypeDependent())
2176    return false;
2177
2178  if (E->getBitField()) {
2179   S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2180    return true;
2181  }
2182
2183  // Alignment of a field access is always okay, so long as it isn't a
2184  // bit-field.
2185  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2186    if (isa<FieldDecl>(ME->getMemberDecl()))
2187      return false;
2188
2189  return S.CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2190}
2191
2192/// \brief Build a sizeof or alignof expression given a type operand.
2193ExprResult
2194Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2195                              SourceLocation OpLoc,
2196                              bool isSizeOf, SourceRange R) {
2197  if (!TInfo)
2198    return ExprError();
2199
2200  QualType T = TInfo->getType();
2201
2202  if (!T->isDependentType() &&
2203      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2204    return ExprError();
2205
2206  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2207  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2208                                               Context.getSizeType(), OpLoc,
2209                                               R.getEnd()));
2210}
2211
2212/// \brief Build a sizeof or alignof expression given an expression
2213/// operand.
2214ExprResult
2215Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2216                              bool isSizeOf, SourceRange R) {
2217  ExprResult PResult = CheckPlaceholderExpr(E, OpLoc);
2218  if (PResult.isInvalid()) return ExprError();
2219  E = PResult.take();
2220
2221  // Verify that the operand is valid.
2222  bool isInvalid = false;
2223  if (E->isTypeDependent()) {
2224    // Delay type-checking for type-dependent expressions.
2225  } else if (!isSizeOf) {
2226    isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
2227  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2228    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2229    isInvalid = true;
2230  } else {
2231    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2232  }
2233
2234  if (isInvalid)
2235    return ExprError();
2236
2237  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2238  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2239                                               Context.getSizeType(), OpLoc,
2240                                               R.getEnd()));
2241}
2242
2243/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2244/// the same for @c alignof and @c __alignof
2245/// Note that the ArgRange is invalid if isType is false.
2246ExprResult
2247Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2248                             void *TyOrEx, const SourceRange &ArgRange) {
2249  // If error parsing type, ignore.
2250  if (TyOrEx == 0) return ExprError();
2251
2252  if (isType) {
2253    TypeSourceInfo *TInfo;
2254    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2255    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2256  }
2257
2258  Expr *ArgEx = (Expr *)TyOrEx;
2259  ExprResult Result
2260    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2261
2262  return move(Result);
2263}
2264
2265QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2266  if (V->isTypeDependent())
2267    return Context.DependentTy;
2268
2269  // These operators return the element type of a complex type.
2270  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2271    return CT->getElementType();
2272
2273  // Otherwise they pass through real integer and floating point types here.
2274  if (V->getType()->isArithmeticType())
2275    return V->getType();
2276
2277  // Reject anything else.
2278  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2279    << (isReal ? "__real" : "__imag");
2280  return QualType();
2281}
2282
2283
2284
2285ExprResult
2286Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2287                          tok::TokenKind Kind, Expr *Input) {
2288  UnaryOperatorKind Opc;
2289  switch (Kind) {
2290  default: assert(0 && "Unknown unary op!");
2291  case tok::plusplus:   Opc = UO_PostInc; break;
2292  case tok::minusminus: Opc = UO_PostDec; break;
2293  }
2294
2295  return BuildUnaryOp(S, OpLoc, Opc, Input);
2296}
2297
2298ExprResult
2299Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2300                              Expr *Idx, SourceLocation RLoc) {
2301  // Since this might be a postfix expression, get rid of ParenListExprs.
2302  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2303  if (Result.isInvalid()) return ExprError();
2304  Base = Result.take();
2305
2306  Expr *LHSExp = Base, *RHSExp = Idx;
2307
2308  if (getLangOptions().CPlusPlus &&
2309      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2310    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2311                                                  Context.DependentTy, RLoc));
2312  }
2313
2314  if (getLangOptions().CPlusPlus &&
2315      (LHSExp->getType()->isRecordType() ||
2316       LHSExp->getType()->isEnumeralType() ||
2317       RHSExp->getType()->isRecordType() ||
2318       RHSExp->getType()->isEnumeralType())) {
2319    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2320  }
2321
2322  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2323}
2324
2325
2326ExprResult
2327Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2328                                     Expr *Idx, SourceLocation RLoc) {
2329  Expr *LHSExp = Base;
2330  Expr *RHSExp = Idx;
2331
2332  // Perform default conversions.
2333  if (!LHSExp->getType()->getAs<VectorType>())
2334      DefaultFunctionArrayLvalueConversion(LHSExp);
2335  DefaultFunctionArrayLvalueConversion(RHSExp);
2336
2337  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2338
2339  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2340  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2341  // in the subscript position. As a result, we need to derive the array base
2342  // and index from the expression types.
2343  Expr *BaseExpr, *IndexExpr;
2344  QualType ResultType;
2345  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2346    BaseExpr = LHSExp;
2347    IndexExpr = RHSExp;
2348    ResultType = Context.DependentTy;
2349  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2350    BaseExpr = LHSExp;
2351    IndexExpr = RHSExp;
2352    ResultType = PTy->getPointeeType();
2353  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2354     // Handle the uncommon case of "123[Ptr]".
2355    BaseExpr = RHSExp;
2356    IndexExpr = LHSExp;
2357    ResultType = PTy->getPointeeType();
2358  } else if (const ObjCObjectPointerType *PTy =
2359               LHSTy->getAs<ObjCObjectPointerType>()) {
2360    BaseExpr = LHSExp;
2361    IndexExpr = RHSExp;
2362    ResultType = PTy->getPointeeType();
2363  } else if (const ObjCObjectPointerType *PTy =
2364               RHSTy->getAs<ObjCObjectPointerType>()) {
2365     // Handle the uncommon case of "123[Ptr]".
2366    BaseExpr = RHSExp;
2367    IndexExpr = LHSExp;
2368    ResultType = PTy->getPointeeType();
2369  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2370    BaseExpr = LHSExp;    // vectors: V[123]
2371    IndexExpr = RHSExp;
2372
2373    // FIXME: need to deal with const...
2374    ResultType = VTy->getElementType();
2375  } else if (LHSTy->isArrayType()) {
2376    // If we see an array that wasn't promoted by
2377    // DefaultFunctionArrayLvalueConversion, it must be an array that
2378    // wasn't promoted because of the C90 rule that doesn't
2379    // allow promoting non-lvalue arrays.  Warn, then
2380    // force the promotion here.
2381    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2382        LHSExp->getSourceRange();
2383    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2384                      CK_ArrayToPointerDecay);
2385    LHSTy = LHSExp->getType();
2386
2387    BaseExpr = LHSExp;
2388    IndexExpr = RHSExp;
2389    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2390  } else if (RHSTy->isArrayType()) {
2391    // Same as previous, except for 123[f().a] case
2392    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2393        RHSExp->getSourceRange();
2394    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2395                      CK_ArrayToPointerDecay);
2396    RHSTy = RHSExp->getType();
2397
2398    BaseExpr = RHSExp;
2399    IndexExpr = LHSExp;
2400    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2401  } else {
2402    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2403       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2404  }
2405  // C99 6.5.2.1p1
2406  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
2407    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2408                     << IndexExpr->getSourceRange());
2409
2410  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2411       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2412         && !IndexExpr->isTypeDependent())
2413    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2414
2415  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2416  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2417  // type. Note that Functions are not objects, and that (in C99 parlance)
2418  // incomplete types are not object types.
2419  if (ResultType->isFunctionType()) {
2420    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2421      << ResultType << BaseExpr->getSourceRange();
2422    return ExprError();
2423  }
2424
2425  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
2426    // GNU extension: subscripting on pointer to void
2427    Diag(LLoc, diag::ext_gnu_void_ptr)
2428      << BaseExpr->getSourceRange();
2429  } else if (!ResultType->isDependentType() &&
2430      RequireCompleteType(LLoc, ResultType,
2431                          PDiag(diag::err_subscript_incomplete_type)
2432                            << BaseExpr->getSourceRange()))
2433    return ExprError();
2434
2435  // Diagnose bad cases where we step over interface counts.
2436  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2437    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2438      << ResultType << BaseExpr->getSourceRange();
2439    return ExprError();
2440  }
2441
2442  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2443                                                ResultType, RLoc));
2444}
2445
2446QualType Sema::
2447CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2448                        const IdentifierInfo *CompName,
2449                        SourceLocation CompLoc) {
2450  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2451  // see FIXME there.
2452  //
2453  // FIXME: This logic can be greatly simplified by splitting it along
2454  // halving/not halving and reworking the component checking.
2455  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2456
2457  // The vector accessor can't exceed the number of elements.
2458  const char *compStr = CompName->getNameStart();
2459
2460  // This flag determines whether or not the component is one of the four
2461  // special names that indicate a subset of exactly half the elements are
2462  // to be selected.
2463  bool HalvingSwizzle = false;
2464
2465  // This flag determines whether or not CompName has an 's' char prefix,
2466  // indicating that it is a string of hex values to be used as vector indices.
2467  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2468
2469  // Check that we've found one of the special components, or that the component
2470  // names must come from the same set.
2471  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2472      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2473    HalvingSwizzle = true;
2474  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2475    do
2476      compStr++;
2477    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2478  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2479    do
2480      compStr++;
2481    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2482  }
2483
2484  if (!HalvingSwizzle && *compStr) {
2485    // We didn't get to the end of the string. This means the component names
2486    // didn't come from the same set *or* we encountered an illegal name.
2487    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2488      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
2489    return QualType();
2490  }
2491
2492  // Ensure no component accessor exceeds the width of the vector type it
2493  // operates on.
2494  if (!HalvingSwizzle) {
2495    compStr = CompName->getNameStart();
2496
2497    if (HexSwizzle)
2498      compStr++;
2499
2500    while (*compStr) {
2501      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2502        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2503          << baseType << SourceRange(CompLoc);
2504        return QualType();
2505      }
2506    }
2507  }
2508
2509  // The component accessor looks fine - now we need to compute the actual type.
2510  // The vector type is implied by the component accessor. For example,
2511  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2512  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2513  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2514  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2515                                     : CompName->getLength();
2516  if (HexSwizzle)
2517    CompSize--;
2518
2519  if (CompSize == 1)
2520    return vecType->getElementType();
2521
2522  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2523  // Now look up the TypeDefDecl from the vector type. Without this,
2524  // diagostics look bad. We want extended vector types to appear built-in.
2525  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2526    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2527      return Context.getTypedefType(ExtVectorDecls[i]);
2528  }
2529  return VT; // should never get here (a typedef type should always be found).
2530}
2531
2532static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2533                                                IdentifierInfo *Member,
2534                                                const Selector &Sel,
2535                                                ASTContext &Context) {
2536  if (Member)
2537    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2538      return PD;
2539  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2540    return OMD;
2541
2542  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2543       E = PDecl->protocol_end(); I != E; ++I) {
2544    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
2545                                                           Context))
2546      return D;
2547  }
2548  return 0;
2549}
2550
2551static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
2552                                      IdentifierInfo *Member,
2553                                      const Selector &Sel,
2554                                      ASTContext &Context) {
2555  // Check protocols on qualified interfaces.
2556  Decl *GDecl = 0;
2557  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2558       E = QIdTy->qual_end(); I != E; ++I) {
2559    if (Member)
2560      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2561        GDecl = PD;
2562        break;
2563      }
2564    // Also must look for a getter or setter name which uses property syntax.
2565    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2566      GDecl = OMD;
2567      break;
2568    }
2569  }
2570  if (!GDecl) {
2571    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2572         E = QIdTy->qual_end(); I != E; ++I) {
2573      // Search in the protocol-qualifier list of current protocol.
2574      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
2575                                                       Context);
2576      if (GDecl)
2577        return GDecl;
2578    }
2579  }
2580  return GDecl;
2581}
2582
2583ExprResult
2584Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
2585                               bool IsArrow, SourceLocation OpLoc,
2586                               const CXXScopeSpec &SS,
2587                               NamedDecl *FirstQualifierInScope,
2588                               const DeclarationNameInfo &NameInfo,
2589                               const TemplateArgumentListInfo *TemplateArgs) {
2590  // Even in dependent contexts, try to diagnose base expressions with
2591  // obviously wrong types, e.g.:
2592  //
2593  // T* t;
2594  // t.f;
2595  //
2596  // In Obj-C++, however, the above expression is valid, since it could be
2597  // accessing the 'f' property if T is an Obj-C interface. The extra check
2598  // allows this, while still reporting an error if T is a struct pointer.
2599  if (!IsArrow) {
2600    const PointerType *PT = BaseType->getAs<PointerType>();
2601    if (PT && (!getLangOptions().ObjC1 ||
2602               PT->getPointeeType()->isRecordType())) {
2603      assert(BaseExpr && "cannot happen with implicit member accesses");
2604      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
2605        << BaseType << BaseExpr->getSourceRange();
2606      return ExprError();
2607    }
2608  }
2609
2610  assert(BaseType->isDependentType() ||
2611         NameInfo.getName().isDependentName() ||
2612         isDependentScopeSpecifier(SS));
2613
2614  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2615  // must have pointer type, and the accessed type is the pointee.
2616  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2617                                                   IsArrow, OpLoc,
2618                                                   SS.getScopeRep(),
2619                                                   SS.getRange(),
2620                                                   FirstQualifierInScope,
2621                                                   NameInfo, TemplateArgs));
2622}
2623
2624/// We know that the given qualified member reference points only to
2625/// declarations which do not belong to the static type of the base
2626/// expression.  Diagnose the problem.
2627static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2628                                             Expr *BaseExpr,
2629                                             QualType BaseType,
2630                                             const CXXScopeSpec &SS,
2631                                             const LookupResult &R) {
2632  // If this is an implicit member access, use a different set of
2633  // diagnostics.
2634  if (!BaseExpr)
2635    return DiagnoseInstanceReference(SemaRef, SS, R);
2636
2637  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2638    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2639}
2640
2641// Check whether the declarations we found through a nested-name
2642// specifier in a member expression are actually members of the base
2643// type.  The restriction here is:
2644//
2645//   C++ [expr.ref]p2:
2646//     ... In these cases, the id-expression shall name a
2647//     member of the class or of one of its base classes.
2648//
2649// So it's perfectly legitimate for the nested-name specifier to name
2650// an unrelated class, and for us to find an overload set including
2651// decls from classes which are not superclasses, as long as the decl
2652// we actually pick through overload resolution is from a superclass.
2653bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2654                                         QualType BaseType,
2655                                         const CXXScopeSpec &SS,
2656                                         const LookupResult &R) {
2657  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2658  if (!BaseRT) {
2659    // We can't check this yet because the base type is still
2660    // dependent.
2661    assert(BaseType->isDependentType());
2662    return false;
2663  }
2664  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2665
2666  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2667    // If this is an implicit member reference and we find a
2668    // non-instance member, it's not an error.
2669    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2670      return false;
2671
2672    // Note that we use the DC of the decl, not the underlying decl.
2673    DeclContext *DC = (*I)->getDeclContext();
2674    while (DC->isTransparentContext())
2675      DC = DC->getParent();
2676
2677    if (!DC->isRecord())
2678      continue;
2679
2680    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2681    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
2682
2683    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2684      return false;
2685  }
2686
2687  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2688  return true;
2689}
2690
2691static bool
2692LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2693                         SourceRange BaseRange, const RecordType *RTy,
2694                         SourceLocation OpLoc, CXXScopeSpec &SS,
2695                         bool HasTemplateArgs) {
2696  RecordDecl *RDecl = RTy->getDecl();
2697  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2698                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2699                                    << BaseRange))
2700    return true;
2701
2702  if (HasTemplateArgs) {
2703    // LookupTemplateName doesn't expect these both to exist simultaneously.
2704    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
2705
2706    bool MOUS;
2707    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
2708    return false;
2709  }
2710
2711  DeclContext *DC = RDecl;
2712  if (SS.isSet()) {
2713    // If the member name was a qualified-id, look into the
2714    // nested-name-specifier.
2715    DC = SemaRef.computeDeclContext(SS, false);
2716
2717    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2718      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2719        << SS.getRange() << DC;
2720      return true;
2721    }
2722
2723    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2724
2725    if (!isa<TypeDecl>(DC)) {
2726      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2727        << DC << SS.getRange();
2728      return true;
2729    }
2730  }
2731
2732  // The record definition is complete, now look up the member.
2733  SemaRef.LookupQualifiedName(R, DC);
2734
2735  if (!R.empty())
2736    return false;
2737
2738  // We didn't find anything with the given name, so try to correct
2739  // for typos.
2740  DeclarationName Name = R.getLookupName();
2741  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2742      !R.empty() &&
2743      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2744    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2745      << Name << DC << R.getLookupName() << SS.getRange()
2746      << FixItHint::CreateReplacement(R.getNameLoc(),
2747                                      R.getLookupName().getAsString());
2748    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2749      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2750        << ND->getDeclName();
2751    return false;
2752  } else {
2753    R.clear();
2754    R.setLookupName(Name);
2755  }
2756
2757  return false;
2758}
2759
2760ExprResult
2761Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
2762                               SourceLocation OpLoc, bool IsArrow,
2763                               CXXScopeSpec &SS,
2764                               NamedDecl *FirstQualifierInScope,
2765                               const DeclarationNameInfo &NameInfo,
2766                               const TemplateArgumentListInfo *TemplateArgs) {
2767  if (BaseType->isDependentType() ||
2768      (SS.isSet() && isDependentScopeSpecifier(SS)))
2769    return ActOnDependentMemberExpr(Base, BaseType,
2770                                    IsArrow, OpLoc,
2771                                    SS, FirstQualifierInScope,
2772                                    NameInfo, TemplateArgs);
2773
2774  LookupResult R(*this, NameInfo, LookupMemberName);
2775
2776  // Implicit member accesses.
2777  if (!Base) {
2778    QualType RecordTy = BaseType;
2779    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2780    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2781                                 RecordTy->getAs<RecordType>(),
2782                                 OpLoc, SS, TemplateArgs != 0))
2783      return ExprError();
2784
2785  // Explicit member accesses.
2786  } else {
2787    ExprResult Result =
2788      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2789                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
2790
2791    if (Result.isInvalid()) {
2792      Owned(Base);
2793      return ExprError();
2794    }
2795
2796    if (Result.get())
2797      return move(Result);
2798
2799    // LookupMemberExpr can modify Base, and thus change BaseType
2800    BaseType = Base->getType();
2801  }
2802
2803  return BuildMemberReferenceExpr(Base, BaseType,
2804                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2805                                  R, TemplateArgs);
2806}
2807
2808ExprResult
2809Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
2810                               SourceLocation OpLoc, bool IsArrow,
2811                               const CXXScopeSpec &SS,
2812                               NamedDecl *FirstQualifierInScope,
2813                               LookupResult &R,
2814                         const TemplateArgumentListInfo *TemplateArgs,
2815                               bool SuppressQualifierCheck) {
2816  QualType BaseType = BaseExprType;
2817  if (IsArrow) {
2818    assert(BaseType->isPointerType());
2819    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2820  }
2821  R.setBaseObjectType(BaseType);
2822
2823  NestedNameSpecifier *Qualifier = SS.getScopeRep();
2824  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
2825  DeclarationName MemberName = MemberNameInfo.getName();
2826  SourceLocation MemberLoc = MemberNameInfo.getLoc();
2827
2828  if (R.isAmbiguous())
2829    return ExprError();
2830
2831  if (R.empty()) {
2832    // Rederive where we looked up.
2833    DeclContext *DC = (SS.isSet()
2834                       ? computeDeclContext(SS, false)
2835                       : BaseType->getAs<RecordType>()->getDecl());
2836
2837    Diag(R.getNameLoc(), diag::err_no_member)
2838      << MemberName << DC
2839      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2840    return ExprError();
2841  }
2842
2843  // Diagnose lookups that find only declarations from a non-base
2844  // type.  This is possible for either qualified lookups (which may
2845  // have been qualified with an unrelated type) or implicit member
2846  // expressions (which were found with unqualified lookup and thus
2847  // may have come from an enclosing scope).  Note that it's okay for
2848  // lookup to find declarations from a non-base type as long as those
2849  // aren't the ones picked by overload resolution.
2850  if ((SS.isSet() || !BaseExpr ||
2851       (isa<CXXThisExpr>(BaseExpr) &&
2852        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2853      !SuppressQualifierCheck &&
2854      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2855    return ExprError();
2856
2857  // Construct an unresolved result if we in fact got an unresolved
2858  // result.
2859  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2860    bool Dependent =
2861      BaseExprType->isDependentType() ||
2862      R.isUnresolvableResult() ||
2863      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2864
2865    // Suppress any lookup-related diagnostics; we'll do these when we
2866    // pick a member.
2867    R.suppressDiagnostics();
2868
2869    UnresolvedMemberExpr *MemExpr
2870      = UnresolvedMemberExpr::Create(Context, Dependent,
2871                                     R.isUnresolvableResult(),
2872                                     BaseExpr, BaseExprType,
2873                                     IsArrow, OpLoc,
2874                                     Qualifier, SS.getRange(),
2875                                     MemberNameInfo,
2876                                     TemplateArgs, R.begin(), R.end());
2877
2878    return Owned(MemExpr);
2879  }
2880
2881  assert(R.isSingleResult());
2882  DeclAccessPair FoundDecl = R.begin().getPair();
2883  NamedDecl *MemberDecl = R.getFoundDecl();
2884
2885  // FIXME: diagnose the presence of template arguments now.
2886
2887  // If the decl being referenced had an error, return an error for this
2888  // sub-expr without emitting another error, in order to avoid cascading
2889  // error cases.
2890  if (MemberDecl->isInvalidDecl())
2891    return ExprError();
2892
2893  // Handle the implicit-member-access case.
2894  if (!BaseExpr) {
2895    // If this is not an instance member, convert to a non-member access.
2896    if (!MemberDecl->isCXXInstanceMember())
2897      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
2898
2899    SourceLocation Loc = R.getNameLoc();
2900    if (SS.getRange().isValid())
2901      Loc = SS.getRange().getBegin();
2902    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2903  }
2904
2905  bool ShouldCheckUse = true;
2906  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2907    // Don't diagnose the use of a virtual member function unless it's
2908    // explicitly qualified.
2909    if (MD->isVirtual() && !SS.isSet())
2910      ShouldCheckUse = false;
2911  }
2912
2913  // Check the use of this member.
2914  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2915    Owned(BaseExpr);
2916    return ExprError();
2917  }
2918
2919  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2920    // We may have found a field within an anonymous union or struct
2921    // (C++ [class.union]).
2922    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2923        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2924      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2925                                                      BaseExpr, OpLoc);
2926
2927    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2928    QualType MemberType = FD->getType();
2929    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2930      MemberType = Ref->getPointeeType();
2931    else {
2932      Qualifiers BaseQuals = BaseType.getQualifiers();
2933      BaseQuals.removeObjCGCAttr();
2934      if (FD->isMutable()) BaseQuals.removeConst();
2935
2936      Qualifiers MemberQuals
2937        = Context.getCanonicalType(MemberType).getQualifiers();
2938
2939      Qualifiers Combined = BaseQuals + MemberQuals;
2940      if (Combined != MemberQuals)
2941        MemberType = Context.getQualifiedType(MemberType, Combined);
2942    }
2943
2944    MarkDeclarationReferenced(MemberLoc, FD);
2945    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2946      return ExprError();
2947    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2948                                 FD, FoundDecl, MemberNameInfo,
2949                                 MemberType));
2950  }
2951
2952  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2953    MarkDeclarationReferenced(MemberLoc, Var);
2954    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2955                                 Var, FoundDecl, MemberNameInfo,
2956                                 Var->getType().getNonReferenceType()));
2957  }
2958
2959  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2960    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2961    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2962                                 MemberFn, FoundDecl, MemberNameInfo,
2963                                 MemberFn->getType()));
2964  }
2965
2966  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2967    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2968    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2969                                 Enum, FoundDecl, MemberNameInfo,
2970                                 Enum->getType()));
2971  }
2972
2973  Owned(BaseExpr);
2974
2975  // We found something that we didn't expect. Complain.
2976  if (isa<TypeDecl>(MemberDecl))
2977    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
2978      << MemberName << BaseType << int(IsArrow);
2979  else
2980    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2981      << MemberName << BaseType << int(IsArrow);
2982
2983  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2984    << MemberName;
2985  R.suppressDiagnostics();
2986  return ExprError();
2987}
2988
2989/// Look up the given member of the given non-type-dependent
2990/// expression.  This can return in one of two ways:
2991///  * If it returns a sentinel null-but-valid result, the caller will
2992///    assume that lookup was performed and the results written into
2993///    the provided structure.  It will take over from there.
2994///  * Otherwise, the returned expression will be produced in place of
2995///    an ordinary member expression.
2996///
2997/// The ObjCImpDecl bit is a gross hack that will need to be properly
2998/// fixed for ObjC++.
2999ExprResult
3000Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
3001                       bool &IsArrow, SourceLocation OpLoc,
3002                       CXXScopeSpec &SS,
3003                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
3004  assert(BaseExpr && "no base expression");
3005
3006  // Perform default conversions.
3007  DefaultFunctionArrayConversion(BaseExpr);
3008
3009  QualType BaseType = BaseExpr->getType();
3010  assert(!BaseType->isDependentType());
3011
3012  DeclarationName MemberName = R.getLookupName();
3013  SourceLocation MemberLoc = R.getNameLoc();
3014
3015  // If the user is trying to apply -> or . to a function pointer
3016  // type, it's probably because they forgot parentheses to call that
3017  // function. Suggest the addition of those parentheses, build the
3018  // call, and continue on.
3019  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3020    if (const FunctionProtoType *Fun
3021          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
3022      QualType ResultTy = Fun->getResultType();
3023      if (Fun->getNumArgs() == 0 &&
3024          ((!IsArrow && ResultTy->isRecordType()) ||
3025           (IsArrow && ResultTy->isPointerType() &&
3026            ResultTy->getAs<PointerType>()->getPointeeType()
3027                                                          ->isRecordType()))) {
3028        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
3029        Diag(Loc, diag::err_member_reference_needs_call)
3030          << QualType(Fun, 0)
3031          << FixItHint::CreateInsertion(Loc, "()");
3032
3033        ExprResult NewBase
3034          = ActOnCallExpr(0, BaseExpr, Loc, MultiExprArg(*this, 0, 0), Loc);
3035        BaseExpr = 0;
3036        if (NewBase.isInvalid())
3037          return ExprError();
3038
3039        BaseExpr = NewBase.takeAs<Expr>();
3040        DefaultFunctionArrayConversion(BaseExpr);
3041        BaseType = BaseExpr->getType();
3042      }
3043    }
3044  }
3045
3046  // If this is an Objective-C pseudo-builtin and a definition is provided then
3047  // use that.
3048  if (BaseType->isObjCIdType()) {
3049    if (IsArrow) {
3050      // Handle the following exceptional case PObj->isa.
3051      if (const ObjCObjectPointerType *OPT =
3052          BaseType->getAs<ObjCObjectPointerType>()) {
3053        if (OPT->getObjectType()->isObjCId() &&
3054            MemberName.getAsIdentifierInfo()->isStr("isa"))
3055          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
3056                                                 Context.getObjCClassType()));
3057      }
3058    }
3059    // We have an 'id' type. Rather than fall through, we check if this
3060    // is a reference to 'isa'.
3061    if (BaseType != Context.ObjCIdRedefinitionType) {
3062      BaseType = Context.ObjCIdRedefinitionType;
3063      ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3064    }
3065  }
3066
3067  // If this is an Objective-C pseudo-builtin and a definition is provided then
3068  // use that.
3069  if (Context.isObjCSelType(BaseType)) {
3070    // We have an 'SEL' type. Rather than fall through, we check if this
3071    // is a reference to 'sel_id'.
3072    if (BaseType != Context.ObjCSelRedefinitionType) {
3073      BaseType = Context.ObjCSelRedefinitionType;
3074      ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3075    }
3076  }
3077
3078  assert(!BaseType.isNull() && "no type for member expression");
3079
3080  // Handle properties on ObjC 'Class' types.
3081  if (!IsArrow && BaseType->isObjCClassType()) {
3082    // Also must look for a getter name which uses property syntax.
3083    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3084    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3085    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3086      ObjCInterfaceDecl *IFace = MD->getClassInterface();
3087      ObjCMethodDecl *Getter;
3088      // FIXME: need to also look locally in the implementation.
3089      if ((Getter = IFace->lookupClassMethod(Sel))) {
3090        // Check the use of this method.
3091        if (DiagnoseUseOfDecl(Getter, MemberLoc))
3092          return ExprError();
3093      }
3094      // If we found a getter then this may be a valid dot-reference, we
3095      // will look for the matching setter, in case it is needed.
3096      Selector SetterSel =
3097      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3098                                         PP.getSelectorTable(), Member);
3099      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
3100      if (!Setter) {
3101        // If this reference is in an @implementation, also check for 'private'
3102        // methods.
3103        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3104      }
3105      // Look through local category implementations associated with the class.
3106      if (!Setter)
3107        Setter = IFace->getCategoryClassMethod(SetterSel);
3108
3109      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3110        return ExprError();
3111
3112      if (Getter || Setter) {
3113        QualType PType;
3114
3115        if (Getter)
3116          PType = Getter->getSendResultType();
3117        else
3118          // Get the expression type from Setter's incoming parameter.
3119          PType = (*(Setter->param_end() -1))->getType();
3120        // FIXME: we must check that the setter has property type.
3121        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
3122                                                  PType,
3123                                                  Setter, MemberLoc, BaseExpr));
3124      }
3125      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3126                       << MemberName << BaseType);
3127    }
3128  }
3129
3130  if (BaseType->isObjCClassType() &&
3131      BaseType != Context.ObjCClassRedefinitionType) {
3132    BaseType = Context.ObjCClassRedefinitionType;
3133    ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3134  }
3135
3136  if (IsArrow) {
3137    if (const PointerType *PT = BaseType->getAs<PointerType>())
3138      BaseType = PT->getPointeeType();
3139    else if (BaseType->isObjCObjectPointerType())
3140      ;
3141    else if (BaseType->isRecordType()) {
3142      // Recover from arrow accesses to records, e.g.:
3143      //   struct MyRecord foo;
3144      //   foo->bar
3145      // This is actually well-formed in C++ if MyRecord has an
3146      // overloaded operator->, but that should have been dealt with
3147      // by now.
3148      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3149        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3150        << FixItHint::CreateReplacement(OpLoc, ".");
3151      IsArrow = false;
3152    } else {
3153      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3154        << BaseType << BaseExpr->getSourceRange();
3155      return ExprError();
3156    }
3157  } else {
3158    // Recover from dot accesses to pointers, e.g.:
3159    //   type *foo;
3160    //   foo.bar
3161    // This is actually well-formed in two cases:
3162    //   - 'type' is an Objective C type
3163    //   - 'bar' is a pseudo-destructor name which happens to refer to
3164    //     the appropriate pointer type
3165    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3166      const PointerType *PT = BaseType->getAs<PointerType>();
3167      if (PT && PT->getPointeeType()->isRecordType()) {
3168        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3169          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3170          << FixItHint::CreateReplacement(OpLoc, "->");
3171        BaseType = PT->getPointeeType();
3172        IsArrow = true;
3173      }
3174    }
3175  }
3176
3177  // Handle field access to simple records.
3178  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3179    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3180                                 RTy, OpLoc, SS, HasTemplateArgs))
3181      return ExprError();
3182    return Owned((Expr*) 0);
3183  }
3184
3185  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3186  // (*Obj).ivar.
3187  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3188      (!IsArrow && BaseType->isObjCObjectType())) {
3189    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3190    ObjCInterfaceDecl *IDecl =
3191      OPT ? OPT->getInterfaceDecl()
3192          : BaseType->getAs<ObjCObjectType>()->getInterface();
3193    if (IDecl) {
3194      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3195
3196      ObjCInterfaceDecl *ClassDeclared;
3197      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3198
3199      if (!IV) {
3200        // Attempt to correct for typos in ivar names.
3201        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3202                         LookupMemberName);
3203        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3204            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3205          Diag(R.getNameLoc(),
3206               diag::err_typecheck_member_reference_ivar_suggest)
3207            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3208            << FixItHint::CreateReplacement(R.getNameLoc(),
3209                                            IV->getNameAsString());
3210          Diag(IV->getLocation(), diag::note_previous_decl)
3211            << IV->getDeclName();
3212        } else {
3213          Res.clear();
3214          Res.setLookupName(Member);
3215        }
3216      }
3217
3218      if (IV) {
3219        // If the decl being referenced had an error, return an error for this
3220        // sub-expr without emitting another error, in order to avoid cascading
3221        // error cases.
3222        if (IV->isInvalidDecl())
3223          return ExprError();
3224
3225        // Check whether we can reference this field.
3226        if (DiagnoseUseOfDecl(IV, MemberLoc))
3227          return ExprError();
3228        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3229            IV->getAccessControl() != ObjCIvarDecl::Package) {
3230          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3231          if (ObjCMethodDecl *MD = getCurMethodDecl())
3232            ClassOfMethodDecl =  MD->getClassInterface();
3233          else if (ObjCImpDecl && getCurFunctionDecl()) {
3234            // Case of a c-function declared inside an objc implementation.
3235            // FIXME: For a c-style function nested inside an objc implementation
3236            // class, there is no implementation context available, so we pass
3237            // down the context as argument to this routine. Ideally, this context
3238            // need be passed down in the AST node and somehow calculated from the
3239            // AST for a function decl.
3240            if (ObjCImplementationDecl *IMPD =
3241                dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
3242              ClassOfMethodDecl = IMPD->getClassInterface();
3243            else if (ObjCCategoryImplDecl* CatImplClass =
3244                        dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
3245              ClassOfMethodDecl = CatImplClass->getClassInterface();
3246          }
3247
3248          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3249            if (ClassDeclared != IDecl ||
3250                ClassOfMethodDecl != ClassDeclared)
3251              Diag(MemberLoc, diag::error_private_ivar_access)
3252                << IV->getDeclName();
3253          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3254            // @protected
3255            Diag(MemberLoc, diag::error_protected_ivar_access)
3256              << IV->getDeclName();
3257        }
3258
3259        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3260                                                   MemberLoc, BaseExpr,
3261                                                   IsArrow));
3262      }
3263      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3264                         << IDecl->getDeclName() << MemberName
3265                         << BaseExpr->getSourceRange());
3266    }
3267  }
3268  // Handle properties on 'id' and qualified "id".
3269  if (!IsArrow && (BaseType->isObjCIdType() ||
3270                   BaseType->isObjCQualifiedIdType())) {
3271    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3272    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3273
3274    // Check protocols on qualified interfaces.
3275    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3276    if (Decl *PMDecl = FindGetterSetterNameDecl(QIdTy, Member, Sel,
3277                                                Context)) {
3278      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3279        // Check the use of this declaration
3280        if (DiagnoseUseOfDecl(PD, MemberLoc))
3281          return ExprError();
3282
3283        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3284                                                       MemberLoc, BaseExpr));
3285      }
3286      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3287        // Check the use of this method.
3288        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3289          return ExprError();
3290        Selector SetterSel =
3291          SelectorTable::constructSetterName(PP.getIdentifierTable(),
3292                                             PP.getSelectorTable(), Member);
3293        ObjCMethodDecl *SMD = 0;
3294        if (Decl *SDecl = FindGetterSetterNameDecl(QIdTy, /*Property id*/0,
3295                                                   SetterSel, Context))
3296          SMD = dyn_cast<ObjCMethodDecl>(SDecl);
3297        QualType PType = OMD->getSendResultType();
3298        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(OMD, PType,
3299                                                                   SMD,
3300                                                                   MemberLoc,
3301                                                                   BaseExpr));
3302      }
3303    }
3304
3305    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3306                       << MemberName << BaseType);
3307  }
3308
3309  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3310  // pointer to a (potentially qualified) interface type.
3311  if (!IsArrow)
3312    if (const ObjCObjectPointerType *OPT =
3313          BaseType->getAsObjCInterfacePointerType())
3314      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3315
3316  // Handle the following exceptional case (*Obj).isa.
3317  if (!IsArrow &&
3318      BaseType->isObjCObjectType() &&
3319      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3320      MemberName.getAsIdentifierInfo()->isStr("isa"))
3321    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3322                                           Context.getObjCClassType()));
3323
3324  // Handle 'field access' to vectors, such as 'V.xx'.
3325  if (BaseType->isExtVectorType()) {
3326    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3327    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3328    if (ret.isNull())
3329      return ExprError();
3330    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3331                                                    MemberLoc));
3332  }
3333
3334  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3335    << BaseType << BaseExpr->getSourceRange();
3336
3337  return ExprError();
3338}
3339
3340/// The main callback when the parser finds something like
3341///   expression . [nested-name-specifier] identifier
3342///   expression -> [nested-name-specifier] identifier
3343/// where 'identifier' encompasses a fairly broad spectrum of
3344/// possibilities, including destructor and operator references.
3345///
3346/// \param OpKind either tok::arrow or tok::period
3347/// \param HasTrailingLParen whether the next token is '(', which
3348///   is used to diagnose mis-uses of special members that can
3349///   only be called
3350/// \param ObjCImpDecl the current ObjC @implementation decl;
3351///   this is an ugly hack around the fact that ObjC @implementations
3352///   aren't properly put in the context chain
3353ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
3354                                                   SourceLocation OpLoc,
3355                                                   tok::TokenKind OpKind,
3356                                                   CXXScopeSpec &SS,
3357                                                   UnqualifiedId &Id,
3358                                                   Decl *ObjCImpDecl,
3359                                                   bool HasTrailingLParen) {
3360  if (SS.isSet() && SS.isInvalid())
3361    return ExprError();
3362
3363  TemplateArgumentListInfo TemplateArgsBuffer;
3364
3365  // Decompose the name into its component parts.
3366  DeclarationNameInfo NameInfo;
3367  const TemplateArgumentListInfo *TemplateArgs;
3368  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3369                         NameInfo, TemplateArgs);
3370
3371  DeclarationName Name = NameInfo.getName();
3372  bool IsArrow = (OpKind == tok::arrow);
3373
3374  NamedDecl *FirstQualifierInScope
3375    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3376                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3377
3378  // This is a postfix expression, so get rid of ParenListExprs.
3379  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3380  if (Result.isInvalid()) return ExprError();
3381  Base = Result.take();
3382
3383  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3384      isDependentScopeSpecifier(SS)) {
3385    Result = ActOnDependentMemberExpr(Base, Base->getType(),
3386                                      IsArrow, OpLoc,
3387                                      SS, FirstQualifierInScope,
3388                                      NameInfo, TemplateArgs);
3389  } else {
3390    LookupResult R(*this, NameInfo, LookupMemberName);
3391    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3392                              SS, ObjCImpDecl, TemplateArgs != 0);
3393
3394    if (Result.isInvalid()) {
3395      Owned(Base);
3396      return ExprError();
3397    }
3398
3399    if (Result.get()) {
3400      // The only way a reference to a destructor can be used is to
3401      // immediately call it, which falls into this case.  If the
3402      // next token is not a '(', produce a diagnostic and build the
3403      // call now.
3404      if (!HasTrailingLParen &&
3405          Id.getKind() == UnqualifiedId::IK_DestructorName)
3406        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
3407
3408      return move(Result);
3409    }
3410
3411    Result = BuildMemberReferenceExpr(Base, Base->getType(),
3412                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3413                                      R, TemplateArgs);
3414  }
3415
3416  return move(Result);
3417}
3418
3419ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3420                                                    FunctionDecl *FD,
3421                                                    ParmVarDecl *Param) {
3422  if (Param->hasUnparsedDefaultArg()) {
3423    Diag(CallLoc,
3424          diag::err_use_of_default_argument_to_function_declared_later) <<
3425      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3426    Diag(UnparsedDefaultArgLocs[Param],
3427          diag::note_default_argument_declared_here);
3428    return ExprError();
3429  }
3430
3431  if (Param->hasUninstantiatedDefaultArg()) {
3432    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3433
3434    // Instantiate the expression.
3435    MultiLevelTemplateArgumentList ArgList
3436      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3437
3438    std::pair<const TemplateArgument *, unsigned> Innermost
3439      = ArgList.getInnermost();
3440    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3441                               Innermost.second);
3442
3443    ExprResult Result = SubstExpr(UninstExpr, ArgList);
3444    if (Result.isInvalid())
3445      return ExprError();
3446
3447    // Check the expression as an initializer for the parameter.
3448    InitializedEntity Entity
3449      = InitializedEntity::InitializeParameter(Context, Param);
3450    InitializationKind Kind
3451      = InitializationKind::CreateCopy(Param->getLocation(),
3452             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3453    Expr *ResultE = Result.takeAs<Expr>();
3454
3455    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3456    Result = InitSeq.Perform(*this, Entity, Kind,
3457                             MultiExprArg(*this, &ResultE, 1));
3458    if (Result.isInvalid())
3459      return ExprError();
3460
3461    // Build the default argument expression.
3462    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3463                                           Result.takeAs<Expr>()));
3464  }
3465
3466  // If the default expression creates temporaries, we need to
3467  // push them to the current stack of expression temporaries so they'll
3468  // be properly destroyed.
3469  // FIXME: We should really be rebuilding the default argument with new
3470  // bound temporaries; see the comment in PR5810.
3471  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
3472    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
3473    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
3474                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
3475    ExprTemporaries.push_back(Temporary);
3476  }
3477
3478  // We already type-checked the argument, so we know it works.
3479  // Just mark all of the declarations in this potentially-evaluated expression
3480  // as being "referenced".
3481  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3482  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3483}
3484
3485/// ConvertArgumentsForCall - Converts the arguments specified in
3486/// Args/NumArgs to the parameter types of the function FDecl with
3487/// function prototype Proto. Call is the call expression itself, and
3488/// Fn is the function expression. For a C++ member function, this
3489/// routine does not attempt to convert the object argument. Returns
3490/// true if the call is ill-formed.
3491bool
3492Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3493                              FunctionDecl *FDecl,
3494                              const FunctionProtoType *Proto,
3495                              Expr **Args, unsigned NumArgs,
3496                              SourceLocation RParenLoc) {
3497  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3498  // assignment, to the types of the corresponding parameter, ...
3499  unsigned NumArgsInProto = Proto->getNumArgs();
3500  bool Invalid = false;
3501
3502  // If too few arguments are available (and we don't have default
3503  // arguments for the remaining parameters), don't make the call.
3504  if (NumArgs < NumArgsInProto) {
3505    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3506      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3507        << Fn->getType()->isBlockPointerType()
3508        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3509    Call->setNumArgs(Context, NumArgsInProto);
3510  }
3511
3512  // If too many are passed and not variadic, error on the extras and drop
3513  // them.
3514  if (NumArgs > NumArgsInProto) {
3515    if (!Proto->isVariadic()) {
3516      Diag(Args[NumArgsInProto]->getLocStart(),
3517           diag::err_typecheck_call_too_many_args)
3518        << Fn->getType()->isBlockPointerType()
3519        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3520        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3521                       Args[NumArgs-1]->getLocEnd());
3522      // This deletes the extra arguments.
3523      Call->setNumArgs(Context, NumArgsInProto);
3524      return true;
3525    }
3526  }
3527  llvm::SmallVector<Expr *, 8> AllArgs;
3528  VariadicCallType CallType =
3529    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3530  if (Fn->getType()->isBlockPointerType())
3531    CallType = VariadicBlock; // Block
3532  else if (isa<MemberExpr>(Fn))
3533    CallType = VariadicMethod;
3534  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3535                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3536  if (Invalid)
3537    return true;
3538  unsigned TotalNumArgs = AllArgs.size();
3539  for (unsigned i = 0; i < TotalNumArgs; ++i)
3540    Call->setArg(i, AllArgs[i]);
3541
3542  return false;
3543}
3544
3545bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3546                                  FunctionDecl *FDecl,
3547                                  const FunctionProtoType *Proto,
3548                                  unsigned FirstProtoArg,
3549                                  Expr **Args, unsigned NumArgs,
3550                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3551                                  VariadicCallType CallType) {
3552  unsigned NumArgsInProto = Proto->getNumArgs();
3553  unsigned NumArgsToCheck = NumArgs;
3554  bool Invalid = false;
3555  if (NumArgs != NumArgsInProto)
3556    // Use default arguments for missing arguments
3557    NumArgsToCheck = NumArgsInProto;
3558  unsigned ArgIx = 0;
3559  // Continue to check argument types (even if we have too few/many args).
3560  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3561    QualType ProtoArgType = Proto->getArgType(i);
3562
3563    Expr *Arg;
3564    if (ArgIx < NumArgs) {
3565      Arg = Args[ArgIx++];
3566
3567      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3568                              ProtoArgType,
3569                              PDiag(diag::err_call_incomplete_argument)
3570                              << Arg->getSourceRange()))
3571        return true;
3572
3573      // Pass the argument
3574      ParmVarDecl *Param = 0;
3575      if (FDecl && i < FDecl->getNumParams())
3576        Param = FDecl->getParamDecl(i);
3577
3578      InitializedEntity Entity =
3579        Param? InitializedEntity::InitializeParameter(Context, Param)
3580             : InitializedEntity::InitializeParameter(Context, ProtoArgType);
3581      ExprResult ArgE = PerformCopyInitialization(Entity,
3582                                                        SourceLocation(),
3583                                                        Owned(Arg));
3584      if (ArgE.isInvalid())
3585        return true;
3586
3587      Arg = ArgE.takeAs<Expr>();
3588    } else {
3589      ParmVarDecl *Param = FDecl->getParamDecl(i);
3590
3591      ExprResult ArgExpr =
3592        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3593      if (ArgExpr.isInvalid())
3594        return true;
3595
3596      Arg = ArgExpr.takeAs<Expr>();
3597    }
3598    AllArgs.push_back(Arg);
3599  }
3600
3601  // If this is a variadic call, handle args passed through "...".
3602  if (CallType != VariadicDoesNotApply) {
3603    // Promote the arguments (C99 6.5.2.2p7).
3604    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3605      Expr *Arg = Args[i];
3606      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3607      AllArgs.push_back(Arg);
3608    }
3609  }
3610  return Invalid;
3611}
3612
3613/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3614/// This provides the location of the left/right parens and a list of comma
3615/// locations.
3616ExprResult
3617Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3618                    MultiExprArg args, SourceLocation RParenLoc) {
3619  unsigned NumArgs = args.size();
3620
3621  // Since this might be a postfix expression, get rid of ParenListExprs.
3622  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3623  if (Result.isInvalid()) return ExprError();
3624  Fn = Result.take();
3625
3626  Expr **Args = args.release();
3627
3628  if (getLangOptions().CPlusPlus) {
3629    // If this is a pseudo-destructor expression, build the call immediately.
3630    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3631      if (NumArgs > 0) {
3632        // Pseudo-destructor calls should not have any arguments.
3633        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3634          << FixItHint::CreateRemoval(
3635                                    SourceRange(Args[0]->getLocStart(),
3636                                                Args[NumArgs-1]->getLocEnd()));
3637
3638        NumArgs = 0;
3639      }
3640
3641      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3642                                          RParenLoc));
3643    }
3644
3645    // Determine whether this is a dependent call inside a C++ template,
3646    // in which case we won't do any semantic analysis now.
3647    // FIXME: Will need to cache the results of name lookup (including ADL) in
3648    // Fn.
3649    bool Dependent = false;
3650    if (Fn->isTypeDependent())
3651      Dependent = true;
3652    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3653      Dependent = true;
3654
3655    if (Dependent)
3656      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3657                                          Context.DependentTy, RParenLoc));
3658
3659    // Determine whether this is a call to an object (C++ [over.call.object]).
3660    if (Fn->getType()->isRecordType())
3661      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3662                                                RParenLoc));
3663
3664    Expr *NakedFn = Fn->IgnoreParens();
3665
3666    // Determine whether this is a call to an unresolved member function.
3667    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3668      // If lookup was unresolved but not dependent (i.e. didn't find
3669      // an unresolved using declaration), it has to be an overloaded
3670      // function set, which means it must contain either multiple
3671      // declarations (all methods or method templates) or a single
3672      // method template.
3673      assert((MemE->getNumDecls() > 1) ||
3674             isa<FunctionTemplateDecl>(
3675                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3676      (void)MemE;
3677
3678      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3679                                       RParenLoc);
3680    }
3681
3682    // Determine whether this is a call to a member function.
3683    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3684      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3685      if (isa<CXXMethodDecl>(MemDecl))
3686        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3687                                         RParenLoc);
3688    }
3689
3690    // Determine whether this is a call to a pointer-to-member function.
3691    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3692      if (BO->getOpcode() == BO_PtrMemD ||
3693          BO->getOpcode() == BO_PtrMemI) {
3694        if (const FunctionProtoType *FPT
3695                                = BO->getType()->getAs<FunctionProtoType>()) {
3696          QualType ResultTy = FPT->getCallResultType(Context);
3697
3698          CXXMemberCallExpr *TheCall
3699            = new (Context) CXXMemberCallExpr(Context, BO, Args,
3700                                              NumArgs, ResultTy,
3701                                              RParenLoc);
3702
3703          if (CheckCallReturnType(FPT->getResultType(),
3704                                  BO->getRHS()->getSourceRange().getBegin(),
3705                                  TheCall, 0))
3706            return ExprError();
3707
3708          if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
3709                                      RParenLoc))
3710            return ExprError();
3711
3712          return MaybeBindToTemporary(TheCall);
3713        }
3714        return ExprError(Diag(Fn->getLocStart(),
3715                              diag::err_typecheck_call_not_function)
3716                              << Fn->getType() << Fn->getSourceRange());
3717      }
3718    }
3719  }
3720
3721  // If we're directly calling a function, get the appropriate declaration.
3722  // Also, in C++, keep track of whether we should perform argument-dependent
3723  // lookup and whether there were any explicitly-specified template arguments.
3724
3725  Expr *NakedFn = Fn->IgnoreParens();
3726  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3727    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3728    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3729                                   RParenLoc);
3730  }
3731
3732  NamedDecl *NDecl = 0;
3733  if (isa<DeclRefExpr>(NakedFn))
3734    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3735
3736  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3737}
3738
3739/// BuildResolvedCallExpr - Build a call to a resolved expression,
3740/// i.e. an expression not of \p OverloadTy.  The expression should
3741/// unary-convert to an expression of function-pointer or
3742/// block-pointer type.
3743///
3744/// \param NDecl the declaration being called, if available
3745ExprResult
3746Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3747                            SourceLocation LParenLoc,
3748                            Expr **Args, unsigned NumArgs,
3749                            SourceLocation RParenLoc) {
3750  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3751
3752  // Promote the function operand.
3753  UsualUnaryConversions(Fn);
3754
3755  // Make the call expr early, before semantic checks.  This guarantees cleanup
3756  // of arguments and function on error.
3757  CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
3758                                             Args, NumArgs,
3759                                             Context.BoolTy,
3760                                             RParenLoc);
3761
3762  const FunctionType *FuncT;
3763  if (!Fn->getType()->isBlockPointerType()) {
3764    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3765    // have type pointer to function".
3766    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3767    if (PT == 0)
3768      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3769        << Fn->getType() << Fn->getSourceRange());
3770    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3771  } else { // This is a block call.
3772    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3773                getAs<FunctionType>();
3774  }
3775  if (FuncT == 0)
3776    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3777      << Fn->getType() << Fn->getSourceRange());
3778
3779  // Check for a valid return type
3780  if (CheckCallReturnType(FuncT->getResultType(),
3781                          Fn->getSourceRange().getBegin(), TheCall,
3782                          FDecl))
3783    return ExprError();
3784
3785  // We know the result type of the call, set it.
3786  TheCall->setType(FuncT->getCallResultType(Context));
3787
3788  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3789    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3790                                RParenLoc))
3791      return ExprError();
3792  } else {
3793    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3794
3795    if (FDecl) {
3796      // Check if we have too few/too many template arguments, based
3797      // on our knowledge of the function definition.
3798      const FunctionDecl *Def = 0;
3799      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3800        const FunctionProtoType *Proto =
3801            Def->getType()->getAs<FunctionProtoType>();
3802        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3803          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3804            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3805        }
3806      }
3807    }
3808
3809    // Promote the arguments (C99 6.5.2.2p6).
3810    for (unsigned i = 0; i != NumArgs; i++) {
3811      Expr *Arg = Args[i];
3812      DefaultArgumentPromotion(Arg);
3813      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3814                              Arg->getType(),
3815                              PDiag(diag::err_call_incomplete_argument)
3816                                << Arg->getSourceRange()))
3817        return ExprError();
3818      TheCall->setArg(i, Arg);
3819    }
3820  }
3821
3822  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3823    if (!Method->isStatic())
3824      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3825        << Fn->getSourceRange());
3826
3827  // Check for sentinels
3828  if (NDecl)
3829    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3830
3831  // Do special checking on direct calls to functions.
3832  if (FDecl) {
3833    if (CheckFunctionCall(FDecl, TheCall))
3834      return ExprError();
3835
3836    if (unsigned BuiltinID = FDecl->getBuiltinID())
3837      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3838  } else if (NDecl) {
3839    if (CheckBlockCall(NDecl, TheCall))
3840      return ExprError();
3841  }
3842
3843  return MaybeBindToTemporary(TheCall);
3844}
3845
3846ExprResult
3847Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3848                           SourceLocation RParenLoc, Expr *InitExpr) {
3849  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3850  // FIXME: put back this assert when initializers are worked out.
3851  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3852
3853  TypeSourceInfo *TInfo;
3854  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3855  if (!TInfo)
3856    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3857
3858  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3859}
3860
3861ExprResult
3862Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3863                               SourceLocation RParenLoc, Expr *literalExpr) {
3864  QualType literalType = TInfo->getType();
3865
3866  if (literalType->isArrayType()) {
3867    if (literalType->isVariableArrayType())
3868      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3869        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3870  } else if (!literalType->isDependentType() &&
3871             RequireCompleteType(LParenLoc, literalType,
3872                      PDiag(diag::err_typecheck_decl_incomplete_type)
3873                        << SourceRange(LParenLoc,
3874                                       literalExpr->getSourceRange().getEnd())))
3875    return ExprError();
3876
3877  InitializedEntity Entity
3878    = InitializedEntity::InitializeTemporary(literalType);
3879  InitializationKind Kind
3880    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3881                                     /*IsCStyleCast=*/true);
3882  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3883  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3884                                       MultiExprArg(*this, &literalExpr, 1),
3885                                            &literalType);
3886  if (Result.isInvalid())
3887    return ExprError();
3888  literalExpr = Result.get();
3889
3890  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3891  if (isFileScope) { // 6.5.2.5p3
3892    if (CheckForConstantInitializer(literalExpr, literalType))
3893      return ExprError();
3894  }
3895
3896  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3897                                                 literalExpr, isFileScope));
3898}
3899
3900ExprResult
3901Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3902                    SourceLocation RBraceLoc) {
3903  unsigned NumInit = initlist.size();
3904  Expr **InitList = initlist.release();
3905
3906  // Semantic analysis for initializers is done by ActOnDeclarator() and
3907  // CheckInitializer() - it requires knowledge of the object being intialized.
3908
3909  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3910                                               NumInit, RBraceLoc);
3911  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3912  return Owned(E);
3913}
3914
3915static CastKind getScalarCastKind(ASTContext &Context,
3916                                            QualType SrcTy, QualType DestTy) {
3917  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3918    return CK_NoOp;
3919
3920  if (SrcTy->hasPointerRepresentation()) {
3921    if (DestTy->hasPointerRepresentation())
3922      return DestTy->isObjCObjectPointerType() ?
3923                CK_AnyPointerToObjCPointerCast :
3924                CK_BitCast;
3925    if (DestTy->isIntegerType())
3926      return CK_PointerToIntegral;
3927  }
3928
3929  if (SrcTy->isIntegerType()) {
3930    if (DestTy->isIntegerType())
3931      return CK_IntegralCast;
3932    if (DestTy->hasPointerRepresentation())
3933      return CK_IntegralToPointer;
3934    if (DestTy->isRealFloatingType())
3935      return CK_IntegralToFloating;
3936  }
3937
3938  if (SrcTy->isRealFloatingType()) {
3939    if (DestTy->isRealFloatingType())
3940      return CK_FloatingCast;
3941    if (DestTy->isIntegerType())
3942      return CK_FloatingToIntegral;
3943  }
3944
3945  // FIXME: Assert here.
3946  // assert(false && "Unhandled cast combination!");
3947  return CK_Unknown;
3948}
3949
3950/// CheckCastTypes - Check type constraints for casting between types.
3951bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3952                          CastKind& Kind,
3953                          CXXCastPath &BasePath,
3954                          bool FunctionalStyle) {
3955  if (getLangOptions().CPlusPlus)
3956    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3957                              FunctionalStyle);
3958
3959  DefaultFunctionArrayLvalueConversion(castExpr);
3960
3961  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3962  // type needs to be scalar.
3963  if (castType->isVoidType()) {
3964    // Cast to void allows any expr type.
3965    Kind = CK_ToVoid;
3966    return false;
3967  }
3968
3969  if (RequireCompleteType(TyR.getBegin(), castType,
3970                          diag::err_typecheck_cast_to_incomplete))
3971    return true;
3972
3973  if (!castType->isScalarType() && !castType->isVectorType()) {
3974    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3975        (castType->isStructureType() || castType->isUnionType())) {
3976      // GCC struct/union extension: allow cast to self.
3977      // FIXME: Check that the cast destination type is complete.
3978      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3979        << castType << castExpr->getSourceRange();
3980      Kind = CK_NoOp;
3981      return false;
3982    }
3983
3984    if (castType->isUnionType()) {
3985      // GCC cast to union extension
3986      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3987      RecordDecl::field_iterator Field, FieldEnd;
3988      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3989           Field != FieldEnd; ++Field) {
3990        if (Context.hasSameUnqualifiedType(Field->getType(),
3991                                           castExpr->getType()) &&
3992            !Field->isUnnamedBitfield()) {
3993          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3994            << castExpr->getSourceRange();
3995          break;
3996        }
3997      }
3998      if (Field == FieldEnd)
3999        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
4000          << castExpr->getType() << castExpr->getSourceRange();
4001      Kind = CK_ToUnion;
4002      return false;
4003    }
4004
4005    // Reject any other conversions to non-scalar types.
4006    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
4007      << castType << castExpr->getSourceRange();
4008  }
4009
4010  if (!castExpr->getType()->isScalarType() &&
4011      !castExpr->getType()->isVectorType()) {
4012    return Diag(castExpr->getLocStart(),
4013                diag::err_typecheck_expect_scalar_operand)
4014      << castExpr->getType() << castExpr->getSourceRange();
4015  }
4016
4017  if (castType->isExtVectorType())
4018    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
4019
4020  if (castType->isVectorType())
4021    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
4022  if (castExpr->getType()->isVectorType())
4023    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
4024
4025  if (isa<ObjCSelectorExpr>(castExpr))
4026    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4027
4028  if (!castType->isArithmeticType()) {
4029    QualType castExprType = castExpr->getType();
4030    if (!castExprType->isIntegralType(Context) &&
4031        castExprType->isArithmeticType())
4032      return Diag(castExpr->getLocStart(),
4033                  diag::err_cast_pointer_from_non_pointer_int)
4034        << castExprType << castExpr->getSourceRange();
4035  } else if (!castExpr->getType()->isArithmeticType()) {
4036    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
4037      return Diag(castExpr->getLocStart(),
4038                  diag::err_cast_pointer_to_non_pointer_int)
4039        << castType << castExpr->getSourceRange();
4040  }
4041
4042  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
4043
4044  if (Kind == CK_Unknown || Kind == CK_BitCast)
4045    CheckCastAlign(castExpr, castType, TyR);
4046
4047  return false;
4048}
4049
4050bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4051                           CastKind &Kind) {
4052  assert(VectorTy->isVectorType() && "Not a vector type!");
4053
4054  if (Ty->isVectorType() || Ty->isIntegerType()) {
4055    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4056      return Diag(R.getBegin(),
4057                  Ty->isVectorType() ?
4058                  diag::err_invalid_conversion_between_vectors :
4059                  diag::err_invalid_conversion_between_vector_and_integer)
4060        << VectorTy << Ty << R;
4061  } else
4062    return Diag(R.getBegin(),
4063                diag::err_invalid_conversion_between_vector_and_scalar)
4064      << VectorTy << Ty << R;
4065
4066  Kind = CK_BitCast;
4067  return false;
4068}
4069
4070bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4071                              CastKind &Kind) {
4072  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4073
4074  QualType SrcTy = CastExpr->getType();
4075
4076  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4077  // an ExtVectorType.
4078  if (SrcTy->isVectorType()) {
4079    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4080      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4081        << DestTy << SrcTy << R;
4082    Kind = CK_BitCast;
4083    return false;
4084  }
4085
4086  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4087  // conversion will take place first from scalar to elt type, and then
4088  // splat from elt type to vector.
4089  if (SrcTy->isPointerType())
4090    return Diag(R.getBegin(),
4091                diag::err_invalid_conversion_between_vector_and_scalar)
4092      << DestTy << SrcTy << R;
4093
4094  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4095  ImpCastExprToType(CastExpr, DestElemTy,
4096                    getScalarCastKind(Context, SrcTy, DestElemTy));
4097
4098  Kind = CK_VectorSplat;
4099  return false;
4100}
4101
4102ExprResult
4103Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
4104                    SourceLocation RParenLoc, Expr *castExpr) {
4105  assert((Ty != 0) && (castExpr != 0) &&
4106         "ActOnCastExpr(): missing type or expr");
4107
4108  TypeSourceInfo *castTInfo;
4109  QualType castType = GetTypeFromParser(Ty, &castTInfo);
4110  if (!castTInfo)
4111    castTInfo = Context.getTrivialTypeSourceInfo(castType);
4112
4113  // If the Expr being casted is a ParenListExpr, handle it specially.
4114  if (isa<ParenListExpr>(castExpr))
4115    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
4116                                    castTInfo);
4117
4118  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4119}
4120
4121ExprResult
4122Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4123                          SourceLocation RParenLoc, Expr *castExpr) {
4124  CastKind Kind = CK_Unknown;
4125  CXXCastPath BasePath;
4126  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4127                     Kind, BasePath))
4128    return ExprError();
4129
4130  return Owned(CStyleCastExpr::Create(Context,
4131                                    Ty->getType().getNonLValueExprType(Context),
4132                                      Kind, castExpr, &BasePath, Ty,
4133                                      LParenLoc, RParenLoc));
4134}
4135
4136/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4137/// of comma binary operators.
4138ExprResult
4139Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4140  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4141  if (!E)
4142    return Owned(expr);
4143
4144  ExprResult Result(E->getExpr(0));
4145
4146  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4147    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4148                        E->getExpr(i));
4149
4150  if (Result.isInvalid()) return ExprError();
4151
4152  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4153}
4154
4155ExprResult
4156Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4157                               SourceLocation RParenLoc, Expr *Op,
4158                               TypeSourceInfo *TInfo) {
4159  ParenListExpr *PE = cast<ParenListExpr>(Op);
4160  QualType Ty = TInfo->getType();
4161  bool isAltiVecLiteral = false;
4162
4163  // Check for an altivec literal,
4164  // i.e. all the elements are integer constants.
4165  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4166    if (PE->getNumExprs() == 0) {
4167      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4168      return ExprError();
4169    }
4170    if (PE->getNumExprs() == 1) {
4171      if (!PE->getExpr(0)->getType()->isVectorType())
4172        isAltiVecLiteral = true;
4173    }
4174    else
4175      isAltiVecLiteral = true;
4176  }
4177
4178  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4179  // then handle it as such.
4180  if (isAltiVecLiteral) {
4181    llvm::SmallVector<Expr *, 8> initExprs;
4182    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4183      initExprs.push_back(PE->getExpr(i));
4184
4185    // FIXME: This means that pretty-printing the final AST will produce curly
4186    // braces instead of the original commas.
4187    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4188                                                 &initExprs[0],
4189                                                 initExprs.size(), RParenLoc);
4190    E->setType(Ty);
4191    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
4192  } else {
4193    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4194    // sequence of BinOp comma operators.
4195    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
4196    if (Result.isInvalid()) return ExprError();
4197    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
4198  }
4199}
4200
4201ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4202                                                  SourceLocation R,
4203                                                  MultiExprArg Val,
4204                                                  ParsedType TypeOfCast) {
4205  unsigned nexprs = Val.size();
4206  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4207  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4208  Expr *expr;
4209  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4210    expr = new (Context) ParenExpr(L, R, exprs[0]);
4211  else
4212    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4213  return Owned(expr);
4214}
4215
4216/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4217/// In that case, lhs = cond.
4218/// C99 6.5.15
4219QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4220                                        Expr *&SAVE,
4221                                        SourceLocation QuestionLoc) {
4222  // C++ is sufficiently different to merit its own checker.
4223  if (getLangOptions().CPlusPlus)
4224    return CXXCheckConditionalOperands(Cond, LHS, RHS, SAVE, QuestionLoc);
4225
4226  UsualUnaryConversions(Cond);
4227  if (SAVE) {
4228    SAVE = LHS = Cond;
4229  }
4230  else
4231    UsualUnaryConversions(LHS);
4232  UsualUnaryConversions(RHS);
4233  QualType CondTy = Cond->getType();
4234  QualType LHSTy = LHS->getType();
4235  QualType RHSTy = RHS->getType();
4236
4237  // first, check the condition.
4238  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4239    // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4240    // Throw an error if its not either.
4241    if (getLangOptions().OpenCL) {
4242      if (!CondTy->isVectorType()) {
4243        Diag(Cond->getLocStart(),
4244             diag::err_typecheck_cond_expect_scalar_or_vector)
4245          << CondTy;
4246        return QualType();
4247      }
4248    }
4249    else {
4250      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4251        << CondTy;
4252      return QualType();
4253    }
4254  }
4255
4256  // Now check the two expressions.
4257  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4258    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4259
4260  // OpenCL: If the condition is a vector, and both operands are scalar,
4261  // attempt to implicity convert them to the vector type to act like the
4262  // built in select.
4263  if (getLangOptions().OpenCL && CondTy->isVectorType()) {
4264    // Both operands should be of scalar type.
4265    if (!LHSTy->isScalarType()) {
4266      Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4267        << CondTy;
4268      return QualType();
4269    }
4270    if (!RHSTy->isScalarType()) {
4271      Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4272        << CondTy;
4273      return QualType();
4274    }
4275    // Implicity convert these scalars to the type of the condition.
4276    ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
4277    ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
4278  }
4279
4280  // If both operands have arithmetic type, do the usual arithmetic conversions
4281  // to find a common type: C99 6.5.15p3,5.
4282  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4283    UsualArithmeticConversions(LHS, RHS);
4284    return LHS->getType();
4285  }
4286
4287  // If both operands are the same structure or union type, the result is that
4288  // type.
4289  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4290    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4291      if (LHSRT->getDecl() == RHSRT->getDecl())
4292        // "If both the operands have structure or union type, the result has
4293        // that type."  This implies that CV qualifiers are dropped.
4294        return LHSTy.getUnqualifiedType();
4295    // FIXME: Type of conditional expression must be complete in C mode.
4296  }
4297
4298  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4299  // The following || allows only one side to be void (a GCC-ism).
4300  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4301    if (!LHSTy->isVoidType())
4302      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4303        << RHS->getSourceRange();
4304    if (!RHSTy->isVoidType())
4305      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4306        << LHS->getSourceRange();
4307    ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
4308    ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
4309    return Context.VoidTy;
4310  }
4311  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4312  // the type of the other operand."
4313  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4314      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4315    // promote the null to a pointer.
4316    ImpCastExprToType(RHS, LHSTy, CK_Unknown);
4317    return LHSTy;
4318  }
4319  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4320      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4321    ImpCastExprToType(LHS, RHSTy, CK_Unknown);
4322    return RHSTy;
4323  }
4324
4325  // All objective-c pointer type analysis is done here.
4326  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4327                                                        QuestionLoc);
4328  if (!compositeType.isNull())
4329    return compositeType;
4330
4331
4332  // Handle block pointer types.
4333  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4334    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4335      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4336        QualType destType = Context.getPointerType(Context.VoidTy);
4337        ImpCastExprToType(LHS, destType, CK_BitCast);
4338        ImpCastExprToType(RHS, destType, CK_BitCast);
4339        return destType;
4340      }
4341      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4342      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4343      return QualType();
4344    }
4345    // We have 2 block pointer types.
4346    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4347      // Two identical block pointer types are always compatible.
4348      return LHSTy;
4349    }
4350    // The block pointer types aren't identical, continue checking.
4351    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4352    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4353
4354    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4355                                    rhptee.getUnqualifiedType())) {
4356      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4357      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4358      // In this situation, we assume void* type. No especially good
4359      // reason, but this is what gcc does, and we do have to pick
4360      // to get a consistent AST.
4361      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4362      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4363      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4364      return incompatTy;
4365    }
4366    // The block pointer types are compatible.
4367    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4368    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4369    return LHSTy;
4370  }
4371
4372  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4373  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4374    // get the "pointed to" types
4375    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4376    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4377
4378    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4379    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4380      // Figure out necessary qualifiers (C99 6.5.15p6)
4381      QualType destPointee
4382        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4383      QualType destType = Context.getPointerType(destPointee);
4384      // Add qualifiers if necessary.
4385      ImpCastExprToType(LHS, destType, CK_NoOp);
4386      // Promote to void*.
4387      ImpCastExprToType(RHS, destType, CK_BitCast);
4388      return destType;
4389    }
4390    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4391      QualType destPointee
4392        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4393      QualType destType = Context.getPointerType(destPointee);
4394      // Add qualifiers if necessary.
4395      ImpCastExprToType(RHS, destType, CK_NoOp);
4396      // Promote to void*.
4397      ImpCastExprToType(LHS, destType, CK_BitCast);
4398      return destType;
4399    }
4400
4401    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4402      // Two identical pointer types are always compatible.
4403      return LHSTy;
4404    }
4405    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4406                                    rhptee.getUnqualifiedType())) {
4407      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4408        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4409      // In this situation, we assume void* type. No especially good
4410      // reason, but this is what gcc does, and we do have to pick
4411      // to get a consistent AST.
4412      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4413      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4414      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4415      return incompatTy;
4416    }
4417    // The pointer types are compatible.
4418    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4419    // differently qualified versions of compatible types, the result type is
4420    // a pointer to an appropriately qualified version of the *composite*
4421    // type.
4422    // FIXME: Need to calculate the composite type.
4423    // FIXME: Need to add qualifiers
4424    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4425    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4426    return LHSTy;
4427  }
4428
4429  // GCC compatibility: soften pointer/integer mismatch.
4430  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4431    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4432      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4433    ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
4434    return RHSTy;
4435  }
4436  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4437    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4438      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4439    ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
4440    return LHSTy;
4441  }
4442
4443  // Otherwise, the operands are not compatible.
4444  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4445    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4446  return QualType();
4447}
4448
4449/// FindCompositeObjCPointerType - Helper method to find composite type of
4450/// two objective-c pointer types of the two input expressions.
4451QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4452                                        SourceLocation QuestionLoc) {
4453  QualType LHSTy = LHS->getType();
4454  QualType RHSTy = RHS->getType();
4455
4456  // Handle things like Class and struct objc_class*.  Here we case the result
4457  // to the pseudo-builtin, because that will be implicitly cast back to the
4458  // redefinition type if an attempt is made to access its fields.
4459  if (LHSTy->isObjCClassType() &&
4460      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4461    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4462    return LHSTy;
4463  }
4464  if (RHSTy->isObjCClassType() &&
4465      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4466    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4467    return RHSTy;
4468  }
4469  // And the same for struct objc_object* / id
4470  if (LHSTy->isObjCIdType() &&
4471      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4472    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4473    return LHSTy;
4474  }
4475  if (RHSTy->isObjCIdType() &&
4476      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4477    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4478    return RHSTy;
4479  }
4480  // And the same for struct objc_selector* / SEL
4481  if (Context.isObjCSelType(LHSTy) &&
4482      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4483    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4484    return LHSTy;
4485  }
4486  if (Context.isObjCSelType(RHSTy) &&
4487      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4488    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4489    return RHSTy;
4490  }
4491  // Check constraints for Objective-C object pointers types.
4492  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4493
4494    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4495      // Two identical object pointer types are always compatible.
4496      return LHSTy;
4497    }
4498    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4499    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4500    QualType compositeType = LHSTy;
4501
4502    // If both operands are interfaces and either operand can be
4503    // assigned to the other, use that type as the composite
4504    // type. This allows
4505    //   xxx ? (A*) a : (B*) b
4506    // where B is a subclass of A.
4507    //
4508    // Additionally, as for assignment, if either type is 'id'
4509    // allow silent coercion. Finally, if the types are
4510    // incompatible then make sure to use 'id' as the composite
4511    // type so the result is acceptable for sending messages to.
4512
4513    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4514    // It could return the composite type.
4515    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4516      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4517    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4518      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4519    } else if ((LHSTy->isObjCQualifiedIdType() ||
4520                RHSTy->isObjCQualifiedIdType()) &&
4521               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4522      // Need to handle "id<xx>" explicitly.
4523      // GCC allows qualified id and any Objective-C type to devolve to
4524      // id. Currently localizing to here until clear this should be
4525      // part of ObjCQualifiedIdTypesAreCompatible.
4526      compositeType = Context.getObjCIdType();
4527    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4528      compositeType = Context.getObjCIdType();
4529    } else if (!(compositeType =
4530                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4531      ;
4532    else {
4533      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4534      << LHSTy << RHSTy
4535      << LHS->getSourceRange() << RHS->getSourceRange();
4536      QualType incompatTy = Context.getObjCIdType();
4537      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4538      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4539      return incompatTy;
4540    }
4541    // The object pointer types are compatible.
4542    ImpCastExprToType(LHS, compositeType, CK_BitCast);
4543    ImpCastExprToType(RHS, compositeType, CK_BitCast);
4544    return compositeType;
4545  }
4546  // Check Objective-C object pointer types and 'void *'
4547  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4548    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4549    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4550    QualType destPointee
4551    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4552    QualType destType = Context.getPointerType(destPointee);
4553    // Add qualifiers if necessary.
4554    ImpCastExprToType(LHS, destType, CK_NoOp);
4555    // Promote to void*.
4556    ImpCastExprToType(RHS, destType, CK_BitCast);
4557    return destType;
4558  }
4559  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4560    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4561    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4562    QualType destPointee
4563    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4564    QualType destType = Context.getPointerType(destPointee);
4565    // Add qualifiers if necessary.
4566    ImpCastExprToType(RHS, destType, CK_NoOp);
4567    // Promote to void*.
4568    ImpCastExprToType(LHS, destType, CK_BitCast);
4569    return destType;
4570  }
4571  return QualType();
4572}
4573
4574/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4575/// in the case of a the GNU conditional expr extension.
4576ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4577                                                  SourceLocation ColonLoc,
4578                                                  Expr *CondExpr, Expr *LHSExpr,
4579                                                  Expr *RHSExpr) {
4580  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4581  // was the condition.
4582  bool isLHSNull = LHSExpr == 0;
4583  Expr *SAVEExpr = 0;
4584  if (isLHSNull) {
4585    LHSExpr = SAVEExpr = CondExpr;
4586  }
4587
4588  QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
4589                                             SAVEExpr, QuestionLoc);
4590  if (result.isNull())
4591    return ExprError();
4592
4593  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4594                                                 LHSExpr, ColonLoc,
4595                                                 RHSExpr, SAVEExpr,
4596                                                 result));
4597}
4598
4599// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4600// being closely modeled after the C99 spec:-). The odd characteristic of this
4601// routine is it effectively iqnores the qualifiers on the top level pointee.
4602// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4603// FIXME: add a couple examples in this comment.
4604Sema::AssignConvertType
4605Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4606  QualType lhptee, rhptee;
4607
4608  if ((lhsType->isObjCClassType() &&
4609       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4610     (rhsType->isObjCClassType() &&
4611       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4612      return Compatible;
4613  }
4614
4615  // get the "pointed to" type (ignoring qualifiers at the top level)
4616  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4617  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4618
4619  // make sure we operate on the canonical type
4620  lhptee = Context.getCanonicalType(lhptee);
4621  rhptee = Context.getCanonicalType(rhptee);
4622
4623  AssignConvertType ConvTy = Compatible;
4624
4625  // C99 6.5.16.1p1: This following citation is common to constraints
4626  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4627  // qualifiers of the type *pointed to* by the right;
4628  // FIXME: Handle ExtQualType
4629  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4630    ConvTy = CompatiblePointerDiscardsQualifiers;
4631
4632  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4633  // incomplete type and the other is a pointer to a qualified or unqualified
4634  // version of void...
4635  if (lhptee->isVoidType()) {
4636    if (rhptee->isIncompleteOrObjectType())
4637      return ConvTy;
4638
4639    // As an extension, we allow cast to/from void* to function pointer.
4640    assert(rhptee->isFunctionType());
4641    return FunctionVoidPointer;
4642  }
4643
4644  if (rhptee->isVoidType()) {
4645    if (lhptee->isIncompleteOrObjectType())
4646      return ConvTy;
4647
4648    // As an extension, we allow cast to/from void* to function pointer.
4649    assert(lhptee->isFunctionType());
4650    return FunctionVoidPointer;
4651  }
4652  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4653  // unqualified versions of compatible types, ...
4654  lhptee = lhptee.getUnqualifiedType();
4655  rhptee = rhptee.getUnqualifiedType();
4656  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4657    // Check if the pointee types are compatible ignoring the sign.
4658    // We explicitly check for char so that we catch "char" vs
4659    // "unsigned char" on systems where "char" is unsigned.
4660    if (lhptee->isCharType())
4661      lhptee = Context.UnsignedCharTy;
4662    else if (lhptee->hasSignedIntegerRepresentation())
4663      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4664
4665    if (rhptee->isCharType())
4666      rhptee = Context.UnsignedCharTy;
4667    else if (rhptee->hasSignedIntegerRepresentation())
4668      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4669
4670    if (lhptee == rhptee) {
4671      // Types are compatible ignoring the sign. Qualifier incompatibility
4672      // takes priority over sign incompatibility because the sign
4673      // warning can be disabled.
4674      if (ConvTy != Compatible)
4675        return ConvTy;
4676      return IncompatiblePointerSign;
4677    }
4678
4679    // If we are a multi-level pointer, it's possible that our issue is simply
4680    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4681    // the eventual target type is the same and the pointers have the same
4682    // level of indirection, this must be the issue.
4683    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4684      do {
4685        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4686        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4687
4688        lhptee = Context.getCanonicalType(lhptee);
4689        rhptee = Context.getCanonicalType(rhptee);
4690      } while (lhptee->isPointerType() && rhptee->isPointerType());
4691
4692      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4693        return IncompatibleNestedPointerQualifiers;
4694    }
4695
4696    // General pointer incompatibility takes priority over qualifiers.
4697    return IncompatiblePointer;
4698  }
4699  return ConvTy;
4700}
4701
4702/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4703/// block pointer types are compatible or whether a block and normal pointer
4704/// are compatible. It is more restrict than comparing two function pointer
4705// types.
4706Sema::AssignConvertType
4707Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4708                                          QualType rhsType) {
4709  QualType lhptee, rhptee;
4710
4711  // get the "pointed to" type (ignoring qualifiers at the top level)
4712  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4713  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4714
4715  // make sure we operate on the canonical type
4716  lhptee = Context.getCanonicalType(lhptee);
4717  rhptee = Context.getCanonicalType(rhptee);
4718
4719  AssignConvertType ConvTy = Compatible;
4720
4721  // For blocks we enforce that qualifiers are identical.
4722  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4723    ConvTy = CompatiblePointerDiscardsQualifiers;
4724
4725  if (!getLangOptions().CPlusPlus) {
4726    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4727      return IncompatibleBlockPointer;
4728  }
4729  else if (!Context.typesAreCompatible(lhptee, rhptee))
4730    return IncompatibleBlockPointer;
4731  return ConvTy;
4732}
4733
4734/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4735/// for assignment compatibility.
4736Sema::AssignConvertType
4737Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4738  if (lhsType->isObjCBuiltinType()) {
4739    // Class is not compatible with ObjC object pointers.
4740    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4741        !rhsType->isObjCQualifiedClassType())
4742      return IncompatiblePointer;
4743    return Compatible;
4744  }
4745  if (rhsType->isObjCBuiltinType()) {
4746    // Class is not compatible with ObjC object pointers.
4747    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4748        !lhsType->isObjCQualifiedClassType())
4749      return IncompatiblePointer;
4750    return Compatible;
4751  }
4752  QualType lhptee =
4753  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4754  QualType rhptee =
4755  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4756  // make sure we operate on the canonical type
4757  lhptee = Context.getCanonicalType(lhptee);
4758  rhptee = Context.getCanonicalType(rhptee);
4759  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4760    return CompatiblePointerDiscardsQualifiers;
4761
4762  if (Context.typesAreCompatible(lhsType, rhsType))
4763    return Compatible;
4764  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4765    return IncompatibleObjCQualifiedId;
4766  return IncompatiblePointer;
4767}
4768
4769/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4770/// has code to accommodate several GCC extensions when type checking
4771/// pointers. Here are some objectionable examples that GCC considers warnings:
4772///
4773///  int a, *pint;
4774///  short *pshort;
4775///  struct foo *pfoo;
4776///
4777///  pint = pshort; // warning: assignment from incompatible pointer type
4778///  a = pint; // warning: assignment makes integer from pointer without a cast
4779///  pint = a; // warning: assignment makes pointer from integer without a cast
4780///  pint = pfoo; // warning: assignment from incompatible pointer type
4781///
4782/// As a result, the code for dealing with pointers is more complex than the
4783/// C99 spec dictates.
4784///
4785Sema::AssignConvertType
4786Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4787  // Get canonical types.  We're not formatting these types, just comparing
4788  // them.
4789  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4790  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4791
4792  if (lhsType == rhsType)
4793    return Compatible; // Common case: fast path an exact match.
4794
4795  if ((lhsType->isObjCClassType() &&
4796       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4797     (rhsType->isObjCClassType() &&
4798       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4799      return Compatible;
4800  }
4801
4802  // If the left-hand side is a reference type, then we are in a
4803  // (rare!) case where we've allowed the use of references in C,
4804  // e.g., as a parameter type in a built-in function. In this case,
4805  // just make sure that the type referenced is compatible with the
4806  // right-hand side type. The caller is responsible for adjusting
4807  // lhsType so that the resulting expression does not have reference
4808  // type.
4809  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4810    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4811      return Compatible;
4812    return Incompatible;
4813  }
4814  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4815  // to the same ExtVector type.
4816  if (lhsType->isExtVectorType()) {
4817    if (rhsType->isExtVectorType())
4818      return lhsType == rhsType ? Compatible : Incompatible;
4819    if (rhsType->isArithmeticType())
4820      return Compatible;
4821  }
4822
4823  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4824    if (lhsType->isVectorType() && rhsType->isVectorType()) {
4825      // If we are allowing lax vector conversions, and LHS and RHS are both
4826      // vectors, the total size only needs to be the same. This is a bitcast;
4827      // no bits are changed but the result type is different.
4828      if (getLangOptions().LaxVectorConversions &&
4829         (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)))
4830        return IncompatibleVectors;
4831
4832      // Allow assignments of an AltiVec vector type to an equivalent GCC
4833      // vector type and vice versa
4834      if (Context.areCompatibleVectorTypes(lhsType, rhsType))
4835        return Compatible;
4836    }
4837    return Incompatible;
4838  }
4839
4840  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
4841      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
4842    return Compatible;
4843
4844  if (isa<PointerType>(lhsType)) {
4845    if (rhsType->isIntegerType())
4846      return IntToPointer;
4847
4848    if (isa<PointerType>(rhsType))
4849      return CheckPointerTypesForAssignment(lhsType, rhsType);
4850
4851    // In general, C pointers are not compatible with ObjC object pointers.
4852    if (isa<ObjCObjectPointerType>(rhsType)) {
4853      if (lhsType->isVoidPointerType()) // an exception to the rule.
4854        return Compatible;
4855      return IncompatiblePointer;
4856    }
4857    if (rhsType->getAs<BlockPointerType>()) {
4858      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4859        return Compatible;
4860
4861      // Treat block pointers as objects.
4862      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4863        return Compatible;
4864    }
4865    return Incompatible;
4866  }
4867
4868  if (isa<BlockPointerType>(lhsType)) {
4869    if (rhsType->isIntegerType())
4870      return IntToBlockPointer;
4871
4872    // Treat block pointers as objects.
4873    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4874      return Compatible;
4875
4876    if (rhsType->isBlockPointerType())
4877      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4878
4879    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4880      if (RHSPT->getPointeeType()->isVoidType())
4881        return Compatible;
4882    }
4883    return Incompatible;
4884  }
4885
4886  if (isa<ObjCObjectPointerType>(lhsType)) {
4887    if (rhsType->isIntegerType())
4888      return IntToPointer;
4889
4890    // In general, C pointers are not compatible with ObjC object pointers.
4891    if (isa<PointerType>(rhsType)) {
4892      if (rhsType->isVoidPointerType()) // an exception to the rule.
4893        return Compatible;
4894      return IncompatiblePointer;
4895    }
4896    if (rhsType->isObjCObjectPointerType()) {
4897      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4898    }
4899    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4900      if (RHSPT->getPointeeType()->isVoidType())
4901        return Compatible;
4902    }
4903    // Treat block pointers as objects.
4904    if (rhsType->isBlockPointerType())
4905      return Compatible;
4906    return Incompatible;
4907  }
4908  if (isa<PointerType>(rhsType)) {
4909    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4910    if (lhsType == Context.BoolTy)
4911      return Compatible;
4912
4913    if (lhsType->isIntegerType())
4914      return PointerToInt;
4915
4916    if (isa<PointerType>(lhsType))
4917      return CheckPointerTypesForAssignment(lhsType, rhsType);
4918
4919    if (isa<BlockPointerType>(lhsType) &&
4920        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4921      return Compatible;
4922    return Incompatible;
4923  }
4924  if (isa<ObjCObjectPointerType>(rhsType)) {
4925    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4926    if (lhsType == Context.BoolTy)
4927      return Compatible;
4928
4929    if (lhsType->isIntegerType())
4930      return PointerToInt;
4931
4932    // In general, C pointers are not compatible with ObjC object pointers.
4933    if (isa<PointerType>(lhsType)) {
4934      if (lhsType->isVoidPointerType()) // an exception to the rule.
4935        return Compatible;
4936      return IncompatiblePointer;
4937    }
4938    if (isa<BlockPointerType>(lhsType) &&
4939        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4940      return Compatible;
4941    return Incompatible;
4942  }
4943
4944  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4945    if (Context.typesAreCompatible(lhsType, rhsType))
4946      return Compatible;
4947  }
4948  return Incompatible;
4949}
4950
4951/// \brief Constructs a transparent union from an expression that is
4952/// used to initialize the transparent union.
4953static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4954                                      QualType UnionType, FieldDecl *Field) {
4955  // Build an initializer list that designates the appropriate member
4956  // of the transparent union.
4957  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4958                                                   &E, 1,
4959                                                   SourceLocation());
4960  Initializer->setType(UnionType);
4961  Initializer->setInitializedFieldInUnion(Field);
4962
4963  // Build a compound literal constructing a value of the transparent
4964  // union type from this initializer list.
4965  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4966  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4967                                  Initializer, false);
4968}
4969
4970Sema::AssignConvertType
4971Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4972  QualType FromType = rExpr->getType();
4973
4974  // If the ArgType is a Union type, we want to handle a potential
4975  // transparent_union GCC extension.
4976  const RecordType *UT = ArgType->getAsUnionType();
4977  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4978    return Incompatible;
4979
4980  // The field to initialize within the transparent union.
4981  RecordDecl *UD = UT->getDecl();
4982  FieldDecl *InitField = 0;
4983  // It's compatible if the expression matches any of the fields.
4984  for (RecordDecl::field_iterator it = UD->field_begin(),
4985         itend = UD->field_end();
4986       it != itend; ++it) {
4987    if (it->getType()->isPointerType()) {
4988      // If the transparent union contains a pointer type, we allow:
4989      // 1) void pointer
4990      // 2) null pointer constant
4991      if (FromType->isPointerType())
4992        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4993          ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
4994          InitField = *it;
4995          break;
4996        }
4997
4998      if (rExpr->isNullPointerConstant(Context,
4999                                       Expr::NPC_ValueDependentIsNull)) {
5000        ImpCastExprToType(rExpr, it->getType(), CK_IntegralToPointer);
5001        InitField = *it;
5002        break;
5003      }
5004    }
5005
5006    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
5007          == Compatible) {
5008      ImpCastExprToType(rExpr, it->getType(), CK_Unknown);
5009      InitField = *it;
5010      break;
5011    }
5012  }
5013
5014  if (!InitField)
5015    return Incompatible;
5016
5017  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
5018  return Compatible;
5019}
5020
5021Sema::AssignConvertType
5022Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
5023  if (getLangOptions().CPlusPlus) {
5024    if (!lhsType->isRecordType()) {
5025      // C++ 5.17p3: If the left operand is not of class type, the
5026      // expression is implicitly converted (C++ 4) to the
5027      // cv-unqualified type of the left operand.
5028      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
5029                                    AA_Assigning))
5030        return Incompatible;
5031      return Compatible;
5032    }
5033
5034    // FIXME: Currently, we fall through and treat C++ classes like C
5035    // structures.
5036  }
5037
5038  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5039  // a null pointer constant.
5040  if ((lhsType->isPointerType() ||
5041       lhsType->isObjCObjectPointerType() ||
5042       lhsType->isBlockPointerType())
5043      && rExpr->isNullPointerConstant(Context,
5044                                      Expr::NPC_ValueDependentIsNull)) {
5045    ImpCastExprToType(rExpr, lhsType, CK_Unknown);
5046    return Compatible;
5047  }
5048
5049  // This check seems unnatural, however it is necessary to ensure the proper
5050  // conversion of functions/arrays. If the conversion were done for all
5051  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5052  // expressions that suppress this implicit conversion (&, sizeof).
5053  //
5054  // Suppress this for references: C++ 8.5.3p5.
5055  if (!lhsType->isReferenceType())
5056    DefaultFunctionArrayLvalueConversion(rExpr);
5057
5058  Sema::AssignConvertType result =
5059    CheckAssignmentConstraints(lhsType, rExpr->getType());
5060
5061  // C99 6.5.16.1p2: The value of the right operand is converted to the
5062  // type of the assignment expression.
5063  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5064  // so that we can use references in built-in functions even in C.
5065  // The getNonReferenceType() call makes sure that the resulting expression
5066  // does not have reference type.
5067  if (result != Incompatible && rExpr->getType() != lhsType)
5068    ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
5069                      CK_Unknown);
5070  return result;
5071}
5072
5073QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5074  Diag(Loc, diag::err_typecheck_invalid_operands)
5075    << lex->getType() << rex->getType()
5076    << lex->getSourceRange() << rex->getSourceRange();
5077  return QualType();
5078}
5079
5080QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5081  // For conversion purposes, we ignore any qualifiers.
5082  // For example, "const float" and "float" are equivalent.
5083  QualType lhsType =
5084    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
5085  QualType rhsType =
5086    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
5087
5088  // If the vector types are identical, return.
5089  if (lhsType == rhsType)
5090    return lhsType;
5091
5092  // Handle the case of a vector & extvector type of the same size and element
5093  // type.  It would be nice if we only had one vector type someday.
5094  if (getLangOptions().LaxVectorConversions) {
5095    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5096      if (const VectorType *RV = rhsType->getAs<VectorType>()) {
5097        if (LV->getElementType() == RV->getElementType() &&
5098            LV->getNumElements() == RV->getNumElements()) {
5099          if (lhsType->isExtVectorType()) {
5100            ImpCastExprToType(rex, lhsType, CK_BitCast);
5101            return lhsType;
5102          }
5103
5104          ImpCastExprToType(lex, rhsType, CK_BitCast);
5105          return rhsType;
5106        } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
5107          // If we are allowing lax vector conversions, and LHS and RHS are both
5108          // vectors, the total size only needs to be the same. This is a
5109          // bitcast; no bits are changed but the result type is different.
5110          ImpCastExprToType(rex, lhsType, CK_BitCast);
5111          return lhsType;
5112        }
5113      }
5114    }
5115  }
5116
5117  // Handle the case of equivalent AltiVec and GCC vector types
5118  if (lhsType->isVectorType() && rhsType->isVectorType() &&
5119      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5120    ImpCastExprToType(lex, rhsType, CK_BitCast);
5121    return rhsType;
5122  }
5123
5124  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5125  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5126  bool swapped = false;
5127  if (rhsType->isExtVectorType()) {
5128    swapped = true;
5129    std::swap(rex, lex);
5130    std::swap(rhsType, lhsType);
5131  }
5132
5133  // Handle the case of an ext vector and scalar.
5134  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5135    QualType EltTy = LV->getElementType();
5136    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5137      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
5138        ImpCastExprToType(rex, lhsType, CK_IntegralCast);
5139        if (swapped) std::swap(rex, lex);
5140        return lhsType;
5141      }
5142    }
5143    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5144        rhsType->isRealFloatingType()) {
5145      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
5146        ImpCastExprToType(rex, lhsType, CK_FloatingCast);
5147        if (swapped) std::swap(rex, lex);
5148        return lhsType;
5149      }
5150    }
5151  }
5152
5153  // Vectors of different size or scalar and non-ext-vector are errors.
5154  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5155    << lex->getType() << rex->getType()
5156    << lex->getSourceRange() << rex->getSourceRange();
5157  return QualType();
5158}
5159
5160QualType Sema::CheckMultiplyDivideOperands(
5161  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5162  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5163    return CheckVectorOperands(Loc, lex, rex);
5164
5165  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5166
5167  if (!lex->getType()->isArithmeticType() ||
5168      !rex->getType()->isArithmeticType())
5169    return InvalidOperands(Loc, lex, rex);
5170
5171  // Check for division by zero.
5172  if (isDiv &&
5173      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5174    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5175                                     << rex->getSourceRange());
5176
5177  return compType;
5178}
5179
5180QualType Sema::CheckRemainderOperands(
5181  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5182  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5183    if (lex->getType()->hasIntegerRepresentation() &&
5184        rex->getType()->hasIntegerRepresentation())
5185      return CheckVectorOperands(Loc, lex, rex);
5186    return InvalidOperands(Loc, lex, rex);
5187  }
5188
5189  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5190
5191  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5192    return InvalidOperands(Loc, lex, rex);
5193
5194  // Check for remainder by zero.
5195  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5196    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5197                                 << rex->getSourceRange());
5198
5199  return compType;
5200}
5201
5202QualType Sema::CheckAdditionOperands( // C99 6.5.6
5203  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5204  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5205    QualType compType = CheckVectorOperands(Loc, lex, rex);
5206    if (CompLHSTy) *CompLHSTy = compType;
5207    return compType;
5208  }
5209
5210  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5211
5212  // handle the common case first (both operands are arithmetic).
5213  if (lex->getType()->isArithmeticType() &&
5214      rex->getType()->isArithmeticType()) {
5215    if (CompLHSTy) *CompLHSTy = compType;
5216    return compType;
5217  }
5218
5219  // Put any potential pointer into PExp
5220  Expr* PExp = lex, *IExp = rex;
5221  if (IExp->getType()->isAnyPointerType())
5222    std::swap(PExp, IExp);
5223
5224  if (PExp->getType()->isAnyPointerType()) {
5225
5226    if (IExp->getType()->isIntegerType()) {
5227      QualType PointeeTy = PExp->getType()->getPointeeType();
5228
5229      // Check for arithmetic on pointers to incomplete types.
5230      if (PointeeTy->isVoidType()) {
5231        if (getLangOptions().CPlusPlus) {
5232          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5233            << lex->getSourceRange() << rex->getSourceRange();
5234          return QualType();
5235        }
5236
5237        // GNU extension: arithmetic on pointer to void
5238        Diag(Loc, diag::ext_gnu_void_ptr)
5239          << lex->getSourceRange() << rex->getSourceRange();
5240      } else if (PointeeTy->isFunctionType()) {
5241        if (getLangOptions().CPlusPlus) {
5242          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5243            << lex->getType() << lex->getSourceRange();
5244          return QualType();
5245        }
5246
5247        // GNU extension: arithmetic on pointer to function
5248        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5249          << lex->getType() << lex->getSourceRange();
5250      } else {
5251        // Check if we require a complete type.
5252        if (((PExp->getType()->isPointerType() &&
5253              !PExp->getType()->isDependentType()) ||
5254              PExp->getType()->isObjCObjectPointerType()) &&
5255             RequireCompleteType(Loc, PointeeTy,
5256                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5257                             << PExp->getSourceRange()
5258                             << PExp->getType()))
5259          return QualType();
5260      }
5261      // Diagnose bad cases where we step over interface counts.
5262      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5263        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5264          << PointeeTy << PExp->getSourceRange();
5265        return QualType();
5266      }
5267
5268      if (CompLHSTy) {
5269        QualType LHSTy = Context.isPromotableBitField(lex);
5270        if (LHSTy.isNull()) {
5271          LHSTy = lex->getType();
5272          if (LHSTy->isPromotableIntegerType())
5273            LHSTy = Context.getPromotedIntegerType(LHSTy);
5274        }
5275        *CompLHSTy = LHSTy;
5276      }
5277      return PExp->getType();
5278    }
5279  }
5280
5281  return InvalidOperands(Loc, lex, rex);
5282}
5283
5284// C99 6.5.6
5285QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5286                                        SourceLocation Loc, QualType* CompLHSTy) {
5287  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5288    QualType compType = CheckVectorOperands(Loc, lex, rex);
5289    if (CompLHSTy) *CompLHSTy = compType;
5290    return compType;
5291  }
5292
5293  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5294
5295  // Enforce type constraints: C99 6.5.6p3.
5296
5297  // Handle the common case first (both operands are arithmetic).
5298  if (lex->getType()->isArithmeticType()
5299      && rex->getType()->isArithmeticType()) {
5300    if (CompLHSTy) *CompLHSTy = compType;
5301    return compType;
5302  }
5303
5304  // Either ptr - int   or   ptr - ptr.
5305  if (lex->getType()->isAnyPointerType()) {
5306    QualType lpointee = lex->getType()->getPointeeType();
5307
5308    // The LHS must be an completely-defined object type.
5309
5310    bool ComplainAboutVoid = false;
5311    Expr *ComplainAboutFunc = 0;
5312    if (lpointee->isVoidType()) {
5313      if (getLangOptions().CPlusPlus) {
5314        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5315          << lex->getSourceRange() << rex->getSourceRange();
5316        return QualType();
5317      }
5318
5319      // GNU C extension: arithmetic on pointer to void
5320      ComplainAboutVoid = true;
5321    } else if (lpointee->isFunctionType()) {
5322      if (getLangOptions().CPlusPlus) {
5323        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5324          << lex->getType() << lex->getSourceRange();
5325        return QualType();
5326      }
5327
5328      // GNU C extension: arithmetic on pointer to function
5329      ComplainAboutFunc = lex;
5330    } else if (!lpointee->isDependentType() &&
5331               RequireCompleteType(Loc, lpointee,
5332                                   PDiag(diag::err_typecheck_sub_ptr_object)
5333                                     << lex->getSourceRange()
5334                                     << lex->getType()))
5335      return QualType();
5336
5337    // Diagnose bad cases where we step over interface counts.
5338    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5339      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5340        << lpointee << lex->getSourceRange();
5341      return QualType();
5342    }
5343
5344    // The result type of a pointer-int computation is the pointer type.
5345    if (rex->getType()->isIntegerType()) {
5346      if (ComplainAboutVoid)
5347        Diag(Loc, diag::ext_gnu_void_ptr)
5348          << lex->getSourceRange() << rex->getSourceRange();
5349      if (ComplainAboutFunc)
5350        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5351          << ComplainAboutFunc->getType()
5352          << ComplainAboutFunc->getSourceRange();
5353
5354      if (CompLHSTy) *CompLHSTy = lex->getType();
5355      return lex->getType();
5356    }
5357
5358    // Handle pointer-pointer subtractions.
5359    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5360      QualType rpointee = RHSPTy->getPointeeType();
5361
5362      // RHS must be a completely-type object type.
5363      // Handle the GNU void* extension.
5364      if (rpointee->isVoidType()) {
5365        if (getLangOptions().CPlusPlus) {
5366          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5367            << lex->getSourceRange() << rex->getSourceRange();
5368          return QualType();
5369        }
5370
5371        ComplainAboutVoid = true;
5372      } else if (rpointee->isFunctionType()) {
5373        if (getLangOptions().CPlusPlus) {
5374          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5375            << rex->getType() << rex->getSourceRange();
5376          return QualType();
5377        }
5378
5379        // GNU extension: arithmetic on pointer to function
5380        if (!ComplainAboutFunc)
5381          ComplainAboutFunc = rex;
5382      } else if (!rpointee->isDependentType() &&
5383                 RequireCompleteType(Loc, rpointee,
5384                                     PDiag(diag::err_typecheck_sub_ptr_object)
5385                                       << rex->getSourceRange()
5386                                       << rex->getType()))
5387        return QualType();
5388
5389      if (getLangOptions().CPlusPlus) {
5390        // Pointee types must be the same: C++ [expr.add]
5391        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5392          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5393            << lex->getType() << rex->getType()
5394            << lex->getSourceRange() << rex->getSourceRange();
5395          return QualType();
5396        }
5397      } else {
5398        // Pointee types must be compatible C99 6.5.6p3
5399        if (!Context.typesAreCompatible(
5400                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5401                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5402          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5403            << lex->getType() << rex->getType()
5404            << lex->getSourceRange() << rex->getSourceRange();
5405          return QualType();
5406        }
5407      }
5408
5409      if (ComplainAboutVoid)
5410        Diag(Loc, diag::ext_gnu_void_ptr)
5411          << lex->getSourceRange() << rex->getSourceRange();
5412      if (ComplainAboutFunc)
5413        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5414          << ComplainAboutFunc->getType()
5415          << ComplainAboutFunc->getSourceRange();
5416
5417      if (CompLHSTy) *CompLHSTy = lex->getType();
5418      return Context.getPointerDiffType();
5419    }
5420  }
5421
5422  return InvalidOperands(Loc, lex, rex);
5423}
5424
5425static bool isScopedEnumerationType(QualType T) {
5426  if (const EnumType *ET = dyn_cast<EnumType>(T))
5427    return ET->getDecl()->isScoped();
5428  return false;
5429}
5430
5431// C99 6.5.7
5432QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5433                                  bool isCompAssign) {
5434  // C99 6.5.7p2: Each of the operands shall have integer type.
5435  if (!lex->getType()->hasIntegerRepresentation() ||
5436      !rex->getType()->hasIntegerRepresentation())
5437    return InvalidOperands(Loc, lex, rex);
5438
5439  // C++0x: Don't allow scoped enums. FIXME: Use something better than
5440  // hasIntegerRepresentation() above instead of this.
5441  if (isScopedEnumerationType(lex->getType()) ||
5442      isScopedEnumerationType(rex->getType())) {
5443    return InvalidOperands(Loc, lex, rex);
5444  }
5445
5446  // Vector shifts promote their scalar inputs to vector type.
5447  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5448    return CheckVectorOperands(Loc, lex, rex);
5449
5450  // Shifts don't perform usual arithmetic conversions, they just do integer
5451  // promotions on each operand. C99 6.5.7p3
5452  QualType LHSTy = Context.isPromotableBitField(lex);
5453  if (LHSTy.isNull()) {
5454    LHSTy = lex->getType();
5455    if (LHSTy->isPromotableIntegerType())
5456      LHSTy = Context.getPromotedIntegerType(LHSTy);
5457  }
5458  if (!isCompAssign)
5459    ImpCastExprToType(lex, LHSTy, CK_IntegralCast);
5460
5461  UsualUnaryConversions(rex);
5462
5463  // Sanity-check shift operands
5464  llvm::APSInt Right;
5465  // Check right/shifter operand
5466  if (!rex->isValueDependent() &&
5467      rex->isIntegerConstantExpr(Right, Context)) {
5468    if (Right.isNegative())
5469      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5470    else {
5471      llvm::APInt LeftBits(Right.getBitWidth(),
5472                          Context.getTypeSize(lex->getType()));
5473      if (Right.uge(LeftBits))
5474        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5475    }
5476  }
5477
5478  // "The type of the result is that of the promoted left operand."
5479  return LHSTy;
5480}
5481
5482static bool IsWithinTemplateSpecialization(Decl *D) {
5483  if (DeclContext *DC = D->getDeclContext()) {
5484    if (isa<ClassTemplateSpecializationDecl>(DC))
5485      return true;
5486    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
5487      return FD->isFunctionTemplateSpecialization();
5488  }
5489  return false;
5490}
5491
5492// C99 6.5.8, C++ [expr.rel]
5493QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5494                                    unsigned OpaqueOpc, bool isRelational) {
5495  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
5496
5497  // Handle vector comparisons separately.
5498  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5499    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5500
5501  QualType lType = lex->getType();
5502  QualType rType = rex->getType();
5503
5504  if (!lType->hasFloatingRepresentation() &&
5505      !(lType->isBlockPointerType() && isRelational) &&
5506      !lex->getLocStart().isMacroID() &&
5507      !rex->getLocStart().isMacroID()) {
5508    // For non-floating point types, check for self-comparisons of the form
5509    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5510    // often indicate logic errors in the program.
5511    //
5512    // NOTE: Don't warn about comparison expressions resulting from macro
5513    // expansion. Also don't warn about comparisons which are only self
5514    // comparisons within a template specialization. The warnings should catch
5515    // obvious cases in the definition of the template anyways. The idea is to
5516    // warn when the typed comparison operator will always evaluate to the same
5517    // result.
5518    Expr *LHSStripped = lex->IgnoreParens();
5519    Expr *RHSStripped = rex->IgnoreParens();
5520    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
5521      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
5522        if (DRL->getDecl() == DRR->getDecl() &&
5523            !IsWithinTemplateSpecialization(DRL->getDecl())) {
5524          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5525                              << 0 // self-
5526                              << (Opc == BO_EQ
5527                                  || Opc == BO_LE
5528                                  || Opc == BO_GE));
5529        } else if (lType->isArrayType() && rType->isArrayType() &&
5530                   !DRL->getDecl()->getType()->isReferenceType() &&
5531                   !DRR->getDecl()->getType()->isReferenceType()) {
5532            // what is it always going to eval to?
5533            char always_evals_to;
5534            switch(Opc) {
5535            case BO_EQ: // e.g. array1 == array2
5536              always_evals_to = 0; // false
5537              break;
5538            case BO_NE: // e.g. array1 != array2
5539              always_evals_to = 1; // true
5540              break;
5541            default:
5542              // best we can say is 'a constant'
5543              always_evals_to = 2; // e.g. array1 <= array2
5544              break;
5545            }
5546            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5547                                << 1 // array
5548                                << always_evals_to);
5549        }
5550      }
5551    }
5552
5553    if (isa<CastExpr>(LHSStripped))
5554      LHSStripped = LHSStripped->IgnoreParenCasts();
5555    if (isa<CastExpr>(RHSStripped))
5556      RHSStripped = RHSStripped->IgnoreParenCasts();
5557
5558    // Warn about comparisons against a string constant (unless the other
5559    // operand is null), the user probably wants strcmp.
5560    Expr *literalString = 0;
5561    Expr *literalStringStripped = 0;
5562    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5563        !RHSStripped->isNullPointerConstant(Context,
5564                                            Expr::NPC_ValueDependentIsNull)) {
5565      literalString = lex;
5566      literalStringStripped = LHSStripped;
5567    } else if ((isa<StringLiteral>(RHSStripped) ||
5568                isa<ObjCEncodeExpr>(RHSStripped)) &&
5569               !LHSStripped->isNullPointerConstant(Context,
5570                                            Expr::NPC_ValueDependentIsNull)) {
5571      literalString = rex;
5572      literalStringStripped = RHSStripped;
5573    }
5574
5575    if (literalString) {
5576      std::string resultComparison;
5577      switch (Opc) {
5578      case BO_LT: resultComparison = ") < 0"; break;
5579      case BO_GT: resultComparison = ") > 0"; break;
5580      case BO_LE: resultComparison = ") <= 0"; break;
5581      case BO_GE: resultComparison = ") >= 0"; break;
5582      case BO_EQ: resultComparison = ") == 0"; break;
5583      case BO_NE: resultComparison = ") != 0"; break;
5584      default: assert(false && "Invalid comparison operator");
5585      }
5586
5587      DiagRuntimeBehavior(Loc,
5588        PDiag(diag::warn_stringcompare)
5589          << isa<ObjCEncodeExpr>(literalStringStripped)
5590          << literalString->getSourceRange());
5591    }
5592  }
5593
5594  // C99 6.5.8p3 / C99 6.5.9p4
5595  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5596    UsualArithmeticConversions(lex, rex);
5597  else {
5598    UsualUnaryConversions(lex);
5599    UsualUnaryConversions(rex);
5600  }
5601
5602  lType = lex->getType();
5603  rType = rex->getType();
5604
5605  // The result of comparisons is 'bool' in C++, 'int' in C.
5606  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5607
5608  if (isRelational) {
5609    if (lType->isRealType() && rType->isRealType())
5610      return ResultTy;
5611  } else {
5612    // Check for comparisons of floating point operands using != and ==.
5613    if (lType->hasFloatingRepresentation())
5614      CheckFloatComparison(Loc,lex,rex);
5615
5616    if (lType->isArithmeticType() && rType->isArithmeticType())
5617      return ResultTy;
5618  }
5619
5620  bool LHSIsNull = lex->isNullPointerConstant(Context,
5621                                              Expr::NPC_ValueDependentIsNull);
5622  bool RHSIsNull = rex->isNullPointerConstant(Context,
5623                                              Expr::NPC_ValueDependentIsNull);
5624
5625  // All of the following pointer-related warnings are GCC extensions, except
5626  // when handling null pointer constants.
5627  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5628    QualType LCanPointeeTy =
5629      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5630    QualType RCanPointeeTy =
5631      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5632
5633    if (getLangOptions().CPlusPlus) {
5634      if (LCanPointeeTy == RCanPointeeTy)
5635        return ResultTy;
5636      if (!isRelational &&
5637          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5638        // Valid unless comparison between non-null pointer and function pointer
5639        // This is a gcc extension compatibility comparison.
5640        // In a SFINAE context, we treat this as a hard error to maintain
5641        // conformance with the C++ standard.
5642        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5643            && !LHSIsNull && !RHSIsNull) {
5644          Diag(Loc,
5645               isSFINAEContext()?
5646                   diag::err_typecheck_comparison_of_fptr_to_void
5647                 : diag::ext_typecheck_comparison_of_fptr_to_void)
5648            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5649
5650          if (isSFINAEContext())
5651            return QualType();
5652
5653          ImpCastExprToType(rex, lType, CK_BitCast);
5654          return ResultTy;
5655        }
5656      }
5657      // C++ [expr.rel]p2:
5658      //   [...] Pointer conversions (4.10) and qualification
5659      //   conversions (4.4) are performed on pointer operands (or on
5660      //   a pointer operand and a null pointer constant) to bring
5661      //   them to their composite pointer type. [...]
5662      //
5663      // C++ [expr.eq]p1 uses the same notion for (in)equality
5664      // comparisons of pointers.
5665      bool NonStandardCompositeType = false;
5666      QualType T = FindCompositePointerType(Loc, lex, rex,
5667                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5668      if (T.isNull()) {
5669        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5670          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5671        return QualType();
5672      } else if (NonStandardCompositeType) {
5673        Diag(Loc,
5674             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5675          << lType << rType << T
5676          << lex->getSourceRange() << rex->getSourceRange();
5677      }
5678
5679      ImpCastExprToType(lex, T, CK_BitCast);
5680      ImpCastExprToType(rex, T, CK_BitCast);
5681      return ResultTy;
5682    }
5683    // C99 6.5.9p2 and C99 6.5.8p2
5684    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5685                                   RCanPointeeTy.getUnqualifiedType())) {
5686      // Valid unless a relational comparison of function pointers
5687      if (isRelational && LCanPointeeTy->isFunctionType()) {
5688        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5689          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5690      }
5691    } else if (!isRelational &&
5692               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5693      // Valid unless comparison between non-null pointer and function pointer
5694      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5695          && !LHSIsNull && !RHSIsNull) {
5696        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5697          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5698      }
5699    } else {
5700      // Invalid
5701      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5702        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5703    }
5704    if (LCanPointeeTy != RCanPointeeTy)
5705      ImpCastExprToType(rex, lType, CK_BitCast);
5706    return ResultTy;
5707  }
5708
5709  if (getLangOptions().CPlusPlus) {
5710    // Comparison of pointers with null pointer constants and equality
5711    // comparisons of member pointers to null pointer constants.
5712    if (RHSIsNull &&
5713        (lType->isPointerType() ||
5714         (!isRelational && lType->isMemberPointerType()))) {
5715      ImpCastExprToType(rex, lType,
5716                        lType->isMemberPointerType()
5717                          ? CK_NullToMemberPointer
5718                          : CK_IntegralToPointer);
5719      return ResultTy;
5720    }
5721    if (LHSIsNull &&
5722        (rType->isPointerType() ||
5723         (!isRelational && rType->isMemberPointerType()))) {
5724      ImpCastExprToType(lex, rType,
5725                        rType->isMemberPointerType()
5726                          ? CK_NullToMemberPointer
5727                          : CK_IntegralToPointer);
5728      return ResultTy;
5729    }
5730
5731    // Comparison of member pointers.
5732    if (!isRelational &&
5733        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5734      // C++ [expr.eq]p2:
5735      //   In addition, pointers to members can be compared, or a pointer to
5736      //   member and a null pointer constant. Pointer to member conversions
5737      //   (4.11) and qualification conversions (4.4) are performed to bring
5738      //   them to a common type. If one operand is a null pointer constant,
5739      //   the common type is the type of the other operand. Otherwise, the
5740      //   common type is a pointer to member type similar (4.4) to the type
5741      //   of one of the operands, with a cv-qualification signature (4.4)
5742      //   that is the union of the cv-qualification signatures of the operand
5743      //   types.
5744      bool NonStandardCompositeType = false;
5745      QualType T = FindCompositePointerType(Loc, lex, rex,
5746                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5747      if (T.isNull()) {
5748        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5749          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5750        return QualType();
5751      } else if (NonStandardCompositeType) {
5752        Diag(Loc,
5753             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5754          << lType << rType << T
5755          << lex->getSourceRange() << rex->getSourceRange();
5756      }
5757
5758      ImpCastExprToType(lex, T, CK_BitCast);
5759      ImpCastExprToType(rex, T, CK_BitCast);
5760      return ResultTy;
5761    }
5762
5763    // Comparison of nullptr_t with itself.
5764    if (lType->isNullPtrType() && rType->isNullPtrType())
5765      return ResultTy;
5766  }
5767
5768  // Handle block pointer types.
5769  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5770    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5771    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5772
5773    if (!LHSIsNull && !RHSIsNull &&
5774        !Context.typesAreCompatible(lpointee, rpointee)) {
5775      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5776        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5777    }
5778    ImpCastExprToType(rex, lType, CK_BitCast);
5779    return ResultTy;
5780  }
5781  // Allow block pointers to be compared with null pointer constants.
5782  if (!isRelational
5783      && ((lType->isBlockPointerType() && rType->isPointerType())
5784          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5785    if (!LHSIsNull && !RHSIsNull) {
5786      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5787             ->getPointeeType()->isVoidType())
5788            || (lType->isPointerType() && lType->getAs<PointerType>()
5789                ->getPointeeType()->isVoidType())))
5790        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5791          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5792    }
5793    ImpCastExprToType(rex, lType, CK_BitCast);
5794    return ResultTy;
5795  }
5796
5797  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5798    if (lType->isPointerType() || rType->isPointerType()) {
5799      const PointerType *LPT = lType->getAs<PointerType>();
5800      const PointerType *RPT = rType->getAs<PointerType>();
5801      bool LPtrToVoid = LPT ?
5802        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5803      bool RPtrToVoid = RPT ?
5804        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5805
5806      if (!LPtrToVoid && !RPtrToVoid &&
5807          !Context.typesAreCompatible(lType, rType)) {
5808        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5809          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5810      }
5811      ImpCastExprToType(rex, lType, CK_BitCast);
5812      return ResultTy;
5813    }
5814    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5815      if (!Context.areComparableObjCPointerTypes(lType, rType))
5816        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5817          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5818      ImpCastExprToType(rex, lType, CK_BitCast);
5819      return ResultTy;
5820    }
5821  }
5822  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
5823      (lType->isIntegerType() && rType->isAnyPointerType())) {
5824    unsigned DiagID = 0;
5825    bool isError = false;
5826    if ((LHSIsNull && lType->isIntegerType()) ||
5827        (RHSIsNull && rType->isIntegerType())) {
5828      if (isRelational && !getLangOptions().CPlusPlus)
5829        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5830    } else if (isRelational && !getLangOptions().CPlusPlus)
5831      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5832    else if (getLangOptions().CPlusPlus) {
5833      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
5834      isError = true;
5835    } else
5836      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5837
5838    if (DiagID) {
5839      Diag(Loc, DiagID)
5840        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5841      if (isError)
5842        return QualType();
5843    }
5844
5845    if (lType->isIntegerType())
5846      ImpCastExprToType(lex, rType, CK_IntegralToPointer);
5847    else
5848      ImpCastExprToType(rex, lType, CK_IntegralToPointer);
5849    return ResultTy;
5850  }
5851
5852  // Handle block pointers.
5853  if (!isRelational && RHSIsNull
5854      && lType->isBlockPointerType() && rType->isIntegerType()) {
5855    ImpCastExprToType(rex, lType, CK_IntegralToPointer);
5856    return ResultTy;
5857  }
5858  if (!isRelational && LHSIsNull
5859      && lType->isIntegerType() && rType->isBlockPointerType()) {
5860    ImpCastExprToType(lex, rType, CK_IntegralToPointer);
5861    return ResultTy;
5862  }
5863  return InvalidOperands(Loc, lex, rex);
5864}
5865
5866/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5867/// operates on extended vector types.  Instead of producing an IntTy result,
5868/// like a scalar comparison, a vector comparison produces a vector of integer
5869/// types.
5870QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5871                                          SourceLocation Loc,
5872                                          bool isRelational) {
5873  // Check to make sure we're operating on vectors of the same type and width,
5874  // Allowing one side to be a scalar of element type.
5875  QualType vType = CheckVectorOperands(Loc, lex, rex);
5876  if (vType.isNull())
5877    return vType;
5878
5879  QualType lType = lex->getType();
5880  QualType rType = rex->getType();
5881
5882  // For non-floating point types, check for self-comparisons of the form
5883  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5884  // often indicate logic errors in the program.
5885  if (!lType->hasFloatingRepresentation()) {
5886    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5887      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5888        if (DRL->getDecl() == DRR->getDecl())
5889          DiagRuntimeBehavior(Loc,
5890                              PDiag(diag::warn_comparison_always)
5891                                << 0 // self-
5892                                << 2 // "a constant"
5893                              );
5894  }
5895
5896  // Check for comparisons of floating point operands using != and ==.
5897  if (!isRelational && lType->hasFloatingRepresentation()) {
5898    assert (rType->hasFloatingRepresentation());
5899    CheckFloatComparison(Loc,lex,rex);
5900  }
5901
5902  // Return the type for the comparison, which is the same as vector type for
5903  // integer vectors, or an integer type of identical size and number of
5904  // elements for floating point vectors.
5905  if (lType->hasIntegerRepresentation())
5906    return lType;
5907
5908  const VectorType *VTy = lType->getAs<VectorType>();
5909  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5910  if (TypeSize == Context.getTypeSize(Context.IntTy))
5911    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5912  if (TypeSize == Context.getTypeSize(Context.LongTy))
5913    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5914
5915  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5916         "Unhandled vector element size in vector compare");
5917  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5918}
5919
5920inline QualType Sema::CheckBitwiseOperands(
5921  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5922  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5923    if (lex->getType()->hasIntegerRepresentation() &&
5924        rex->getType()->hasIntegerRepresentation())
5925      return CheckVectorOperands(Loc, lex, rex);
5926
5927    return InvalidOperands(Loc, lex, rex);
5928  }
5929
5930  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5931
5932  if (lex->getType()->isIntegralOrUnscopedEnumerationType() &&
5933      rex->getType()->isIntegralOrUnscopedEnumerationType())
5934    return compType;
5935  return InvalidOperands(Loc, lex, rex);
5936}
5937
5938inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5939  Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
5940
5941  // Diagnose cases where the user write a logical and/or but probably meant a
5942  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
5943  // is a constant.
5944  if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
5945      rex->getType()->isIntegerType() && !rex->isValueDependent() &&
5946      // Don't warn in macros.
5947      !Loc.isMacroID()) {
5948    // If the RHS can be constant folded, and if it constant folds to something
5949    // that isn't 0 or 1 (which indicate a potential logical operation that
5950    // happened to fold to true/false) then warn.
5951    Expr::EvalResult Result;
5952    if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
5953        Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
5954      Diag(Loc, diag::warn_logical_instead_of_bitwise)
5955       << rex->getSourceRange()
5956        << (Opc == BO_LAnd ? "&&" : "||")
5957        << (Opc == BO_LAnd ? "&" : "|");
5958    }
5959  }
5960
5961  if (!Context.getLangOptions().CPlusPlus) {
5962    UsualUnaryConversions(lex);
5963    UsualUnaryConversions(rex);
5964
5965    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5966      return InvalidOperands(Loc, lex, rex);
5967
5968    return Context.IntTy;
5969  }
5970
5971  // The following is safe because we only use this method for
5972  // non-overloadable operands.
5973
5974  // C++ [expr.log.and]p1
5975  // C++ [expr.log.or]p1
5976  // The operands are both contextually converted to type bool.
5977  if (PerformContextuallyConvertToBool(lex) ||
5978      PerformContextuallyConvertToBool(rex))
5979    return InvalidOperands(Loc, lex, rex);
5980
5981  // C++ [expr.log.and]p2
5982  // C++ [expr.log.or]p2
5983  // The result is a bool.
5984  return Context.BoolTy;
5985}
5986
5987/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5988/// is a read-only property; return true if so. A readonly property expression
5989/// depends on various declarations and thus must be treated specially.
5990///
5991static bool IsReadonlyProperty(Expr *E, Sema &S) {
5992  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5993    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5994    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5995      QualType BaseType = PropExpr->getBase()->getType();
5996      if (const ObjCObjectPointerType *OPT =
5997            BaseType->getAsObjCInterfacePointerType())
5998        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5999          if (S.isPropertyReadonly(PDecl, IFace))
6000            return true;
6001    }
6002  }
6003  return false;
6004}
6005
6006/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
6007/// emit an error and return true.  If so, return false.
6008static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
6009  SourceLocation OrigLoc = Loc;
6010  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
6011                                                              &Loc);
6012  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
6013    IsLV = Expr::MLV_ReadonlyProperty;
6014  if (IsLV == Expr::MLV_Valid)
6015    return false;
6016
6017  unsigned Diag = 0;
6018  bool NeedType = false;
6019  switch (IsLV) { // C99 6.5.16p2
6020  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
6021  case Expr::MLV_ArrayType:
6022    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
6023    NeedType = true;
6024    break;
6025  case Expr::MLV_NotObjectType:
6026    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
6027    NeedType = true;
6028    break;
6029  case Expr::MLV_LValueCast:
6030    Diag = diag::err_typecheck_lvalue_casts_not_supported;
6031    break;
6032  case Expr::MLV_Valid:
6033    llvm_unreachable("did not take early return for MLV_Valid");
6034  case Expr::MLV_InvalidExpression:
6035  case Expr::MLV_MemberFunction:
6036  case Expr::MLV_ClassTemporary:
6037    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
6038    break;
6039  case Expr::MLV_IncompleteType:
6040  case Expr::MLV_IncompleteVoidType:
6041    return S.RequireCompleteType(Loc, E->getType(),
6042              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
6043                  << E->getSourceRange());
6044  case Expr::MLV_DuplicateVectorComponents:
6045    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
6046    break;
6047  case Expr::MLV_NotBlockQualified:
6048    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
6049    break;
6050  case Expr::MLV_ReadonlyProperty:
6051    Diag = diag::error_readonly_property_assignment;
6052    break;
6053  case Expr::MLV_NoSetterProperty:
6054    Diag = diag::error_nosetter_property_assignment;
6055    break;
6056  case Expr::MLV_SubObjCPropertySetting:
6057    Diag = diag::error_no_subobject_property_setting;
6058    break;
6059  }
6060
6061  SourceRange Assign;
6062  if (Loc != OrigLoc)
6063    Assign = SourceRange(OrigLoc, OrigLoc);
6064  if (NeedType)
6065    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6066  else
6067    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6068  return true;
6069}
6070
6071
6072
6073// C99 6.5.16.1
6074QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
6075                                       SourceLocation Loc,
6076                                       QualType CompoundType) {
6077  // Verify that LHS is a modifiable lvalue, and emit error if not.
6078  if (CheckForModifiableLvalue(LHS, Loc, *this))
6079    return QualType();
6080
6081  QualType LHSType = LHS->getType();
6082  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
6083  AssignConvertType ConvTy;
6084  if (CompoundType.isNull()) {
6085    QualType LHSTy(LHSType);
6086    // Simple assignment "x = y".
6087    ConvertPropertyAssignment(LHS, RHS, LHSTy);
6088    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
6089    // Special case of NSObject attributes on c-style pointer types.
6090    if (ConvTy == IncompatiblePointer &&
6091        ((Context.isObjCNSObjectType(LHSType) &&
6092          RHSType->isObjCObjectPointerType()) ||
6093         (Context.isObjCNSObjectType(RHSType) &&
6094          LHSType->isObjCObjectPointerType())))
6095      ConvTy = Compatible;
6096
6097    // If the RHS is a unary plus or minus, check to see if they = and + are
6098    // right next to each other.  If so, the user may have typo'd "x =+ 4"
6099    // instead of "x += 4".
6100    Expr *RHSCheck = RHS;
6101    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
6102      RHSCheck = ICE->getSubExpr();
6103    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
6104      if ((UO->getOpcode() == UO_Plus ||
6105           UO->getOpcode() == UO_Minus) &&
6106          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6107          // Only if the two operators are exactly adjacent.
6108          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6109          // And there is a space or other character before the subexpr of the
6110          // unary +/-.  We don't want to warn on "x=-1".
6111          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6112          UO->getSubExpr()->getLocStart().isFileID()) {
6113        Diag(Loc, diag::warn_not_compound_assign)
6114          << (UO->getOpcode() == UO_Plus ? "+" : "-")
6115          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6116      }
6117    }
6118  } else {
6119    // Compound assignment "x += y"
6120    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
6121  }
6122
6123  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6124                               RHS, AA_Assigning))
6125    return QualType();
6126
6127
6128  // Check to see if the destination operand is a dereferenced null pointer.  If
6129  // so, and if not volatile-qualified, this is undefined behavior that the
6130  // optimizer will delete, so warn about it.  People sometimes try to use this
6131  // to get a deterministic trap and are surprised by clang's behavior.  This
6132  // only handles the pattern "*null = whatever", which is a very syntactic
6133  // check.
6134  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
6135    if (UO->getOpcode() == UO_Deref &&
6136        UO->getSubExpr()->IgnoreParenCasts()->
6137          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
6138        !UO->getType().isVolatileQualified()) {
6139    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
6140        << UO->getSubExpr()->getSourceRange();
6141    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
6142  }
6143
6144  // C99 6.5.16p3: The type of an assignment expression is the type of the
6145  // left operand unless the left operand has qualified type, in which case
6146  // it is the unqualified version of the type of the left operand.
6147  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6148  // is converted to the type of the assignment expression (above).
6149  // C++ 5.17p1: the type of the assignment expression is that of its left
6150  // operand.
6151  return LHSType.getUnqualifiedType();
6152}
6153
6154// C99 6.5.17
6155QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
6156  DiagnoseUnusedExprResult(LHS);
6157
6158  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
6159  // C++ does not perform this conversion (C++ [expr.comma]p1).
6160  if (!getLangOptions().CPlusPlus)
6161    DefaultFunctionArrayLvalueConversion(RHS);
6162
6163  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
6164  // incomplete in C++).
6165
6166  return RHS->getType();
6167}
6168
6169/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
6170/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
6171QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
6172                                              bool isInc, bool isPrefix) {
6173  if (Op->isTypeDependent())
6174    return Context.DependentTy;
6175
6176  QualType ResType = Op->getType();
6177  assert(!ResType.isNull() && "no type for increment/decrement expression");
6178
6179  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
6180    // Decrement of bool is not allowed.
6181    if (!isInc) {
6182      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
6183      return QualType();
6184    }
6185    // Increment of bool sets it to true, but is deprecated.
6186    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
6187  } else if (ResType->isRealType()) {
6188    // OK!
6189  } else if (ResType->isAnyPointerType()) {
6190    QualType PointeeTy = ResType->getPointeeType();
6191
6192    // C99 6.5.2.4p2, 6.5.6p2
6193    if (PointeeTy->isVoidType()) {
6194      if (getLangOptions().CPlusPlus) {
6195        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
6196          << Op->getSourceRange();
6197        return QualType();
6198      }
6199
6200      // Pointer to void is a GNU extension in C.
6201      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
6202    } else if (PointeeTy->isFunctionType()) {
6203      if (getLangOptions().CPlusPlus) {
6204        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
6205          << Op->getType() << Op->getSourceRange();
6206        return QualType();
6207      }
6208
6209      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
6210        << ResType << Op->getSourceRange();
6211    } else if (RequireCompleteType(OpLoc, PointeeTy,
6212                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6213                             << Op->getSourceRange()
6214                             << ResType))
6215      return QualType();
6216    // Diagnose bad cases where we step over interface counts.
6217    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6218      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6219        << PointeeTy << Op->getSourceRange();
6220      return QualType();
6221    }
6222  } else if (ResType->isAnyComplexType()) {
6223    // C99 does not support ++/-- on complex types, we allow as an extension.
6224    Diag(OpLoc, diag::ext_integer_increment_complex)
6225      << ResType << Op->getSourceRange();
6226  } else {
6227    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6228      << ResType << int(isInc) << Op->getSourceRange();
6229    return QualType();
6230  }
6231  // At this point, we know we have a real, complex or pointer type.
6232  // Now make sure the operand is a modifiable lvalue.
6233  if (CheckForModifiableLvalue(Op, OpLoc, *this))
6234    return QualType();
6235  // In C++, a prefix increment is the same type as the operand. Otherwise
6236  // (in C or with postfix), the increment is the unqualified type of the
6237  // operand.
6238  return isPrefix && getLangOptions().CPlusPlus
6239    ? ResType : ResType.getUnqualifiedType();
6240}
6241
6242void Sema::ConvertPropertyAssignment(Expr *LHS, Expr *&RHS, QualType& LHSTy) {
6243  bool copyInit = false;
6244  if (const ObjCImplicitSetterGetterRefExpr *OISGE =
6245      dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
6246    // If using property-dot syntax notation for assignment, and there is a
6247    // setter, RHS expression is being passed to the setter argument. So,
6248    // type conversion (and comparison) is RHS to setter's argument type.
6249    if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
6250      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
6251      LHSTy = (*P)->getType();
6252    }
6253    copyInit = (getLangOptions().CPlusPlus && LHSTy->isRecordType());
6254  }
6255  else
6256      copyInit = (getLangOptions().CPlusPlus && isa<ObjCPropertyRefExpr>(LHS) &&
6257                  LHSTy->isRecordType());
6258  if (copyInit) {
6259    InitializedEntity Entity =
6260    InitializedEntity::InitializeParameter(Context, LHSTy);
6261    Expr *Arg = RHS;
6262    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
6263                                                Owned(Arg));
6264    if (!ArgE.isInvalid())
6265      RHS = ArgE.takeAs<Expr>();
6266  }
6267}
6268
6269
6270/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6271/// This routine allows us to typecheck complex/recursive expressions
6272/// where the declaration is needed for type checking. We only need to
6273/// handle cases when the expression references a function designator
6274/// or is an lvalue. Here are some examples:
6275///  - &(x) => x
6276///  - &*****f => f for f a function designator.
6277///  - &s.xx => s
6278///  - &s.zz[1].yy -> s, if zz is an array
6279///  - *(x + 1) -> x, if x is an array
6280///  - &"123"[2] -> 0
6281///  - & __real__ x -> x
6282static NamedDecl *getPrimaryDecl(Expr *E) {
6283  switch (E->getStmtClass()) {
6284  case Stmt::DeclRefExprClass:
6285    return cast<DeclRefExpr>(E)->getDecl();
6286  case Stmt::MemberExprClass:
6287    // If this is an arrow operator, the address is an offset from
6288    // the base's value, so the object the base refers to is
6289    // irrelevant.
6290    if (cast<MemberExpr>(E)->isArrow())
6291      return 0;
6292    // Otherwise, the expression refers to a part of the base
6293    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6294  case Stmt::ArraySubscriptExprClass: {
6295    // FIXME: This code shouldn't be necessary!  We should catch the implicit
6296    // promotion of register arrays earlier.
6297    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6298    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6299      if (ICE->getSubExpr()->getType()->isArrayType())
6300        return getPrimaryDecl(ICE->getSubExpr());
6301    }
6302    return 0;
6303  }
6304  case Stmt::UnaryOperatorClass: {
6305    UnaryOperator *UO = cast<UnaryOperator>(E);
6306
6307    switch(UO->getOpcode()) {
6308    case UO_Real:
6309    case UO_Imag:
6310    case UO_Extension:
6311      return getPrimaryDecl(UO->getSubExpr());
6312    default:
6313      return 0;
6314    }
6315  }
6316  case Stmt::ParenExprClass:
6317    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6318  case Stmt::ImplicitCastExprClass:
6319    // If the result of an implicit cast is an l-value, we care about
6320    // the sub-expression; otherwise, the result here doesn't matter.
6321    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6322  default:
6323    return 0;
6324  }
6325}
6326
6327/// CheckAddressOfOperand - The operand of & must be either a function
6328/// designator or an lvalue designating an object. If it is an lvalue, the
6329/// object cannot be declared with storage class register or be a bit field.
6330/// Note: The usual conversions are *not* applied to the operand of the &
6331/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6332/// In C++, the operand might be an overloaded function name, in which case
6333/// we allow the '&' but retain the overloaded-function type.
6334QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
6335  if (OrigOp->isTypeDependent())
6336    return Context.DependentTy;
6337  if (OrigOp->getType() == Context.OverloadTy)
6338    return Context.OverloadTy;
6339
6340  // Make sure to ignore parentheses in subsequent checks
6341  Expr *op = OrigOp->IgnoreParens();
6342
6343  if (getLangOptions().C99) {
6344    // Implement C99-only parts of addressof rules.
6345    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6346      if (uOp->getOpcode() == UO_Deref)
6347        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6348        // (assuming the deref expression is valid).
6349        return uOp->getSubExpr()->getType();
6350    }
6351    // Technically, there should be a check for array subscript
6352    // expressions here, but the result of one is always an lvalue anyway.
6353  }
6354  NamedDecl *dcl = getPrimaryDecl(op);
6355  Expr::isLvalueResult lval = op->isLvalue(Context);
6356
6357  if (lval == Expr::LV_ClassTemporary) {
6358    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6359                                 : diag::ext_typecheck_addrof_class_temporary)
6360      << op->getType() << op->getSourceRange();
6361    if (isSFINAEContext())
6362      return QualType();
6363  } else if (isa<ObjCSelectorExpr>(op)) {
6364    return Context.getPointerType(op->getType());
6365  } else if (lval == Expr::LV_MemberFunction) {
6366    // If it's an instance method, make a member pointer.
6367    // The expression must have exactly the form &A::foo.
6368
6369    // If the underlying expression isn't a decl ref, give up.
6370    if (!isa<DeclRefExpr>(op)) {
6371      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
6372        << OrigOp->getSourceRange();
6373      return QualType();
6374    }
6375    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
6376    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
6377
6378    // The id-expression was parenthesized.
6379    if (OrigOp != DRE) {
6380      Diag(OpLoc, diag::err_parens_pointer_member_function)
6381        << OrigOp->getSourceRange();
6382
6383    // The method was named without a qualifier.
6384    } else if (!DRE->getQualifier()) {
6385      Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6386        << op->getSourceRange();
6387    }
6388
6389    return Context.getMemberPointerType(op->getType(),
6390              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6391  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6392    // C99 6.5.3.2p1
6393    // The operand must be either an l-value or a function designator
6394    if (!op->getType()->isFunctionType()) {
6395      // FIXME: emit more specific diag...
6396      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6397        << op->getSourceRange();
6398      return QualType();
6399    }
6400  } else if (op->getBitField()) { // C99 6.5.3.2p1
6401    // The operand cannot be a bit-field
6402    Diag(OpLoc, diag::err_typecheck_address_of)
6403      << "bit-field" << op->getSourceRange();
6404        return QualType();
6405  } else if (op->refersToVectorElement()) {
6406    // The operand cannot be an element of a vector
6407    Diag(OpLoc, diag::err_typecheck_address_of)
6408      << "vector element" << op->getSourceRange();
6409    return QualType();
6410  } else if (isa<ObjCPropertyRefExpr>(op)) {
6411    // cannot take address of a property expression.
6412    Diag(OpLoc, diag::err_typecheck_address_of)
6413      << "property expression" << op->getSourceRange();
6414    return QualType();
6415  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6416    // FIXME: Can LHS ever be null here?
6417    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6418      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6419  } else if (dcl) { // C99 6.5.3.2p1
6420    // We have an lvalue with a decl. Make sure the decl is not declared
6421    // with the register storage-class specifier.
6422    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6423      // in C++ it is not error to take address of a register
6424      // variable (c++03 7.1.1P3)
6425      if (vd->getStorageClass() == SC_Register &&
6426          !getLangOptions().CPlusPlus) {
6427        Diag(OpLoc, diag::err_typecheck_address_of)
6428          << "register variable" << op->getSourceRange();
6429        return QualType();
6430      }
6431    } else if (isa<FunctionTemplateDecl>(dcl)) {
6432      return Context.OverloadTy;
6433    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6434      // Okay: we can take the address of a field.
6435      // Could be a pointer to member, though, if there is an explicit
6436      // scope qualifier for the class.
6437      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6438        DeclContext *Ctx = dcl->getDeclContext();
6439        if (Ctx && Ctx->isRecord()) {
6440          if (FD->getType()->isReferenceType()) {
6441            Diag(OpLoc,
6442                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6443              << FD->getDeclName() << FD->getType();
6444            return QualType();
6445          }
6446
6447          return Context.getMemberPointerType(op->getType(),
6448                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6449        }
6450      }
6451    } else if (!isa<FunctionDecl>(dcl))
6452      assert(0 && "Unknown/unexpected decl type");
6453  }
6454
6455  if (lval == Expr::LV_IncompleteVoidType) {
6456    // Taking the address of a void variable is technically illegal, but we
6457    // allow it in cases which are otherwise valid.
6458    // Example: "extern void x; void* y = &x;".
6459    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6460  }
6461
6462  // If the operand has type "type", the result has type "pointer to type".
6463  if (op->getType()->isObjCObjectType())
6464    return Context.getObjCObjectPointerType(op->getType());
6465  return Context.getPointerType(op->getType());
6466}
6467
6468/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
6469QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6470  if (Op->isTypeDependent())
6471    return Context.DependentTy;
6472
6473  UsualUnaryConversions(Op);
6474  QualType OpTy = Op->getType();
6475  QualType Result;
6476
6477  // Note that per both C89 and C99, indirection is always legal, even if OpTy
6478  // is an incomplete type or void.  It would be possible to warn about
6479  // dereferencing a void pointer, but it's completely well-defined, and such a
6480  // warning is unlikely to catch any mistakes.
6481  if (const PointerType *PT = OpTy->getAs<PointerType>())
6482    Result = PT->getPointeeType();
6483  else if (const ObjCObjectPointerType *OPT =
6484             OpTy->getAs<ObjCObjectPointerType>())
6485    Result = OPT->getPointeeType();
6486
6487  if (Result.isNull()) {
6488    Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6489      << OpTy << Op->getSourceRange();
6490    return QualType();
6491  }
6492
6493  return Result;
6494}
6495
6496static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
6497  tok::TokenKind Kind) {
6498  BinaryOperatorKind Opc;
6499  switch (Kind) {
6500  default: assert(0 && "Unknown binop!");
6501  case tok::periodstar:           Opc = BO_PtrMemD; break;
6502  case tok::arrowstar:            Opc = BO_PtrMemI; break;
6503  case tok::star:                 Opc = BO_Mul; break;
6504  case tok::slash:                Opc = BO_Div; break;
6505  case tok::percent:              Opc = BO_Rem; break;
6506  case tok::plus:                 Opc = BO_Add; break;
6507  case tok::minus:                Opc = BO_Sub; break;
6508  case tok::lessless:             Opc = BO_Shl; break;
6509  case tok::greatergreater:       Opc = BO_Shr; break;
6510  case tok::lessequal:            Opc = BO_LE; break;
6511  case tok::less:                 Opc = BO_LT; break;
6512  case tok::greaterequal:         Opc = BO_GE; break;
6513  case tok::greater:              Opc = BO_GT; break;
6514  case tok::exclaimequal:         Opc = BO_NE; break;
6515  case tok::equalequal:           Opc = BO_EQ; break;
6516  case tok::amp:                  Opc = BO_And; break;
6517  case tok::caret:                Opc = BO_Xor; break;
6518  case tok::pipe:                 Opc = BO_Or; break;
6519  case tok::ampamp:               Opc = BO_LAnd; break;
6520  case tok::pipepipe:             Opc = BO_LOr; break;
6521  case tok::equal:                Opc = BO_Assign; break;
6522  case tok::starequal:            Opc = BO_MulAssign; break;
6523  case tok::slashequal:           Opc = BO_DivAssign; break;
6524  case tok::percentequal:         Opc = BO_RemAssign; break;
6525  case tok::plusequal:            Opc = BO_AddAssign; break;
6526  case tok::minusequal:           Opc = BO_SubAssign; break;
6527  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
6528  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
6529  case tok::ampequal:             Opc = BO_AndAssign; break;
6530  case tok::caretequal:           Opc = BO_XorAssign; break;
6531  case tok::pipeequal:            Opc = BO_OrAssign; break;
6532  case tok::comma:                Opc = BO_Comma; break;
6533  }
6534  return Opc;
6535}
6536
6537static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
6538  tok::TokenKind Kind) {
6539  UnaryOperatorKind Opc;
6540  switch (Kind) {
6541  default: assert(0 && "Unknown unary op!");
6542  case tok::plusplus:     Opc = UO_PreInc; break;
6543  case tok::minusminus:   Opc = UO_PreDec; break;
6544  case tok::amp:          Opc = UO_AddrOf; break;
6545  case tok::star:         Opc = UO_Deref; break;
6546  case tok::plus:         Opc = UO_Plus; break;
6547  case tok::minus:        Opc = UO_Minus; break;
6548  case tok::tilde:        Opc = UO_Not; break;
6549  case tok::exclaim:      Opc = UO_LNot; break;
6550  case tok::kw___real:    Opc = UO_Real; break;
6551  case tok::kw___imag:    Opc = UO_Imag; break;
6552  case tok::kw___extension__: Opc = UO_Extension; break;
6553  }
6554  return Opc;
6555}
6556
6557/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6558/// operator @p Opc at location @c TokLoc. This routine only supports
6559/// built-in operations; ActOnBinOp handles overloaded operators.
6560ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6561                                    unsigned Op,
6562                                    Expr *lhs, Expr *rhs) {
6563  QualType ResultTy;     // Result type of the binary operator.
6564  BinaryOperatorKind Opc = (BinaryOperatorKind) Op;
6565  // The following two variables are used for compound assignment operators
6566  QualType CompLHSTy;    // Type of LHS after promotions for computation
6567  QualType CompResultTy; // Type of computation result
6568
6569  switch (Opc) {
6570  case BO_Assign:
6571    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6572    break;
6573  case BO_PtrMemD:
6574  case BO_PtrMemI:
6575    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6576                                            Opc == BO_PtrMemI);
6577    break;
6578  case BO_Mul:
6579  case BO_Div:
6580    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6581                                           Opc == BO_Div);
6582    break;
6583  case BO_Rem:
6584    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6585    break;
6586  case BO_Add:
6587    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6588    break;
6589  case BO_Sub:
6590    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6591    break;
6592  case BO_Shl:
6593  case BO_Shr:
6594    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6595    break;
6596  case BO_LE:
6597  case BO_LT:
6598  case BO_GE:
6599  case BO_GT:
6600    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6601    break;
6602  case BO_EQ:
6603  case BO_NE:
6604    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6605    break;
6606  case BO_And:
6607  case BO_Xor:
6608  case BO_Or:
6609    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6610    break;
6611  case BO_LAnd:
6612  case BO_LOr:
6613    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
6614    break;
6615  case BO_MulAssign:
6616  case BO_DivAssign:
6617    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6618                                              Opc == BO_DivAssign);
6619    CompLHSTy = CompResultTy;
6620    if (!CompResultTy.isNull())
6621      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6622    break;
6623  case BO_RemAssign:
6624    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6625    CompLHSTy = CompResultTy;
6626    if (!CompResultTy.isNull())
6627      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6628    break;
6629  case BO_AddAssign:
6630    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6631    if (!CompResultTy.isNull())
6632      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6633    break;
6634  case BO_SubAssign:
6635    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6636    if (!CompResultTy.isNull())
6637      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6638    break;
6639  case BO_ShlAssign:
6640  case BO_ShrAssign:
6641    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6642    CompLHSTy = CompResultTy;
6643    if (!CompResultTy.isNull())
6644      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6645    break;
6646  case BO_AndAssign:
6647  case BO_XorAssign:
6648  case BO_OrAssign:
6649    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6650    CompLHSTy = CompResultTy;
6651    if (!CompResultTy.isNull())
6652      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6653    break;
6654  case BO_Comma:
6655    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6656    break;
6657  }
6658  if (ResultTy.isNull())
6659    return ExprError();
6660  if (ResultTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6661    if (Opc >= BO_Assign && Opc <= BO_OrAssign)
6662          Diag(OpLoc, diag::err_assignment_requires_nonfragile_object)
6663                << ResultTy;
6664  }
6665  if (CompResultTy.isNull())
6666    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6667  else
6668    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6669                                                      CompLHSTy, CompResultTy,
6670                                                      OpLoc));
6671}
6672
6673/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6674/// ParenRange in parentheses.
6675static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6676                               const PartialDiagnostic &PD,
6677                               const PartialDiagnostic &FirstNote,
6678                               SourceRange FirstParenRange,
6679                               const PartialDiagnostic &SecondNote,
6680                               SourceRange SecondParenRange) {
6681  Self.Diag(Loc, PD);
6682
6683  if (!FirstNote.getDiagID())
6684    return;
6685
6686  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6687  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6688    // We can't display the parentheses, so just return.
6689    return;
6690  }
6691
6692  Self.Diag(Loc, FirstNote)
6693    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6694    << FixItHint::CreateInsertion(EndLoc, ")");
6695
6696  if (!SecondNote.getDiagID())
6697    return;
6698
6699  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6700  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6701    // We can't display the parentheses, so just dig the
6702    // warning/error and return.
6703    Self.Diag(Loc, SecondNote);
6704    return;
6705  }
6706
6707  Self.Diag(Loc, SecondNote)
6708    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6709    << FixItHint::CreateInsertion(EndLoc, ")");
6710}
6711
6712/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6713/// operators are mixed in a way that suggests that the programmer forgot that
6714/// comparison operators have higher precedence. The most typical example of
6715/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6716static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
6717                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6718  typedef BinaryOperator BinOp;
6719  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6720                rhsopc = static_cast<BinOp::Opcode>(-1);
6721  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6722    lhsopc = BO->getOpcode();
6723  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6724    rhsopc = BO->getOpcode();
6725
6726  // Subs are not binary operators.
6727  if (lhsopc == -1 && rhsopc == -1)
6728    return;
6729
6730  // Bitwise operations are sometimes used as eager logical ops.
6731  // Don't diagnose this.
6732  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6733      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6734    return;
6735
6736  if (BinOp::isComparisonOp(lhsopc))
6737    SuggestParentheses(Self, OpLoc,
6738      Self.PDiag(diag::warn_precedence_bitwise_rel)
6739          << SourceRange(lhs->getLocStart(), OpLoc)
6740          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6741      Self.PDiag(diag::note_precedence_bitwise_first)
6742          << BinOp::getOpcodeStr(Opc),
6743      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6744      Self.PDiag(diag::note_precedence_bitwise_silence)
6745          << BinOp::getOpcodeStr(lhsopc),
6746                       lhs->getSourceRange());
6747  else if (BinOp::isComparisonOp(rhsopc))
6748    SuggestParentheses(Self, OpLoc,
6749      Self.PDiag(diag::warn_precedence_bitwise_rel)
6750          << SourceRange(OpLoc, rhs->getLocEnd())
6751          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6752      Self.PDiag(diag::note_precedence_bitwise_first)
6753        << BinOp::getOpcodeStr(Opc),
6754      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6755      Self.PDiag(diag::note_precedence_bitwise_silence)
6756        << BinOp::getOpcodeStr(rhsopc),
6757                       rhs->getSourceRange());
6758}
6759
6760/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6761/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6762/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6763static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
6764                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6765  if (BinaryOperator::isBitwiseOp(Opc))
6766    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6767}
6768
6769// Binary Operators.  'Tok' is the token for the operator.
6770ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6771                            tok::TokenKind Kind,
6772                            Expr *lhs, Expr *rhs) {
6773  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
6774  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6775  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6776
6777  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6778  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6779
6780  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6781}
6782
6783ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6784                            BinaryOperatorKind Opc,
6785                            Expr *lhs, Expr *rhs) {
6786  if (getLangOptions().CPlusPlus &&
6787      ((!isa<ObjCImplicitSetterGetterRefExpr>(lhs) &&
6788        !isa<ObjCPropertyRefExpr>(lhs))
6789        || rhs->isTypeDependent() || Opc != BO_Assign) &&
6790      (lhs->getType()->isOverloadableType() ||
6791       rhs->getType()->isOverloadableType())) {
6792    // Find all of the overloaded operators visible from this
6793    // point. We perform both an operator-name lookup from the local
6794    // scope and an argument-dependent lookup based on the types of
6795    // the arguments.
6796    UnresolvedSet<16> Functions;
6797    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6798    if (S && OverOp != OO_None)
6799      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6800                                   Functions);
6801
6802    // Build the (potentially-overloaded, potentially-dependent)
6803    // binary operation.
6804    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6805  }
6806
6807  // Build a built-in binary operation.
6808  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6809}
6810
6811ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6812                                                    unsigned OpcIn,
6813                                                    Expr *Input) {
6814  UnaryOperatorKind Opc = static_cast<UnaryOperatorKind>(OpcIn);
6815
6816  QualType resultType;
6817  switch (Opc) {
6818  case UO_PreInc:
6819  case UO_PreDec:
6820  case UO_PostInc:
6821  case UO_PostDec:
6822    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6823                                                Opc == UO_PreInc ||
6824                                                Opc == UO_PostInc,
6825                                                Opc == UO_PreInc ||
6826                                                Opc == UO_PreDec);
6827    break;
6828  case UO_AddrOf:
6829    resultType = CheckAddressOfOperand(Input, OpLoc);
6830    break;
6831  case UO_Deref:
6832    DefaultFunctionArrayLvalueConversion(Input);
6833    resultType = CheckIndirectionOperand(Input, OpLoc);
6834    break;
6835  case UO_Plus:
6836  case UO_Minus:
6837    UsualUnaryConversions(Input);
6838    resultType = Input->getType();
6839    if (resultType->isDependentType())
6840      break;
6841    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
6842        resultType->isVectorType())
6843      break;
6844    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6845             resultType->isEnumeralType())
6846      break;
6847    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6848             Opc == UO_Plus &&
6849             resultType->isPointerType())
6850      break;
6851
6852    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6853      << resultType << Input->getSourceRange());
6854  case UO_Not: // bitwise complement
6855    UsualUnaryConversions(Input);
6856    resultType = Input->getType();
6857    if (resultType->isDependentType())
6858      break;
6859    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6860    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6861      // C99 does not support '~' for complex conjugation.
6862      Diag(OpLoc, diag::ext_integer_complement_complex)
6863        << resultType << Input->getSourceRange();
6864    else if (!resultType->hasIntegerRepresentation())
6865      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6866        << resultType << Input->getSourceRange());
6867    break;
6868  case UO_LNot: // logical negation
6869    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6870    DefaultFunctionArrayLvalueConversion(Input);
6871    resultType = Input->getType();
6872    if (resultType->isDependentType())
6873      break;
6874    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6875      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6876        << resultType << Input->getSourceRange());
6877
6878    // Do not accept &f if f is overloaded
6879    // i.e. void f(int); void f(char); bool b = &f;
6880    if (resultType == Context.OverloadTy &&
6881        PerformContextuallyConvertToBool(Input))
6882      return ExprError(); // Diagnostic is uttered above
6883
6884    // LNot always has type int. C99 6.5.3.3p5.
6885    // In C++, it's bool. C++ 5.3.1p8
6886    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6887    break;
6888  case UO_Real:
6889  case UO_Imag:
6890    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UO_Real);
6891    break;
6892  case UO_Extension:
6893    resultType = Input->getType();
6894    break;
6895  }
6896  if (resultType.isNull())
6897    return ExprError();
6898
6899  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6900}
6901
6902ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6903                              UnaryOperatorKind Opc,
6904                              Expr *Input) {
6905  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6906      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
6907    // Find all of the overloaded operators visible from this
6908    // point. We perform both an operator-name lookup from the local
6909    // scope and an argument-dependent lookup based on the types of
6910    // the arguments.
6911    UnresolvedSet<16> Functions;
6912    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6913    if (S && OverOp != OO_None)
6914      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6915                                   Functions);
6916
6917    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
6918  }
6919
6920  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
6921}
6922
6923// Unary Operators.  'Tok' is the token for the operator.
6924ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6925                                            tok::TokenKind Op, Expr *Input) {
6926  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
6927}
6928
6929/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6930ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6931                                            SourceLocation LabLoc,
6932                                            IdentifierInfo *LabelII) {
6933  // Look up the record for this label identifier.
6934  LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
6935
6936  // If we haven't seen this label yet, create a forward reference. It
6937  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6938  if (LabelDecl == 0)
6939    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6940
6941  LabelDecl->setUsed();
6942  // Create the AST node.  The address of a label always has type 'void*'.
6943  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6944                                       Context.getPointerType(Context.VoidTy)));
6945}
6946
6947ExprResult
6948Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
6949                    SourceLocation RPLoc) { // "({..})"
6950  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6951  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6952
6953  bool isFileScope
6954    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6955  if (isFileScope)
6956    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6957
6958  // FIXME: there are a variety of strange constraints to enforce here, for
6959  // example, it is not possible to goto into a stmt expression apparently.
6960  // More semantic analysis is needed.
6961
6962  // If there are sub stmts in the compound stmt, take the type of the last one
6963  // as the type of the stmtexpr.
6964  QualType Ty = Context.VoidTy;
6965
6966  if (!Compound->body_empty()) {
6967    Stmt *LastStmt = Compound->body_back();
6968    // If LastStmt is a label, skip down through into the body.
6969    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6970      LastStmt = Label->getSubStmt();
6971
6972    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6973      Ty = LastExpr->getType();
6974  }
6975
6976  // FIXME: Check that expression type is complete/non-abstract; statement
6977  // expressions are not lvalues.
6978
6979  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6980}
6981
6982ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6983                                                  TypeSourceInfo *TInfo,
6984                                                  OffsetOfComponent *CompPtr,
6985                                                  unsigned NumComponents,
6986                                                  SourceLocation RParenLoc) {
6987  QualType ArgTy = TInfo->getType();
6988  bool Dependent = ArgTy->isDependentType();
6989  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6990
6991  // We must have at least one component that refers to the type, and the first
6992  // one is known to be a field designator.  Verify that the ArgTy represents
6993  // a struct/union/class.
6994  if (!Dependent && !ArgTy->isRecordType())
6995    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6996                       << ArgTy << TypeRange);
6997
6998  // Type must be complete per C99 7.17p3 because a declaring a variable
6999  // with an incomplete type would be ill-formed.
7000  if (!Dependent
7001      && RequireCompleteType(BuiltinLoc, ArgTy,
7002                             PDiag(diag::err_offsetof_incomplete_type)
7003                               << TypeRange))
7004    return ExprError();
7005
7006  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
7007  // GCC extension, diagnose them.
7008  // FIXME: This diagnostic isn't actually visible because the location is in
7009  // a system header!
7010  if (NumComponents != 1)
7011    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
7012      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
7013
7014  bool DidWarnAboutNonPOD = false;
7015  QualType CurrentType = ArgTy;
7016  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
7017  llvm::SmallVector<OffsetOfNode, 4> Comps;
7018  llvm::SmallVector<Expr*, 4> Exprs;
7019  for (unsigned i = 0; i != NumComponents; ++i) {
7020    const OffsetOfComponent &OC = CompPtr[i];
7021    if (OC.isBrackets) {
7022      // Offset of an array sub-field.  TODO: Should we allow vector elements?
7023      if (!CurrentType->isDependentType()) {
7024        const ArrayType *AT = Context.getAsArrayType(CurrentType);
7025        if(!AT)
7026          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
7027                           << CurrentType);
7028        CurrentType = AT->getElementType();
7029      } else
7030        CurrentType = Context.DependentTy;
7031
7032      // The expression must be an integral expression.
7033      // FIXME: An integral constant expression?
7034      Expr *Idx = static_cast<Expr*>(OC.U.E);
7035      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
7036          !Idx->getType()->isIntegerType())
7037        return ExprError(Diag(Idx->getLocStart(),
7038                              diag::err_typecheck_subscript_not_integer)
7039                         << Idx->getSourceRange());
7040
7041      // Record this array index.
7042      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
7043      Exprs.push_back(Idx);
7044      continue;
7045    }
7046
7047    // Offset of a field.
7048    if (CurrentType->isDependentType()) {
7049      // We have the offset of a field, but we can't look into the dependent
7050      // type. Just record the identifier of the field.
7051      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
7052      CurrentType = Context.DependentTy;
7053      continue;
7054    }
7055
7056    // We need to have a complete type to look into.
7057    if (RequireCompleteType(OC.LocStart, CurrentType,
7058                            diag::err_offsetof_incomplete_type))
7059      return ExprError();
7060
7061    // Look for the designated field.
7062    const RecordType *RC = CurrentType->getAs<RecordType>();
7063    if (!RC)
7064      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
7065                       << CurrentType);
7066    RecordDecl *RD = RC->getDecl();
7067
7068    // C++ [lib.support.types]p5:
7069    //   The macro offsetof accepts a restricted set of type arguments in this
7070    //   International Standard. type shall be a POD structure or a POD union
7071    //   (clause 9).
7072    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7073      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
7074          DiagRuntimeBehavior(BuiltinLoc,
7075                              PDiag(diag::warn_offsetof_non_pod_type)
7076                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
7077                              << CurrentType))
7078        DidWarnAboutNonPOD = true;
7079    }
7080
7081    // Look for the field.
7082    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
7083    LookupQualifiedName(R, RD);
7084    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
7085    if (!MemberDecl)
7086      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
7087                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
7088                                                              OC.LocEnd));
7089
7090    // C99 7.17p3:
7091    //   (If the specified member is a bit-field, the behavior is undefined.)
7092    //
7093    // We diagnose this as an error.
7094    if (MemberDecl->getBitWidth()) {
7095      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
7096        << MemberDecl->getDeclName()
7097        << SourceRange(BuiltinLoc, RParenLoc);
7098      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
7099      return ExprError();
7100    }
7101
7102    RecordDecl *Parent = MemberDecl->getParent();
7103    bool AnonStructUnion = Parent->isAnonymousStructOrUnion();
7104    if (AnonStructUnion) {
7105      do {
7106        Parent = cast<RecordDecl>(Parent->getParent());
7107      } while (Parent->isAnonymousStructOrUnion());
7108    }
7109
7110    // If the member was found in a base class, introduce OffsetOfNodes for
7111    // the base class indirections.
7112    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
7113                       /*DetectVirtual=*/false);
7114    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
7115      CXXBasePath &Path = Paths.front();
7116      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
7117           B != BEnd; ++B)
7118        Comps.push_back(OffsetOfNode(B->Base));
7119    }
7120
7121    if (AnonStructUnion) {
7122      llvm::SmallVector<FieldDecl*, 4> Path;
7123      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
7124      unsigned n = Path.size();
7125      for (int j = n - 1; j > -1; --j)
7126        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
7127    } else {
7128      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
7129    }
7130    CurrentType = MemberDecl->getType().getNonReferenceType();
7131  }
7132
7133  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
7134                                    TInfo, Comps.data(), Comps.size(),
7135                                    Exprs.data(), Exprs.size(), RParenLoc));
7136}
7137
7138ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
7139                                                  SourceLocation BuiltinLoc,
7140                                                  SourceLocation TypeLoc,
7141                                                  ParsedType argty,
7142                                                  OffsetOfComponent *CompPtr,
7143                                                  unsigned NumComponents,
7144                                                  SourceLocation RPLoc) {
7145
7146  TypeSourceInfo *ArgTInfo;
7147  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
7148  if (ArgTy.isNull())
7149    return ExprError();
7150
7151  if (!ArgTInfo)
7152    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
7153
7154  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
7155                              RPLoc);
7156}
7157
7158
7159ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
7160                                                      ParsedType arg1,ParsedType arg2,
7161                                                      SourceLocation RPLoc) {
7162  TypeSourceInfo *argTInfo1;
7163  QualType argT1 = GetTypeFromParser(arg1, &argTInfo1);
7164  TypeSourceInfo *argTInfo2;
7165  QualType argT2 = GetTypeFromParser(arg2, &argTInfo2);
7166
7167  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
7168
7169  return BuildTypesCompatibleExpr(BuiltinLoc, argTInfo1, argTInfo2, RPLoc);
7170}
7171
7172ExprResult
7173Sema::BuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
7174                               TypeSourceInfo *argTInfo1,
7175                               TypeSourceInfo *argTInfo2,
7176                               SourceLocation RPLoc) {
7177  if (getLangOptions().CPlusPlus) {
7178    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
7179      << SourceRange(BuiltinLoc, RPLoc);
7180    return ExprError();
7181  }
7182
7183  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
7184                                                 argTInfo1, argTInfo2, RPLoc));
7185}
7186
7187
7188ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
7189                                             Expr *CondExpr,
7190                                             Expr *LHSExpr, Expr *RHSExpr,
7191                                             SourceLocation RPLoc) {
7192  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
7193
7194  QualType resType;
7195  bool ValueDependent = false;
7196  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
7197    resType = Context.DependentTy;
7198    ValueDependent = true;
7199  } else {
7200    // The conditional expression is required to be a constant expression.
7201    llvm::APSInt condEval(32);
7202    SourceLocation ExpLoc;
7203    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
7204      return ExprError(Diag(ExpLoc,
7205                       diag::err_typecheck_choose_expr_requires_constant)
7206        << CondExpr->getSourceRange());
7207
7208    // If the condition is > zero, then the AST type is the same as the LSHExpr.
7209    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7210    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7211                                             : RHSExpr->isValueDependent();
7212  }
7213
7214  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7215                                        resType, RPLoc,
7216                                        resType->isDependentType(),
7217                                        ValueDependent));
7218}
7219
7220//===----------------------------------------------------------------------===//
7221// Clang Extensions.
7222//===----------------------------------------------------------------------===//
7223
7224/// ActOnBlockStart - This callback is invoked when a block literal is started.
7225void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7226  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7227  PushBlockScope(BlockScope, Block);
7228  CurContext->addDecl(Block);
7229  if (BlockScope)
7230    PushDeclContext(BlockScope, Block);
7231  else
7232    CurContext = Block;
7233}
7234
7235void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7236  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7237  BlockScopeInfo *CurBlock = getCurBlock();
7238
7239  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7240  CurBlock->TheDecl->setSignatureAsWritten(Sig);
7241  QualType T = Sig->getType();
7242
7243  bool isVariadic;
7244  QualType RetTy;
7245  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7246    CurBlock->FunctionType = T;
7247    RetTy = Fn->getResultType();
7248    isVariadic =
7249      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7250  } else {
7251    RetTy = T;
7252    isVariadic = false;
7253  }
7254
7255  CurBlock->TheDecl->setIsVariadic(isVariadic);
7256
7257  // Don't allow returning an array by value.
7258  if (RetTy->isArrayType()) {
7259    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7260    return;
7261  }
7262
7263  // Don't allow returning a objc interface by value.
7264  if (RetTy->isObjCObjectType()) {
7265    Diag(ParamInfo.getSourceRange().getBegin(),
7266         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7267    return;
7268  }
7269
7270  // Context.DependentTy is used as a placeholder for a missing block
7271  // return type.  TODO:  what should we do with declarators like:
7272  //   ^ * { ... }
7273  // If the answer is "apply template argument deduction"....
7274  if (RetTy != Context.DependentTy)
7275    CurBlock->ReturnType = RetTy;
7276
7277  // Push block parameters from the declarator if we had them.
7278  llvm::SmallVector<ParmVarDecl*, 8> Params;
7279  if (isa<FunctionProtoType>(T)) {
7280    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7281    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7282      ParmVarDecl *Param = TL.getArg(I);
7283      if (Param->getIdentifier() == 0 &&
7284          !Param->isImplicit() &&
7285          !Param->isInvalidDecl() &&
7286          !getLangOptions().CPlusPlus)
7287        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7288      Params.push_back(Param);
7289    }
7290
7291  // Fake up parameter variables if we have a typedef, like
7292  //   ^ fntype { ... }
7293  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7294    for (FunctionProtoType::arg_type_iterator
7295           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7296      ParmVarDecl *Param =
7297        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7298                                   ParamInfo.getSourceRange().getBegin(),
7299                                   *I);
7300      Params.push_back(Param);
7301    }
7302  }
7303
7304  // Set the parameters on the block decl.
7305  if (!Params.empty())
7306    CurBlock->TheDecl->setParams(Params.data(), Params.size());
7307
7308  // Finally we can process decl attributes.
7309  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7310
7311  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7312    Diag(ParamInfo.getAttributes()->getLoc(),
7313         diag::warn_attribute_sentinel_not_variadic) << 1;
7314    // FIXME: remove the attribute.
7315  }
7316
7317  // Put the parameter variables in scope.  We can bail out immediately
7318  // if we don't have any.
7319  if (Params.empty())
7320    return;
7321
7322  bool ShouldCheckShadow =
7323    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7324
7325  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7326         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7327    (*AI)->setOwningFunction(CurBlock->TheDecl);
7328
7329    // If this has an identifier, add it to the scope stack.
7330    if ((*AI)->getIdentifier()) {
7331      if (ShouldCheckShadow)
7332        CheckShadow(CurBlock->TheScope, *AI);
7333
7334      PushOnScopeChains(*AI, CurBlock->TheScope);
7335    }
7336  }
7337}
7338
7339/// ActOnBlockError - If there is an error parsing a block, this callback
7340/// is invoked to pop the information about the block from the action impl.
7341void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7342  // Pop off CurBlock, handle nested blocks.
7343  PopDeclContext();
7344  PopFunctionOrBlockScope();
7345  // FIXME: Delete the ParmVarDecl objects as well???
7346}
7347
7348/// ActOnBlockStmtExpr - This is called when the body of a block statement
7349/// literal was successfully completed.  ^(int x){...}
7350ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7351                                                Stmt *Body, Scope *CurScope) {
7352  // If blocks are disabled, emit an error.
7353  if (!LangOpts.Blocks)
7354    Diag(CaretLoc, diag::err_blocks_disable);
7355
7356  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7357
7358  PopDeclContext();
7359
7360  QualType RetTy = Context.VoidTy;
7361  if (!BSI->ReturnType.isNull())
7362    RetTy = BSI->ReturnType;
7363
7364  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7365  QualType BlockTy;
7366
7367  // If the user wrote a function type in some form, try to use that.
7368  if (!BSI->FunctionType.isNull()) {
7369    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
7370
7371    FunctionType::ExtInfo Ext = FTy->getExtInfo();
7372    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
7373
7374    // Turn protoless block types into nullary block types.
7375    if (isa<FunctionNoProtoType>(FTy)) {
7376      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7377                                        false, false, 0, 0, Ext);
7378
7379    // Otherwise, if we don't need to change anything about the function type,
7380    // preserve its sugar structure.
7381    } else if (FTy->getResultType() == RetTy &&
7382               (!NoReturn || FTy->getNoReturnAttr())) {
7383      BlockTy = BSI->FunctionType;
7384
7385    // Otherwise, make the minimal modifications to the function type.
7386    } else {
7387      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
7388      BlockTy = Context.getFunctionType(RetTy,
7389                                        FPT->arg_type_begin(),
7390                                        FPT->getNumArgs(),
7391                                        FPT->isVariadic(),
7392                                        /*quals*/ 0,
7393                                        FPT->hasExceptionSpec(),
7394                                        FPT->hasAnyExceptionSpec(),
7395                                        FPT->getNumExceptions(),
7396                                        FPT->exception_begin(),
7397                                        Ext);
7398    }
7399
7400  // If we don't have a function type, just build one from nothing.
7401  } else {
7402    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7403                                      false, false, 0, 0,
7404                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7405  }
7406
7407  // FIXME: Check that return/parameter types are complete/non-abstract
7408  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
7409                           BSI->TheDecl->param_end());
7410  BlockTy = Context.getBlockPointerType(BlockTy);
7411
7412  // If needed, diagnose invalid gotos and switches in the block.
7413  if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7414    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
7415
7416  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
7417
7418  bool Good = true;
7419  // Check goto/label use.
7420  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7421         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7422    LabelStmt *L = I->second;
7423
7424    // Verify that we have no forward references left.  If so, there was a goto
7425    // or address of a label taken, but no definition of it.
7426    if (L->getSubStmt() != 0) {
7427      if (!L->isUsed())
7428        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
7429      continue;
7430    }
7431
7432    // Emit error.
7433    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7434    Good = false;
7435  }
7436  if (!Good) {
7437    PopFunctionOrBlockScope();
7438    return ExprError();
7439  }
7440
7441  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7442                                              BSI->hasBlockDeclRefExprs);
7443
7444  // Issue any analysis-based warnings.
7445  const sema::AnalysisBasedWarnings::Policy &WP =
7446    AnalysisWarnings.getDefaultPolicy();
7447  AnalysisWarnings.IssueWarnings(WP, Result);
7448
7449  PopFunctionOrBlockScope();
7450  return Owned(Result);
7451}
7452
7453ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7454                                        Expr *expr, ParsedType type,
7455                                        SourceLocation RPLoc) {
7456  TypeSourceInfo *TInfo;
7457  QualType T = GetTypeFromParser(type, &TInfo);
7458  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
7459}
7460
7461ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
7462                                            Expr *E, TypeSourceInfo *TInfo,
7463                                            SourceLocation RPLoc) {
7464  Expr *OrigExpr = E;
7465
7466  // Get the va_list type
7467  QualType VaListType = Context.getBuiltinVaListType();
7468  if (VaListType->isArrayType()) {
7469    // Deal with implicit array decay; for example, on x86-64,
7470    // va_list is an array, but it's supposed to decay to
7471    // a pointer for va_arg.
7472    VaListType = Context.getArrayDecayedType(VaListType);
7473    // Make sure the input expression also decays appropriately.
7474    UsualUnaryConversions(E);
7475  } else {
7476    // Otherwise, the va_list argument must be an l-value because
7477    // it is modified by va_arg.
7478    if (!E->isTypeDependent() &&
7479        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7480      return ExprError();
7481  }
7482
7483  if (!E->isTypeDependent() &&
7484      !Context.hasSameType(VaListType, E->getType())) {
7485    return ExprError(Diag(E->getLocStart(),
7486                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7487      << OrigExpr->getType() << E->getSourceRange());
7488  }
7489
7490  // FIXME: Check that type is complete/non-abstract
7491  // FIXME: Warn if a non-POD type is passed in.
7492
7493  QualType T = TInfo->getType().getNonLValueExprType(Context);
7494  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
7495}
7496
7497ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7498  // The type of __null will be int or long, depending on the size of
7499  // pointers on the target.
7500  QualType Ty;
7501  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7502    Ty = Context.IntTy;
7503  else
7504    Ty = Context.LongTy;
7505
7506  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7507}
7508
7509static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7510                                           Expr *SrcExpr, FixItHint &Hint) {
7511  if (!SemaRef.getLangOptions().ObjC1)
7512    return;
7513
7514  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7515  if (!PT)
7516    return;
7517
7518  // Check if the destination is of type 'id'.
7519  if (!PT->isObjCIdType()) {
7520    // Check if the destination is the 'NSString' interface.
7521    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7522    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7523      return;
7524  }
7525
7526  // Strip off any parens and casts.
7527  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7528  if (!SL || SL->isWide())
7529    return;
7530
7531  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7532}
7533
7534bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7535                                    SourceLocation Loc,
7536                                    QualType DstType, QualType SrcType,
7537                                    Expr *SrcExpr, AssignmentAction Action,
7538                                    bool *Complained) {
7539  if (Complained)
7540    *Complained = false;
7541
7542  // Decode the result (notice that AST's are still created for extensions).
7543  bool isInvalid = false;
7544  unsigned DiagKind;
7545  FixItHint Hint;
7546
7547  switch (ConvTy) {
7548  default: assert(0 && "Unknown conversion type");
7549  case Compatible: return false;
7550  case PointerToInt:
7551    DiagKind = diag::ext_typecheck_convert_pointer_int;
7552    break;
7553  case IntToPointer:
7554    DiagKind = diag::ext_typecheck_convert_int_pointer;
7555    break;
7556  case IncompatiblePointer:
7557    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7558    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7559    break;
7560  case IncompatiblePointerSign:
7561    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7562    break;
7563  case FunctionVoidPointer:
7564    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7565    break;
7566  case CompatiblePointerDiscardsQualifiers:
7567    // If the qualifiers lost were because we were applying the
7568    // (deprecated) C++ conversion from a string literal to a char*
7569    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7570    // Ideally, this check would be performed in
7571    // CheckPointerTypesForAssignment. However, that would require a
7572    // bit of refactoring (so that the second argument is an
7573    // expression, rather than a type), which should be done as part
7574    // of a larger effort to fix CheckPointerTypesForAssignment for
7575    // C++ semantics.
7576    if (getLangOptions().CPlusPlus &&
7577        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7578      return false;
7579    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7580    break;
7581  case IncompatibleNestedPointerQualifiers:
7582    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7583    break;
7584  case IntToBlockPointer:
7585    DiagKind = diag::err_int_to_block_pointer;
7586    break;
7587  case IncompatibleBlockPointer:
7588    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7589    break;
7590  case IncompatibleObjCQualifiedId:
7591    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7592    // it can give a more specific diagnostic.
7593    DiagKind = diag::warn_incompatible_qualified_id;
7594    break;
7595  case IncompatibleVectors:
7596    DiagKind = diag::warn_incompatible_vectors;
7597    break;
7598  case Incompatible:
7599    DiagKind = diag::err_typecheck_convert_incompatible;
7600    isInvalid = true;
7601    break;
7602  }
7603
7604  QualType FirstType, SecondType;
7605  switch (Action) {
7606  case AA_Assigning:
7607  case AA_Initializing:
7608    // The destination type comes first.
7609    FirstType = DstType;
7610    SecondType = SrcType;
7611    break;
7612
7613  case AA_Returning:
7614  case AA_Passing:
7615  case AA_Converting:
7616  case AA_Sending:
7617  case AA_Casting:
7618    // The source type comes first.
7619    FirstType = SrcType;
7620    SecondType = DstType;
7621    break;
7622  }
7623
7624  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7625    << SrcExpr->getSourceRange() << Hint;
7626  if (Complained)
7627    *Complained = true;
7628  return isInvalid;
7629}
7630
7631bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7632  llvm::APSInt ICEResult;
7633  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7634    if (Result)
7635      *Result = ICEResult;
7636    return false;
7637  }
7638
7639  Expr::EvalResult EvalResult;
7640
7641  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7642      EvalResult.HasSideEffects) {
7643    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7644
7645    if (EvalResult.Diag) {
7646      // We only show the note if it's not the usual "invalid subexpression"
7647      // or if it's actually in a subexpression.
7648      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7649          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7650        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7651    }
7652
7653    return true;
7654  }
7655
7656  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7657    E->getSourceRange();
7658
7659  if (EvalResult.Diag &&
7660      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7661    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7662
7663  if (Result)
7664    *Result = EvalResult.Val.getInt();
7665  return false;
7666}
7667
7668void
7669Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7670  ExprEvalContexts.push_back(
7671        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7672}
7673
7674void
7675Sema::PopExpressionEvaluationContext() {
7676  // Pop the current expression evaluation context off the stack.
7677  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7678  ExprEvalContexts.pop_back();
7679
7680  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7681    if (Rec.PotentiallyReferenced) {
7682      // Mark any remaining declarations in the current position of the stack
7683      // as "referenced". If they were not meant to be referenced, semantic
7684      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7685      for (PotentiallyReferencedDecls::iterator
7686             I = Rec.PotentiallyReferenced->begin(),
7687             IEnd = Rec.PotentiallyReferenced->end();
7688           I != IEnd; ++I)
7689        MarkDeclarationReferenced(I->first, I->second);
7690    }
7691
7692    if (Rec.PotentiallyDiagnosed) {
7693      // Emit any pending diagnostics.
7694      for (PotentiallyEmittedDiagnostics::iterator
7695                I = Rec.PotentiallyDiagnosed->begin(),
7696             IEnd = Rec.PotentiallyDiagnosed->end();
7697           I != IEnd; ++I)
7698        Diag(I->first, I->second);
7699    }
7700  }
7701
7702  // When are coming out of an unevaluated context, clear out any
7703  // temporaries that we may have created as part of the evaluation of
7704  // the expression in that context: they aren't relevant because they
7705  // will never be constructed.
7706  if (Rec.Context == Unevaluated &&
7707      ExprTemporaries.size() > Rec.NumTemporaries)
7708    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7709                          ExprTemporaries.end());
7710
7711  // Destroy the popped expression evaluation record.
7712  Rec.Destroy();
7713}
7714
7715/// \brief Note that the given declaration was referenced in the source code.
7716///
7717/// This routine should be invoke whenever a given declaration is referenced
7718/// in the source code, and where that reference occurred. If this declaration
7719/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7720/// C99 6.9p3), then the declaration will be marked as used.
7721///
7722/// \param Loc the location where the declaration was referenced.
7723///
7724/// \param D the declaration that has been referenced by the source code.
7725void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7726  assert(D && "No declaration?");
7727
7728  if (D->isUsed(false))
7729    return;
7730
7731  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7732  // template or not. The reason for this is that unevaluated expressions
7733  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7734  // -Wunused-parameters)
7735  if (isa<ParmVarDecl>(D) ||
7736      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7737    D->setUsed(true);
7738    return;
7739  }
7740
7741  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7742    return;
7743
7744  // Do not mark anything as "used" within a dependent context; wait for
7745  // an instantiation.
7746  if (CurContext->isDependentContext())
7747    return;
7748
7749  switch (ExprEvalContexts.back().Context) {
7750    case Unevaluated:
7751      // We are in an expression that is not potentially evaluated; do nothing.
7752      return;
7753
7754    case PotentiallyEvaluated:
7755      // We are in a potentially-evaluated expression, so this declaration is
7756      // "used"; handle this below.
7757      break;
7758
7759    case PotentiallyPotentiallyEvaluated:
7760      // We are in an expression that may be potentially evaluated; queue this
7761      // declaration reference until we know whether the expression is
7762      // potentially evaluated.
7763      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7764      return;
7765
7766    case PotentiallyEvaluatedIfUsed:
7767      // Referenced declarations will only be used if the construct in the
7768      // containing expression is used.
7769      return;
7770  }
7771
7772  // Note that this declaration has been used.
7773  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7774    unsigned TypeQuals;
7775    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7776      if (Constructor->getParent()->hasTrivialConstructor())
7777        return;
7778      if (!Constructor->isUsed(false))
7779        DefineImplicitDefaultConstructor(Loc, Constructor);
7780    } else if (Constructor->isImplicit() &&
7781               Constructor->isCopyConstructor(TypeQuals)) {
7782      if (!Constructor->isUsed(false))
7783        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7784    }
7785
7786    MarkVTableUsed(Loc, Constructor->getParent());
7787  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7788    if (Destructor->isImplicit() && !Destructor->isUsed(false))
7789      DefineImplicitDestructor(Loc, Destructor);
7790    if (Destructor->isVirtual())
7791      MarkVTableUsed(Loc, Destructor->getParent());
7792  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7793    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7794        MethodDecl->getOverloadedOperator() == OO_Equal) {
7795      if (!MethodDecl->isUsed(false))
7796        DefineImplicitCopyAssignment(Loc, MethodDecl);
7797    } else if (MethodDecl->isVirtual())
7798      MarkVTableUsed(Loc, MethodDecl->getParent());
7799  }
7800  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7801    // Implicit instantiation of function templates and member functions of
7802    // class templates.
7803    if (Function->isImplicitlyInstantiable()) {
7804      bool AlreadyInstantiated = false;
7805      if (FunctionTemplateSpecializationInfo *SpecInfo
7806                                = Function->getTemplateSpecializationInfo()) {
7807        if (SpecInfo->getPointOfInstantiation().isInvalid())
7808          SpecInfo->setPointOfInstantiation(Loc);
7809        else if (SpecInfo->getTemplateSpecializationKind()
7810                   == TSK_ImplicitInstantiation)
7811          AlreadyInstantiated = true;
7812      } else if (MemberSpecializationInfo *MSInfo
7813                                  = Function->getMemberSpecializationInfo()) {
7814        if (MSInfo->getPointOfInstantiation().isInvalid())
7815          MSInfo->setPointOfInstantiation(Loc);
7816        else if (MSInfo->getTemplateSpecializationKind()
7817                   == TSK_ImplicitInstantiation)
7818          AlreadyInstantiated = true;
7819      }
7820
7821      if (!AlreadyInstantiated) {
7822        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7823            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7824          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7825                                                                      Loc));
7826        else
7827          PendingInstantiations.push_back(std::make_pair(Function, Loc));
7828      }
7829    } else // Walk redefinitions, as some of them may be instantiable.
7830      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
7831           e(Function->redecls_end()); i != e; ++i) {
7832        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
7833          MarkDeclarationReferenced(Loc, *i);
7834      }
7835
7836    // FIXME: keep track of references to static functions
7837
7838    // Recursive functions should be marked when used from another function.
7839    if (CurContext != Function)
7840      Function->setUsed(true);
7841
7842    return;
7843  }
7844
7845  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7846    // Implicit instantiation of static data members of class templates.
7847    if (Var->isStaticDataMember() &&
7848        Var->getInstantiatedFromStaticDataMember()) {
7849      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7850      assert(MSInfo && "Missing member specialization information?");
7851      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7852          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7853        MSInfo->setPointOfInstantiation(Loc);
7854        PendingInstantiations.push_back(std::make_pair(Var, Loc));
7855      }
7856    }
7857
7858    // FIXME: keep track of references to static data?
7859
7860    D->setUsed(true);
7861    return;
7862  }
7863}
7864
7865namespace {
7866  // Mark all of the declarations referenced
7867  // FIXME: Not fully implemented yet! We need to have a better understanding
7868  // of when we're entering
7869  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7870    Sema &S;
7871    SourceLocation Loc;
7872
7873  public:
7874    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7875
7876    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7877
7878    bool TraverseTemplateArgument(const TemplateArgument &Arg);
7879    bool TraverseRecordType(RecordType *T);
7880  };
7881}
7882
7883bool MarkReferencedDecls::TraverseTemplateArgument(
7884  const TemplateArgument &Arg) {
7885  if (Arg.getKind() == TemplateArgument::Declaration) {
7886    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7887  }
7888
7889  return Inherited::TraverseTemplateArgument(Arg);
7890}
7891
7892bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
7893  if (ClassTemplateSpecializationDecl *Spec
7894                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7895    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7896    return TraverseTemplateArguments(Args.getFlatArgumentList(),
7897                                     Args.flat_size());
7898  }
7899
7900  return true;
7901}
7902
7903void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7904  MarkReferencedDecls Marker(*this, Loc);
7905  Marker.TraverseType(Context.getCanonicalType(T));
7906}
7907
7908namespace {
7909  /// \brief Helper class that marks all of the declarations referenced by
7910  /// potentially-evaluated subexpressions as "referenced".
7911  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
7912    Sema &S;
7913
7914  public:
7915    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
7916
7917    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
7918
7919    void VisitDeclRefExpr(DeclRefExpr *E) {
7920      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
7921    }
7922
7923    void VisitMemberExpr(MemberExpr *E) {
7924      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
7925      Inherited::VisitMemberExpr(E);
7926    }
7927
7928    void VisitCXXNewExpr(CXXNewExpr *E) {
7929      if (E->getConstructor())
7930        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
7931      if (E->getOperatorNew())
7932        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
7933      if (E->getOperatorDelete())
7934        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
7935      Inherited::VisitCXXNewExpr(E);
7936    }
7937
7938    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
7939      if (E->getOperatorDelete())
7940        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
7941      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
7942      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
7943        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
7944        S.MarkDeclarationReferenced(E->getLocStart(),
7945                                    S.LookupDestructor(Record));
7946      }
7947
7948      Inherited::VisitCXXDeleteExpr(E);
7949    }
7950
7951    void VisitCXXConstructExpr(CXXConstructExpr *E) {
7952      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
7953      Inherited::VisitCXXConstructExpr(E);
7954    }
7955
7956    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
7957      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
7958    }
7959  };
7960}
7961
7962/// \brief Mark any declarations that appear within this expression or any
7963/// potentially-evaluated subexpressions as "referenced".
7964void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
7965  EvaluatedExprMarker(*this).Visit(E);
7966}
7967
7968/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7969/// of the program being compiled.
7970///
7971/// This routine emits the given diagnostic when the code currently being
7972/// type-checked is "potentially evaluated", meaning that there is a
7973/// possibility that the code will actually be executable. Code in sizeof()
7974/// expressions, code used only during overload resolution, etc., are not
7975/// potentially evaluated. This routine will suppress such diagnostics or,
7976/// in the absolutely nutty case of potentially potentially evaluated
7977/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7978/// later.
7979///
7980/// This routine should be used for all diagnostics that describe the run-time
7981/// behavior of a program, such as passing a non-POD value through an ellipsis.
7982/// Failure to do so will likely result in spurious diagnostics or failures
7983/// during overload resolution or within sizeof/alignof/typeof/typeid.
7984bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7985                               const PartialDiagnostic &PD) {
7986  switch (ExprEvalContexts.back().Context ) {
7987  case Unevaluated:
7988    // The argument will never be evaluated, so don't complain.
7989    break;
7990
7991  case PotentiallyEvaluated:
7992  case PotentiallyEvaluatedIfUsed:
7993    Diag(Loc, PD);
7994    return true;
7995
7996  case PotentiallyPotentiallyEvaluated:
7997    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7998    break;
7999  }
8000
8001  return false;
8002}
8003
8004bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
8005                               CallExpr *CE, FunctionDecl *FD) {
8006  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
8007    return false;
8008
8009  PartialDiagnostic Note =
8010    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
8011    << FD->getDeclName() : PDiag();
8012  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
8013
8014  if (RequireCompleteType(Loc, ReturnType,
8015                          FD ?
8016                          PDiag(diag::err_call_function_incomplete_return)
8017                            << CE->getSourceRange() << FD->getDeclName() :
8018                          PDiag(diag::err_call_incomplete_return)
8019                            << CE->getSourceRange(),
8020                          std::make_pair(NoteLoc, Note)))
8021    return true;
8022
8023  return false;
8024}
8025
8026// Diagnose the common s/=/==/ typo.  Note that adding parentheses
8027// will prevent this condition from triggering, which is what we want.
8028void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
8029  SourceLocation Loc;
8030
8031  unsigned diagnostic = diag::warn_condition_is_assignment;
8032
8033  if (isa<BinaryOperator>(E)) {
8034    BinaryOperator *Op = cast<BinaryOperator>(E);
8035    if (Op->getOpcode() != BO_Assign)
8036      return;
8037
8038    // Greylist some idioms by putting them into a warning subcategory.
8039    if (ObjCMessageExpr *ME
8040          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
8041      Selector Sel = ME->getSelector();
8042
8043      // self = [<foo> init...]
8044      if (isSelfExpr(Op->getLHS())
8045          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
8046        diagnostic = diag::warn_condition_is_idiomatic_assignment;
8047
8048      // <foo> = [<bar> nextObject]
8049      else if (Sel.isUnarySelector() &&
8050               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
8051        diagnostic = diag::warn_condition_is_idiomatic_assignment;
8052    }
8053
8054    Loc = Op->getOperatorLoc();
8055  } else if (isa<CXXOperatorCallExpr>(E)) {
8056    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
8057    if (Op->getOperator() != OO_Equal)
8058      return;
8059
8060    Loc = Op->getOperatorLoc();
8061  } else {
8062    // Not an assignment.
8063    return;
8064  }
8065
8066  SourceLocation Open = E->getSourceRange().getBegin();
8067  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
8068
8069  Diag(Loc, diagnostic) << E->getSourceRange();
8070  Diag(Loc, diag::note_condition_assign_to_comparison)
8071    << FixItHint::CreateReplacement(Loc, "==");
8072  Diag(Loc, diag::note_condition_assign_silence)
8073    << FixItHint::CreateInsertion(Open, "(")
8074    << FixItHint::CreateInsertion(Close, ")");
8075}
8076
8077bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
8078  DiagnoseAssignmentAsCondition(E);
8079
8080  if (!E->isTypeDependent()) {
8081    DefaultFunctionArrayLvalueConversion(E);
8082
8083    QualType T = E->getType();
8084
8085    if (getLangOptions().CPlusPlus) {
8086      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
8087        return true;
8088    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
8089      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
8090        << T << E->getSourceRange();
8091      return true;
8092    }
8093  }
8094
8095  return false;
8096}
8097
8098ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
8099                                       Expr *Sub) {
8100  if (!Sub)
8101    return ExprError();
8102
8103  if (CheckBooleanCondition(Sub, Loc))
8104    return ExprError();
8105
8106  return Owned(Sub);
8107}
8108
8109/// Check for operands with placeholder types and complain if found.
8110/// Returns true if there was an error and no recovery was possible.
8111ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) {
8112  const BuiltinType *BT = E->getType()->getAs<BuiltinType>();
8113  if (!BT || !BT->isPlaceholderType()) return Owned(E);
8114
8115  // If this is overload, check for a single overload.
8116  if (BT->getKind() == BuiltinType::Overload) {
8117    if (FunctionDecl *Specialization
8118          = ResolveSingleFunctionTemplateSpecialization(E)) {
8119      // The access doesn't really matter in this case.
8120      DeclAccessPair Found = DeclAccessPair::make(Specialization,
8121                                                  Specialization->getAccess());
8122      E = FixOverloadedFunctionReference(E, Found, Specialization);
8123      if (!E) return ExprError();
8124      return Owned(E);
8125    }
8126
8127    Diag(Loc, diag::err_cannot_determine_declared_type_of_overloaded_function)
8128      << E->getSourceRange();
8129    return ExprError();
8130  }
8131
8132  // Otherwise it's a use of undeduced auto.
8133  assert(BT->getKind() == BuiltinType::UndeducedAuto);
8134
8135  DeclRefExpr *DRE = cast<DeclRefExpr>(E->IgnoreParens());
8136  Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
8137    << DRE->getDecl() << E->getSourceRange();
8138  return ExprError();
8139}
8140