SemaExpr.cpp revision 2aa688209697782797002b4f0fa109b7bf62c256
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaUtil.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/OwningPtr.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32//  Standard Promotions and Conversions
33//===----------------------------------------------------------------------===//
34
35/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
36/// do not have a prototype. Arguments that have type float are promoted to
37/// double. All other argument types are converted by UsualUnaryConversions().
38void Sema::DefaultArgumentPromotion(Expr *&Expr) {
39  QualType Ty = Expr->getType();
40  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
41
42  // If this is a 'float' (CVR qualified or typedef) promote to double.
43  if (const BuiltinType *BT = Ty->getAsBuiltinType())
44    if (BT->getKind() == BuiltinType::Float)
45      return ImpCastExprToType(Expr, Context.DoubleTy);
46
47  UsualUnaryConversions(Expr);
48}
49
50/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
51void Sema::DefaultFunctionArrayConversion(Expr *&E) {
52  QualType Ty = E->getType();
53  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
54
55  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
56    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
57    Ty = E->getType();
58  }
59  if (Ty->isFunctionType())
60    ImpCastExprToType(E, Context.getPointerType(Ty));
61  else if (Ty->isArrayType()) {
62    // In C90 mode, arrays only promote to pointers if the array expression is
63    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
64    // type 'array of type' is converted to an expression that has type 'pointer
65    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
66    // that has type 'array of type' ...".  The relevant change is "an lvalue"
67    // (C90) to "an expression" (C99).
68    if (getLangOptions().C99 || E->isLvalue() == Expr::LV_Valid)
69      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
70  }
71}
72
73/// UsualUnaryConversions - Performs various conversions that are common to most
74/// operators (C99 6.3). The conversions of array and function types are
75/// sometimes surpressed. For example, the array->pointer conversion doesn't
76/// apply if the array is an argument to the sizeof or address (&) operators.
77/// In these instances, this routine should *not* be called.
78Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
81
82  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
83    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
84    Ty = Expr->getType();
85  }
86  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
87    ImpCastExprToType(Expr, Context.IntTy);
88  else
89    DefaultFunctionArrayConversion(Expr);
90
91  return Expr;
92}
93
94/// UsualArithmeticConversions - Performs various conversions that are common to
95/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
96/// routine returns the first non-arithmetic type found. The client is
97/// responsible for emitting appropriate error diagnostics.
98/// FIXME: verify the conversion rules for "complex int" are consistent with
99/// GCC.
100QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
101                                          bool isCompAssign) {
102  if (!isCompAssign) {
103    UsualUnaryConversions(lhsExpr);
104    UsualUnaryConversions(rhsExpr);
105  }
106  // For conversion purposes, we ignore any qualifiers.
107  // For example, "const float" and "float" are equivalent.
108  QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
109  QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
110
111  // If both types are identical, no conversion is needed.
112  if (lhs == rhs)
113    return lhs;
114
115  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
116  // The caller can deal with this (e.g. pointer + int).
117  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
118    return lhs;
119
120  // At this point, we have two different arithmetic types.
121
122  // Handle complex types first (C99 6.3.1.8p1).
123  if (lhs->isComplexType() || rhs->isComplexType()) {
124    // if we have an integer operand, the result is the complex type.
125    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
126      // convert the rhs to the lhs complex type.
127      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
128      return lhs;
129    }
130    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
131      // convert the lhs to the rhs complex type.
132      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
133      return rhs;
134    }
135    // This handles complex/complex, complex/float, or float/complex.
136    // When both operands are complex, the shorter operand is converted to the
137    // type of the longer, and that is the type of the result. This corresponds
138    // to what is done when combining two real floating-point operands.
139    // The fun begins when size promotion occur across type domains.
140    // From H&S 6.3.4: When one operand is complex and the other is a real
141    // floating-point type, the less precise type is converted, within it's
142    // real or complex domain, to the precision of the other type. For example,
143    // when combining a "long double" with a "double _Complex", the
144    // "double _Complex" is promoted to "long double _Complex".
145    int result = Context.getFloatingTypeOrder(lhs, rhs);
146
147    if (result > 0) { // The left side is bigger, convert rhs.
148      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
149      if (!isCompAssign)
150        ImpCastExprToType(rhsExpr, rhs);
151    } else if (result < 0) { // The right side is bigger, convert lhs.
152      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
153      if (!isCompAssign)
154        ImpCastExprToType(lhsExpr, lhs);
155    }
156    // At this point, lhs and rhs have the same rank/size. Now, make sure the
157    // domains match. This is a requirement for our implementation, C99
158    // does not require this promotion.
159    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
160      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
161        if (!isCompAssign)
162          ImpCastExprToType(lhsExpr, rhs);
163        return rhs;
164      } else { // handle "_Complex double, double".
165        if (!isCompAssign)
166          ImpCastExprToType(rhsExpr, lhs);
167        return lhs;
168      }
169    }
170    return lhs; // The domain/size match exactly.
171  }
172  // Now handle "real" floating types (i.e. float, double, long double).
173  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
174    // if we have an integer operand, the result is the real floating type.
175    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
176      // convert rhs to the lhs floating point type.
177      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
178      return lhs;
179    }
180    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
181      // convert lhs to the rhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
183      return rhs;
184    }
185    // We have two real floating types, float/complex combos were handled above.
186    // Convert the smaller operand to the bigger result.
187    int result = Context.getFloatingTypeOrder(lhs, rhs);
188
189    if (result > 0) { // convert the rhs
190      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
191      return lhs;
192    }
193    if (result < 0) { // convert the lhs
194      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
195      return rhs;
196    }
197    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
198  }
199  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
200    // Handle GCC complex int extension.
201    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
202    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
203
204    if (lhsComplexInt && rhsComplexInt) {
205      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
206                                      rhsComplexInt->getElementType()) >= 0) {
207        // convert the rhs
208        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
209        return lhs;
210      }
211      if (!isCompAssign)
212        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
213      return rhs;
214    } else if (lhsComplexInt && rhs->isIntegerType()) {
215      // convert the rhs to the lhs complex type.
216      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
217      return lhs;
218    } else if (rhsComplexInt && lhs->isIntegerType()) {
219      // convert the lhs to the rhs complex type.
220      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
221      return rhs;
222    }
223  }
224  // Finally, we have two differing integer types.
225  // The rules for this case are in C99 6.3.1.8
226  int compare = Context.getIntegerTypeOrder(lhs, rhs);
227  bool lhsSigned = lhs->isSignedIntegerType(),
228       rhsSigned = rhs->isSignedIntegerType();
229  QualType destType;
230  if (lhsSigned == rhsSigned) {
231    // Same signedness; use the higher-ranked type
232    destType = compare >= 0 ? lhs : rhs;
233  } else if (compare != (lhsSigned ? 1 : -1)) {
234    // The unsigned type has greater than or equal rank to the
235    // signed type, so use the unsigned type
236    destType = lhsSigned ? rhs : lhs;
237  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
238    // The two types are different widths; if we are here, that
239    // means the signed type is larger than the unsigned type, so
240    // use the signed type.
241    destType = lhsSigned ? lhs : rhs;
242  } else {
243    // The signed type is higher-ranked than the unsigned type,
244    // but isn't actually any bigger (like unsigned int and long
245    // on most 32-bit systems).  Use the unsigned type corresponding
246    // to the signed type.
247    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
248  }
249  if (!isCompAssign) {
250    ImpCastExprToType(lhsExpr, destType);
251    ImpCastExprToType(rhsExpr, destType);
252  }
253  return destType;
254}
255
256//===----------------------------------------------------------------------===//
257//  Semantic Analysis for various Expression Types
258//===----------------------------------------------------------------------===//
259
260
261/// ActOnStringLiteral - The specified tokens were lexed as pasted string
262/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
263/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
264/// multiple tokens.  However, the common case is that StringToks points to one
265/// string.
266///
267Action::ExprResult
268Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
269  assert(NumStringToks && "Must have at least one string!");
270
271  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
272  if (Literal.hadError)
273    return ExprResult(true);
274
275  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
276  for (unsigned i = 0; i != NumStringToks; ++i)
277    StringTokLocs.push_back(StringToks[i].getLocation());
278
279  // Verify that pascal strings aren't too large.
280  if (Literal.Pascal && Literal.GetStringLength() > 256)
281    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
282                SourceRange(StringToks[0].getLocation(),
283                            StringToks[NumStringToks-1].getLocation()));
284
285  QualType StrTy = Context.CharTy;
286  if (Literal.AnyWide) StrTy = Context.getWcharType();
287  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
288
289  // Get an array type for the string, according to C99 6.4.5.  This includes
290  // the nul terminator character as well as the string length for pascal
291  // strings.
292  StrTy = Context.getConstantArrayType(StrTy,
293                                   llvm::APInt(32, Literal.GetStringLength()+1),
294                                       ArrayType::Normal, 0);
295
296  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
297  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
298                           Literal.AnyWide, StrTy,
299                           StringToks[0].getLocation(),
300                           StringToks[NumStringToks-1].getLocation());
301}
302
303
304/// ActOnIdentifierExpr - The parser read an identifier in expression context,
305/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
306/// identifier is used in a function call context.
307Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
308                                           IdentifierInfo &II,
309                                           bool HasTrailingLParen) {
310  // Could be enum-constant, value decl, instance variable, etc.
311  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
312
313  // If this reference is in an Objective-C method, then ivar lookup happens as
314  // well.
315  if (getCurMethodDecl()) {
316    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
317    // There are two cases to handle here.  1) scoped lookup could have failed,
318    // in which case we should look for an ivar.  2) scoped lookup could have
319    // found a decl, but that decl is outside the current method (i.e. a global
320    // variable).  In these two cases, we do a lookup for an ivar with this
321    // name, if the lookup suceeds, we replace it our current decl.
322    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
323      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
324      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
325        // FIXME: This should use a new expr for a direct reference, don't turn
326        // this into Self->ivar, just return a BareIVarExpr or something.
327        IdentifierInfo &II = Context.Idents.get("self");
328        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
329        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
330                                 static_cast<Expr*>(SelfExpr.Val), true, true);
331      }
332    }
333    if (SD == 0 && !strcmp(II.getName(), "super")) {
334      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
335                     getCurMethodDecl()->getClassInterface()));
336      return new ObjCSuperRefExpr(T, Loc);
337    }
338  }
339
340  if (D == 0) {
341    // Otherwise, this could be an implicitly declared function reference (legal
342    // in C90, extension in C99).
343    if (HasTrailingLParen &&
344        !getLangOptions().CPlusPlus) // Not in C++.
345      D = ImplicitlyDefineFunction(Loc, II, S);
346    else {
347      // If this name wasn't predeclared and if this is not a function call,
348      // diagnose the problem.
349      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
350    }
351  }
352
353  if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
354    // check if referencing an identifier with __attribute__((deprecated)).
355    if (VD->getAttr<DeprecatedAttr>())
356      Diag(Loc, diag::warn_deprecated, VD->getName());
357
358    // Only create DeclRefExpr's for valid Decl's.
359    if (VD->isInvalidDecl())
360      return true;
361    return new DeclRefExpr(VD, VD->getType(), Loc);
362  }
363
364  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
365    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
366      if (MD->isStatic())
367        // "invalid use of member 'x' in static member function"
368        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
369                    FD->getName());
370      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
371        // "invalid use of nonstatic data member 'x'"
372        return Diag(Loc, diag::err_invalid_non_static_member_use,
373                    FD->getName());
374
375      if (FD->isInvalidDecl())
376        return true;
377
378      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
379      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
380      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
381                            true, FD, Loc, FD->getType());
382    }
383
384    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
385  }
386
387  if (isa<TypedefDecl>(D))
388    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
389  if (isa<ObjCInterfaceDecl>(D))
390    return Diag(Loc, diag::err_unexpected_interface, II.getName());
391  if (isa<NamespaceDecl>(D))
392    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
393
394  assert(0 && "Invalid decl");
395  abort();
396}
397
398Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
399                                           tok::TokenKind Kind) {
400  PreDefinedExpr::IdentType IT;
401
402  switch (Kind) {
403  default: assert(0 && "Unknown simple primary expr!");
404  case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
405  case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
406  case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
407  }
408
409  // Verify that this is in a function context.
410  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
411    return Diag(Loc, diag::err_predef_outside_function);
412
413  // Pre-defined identifiers are of type char[x], where x is the length of the
414  // string.
415  unsigned Length;
416  if (getCurFunctionDecl())
417    Length = getCurFunctionDecl()->getIdentifier()->getLength();
418  else
419    Length = getCurMethodDecl()->getSynthesizedMethodSize();
420
421  llvm::APInt LengthI(32, Length + 1);
422  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
423  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
424  return new PreDefinedExpr(Loc, ResTy, IT);
425}
426
427Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
428  llvm::SmallString<16> CharBuffer;
429  CharBuffer.resize(Tok.getLength());
430  const char *ThisTokBegin = &CharBuffer[0];
431  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
432
433  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
434                            Tok.getLocation(), PP);
435  if (Literal.hadError())
436    return ExprResult(true);
437
438  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
439
440  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
441                              Tok.getLocation());
442}
443
444Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
445  // fast path for a single digit (which is quite common). A single digit
446  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
447  if (Tok.getLength() == 1) {
448    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
449
450    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
451    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
452                                         Context.IntTy,
453                                         Tok.getLocation()));
454  }
455  llvm::SmallString<512> IntegerBuffer;
456  IntegerBuffer.resize(Tok.getLength());
457  const char *ThisTokBegin = &IntegerBuffer[0];
458
459  // Get the spelling of the token, which eliminates trigraphs, etc.
460  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
461  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
462                               Tok.getLocation(), PP);
463  if (Literal.hadError)
464    return ExprResult(true);
465
466  Expr *Res;
467
468  if (Literal.isFloatingLiteral()) {
469    QualType Ty;
470    if (Literal.isFloat)
471      Ty = Context.FloatTy;
472    else if (!Literal.isLong)
473      Ty = Context.DoubleTy;
474    else
475      Ty = Context.LongDoubleTy;
476
477    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
478
479    // isExact will be set by GetFloatValue().
480    bool isExact = false;
481    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
482                              Ty, Tok.getLocation());
483
484  } else if (!Literal.isIntegerLiteral()) {
485    return ExprResult(true);
486  } else {
487    QualType Ty;
488
489    // long long is a C99 feature.
490    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
491        Literal.isLongLong)
492      Diag(Tok.getLocation(), diag::ext_longlong);
493
494    // Get the value in the widest-possible width.
495    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
496
497    if (Literal.GetIntegerValue(ResultVal)) {
498      // If this value didn't fit into uintmax_t, warn and force to ull.
499      Diag(Tok.getLocation(), diag::warn_integer_too_large);
500      Ty = Context.UnsignedLongLongTy;
501      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
502             "long long is not intmax_t?");
503    } else {
504      // If this value fits into a ULL, try to figure out what else it fits into
505      // according to the rules of C99 6.4.4.1p5.
506
507      // Octal, Hexadecimal, and integers with a U suffix are allowed to
508      // be an unsigned int.
509      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
510
511      // Check from smallest to largest, picking the smallest type we can.
512      unsigned Width = 0;
513      if (!Literal.isLong && !Literal.isLongLong) {
514        // Are int/unsigned possibilities?
515        unsigned IntSize = Context.Target.getIntWidth();
516
517        // Does it fit in a unsigned int?
518        if (ResultVal.isIntN(IntSize)) {
519          // Does it fit in a signed int?
520          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
521            Ty = Context.IntTy;
522          else if (AllowUnsigned)
523            Ty = Context.UnsignedIntTy;
524          Width = IntSize;
525        }
526      }
527
528      // Are long/unsigned long possibilities?
529      if (Ty.isNull() && !Literal.isLongLong) {
530        unsigned LongSize = Context.Target.getLongWidth();
531
532        // Does it fit in a unsigned long?
533        if (ResultVal.isIntN(LongSize)) {
534          // Does it fit in a signed long?
535          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
536            Ty = Context.LongTy;
537          else if (AllowUnsigned)
538            Ty = Context.UnsignedLongTy;
539          Width = LongSize;
540        }
541      }
542
543      // Finally, check long long if needed.
544      if (Ty.isNull()) {
545        unsigned LongLongSize = Context.Target.getLongLongWidth();
546
547        // Does it fit in a unsigned long long?
548        if (ResultVal.isIntN(LongLongSize)) {
549          // Does it fit in a signed long long?
550          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
551            Ty = Context.LongLongTy;
552          else if (AllowUnsigned)
553            Ty = Context.UnsignedLongLongTy;
554          Width = LongLongSize;
555        }
556      }
557
558      // If we still couldn't decide a type, we probably have something that
559      // does not fit in a signed long long, but has no U suffix.
560      if (Ty.isNull()) {
561        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
562        Ty = Context.UnsignedLongLongTy;
563        Width = Context.Target.getLongLongWidth();
564      }
565
566      if (ResultVal.getBitWidth() != Width)
567        ResultVal.trunc(Width);
568    }
569
570    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
571  }
572
573  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
574  if (Literal.isImaginary)
575    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
576
577  return Res;
578}
579
580Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
581                                        ExprTy *Val) {
582  Expr *E = (Expr *)Val;
583  assert((E != 0) && "ActOnParenExpr() missing expr");
584  return new ParenExpr(L, R, E);
585}
586
587/// The UsualUnaryConversions() function is *not* called by this routine.
588/// See C99 6.3.2.1p[2-4] for more details.
589QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
590                                         SourceLocation OpLoc, bool isSizeof) {
591  // C99 6.5.3.4p1:
592  if (isa<FunctionType>(exprType) && isSizeof)
593    // alignof(function) is allowed.
594    Diag(OpLoc, diag::ext_sizeof_function_type);
595  else if (exprType->isVoidType())
596    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
597  else if (exprType->isIncompleteType()) {
598    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
599                           diag::err_alignof_incomplete_type,
600         exprType.getAsString());
601    return QualType(); // error
602  }
603  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
604  return Context.getSizeType();
605}
606
607Action::ExprResult Sema::
608ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
609                           SourceLocation LPLoc, TypeTy *Ty,
610                           SourceLocation RPLoc) {
611  // If error parsing type, ignore.
612  if (Ty == 0) return true;
613
614  // Verify that this is a valid expression.
615  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
616
617  QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
618
619  if (resultType.isNull())
620    return true;
621  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
622}
623
624QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
625  DefaultFunctionArrayConversion(V);
626
627  // These operators return the element type of a complex type.
628  if (const ComplexType *CT = V->getType()->getAsComplexType())
629    return CT->getElementType();
630
631  // Otherwise they pass through real integer and floating point types here.
632  if (V->getType()->isArithmeticType())
633    return V->getType();
634
635  // Reject anything else.
636  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
637  return QualType();
638}
639
640
641
642Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
643                                             tok::TokenKind Kind,
644                                             ExprTy *Input) {
645  UnaryOperator::Opcode Opc;
646  switch (Kind) {
647  default: assert(0 && "Unknown unary op!");
648  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
649  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
650  }
651  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
652  if (result.isNull())
653    return true;
654  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
655}
656
657Action::ExprResult Sema::
658ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
659                        ExprTy *Idx, SourceLocation RLoc) {
660  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
661
662  // Perform default conversions.
663  DefaultFunctionArrayConversion(LHSExp);
664  DefaultFunctionArrayConversion(RHSExp);
665
666  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
667
668  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
669  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
670  // in the subscript position. As a result, we need to derive the array base
671  // and index from the expression types.
672  Expr *BaseExpr, *IndexExpr;
673  QualType ResultType;
674  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
675    BaseExpr = LHSExp;
676    IndexExpr = RHSExp;
677    // FIXME: need to deal with const...
678    ResultType = PTy->getPointeeType();
679  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
680     // Handle the uncommon case of "123[Ptr]".
681    BaseExpr = RHSExp;
682    IndexExpr = LHSExp;
683    // FIXME: need to deal with const...
684    ResultType = PTy->getPointeeType();
685  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
686    BaseExpr = LHSExp;    // vectors: V[123]
687    IndexExpr = RHSExp;
688
689    // Component access limited to variables (reject vec4.rg[1]).
690    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
691        !isa<ExtVectorElementExpr>(BaseExpr))
692      return Diag(LLoc, diag::err_ext_vector_component_access,
693                  SourceRange(LLoc, RLoc));
694    // FIXME: need to deal with const...
695    ResultType = VTy->getElementType();
696  } else {
697    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
698                RHSExp->getSourceRange());
699  }
700  // C99 6.5.2.1p1
701  if (!IndexExpr->getType()->isIntegerType())
702    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
703                IndexExpr->getSourceRange());
704
705  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
706  // the following check catches trying to index a pointer to a function (e.g.
707  // void (*)(int)) and pointers to incomplete types.  Functions are not
708  // objects in C99.
709  if (!ResultType->isObjectType())
710    return Diag(BaseExpr->getLocStart(),
711                diag::err_typecheck_subscript_not_object,
712                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
713
714  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
715}
716
717QualType Sema::
718CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
719                        IdentifierInfo &CompName, SourceLocation CompLoc) {
720  const ExtVectorType *vecType = baseType->getAsExtVectorType();
721
722  // This flag determines whether or not the component is to be treated as a
723  // special name, or a regular GLSL-style component access.
724  bool SpecialComponent = false;
725
726  // The vector accessor can't exceed the number of elements.
727  const char *compStr = CompName.getName();
728  if (strlen(compStr) > vecType->getNumElements()) {
729    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
730                baseType.getAsString(), SourceRange(CompLoc));
731    return QualType();
732  }
733
734  // Check that we've found one of the special components, or that the component
735  // names must come from the same set.
736  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
737      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
738    SpecialComponent = true;
739  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
740    do
741      compStr++;
742    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
743  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
744    do
745      compStr++;
746    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
747  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
748    do
749      compStr++;
750    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
751  }
752
753  if (!SpecialComponent && *compStr) {
754    // We didn't get to the end of the string. This means the component names
755    // didn't come from the same set *or* we encountered an illegal name.
756    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
757         std::string(compStr,compStr+1), SourceRange(CompLoc));
758    return QualType();
759  }
760  // Each component accessor can't exceed the vector type.
761  compStr = CompName.getName();
762  while (*compStr) {
763    if (vecType->isAccessorWithinNumElements(*compStr))
764      compStr++;
765    else
766      break;
767  }
768  if (!SpecialComponent && *compStr) {
769    // We didn't get to the end of the string. This means a component accessor
770    // exceeds the number of elements in the vector.
771    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
772                baseType.getAsString(), SourceRange(CompLoc));
773    return QualType();
774  }
775
776  // If we have a special component name, verify that the current vector length
777  // is an even number, since all special component names return exactly half
778  // the elements.
779  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
780    return QualType();
781  }
782
783  // The component accessor looks fine - now we need to compute the actual type.
784  // The vector type is implied by the component accessor. For example,
785  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
786  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
787  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
788                                       : strlen(CompName.getName());
789  if (CompSize == 1)
790    return vecType->getElementType();
791
792  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
793  // Now look up the TypeDefDecl from the vector type. Without this,
794  // diagostics look bad. We want extended vector types to appear built-in.
795  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
796    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
797      return Context.getTypedefType(ExtVectorDecls[i]);
798  }
799  return VT; // should never get here (a typedef type should always be found).
800}
801
802Action::ExprResult Sema::
803ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
804                         tok::TokenKind OpKind, SourceLocation MemberLoc,
805                         IdentifierInfo &Member) {
806  Expr *BaseExpr = static_cast<Expr *>(Base);
807  assert(BaseExpr && "no record expression");
808
809  // Perform default conversions.
810  DefaultFunctionArrayConversion(BaseExpr);
811
812  QualType BaseType = BaseExpr->getType();
813  assert(!BaseType.isNull() && "no type for member expression");
814
815  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
816  // must have pointer type, and the accessed type is the pointee.
817  if (OpKind == tok::arrow) {
818    if (const PointerType *PT = BaseType->getAsPointerType())
819      BaseType = PT->getPointeeType();
820    else
821      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
822                  BaseType.getAsString(), BaseExpr->getSourceRange());
823  }
824
825  // Handle field access to simple records.  This also handles access to fields
826  // of the ObjC 'id' struct.
827  if (const RecordType *RTy = BaseType->getAsRecordType()) {
828    RecordDecl *RDecl = RTy->getDecl();
829    if (RTy->isIncompleteType())
830      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
831                  BaseExpr->getSourceRange());
832    // The record definition is complete, now make sure the member is valid.
833    FieldDecl *MemberDecl = RDecl->getMember(&Member);
834    if (!MemberDecl)
835      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
836                  BaseExpr->getSourceRange());
837
838    // Figure out the type of the member; see C99 6.5.2.3p3
839    // FIXME: Handle address space modifiers
840    QualType MemberType = MemberDecl->getType();
841    unsigned combinedQualifiers =
842        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
843    MemberType = MemberType.getQualifiedType(combinedQualifiers);
844
845    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
846                          MemberLoc, MemberType);
847  }
848
849  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
850  // (*Obj).ivar.
851  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
852    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
853      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
854                                 OpKind == tok::arrow);
855    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
856                IFTy->getDecl()->getName(), Member.getName(),
857                BaseExpr->getSourceRange());
858  }
859
860  // Handle Objective-C property access, which is "Obj.property" where Obj is a
861  // pointer to a (potentially qualified) interface type.
862  const PointerType *PTy;
863  const ObjCInterfaceType *IFTy;
864  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
865      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
866    ObjCInterfaceDecl *IFace = IFTy->getDecl();
867
868    // FIXME: The logic for looking up nullary and unary selectors should be
869    // shared with the code in ActOnInstanceMessage.
870
871    // Before we look for explicit property declarations, we check for
872    // nullary methods (which allow '.' notation).
873    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
874    if (ObjCMethodDecl *MD = IFace->lookupInstanceMethod(Sel))
875      return new ObjCPropertyRefExpr(MD, MD->getResultType(),
876                                     MemberLoc, BaseExpr);
877
878    // If this reference is in an @implementation, check for 'private' methods.
879    if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
880      if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
881        if (ObjCImplementationDecl *ImpDecl =
882              ObjCImplementations[ClassDecl->getIdentifier()])
883          if (ObjCMethodDecl *MD = ImpDecl->getInstanceMethod(Sel))
884            return new ObjCPropertyRefExpr(MD, MD->getResultType(),
885                                           MemberLoc, BaseExpr);
886    }
887
888    // FIXME: Need to deal with setter methods that take 1 argument. E.g.:
889    // @interface NSBundle : NSObject {}
890    // - (NSString *)bundlePath;
891    // - (void)setBundlePath:(NSString *)x;
892    // @end
893    // void someMethod() { frameworkBundle.bundlePath = 0; }
894    //
895    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
896      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
897
898    // Lastly, check protocols on qualified interfaces.
899    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
900         E = IFTy->qual_end(); I != E; ++I)
901      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
902        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
903  }
904
905  // Handle 'field access' to vectors, such as 'V.xx'.
906  if (BaseType->isExtVectorType() && OpKind == tok::period) {
907    // Component access limited to variables (reject vec4.rg.g).
908    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
909        !isa<ExtVectorElementExpr>(BaseExpr))
910      return Diag(MemberLoc, diag::err_ext_vector_component_access,
911                  BaseExpr->getSourceRange());
912    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
913    if (ret.isNull())
914      return true;
915    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
916  }
917
918  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
919              BaseType.getAsString(), BaseExpr->getSourceRange());
920}
921
922/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
923/// This provides the location of the left/right parens and a list of comma
924/// locations.
925Action::ExprResult Sema::
926ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
927              ExprTy **args, unsigned NumArgs,
928              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
929  Expr *Fn = static_cast<Expr *>(fn);
930  Expr **Args = reinterpret_cast<Expr**>(args);
931  assert(Fn && "no function call expression");
932  FunctionDecl *FDecl = NULL;
933
934  // Promote the function operand.
935  UsualUnaryConversions(Fn);
936
937  // If we're directly calling a function, get the declaration for
938  // that function.
939  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
940    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
941      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
942
943  // Make the call expr early, before semantic checks.  This guarantees cleanup
944  // of arguments and function on error.
945  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
946                                                 Context.BoolTy, RParenLoc));
947
948  // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
949  // type pointer to function".
950  const PointerType *PT = Fn->getType()->getAsPointerType();
951  if (PT == 0)
952    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
953                SourceRange(Fn->getLocStart(), RParenLoc));
954  const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
955  if (FuncT == 0)
956    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
957                SourceRange(Fn->getLocStart(), RParenLoc));
958
959  // We know the result type of the call, set it.
960  TheCall->setType(FuncT->getResultType());
961
962  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
963    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
964    // assignment, to the types of the corresponding parameter, ...
965    unsigned NumArgsInProto = Proto->getNumArgs();
966    unsigned NumArgsToCheck = NumArgs;
967
968    // If too few arguments are available (and we don't have default
969    // arguments for the remaining parameters), don't make the call.
970    if (NumArgs < NumArgsInProto) {
971      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
972        // Use default arguments for missing arguments
973        NumArgsToCheck = NumArgsInProto;
974        TheCall->setNumArgs(NumArgsInProto);
975      } else
976        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
977                    Fn->getSourceRange());
978    }
979
980    // If too many are passed and not variadic, error on the extras and drop
981    // them.
982    if (NumArgs > NumArgsInProto) {
983      if (!Proto->isVariadic()) {
984        Diag(Args[NumArgsInProto]->getLocStart(),
985             diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
986             SourceRange(Args[NumArgsInProto]->getLocStart(),
987                         Args[NumArgs-1]->getLocEnd()));
988        // This deletes the extra arguments.
989        TheCall->setNumArgs(NumArgsInProto);
990      }
991      NumArgsToCheck = NumArgsInProto;
992    }
993
994    // Continue to check argument types (even if we have too few/many args).
995    for (unsigned i = 0; i != NumArgsToCheck; i++) {
996      QualType ProtoArgType = Proto->getArgType(i);
997
998      Expr *Arg;
999      if (i < NumArgs)
1000        Arg = Args[i];
1001      else
1002        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1003      QualType ArgType = Arg->getType();
1004
1005      // Compute implicit casts from the operand to the formal argument type.
1006      AssignConvertType ConvTy =
1007        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1008      TheCall->setArg(i, Arg);
1009
1010      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1011                                   ArgType, Arg, "passing"))
1012        return true;
1013    }
1014
1015    // If this is a variadic call, handle args passed through "...".
1016    if (Proto->isVariadic()) {
1017      // Promote the arguments (C99 6.5.2.2p7).
1018      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1019        Expr *Arg = Args[i];
1020        DefaultArgumentPromotion(Arg);
1021        TheCall->setArg(i, Arg);
1022      }
1023    }
1024  } else {
1025    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1026
1027    // Promote the arguments (C99 6.5.2.2p6).
1028    for (unsigned i = 0; i != NumArgs; i++) {
1029      Expr *Arg = Args[i];
1030      DefaultArgumentPromotion(Arg);
1031      TheCall->setArg(i, Arg);
1032    }
1033  }
1034
1035  // Do special checking on direct calls to functions.
1036  if (FDecl)
1037    return CheckFunctionCall(FDecl, TheCall.take());
1038
1039  return TheCall.take();
1040}
1041
1042Action::ExprResult Sema::
1043ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1044                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1045  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1046  QualType literalType = QualType::getFromOpaquePtr(Ty);
1047  // FIXME: put back this assert when initializers are worked out.
1048  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1049  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1050
1051  if (literalType->isArrayType()) {
1052    if (literalType->getAsVariableArrayType())
1053      return Diag(LParenLoc,
1054                  diag::err_variable_object_no_init,
1055                  SourceRange(LParenLoc,
1056                              literalExpr->getSourceRange().getEnd()));
1057  } else if (literalType->isIncompleteType()) {
1058    return Diag(LParenLoc,
1059                diag::err_typecheck_decl_incomplete_type,
1060                literalType.getAsString(),
1061                SourceRange(LParenLoc,
1062                            literalExpr->getSourceRange().getEnd()));
1063  }
1064
1065  if (CheckInitializerTypes(literalExpr, literalType))
1066    return true;
1067
1068  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1069  if (isFileScope) { // 6.5.2.5p3
1070    if (CheckForConstantInitializer(literalExpr, literalType))
1071      return true;
1072  }
1073  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1074}
1075
1076Action::ExprResult Sema::
1077ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1078              SourceLocation RBraceLoc) {
1079  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1080
1081  // Semantic analysis for initializers is done by ActOnDeclarator() and
1082  // CheckInitializer() - it requires knowledge of the object being intialized.
1083
1084  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1085  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1086  return E;
1087}
1088
1089bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1090  assert(VectorTy->isVectorType() && "Not a vector type!");
1091
1092  if (Ty->isVectorType() || Ty->isIntegerType()) {
1093    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1094      return Diag(R.getBegin(),
1095                  Ty->isVectorType() ?
1096                  diag::err_invalid_conversion_between_vectors :
1097                  diag::err_invalid_conversion_between_vector_and_integer,
1098                  VectorTy.getAsString().c_str(),
1099                  Ty.getAsString().c_str(), R);
1100  } else
1101    return Diag(R.getBegin(),
1102                diag::err_invalid_conversion_between_vector_and_scalar,
1103                VectorTy.getAsString().c_str(),
1104                Ty.getAsString().c_str(), R);
1105
1106  return false;
1107}
1108
1109Action::ExprResult Sema::
1110ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1111              SourceLocation RParenLoc, ExprTy *Op) {
1112  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1113
1114  Expr *castExpr = static_cast<Expr*>(Op);
1115  QualType castType = QualType::getFromOpaquePtr(Ty);
1116
1117  UsualUnaryConversions(castExpr);
1118
1119  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1120  // type needs to be scalar.
1121  if (!castType->isVoidType()) {  // Cast to void allows any expr type.
1122    if (!castType->isScalarType() && !castType->isVectorType()) {
1123      // GCC struct/union extension.
1124      if (castType == castExpr->getType() &&
1125          castType->isStructureType() || castType->isUnionType()) {
1126        Diag(LParenLoc, diag::ext_typecheck_cast_nonscalar,
1127             SourceRange(LParenLoc, RParenLoc));
1128        return new CastExpr(castType, castExpr, LParenLoc);
1129      } else
1130        return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
1131                    castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
1132    }
1133    if (!castExpr->getType()->isScalarType() &&
1134        !castExpr->getType()->isVectorType())
1135      return Diag(castExpr->getLocStart(),
1136                  diag::err_typecheck_expect_scalar_operand,
1137                  castExpr->getType().getAsString(),castExpr->getSourceRange());
1138
1139    if (castExpr->getType()->isVectorType()) {
1140      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
1141                          castExpr->getType(), castType))
1142        return true;
1143    } else if (castType->isVectorType()) {
1144      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
1145                          castType, castExpr->getType()))
1146        return true;
1147    }
1148  }
1149  return new CastExpr(castType, castExpr, LParenLoc);
1150}
1151
1152/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1153/// In that case, lex = cond.
1154inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1155  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1156  UsualUnaryConversions(cond);
1157  UsualUnaryConversions(lex);
1158  UsualUnaryConversions(rex);
1159  QualType condT = cond->getType();
1160  QualType lexT = lex->getType();
1161  QualType rexT = rex->getType();
1162
1163  // first, check the condition.
1164  if (!condT->isScalarType()) { // C99 6.5.15p2
1165    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1166         condT.getAsString());
1167    return QualType();
1168  }
1169
1170  // Now check the two expressions.
1171
1172  // If both operands have arithmetic type, do the usual arithmetic conversions
1173  // to find a common type: C99 6.5.15p3,5.
1174  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1175    UsualArithmeticConversions(lex, rex);
1176    return lex->getType();
1177  }
1178
1179  // If both operands are the same structure or union type, the result is that
1180  // type.
1181  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1182    if (const RecordType *RHSRT = rexT->getAsRecordType())
1183      if (LHSRT->getDecl() == RHSRT->getDecl())
1184        // "If both the operands have structure or union type, the result has
1185        // that type."  This implies that CV qualifiers are dropped.
1186        return lexT.getUnqualifiedType();
1187  }
1188
1189  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1190  // The following || allows only one side to be void (a GCC-ism).
1191  if (lexT->isVoidType() || rexT->isVoidType()) {
1192    if (!lexT->isVoidType())
1193      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1194           rex->getSourceRange());
1195    if (!rexT->isVoidType())
1196      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1197           lex->getSourceRange());
1198    ImpCastExprToType(lex, Context.VoidTy);
1199    ImpCastExprToType(rex, Context.VoidTy);
1200    return Context.VoidTy;
1201  }
1202  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1203  // the type of the other operand."
1204  if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
1205    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1206    return lexT;
1207  }
1208  if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
1209    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1210    return rexT;
1211  }
1212  // Handle the case where both operands are pointers before we handle null
1213  // pointer constants in case both operands are null pointer constants.
1214  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1215    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1216      // get the "pointed to" types
1217      QualType lhptee = LHSPT->getPointeeType();
1218      QualType rhptee = RHSPT->getPointeeType();
1219
1220      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1221      if (lhptee->isVoidType() &&
1222          rhptee->isIncompleteOrObjectType()) {
1223        // Figure out necessary qualifiers (C99 6.5.15p6)
1224        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1225        QualType destType = Context.getPointerType(destPointee);
1226        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1227        ImpCastExprToType(rex, destType); // promote to void*
1228        return destType;
1229      }
1230      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1231        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1232        QualType destType = Context.getPointerType(destPointee);
1233        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1234        ImpCastExprToType(rex, destType); // promote to void*
1235        return destType;
1236      }
1237
1238      if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1239                                      rhptee.getUnqualifiedType())) {
1240        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1241             lexT.getAsString(), rexT.getAsString(),
1242             lex->getSourceRange(), rex->getSourceRange());
1243        // In this situation, we assume void* type. No especially good
1244        // reason, but this is what gcc does, and we do have to pick
1245        // to get a consistent AST.
1246        QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
1247        ImpCastExprToType(lex, voidPtrTy);
1248        ImpCastExprToType(rex, voidPtrTy);
1249        return voidPtrTy;
1250      }
1251      // The pointer types are compatible.
1252      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1253      // differently qualified versions of compatible types, the result type is
1254      // a pointer to an appropriately qualified version of the *composite*
1255      // type.
1256      // FIXME: Need to calculate the composite type.
1257      // FIXME: Need to add qualifiers
1258      QualType compositeType = lexT;
1259      ImpCastExprToType(lex, compositeType);
1260      ImpCastExprToType(rex, compositeType);
1261      return compositeType;
1262    }
1263  }
1264  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1265  // evaluates to "struct objc_object *" (and is handled above when comparing
1266  // id with statically typed objects). FIXME: Do we need an ImpCastExprToType?
1267  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1268    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true))
1269      return Context.getObjCIdType();
1270  }
1271  // Otherwise, the operands are not compatible.
1272  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1273       lexT.getAsString(), rexT.getAsString(),
1274       lex->getSourceRange(), rex->getSourceRange());
1275  return QualType();
1276}
1277
1278/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1279/// in the case of a the GNU conditional expr extension.
1280Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1281                                            SourceLocation ColonLoc,
1282                                            ExprTy *Cond, ExprTy *LHS,
1283                                            ExprTy *RHS) {
1284  Expr *CondExpr = (Expr *) Cond;
1285  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1286
1287  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1288  // was the condition.
1289  bool isLHSNull = LHSExpr == 0;
1290  if (isLHSNull)
1291    LHSExpr = CondExpr;
1292
1293  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1294                                             RHSExpr, QuestionLoc);
1295  if (result.isNull())
1296    return true;
1297  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1298                                 RHSExpr, result);
1299}
1300
1301
1302// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1303// being closely modeled after the C99 spec:-). The odd characteristic of this
1304// routine is it effectively iqnores the qualifiers on the top level pointee.
1305// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1306// FIXME: add a couple examples in this comment.
1307Sema::AssignConvertType
1308Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1309  QualType lhptee, rhptee;
1310
1311  // get the "pointed to" type (ignoring qualifiers at the top level)
1312  lhptee = lhsType->getAsPointerType()->getPointeeType();
1313  rhptee = rhsType->getAsPointerType()->getPointeeType();
1314
1315  // make sure we operate on the canonical type
1316  lhptee = lhptee.getCanonicalType();
1317  rhptee = rhptee.getCanonicalType();
1318
1319  AssignConvertType ConvTy = Compatible;
1320
1321  // C99 6.5.16.1p1: This following citation is common to constraints
1322  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1323  // qualifiers of the type *pointed to* by the right;
1324  // FIXME: Handle ASQualType
1325  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1326       rhptee.getCVRQualifiers())
1327    ConvTy = CompatiblePointerDiscardsQualifiers;
1328
1329  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1330  // incomplete type and the other is a pointer to a qualified or unqualified
1331  // version of void...
1332  if (lhptee->isVoidType()) {
1333    if (rhptee->isIncompleteOrObjectType())
1334      return ConvTy;
1335
1336    // As an extension, we allow cast to/from void* to function pointer.
1337    assert(rhptee->isFunctionType());
1338    return FunctionVoidPointer;
1339  }
1340
1341  if (rhptee->isVoidType()) {
1342    if (lhptee->isIncompleteOrObjectType())
1343      return ConvTy;
1344
1345    // As an extension, we allow cast to/from void* to function pointer.
1346    assert(lhptee->isFunctionType());
1347    return FunctionVoidPointer;
1348  }
1349
1350  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1351  // unqualified versions of compatible types, ...
1352  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1353                                  rhptee.getUnqualifiedType()))
1354    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1355  return ConvTy;
1356}
1357
1358/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1359/// has code to accommodate several GCC extensions when type checking
1360/// pointers. Here are some objectionable examples that GCC considers warnings:
1361///
1362///  int a, *pint;
1363///  short *pshort;
1364///  struct foo *pfoo;
1365///
1366///  pint = pshort; // warning: assignment from incompatible pointer type
1367///  a = pint; // warning: assignment makes integer from pointer without a cast
1368///  pint = a; // warning: assignment makes pointer from integer without a cast
1369///  pint = pfoo; // warning: assignment from incompatible pointer type
1370///
1371/// As a result, the code for dealing with pointers is more complex than the
1372/// C99 spec dictates.
1373///
1374Sema::AssignConvertType
1375Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1376  // Get canonical types.  We're not formatting these types, just comparing
1377  // them.
1378  lhsType = lhsType.getCanonicalType().getUnqualifiedType();
1379  rhsType = rhsType.getCanonicalType().getUnqualifiedType();
1380
1381  if (lhsType == rhsType)
1382    return Compatible; // Common case: fast path an exact match.
1383
1384  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1385    if (Context.typesAreCompatible(lhsType, rhsType))
1386      return Compatible;
1387    return Incompatible;
1388  }
1389
1390  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1391    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1392      return Compatible;
1393    // Relax integer conversions like we do for pointers below.
1394    if (rhsType->isIntegerType())
1395      return IntToPointer;
1396    if (lhsType->isIntegerType())
1397      return PointerToInt;
1398    return Incompatible;
1399  }
1400
1401  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1402    // For ExtVector, allow vector splats; float -> <n x float>
1403    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1404      if (LV->getElementType() == rhsType)
1405        return Compatible;
1406
1407    // If we are allowing lax vector conversions, and LHS and RHS are both
1408    // vectors, the total size only needs to be the same. This is a bitcast;
1409    // no bits are changed but the result type is different.
1410    if (getLangOptions().LaxVectorConversions &&
1411        lhsType->isVectorType() && rhsType->isVectorType()) {
1412      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1413        return Compatible;
1414    }
1415    return Incompatible;
1416  }
1417
1418  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1419    return Compatible;
1420
1421  if (isa<PointerType>(lhsType)) {
1422    if (rhsType->isIntegerType())
1423      return IntToPointer;
1424
1425    if (isa<PointerType>(rhsType))
1426      return CheckPointerTypesForAssignment(lhsType, rhsType);
1427    return Incompatible;
1428  }
1429
1430  if (isa<PointerType>(rhsType)) {
1431    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1432    if (lhsType == Context.BoolTy)
1433      return Compatible;
1434
1435    if (lhsType->isIntegerType())
1436      return PointerToInt;
1437
1438    if (isa<PointerType>(lhsType))
1439      return CheckPointerTypesForAssignment(lhsType, rhsType);
1440    return Incompatible;
1441  }
1442
1443  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1444    if (Context.typesAreCompatible(lhsType, rhsType))
1445      return Compatible;
1446  }
1447  return Incompatible;
1448}
1449
1450Sema::AssignConvertType
1451Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1452  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1453  // a null pointer constant.
1454  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
1455      && rExpr->isNullPointerConstant(Context)) {
1456    ImpCastExprToType(rExpr, lhsType);
1457    return Compatible;
1458  }
1459  // This check seems unnatural, however it is necessary to ensure the proper
1460  // conversion of functions/arrays. If the conversion were done for all
1461  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1462  // expressions that surpress this implicit conversion (&, sizeof).
1463  //
1464  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1465  // are better understood.
1466  if (!lhsType->isReferenceType())
1467    DefaultFunctionArrayConversion(rExpr);
1468
1469  Sema::AssignConvertType result =
1470    CheckAssignmentConstraints(lhsType, rExpr->getType());
1471
1472  // C99 6.5.16.1p2: The value of the right operand is converted to the
1473  // type of the assignment expression.
1474  if (rExpr->getType() != lhsType)
1475    ImpCastExprToType(rExpr, lhsType);
1476  return result;
1477}
1478
1479Sema::AssignConvertType
1480Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1481  return CheckAssignmentConstraints(lhsType, rhsType);
1482}
1483
1484QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1485  Diag(loc, diag::err_typecheck_invalid_operands,
1486       lex->getType().getAsString(), rex->getType().getAsString(),
1487       lex->getSourceRange(), rex->getSourceRange());
1488  return QualType();
1489}
1490
1491inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1492                                                              Expr *&rex) {
1493  // For conversion purposes, we ignore any qualifiers.
1494  // For example, "const float" and "float" are equivalent.
1495  QualType lhsType = lex->getType().getCanonicalType().getUnqualifiedType();
1496  QualType rhsType = rex->getType().getCanonicalType().getUnqualifiedType();
1497
1498  // If the vector types are identical, return.
1499  if (lhsType == rhsType)
1500    return lhsType;
1501
1502  // Handle the case of a vector & extvector type of the same size and element
1503  // type.  It would be nice if we only had one vector type someday.
1504  if (getLangOptions().LaxVectorConversions)
1505    if (const VectorType *LV = lhsType->getAsVectorType())
1506      if (const VectorType *RV = rhsType->getAsVectorType())
1507        if (LV->getElementType() == RV->getElementType() &&
1508            LV->getNumElements() == RV->getNumElements())
1509          return lhsType->isExtVectorType() ? lhsType : rhsType;
1510
1511  // If the lhs is an extended vector and the rhs is a scalar of the same type
1512  // or a literal, promote the rhs to the vector type.
1513  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1514    QualType eltType = V->getElementType();
1515
1516    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1517        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1518        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1519      ImpCastExprToType(rex, lhsType);
1520      return lhsType;
1521    }
1522  }
1523
1524  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1525  // promote the lhs to the vector type.
1526  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1527    QualType eltType = V->getElementType();
1528
1529    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1530        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1531        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1532      ImpCastExprToType(lex, rhsType);
1533      return rhsType;
1534    }
1535  }
1536
1537  // You cannot convert between vector values of different size.
1538  Diag(loc, diag::err_typecheck_vector_not_convertable,
1539       lex->getType().getAsString(), rex->getType().getAsString(),
1540       lex->getSourceRange(), rex->getSourceRange());
1541  return QualType();
1542}
1543
1544inline QualType Sema::CheckMultiplyDivideOperands(
1545  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1546{
1547  QualType lhsType = lex->getType(), rhsType = rex->getType();
1548
1549  if (lhsType->isVectorType() || rhsType->isVectorType())
1550    return CheckVectorOperands(loc, lex, rex);
1551
1552  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1553
1554  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1555    return compType;
1556  return InvalidOperands(loc, lex, rex);
1557}
1558
1559inline QualType Sema::CheckRemainderOperands(
1560  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1561{
1562  QualType lhsType = lex->getType(), rhsType = rex->getType();
1563
1564  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1565
1566  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1567    return compType;
1568  return InvalidOperands(loc, lex, rex);
1569}
1570
1571inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1572  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1573{
1574  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1575    return CheckVectorOperands(loc, lex, rex);
1576
1577  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1578
1579  // handle the common case first (both operands are arithmetic).
1580  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1581    return compType;
1582
1583  // Put any potential pointer into PExp
1584  Expr* PExp = lex, *IExp = rex;
1585  if (IExp->getType()->isPointerType())
1586    std::swap(PExp, IExp);
1587
1588  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1589    if (IExp->getType()->isIntegerType()) {
1590      // Check for arithmetic on pointers to incomplete types
1591      if (!PTy->getPointeeType()->isObjectType()) {
1592        if (PTy->getPointeeType()->isVoidType()) {
1593          Diag(loc, diag::ext_gnu_void_ptr,
1594               lex->getSourceRange(), rex->getSourceRange());
1595        } else {
1596          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1597               lex->getType().getAsString(), lex->getSourceRange());
1598          return QualType();
1599        }
1600      }
1601      return PExp->getType();
1602    }
1603  }
1604
1605  return InvalidOperands(loc, lex, rex);
1606}
1607
1608// C99 6.5.6
1609QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1610                                        SourceLocation loc, bool isCompAssign) {
1611  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1612    return CheckVectorOperands(loc, lex, rex);
1613
1614  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1615
1616  // Enforce type constraints: C99 6.5.6p3.
1617
1618  // Handle the common case first (both operands are arithmetic).
1619  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1620    return compType;
1621
1622  // Either ptr - int   or   ptr - ptr.
1623  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1624    QualType lpointee = LHSPTy->getPointeeType();
1625
1626    // The LHS must be an object type, not incomplete, function, etc.
1627    if (!lpointee->isObjectType()) {
1628      // Handle the GNU void* extension.
1629      if (lpointee->isVoidType()) {
1630        Diag(loc, diag::ext_gnu_void_ptr,
1631             lex->getSourceRange(), rex->getSourceRange());
1632      } else {
1633        Diag(loc, diag::err_typecheck_sub_ptr_object,
1634             lex->getType().getAsString(), lex->getSourceRange());
1635        return QualType();
1636      }
1637    }
1638
1639    // The result type of a pointer-int computation is the pointer type.
1640    if (rex->getType()->isIntegerType())
1641      return lex->getType();
1642
1643    // Handle pointer-pointer subtractions.
1644    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1645      QualType rpointee = RHSPTy->getPointeeType();
1646
1647      // RHS must be an object type, unless void (GNU).
1648      if (!rpointee->isObjectType()) {
1649        // Handle the GNU void* extension.
1650        if (rpointee->isVoidType()) {
1651          if (!lpointee->isVoidType())
1652            Diag(loc, diag::ext_gnu_void_ptr,
1653                 lex->getSourceRange(), rex->getSourceRange());
1654        } else {
1655          Diag(loc, diag::err_typecheck_sub_ptr_object,
1656               rex->getType().getAsString(), rex->getSourceRange());
1657          return QualType();
1658        }
1659      }
1660
1661      // Pointee types must be compatible.
1662      if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1663                                      rpointee.getUnqualifiedType())) {
1664        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1665             lex->getType().getAsString(), rex->getType().getAsString(),
1666             lex->getSourceRange(), rex->getSourceRange());
1667        return QualType();
1668      }
1669
1670      return Context.getPointerDiffType();
1671    }
1672  }
1673
1674  return InvalidOperands(loc, lex, rex);
1675}
1676
1677// C99 6.5.7
1678QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1679                                  bool isCompAssign) {
1680  // C99 6.5.7p2: Each of the operands shall have integer type.
1681  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1682    return InvalidOperands(loc, lex, rex);
1683
1684  // Shifts don't perform usual arithmetic conversions, they just do integer
1685  // promotions on each operand. C99 6.5.7p3
1686  if (!isCompAssign)
1687    UsualUnaryConversions(lex);
1688  UsualUnaryConversions(rex);
1689
1690  // "The type of the result is that of the promoted left operand."
1691  return lex->getType();
1692}
1693
1694// C99 6.5.8
1695QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1696                                    bool isRelational) {
1697  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1698    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1699
1700  // C99 6.5.8p3 / C99 6.5.9p4
1701  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1702    UsualArithmeticConversions(lex, rex);
1703  else {
1704    UsualUnaryConversions(lex);
1705    UsualUnaryConversions(rex);
1706  }
1707  QualType lType = lex->getType();
1708  QualType rType = rex->getType();
1709
1710  // For non-floating point types, check for self-comparisons of the form
1711  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1712  // often indicate logic errors in the program.
1713  if (!lType->isFloatingType()) {
1714    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1715      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1716        if (DRL->getDecl() == DRR->getDecl())
1717          Diag(loc, diag::warn_selfcomparison);
1718  }
1719
1720  if (isRelational) {
1721    if (lType->isRealType() && rType->isRealType())
1722      return Context.IntTy;
1723  } else {
1724    // Check for comparisons of floating point operands using != and ==.
1725    if (lType->isFloatingType()) {
1726      assert (rType->isFloatingType());
1727      CheckFloatComparison(loc,lex,rex);
1728    }
1729
1730    if (lType->isArithmeticType() && rType->isArithmeticType())
1731      return Context.IntTy;
1732  }
1733
1734  bool LHSIsNull = lex->isNullPointerConstant(Context);
1735  bool RHSIsNull = rex->isNullPointerConstant(Context);
1736
1737  // All of the following pointer related warnings are GCC extensions, except
1738  // when handling null pointer constants. One day, we can consider making them
1739  // errors (when -pedantic-errors is enabled).
1740  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
1741    QualType LCanPointeeTy =
1742      lType->getAsPointerType()->getPointeeType().getCanonicalType();
1743    QualType RCanPointeeTy =
1744      rType->getAsPointerType()->getPointeeType().getCanonicalType();
1745
1746    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
1747        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
1748        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
1749                                    RCanPointeeTy.getUnqualifiedType())) {
1750      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1751           lType.getAsString(), rType.getAsString(),
1752           lex->getSourceRange(), rex->getSourceRange());
1753    }
1754    ImpCastExprToType(rex, lType); // promote the pointer to pointer
1755    return Context.IntTy;
1756  }
1757  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
1758    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
1759      ImpCastExprToType(rex, lType);
1760      return Context.IntTy;
1761    }
1762  }
1763  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
1764       rType->isIntegerType()) {
1765    if (!RHSIsNull)
1766      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1767           lType.getAsString(), rType.getAsString(),
1768           lex->getSourceRange(), rex->getSourceRange());
1769    ImpCastExprToType(rex, lType); // promote the integer to pointer
1770    return Context.IntTy;
1771  }
1772  if (lType->isIntegerType() &&
1773      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
1774    if (!LHSIsNull)
1775      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1776           lType.getAsString(), rType.getAsString(),
1777           lex->getSourceRange(), rex->getSourceRange());
1778    ImpCastExprToType(lex, rType); // promote the integer to pointer
1779    return Context.IntTy;
1780  }
1781  return InvalidOperands(loc, lex, rex);
1782}
1783
1784/// CheckVectorCompareOperands - vector comparisons are a clang extension that
1785/// operates on extended vector types.  Instead of producing an IntTy result,
1786/// like a scalar comparison, a vector comparison produces a vector of integer
1787/// types.
1788QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
1789                                          SourceLocation loc,
1790                                          bool isRelational) {
1791  // Check to make sure we're operating on vectors of the same type and width,
1792  // Allowing one side to be a scalar of element type.
1793  QualType vType = CheckVectorOperands(loc, lex, rex);
1794  if (vType.isNull())
1795    return vType;
1796
1797  QualType lType = lex->getType();
1798  QualType rType = rex->getType();
1799
1800  // For non-floating point types, check for self-comparisons of the form
1801  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1802  // often indicate logic errors in the program.
1803  if (!lType->isFloatingType()) {
1804    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1805      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1806        if (DRL->getDecl() == DRR->getDecl())
1807          Diag(loc, diag::warn_selfcomparison);
1808  }
1809
1810  // Check for comparisons of floating point operands using != and ==.
1811  if (!isRelational && lType->isFloatingType()) {
1812    assert (rType->isFloatingType());
1813    CheckFloatComparison(loc,lex,rex);
1814  }
1815
1816  // Return the type for the comparison, which is the same as vector type for
1817  // integer vectors, or an integer type of identical size and number of
1818  // elements for floating point vectors.
1819  if (lType->isIntegerType())
1820    return lType;
1821
1822  const VectorType *VTy = lType->getAsVectorType();
1823
1824  // FIXME: need to deal with non-32b int / non-64b long long
1825  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
1826  if (TypeSize == 32) {
1827    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
1828  }
1829  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
1830  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
1831}
1832
1833inline QualType Sema::CheckBitwiseOperands(
1834  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1835{
1836  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1837    return CheckVectorOperands(loc, lex, rex);
1838
1839  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1840
1841  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1842    return compType;
1843  return InvalidOperands(loc, lex, rex);
1844}
1845
1846inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1847  Expr *&lex, Expr *&rex, SourceLocation loc)
1848{
1849  UsualUnaryConversions(lex);
1850  UsualUnaryConversions(rex);
1851
1852  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
1853    return Context.IntTy;
1854  return InvalidOperands(loc, lex, rex);
1855}
1856
1857inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1858  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
1859{
1860  QualType lhsType = lex->getType();
1861  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1862  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1863
1864  switch (mlval) { // C99 6.5.16p2
1865  case Expr::MLV_Valid:
1866    break;
1867  case Expr::MLV_ConstQualified:
1868    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1869    return QualType();
1870  case Expr::MLV_ArrayType:
1871    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1872         lhsType.getAsString(), lex->getSourceRange());
1873    return QualType();
1874  case Expr::MLV_NotObjectType:
1875    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1876         lhsType.getAsString(), lex->getSourceRange());
1877    return QualType();
1878  case Expr::MLV_InvalidExpression:
1879    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1880         lex->getSourceRange());
1881    return QualType();
1882  case Expr::MLV_IncompleteType:
1883  case Expr::MLV_IncompleteVoidType:
1884    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1885         lhsType.getAsString(), lex->getSourceRange());
1886    return QualType();
1887  case Expr::MLV_DuplicateVectorComponents:
1888    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1889         lex->getSourceRange());
1890    return QualType();
1891  }
1892
1893  AssignConvertType ConvTy;
1894  if (compoundType.isNull())
1895    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
1896  else
1897    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
1898
1899  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
1900                               rex, "assigning"))
1901    return QualType();
1902
1903  // C99 6.5.16p3: The type of an assignment expression is the type of the
1904  // left operand unless the left operand has qualified type, in which case
1905  // it is the unqualified version of the type of the left operand.
1906  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1907  // is converted to the type of the assignment expression (above).
1908  // C++ 5.17p1: the type of the assignment expression is that of its left
1909  // oprdu.
1910  return lhsType.getUnqualifiedType();
1911}
1912
1913inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1914  Expr *&lex, Expr *&rex, SourceLocation loc) {
1915
1916  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
1917  DefaultFunctionArrayConversion(rex);
1918  return rex->getType();
1919}
1920
1921/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1922/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1923QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1924  QualType resType = op->getType();
1925  assert(!resType.isNull() && "no type for increment/decrement expression");
1926
1927  // C99 6.5.2.4p1: We allow complex as a GCC extension.
1928  if (const PointerType *pt = resType->getAsPointerType()) {
1929    if (pt->getPointeeType()->isVoidType()) {
1930      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
1931    } else if (!pt->getPointeeType()->isObjectType()) {
1932      // C99 6.5.2.4p2, 6.5.6p2
1933      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1934           resType.getAsString(), op->getSourceRange());
1935      return QualType();
1936    }
1937  } else if (!resType->isRealType()) {
1938    if (resType->isComplexType())
1939      // C99 does not support ++/-- on complex types.
1940      Diag(OpLoc, diag::ext_integer_increment_complex,
1941           resType.getAsString(), op->getSourceRange());
1942    else {
1943      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1944           resType.getAsString(), op->getSourceRange());
1945      return QualType();
1946    }
1947  }
1948  // At this point, we know we have a real, complex or pointer type.
1949  // Now make sure the operand is a modifiable lvalue.
1950  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1951  if (mlval != Expr::MLV_Valid) {
1952    // FIXME: emit a more precise diagnostic...
1953    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1954         op->getSourceRange());
1955    return QualType();
1956  }
1957  return resType;
1958}
1959
1960/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
1961/// This routine allows us to typecheck complex/recursive expressions
1962/// where the declaration is needed for type checking. Here are some
1963/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1964static ValueDecl *getPrimaryDecl(Expr *E) {
1965  switch (E->getStmtClass()) {
1966  case Stmt::DeclRefExprClass:
1967    return cast<DeclRefExpr>(E)->getDecl();
1968  case Stmt::MemberExprClass:
1969    // Fields cannot be declared with a 'register' storage class.
1970    // &X->f is always ok, even if X is declared register.
1971    if (cast<MemberExpr>(E)->isArrow())
1972      return 0;
1973    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
1974  case Stmt::ArraySubscriptExprClass: {
1975    // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
1976
1977    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
1978    if (!VD || VD->getType()->isPointerType())
1979      return 0;
1980    else
1981      return VD;
1982  }
1983  case Stmt::UnaryOperatorClass:
1984    return getPrimaryDecl(cast<UnaryOperator>(E)->getSubExpr());
1985  case Stmt::ParenExprClass:
1986    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
1987  case Stmt::ImplicitCastExprClass:
1988    // &X[4] when X is an array, has an implicit cast from array to pointer.
1989    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
1990  default:
1991    return 0;
1992  }
1993}
1994
1995/// CheckAddressOfOperand - The operand of & must be either a function
1996/// designator or an lvalue designating an object. If it is an lvalue, the
1997/// object cannot be declared with storage class register or be a bit field.
1998/// Note: The usual conversions are *not* applied to the operand of the &
1999/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2000QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2001  if (getLangOptions().C99) {
2002    // Implement C99-only parts of addressof rules.
2003    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2004      if (uOp->getOpcode() == UnaryOperator::Deref)
2005        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2006        // (assuming the deref expression is valid).
2007        return uOp->getSubExpr()->getType();
2008    }
2009    // Technically, there should be a check for array subscript
2010    // expressions here, but the result of one is always an lvalue anyway.
2011  }
2012  ValueDecl *dcl = getPrimaryDecl(op);
2013  Expr::isLvalueResult lval = op->isLvalue();
2014
2015  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2016    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2017      // FIXME: emit more specific diag...
2018      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2019           op->getSourceRange());
2020      return QualType();
2021    }
2022  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2023    if (MemExpr->getMemberDecl()->isBitField()) {
2024      Diag(OpLoc, diag::err_typecheck_address_of,
2025           std::string("bit-field"), op->getSourceRange());
2026      return QualType();
2027    }
2028  // Check for Apple extension for accessing vector components.
2029  } else if (isa<ArraySubscriptExpr>(op) &&
2030           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2031    Diag(OpLoc, diag::err_typecheck_address_of,
2032         std::string("vector"), op->getSourceRange());
2033    return QualType();
2034  } else if (dcl) { // C99 6.5.3.2p1
2035    // We have an lvalue with a decl. Make sure the decl is not declared
2036    // with the register storage-class specifier.
2037    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2038      if (vd->getStorageClass() == VarDecl::Register) {
2039        Diag(OpLoc, diag::err_typecheck_address_of,
2040             std::string("register variable"), op->getSourceRange());
2041        return QualType();
2042      }
2043    } else
2044      assert(0 && "Unknown/unexpected decl type");
2045  }
2046  // If the operand has type "type", the result has type "pointer to type".
2047  return Context.getPointerType(op->getType());
2048}
2049
2050QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2051  UsualUnaryConversions(op);
2052  QualType qType = op->getType();
2053
2054  if (const PointerType *PT = qType->getAsPointerType()) {
2055    // Note that per both C89 and C99, this is always legal, even
2056    // if ptype is an incomplete type or void.
2057    // It would be possible to warn about dereferencing a
2058    // void pointer, but it's completely well-defined,
2059    // and such a warning is unlikely to catch any mistakes.
2060    return PT->getPointeeType();
2061  }
2062  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2063       qType.getAsString(), op->getSourceRange());
2064  return QualType();
2065}
2066
2067static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2068  tok::TokenKind Kind) {
2069  BinaryOperator::Opcode Opc;
2070  switch (Kind) {
2071  default: assert(0 && "Unknown binop!");
2072  case tok::star:                 Opc = BinaryOperator::Mul; break;
2073  case tok::slash:                Opc = BinaryOperator::Div; break;
2074  case tok::percent:              Opc = BinaryOperator::Rem; break;
2075  case tok::plus:                 Opc = BinaryOperator::Add; break;
2076  case tok::minus:                Opc = BinaryOperator::Sub; break;
2077  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2078  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2079  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2080  case tok::less:                 Opc = BinaryOperator::LT; break;
2081  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2082  case tok::greater:              Opc = BinaryOperator::GT; break;
2083  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2084  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2085  case tok::amp:                  Opc = BinaryOperator::And; break;
2086  case tok::caret:                Opc = BinaryOperator::Xor; break;
2087  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2088  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2089  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2090  case tok::equal:                Opc = BinaryOperator::Assign; break;
2091  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2092  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2093  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2094  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2095  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2096  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2097  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2098  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2099  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2100  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2101  case tok::comma:                Opc = BinaryOperator::Comma; break;
2102  }
2103  return Opc;
2104}
2105
2106static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2107  tok::TokenKind Kind) {
2108  UnaryOperator::Opcode Opc;
2109  switch (Kind) {
2110  default: assert(0 && "Unknown unary op!");
2111  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2112  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2113  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2114  case tok::star:         Opc = UnaryOperator::Deref; break;
2115  case tok::plus:         Opc = UnaryOperator::Plus; break;
2116  case tok::minus:        Opc = UnaryOperator::Minus; break;
2117  case tok::tilde:        Opc = UnaryOperator::Not; break;
2118  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2119  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2120  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2121  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2122  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2123  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2124  }
2125  return Opc;
2126}
2127
2128// Binary Operators.  'Tok' is the token for the operator.
2129Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2130                                    ExprTy *LHS, ExprTy *RHS) {
2131  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2132  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2133
2134  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2135  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2136
2137  QualType ResultTy;  // Result type of the binary operator.
2138  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2139
2140  switch (Opc) {
2141  default:
2142    assert(0 && "Unknown binary expr!");
2143  case BinaryOperator::Assign:
2144    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2145    break;
2146  case BinaryOperator::Mul:
2147  case BinaryOperator::Div:
2148    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2149    break;
2150  case BinaryOperator::Rem:
2151    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2152    break;
2153  case BinaryOperator::Add:
2154    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2155    break;
2156  case BinaryOperator::Sub:
2157    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2158    break;
2159  case BinaryOperator::Shl:
2160  case BinaryOperator::Shr:
2161    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2162    break;
2163  case BinaryOperator::LE:
2164  case BinaryOperator::LT:
2165  case BinaryOperator::GE:
2166  case BinaryOperator::GT:
2167    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2168    break;
2169  case BinaryOperator::EQ:
2170  case BinaryOperator::NE:
2171    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2172    break;
2173  case BinaryOperator::And:
2174  case BinaryOperator::Xor:
2175  case BinaryOperator::Or:
2176    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2177    break;
2178  case BinaryOperator::LAnd:
2179  case BinaryOperator::LOr:
2180    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2181    break;
2182  case BinaryOperator::MulAssign:
2183  case BinaryOperator::DivAssign:
2184    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2185    if (!CompTy.isNull())
2186      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2187    break;
2188  case BinaryOperator::RemAssign:
2189    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2190    if (!CompTy.isNull())
2191      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2192    break;
2193  case BinaryOperator::AddAssign:
2194    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2195    if (!CompTy.isNull())
2196      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2197    break;
2198  case BinaryOperator::SubAssign:
2199    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2200    if (!CompTy.isNull())
2201      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2202    break;
2203  case BinaryOperator::ShlAssign:
2204  case BinaryOperator::ShrAssign:
2205    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2206    if (!CompTy.isNull())
2207      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2208    break;
2209  case BinaryOperator::AndAssign:
2210  case BinaryOperator::XorAssign:
2211  case BinaryOperator::OrAssign:
2212    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2213    if (!CompTy.isNull())
2214      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2215    break;
2216  case BinaryOperator::Comma:
2217    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2218    break;
2219  }
2220  if (ResultTy.isNull())
2221    return true;
2222  if (CompTy.isNull())
2223    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2224  else
2225    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2226}
2227
2228// Unary Operators.  'Tok' is the token for the operator.
2229Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2230                                      ExprTy *input) {
2231  Expr *Input = (Expr*)input;
2232  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2233  QualType resultType;
2234  switch (Opc) {
2235  default:
2236    assert(0 && "Unimplemented unary expr!");
2237  case UnaryOperator::PreInc:
2238  case UnaryOperator::PreDec:
2239    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2240    break;
2241  case UnaryOperator::AddrOf:
2242    resultType = CheckAddressOfOperand(Input, OpLoc);
2243    break;
2244  case UnaryOperator::Deref:
2245    DefaultFunctionArrayConversion(Input);
2246    resultType = CheckIndirectionOperand(Input, OpLoc);
2247    break;
2248  case UnaryOperator::Plus:
2249  case UnaryOperator::Minus:
2250    UsualUnaryConversions(Input);
2251    resultType = Input->getType();
2252    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2253      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2254                  resultType.getAsString());
2255    break;
2256  case UnaryOperator::Not: // bitwise complement
2257    UsualUnaryConversions(Input);
2258    resultType = Input->getType();
2259    // C99 6.5.3.3p1. We allow complex as a GCC extension.
2260    if (!resultType->isIntegerType()) {
2261      if (resultType->isComplexType())
2262        // C99 does not support '~' for complex conjugation.
2263        Diag(OpLoc, diag::ext_integer_complement_complex,
2264                    resultType.getAsString());
2265      else
2266        return Diag(OpLoc, diag::err_typecheck_unary_expr,
2267                    resultType.getAsString());
2268    }
2269    break;
2270  case UnaryOperator::LNot: // logical negation
2271    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2272    DefaultFunctionArrayConversion(Input);
2273    resultType = Input->getType();
2274    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2275      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2276                  resultType.getAsString());
2277    // LNot always has type int. C99 6.5.3.3p5.
2278    resultType = Context.IntTy;
2279    break;
2280  case UnaryOperator::SizeOf:
2281    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
2282    break;
2283  case UnaryOperator::AlignOf:
2284    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
2285    break;
2286  case UnaryOperator::Real:
2287  case UnaryOperator::Imag:
2288    resultType = CheckRealImagOperand(Input, OpLoc);
2289    break;
2290  case UnaryOperator::Extension:
2291    resultType = Input->getType();
2292    break;
2293  }
2294  if (resultType.isNull())
2295    return true;
2296  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2297}
2298
2299/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2300Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2301                                      SourceLocation LabLoc,
2302                                      IdentifierInfo *LabelII) {
2303  // Look up the record for this label identifier.
2304  LabelStmt *&LabelDecl = LabelMap[LabelII];
2305
2306  // If we haven't seen this label yet, create a forward reference.
2307  if (LabelDecl == 0)
2308    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2309
2310  // Create the AST node.  The address of a label always has type 'void*'.
2311  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2312                           Context.getPointerType(Context.VoidTy));
2313}
2314
2315Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2316                                     SourceLocation RPLoc) { // "({..})"
2317  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2318  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2319  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2320
2321  // FIXME: there are a variety of strange constraints to enforce here, for
2322  // example, it is not possible to goto into a stmt expression apparently.
2323  // More semantic analysis is needed.
2324
2325  // FIXME: the last statement in the compount stmt has its value used.  We
2326  // should not warn about it being unused.
2327
2328  // If there are sub stmts in the compound stmt, take the type of the last one
2329  // as the type of the stmtexpr.
2330  QualType Ty = Context.VoidTy;
2331
2332  if (!Compound->body_empty())
2333    if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
2334      Ty = LastExpr->getType();
2335
2336  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2337}
2338
2339Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2340                                            SourceLocation TypeLoc,
2341                                            TypeTy *argty,
2342                                            OffsetOfComponent *CompPtr,
2343                                            unsigned NumComponents,
2344                                            SourceLocation RPLoc) {
2345  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2346  assert(!ArgTy.isNull() && "Missing type argument!");
2347
2348  // We must have at least one component that refers to the type, and the first
2349  // one is known to be a field designator.  Verify that the ArgTy represents
2350  // a struct/union/class.
2351  if (!ArgTy->isRecordType())
2352    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2353
2354  // Otherwise, create a compound literal expression as the base, and
2355  // iteratively process the offsetof designators.
2356  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2357
2358  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2359  // GCC extension, diagnose them.
2360  if (NumComponents != 1)
2361    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2362         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2363
2364  for (unsigned i = 0; i != NumComponents; ++i) {
2365    const OffsetOfComponent &OC = CompPtr[i];
2366    if (OC.isBrackets) {
2367      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2368      const ArrayType *AT = Res->getType()->getAsArrayType();
2369      if (!AT) {
2370        delete Res;
2371        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2372                    Res->getType().getAsString());
2373      }
2374
2375      // FIXME: C++: Verify that operator[] isn't overloaded.
2376
2377      // C99 6.5.2.1p1
2378      Expr *Idx = static_cast<Expr*>(OC.U.E);
2379      if (!Idx->getType()->isIntegerType())
2380        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2381                    Idx->getSourceRange());
2382
2383      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2384      continue;
2385    }
2386
2387    const RecordType *RC = Res->getType()->getAsRecordType();
2388    if (!RC) {
2389      delete Res;
2390      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2391                  Res->getType().getAsString());
2392    }
2393
2394    // Get the decl corresponding to this.
2395    RecordDecl *RD = RC->getDecl();
2396    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2397    if (!MemberDecl)
2398      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2399                  OC.U.IdentInfo->getName(),
2400                  SourceRange(OC.LocStart, OC.LocEnd));
2401
2402    // FIXME: C++: Verify that MemberDecl isn't a static field.
2403    // FIXME: Verify that MemberDecl isn't a bitfield.
2404    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2405    // matter here.
2406    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2407  }
2408
2409  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2410                           BuiltinLoc);
2411}
2412
2413
2414Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2415                                                TypeTy *arg1, TypeTy *arg2,
2416                                                SourceLocation RPLoc) {
2417  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2418  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2419
2420  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2421
2422  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2423}
2424
2425Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2426                                       ExprTy *expr1, ExprTy *expr2,
2427                                       SourceLocation RPLoc) {
2428  Expr *CondExpr = static_cast<Expr*>(cond);
2429  Expr *LHSExpr = static_cast<Expr*>(expr1);
2430  Expr *RHSExpr = static_cast<Expr*>(expr2);
2431
2432  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2433
2434  // The conditional expression is required to be a constant expression.
2435  llvm::APSInt condEval(32);
2436  SourceLocation ExpLoc;
2437  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2438    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2439                 CondExpr->getSourceRange());
2440
2441  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2442  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2443                                               RHSExpr->getType();
2444  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2445}
2446
2447/// ExprsMatchFnType - return true if the Exprs in array Args have
2448/// QualTypes that match the QualTypes of the arguments of the FnType.
2449/// The number of arguments has already been validated to match the number of
2450/// arguments in FnType.
2451static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
2452  unsigned NumParams = FnType->getNumArgs();
2453  for (unsigned i = 0; i != NumParams; ++i) {
2454    QualType ExprTy = Args[i]->getType().getCanonicalType();
2455    QualType ParmTy = FnType->getArgType(i).getCanonicalType();
2456
2457    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2458      return false;
2459  }
2460  return true;
2461}
2462
2463Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2464                                         SourceLocation *CommaLocs,
2465                                         SourceLocation BuiltinLoc,
2466                                         SourceLocation RParenLoc) {
2467  // __builtin_overload requires at least 2 arguments
2468  if (NumArgs < 2)
2469    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2470                SourceRange(BuiltinLoc, RParenLoc));
2471
2472  // The first argument is required to be a constant expression.  It tells us
2473  // the number of arguments to pass to each of the functions to be overloaded.
2474  Expr **Args = reinterpret_cast<Expr**>(args);
2475  Expr *NParamsExpr = Args[0];
2476  llvm::APSInt constEval(32);
2477  SourceLocation ExpLoc;
2478  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2479    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2480                NParamsExpr->getSourceRange());
2481
2482  // Verify that the number of parameters is > 0
2483  unsigned NumParams = constEval.getZExtValue();
2484  if (NumParams == 0)
2485    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2486                NParamsExpr->getSourceRange());
2487  // Verify that we have at least 1 + NumParams arguments to the builtin.
2488  if ((NumParams + 1) > NumArgs)
2489    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2490                SourceRange(BuiltinLoc, RParenLoc));
2491
2492  // Figure out the return type, by matching the args to one of the functions
2493  // listed after the parameters.
2494  OverloadExpr *OE = 0;
2495  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2496    // UsualUnaryConversions will convert the function DeclRefExpr into a
2497    // pointer to function.
2498    Expr *Fn = UsualUnaryConversions(Args[i]);
2499    FunctionTypeProto *FnType = 0;
2500    if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
2501      QualType PointeeType = PT->getPointeeType().getCanonicalType();
2502      FnType = dyn_cast<FunctionTypeProto>(PointeeType);
2503    }
2504
2505    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2506    // parameters, and the number of parameters must match the value passed to
2507    // the builtin.
2508    if (!FnType || (FnType->getNumArgs() != NumParams))
2509      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2510                  Fn->getSourceRange());
2511
2512    // Scan the parameter list for the FunctionType, checking the QualType of
2513    // each parameter against the QualTypes of the arguments to the builtin.
2514    // If they match, return a new OverloadExpr.
2515    if (ExprsMatchFnType(Args+1, FnType)) {
2516      if (OE)
2517        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2518                    OE->getFn()->getSourceRange());
2519      // Remember our match, and continue processing the remaining arguments
2520      // to catch any errors.
2521      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2522                            BuiltinLoc, RParenLoc);
2523    }
2524  }
2525  // Return the newly created OverloadExpr node, if we succeded in matching
2526  // exactly one of the candidate functions.
2527  if (OE)
2528    return OE;
2529
2530  // If we didn't find a matching function Expr in the __builtin_overload list
2531  // the return an error.
2532  std::string typeNames;
2533  for (unsigned i = 0; i != NumParams; ++i) {
2534    if (i != 0) typeNames += ", ";
2535    typeNames += Args[i+1]->getType().getAsString();
2536  }
2537
2538  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2539              SourceRange(BuiltinLoc, RParenLoc));
2540}
2541
2542Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2543                                  ExprTy *expr, TypeTy *type,
2544                                  SourceLocation RPLoc) {
2545  Expr *E = static_cast<Expr*>(expr);
2546  QualType T = QualType::getFromOpaquePtr(type);
2547
2548  InitBuiltinVaListType();
2549
2550  if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
2551      != Compatible)
2552    return Diag(E->getLocStart(),
2553                diag::err_first_argument_to_va_arg_not_of_type_va_list,
2554                E->getType().getAsString(),
2555                E->getSourceRange());
2556
2557  // FIXME: Warn if a non-POD type is passed in.
2558
2559  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
2560}
2561
2562bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
2563                                    SourceLocation Loc,
2564                                    QualType DstType, QualType SrcType,
2565                                    Expr *SrcExpr, const char *Flavor) {
2566  // Decode the result (notice that AST's are still created for extensions).
2567  bool isInvalid = false;
2568  unsigned DiagKind;
2569  switch (ConvTy) {
2570  default: assert(0 && "Unknown conversion type");
2571  case Compatible: return false;
2572  case PointerToInt:
2573    DiagKind = diag::ext_typecheck_convert_pointer_int;
2574    break;
2575  case IntToPointer:
2576    DiagKind = diag::ext_typecheck_convert_int_pointer;
2577    break;
2578  case IncompatiblePointer:
2579    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
2580    break;
2581  case FunctionVoidPointer:
2582    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
2583    break;
2584  case CompatiblePointerDiscardsQualifiers:
2585    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
2586    break;
2587  case Incompatible:
2588    DiagKind = diag::err_typecheck_convert_incompatible;
2589    isInvalid = true;
2590    break;
2591  }
2592
2593  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
2594       SrcExpr->getSourceRange());
2595  return isInvalid;
2596}
2597