SemaExpr.cpp revision 2b12832863fe3c79694ac143f5b5abe8d52364b9
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90SourceRange Sema::getExprRange(ExprTy *E) const {
91  Expr *Ex = (Expr *)E;
92  return Ex? Ex->getSourceRange() : SourceRange();
93}
94
95//===----------------------------------------------------------------------===//
96//  Standard Promotions and Conversions
97//===----------------------------------------------------------------------===//
98
99/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
100void Sema::DefaultFunctionArrayConversion(Expr *&E) {
101  QualType Ty = E->getType();
102  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
103
104  if (Ty->isFunctionType())
105    ImpCastExprToType(E, Context.getPointerType(Ty));
106  else if (Ty->isArrayType()) {
107    // In C90 mode, arrays only promote to pointers if the array expression is
108    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
109    // type 'array of type' is converted to an expression that has type 'pointer
110    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
111    // that has type 'array of type' ...".  The relevant change is "an lvalue"
112    // (C90) to "an expression" (C99).
113    //
114    // C++ 4.2p1:
115    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
116    // T" can be converted to an rvalue of type "pointer to T".
117    //
118    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
119        E->isLvalue(Context) == Expr::LV_Valid)
120      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
121  }
122}
123
124/// UsualUnaryConversions - Performs various conversions that are common to most
125/// operators (C99 6.3). The conversions of array and function types are
126/// sometimes surpressed. For example, the array->pointer conversion doesn't
127/// apply if the array is an argument to the sizeof or address (&) operators.
128/// In these instances, this routine should *not* be called.
129Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
130  QualType Ty = Expr->getType();
131  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
132
133  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
134    ImpCastExprToType(Expr, Context.IntTy);
135  else
136    DefaultFunctionArrayConversion(Expr);
137
138  return Expr;
139}
140
141/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
142/// do not have a prototype. Arguments that have type float are promoted to
143/// double. All other argument types are converted by UsualUnaryConversions().
144void Sema::DefaultArgumentPromotion(Expr *&Expr) {
145  QualType Ty = Expr->getType();
146  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
147
148  // If this is a 'float' (CVR qualified or typedef) promote to double.
149  if (const BuiltinType *BT = Ty->getAsBuiltinType())
150    if (BT->getKind() == BuiltinType::Float)
151      return ImpCastExprToType(Expr, Context.DoubleTy);
152
153  UsualUnaryConversions(Expr);
154}
155
156// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
157// will warn if the resulting type is not a POD type.
158void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
159  DefaultArgumentPromotion(Expr);
160
161  if (!Expr->getType()->isPODType()) {
162    Diag(Expr->getLocStart(),
163         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
164    Expr->getType() << CT;
165  }
166}
167
168
169/// UsualArithmeticConversions - Performs various conversions that are common to
170/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
171/// routine returns the first non-arithmetic type found. The client is
172/// responsible for emitting appropriate error diagnostics.
173/// FIXME: verify the conversion rules for "complex int" are consistent with
174/// GCC.
175QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
176                                          bool isCompAssign) {
177  if (!isCompAssign) {
178    UsualUnaryConversions(lhsExpr);
179    UsualUnaryConversions(rhsExpr);
180  }
181
182  // For conversion purposes, we ignore any qualifiers.
183  // For example, "const float" and "float" are equivalent.
184  QualType lhs =
185    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
186  QualType rhs =
187    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
188
189  // If both types are identical, no conversion is needed.
190  if (lhs == rhs)
191    return lhs;
192
193  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
194  // The caller can deal with this (e.g. pointer + int).
195  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
196    return lhs;
197
198  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
199  if (!isCompAssign) {
200    ImpCastExprToType(lhsExpr, destType);
201    ImpCastExprToType(rhsExpr, destType);
202  }
203  return destType;
204}
205
206QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
207  // Perform the usual unary conversions. We do this early so that
208  // integral promotions to "int" can allow us to exit early, in the
209  // lhs == rhs check. Also, for conversion purposes, we ignore any
210  // qualifiers.  For example, "const float" and "float" are
211  // equivalent.
212  if (lhs->isPromotableIntegerType())
213    lhs = Context.IntTy;
214  else
215    lhs = lhs.getUnqualifiedType();
216  if (rhs->isPromotableIntegerType())
217    rhs = Context.IntTy;
218  else
219    rhs = rhs.getUnqualifiedType();
220
221  // If both types are identical, no conversion is needed.
222  if (lhs == rhs)
223    return lhs;
224
225  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
226  // The caller can deal with this (e.g. pointer + int).
227  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
228    return lhs;
229
230  // At this point, we have two different arithmetic types.
231
232  // Handle complex types first (C99 6.3.1.8p1).
233  if (lhs->isComplexType() || rhs->isComplexType()) {
234    // if we have an integer operand, the result is the complex type.
235    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
236      // convert the rhs to the lhs complex type.
237      return lhs;
238    }
239    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
240      // convert the lhs to the rhs complex type.
241      return rhs;
242    }
243    // This handles complex/complex, complex/float, or float/complex.
244    // When both operands are complex, the shorter operand is converted to the
245    // type of the longer, and that is the type of the result. This corresponds
246    // to what is done when combining two real floating-point operands.
247    // The fun begins when size promotion occur across type domains.
248    // From H&S 6.3.4: When one operand is complex and the other is a real
249    // floating-point type, the less precise type is converted, within it's
250    // real or complex domain, to the precision of the other type. For example,
251    // when combining a "long double" with a "double _Complex", the
252    // "double _Complex" is promoted to "long double _Complex".
253    int result = Context.getFloatingTypeOrder(lhs, rhs);
254
255    if (result > 0) { // The left side is bigger, convert rhs.
256      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
257    } else if (result < 0) { // The right side is bigger, convert lhs.
258      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
259    }
260    // At this point, lhs and rhs have the same rank/size. Now, make sure the
261    // domains match. This is a requirement for our implementation, C99
262    // does not require this promotion.
263    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
264      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
265        return rhs;
266      } else { // handle "_Complex double, double".
267        return lhs;
268      }
269    }
270    return lhs; // The domain/size match exactly.
271  }
272  // Now handle "real" floating types (i.e. float, double, long double).
273  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
274    // if we have an integer operand, the result is the real floating type.
275    if (rhs->isIntegerType()) {
276      // convert rhs to the lhs floating point type.
277      return lhs;
278    }
279    if (rhs->isComplexIntegerType()) {
280      // convert rhs to the complex floating point type.
281      return Context.getComplexType(lhs);
282    }
283    if (lhs->isIntegerType()) {
284      // convert lhs to the rhs floating point type.
285      return rhs;
286    }
287    if (lhs->isComplexIntegerType()) {
288      // convert lhs to the complex floating point type.
289      return Context.getComplexType(rhs);
290    }
291    // We have two real floating types, float/complex combos were handled above.
292    // Convert the smaller operand to the bigger result.
293    int result = Context.getFloatingTypeOrder(lhs, rhs);
294    if (result > 0) // convert the rhs
295      return lhs;
296    assert(result < 0 && "illegal float comparison");
297    return rhs;   // convert the lhs
298  }
299  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
300    // Handle GCC complex int extension.
301    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
302    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
303
304    if (lhsComplexInt && rhsComplexInt) {
305      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
306                                      rhsComplexInt->getElementType()) >= 0)
307        return lhs; // convert the rhs
308      return rhs;
309    } else if (lhsComplexInt && rhs->isIntegerType()) {
310      // convert the rhs to the lhs complex type.
311      return lhs;
312    } else if (rhsComplexInt && lhs->isIntegerType()) {
313      // convert the lhs to the rhs complex type.
314      return rhs;
315    }
316  }
317  // Finally, we have two differing integer types.
318  // The rules for this case are in C99 6.3.1.8
319  int compare = Context.getIntegerTypeOrder(lhs, rhs);
320  bool lhsSigned = lhs->isSignedIntegerType(),
321       rhsSigned = rhs->isSignedIntegerType();
322  QualType destType;
323  if (lhsSigned == rhsSigned) {
324    // Same signedness; use the higher-ranked type
325    destType = compare >= 0 ? lhs : rhs;
326  } else if (compare != (lhsSigned ? 1 : -1)) {
327    // The unsigned type has greater than or equal rank to the
328    // signed type, so use the unsigned type
329    destType = lhsSigned ? rhs : lhs;
330  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
331    // The two types are different widths; if we are here, that
332    // means the signed type is larger than the unsigned type, so
333    // use the signed type.
334    destType = lhsSigned ? lhs : rhs;
335  } else {
336    // The signed type is higher-ranked than the unsigned type,
337    // but isn't actually any bigger (like unsigned int and long
338    // on most 32-bit systems).  Use the unsigned type corresponding
339    // to the signed type.
340    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
341  }
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// FIXME: This will create BlockDeclRefExprs for global variables,
397/// function references, etc which is suboptimal :) and breaks
398/// things like "integer constant expression" tests.
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    return Var->hasLocalStorage();
415
416  return true;
417}
418
419
420
421/// ActOnIdentifierExpr - The parser read an identifier in expression context,
422/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
423/// identifier is used in a function call context.
424/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
425/// class or namespace that the identifier must be a member of.
426Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
427                                                 IdentifierInfo &II,
428                                                 bool HasTrailingLParen,
429                                                 const CXXScopeSpec *SS,
430                                                 bool isAddressOfOperand) {
431  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
432                                  isAddressOfOperand);
433}
434
435/// BuildDeclRefExpr - Build either a DeclRefExpr or a
436/// QualifiedDeclRefExpr based on whether or not SS is a
437/// nested-name-specifier.
438DeclRefExpr *
439Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
440                       bool TypeDependent, bool ValueDependent,
441                       const CXXScopeSpec *SS) {
442  if (SS && !SS->isEmpty()) {
443    llvm::SmallVector<NestedNameSpecifier, 16> Specs;
444    for (CXXScopeSpec::iterator Spec = SS->begin(), SpecEnd = SS->end();
445         Spec != SpecEnd; ++Spec)
446      Specs.push_back(NestedNameSpecifier::getFromOpaquePtr(*Spec));
447    return QualifiedDeclRefExpr::Create(Context, D, Ty, Loc, TypeDependent,
448                                        ValueDependent, SS->getRange(),
449                                        &Specs[0], Specs.size());
450  } else
451    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
452}
453
454/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
455/// variable corresponding to the anonymous union or struct whose type
456/// is Record.
457static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
458  assert(Record->isAnonymousStructOrUnion() &&
459         "Record must be an anonymous struct or union!");
460
461  // FIXME: Once Decls are directly linked together, this will
462  // be an O(1) operation rather than a slow walk through DeclContext's
463  // vector (which itself will be eliminated). DeclGroups might make
464  // this even better.
465  DeclContext *Ctx = Record->getDeclContext();
466  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
467                               DEnd = Ctx->decls_end();
468       D != DEnd; ++D) {
469    if (*D == Record) {
470      // The object for the anonymous struct/union directly
471      // follows its type in the list of declarations.
472      ++D;
473      assert(D != DEnd && "Missing object for anonymous record");
474      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
475      return *D;
476    }
477  }
478
479  assert(false && "Missing object for anonymous record");
480  return 0;
481}
482
483Sema::OwningExprResult
484Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
485                                               FieldDecl *Field,
486                                               Expr *BaseObjectExpr,
487                                               SourceLocation OpLoc) {
488  assert(Field->getDeclContext()->isRecord() &&
489         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
490         && "Field must be stored inside an anonymous struct or union");
491
492  // Construct the sequence of field member references
493  // we'll have to perform to get to the field in the anonymous
494  // union/struct. The list of members is built from the field
495  // outward, so traverse it backwards to go from an object in
496  // the current context to the field we found.
497  llvm::SmallVector<FieldDecl *, 4> AnonFields;
498  AnonFields.push_back(Field);
499  VarDecl *BaseObject = 0;
500  DeclContext *Ctx = Field->getDeclContext();
501  do {
502    RecordDecl *Record = cast<RecordDecl>(Ctx);
503    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
504    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
505      AnonFields.push_back(AnonField);
506    else {
507      BaseObject = cast<VarDecl>(AnonObject);
508      break;
509    }
510    Ctx = Ctx->getParent();
511  } while (Ctx->isRecord() &&
512           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
513
514  // Build the expression that refers to the base object, from
515  // which we will build a sequence of member references to each
516  // of the anonymous union objects and, eventually, the field we
517  // found via name lookup.
518  bool BaseObjectIsPointer = false;
519  unsigned ExtraQuals = 0;
520  if (BaseObject) {
521    // BaseObject is an anonymous struct/union variable (and is,
522    // therefore, not part of another non-anonymous record).
523    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
524    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
525                                               SourceLocation());
526    ExtraQuals
527      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
528  } else if (BaseObjectExpr) {
529    // The caller provided the base object expression. Determine
530    // whether its a pointer and whether it adds any qualifiers to the
531    // anonymous struct/union fields we're looking into.
532    QualType ObjectType = BaseObjectExpr->getType();
533    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
534      BaseObjectIsPointer = true;
535      ObjectType = ObjectPtr->getPointeeType();
536    }
537    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
538  } else {
539    // We've found a member of an anonymous struct/union that is
540    // inside a non-anonymous struct/union, so in a well-formed
541    // program our base object expression is "this".
542    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
543      if (!MD->isStatic()) {
544        QualType AnonFieldType
545          = Context.getTagDeclType(
546                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
547        QualType ThisType = Context.getTagDeclType(MD->getParent());
548        if ((Context.getCanonicalType(AnonFieldType)
549               == Context.getCanonicalType(ThisType)) ||
550            IsDerivedFrom(ThisType, AnonFieldType)) {
551          // Our base object expression is "this".
552          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
553                                                     MD->getThisType(Context));
554          BaseObjectIsPointer = true;
555        }
556      } else {
557        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
558          << Field->getDeclName());
559      }
560      ExtraQuals = MD->getTypeQualifiers();
561    }
562
563    if (!BaseObjectExpr)
564      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
565        << Field->getDeclName());
566  }
567
568  // Build the implicit member references to the field of the
569  // anonymous struct/union.
570  Expr *Result = BaseObjectExpr;
571  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
572         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
573       FI != FIEnd; ++FI) {
574    QualType MemberType = (*FI)->getType();
575    if (!(*FI)->isMutable()) {
576      unsigned combinedQualifiers
577        = MemberType.getCVRQualifiers() | ExtraQuals;
578      MemberType = MemberType.getQualifiedType(combinedQualifiers);
579    }
580    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
581                                      OpLoc, MemberType);
582    BaseObjectIsPointer = false;
583    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
584  }
585
586  return Owned(Result);
587}
588
589/// ActOnDeclarationNameExpr - The parser has read some kind of name
590/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
591/// performs lookup on that name and returns an expression that refers
592/// to that name. This routine isn't directly called from the parser,
593/// because the parser doesn't know about DeclarationName. Rather,
594/// this routine is called by ActOnIdentifierExpr,
595/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
596/// which form the DeclarationName from the corresponding syntactic
597/// forms.
598///
599/// HasTrailingLParen indicates whether this identifier is used in a
600/// function call context.  LookupCtx is only used for a C++
601/// qualified-id (foo::bar) to indicate the class or namespace that
602/// the identifier must be a member of.
603///
604/// isAddressOfOperand means that this expression is the direct operand
605/// of an address-of operator. This matters because this is the only
606/// situation where a qualified name referencing a non-static member may
607/// appear outside a member function of this class.
608Sema::OwningExprResult
609Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
610                               DeclarationName Name, bool HasTrailingLParen,
611                               const CXXScopeSpec *SS,
612                               bool isAddressOfOperand) {
613  // Could be enum-constant, value decl, instance variable, etc.
614  if (SS && SS->isInvalid())
615    return ExprError();
616
617  // C++ [temp.dep.expr]p3:
618  //   An id-expression is type-dependent if it contains:
619  //     -- a nested-name-specifier that contains a class-name that
620  //        names a dependent type.
621  if (SS && isDependentScopeSpecifier(*SS)) {
622    llvm::SmallVector<NestedNameSpecifier, 16> Specs;
623    for (CXXScopeSpec::iterator Spec = SS->begin(), SpecEnd = SS->end();
624         Spec != SpecEnd; ++Spec)
625      Specs.push_back(NestedNameSpecifier::getFromOpaquePtr(*Spec));
626    return Owned(UnresolvedDeclRefExpr::Create(Context, Name, Loc,
627                                               SS->getRange(), &Specs[0],
628                                               Specs.size()));
629  }
630
631  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
632                                         false, true, Loc);
633
634  NamedDecl *D = 0;
635  if (Lookup.isAmbiguous()) {
636    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
637                            SS && SS->isSet() ? SS->getRange()
638                                              : SourceRange());
639    return ExprError();
640  } else
641    D = Lookup.getAsDecl();
642
643  // If this reference is in an Objective-C method, then ivar lookup happens as
644  // well.
645  IdentifierInfo *II = Name.getAsIdentifierInfo();
646  if (II && getCurMethodDecl()) {
647    // There are two cases to handle here.  1) scoped lookup could have failed,
648    // in which case we should look for an ivar.  2) scoped lookup could have
649    // found a decl, but that decl is outside the current instance method (i.e.
650    // a global variable).  In these two cases, we do a lookup for an ivar with
651    // this name, if the lookup sucedes, we replace it our current decl.
652    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
653      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
654      ObjCInterfaceDecl *ClassDeclared;
655      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
656        // Check if referencing a field with __attribute__((deprecated)).
657        if (DiagnoseUseOfDecl(IV, Loc))
658          return ExprError();
659        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
660        // If a class method attemps to use a free standing ivar, this is
661        // an error.
662        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
663           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
664                           << IV->getDeclName());
665        // If a class method uses a global variable, even if an ivar with
666        // same name exists, use the global.
667        if (!IsClsMethod) {
668          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
669              ClassDeclared != IFace)
670           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
671          // FIXME: This should use a new expr for a direct reference, don't turn
672          // this into Self->ivar, just return a BareIVarExpr or something.
673          IdentifierInfo &II = Context.Idents.get("self");
674          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
675          ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
676                                    Loc, static_cast<Expr*>(SelfExpr.release()),
677                                    true, true);
678          Context.setFieldDecl(IFace, IV, MRef);
679          return Owned(MRef);
680        }
681      }
682    }
683    else if (getCurMethodDecl()->isInstanceMethod()) {
684      // We should warn if a local variable hides an ivar.
685      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
686      ObjCInterfaceDecl *ClassDeclared;
687      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
688        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
689            IFace == ClassDeclared)
690          Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
691      }
692    }
693    // Needed to implement property "super.method" notation.
694    if (D == 0 && II->isStr("super")) {
695      QualType T;
696
697      if (getCurMethodDecl()->isInstanceMethod())
698        T = Context.getPointerType(Context.getObjCInterfaceType(
699                                   getCurMethodDecl()->getClassInterface()));
700      else
701        T = Context.getObjCClassType();
702      return Owned(new (Context) ObjCSuperExpr(Loc, T));
703    }
704  }
705
706  // Determine whether this name might be a candidate for
707  // argument-dependent lookup.
708  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
709             HasTrailingLParen;
710
711  if (ADL && D == 0) {
712    // We've seen something of the form
713    //
714    //   identifier(
715    //
716    // and we did not find any entity by the name
717    // "identifier". However, this identifier is still subject to
718    // argument-dependent lookup, so keep track of the name.
719    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
720                                                          Context.OverloadTy,
721                                                          Loc));
722  }
723
724  if (D == 0) {
725    // Otherwise, this could be an implicitly declared function reference (legal
726    // in C90, extension in C99).
727    if (HasTrailingLParen && II &&
728        !getLangOptions().CPlusPlus) // Not in C++.
729      D = ImplicitlyDefineFunction(Loc, *II, S);
730    else {
731      // If this name wasn't predeclared and if this is not a function call,
732      // diagnose the problem.
733      if (SS && !SS->isEmpty())
734        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
735          << Name << SS->getRange());
736      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
737               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
738        return ExprError(Diag(Loc, diag::err_undeclared_use)
739          << Name.getAsString());
740      else
741        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
742    }
743  }
744
745  // If this is an expression of the form &Class::member, don't build an
746  // implicit member ref, because we want a pointer to the member in general,
747  // not any specific instance's member.
748  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
749    DeclContext *DC = computeDeclContext(*SS);
750    if (D && isa<CXXRecordDecl>(DC)) {
751      QualType DType;
752      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
753        DType = FD->getType().getNonReferenceType();
754      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
755        DType = Method->getType();
756      } else if (isa<OverloadedFunctionDecl>(D)) {
757        DType = Context.OverloadTy;
758      }
759      // Could be an inner type. That's diagnosed below, so ignore it here.
760      if (!DType.isNull()) {
761        // The pointer is type- and value-dependent if it points into something
762        // dependent.
763        bool Dependent = false;
764        for (; DC; DC = DC->getParent()) {
765          // FIXME: could stop early at namespace scope.
766          if (DC->isRecord()) {
767            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
768            if (Context.getTypeDeclType(Record)->isDependentType()) {
769              Dependent = true;
770              break;
771            }
772          }
773        }
774        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
775      }
776    }
777  }
778
779  // We may have found a field within an anonymous union or struct
780  // (C++ [class.union]).
781  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
782    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
783      return BuildAnonymousStructUnionMemberReference(Loc, FD);
784
785  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
786    if (!MD->isStatic()) {
787      // C++ [class.mfct.nonstatic]p2:
788      //   [...] if name lookup (3.4.1) resolves the name in the
789      //   id-expression to a nonstatic nontype member of class X or of
790      //   a base class of X, the id-expression is transformed into a
791      //   class member access expression (5.2.5) using (*this) (9.3.2)
792      //   as the postfix-expression to the left of the '.' operator.
793      DeclContext *Ctx = 0;
794      QualType MemberType;
795      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
796        Ctx = FD->getDeclContext();
797        MemberType = FD->getType();
798
799        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
800          MemberType = RefType->getPointeeType();
801        else if (!FD->isMutable()) {
802          unsigned combinedQualifiers
803            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
804          MemberType = MemberType.getQualifiedType(combinedQualifiers);
805        }
806      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
807        if (!Method->isStatic()) {
808          Ctx = Method->getParent();
809          MemberType = Method->getType();
810        }
811      } else if (OverloadedFunctionDecl *Ovl
812                   = dyn_cast<OverloadedFunctionDecl>(D)) {
813        for (OverloadedFunctionDecl::function_iterator
814               Func = Ovl->function_begin(),
815               FuncEnd = Ovl->function_end();
816             Func != FuncEnd; ++Func) {
817          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
818            if (!DMethod->isStatic()) {
819              Ctx = Ovl->getDeclContext();
820              MemberType = Context.OverloadTy;
821              break;
822            }
823        }
824      }
825
826      if (Ctx && Ctx->isRecord()) {
827        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
828        QualType ThisType = Context.getTagDeclType(MD->getParent());
829        if ((Context.getCanonicalType(CtxType)
830               == Context.getCanonicalType(ThisType)) ||
831            IsDerivedFrom(ThisType, CtxType)) {
832          // Build the implicit member access expression.
833          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
834                                                 MD->getThisType(Context));
835          return Owned(new (Context) MemberExpr(This, true, D,
836                                                SourceLocation(), MemberType));
837        }
838      }
839    }
840  }
841
842  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
843    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
844      if (MD->isStatic())
845        // "invalid use of member 'x' in static member function"
846        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
847          << FD->getDeclName());
848    }
849
850    // Any other ways we could have found the field in a well-formed
851    // program would have been turned into implicit member expressions
852    // above.
853    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
854      << FD->getDeclName());
855  }
856
857  if (isa<TypedefDecl>(D))
858    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
859  if (isa<ObjCInterfaceDecl>(D))
860    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
861  if (isa<NamespaceDecl>(D))
862    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
863
864  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
865  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
866    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
867                                  false, false, SS));
868  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
869    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
870                                  false, false, SS));
871  ValueDecl *VD = cast<ValueDecl>(D);
872
873  // Check whether this declaration can be used. Note that we suppress
874  // this check when we're going to perform argument-dependent lookup
875  // on this function name, because this might not be the function
876  // that overload resolution actually selects.
877  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
878    return ExprError();
879
880  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
881    // Warn about constructs like:
882    //   if (void *X = foo()) { ... } else { X }.
883    // In the else block, the pointer is always false.
884    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
885      Scope *CheckS = S;
886      while (CheckS) {
887        if (CheckS->isWithinElse() &&
888            CheckS->getControlParent()->isDeclScope(Var)) {
889          if (Var->getType()->isBooleanType())
890            ExprError(Diag(Loc, diag::warn_value_always_false)
891              << Var->getDeclName());
892          else
893            ExprError(Diag(Loc, diag::warn_value_always_zero)
894              << Var->getDeclName());
895          break;
896        }
897
898        // Move up one more control parent to check again.
899        CheckS = CheckS->getControlParent();
900        if (CheckS)
901          CheckS = CheckS->getParent();
902      }
903    }
904  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
905    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
906      // C99 DR 316 says that, if a function type comes from a
907      // function definition (without a prototype), that type is only
908      // used for checking compatibility. Therefore, when referencing
909      // the function, we pretend that we don't have the full function
910      // type.
911      QualType T = Func->getType();
912      QualType NoProtoType = T;
913      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
914        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
915      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
916    }
917  }
918
919  // Only create DeclRefExpr's for valid Decl's.
920  if (VD->isInvalidDecl())
921    return ExprError();
922
923  // If the identifier reference is inside a block, and it refers to a value
924  // that is outside the block, create a BlockDeclRefExpr instead of a
925  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
926  // the block is formed.
927  //
928  // We do not do this for things like enum constants, global variables, etc,
929  // as they do not get snapshotted.
930  //
931  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
932    // Blocks that have these can't be constant.
933    CurBlock->hasBlockDeclRefExprs = true;
934
935    QualType ExprTy = VD->getType().getNonReferenceType();
936    // The BlocksAttr indicates the variable is bound by-reference.
937    if (VD->getAttr<BlocksAttr>())
938      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
939
940    // Variable will be bound by-copy, make it const within the closure.
941    ExprTy.addConst();
942    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
943  }
944  // If this reference is not in a block or if the referenced variable is
945  // within the block, create a normal DeclRefExpr.
946
947  bool TypeDependent = false;
948  bool ValueDependent = false;
949  if (getLangOptions().CPlusPlus) {
950    // C++ [temp.dep.expr]p3:
951    //   An id-expression is type-dependent if it contains:
952    //     - an identifier that was declared with a dependent type,
953    if (VD->getType()->isDependentType())
954      TypeDependent = true;
955    //     - FIXME: a template-id that is dependent,
956    //     - a conversion-function-id that specifies a dependent type,
957    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
958             Name.getCXXNameType()->isDependentType())
959      TypeDependent = true;
960    //     - a nested-name-specifier that contains a class-name that
961    //       names a dependent type.
962    else if (SS && !SS->isEmpty()) {
963      for (DeclContext *DC = computeDeclContext(*SS);
964           DC; DC = DC->getParent()) {
965        // FIXME: could stop early at namespace scope.
966        if (DC->isRecord()) {
967          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
968          if (Context.getTypeDeclType(Record)->isDependentType()) {
969            TypeDependent = true;
970            break;
971          }
972        }
973      }
974    }
975
976    // C++ [temp.dep.constexpr]p2:
977    //
978    //   An identifier is value-dependent if it is:
979    //     - a name declared with a dependent type,
980    if (TypeDependent)
981      ValueDependent = true;
982    //     - the name of a non-type template parameter,
983    else if (isa<NonTypeTemplateParmDecl>(VD))
984      ValueDependent = true;
985    //    - a constant with integral or enumeration type and is
986    //      initialized with an expression that is value-dependent
987    //      (FIXME!).
988  }
989
990  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
991                                TypeDependent, ValueDependent, SS));
992}
993
994Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
995                                                 tok::TokenKind Kind) {
996  PredefinedExpr::IdentType IT;
997
998  switch (Kind) {
999  default: assert(0 && "Unknown simple primary expr!");
1000  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1001  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1002  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1003  }
1004
1005  // Pre-defined identifiers are of type char[x], where x is the length of the
1006  // string.
1007  unsigned Length;
1008  if (FunctionDecl *FD = getCurFunctionDecl())
1009    Length = FD->getIdentifier()->getLength();
1010  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1011    Length = MD->getSynthesizedMethodSize();
1012  else {
1013    Diag(Loc, diag::ext_predef_outside_function);
1014    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1015    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1016  }
1017
1018
1019  llvm::APInt LengthI(32, Length + 1);
1020  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1021  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1022  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1023}
1024
1025Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1026  llvm::SmallString<16> CharBuffer;
1027  CharBuffer.resize(Tok.getLength());
1028  const char *ThisTokBegin = &CharBuffer[0];
1029  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1030
1031  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1032                            Tok.getLocation(), PP);
1033  if (Literal.hadError())
1034    return ExprError();
1035
1036  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1037
1038  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1039                                              Literal.isWide(),
1040                                              type, Tok.getLocation()));
1041}
1042
1043Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1044  // Fast path for a single digit (which is quite common).  A single digit
1045  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1046  if (Tok.getLength() == 1) {
1047    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1048    unsigned IntSize = Context.Target.getIntWidth();
1049    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1050                    Context.IntTy, Tok.getLocation()));
1051  }
1052
1053  llvm::SmallString<512> IntegerBuffer;
1054  // Add padding so that NumericLiteralParser can overread by one character.
1055  IntegerBuffer.resize(Tok.getLength()+1);
1056  const char *ThisTokBegin = &IntegerBuffer[0];
1057
1058  // Get the spelling of the token, which eliminates trigraphs, etc.
1059  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1060
1061  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1062                               Tok.getLocation(), PP);
1063  if (Literal.hadError)
1064    return ExprError();
1065
1066  Expr *Res;
1067
1068  if (Literal.isFloatingLiteral()) {
1069    QualType Ty;
1070    if (Literal.isFloat)
1071      Ty = Context.FloatTy;
1072    else if (!Literal.isLong)
1073      Ty = Context.DoubleTy;
1074    else
1075      Ty = Context.LongDoubleTy;
1076
1077    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1078
1079    // isExact will be set by GetFloatValue().
1080    bool isExact = false;
1081    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1082                                        &isExact, Ty, Tok.getLocation());
1083
1084  } else if (!Literal.isIntegerLiteral()) {
1085    return ExprError();
1086  } else {
1087    QualType Ty;
1088
1089    // long long is a C99 feature.
1090    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1091        Literal.isLongLong)
1092      Diag(Tok.getLocation(), diag::ext_longlong);
1093
1094    // Get the value in the widest-possible width.
1095    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1096
1097    if (Literal.GetIntegerValue(ResultVal)) {
1098      // If this value didn't fit into uintmax_t, warn and force to ull.
1099      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1100      Ty = Context.UnsignedLongLongTy;
1101      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1102             "long long is not intmax_t?");
1103    } else {
1104      // If this value fits into a ULL, try to figure out what else it fits into
1105      // according to the rules of C99 6.4.4.1p5.
1106
1107      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1108      // be an unsigned int.
1109      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1110
1111      // Check from smallest to largest, picking the smallest type we can.
1112      unsigned Width = 0;
1113      if (!Literal.isLong && !Literal.isLongLong) {
1114        // Are int/unsigned possibilities?
1115        unsigned IntSize = Context.Target.getIntWidth();
1116
1117        // Does it fit in a unsigned int?
1118        if (ResultVal.isIntN(IntSize)) {
1119          // Does it fit in a signed int?
1120          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1121            Ty = Context.IntTy;
1122          else if (AllowUnsigned)
1123            Ty = Context.UnsignedIntTy;
1124          Width = IntSize;
1125        }
1126      }
1127
1128      // Are long/unsigned long possibilities?
1129      if (Ty.isNull() && !Literal.isLongLong) {
1130        unsigned LongSize = Context.Target.getLongWidth();
1131
1132        // Does it fit in a unsigned long?
1133        if (ResultVal.isIntN(LongSize)) {
1134          // Does it fit in a signed long?
1135          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1136            Ty = Context.LongTy;
1137          else if (AllowUnsigned)
1138            Ty = Context.UnsignedLongTy;
1139          Width = LongSize;
1140        }
1141      }
1142
1143      // Finally, check long long if needed.
1144      if (Ty.isNull()) {
1145        unsigned LongLongSize = Context.Target.getLongLongWidth();
1146
1147        // Does it fit in a unsigned long long?
1148        if (ResultVal.isIntN(LongLongSize)) {
1149          // Does it fit in a signed long long?
1150          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1151            Ty = Context.LongLongTy;
1152          else if (AllowUnsigned)
1153            Ty = Context.UnsignedLongLongTy;
1154          Width = LongLongSize;
1155        }
1156      }
1157
1158      // If we still couldn't decide a type, we probably have something that
1159      // does not fit in a signed long long, but has no U suffix.
1160      if (Ty.isNull()) {
1161        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1162        Ty = Context.UnsignedLongLongTy;
1163        Width = Context.Target.getLongLongWidth();
1164      }
1165
1166      if (ResultVal.getBitWidth() != Width)
1167        ResultVal.trunc(Width);
1168    }
1169    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1170  }
1171
1172  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1173  if (Literal.isImaginary)
1174    Res = new (Context) ImaginaryLiteral(Res,
1175                                        Context.getComplexType(Res->getType()));
1176
1177  return Owned(Res);
1178}
1179
1180Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1181                                              SourceLocation R, ExprArg Val) {
1182  Expr *E = (Expr *)Val.release();
1183  assert((E != 0) && "ActOnParenExpr() missing expr");
1184  return Owned(new (Context) ParenExpr(L, R, E));
1185}
1186
1187/// The UsualUnaryConversions() function is *not* called by this routine.
1188/// See C99 6.3.2.1p[2-4] for more details.
1189bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1190                                     SourceLocation OpLoc,
1191                                     const SourceRange &ExprRange,
1192                                     bool isSizeof) {
1193  if (exprType->isDependentType())
1194    return false;
1195
1196  // C99 6.5.3.4p1:
1197  if (isa<FunctionType>(exprType)) {
1198    // alignof(function) is allowed.
1199    if (isSizeof)
1200      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1201    return false;
1202  }
1203
1204  if (exprType->isVoidType()) {
1205    Diag(OpLoc, diag::ext_sizeof_void_type)
1206      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1207    return false;
1208  }
1209
1210  return RequireCompleteType(OpLoc, exprType,
1211                                isSizeof ? diag::err_sizeof_incomplete_type :
1212                                           diag::err_alignof_incomplete_type,
1213                                ExprRange);
1214}
1215
1216bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1217                            const SourceRange &ExprRange) {
1218  E = E->IgnoreParens();
1219
1220  // alignof decl is always ok.
1221  if (isa<DeclRefExpr>(E))
1222    return false;
1223
1224  // Cannot know anything else if the expression is dependent.
1225  if (E->isTypeDependent())
1226    return false;
1227
1228  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1229    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1230      if (FD->isBitField()) {
1231        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1232        return true;
1233      }
1234      // Other fields are ok.
1235      return false;
1236    }
1237  }
1238  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1239}
1240
1241/// \brief Build a sizeof or alignof expression given a type operand.
1242Action::OwningExprResult
1243Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1244                              bool isSizeOf, SourceRange R) {
1245  if (T.isNull())
1246    return ExprError();
1247
1248  if (!T->isDependentType() &&
1249      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1250    return ExprError();
1251
1252  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1253  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1254                                               Context.getSizeType(), OpLoc,
1255                                               R.getEnd()));
1256}
1257
1258/// \brief Build a sizeof or alignof expression given an expression
1259/// operand.
1260Action::OwningExprResult
1261Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1262                              bool isSizeOf, SourceRange R) {
1263  // Verify that the operand is valid.
1264  bool isInvalid = false;
1265  if (E->isTypeDependent()) {
1266    // Delay type-checking for type-dependent expressions.
1267  } else if (!isSizeOf) {
1268    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1269  } else if (E->isBitField()) {  // C99 6.5.3.4p1.
1270    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1271    isInvalid = true;
1272  } else {
1273    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1274  }
1275
1276  if (isInvalid)
1277    return ExprError();
1278
1279  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1280  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1281                                               Context.getSizeType(), OpLoc,
1282                                               R.getEnd()));
1283}
1284
1285/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1286/// the same for @c alignof and @c __alignof
1287/// Note that the ArgRange is invalid if isType is false.
1288Action::OwningExprResult
1289Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1290                             void *TyOrEx, const SourceRange &ArgRange) {
1291  // If error parsing type, ignore.
1292  if (TyOrEx == 0) return ExprError();
1293
1294  if (isType) {
1295    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1296    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1297  }
1298
1299  // Get the end location.
1300  Expr *ArgEx = (Expr *)TyOrEx;
1301  Action::OwningExprResult Result
1302    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1303
1304  if (Result.isInvalid())
1305    DeleteExpr(ArgEx);
1306
1307  return move(Result);
1308}
1309
1310QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1311  if (V->isTypeDependent())
1312    return Context.DependentTy;
1313
1314  DefaultFunctionArrayConversion(V);
1315
1316  // These operators return the element type of a complex type.
1317  if (const ComplexType *CT = V->getType()->getAsComplexType())
1318    return CT->getElementType();
1319
1320  // Otherwise they pass through real integer and floating point types here.
1321  if (V->getType()->isArithmeticType())
1322    return V->getType();
1323
1324  // Reject anything else.
1325  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1326    << (isReal ? "__real" : "__imag");
1327  return QualType();
1328}
1329
1330
1331
1332Action::OwningExprResult
1333Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1334                          tok::TokenKind Kind, ExprArg Input) {
1335  Expr *Arg = (Expr *)Input.get();
1336
1337  UnaryOperator::Opcode Opc;
1338  switch (Kind) {
1339  default: assert(0 && "Unknown unary op!");
1340  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1341  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1342  }
1343
1344  if (getLangOptions().CPlusPlus &&
1345      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1346    // Which overloaded operator?
1347    OverloadedOperatorKind OverOp =
1348      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1349
1350    // C++ [over.inc]p1:
1351    //
1352    //     [...] If the function is a member function with one
1353    //     parameter (which shall be of type int) or a non-member
1354    //     function with two parameters (the second of which shall be
1355    //     of type int), it defines the postfix increment operator ++
1356    //     for objects of that type. When the postfix increment is
1357    //     called as a result of using the ++ operator, the int
1358    //     argument will have value zero.
1359    Expr *Args[2] = {
1360      Arg,
1361      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1362                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1363    };
1364
1365    // Build the candidate set for overloading
1366    OverloadCandidateSet CandidateSet;
1367    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1368
1369    // Perform overload resolution.
1370    OverloadCandidateSet::iterator Best;
1371    switch (BestViableFunction(CandidateSet, Best)) {
1372    case OR_Success: {
1373      // We found a built-in operator or an overloaded operator.
1374      FunctionDecl *FnDecl = Best->Function;
1375
1376      if (FnDecl) {
1377        // We matched an overloaded operator. Build a call to that
1378        // operator.
1379
1380        // Convert the arguments.
1381        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1382          if (PerformObjectArgumentInitialization(Arg, Method))
1383            return ExprError();
1384        } else {
1385          // Convert the arguments.
1386          if (PerformCopyInitialization(Arg,
1387                                        FnDecl->getParamDecl(0)->getType(),
1388                                        "passing"))
1389            return ExprError();
1390        }
1391
1392        // Determine the result type
1393        QualType ResultTy
1394          = FnDecl->getType()->getAsFunctionType()->getResultType();
1395        ResultTy = ResultTy.getNonReferenceType();
1396
1397        // Build the actual expression node.
1398        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1399                                                 SourceLocation());
1400        UsualUnaryConversions(FnExpr);
1401
1402        Input.release();
1403        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1404                                                       Args, 2, ResultTy,
1405                                                       OpLoc));
1406      } else {
1407        // We matched a built-in operator. Convert the arguments, then
1408        // break out so that we will build the appropriate built-in
1409        // operator node.
1410        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1411                                      "passing"))
1412          return ExprError();
1413
1414        break;
1415      }
1416    }
1417
1418    case OR_No_Viable_Function:
1419      // No viable function; fall through to handling this as a
1420      // built-in operator, which will produce an error message for us.
1421      break;
1422
1423    case OR_Ambiguous:
1424      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1425          << UnaryOperator::getOpcodeStr(Opc)
1426          << Arg->getSourceRange();
1427      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1428      return ExprError();
1429
1430    case OR_Deleted:
1431      Diag(OpLoc, diag::err_ovl_deleted_oper)
1432        << Best->Function->isDeleted()
1433        << UnaryOperator::getOpcodeStr(Opc)
1434        << Arg->getSourceRange();
1435      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1436      return ExprError();
1437    }
1438
1439    // Either we found no viable overloaded operator or we matched a
1440    // built-in operator. In either case, fall through to trying to
1441    // build a built-in operation.
1442  }
1443
1444  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1445                                                 Opc == UnaryOperator::PostInc);
1446  if (result.isNull())
1447    return ExprError();
1448  Input.release();
1449  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1450}
1451
1452Action::OwningExprResult
1453Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1454                              ExprArg Idx, SourceLocation RLoc) {
1455  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1456       *RHSExp = static_cast<Expr*>(Idx.get());
1457
1458  if (getLangOptions().CPlusPlus &&
1459      (LHSExp->getType()->isRecordType() ||
1460       LHSExp->getType()->isEnumeralType() ||
1461       RHSExp->getType()->isRecordType() ||
1462       RHSExp->getType()->isEnumeralType())) {
1463    // Add the appropriate overloaded operators (C++ [over.match.oper])
1464    // to the candidate set.
1465    OverloadCandidateSet CandidateSet;
1466    Expr *Args[2] = { LHSExp, RHSExp };
1467    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1468                          SourceRange(LLoc, RLoc));
1469
1470    // Perform overload resolution.
1471    OverloadCandidateSet::iterator Best;
1472    switch (BestViableFunction(CandidateSet, Best)) {
1473    case OR_Success: {
1474      // We found a built-in operator or an overloaded operator.
1475      FunctionDecl *FnDecl = Best->Function;
1476
1477      if (FnDecl) {
1478        // We matched an overloaded operator. Build a call to that
1479        // operator.
1480
1481        // Convert the arguments.
1482        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1483          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1484              PerformCopyInitialization(RHSExp,
1485                                        FnDecl->getParamDecl(0)->getType(),
1486                                        "passing"))
1487            return ExprError();
1488        } else {
1489          // Convert the arguments.
1490          if (PerformCopyInitialization(LHSExp,
1491                                        FnDecl->getParamDecl(0)->getType(),
1492                                        "passing") ||
1493              PerformCopyInitialization(RHSExp,
1494                                        FnDecl->getParamDecl(1)->getType(),
1495                                        "passing"))
1496            return ExprError();
1497        }
1498
1499        // Determine the result type
1500        QualType ResultTy
1501          = FnDecl->getType()->getAsFunctionType()->getResultType();
1502        ResultTy = ResultTy.getNonReferenceType();
1503
1504        // Build the actual expression node.
1505        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1506                                                 SourceLocation());
1507        UsualUnaryConversions(FnExpr);
1508
1509        Base.release();
1510        Idx.release();
1511        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1512                                                       FnExpr, Args, 2,
1513                                                       ResultTy, LLoc));
1514      } else {
1515        // We matched a built-in operator. Convert the arguments, then
1516        // break out so that we will build the appropriate built-in
1517        // operator node.
1518        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1519                                      "passing") ||
1520            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1521                                      "passing"))
1522          return ExprError();
1523
1524        break;
1525      }
1526    }
1527
1528    case OR_No_Viable_Function:
1529      // No viable function; fall through to handling this as a
1530      // built-in operator, which will produce an error message for us.
1531      break;
1532
1533    case OR_Ambiguous:
1534      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1535          << "[]"
1536          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1537      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1538      return ExprError();
1539
1540    case OR_Deleted:
1541      Diag(LLoc, diag::err_ovl_deleted_oper)
1542        << Best->Function->isDeleted()
1543        << "[]"
1544        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1545      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1546      return ExprError();
1547    }
1548
1549    // Either we found no viable overloaded operator or we matched a
1550    // built-in operator. In either case, fall through to trying to
1551    // build a built-in operation.
1552  }
1553
1554  // Perform default conversions.
1555  DefaultFunctionArrayConversion(LHSExp);
1556  DefaultFunctionArrayConversion(RHSExp);
1557
1558  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1559
1560  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1561  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1562  // in the subscript position. As a result, we need to derive the array base
1563  // and index from the expression types.
1564  Expr *BaseExpr, *IndexExpr;
1565  QualType ResultType;
1566  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1567    BaseExpr = LHSExp;
1568    IndexExpr = RHSExp;
1569    ResultType = Context.DependentTy;
1570  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1571    BaseExpr = LHSExp;
1572    IndexExpr = RHSExp;
1573    // FIXME: need to deal with const...
1574    ResultType = PTy->getPointeeType();
1575  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1576     // Handle the uncommon case of "123[Ptr]".
1577    BaseExpr = RHSExp;
1578    IndexExpr = LHSExp;
1579    // FIXME: need to deal with const...
1580    ResultType = PTy->getPointeeType();
1581  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1582    BaseExpr = LHSExp;    // vectors: V[123]
1583    IndexExpr = RHSExp;
1584
1585    // FIXME: need to deal with const...
1586    ResultType = VTy->getElementType();
1587  } else {
1588    return ExprError(Diag(LHSExp->getLocStart(),
1589      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1590  }
1591  // C99 6.5.2.1p1
1592  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1593    return ExprError(Diag(IndexExpr->getLocStart(),
1594      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1595
1596  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1597  // the following check catches trying to index a pointer to a function (e.g.
1598  // void (*)(int)) and pointers to incomplete types.  Functions are not
1599  // objects in C99.
1600  if (!ResultType->isObjectType() && !ResultType->isDependentType())
1601    return ExprError(Diag(BaseExpr->getLocStart(),
1602                diag::err_typecheck_subscript_not_object)
1603      << BaseExpr->getType() << BaseExpr->getSourceRange());
1604
1605  Base.release();
1606  Idx.release();
1607  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1608                                                ResultType, RLoc));
1609}
1610
1611QualType Sema::
1612CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1613                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1614  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1615
1616  // The vector accessor can't exceed the number of elements.
1617  const char *compStr = CompName.getName();
1618
1619  // This flag determines whether or not the component is one of the four
1620  // special names that indicate a subset of exactly half the elements are
1621  // to be selected.
1622  bool HalvingSwizzle = false;
1623
1624  // This flag determines whether or not CompName has an 's' char prefix,
1625  // indicating that it is a string of hex values to be used as vector indices.
1626  bool HexSwizzle = *compStr == 's';
1627
1628  // Check that we've found one of the special components, or that the component
1629  // names must come from the same set.
1630  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1631      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1632    HalvingSwizzle = true;
1633  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1634    do
1635      compStr++;
1636    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1637  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1638    do
1639      compStr++;
1640    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1641  }
1642
1643  if (!HalvingSwizzle && *compStr) {
1644    // We didn't get to the end of the string. This means the component names
1645    // didn't come from the same set *or* we encountered an illegal name.
1646    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1647      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1648    return QualType();
1649  }
1650
1651  // Ensure no component accessor exceeds the width of the vector type it
1652  // operates on.
1653  if (!HalvingSwizzle) {
1654    compStr = CompName.getName();
1655
1656    if (HexSwizzle)
1657      compStr++;
1658
1659    while (*compStr) {
1660      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1661        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1662          << baseType << SourceRange(CompLoc);
1663        return QualType();
1664      }
1665    }
1666  }
1667
1668  // If this is a halving swizzle, verify that the base type has an even
1669  // number of elements.
1670  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1671    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1672      << baseType << SourceRange(CompLoc);
1673    return QualType();
1674  }
1675
1676  // The component accessor looks fine - now we need to compute the actual type.
1677  // The vector type is implied by the component accessor. For example,
1678  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1679  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1680  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1681  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1682                                     : CompName.getLength();
1683  if (HexSwizzle)
1684    CompSize--;
1685
1686  if (CompSize == 1)
1687    return vecType->getElementType();
1688
1689  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1690  // Now look up the TypeDefDecl from the vector type. Without this,
1691  // diagostics look bad. We want extended vector types to appear built-in.
1692  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1693    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1694      return Context.getTypedefType(ExtVectorDecls[i]);
1695  }
1696  return VT; // should never get here (a typedef type should always be found).
1697}
1698
1699static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1700                                                IdentifierInfo &Member,
1701                                                const Selector &Sel) {
1702
1703  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
1704    return PD;
1705  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1706    return OMD;
1707
1708  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1709       E = PDecl->protocol_end(); I != E; ++I) {
1710    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel))
1711      return D;
1712  }
1713  return 0;
1714}
1715
1716static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1717                                IdentifierInfo &Member,
1718                                const Selector &Sel) {
1719  // Check protocols on qualified interfaces.
1720  Decl *GDecl = 0;
1721  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1722       E = QIdTy->qual_end(); I != E; ++I) {
1723    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1724      GDecl = PD;
1725      break;
1726    }
1727    // Also must look for a getter name which uses property syntax.
1728    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1729      GDecl = OMD;
1730      break;
1731    }
1732  }
1733  if (!GDecl) {
1734    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1735         E = QIdTy->qual_end(); I != E; ++I) {
1736      // Search in the protocol-qualifier list of current protocol.
1737      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel);
1738      if (GDecl)
1739        return GDecl;
1740    }
1741  }
1742  return GDecl;
1743}
1744
1745Action::OwningExprResult
1746Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1747                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1748                               IdentifierInfo &Member,
1749                               DeclTy *ObjCImpDecl) {
1750  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1751  assert(BaseExpr && "no record expression");
1752
1753  // Perform default conversions.
1754  DefaultFunctionArrayConversion(BaseExpr);
1755
1756  QualType BaseType = BaseExpr->getType();
1757  assert(!BaseType.isNull() && "no type for member expression");
1758
1759  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1760  // must have pointer type, and the accessed type is the pointee.
1761  if (OpKind == tok::arrow) {
1762    if (const PointerType *PT = BaseType->getAsPointerType())
1763      BaseType = PT->getPointeeType();
1764    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1765      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1766                                            MemberLoc, Member));
1767    else
1768      return ExprError(Diag(MemberLoc,
1769                            diag::err_typecheck_member_reference_arrow)
1770        << BaseType << BaseExpr->getSourceRange());
1771  }
1772
1773  // Handle field access to simple records.  This also handles access to fields
1774  // of the ObjC 'id' struct.
1775  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1776    RecordDecl *RDecl = RTy->getDecl();
1777    if (RequireCompleteType(OpLoc, BaseType,
1778                               diag::err_typecheck_incomplete_tag,
1779                               BaseExpr->getSourceRange()))
1780      return ExprError();
1781
1782    // The record definition is complete, now make sure the member is valid.
1783    // FIXME: Qualified name lookup for C++ is a bit more complicated
1784    // than this.
1785    LookupResult Result
1786      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1787                            LookupMemberName, false);
1788
1789    NamedDecl *MemberDecl = 0;
1790    if (!Result)
1791      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1792               << &Member << BaseExpr->getSourceRange());
1793    else if (Result.isAmbiguous()) {
1794      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1795                              MemberLoc, BaseExpr->getSourceRange());
1796      return ExprError();
1797    } else
1798      MemberDecl = Result;
1799
1800    // If the decl being referenced had an error, return an error for this
1801    // sub-expr without emitting another error, in order to avoid cascading
1802    // error cases.
1803    if (MemberDecl->isInvalidDecl())
1804      return ExprError();
1805
1806    // Check the use of this field
1807    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1808      return ExprError();
1809
1810    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1811      // We may have found a field within an anonymous union or struct
1812      // (C++ [class.union]).
1813      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1814        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1815                                                        BaseExpr, OpLoc);
1816
1817      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1818      // FIXME: Handle address space modifiers
1819      QualType MemberType = FD->getType();
1820      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1821        MemberType = Ref->getPointeeType();
1822      else {
1823        unsigned combinedQualifiers =
1824          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1825        if (FD->isMutable())
1826          combinedQualifiers &= ~QualType::Const;
1827        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1828      }
1829
1830      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1831                                            MemberLoc, MemberType));
1832    } else if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
1833      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1834                                  Var, MemberLoc,
1835                                  Var->getType().getNonReferenceType()));
1836    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1837      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1838                                  MemberFn, MemberLoc, MemberFn->getType()));
1839    else if (OverloadedFunctionDecl *Ovl
1840             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1841      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1842                                  MemberLoc, Context.OverloadTy));
1843    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1844      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1845                                            Enum, MemberLoc, Enum->getType()));
1846    else if (isa<TypeDecl>(MemberDecl))
1847      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1848        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1849
1850    // We found a declaration kind that we didn't expect. This is a
1851    // generic error message that tells the user that she can't refer
1852    // to this member with '.' or '->'.
1853    return ExprError(Diag(MemberLoc,
1854                          diag::err_typecheck_member_reference_unknown)
1855      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1856  }
1857
1858  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1859  // (*Obj).ivar.
1860  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1861    ObjCInterfaceDecl *ClassDeclared;
1862    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member,
1863                                                             ClassDeclared)) {
1864      // If the decl being referenced had an error, return an error for this
1865      // sub-expr without emitting another error, in order to avoid cascading
1866      // error cases.
1867      if (IV->isInvalidDecl())
1868        return ExprError();
1869
1870      // Check whether we can reference this field.
1871      if (DiagnoseUseOfDecl(IV, MemberLoc))
1872        return ExprError();
1873      if (IV->getAccessControl() != ObjCIvarDecl::Public) {
1874        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1875        if (ObjCMethodDecl *MD = getCurMethodDecl())
1876          ClassOfMethodDecl =  MD->getClassInterface();
1877        else if (ObjCImpDecl && getCurFunctionDecl()) {
1878          // Case of a c-function declared inside an objc implementation.
1879          // FIXME: For a c-style function nested inside an objc implementation
1880          // class, there is no implementation context available, so we pass down
1881          // the context as argument to this routine. Ideally, this context need
1882          // be passed down in the AST node and somehow calculated from the AST
1883          // for a function decl.
1884          Decl *ImplDecl = static_cast<Decl *>(ObjCImpDecl);
1885          if (ObjCImplementationDecl *IMPD =
1886              dyn_cast<ObjCImplementationDecl>(ImplDecl))
1887            ClassOfMethodDecl = IMPD->getClassInterface();
1888          else if (ObjCCategoryImplDecl* CatImplClass =
1889                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
1890            ClassOfMethodDecl = CatImplClass->getClassInterface();
1891        }
1892        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1893          if (ClassDeclared != IFTy->getDecl() ||
1894              ClassOfMethodDecl != ClassDeclared)
1895            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
1896        }
1897        // @protected
1898        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
1899          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
1900      }
1901
1902      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1903                                                 MemberLoc, BaseExpr,
1904                                                 OpKind == tok::arrow);
1905      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1906      return Owned(MRef);
1907    }
1908    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1909                       << IFTy->getDecl()->getDeclName() << &Member
1910                       << BaseExpr->getSourceRange());
1911  }
1912
1913  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1914  // pointer to a (potentially qualified) interface type.
1915  const PointerType *PTy;
1916  const ObjCInterfaceType *IFTy;
1917  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1918      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1919    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1920
1921    // Search for a declared property first.
1922    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1923      // Check whether we can reference this property.
1924      if (DiagnoseUseOfDecl(PD, MemberLoc))
1925        return ExprError();
1926
1927      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1928                                                     MemberLoc, BaseExpr));
1929    }
1930
1931    // Check protocols on qualified interfaces.
1932    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1933         E = IFTy->qual_end(); I != E; ++I)
1934      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1935        // Check whether we can reference this property.
1936        if (DiagnoseUseOfDecl(PD, MemberLoc))
1937          return ExprError();
1938
1939        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1940                                                       MemberLoc, BaseExpr));
1941      }
1942
1943    // If that failed, look for an "implicit" property by seeing if the nullary
1944    // selector is implemented.
1945
1946    // FIXME: The logic for looking up nullary and unary selectors should be
1947    // shared with the code in ActOnInstanceMessage.
1948
1949    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1950    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1951
1952    // If this reference is in an @implementation, check for 'private' methods.
1953    if (!Getter)
1954      if (ObjCImplementationDecl *ImpDecl =
1955          ObjCImplementations[IFace->getIdentifier()])
1956        Getter = ImpDecl->getInstanceMethod(Sel);
1957
1958    // Look through local category implementations associated with the class.
1959    if (!Getter) {
1960      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1961        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1962          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1963      }
1964    }
1965    if (Getter) {
1966      // Check if we can reference this property.
1967      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1968        return ExprError();
1969    }
1970    // If we found a getter then this may be a valid dot-reference, we
1971    // will look for the matching setter, in case it is needed.
1972    Selector SetterSel =
1973      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1974                                         PP.getSelectorTable(), &Member);
1975    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1976    if (!Setter) {
1977      // If this reference is in an @implementation, also check for 'private'
1978      // methods.
1979      if (ObjCImplementationDecl *ImpDecl =
1980          ObjCImplementations[IFace->getIdentifier()])
1981        Setter = ImpDecl->getInstanceMethod(SetterSel);
1982    }
1983    // Look through local category implementations associated with the class.
1984    if (!Setter) {
1985      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1986        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1987          Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1988      }
1989    }
1990
1991    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1992      return ExprError();
1993
1994    if (Getter || Setter) {
1995      QualType PType;
1996
1997      if (Getter)
1998        PType = Getter->getResultType();
1999      else {
2000        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2001             E = Setter->param_end(); PI != E; ++PI)
2002          PType = (*PI)->getType();
2003      }
2004      // FIXME: we must check that the setter has property type.
2005      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2006                                      Setter, MemberLoc, BaseExpr));
2007    }
2008    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2009      << &Member << BaseType);
2010  }
2011  // Handle properties on qualified "id" protocols.
2012  const ObjCQualifiedIdType *QIdTy;
2013  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2014    // Check protocols on qualified interfaces.
2015    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2016    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel)) {
2017      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2018        // Check the use of this declaration
2019        if (DiagnoseUseOfDecl(PD, MemberLoc))
2020          return ExprError();
2021
2022        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2023                                                       MemberLoc, BaseExpr));
2024      }
2025      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2026        // Check the use of this method.
2027        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2028          return ExprError();
2029
2030        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2031                                                   OMD->getResultType(),
2032                                                   OMD, OpLoc, MemberLoc,
2033                                                   NULL, 0));
2034      }
2035    }
2036
2037    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2038                       << &Member << BaseType);
2039  }
2040  // Handle properties on ObjC 'Class' types.
2041  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2042    // Also must look for a getter name which uses property syntax.
2043    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2044    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2045      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2046      ObjCMethodDecl *Getter;
2047      // FIXME: need to also look locally in the implementation.
2048      if ((Getter = IFace->lookupClassMethod(Sel))) {
2049        // Check the use of this method.
2050        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2051          return ExprError();
2052      }
2053      // If we found a getter then this may be a valid dot-reference, we
2054      // will look for the matching setter, in case it is needed.
2055      Selector SetterSel =
2056        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2057                                           PP.getSelectorTable(), &Member);
2058      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2059      if (!Setter) {
2060        // If this reference is in an @implementation, also check for 'private'
2061        // methods.
2062        if (ObjCImplementationDecl *ImpDecl =
2063            ObjCImplementations[IFace->getIdentifier()])
2064          Setter = ImpDecl->getInstanceMethod(SetterSel);
2065      }
2066      // Look through local category implementations associated with the class.
2067      if (!Setter) {
2068        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2069          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2070            Setter = ObjCCategoryImpls[i]->getClassMethod(SetterSel);
2071        }
2072      }
2073
2074      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2075        return ExprError();
2076
2077      if (Getter || Setter) {
2078        QualType PType;
2079
2080        if (Getter)
2081          PType = Getter->getResultType();
2082        else {
2083          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2084               E = Setter->param_end(); PI != E; ++PI)
2085            PType = (*PI)->getType();
2086        }
2087        // FIXME: we must check that the setter has property type.
2088        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2089                                        Setter, MemberLoc, BaseExpr));
2090      }
2091      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2092        << &Member << BaseType);
2093    }
2094  }
2095
2096  // Handle 'field access' to vectors, such as 'V.xx'.
2097  if (BaseType->isExtVectorType()) {
2098    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2099    if (ret.isNull())
2100      return ExprError();
2101    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2102                                                    MemberLoc));
2103  }
2104
2105  return ExprError(Diag(MemberLoc,
2106                        diag::err_typecheck_member_reference_struct_union)
2107                     << BaseType << BaseExpr->getSourceRange());
2108}
2109
2110/// ConvertArgumentsForCall - Converts the arguments specified in
2111/// Args/NumArgs to the parameter types of the function FDecl with
2112/// function prototype Proto. Call is the call expression itself, and
2113/// Fn is the function expression. For a C++ member function, this
2114/// routine does not attempt to convert the object argument. Returns
2115/// true if the call is ill-formed.
2116bool
2117Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2118                              FunctionDecl *FDecl,
2119                              const FunctionProtoType *Proto,
2120                              Expr **Args, unsigned NumArgs,
2121                              SourceLocation RParenLoc) {
2122  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2123  // assignment, to the types of the corresponding parameter, ...
2124  unsigned NumArgsInProto = Proto->getNumArgs();
2125  unsigned NumArgsToCheck = NumArgs;
2126  bool Invalid = false;
2127
2128  // If too few arguments are available (and we don't have default
2129  // arguments for the remaining parameters), don't make the call.
2130  if (NumArgs < NumArgsInProto) {
2131    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2132      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2133        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2134    // Use default arguments for missing arguments
2135    NumArgsToCheck = NumArgsInProto;
2136    Call->setNumArgs(Context, NumArgsInProto);
2137  }
2138
2139  // If too many are passed and not variadic, error on the extras and drop
2140  // them.
2141  if (NumArgs > NumArgsInProto) {
2142    if (!Proto->isVariadic()) {
2143      Diag(Args[NumArgsInProto]->getLocStart(),
2144           diag::err_typecheck_call_too_many_args)
2145        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2146        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2147                       Args[NumArgs-1]->getLocEnd());
2148      // This deletes the extra arguments.
2149      Call->setNumArgs(Context, NumArgsInProto);
2150      Invalid = true;
2151    }
2152    NumArgsToCheck = NumArgsInProto;
2153  }
2154
2155  // Continue to check argument types (even if we have too few/many args).
2156  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2157    QualType ProtoArgType = Proto->getArgType(i);
2158
2159    Expr *Arg;
2160    if (i < NumArgs) {
2161      Arg = Args[i];
2162
2163      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2164                              ProtoArgType,
2165                              diag::err_call_incomplete_argument,
2166                              Arg->getSourceRange()))
2167        return true;
2168
2169      // Pass the argument.
2170      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2171        return true;
2172    } else
2173      // We already type-checked the argument, so we know it works.
2174      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2175    QualType ArgType = Arg->getType();
2176
2177    Call->setArg(i, Arg);
2178  }
2179
2180  // If this is a variadic call, handle args passed through "...".
2181  if (Proto->isVariadic()) {
2182    VariadicCallType CallType = VariadicFunction;
2183    if (Fn->getType()->isBlockPointerType())
2184      CallType = VariadicBlock; // Block
2185    else if (isa<MemberExpr>(Fn))
2186      CallType = VariadicMethod;
2187
2188    // Promote the arguments (C99 6.5.2.2p7).
2189    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2190      Expr *Arg = Args[i];
2191      DefaultVariadicArgumentPromotion(Arg, CallType);
2192      Call->setArg(i, Arg);
2193    }
2194  }
2195
2196  return Invalid;
2197}
2198
2199/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2200/// This provides the location of the left/right parens and a list of comma
2201/// locations.
2202Action::OwningExprResult
2203Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2204                    MultiExprArg args,
2205                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2206  unsigned NumArgs = args.size();
2207  Expr *Fn = static_cast<Expr *>(fn.release());
2208  Expr **Args = reinterpret_cast<Expr**>(args.release());
2209  assert(Fn && "no function call expression");
2210  FunctionDecl *FDecl = NULL;
2211  DeclarationName UnqualifiedName;
2212
2213  if (getLangOptions().CPlusPlus) {
2214    // Determine whether this is a dependent call inside a C++ template,
2215    // in which case we won't do any semantic analysis now.
2216    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2217    bool Dependent = false;
2218    if (Fn->isTypeDependent())
2219      Dependent = true;
2220    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2221      Dependent = true;
2222
2223    if (Dependent)
2224      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2225                                          Context.DependentTy, RParenLoc));
2226
2227    // Determine whether this is a call to an object (C++ [over.call.object]).
2228    if (Fn->getType()->isRecordType())
2229      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2230                                                CommaLocs, RParenLoc));
2231
2232    // Determine whether this is a call to a member function.
2233    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2234      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2235          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2236        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2237                                               CommaLocs, RParenLoc));
2238  }
2239
2240  // If we're directly calling a function, get the appropriate declaration.
2241  DeclRefExpr *DRExpr = NULL;
2242  Expr *FnExpr = Fn;
2243  bool ADL = true;
2244  while (true) {
2245    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2246      FnExpr = IcExpr->getSubExpr();
2247    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2248      // Parentheses around a function disable ADL
2249      // (C++0x [basic.lookup.argdep]p1).
2250      ADL = false;
2251      FnExpr = PExpr->getSubExpr();
2252    } else if (isa<UnaryOperator>(FnExpr) &&
2253               cast<UnaryOperator>(FnExpr)->getOpcode()
2254                 == UnaryOperator::AddrOf) {
2255      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2256    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2257      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2258      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2259      break;
2260    } else if (UnresolvedFunctionNameExpr *DepName
2261                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2262      UnqualifiedName = DepName->getName();
2263      break;
2264    } else {
2265      // Any kind of name that does not refer to a declaration (or
2266      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2267      ADL = false;
2268      break;
2269    }
2270  }
2271
2272  OverloadedFunctionDecl *Ovl = 0;
2273  if (DRExpr) {
2274    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2275    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2276  }
2277
2278  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2279    // We don't perform ADL for implicit declarations of builtins.
2280    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2281      ADL = false;
2282
2283    // We don't perform ADL in C.
2284    if (!getLangOptions().CPlusPlus)
2285      ADL = false;
2286
2287    if (Ovl || ADL) {
2288      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2289                                      UnqualifiedName, LParenLoc, Args,
2290                                      NumArgs, CommaLocs, RParenLoc, ADL);
2291      if (!FDecl)
2292        return ExprError();
2293
2294      // Update Fn to refer to the actual function selected.
2295      Expr *NewFn = 0;
2296      if (QualifiedDeclRefExpr *QDRExpr
2297            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2298        NewFn = QualifiedDeclRefExpr::Create(Context, FDecl, FDecl->getType(),
2299                                             QDRExpr->getLocation(),
2300                                             false, false,
2301                                             QDRExpr->getQualifierRange(),
2302                                             QDRExpr->begin(),
2303                                             QDRExpr->size());
2304      else
2305        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2306                                          Fn->getSourceRange().getBegin());
2307      Fn->Destroy(Context);
2308      Fn = NewFn;
2309    }
2310  }
2311
2312  // Promote the function operand.
2313  UsualUnaryConversions(Fn);
2314
2315  // Make the call expr early, before semantic checks.  This guarantees cleanup
2316  // of arguments and function on error.
2317  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2318                                                               Args, NumArgs,
2319                                                               Context.BoolTy,
2320                                                               RParenLoc));
2321
2322  const FunctionType *FuncT;
2323  if (!Fn->getType()->isBlockPointerType()) {
2324    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2325    // have type pointer to function".
2326    const PointerType *PT = Fn->getType()->getAsPointerType();
2327    if (PT == 0)
2328      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2329        << Fn->getType() << Fn->getSourceRange());
2330    FuncT = PT->getPointeeType()->getAsFunctionType();
2331  } else { // This is a block call.
2332    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2333                getAsFunctionType();
2334  }
2335  if (FuncT == 0)
2336    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2337      << Fn->getType() << Fn->getSourceRange());
2338
2339  // Check for a valid return type
2340  if (!FuncT->getResultType()->isVoidType() &&
2341      RequireCompleteType(Fn->getSourceRange().getBegin(),
2342                          FuncT->getResultType(),
2343                          diag::err_call_incomplete_return,
2344                          TheCall->getSourceRange()))
2345    return ExprError();
2346
2347  // We know the result type of the call, set it.
2348  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2349
2350  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2351    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2352                                RParenLoc))
2353      return ExprError();
2354  } else {
2355    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2356
2357    // Promote the arguments (C99 6.5.2.2p6).
2358    for (unsigned i = 0; i != NumArgs; i++) {
2359      Expr *Arg = Args[i];
2360      DefaultArgumentPromotion(Arg);
2361      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2362                              Arg->getType(),
2363                              diag::err_call_incomplete_argument,
2364                              Arg->getSourceRange()))
2365        return ExprError();
2366      TheCall->setArg(i, Arg);
2367    }
2368  }
2369
2370  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2371    if (!Method->isStatic())
2372      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2373        << Fn->getSourceRange());
2374
2375  // Do special checking on direct calls to functions.
2376  if (FDecl)
2377    return CheckFunctionCall(FDecl, TheCall.take());
2378
2379  return Owned(TheCall.take());
2380}
2381
2382Action::OwningExprResult
2383Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2384                           SourceLocation RParenLoc, ExprArg InitExpr) {
2385  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2386  QualType literalType = QualType::getFromOpaquePtr(Ty);
2387  // FIXME: put back this assert when initializers are worked out.
2388  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2389  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2390
2391  if (literalType->isArrayType()) {
2392    if (literalType->isVariableArrayType())
2393      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2394        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2395  } else if (RequireCompleteType(LParenLoc, literalType,
2396                                    diag::err_typecheck_decl_incomplete_type,
2397                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2398    return ExprError();
2399
2400  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2401                            DeclarationName(), /*FIXME:DirectInit=*/false))
2402    return ExprError();
2403
2404  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2405  if (isFileScope) { // 6.5.2.5p3
2406    if (CheckForConstantInitializer(literalExpr, literalType))
2407      return ExprError();
2408  }
2409  InitExpr.release();
2410  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2411                                                 literalExpr, isFileScope));
2412}
2413
2414Action::OwningExprResult
2415Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2416                    SourceLocation RBraceLoc) {
2417  unsigned NumInit = initlist.size();
2418  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2419
2420  // Semantic analysis for initializers is done by ActOnDeclarator() and
2421  // CheckInitializer() - it requires knowledge of the object being intialized.
2422
2423  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2424                                               RBraceLoc);
2425  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2426  return Owned(E);
2427}
2428
2429/// CheckCastTypes - Check type constraints for casting between types.
2430bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2431  UsualUnaryConversions(castExpr);
2432
2433  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2434  // type needs to be scalar.
2435  if (castType->isVoidType()) {
2436    // Cast to void allows any expr type.
2437  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2438    // We can't check any more until template instantiation time.
2439  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2440    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2441        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2442        (castType->isStructureType() || castType->isUnionType())) {
2443      // GCC struct/union extension: allow cast to self.
2444      // FIXME: Check that the cast destination type is complete.
2445      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2446        << castType << castExpr->getSourceRange();
2447    } else if (castType->isUnionType()) {
2448      // GCC cast to union extension
2449      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2450      RecordDecl::field_iterator Field, FieldEnd;
2451      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2452           Field != FieldEnd; ++Field) {
2453        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2454            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2455          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2456            << castExpr->getSourceRange();
2457          break;
2458        }
2459      }
2460      if (Field == FieldEnd)
2461        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2462          << castExpr->getType() << castExpr->getSourceRange();
2463    } else {
2464      // Reject any other conversions to non-scalar types.
2465      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2466        << castType << castExpr->getSourceRange();
2467    }
2468  } else if (!castExpr->getType()->isScalarType() &&
2469             !castExpr->getType()->isVectorType()) {
2470    return Diag(castExpr->getLocStart(),
2471                diag::err_typecheck_expect_scalar_operand)
2472      << castExpr->getType() << castExpr->getSourceRange();
2473  } else if (castExpr->getType()->isVectorType()) {
2474    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2475      return true;
2476  } else if (castType->isVectorType()) {
2477    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2478      return true;
2479  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2480    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2481  }
2482  return false;
2483}
2484
2485bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2486  assert(VectorTy->isVectorType() && "Not a vector type!");
2487
2488  if (Ty->isVectorType() || Ty->isIntegerType()) {
2489    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2490      return Diag(R.getBegin(),
2491                  Ty->isVectorType() ?
2492                  diag::err_invalid_conversion_between_vectors :
2493                  diag::err_invalid_conversion_between_vector_and_integer)
2494        << VectorTy << Ty << R;
2495  } else
2496    return Diag(R.getBegin(),
2497                diag::err_invalid_conversion_between_vector_and_scalar)
2498      << VectorTy << Ty << R;
2499
2500  return false;
2501}
2502
2503Action::OwningExprResult
2504Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2505                    SourceLocation RParenLoc, ExprArg Op) {
2506  assert((Ty != 0) && (Op.get() != 0) &&
2507         "ActOnCastExpr(): missing type or expr");
2508
2509  Expr *castExpr = static_cast<Expr*>(Op.release());
2510  QualType castType = QualType::getFromOpaquePtr(Ty);
2511
2512  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2513    return ExprError();
2514  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2515                                            LParenLoc, RParenLoc));
2516}
2517
2518/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2519/// In that case, lhs = cond.
2520/// C99 6.5.15
2521QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2522                                        SourceLocation QuestionLoc) {
2523  UsualUnaryConversions(Cond);
2524  UsualUnaryConversions(LHS);
2525  UsualUnaryConversions(RHS);
2526  QualType CondTy = Cond->getType();
2527  QualType LHSTy = LHS->getType();
2528  QualType RHSTy = RHS->getType();
2529
2530  // first, check the condition.
2531  if (!Cond->isTypeDependent()) {
2532    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2533      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2534        << CondTy;
2535      return QualType();
2536    }
2537  }
2538
2539  // Now check the two expressions.
2540  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2541    return Context.DependentTy;
2542
2543  // If both operands have arithmetic type, do the usual arithmetic conversions
2544  // to find a common type: C99 6.5.15p3,5.
2545  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2546    UsualArithmeticConversions(LHS, RHS);
2547    return LHS->getType();
2548  }
2549
2550  // If both operands are the same structure or union type, the result is that
2551  // type.
2552  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2553    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2554      if (LHSRT->getDecl() == RHSRT->getDecl())
2555        // "If both the operands have structure or union type, the result has
2556        // that type."  This implies that CV qualifiers are dropped.
2557        return LHSTy.getUnqualifiedType();
2558    // FIXME: Type of conditional expression must be complete in C mode.
2559  }
2560
2561  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2562  // The following || allows only one side to be void (a GCC-ism).
2563  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2564    if (!LHSTy->isVoidType())
2565      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2566        << RHS->getSourceRange();
2567    if (!RHSTy->isVoidType())
2568      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2569        << LHS->getSourceRange();
2570    ImpCastExprToType(LHS, Context.VoidTy);
2571    ImpCastExprToType(RHS, Context.VoidTy);
2572    return Context.VoidTy;
2573  }
2574  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2575  // the type of the other operand."
2576  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2577       Context.isObjCObjectPointerType(LHSTy)) &&
2578      RHS->isNullPointerConstant(Context)) {
2579    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2580    return LHSTy;
2581  }
2582  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2583       Context.isObjCObjectPointerType(RHSTy)) &&
2584      LHS->isNullPointerConstant(Context)) {
2585    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2586    return RHSTy;
2587  }
2588
2589  // Handle the case where both operands are pointers before we handle null
2590  // pointer constants in case both operands are null pointer constants.
2591  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2592    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2593      // get the "pointed to" types
2594      QualType lhptee = LHSPT->getPointeeType();
2595      QualType rhptee = RHSPT->getPointeeType();
2596
2597      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2598      if (lhptee->isVoidType() &&
2599          rhptee->isIncompleteOrObjectType()) {
2600        // Figure out necessary qualifiers (C99 6.5.15p6)
2601        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2602        QualType destType = Context.getPointerType(destPointee);
2603        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2604        ImpCastExprToType(RHS, destType); // promote to void*
2605        return destType;
2606      }
2607      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2608        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2609        QualType destType = Context.getPointerType(destPointee);
2610        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2611        ImpCastExprToType(RHS, destType); // promote to void*
2612        return destType;
2613      }
2614
2615      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2616        // Two identical pointer types are always compatible.
2617        return LHSTy;
2618      }
2619
2620      QualType compositeType = LHSTy;
2621
2622      // If either type is an Objective-C object type then check
2623      // compatibility according to Objective-C.
2624      if (Context.isObjCObjectPointerType(LHSTy) ||
2625          Context.isObjCObjectPointerType(RHSTy)) {
2626        // If both operands are interfaces and either operand can be
2627        // assigned to the other, use that type as the composite
2628        // type. This allows
2629        //   xxx ? (A*) a : (B*) b
2630        // where B is a subclass of A.
2631        //
2632        // Additionally, as for assignment, if either type is 'id'
2633        // allow silent coercion. Finally, if the types are
2634        // incompatible then make sure to use 'id' as the composite
2635        // type so the result is acceptable for sending messages to.
2636
2637        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2638        // It could return the composite type.
2639        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2640        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2641        if (LHSIface && RHSIface &&
2642            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2643          compositeType = LHSTy;
2644        } else if (LHSIface && RHSIface &&
2645                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2646          compositeType = RHSTy;
2647        } else if (Context.isObjCIdStructType(lhptee) ||
2648                   Context.isObjCIdStructType(rhptee)) {
2649          compositeType = Context.getObjCIdType();
2650        } else {
2651          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2652               << LHSTy << RHSTy
2653               << LHS->getSourceRange() << RHS->getSourceRange();
2654          QualType incompatTy = Context.getObjCIdType();
2655          ImpCastExprToType(LHS, incompatTy);
2656          ImpCastExprToType(RHS, incompatTy);
2657          return incompatTy;
2658        }
2659      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2660                                             rhptee.getUnqualifiedType())) {
2661        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2662          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2663        // In this situation, we assume void* type. No especially good
2664        // reason, but this is what gcc does, and we do have to pick
2665        // to get a consistent AST.
2666        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2667        ImpCastExprToType(LHS, incompatTy);
2668        ImpCastExprToType(RHS, incompatTy);
2669        return incompatTy;
2670      }
2671      // The pointer types are compatible.
2672      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2673      // differently qualified versions of compatible types, the result type is
2674      // a pointer to an appropriately qualified version of the *composite*
2675      // type.
2676      // FIXME: Need to calculate the composite type.
2677      // FIXME: Need to add qualifiers
2678      ImpCastExprToType(LHS, compositeType);
2679      ImpCastExprToType(RHS, compositeType);
2680      return compositeType;
2681    }
2682  }
2683
2684  // Selection between block pointer types is ok as long as they are the same.
2685  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2686      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2687    return LHSTy;
2688
2689  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2690  // evaluates to "struct objc_object *" (and is handled above when comparing
2691  // id with statically typed objects).
2692  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2693    // GCC allows qualified id and any Objective-C type to devolve to
2694    // id. Currently localizing to here until clear this should be
2695    // part of ObjCQualifiedIdTypesAreCompatible.
2696    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2697        (LHSTy->isObjCQualifiedIdType() &&
2698         Context.isObjCObjectPointerType(RHSTy)) ||
2699        (RHSTy->isObjCQualifiedIdType() &&
2700         Context.isObjCObjectPointerType(LHSTy))) {
2701      // FIXME: This is not the correct composite type. This only
2702      // happens to work because id can more or less be used anywhere,
2703      // however this may change the type of method sends.
2704      // FIXME: gcc adds some type-checking of the arguments and emits
2705      // (confusing) incompatible comparison warnings in some
2706      // cases. Investigate.
2707      QualType compositeType = Context.getObjCIdType();
2708      ImpCastExprToType(LHS, compositeType);
2709      ImpCastExprToType(RHS, compositeType);
2710      return compositeType;
2711    }
2712  }
2713
2714  // Otherwise, the operands are not compatible.
2715  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2716    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2717  return QualType();
2718}
2719
2720/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2721/// in the case of a the GNU conditional expr extension.
2722Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2723                                                  SourceLocation ColonLoc,
2724                                                  ExprArg Cond, ExprArg LHS,
2725                                                  ExprArg RHS) {
2726  Expr *CondExpr = (Expr *) Cond.get();
2727  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2728
2729  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2730  // was the condition.
2731  bool isLHSNull = LHSExpr == 0;
2732  if (isLHSNull)
2733    LHSExpr = CondExpr;
2734
2735  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2736                                             RHSExpr, QuestionLoc);
2737  if (result.isNull())
2738    return ExprError();
2739
2740  Cond.release();
2741  LHS.release();
2742  RHS.release();
2743  return Owned(new (Context) ConditionalOperator(CondExpr,
2744                                                 isLHSNull ? 0 : LHSExpr,
2745                                                 RHSExpr, result));
2746}
2747
2748
2749// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2750// being closely modeled after the C99 spec:-). The odd characteristic of this
2751// routine is it effectively iqnores the qualifiers on the top level pointee.
2752// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2753// FIXME: add a couple examples in this comment.
2754Sema::AssignConvertType
2755Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2756  QualType lhptee, rhptee;
2757
2758  // get the "pointed to" type (ignoring qualifiers at the top level)
2759  lhptee = lhsType->getAsPointerType()->getPointeeType();
2760  rhptee = rhsType->getAsPointerType()->getPointeeType();
2761
2762  // make sure we operate on the canonical type
2763  lhptee = Context.getCanonicalType(lhptee);
2764  rhptee = Context.getCanonicalType(rhptee);
2765
2766  AssignConvertType ConvTy = Compatible;
2767
2768  // C99 6.5.16.1p1: This following citation is common to constraints
2769  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2770  // qualifiers of the type *pointed to* by the right;
2771  // FIXME: Handle ExtQualType
2772  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2773    ConvTy = CompatiblePointerDiscardsQualifiers;
2774
2775  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2776  // incomplete type and the other is a pointer to a qualified or unqualified
2777  // version of void...
2778  if (lhptee->isVoidType()) {
2779    if (rhptee->isIncompleteOrObjectType())
2780      return ConvTy;
2781
2782    // As an extension, we allow cast to/from void* to function pointer.
2783    assert(rhptee->isFunctionType());
2784    return FunctionVoidPointer;
2785  }
2786
2787  if (rhptee->isVoidType()) {
2788    if (lhptee->isIncompleteOrObjectType())
2789      return ConvTy;
2790
2791    // As an extension, we allow cast to/from void* to function pointer.
2792    assert(lhptee->isFunctionType());
2793    return FunctionVoidPointer;
2794  }
2795  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2796  // unqualified versions of compatible types, ...
2797  lhptee = lhptee.getUnqualifiedType();
2798  rhptee = rhptee.getUnqualifiedType();
2799  if (!Context.typesAreCompatible(lhptee, rhptee)) {
2800    // Check if the pointee types are compatible ignoring the sign.
2801    // We explicitly check for char so that we catch "char" vs
2802    // "unsigned char" on systems where "char" is unsigned.
2803    if (lhptee->isCharType()) {
2804      lhptee = Context.UnsignedCharTy;
2805    } else if (lhptee->isSignedIntegerType()) {
2806      lhptee = Context.getCorrespondingUnsignedType(lhptee);
2807    }
2808    if (rhptee->isCharType()) {
2809      rhptee = Context.UnsignedCharTy;
2810    } else if (rhptee->isSignedIntegerType()) {
2811      rhptee = Context.getCorrespondingUnsignedType(rhptee);
2812    }
2813    if (lhptee == rhptee) {
2814      // Types are compatible ignoring the sign. Qualifier incompatibility
2815      // takes priority over sign incompatibility because the sign
2816      // warning can be disabled.
2817      if (ConvTy != Compatible)
2818        return ConvTy;
2819      return IncompatiblePointerSign;
2820    }
2821    // General pointer incompatibility takes priority over qualifiers.
2822    return IncompatiblePointer;
2823  }
2824  return ConvTy;
2825}
2826
2827/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2828/// block pointer types are compatible or whether a block and normal pointer
2829/// are compatible. It is more restrict than comparing two function pointer
2830// types.
2831Sema::AssignConvertType
2832Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2833                                          QualType rhsType) {
2834  QualType lhptee, rhptee;
2835
2836  // get the "pointed to" type (ignoring qualifiers at the top level)
2837  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2838  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2839
2840  // make sure we operate on the canonical type
2841  lhptee = Context.getCanonicalType(lhptee);
2842  rhptee = Context.getCanonicalType(rhptee);
2843
2844  AssignConvertType ConvTy = Compatible;
2845
2846  // For blocks we enforce that qualifiers are identical.
2847  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2848    ConvTy = CompatiblePointerDiscardsQualifiers;
2849
2850  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2851    return IncompatibleBlockPointer;
2852  return ConvTy;
2853}
2854
2855/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2856/// has code to accommodate several GCC extensions when type checking
2857/// pointers. Here are some objectionable examples that GCC considers warnings:
2858///
2859///  int a, *pint;
2860///  short *pshort;
2861///  struct foo *pfoo;
2862///
2863///  pint = pshort; // warning: assignment from incompatible pointer type
2864///  a = pint; // warning: assignment makes integer from pointer without a cast
2865///  pint = a; // warning: assignment makes pointer from integer without a cast
2866///  pint = pfoo; // warning: assignment from incompatible pointer type
2867///
2868/// As a result, the code for dealing with pointers is more complex than the
2869/// C99 spec dictates.
2870///
2871Sema::AssignConvertType
2872Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2873  // Get canonical types.  We're not formatting these types, just comparing
2874  // them.
2875  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2876  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2877
2878  if (lhsType == rhsType)
2879    return Compatible; // Common case: fast path an exact match.
2880
2881  // If the left-hand side is a reference type, then we are in a
2882  // (rare!) case where we've allowed the use of references in C,
2883  // e.g., as a parameter type in a built-in function. In this case,
2884  // just make sure that the type referenced is compatible with the
2885  // right-hand side type. The caller is responsible for adjusting
2886  // lhsType so that the resulting expression does not have reference
2887  // type.
2888  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2889    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2890      return Compatible;
2891    return Incompatible;
2892  }
2893
2894  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2895    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2896      return Compatible;
2897    // Relax integer conversions like we do for pointers below.
2898    if (rhsType->isIntegerType())
2899      return IntToPointer;
2900    if (lhsType->isIntegerType())
2901      return PointerToInt;
2902    return IncompatibleObjCQualifiedId;
2903  }
2904
2905  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2906    // For ExtVector, allow vector splats; float -> <n x float>
2907    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2908      if (LV->getElementType() == rhsType)
2909        return Compatible;
2910
2911    // If we are allowing lax vector conversions, and LHS and RHS are both
2912    // vectors, the total size only needs to be the same. This is a bitcast;
2913    // no bits are changed but the result type is different.
2914    if (getLangOptions().LaxVectorConversions &&
2915        lhsType->isVectorType() && rhsType->isVectorType()) {
2916      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2917        return IncompatibleVectors;
2918    }
2919    return Incompatible;
2920  }
2921
2922  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2923    return Compatible;
2924
2925  if (isa<PointerType>(lhsType)) {
2926    if (rhsType->isIntegerType())
2927      return IntToPointer;
2928
2929    if (isa<PointerType>(rhsType))
2930      return CheckPointerTypesForAssignment(lhsType, rhsType);
2931
2932    if (rhsType->getAsBlockPointerType()) {
2933      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2934        return Compatible;
2935
2936      // Treat block pointers as objects.
2937      if (getLangOptions().ObjC1 &&
2938          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2939        return Compatible;
2940    }
2941    return Incompatible;
2942  }
2943
2944  if (isa<BlockPointerType>(lhsType)) {
2945    if (rhsType->isIntegerType())
2946      return IntToBlockPointer;
2947
2948    // Treat block pointers as objects.
2949    if (getLangOptions().ObjC1 &&
2950        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2951      return Compatible;
2952
2953    if (rhsType->isBlockPointerType())
2954      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2955
2956    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2957      if (RHSPT->getPointeeType()->isVoidType())
2958        return Compatible;
2959    }
2960    return Incompatible;
2961  }
2962
2963  if (isa<PointerType>(rhsType)) {
2964    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2965    if (lhsType == Context.BoolTy)
2966      return Compatible;
2967
2968    if (lhsType->isIntegerType())
2969      return PointerToInt;
2970
2971    if (isa<PointerType>(lhsType))
2972      return CheckPointerTypesForAssignment(lhsType, rhsType);
2973
2974    if (isa<BlockPointerType>(lhsType) &&
2975        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2976      return Compatible;
2977    return Incompatible;
2978  }
2979
2980  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2981    if (Context.typesAreCompatible(lhsType, rhsType))
2982      return Compatible;
2983  }
2984  return Incompatible;
2985}
2986
2987Sema::AssignConvertType
2988Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2989  if (getLangOptions().CPlusPlus) {
2990    if (!lhsType->isRecordType()) {
2991      // C++ 5.17p3: If the left operand is not of class type, the
2992      // expression is implicitly converted (C++ 4) to the
2993      // cv-unqualified type of the left operand.
2994      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2995                                    "assigning"))
2996        return Incompatible;
2997      else
2998        return Compatible;
2999    }
3000
3001    // FIXME: Currently, we fall through and treat C++ classes like C
3002    // structures.
3003  }
3004
3005  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3006  // a null pointer constant.
3007  if ((lhsType->isPointerType() ||
3008       lhsType->isObjCQualifiedIdType() ||
3009       lhsType->isBlockPointerType())
3010      && rExpr->isNullPointerConstant(Context)) {
3011    ImpCastExprToType(rExpr, lhsType);
3012    return Compatible;
3013  }
3014
3015  // This check seems unnatural, however it is necessary to ensure the proper
3016  // conversion of functions/arrays. If the conversion were done for all
3017  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3018  // expressions that surpress this implicit conversion (&, sizeof).
3019  //
3020  // Suppress this for references: C++ 8.5.3p5.
3021  if (!lhsType->isReferenceType())
3022    DefaultFunctionArrayConversion(rExpr);
3023
3024  Sema::AssignConvertType result =
3025    CheckAssignmentConstraints(lhsType, rExpr->getType());
3026
3027  // C99 6.5.16.1p2: The value of the right operand is converted to the
3028  // type of the assignment expression.
3029  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3030  // so that we can use references in built-in functions even in C.
3031  // The getNonReferenceType() call makes sure that the resulting expression
3032  // does not have reference type.
3033  if (rExpr->getType() != lhsType)
3034    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3035  return result;
3036}
3037
3038Sema::AssignConvertType
3039Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
3040  return CheckAssignmentConstraints(lhsType, rhsType);
3041}
3042
3043QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3044  Diag(Loc, diag::err_typecheck_invalid_operands)
3045    << lex->getType() << rex->getType()
3046    << lex->getSourceRange() << rex->getSourceRange();
3047  return QualType();
3048}
3049
3050inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3051                                                              Expr *&rex) {
3052  // For conversion purposes, we ignore any qualifiers.
3053  // For example, "const float" and "float" are equivalent.
3054  QualType lhsType =
3055    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3056  QualType rhsType =
3057    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3058
3059  // If the vector types are identical, return.
3060  if (lhsType == rhsType)
3061    return lhsType;
3062
3063  // Handle the case of a vector & extvector type of the same size and element
3064  // type.  It would be nice if we only had one vector type someday.
3065  if (getLangOptions().LaxVectorConversions) {
3066    // FIXME: Should we warn here?
3067    if (const VectorType *LV = lhsType->getAsVectorType()) {
3068      if (const VectorType *RV = rhsType->getAsVectorType())
3069        if (LV->getElementType() == RV->getElementType() &&
3070            LV->getNumElements() == RV->getNumElements()) {
3071          return lhsType->isExtVectorType() ? lhsType : rhsType;
3072        }
3073    }
3074  }
3075
3076  // If the lhs is an extended vector and the rhs is a scalar of the same type
3077  // or a literal, promote the rhs to the vector type.
3078  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3079    QualType eltType = V->getElementType();
3080
3081    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3082        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3083        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3084      ImpCastExprToType(rex, lhsType);
3085      return lhsType;
3086    }
3087  }
3088
3089  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3090  // promote the lhs to the vector type.
3091  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3092    QualType eltType = V->getElementType();
3093
3094    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3095        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3096        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3097      ImpCastExprToType(lex, rhsType);
3098      return rhsType;
3099    }
3100  }
3101
3102  // You cannot convert between vector values of different size.
3103  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3104    << lex->getType() << rex->getType()
3105    << lex->getSourceRange() << rex->getSourceRange();
3106  return QualType();
3107}
3108
3109inline QualType Sema::CheckMultiplyDivideOperands(
3110  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3111{
3112  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3113    return CheckVectorOperands(Loc, lex, rex);
3114
3115  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3116
3117  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3118    return compType;
3119  return InvalidOperands(Loc, lex, rex);
3120}
3121
3122inline QualType Sema::CheckRemainderOperands(
3123  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3124{
3125  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3126    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3127      return CheckVectorOperands(Loc, lex, rex);
3128    return InvalidOperands(Loc, lex, rex);
3129  }
3130
3131  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3132
3133  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3134    return compType;
3135  return InvalidOperands(Loc, lex, rex);
3136}
3137
3138inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3139  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3140{
3141  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3142    return CheckVectorOperands(Loc, lex, rex);
3143
3144  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3145
3146  // handle the common case first (both operands are arithmetic).
3147  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3148    return compType;
3149
3150  // Put any potential pointer into PExp
3151  Expr* PExp = lex, *IExp = rex;
3152  if (IExp->getType()->isPointerType())
3153    std::swap(PExp, IExp);
3154
3155  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
3156    if (IExp->getType()->isIntegerType()) {
3157      // Check for arithmetic on pointers to incomplete types
3158      if (!PTy->getPointeeType()->isObjectType()) {
3159        if (PTy->getPointeeType()->isVoidType()) {
3160          if (getLangOptions().CPlusPlus) {
3161            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3162              << lex->getSourceRange() << rex->getSourceRange();
3163            return QualType();
3164          }
3165
3166          // GNU extension: arithmetic on pointer to void
3167          Diag(Loc, diag::ext_gnu_void_ptr)
3168            << lex->getSourceRange() << rex->getSourceRange();
3169        } else if (PTy->getPointeeType()->isFunctionType()) {
3170          if (getLangOptions().CPlusPlus) {
3171            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3172              << lex->getType() << lex->getSourceRange();
3173            return QualType();
3174          }
3175
3176          // GNU extension: arithmetic on pointer to function
3177          Diag(Loc, diag::ext_gnu_ptr_func_arith)
3178            << lex->getType() << lex->getSourceRange();
3179        } else {
3180          RequireCompleteType(Loc, PTy->getPointeeType(),
3181                                 diag::err_typecheck_arithmetic_incomplete_type,
3182                                 lex->getSourceRange(), SourceRange(),
3183                                 lex->getType());
3184          return QualType();
3185        }
3186      }
3187      return PExp->getType();
3188    }
3189  }
3190
3191  return InvalidOperands(Loc, lex, rex);
3192}
3193
3194// C99 6.5.6
3195QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3196                                        SourceLocation Loc, bool isCompAssign) {
3197  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3198    return CheckVectorOperands(Loc, lex, rex);
3199
3200  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3201
3202  // Enforce type constraints: C99 6.5.6p3.
3203
3204  // Handle the common case first (both operands are arithmetic).
3205  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3206    return compType;
3207
3208  // Either ptr - int   or   ptr - ptr.
3209  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3210    QualType lpointee = LHSPTy->getPointeeType();
3211
3212    // The LHS must be an object type, not incomplete, function, etc.
3213    if (!lpointee->isObjectType()) {
3214      // Handle the GNU void* extension.
3215      if (lpointee->isVoidType()) {
3216        Diag(Loc, diag::ext_gnu_void_ptr)
3217          << lex->getSourceRange() << rex->getSourceRange();
3218      } else if (lpointee->isFunctionType()) {
3219        if (getLangOptions().CPlusPlus) {
3220          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3221            << lex->getType() << lex->getSourceRange();
3222          return QualType();
3223        }
3224
3225        // GNU extension: arithmetic on pointer to function
3226        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3227          << lex->getType() << lex->getSourceRange();
3228      } else {
3229        Diag(Loc, diag::err_typecheck_sub_ptr_object)
3230          << lex->getType() << lex->getSourceRange();
3231        return QualType();
3232      }
3233    }
3234
3235    // The result type of a pointer-int computation is the pointer type.
3236    if (rex->getType()->isIntegerType())
3237      return lex->getType();
3238
3239    // Handle pointer-pointer subtractions.
3240    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3241      QualType rpointee = RHSPTy->getPointeeType();
3242
3243      // RHS must be an object type, unless void (GNU).
3244      if (!rpointee->isObjectType()) {
3245        // Handle the GNU void* extension.
3246        if (rpointee->isVoidType()) {
3247          if (!lpointee->isVoidType())
3248            Diag(Loc, diag::ext_gnu_void_ptr)
3249              << lex->getSourceRange() << rex->getSourceRange();
3250        } else if (rpointee->isFunctionType()) {
3251          if (getLangOptions().CPlusPlus) {
3252            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3253              << rex->getType() << rex->getSourceRange();
3254            return QualType();
3255          }
3256
3257          // GNU extension: arithmetic on pointer to function
3258          if (!lpointee->isFunctionType())
3259            Diag(Loc, diag::ext_gnu_ptr_func_arith)
3260              << lex->getType() << lex->getSourceRange();
3261        } else {
3262          Diag(Loc, diag::err_typecheck_sub_ptr_object)
3263            << rex->getType() << rex->getSourceRange();
3264          return QualType();
3265        }
3266      }
3267
3268      // Pointee types must be compatible.
3269      if (!Context.typesAreCompatible(
3270              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3271              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3272        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3273          << lex->getType() << rex->getType()
3274          << lex->getSourceRange() << rex->getSourceRange();
3275        return QualType();
3276      }
3277
3278      return Context.getPointerDiffType();
3279    }
3280  }
3281
3282  return InvalidOperands(Loc, lex, rex);
3283}
3284
3285// C99 6.5.7
3286QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3287                                  bool isCompAssign) {
3288  // C99 6.5.7p2: Each of the operands shall have integer type.
3289  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3290    return InvalidOperands(Loc, lex, rex);
3291
3292  // Shifts don't perform usual arithmetic conversions, they just do integer
3293  // promotions on each operand. C99 6.5.7p3
3294  if (!isCompAssign)
3295    UsualUnaryConversions(lex);
3296  UsualUnaryConversions(rex);
3297
3298  // "The type of the result is that of the promoted left operand."
3299  return lex->getType();
3300}
3301
3302// C99 6.5.8
3303QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3304                                    bool isRelational) {
3305  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3306    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3307
3308  // C99 6.5.8p3 / C99 6.5.9p4
3309  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3310    UsualArithmeticConversions(lex, rex);
3311  else {
3312    UsualUnaryConversions(lex);
3313    UsualUnaryConversions(rex);
3314  }
3315  QualType lType = lex->getType();
3316  QualType rType = rex->getType();
3317
3318  if (!lType->isFloatingType()) {
3319    // For non-floating point types, check for self-comparisons of the form
3320    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3321    // often indicate logic errors in the program.
3322    // NOTE: Don't warn about comparisons of enum constants. These can arise
3323    //  from macro expansions, and are usually quite deliberate.
3324    Expr *LHSStripped = lex->IgnoreParens();
3325    Expr *RHSStripped = rex->IgnoreParens();
3326    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3327      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3328        if (DRL->getDecl() == DRR->getDecl() &&
3329            !isa<EnumConstantDecl>(DRL->getDecl()))
3330          Diag(Loc, diag::warn_selfcomparison);
3331
3332    if (isa<CastExpr>(LHSStripped))
3333      LHSStripped = LHSStripped->IgnoreParenCasts();
3334    if (isa<CastExpr>(RHSStripped))
3335      RHSStripped = RHSStripped->IgnoreParenCasts();
3336
3337    // Warn about comparisons against a string constant (unless the other
3338    // operand is null), the user probably wants strcmp.
3339    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3340        !RHSStripped->isNullPointerConstant(Context))
3341      Diag(Loc, diag::warn_stringcompare) << lex->getSourceRange();
3342    else if ((isa<StringLiteral>(RHSStripped) ||
3343              isa<ObjCEncodeExpr>(RHSStripped)) &&
3344             !LHSStripped->isNullPointerConstant(Context))
3345      Diag(Loc, diag::warn_stringcompare) << rex->getSourceRange();
3346  }
3347
3348  // The result of comparisons is 'bool' in C++, 'int' in C.
3349  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3350
3351  if (isRelational) {
3352    if (lType->isRealType() && rType->isRealType())
3353      return ResultTy;
3354  } else {
3355    // Check for comparisons of floating point operands using != and ==.
3356    if (lType->isFloatingType()) {
3357      assert(rType->isFloatingType());
3358      CheckFloatComparison(Loc,lex,rex);
3359    }
3360
3361    if (lType->isArithmeticType() && rType->isArithmeticType())
3362      return ResultTy;
3363  }
3364
3365  bool LHSIsNull = lex->isNullPointerConstant(Context);
3366  bool RHSIsNull = rex->isNullPointerConstant(Context);
3367
3368  // All of the following pointer related warnings are GCC extensions, except
3369  // when handling null pointer constants. One day, we can consider making them
3370  // errors (when -pedantic-errors is enabled).
3371  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3372    QualType LCanPointeeTy =
3373      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3374    QualType RCanPointeeTy =
3375      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3376
3377    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3378        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3379        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3380                                    RCanPointeeTy.getUnqualifiedType()) &&
3381        !Context.areComparableObjCPointerTypes(lType, rType)) {
3382      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3383        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3384    }
3385    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3386    return ResultTy;
3387  }
3388  // Handle block pointer types.
3389  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3390    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3391    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3392
3393    if (!LHSIsNull && !RHSIsNull &&
3394        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3395      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3396        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3397    }
3398    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3399    return ResultTy;
3400  }
3401  // Allow block pointers to be compared with null pointer constants.
3402  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3403      (lType->isPointerType() && rType->isBlockPointerType())) {
3404    if (!LHSIsNull && !RHSIsNull) {
3405      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3406        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3407    }
3408    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3409    return ResultTy;
3410  }
3411
3412  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3413    if (lType->isPointerType() || rType->isPointerType()) {
3414      const PointerType *LPT = lType->getAsPointerType();
3415      const PointerType *RPT = rType->getAsPointerType();
3416      bool LPtrToVoid = LPT ?
3417        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3418      bool RPtrToVoid = RPT ?
3419        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3420
3421      if (!LPtrToVoid && !RPtrToVoid &&
3422          !Context.typesAreCompatible(lType, rType)) {
3423        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3424          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3425        ImpCastExprToType(rex, lType);
3426        return ResultTy;
3427      }
3428      ImpCastExprToType(rex, lType);
3429      return ResultTy;
3430    }
3431    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3432      ImpCastExprToType(rex, lType);
3433      return ResultTy;
3434    } else {
3435      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3436        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3437          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3438        ImpCastExprToType(rex, lType);
3439        return ResultTy;
3440      }
3441    }
3442  }
3443  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3444       rType->isIntegerType()) {
3445    if (!RHSIsNull)
3446      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3447        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3448    ImpCastExprToType(rex, lType); // promote the integer to pointer
3449    return ResultTy;
3450  }
3451  if (lType->isIntegerType() &&
3452      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3453    if (!LHSIsNull)
3454      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3455        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3456    ImpCastExprToType(lex, rType); // promote the integer to pointer
3457    return ResultTy;
3458  }
3459  // Handle block pointers.
3460  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3461    if (!RHSIsNull)
3462      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3463        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3464    ImpCastExprToType(rex, lType); // promote the integer to pointer
3465    return ResultTy;
3466  }
3467  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3468    if (!LHSIsNull)
3469      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3470        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3471    ImpCastExprToType(lex, rType); // promote the integer to pointer
3472    return ResultTy;
3473  }
3474  return InvalidOperands(Loc, lex, rex);
3475}
3476
3477/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3478/// operates on extended vector types.  Instead of producing an IntTy result,
3479/// like a scalar comparison, a vector comparison produces a vector of integer
3480/// types.
3481QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3482                                          SourceLocation Loc,
3483                                          bool isRelational) {
3484  // Check to make sure we're operating on vectors of the same type and width,
3485  // Allowing one side to be a scalar of element type.
3486  QualType vType = CheckVectorOperands(Loc, lex, rex);
3487  if (vType.isNull())
3488    return vType;
3489
3490  QualType lType = lex->getType();
3491  QualType rType = rex->getType();
3492
3493  // For non-floating point types, check for self-comparisons of the form
3494  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3495  // often indicate logic errors in the program.
3496  if (!lType->isFloatingType()) {
3497    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3498      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3499        if (DRL->getDecl() == DRR->getDecl())
3500          Diag(Loc, diag::warn_selfcomparison);
3501  }
3502
3503  // Check for comparisons of floating point operands using != and ==.
3504  if (!isRelational && lType->isFloatingType()) {
3505    assert (rType->isFloatingType());
3506    CheckFloatComparison(Loc,lex,rex);
3507  }
3508
3509  // Return the type for the comparison, which is the same as vector type for
3510  // integer vectors, or an integer type of identical size and number of
3511  // elements for floating point vectors.
3512  if (lType->isIntegerType())
3513    return lType;
3514
3515  const VectorType *VTy = lType->getAsVectorType();
3516  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3517  if (TypeSize == Context.getTypeSize(Context.IntTy))
3518    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3519  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3520    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3521
3522  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3523         "Unhandled vector element size in vector compare");
3524  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3525}
3526
3527inline QualType Sema::CheckBitwiseOperands(
3528  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3529{
3530  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3531    return CheckVectorOperands(Loc, lex, rex);
3532
3533  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3534
3535  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3536    return compType;
3537  return InvalidOperands(Loc, lex, rex);
3538}
3539
3540inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3541  Expr *&lex, Expr *&rex, SourceLocation Loc)
3542{
3543  UsualUnaryConversions(lex);
3544  UsualUnaryConversions(rex);
3545
3546  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3547    return Context.IntTy;
3548  return InvalidOperands(Loc, lex, rex);
3549}
3550
3551/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3552/// is a read-only property; return true if so. A readonly property expression
3553/// depends on various declarations and thus must be treated specially.
3554///
3555static bool IsReadonlyProperty(Expr *E, Sema &S)
3556{
3557  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3558    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3559    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3560      QualType BaseType = PropExpr->getBase()->getType();
3561      if (const PointerType *PTy = BaseType->getAsPointerType())
3562        if (const ObjCInterfaceType *IFTy =
3563            PTy->getPointeeType()->getAsObjCInterfaceType())
3564          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3565            if (S.isPropertyReadonly(PDecl, IFace))
3566              return true;
3567    }
3568  }
3569  return false;
3570}
3571
3572/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3573/// emit an error and return true.  If so, return false.
3574static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3575  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3576  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3577    IsLV = Expr::MLV_ReadonlyProperty;
3578  if (IsLV == Expr::MLV_Valid)
3579    return false;
3580
3581  unsigned Diag = 0;
3582  bool NeedType = false;
3583  switch (IsLV) { // C99 6.5.16p2
3584  default: assert(0 && "Unknown result from isModifiableLvalue!");
3585  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3586  case Expr::MLV_ArrayType:
3587    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3588    NeedType = true;
3589    break;
3590  case Expr::MLV_NotObjectType:
3591    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3592    NeedType = true;
3593    break;
3594  case Expr::MLV_LValueCast:
3595    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3596    break;
3597  case Expr::MLV_InvalidExpression:
3598    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3599    break;
3600  case Expr::MLV_IncompleteType:
3601  case Expr::MLV_IncompleteVoidType:
3602    return S.RequireCompleteType(Loc, E->getType(),
3603                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3604                                    E->getSourceRange());
3605  case Expr::MLV_DuplicateVectorComponents:
3606    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3607    break;
3608  case Expr::MLV_NotBlockQualified:
3609    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3610    break;
3611  case Expr::MLV_ReadonlyProperty:
3612    Diag = diag::error_readonly_property_assignment;
3613    break;
3614  case Expr::MLV_NoSetterProperty:
3615    Diag = diag::error_nosetter_property_assignment;
3616    break;
3617  }
3618
3619  if (NeedType)
3620    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3621  else
3622    S.Diag(Loc, Diag) << E->getSourceRange();
3623  return true;
3624}
3625
3626
3627
3628// C99 6.5.16.1
3629QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3630                                       SourceLocation Loc,
3631                                       QualType CompoundType) {
3632  // Verify that LHS is a modifiable lvalue, and emit error if not.
3633  if (CheckForModifiableLvalue(LHS, Loc, *this))
3634    return QualType();
3635
3636  QualType LHSType = LHS->getType();
3637  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3638
3639  AssignConvertType ConvTy;
3640  if (CompoundType.isNull()) {
3641    // Simple assignment "x = y".
3642    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3643    // Special case of NSObject attributes on c-style pointer types.
3644    if (ConvTy == IncompatiblePointer &&
3645        ((Context.isObjCNSObjectType(LHSType) &&
3646          Context.isObjCObjectPointerType(RHSType)) ||
3647         (Context.isObjCNSObjectType(RHSType) &&
3648          Context.isObjCObjectPointerType(LHSType))))
3649      ConvTy = Compatible;
3650
3651    // If the RHS is a unary plus or minus, check to see if they = and + are
3652    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3653    // instead of "x += 4".
3654    Expr *RHSCheck = RHS;
3655    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3656      RHSCheck = ICE->getSubExpr();
3657    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3658      if ((UO->getOpcode() == UnaryOperator::Plus ||
3659           UO->getOpcode() == UnaryOperator::Minus) &&
3660          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3661          // Only if the two operators are exactly adjacent.
3662          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
3663          // And there is a space or other character before the subexpr of the
3664          // unary +/-.  We don't want to warn on "x=-1".
3665          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
3666          UO->getSubExpr()->getLocStart().isFileID()) {
3667        Diag(Loc, diag::warn_not_compound_assign)
3668          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3669          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3670      }
3671    }
3672  } else {
3673    // Compound assignment "x += y"
3674    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3675  }
3676
3677  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3678                               RHS, "assigning"))
3679    return QualType();
3680
3681  // C99 6.5.16p3: The type of an assignment expression is the type of the
3682  // left operand unless the left operand has qualified type, in which case
3683  // it is the unqualified version of the type of the left operand.
3684  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3685  // is converted to the type of the assignment expression (above).
3686  // C++ 5.17p1: the type of the assignment expression is that of its left
3687  // oprdu.
3688  return LHSType.getUnqualifiedType();
3689}
3690
3691// C99 6.5.17
3692QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3693  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3694  DefaultFunctionArrayConversion(RHS);
3695
3696  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
3697  // incomplete in C++).
3698
3699  return RHS->getType();
3700}
3701
3702/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3703/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3704QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3705                                              bool isInc) {
3706  if (Op->isTypeDependent())
3707    return Context.DependentTy;
3708
3709  QualType ResType = Op->getType();
3710  assert(!ResType.isNull() && "no type for increment/decrement expression");
3711
3712  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3713    // Decrement of bool is not allowed.
3714    if (!isInc) {
3715      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3716      return QualType();
3717    }
3718    // Increment of bool sets it to true, but is deprecated.
3719    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3720  } else if (ResType->isRealType()) {
3721    // OK!
3722  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3723    // C99 6.5.2.4p2, 6.5.6p2
3724    if (PT->getPointeeType()->isObjectType()) {
3725      // Pointer to object is ok!
3726    } else if (PT->getPointeeType()->isVoidType()) {
3727      if (getLangOptions().CPlusPlus) {
3728        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3729          << Op->getSourceRange();
3730        return QualType();
3731      }
3732
3733      // Pointer to void is a GNU extension in C.
3734      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3735    } else if (PT->getPointeeType()->isFunctionType()) {
3736      if (getLangOptions().CPlusPlus) {
3737        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3738          << Op->getType() << Op->getSourceRange();
3739        return QualType();
3740      }
3741
3742      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3743        << ResType << Op->getSourceRange();
3744    } else {
3745      RequireCompleteType(OpLoc, PT->getPointeeType(),
3746                             diag::err_typecheck_arithmetic_incomplete_type,
3747                             Op->getSourceRange(), SourceRange(),
3748                             ResType);
3749      return QualType();
3750    }
3751  } else if (ResType->isComplexType()) {
3752    // C99 does not support ++/-- on complex types, we allow as an extension.
3753    Diag(OpLoc, diag::ext_integer_increment_complex)
3754      << ResType << Op->getSourceRange();
3755  } else {
3756    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3757      << ResType << Op->getSourceRange();
3758    return QualType();
3759  }
3760  // At this point, we know we have a real, complex or pointer type.
3761  // Now make sure the operand is a modifiable lvalue.
3762  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3763    return QualType();
3764  return ResType;
3765}
3766
3767/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3768/// This routine allows us to typecheck complex/recursive expressions
3769/// where the declaration is needed for type checking. We only need to
3770/// handle cases when the expression references a function designator
3771/// or is an lvalue. Here are some examples:
3772///  - &(x) => x
3773///  - &*****f => f for f a function designator.
3774///  - &s.xx => s
3775///  - &s.zz[1].yy -> s, if zz is an array
3776///  - *(x + 1) -> x, if x is an array
3777///  - &"123"[2] -> 0
3778///  - & __real__ x -> x
3779static NamedDecl *getPrimaryDecl(Expr *E) {
3780  switch (E->getStmtClass()) {
3781  case Stmt::DeclRefExprClass:
3782  case Stmt::QualifiedDeclRefExprClass:
3783    return cast<DeclRefExpr>(E)->getDecl();
3784  case Stmt::MemberExprClass:
3785    // Fields cannot be declared with a 'register' storage class.
3786    // &X->f is always ok, even if X is declared register.
3787    if (cast<MemberExpr>(E)->isArrow())
3788      return 0;
3789    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3790  case Stmt::ArraySubscriptExprClass: {
3791    // &X[4] and &4[X] refers to X if X is not a pointer.
3792
3793    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3794    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3795    if (!VD || VD->getType()->isPointerType())
3796      return 0;
3797    else
3798      return VD;
3799  }
3800  case Stmt::UnaryOperatorClass: {
3801    UnaryOperator *UO = cast<UnaryOperator>(E);
3802
3803    switch(UO->getOpcode()) {
3804    case UnaryOperator::Deref: {
3805      // *(X + 1) refers to X if X is not a pointer.
3806      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3807        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3808        if (!VD || VD->getType()->isPointerType())
3809          return 0;
3810        return VD;
3811      }
3812      return 0;
3813    }
3814    case UnaryOperator::Real:
3815    case UnaryOperator::Imag:
3816    case UnaryOperator::Extension:
3817      return getPrimaryDecl(UO->getSubExpr());
3818    default:
3819      return 0;
3820    }
3821  }
3822  case Stmt::BinaryOperatorClass: {
3823    BinaryOperator *BO = cast<BinaryOperator>(E);
3824
3825    // Handle cases involving pointer arithmetic. The result of an
3826    // Assign or AddAssign is not an lvalue so they can be ignored.
3827
3828    // (x + n) or (n + x) => x
3829    if (BO->getOpcode() == BinaryOperator::Add) {
3830      if (BO->getLHS()->getType()->isPointerType()) {
3831        return getPrimaryDecl(BO->getLHS());
3832      } else if (BO->getRHS()->getType()->isPointerType()) {
3833        return getPrimaryDecl(BO->getRHS());
3834      }
3835    }
3836
3837    return 0;
3838  }
3839  case Stmt::ParenExprClass:
3840    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3841  case Stmt::ImplicitCastExprClass:
3842    // &X[4] when X is an array, has an implicit cast from array to pointer.
3843    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3844  default:
3845    return 0;
3846  }
3847}
3848
3849/// CheckAddressOfOperand - The operand of & must be either a function
3850/// designator or an lvalue designating an object. If it is an lvalue, the
3851/// object cannot be declared with storage class register or be a bit field.
3852/// Note: The usual conversions are *not* applied to the operand of the &
3853/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3854/// In C++, the operand might be an overloaded function name, in which case
3855/// we allow the '&' but retain the overloaded-function type.
3856QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3857  if (op->isTypeDependent())
3858    return Context.DependentTy;
3859
3860  if (getLangOptions().C99) {
3861    // Implement C99-only parts of addressof rules.
3862    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3863      if (uOp->getOpcode() == UnaryOperator::Deref)
3864        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3865        // (assuming the deref expression is valid).
3866        return uOp->getSubExpr()->getType();
3867    }
3868    // Technically, there should be a check for array subscript
3869    // expressions here, but the result of one is always an lvalue anyway.
3870  }
3871  NamedDecl *dcl = getPrimaryDecl(op);
3872  Expr::isLvalueResult lval = op->isLvalue(Context);
3873
3874  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3875    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3876      // FIXME: emit more specific diag...
3877      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3878        << op->getSourceRange();
3879      return QualType();
3880    }
3881  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3882    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3883      if (Field->isBitField()) {
3884        Diag(OpLoc, diag::err_typecheck_address_of)
3885          << "bit-field" << op->getSourceRange();
3886        return QualType();
3887      }
3888    }
3889  // Check for Apple extension for accessing vector components.
3890  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3891           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3892    Diag(OpLoc, diag::err_typecheck_address_of)
3893      << "vector element" << op->getSourceRange();
3894    return QualType();
3895  } else if (dcl) { // C99 6.5.3.2p1
3896    // We have an lvalue with a decl. Make sure the decl is not declared
3897    // with the register storage-class specifier.
3898    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3899      if (vd->getStorageClass() == VarDecl::Register) {
3900        Diag(OpLoc, diag::err_typecheck_address_of)
3901          << "register variable" << op->getSourceRange();
3902        return QualType();
3903      }
3904    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3905      return Context.OverloadTy;
3906    } else if (isa<FieldDecl>(dcl)) {
3907      // Okay: we can take the address of a field.
3908      // Could be a pointer to member, though, if there is an explicit
3909      // scope qualifier for the class.
3910      if (isa<QualifiedDeclRefExpr>(op)) {
3911        DeclContext *Ctx = dcl->getDeclContext();
3912        if (Ctx && Ctx->isRecord())
3913          return Context.getMemberPointerType(op->getType(),
3914                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3915      }
3916    } else if (isa<FunctionDecl>(dcl)) {
3917      // Okay: we can take the address of a function.
3918      // As above.
3919      if (isa<QualifiedDeclRefExpr>(op)) {
3920        DeclContext *Ctx = dcl->getDeclContext();
3921        if (Ctx && Ctx->isRecord())
3922          return Context.getMemberPointerType(op->getType(),
3923                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3924      }
3925    }
3926    else
3927      assert(0 && "Unknown/unexpected decl type");
3928  }
3929
3930  // If the operand has type "type", the result has type "pointer to type".
3931  return Context.getPointerType(op->getType());
3932}
3933
3934QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3935  if (Op->isTypeDependent())
3936    return Context.DependentTy;
3937
3938  UsualUnaryConversions(Op);
3939  QualType Ty = Op->getType();
3940
3941  // Note that per both C89 and C99, this is always legal, even if ptype is an
3942  // incomplete type or void.  It would be possible to warn about dereferencing
3943  // a void pointer, but it's completely well-defined, and such a warning is
3944  // unlikely to catch any mistakes.
3945  if (const PointerType *PT = Ty->getAsPointerType())
3946    return PT->getPointeeType();
3947
3948  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3949    << Ty << Op->getSourceRange();
3950  return QualType();
3951}
3952
3953static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3954  tok::TokenKind Kind) {
3955  BinaryOperator::Opcode Opc;
3956  switch (Kind) {
3957  default: assert(0 && "Unknown binop!");
3958  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3959  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3960  case tok::star:                 Opc = BinaryOperator::Mul; break;
3961  case tok::slash:                Opc = BinaryOperator::Div; break;
3962  case tok::percent:              Opc = BinaryOperator::Rem; break;
3963  case tok::plus:                 Opc = BinaryOperator::Add; break;
3964  case tok::minus:                Opc = BinaryOperator::Sub; break;
3965  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3966  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3967  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3968  case tok::less:                 Opc = BinaryOperator::LT; break;
3969  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3970  case tok::greater:              Opc = BinaryOperator::GT; break;
3971  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3972  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3973  case tok::amp:                  Opc = BinaryOperator::And; break;
3974  case tok::caret:                Opc = BinaryOperator::Xor; break;
3975  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3976  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3977  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3978  case tok::equal:                Opc = BinaryOperator::Assign; break;
3979  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3980  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3981  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3982  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3983  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3984  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3985  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3986  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3987  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3988  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3989  case tok::comma:                Opc = BinaryOperator::Comma; break;
3990  }
3991  return Opc;
3992}
3993
3994static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3995  tok::TokenKind Kind) {
3996  UnaryOperator::Opcode Opc;
3997  switch (Kind) {
3998  default: assert(0 && "Unknown unary op!");
3999  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4000  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4001  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4002  case tok::star:         Opc = UnaryOperator::Deref; break;
4003  case tok::plus:         Opc = UnaryOperator::Plus; break;
4004  case tok::minus:        Opc = UnaryOperator::Minus; break;
4005  case tok::tilde:        Opc = UnaryOperator::Not; break;
4006  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4007  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4008  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4009  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4010  }
4011  return Opc;
4012}
4013
4014/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4015/// operator @p Opc at location @c TokLoc. This routine only supports
4016/// built-in operations; ActOnBinOp handles overloaded operators.
4017Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4018                                                  unsigned Op,
4019                                                  Expr *lhs, Expr *rhs) {
4020  QualType ResultTy;  // Result type of the binary operator.
4021  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
4022  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4023
4024  switch (Opc) {
4025  case BinaryOperator::Assign:
4026    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4027    break;
4028  case BinaryOperator::PtrMemD:
4029  case BinaryOperator::PtrMemI:
4030    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4031                                            Opc == BinaryOperator::PtrMemI);
4032    break;
4033  case BinaryOperator::Mul:
4034  case BinaryOperator::Div:
4035    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4036    break;
4037  case BinaryOperator::Rem:
4038    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4039    break;
4040  case BinaryOperator::Add:
4041    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4042    break;
4043  case BinaryOperator::Sub:
4044    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4045    break;
4046  case BinaryOperator::Shl:
4047  case BinaryOperator::Shr:
4048    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4049    break;
4050  case BinaryOperator::LE:
4051  case BinaryOperator::LT:
4052  case BinaryOperator::GE:
4053  case BinaryOperator::GT:
4054    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
4055    break;
4056  case BinaryOperator::EQ:
4057  case BinaryOperator::NE:
4058    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
4059    break;
4060  case BinaryOperator::And:
4061  case BinaryOperator::Xor:
4062  case BinaryOperator::Or:
4063    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4064    break;
4065  case BinaryOperator::LAnd:
4066  case BinaryOperator::LOr:
4067    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4068    break;
4069  case BinaryOperator::MulAssign:
4070  case BinaryOperator::DivAssign:
4071    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4072    if (!CompTy.isNull())
4073      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4074    break;
4075  case BinaryOperator::RemAssign:
4076    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4077    if (!CompTy.isNull())
4078      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4079    break;
4080  case BinaryOperator::AddAssign:
4081    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
4082    if (!CompTy.isNull())
4083      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4084    break;
4085  case BinaryOperator::SubAssign:
4086    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
4087    if (!CompTy.isNull())
4088      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4089    break;
4090  case BinaryOperator::ShlAssign:
4091  case BinaryOperator::ShrAssign:
4092    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4093    if (!CompTy.isNull())
4094      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4095    break;
4096  case BinaryOperator::AndAssign:
4097  case BinaryOperator::XorAssign:
4098  case BinaryOperator::OrAssign:
4099    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4100    if (!CompTy.isNull())
4101      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4102    break;
4103  case BinaryOperator::Comma:
4104    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4105    break;
4106  }
4107  if (ResultTy.isNull())
4108    return ExprError();
4109  if (CompTy.isNull())
4110    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4111  else
4112    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4113                                                      CompTy, OpLoc));
4114}
4115
4116// Binary Operators.  'Tok' is the token for the operator.
4117Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4118                                          tok::TokenKind Kind,
4119                                          ExprArg LHS, ExprArg RHS) {
4120  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4121  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
4122
4123  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4124  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4125
4126  if (getLangOptions().CPlusPlus &&
4127      (lhs->getType()->isOverloadableType() ||
4128       rhs->getType()->isOverloadableType())) {
4129    // Find all of the overloaded operators visible from this
4130    // point. We perform both an operator-name lookup from the local
4131    // scope and an argument-dependent lookup based on the types of
4132    // the arguments.
4133    FunctionSet Functions;
4134    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4135    if (OverOp != OO_None) {
4136      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4137                                   Functions);
4138      Expr *Args[2] = { lhs, rhs };
4139      DeclarationName OpName
4140        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4141      ArgumentDependentLookup(OpName, Args, 2, Functions);
4142    }
4143
4144    // Build the (potentially-overloaded, potentially-dependent)
4145    // binary operation.
4146    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4147  }
4148
4149  // Build a built-in binary operation.
4150  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4151}
4152
4153Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4154                                                    unsigned OpcIn,
4155                                                    ExprArg InputArg) {
4156  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4157
4158  // FIXME: Input is modified below, but InputArg is not updated
4159  // appropriately.
4160  Expr *Input = (Expr *)InputArg.get();
4161  QualType resultType;
4162  switch (Opc) {
4163  case UnaryOperator::PostInc:
4164  case UnaryOperator::PostDec:
4165  case UnaryOperator::OffsetOf:
4166    assert(false && "Invalid unary operator");
4167    break;
4168
4169  case UnaryOperator::PreInc:
4170  case UnaryOperator::PreDec:
4171    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4172                                                Opc == UnaryOperator::PreInc);
4173    break;
4174  case UnaryOperator::AddrOf:
4175    resultType = CheckAddressOfOperand(Input, OpLoc);
4176    break;
4177  case UnaryOperator::Deref:
4178    DefaultFunctionArrayConversion(Input);
4179    resultType = CheckIndirectionOperand(Input, OpLoc);
4180    break;
4181  case UnaryOperator::Plus:
4182  case UnaryOperator::Minus:
4183    UsualUnaryConversions(Input);
4184    resultType = Input->getType();
4185    if (resultType->isDependentType())
4186      break;
4187    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4188      break;
4189    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4190             resultType->isEnumeralType())
4191      break;
4192    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4193             Opc == UnaryOperator::Plus &&
4194             resultType->isPointerType())
4195      break;
4196
4197    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4198      << resultType << Input->getSourceRange());
4199  case UnaryOperator::Not: // bitwise complement
4200    UsualUnaryConversions(Input);
4201    resultType = Input->getType();
4202    if (resultType->isDependentType())
4203      break;
4204    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4205    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4206      // C99 does not support '~' for complex conjugation.
4207      Diag(OpLoc, diag::ext_integer_complement_complex)
4208        << resultType << Input->getSourceRange();
4209    else if (!resultType->isIntegerType())
4210      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4211        << resultType << Input->getSourceRange());
4212    break;
4213  case UnaryOperator::LNot: // logical negation
4214    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4215    DefaultFunctionArrayConversion(Input);
4216    resultType = Input->getType();
4217    if (resultType->isDependentType())
4218      break;
4219    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4220      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4221        << resultType << Input->getSourceRange());
4222    // LNot always has type int. C99 6.5.3.3p5.
4223    // In C++, it's bool. C++ 5.3.1p8
4224    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4225    break;
4226  case UnaryOperator::Real:
4227  case UnaryOperator::Imag:
4228    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4229    break;
4230  case UnaryOperator::Extension:
4231    resultType = Input->getType();
4232    break;
4233  }
4234  if (resultType.isNull())
4235    return ExprError();
4236
4237  InputArg.release();
4238  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4239}
4240
4241// Unary Operators.  'Tok' is the token for the operator.
4242Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4243                                            tok::TokenKind Op, ExprArg input) {
4244  Expr *Input = (Expr*)input.get();
4245  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4246
4247  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4248    // Find all of the overloaded operators visible from this
4249    // point. We perform both an operator-name lookup from the local
4250    // scope and an argument-dependent lookup based on the types of
4251    // the arguments.
4252    FunctionSet Functions;
4253    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4254    if (OverOp != OO_None) {
4255      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4256                                   Functions);
4257      DeclarationName OpName
4258        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4259      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4260    }
4261
4262    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4263  }
4264
4265  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4266}
4267
4268/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4269Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4270                                            SourceLocation LabLoc,
4271                                            IdentifierInfo *LabelII) {
4272  // Look up the record for this label identifier.
4273  LabelStmt *&LabelDecl = CurBlock ? CurBlock->LabelMap[LabelII] :
4274                                     LabelMap[LabelII];
4275
4276  // If we haven't seen this label yet, create a forward reference. It
4277  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4278  if (LabelDecl == 0)
4279    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4280
4281  // Create the AST node.  The address of a label always has type 'void*'.
4282  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4283                                       Context.getPointerType(Context.VoidTy)));
4284}
4285
4286Sema::OwningExprResult
4287Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4288                    SourceLocation RPLoc) { // "({..})"
4289  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4290  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4291  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4292
4293  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4294  if (isFileScope) {
4295    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4296  }
4297
4298  // FIXME: there are a variety of strange constraints to enforce here, for
4299  // example, it is not possible to goto into a stmt expression apparently.
4300  // More semantic analysis is needed.
4301
4302  // FIXME: the last statement in the compount stmt has its value used.  We
4303  // should not warn about it being unused.
4304
4305  // If there are sub stmts in the compound stmt, take the type of the last one
4306  // as the type of the stmtexpr.
4307  QualType Ty = Context.VoidTy;
4308
4309  if (!Compound->body_empty()) {
4310    Stmt *LastStmt = Compound->body_back();
4311    // If LastStmt is a label, skip down through into the body.
4312    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4313      LastStmt = Label->getSubStmt();
4314
4315    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4316      Ty = LastExpr->getType();
4317  }
4318
4319  // FIXME: Check that expression type is complete/non-abstract; statement
4320  // expressions are not lvalues.
4321
4322  substmt.release();
4323  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4324}
4325
4326Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4327                                                  SourceLocation BuiltinLoc,
4328                                                  SourceLocation TypeLoc,
4329                                                  TypeTy *argty,
4330                                                  OffsetOfComponent *CompPtr,
4331                                                  unsigned NumComponents,
4332                                                  SourceLocation RPLoc) {
4333  // FIXME: This function leaks all expressions in the offset components on
4334  // error.
4335  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4336  assert(!ArgTy.isNull() && "Missing type argument!");
4337
4338  bool Dependent = ArgTy->isDependentType();
4339
4340  // We must have at least one component that refers to the type, and the first
4341  // one is known to be a field designator.  Verify that the ArgTy represents
4342  // a struct/union/class.
4343  if (!Dependent && !ArgTy->isRecordType())
4344    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4345
4346  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4347  // with an incomplete type would be illegal.
4348
4349  // Otherwise, create a null pointer as the base, and iteratively process
4350  // the offsetof designators.
4351  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4352  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4353  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4354                                    ArgTy, SourceLocation());
4355
4356  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4357  // GCC extension, diagnose them.
4358  // FIXME: This diagnostic isn't actually visible because the location is in
4359  // a system header!
4360  if (NumComponents != 1)
4361    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4362      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4363
4364  if (!Dependent) {
4365    // FIXME: Dependent case loses a lot of information here. And probably
4366    // leaks like a sieve.
4367    for (unsigned i = 0; i != NumComponents; ++i) {
4368      const OffsetOfComponent &OC = CompPtr[i];
4369      if (OC.isBrackets) {
4370        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4371        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4372        if (!AT) {
4373          Res->Destroy(Context);
4374          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4375            << Res->getType());
4376        }
4377
4378        // FIXME: C++: Verify that operator[] isn't overloaded.
4379
4380        // Promote the array so it looks more like a normal array subscript
4381        // expression.
4382        DefaultFunctionArrayConversion(Res);
4383
4384        // C99 6.5.2.1p1
4385        Expr *Idx = static_cast<Expr*>(OC.U.E);
4386        // FIXME: Leaks Res
4387        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4388          return ExprError(Diag(Idx->getLocStart(),
4389                                diag::err_typecheck_subscript)
4390            << Idx->getSourceRange());
4391
4392        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4393                                               OC.LocEnd);
4394        continue;
4395      }
4396
4397      const RecordType *RC = Res->getType()->getAsRecordType();
4398      if (!RC) {
4399        Res->Destroy(Context);
4400        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4401          << Res->getType());
4402      }
4403
4404      // Get the decl corresponding to this.
4405      RecordDecl *RD = RC->getDecl();
4406      FieldDecl *MemberDecl
4407        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4408                                                          LookupMemberName)
4409                                        .getAsDecl());
4410      // FIXME: Leaks Res
4411      if (!MemberDecl)
4412        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
4413         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
4414
4415      // FIXME: C++: Verify that MemberDecl isn't a static field.
4416      // FIXME: Verify that MemberDecl isn't a bitfield.
4417      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4418      // matter here.
4419      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4420                                   MemberDecl->getType().getNonReferenceType());
4421    }
4422  }
4423
4424  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4425                                           Context.getSizeType(), BuiltinLoc));
4426}
4427
4428
4429Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4430                                                      TypeTy *arg1,TypeTy *arg2,
4431                                                      SourceLocation RPLoc) {
4432  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4433  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4434
4435  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4436
4437  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
4438                                                 argT1, argT2, RPLoc));
4439}
4440
4441Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
4442                                             ExprArg cond,
4443                                             ExprArg expr1, ExprArg expr2,
4444                                             SourceLocation RPLoc) {
4445  Expr *CondExpr = static_cast<Expr*>(cond.get());
4446  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
4447  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
4448
4449  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4450
4451  QualType resType;
4452  if (CondExpr->isValueDependent()) {
4453    resType = Context.DependentTy;
4454  } else {
4455    // The conditional expression is required to be a constant expression.
4456    llvm::APSInt condEval(32);
4457    SourceLocation ExpLoc;
4458    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4459      return ExprError(Diag(ExpLoc,
4460                       diag::err_typecheck_choose_expr_requires_constant)
4461        << CondExpr->getSourceRange());
4462
4463    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4464    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4465  }
4466
4467  cond.release(); expr1.release(); expr2.release();
4468  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4469                                        resType, RPLoc));
4470}
4471
4472//===----------------------------------------------------------------------===//
4473// Clang Extensions.
4474//===----------------------------------------------------------------------===//
4475
4476/// ActOnBlockStart - This callback is invoked when a block literal is started.
4477void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4478  // Analyze block parameters.
4479  BlockSemaInfo *BSI = new BlockSemaInfo();
4480
4481  // Add BSI to CurBlock.
4482  BSI->PrevBlockInfo = CurBlock;
4483  CurBlock = BSI;
4484
4485  BSI->ReturnType = 0;
4486  BSI->TheScope = BlockScope;
4487  BSI->hasBlockDeclRefExprs = false;
4488
4489  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4490  PushDeclContext(BlockScope, BSI->TheDecl);
4491}
4492
4493void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4494  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4495
4496  if (ParamInfo.getNumTypeObjects() == 0
4497      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4498    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4499
4500    // The type is entirely optional as well, if none, use DependentTy.
4501    if (T.isNull())
4502      T = Context.DependentTy;
4503
4504    // The parameter list is optional, if there was none, assume ().
4505    if (!T->isFunctionType())
4506      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4507
4508    CurBlock->hasPrototype = true;
4509    CurBlock->isVariadic = false;
4510    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4511      .getTypePtr();
4512
4513    if (!RetTy->isDependentType())
4514      CurBlock->ReturnType = RetTy;
4515    return;
4516  }
4517
4518  // Analyze arguments to block.
4519  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4520         "Not a function declarator!");
4521  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4522
4523  CurBlock->hasPrototype = FTI.hasPrototype;
4524  CurBlock->isVariadic = true;
4525
4526  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4527  // no arguments, not a function that takes a single void argument.
4528  if (FTI.hasPrototype &&
4529      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4530      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4531        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4532    // empty arg list, don't push any params.
4533    CurBlock->isVariadic = false;
4534  } else if (FTI.hasPrototype) {
4535    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4536      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4537    CurBlock->isVariadic = FTI.isVariadic;
4538    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4539
4540    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4541      .getTypePtr();
4542
4543    if (!RetTy->isDependentType())
4544      CurBlock->ReturnType = RetTy;
4545  }
4546  CurBlock->TheDecl->setParams(Context, &CurBlock->Params[0],
4547                                        CurBlock->Params.size());
4548
4549  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4550       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4551    // If this has an identifier, add it to the scope stack.
4552    if ((*AI)->getIdentifier())
4553      PushOnScopeChains(*AI, CurBlock->TheScope);
4554}
4555
4556/// ActOnBlockError - If there is an error parsing a block, this callback
4557/// is invoked to pop the information about the block from the action impl.
4558void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4559  // Ensure that CurBlock is deleted.
4560  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4561
4562  // Pop off CurBlock, handle nested blocks.
4563  CurBlock = CurBlock->PrevBlockInfo;
4564
4565  // FIXME: Delete the ParmVarDecl objects as well???
4566
4567}
4568
4569/// ActOnBlockStmtExpr - This is called when the body of a block statement
4570/// literal was successfully completed.  ^(int x){...}
4571Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
4572                                                StmtArg body, Scope *CurScope) {
4573  // Ensure that CurBlock is deleted.
4574  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4575
4576  PopDeclContext();
4577
4578  // Pop off CurBlock, handle nested blocks.
4579  CurBlock = CurBlock->PrevBlockInfo;
4580
4581  QualType RetTy = Context.VoidTy;
4582  if (BSI->ReturnType)
4583    RetTy = QualType(BSI->ReturnType, 0);
4584
4585  llvm::SmallVector<QualType, 8> ArgTypes;
4586  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4587    ArgTypes.push_back(BSI->Params[i]->getType());
4588
4589  QualType BlockTy;
4590  if (!BSI->hasPrototype)
4591    BlockTy = Context.getFunctionNoProtoType(RetTy);
4592  else
4593    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4594                                      BSI->isVariadic, 0);
4595
4596  // FIXME: Check that return/parameter types are complete/non-abstract
4597
4598  BlockTy = Context.getBlockPointerType(BlockTy);
4599
4600  BSI->TheDecl->setBody(static_cast<CompoundStmt*>(body.release()));
4601  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
4602                                       BSI->hasBlockDeclRefExprs));
4603}
4604
4605Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4606                                        ExprArg expr, TypeTy *type,
4607                                        SourceLocation RPLoc) {
4608  QualType T = QualType::getFromOpaquePtr(type);
4609
4610  InitBuiltinVaListType();
4611
4612  // Get the va_list type
4613  QualType VaListType = Context.getBuiltinVaListType();
4614  // Deal with implicit array decay; for example, on x86-64,
4615  // va_list is an array, but it's supposed to decay to
4616  // a pointer for va_arg.
4617  if (VaListType->isArrayType())
4618    VaListType = Context.getArrayDecayedType(VaListType);
4619  // Make sure the input expression also decays appropriately.
4620  Expr *E = static_cast<Expr*>(expr.get());
4621  UsualUnaryConversions(E);
4622
4623  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4624    return ExprError(Diag(E->getLocStart(),
4625                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
4626      << E->getType() << E->getSourceRange());
4627
4628  // FIXME: Check that type is complete/non-abstract
4629  // FIXME: Warn if a non-POD type is passed in.
4630
4631  expr.release();
4632  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
4633                                       RPLoc));
4634}
4635
4636Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4637  // The type of __null will be int or long, depending on the size of
4638  // pointers on the target.
4639  QualType Ty;
4640  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4641    Ty = Context.IntTy;
4642  else
4643    Ty = Context.LongTy;
4644
4645  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
4646}
4647
4648bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4649                                    SourceLocation Loc,
4650                                    QualType DstType, QualType SrcType,
4651                                    Expr *SrcExpr, const char *Flavor) {
4652  // Decode the result (notice that AST's are still created for extensions).
4653  bool isInvalid = false;
4654  unsigned DiagKind;
4655  switch (ConvTy) {
4656  default: assert(0 && "Unknown conversion type");
4657  case Compatible: return false;
4658  case PointerToInt:
4659    DiagKind = diag::ext_typecheck_convert_pointer_int;
4660    break;
4661  case IntToPointer:
4662    DiagKind = diag::ext_typecheck_convert_int_pointer;
4663    break;
4664  case IncompatiblePointer:
4665    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4666    break;
4667  case IncompatiblePointerSign:
4668    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
4669    break;
4670  case FunctionVoidPointer:
4671    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4672    break;
4673  case CompatiblePointerDiscardsQualifiers:
4674    // If the qualifiers lost were because we were applying the
4675    // (deprecated) C++ conversion from a string literal to a char*
4676    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4677    // Ideally, this check would be performed in
4678    // CheckPointerTypesForAssignment. However, that would require a
4679    // bit of refactoring (so that the second argument is an
4680    // expression, rather than a type), which should be done as part
4681    // of a larger effort to fix CheckPointerTypesForAssignment for
4682    // C++ semantics.
4683    if (getLangOptions().CPlusPlus &&
4684        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4685      return false;
4686    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4687    break;
4688  case IntToBlockPointer:
4689    DiagKind = diag::err_int_to_block_pointer;
4690    break;
4691  case IncompatibleBlockPointer:
4692    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4693    break;
4694  case IncompatibleObjCQualifiedId:
4695    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4696    // it can give a more specific diagnostic.
4697    DiagKind = diag::warn_incompatible_qualified_id;
4698    break;
4699  case IncompatibleVectors:
4700    DiagKind = diag::warn_incompatible_vectors;
4701    break;
4702  case Incompatible:
4703    DiagKind = diag::err_typecheck_convert_incompatible;
4704    isInvalid = true;
4705    break;
4706  }
4707
4708  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4709    << SrcExpr->getSourceRange();
4710  return isInvalid;
4711}
4712
4713bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4714{
4715  Expr::EvalResult EvalResult;
4716
4717  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4718      EvalResult.HasSideEffects) {
4719    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4720
4721    if (EvalResult.Diag) {
4722      // We only show the note if it's not the usual "invalid subexpression"
4723      // or if it's actually in a subexpression.
4724      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4725          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4726        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4727    }
4728
4729    return true;
4730  }
4731
4732  if (EvalResult.Diag) {
4733    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4734      E->getSourceRange();
4735
4736    // Print the reason it's not a constant.
4737    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4738      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4739  }
4740
4741  if (Result)
4742    *Result = EvalResult.Val.getInt();
4743  return false;
4744}
4745