SemaExpr.cpp revision 2e9eb0477039797d8c3bb2e651a0e044a24d3576
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90SourceRange Sema::getExprRange(ExprTy *E) const {
91  Expr *Ex = (Expr *)E;
92  return Ex? Ex->getSourceRange() : SourceRange();
93}
94
95//===----------------------------------------------------------------------===//
96//  Standard Promotions and Conversions
97//===----------------------------------------------------------------------===//
98
99/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
100void Sema::DefaultFunctionArrayConversion(Expr *&E) {
101  QualType Ty = E->getType();
102  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
103
104  if (Ty->isFunctionType())
105    ImpCastExprToType(E, Context.getPointerType(Ty));
106  else if (Ty->isArrayType()) {
107    // In C90 mode, arrays only promote to pointers if the array expression is
108    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
109    // type 'array of type' is converted to an expression that has type 'pointer
110    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
111    // that has type 'array of type' ...".  The relevant change is "an lvalue"
112    // (C90) to "an expression" (C99).
113    //
114    // C++ 4.2p1:
115    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
116    // T" can be converted to an rvalue of type "pointer to T".
117    //
118    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
119        E->isLvalue(Context) == Expr::LV_Valid)
120      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
121  }
122}
123
124/// UsualUnaryConversions - Performs various conversions that are common to most
125/// operators (C99 6.3). The conversions of array and function types are
126/// sometimes surpressed. For example, the array->pointer conversion doesn't
127/// apply if the array is an argument to the sizeof or address (&) operators.
128/// In these instances, this routine should *not* be called.
129Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
130  QualType Ty = Expr->getType();
131  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
132
133  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
134    ImpCastExprToType(Expr, Context.IntTy);
135  else
136    DefaultFunctionArrayConversion(Expr);
137
138  return Expr;
139}
140
141/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
142/// do not have a prototype. Arguments that have type float are promoted to
143/// double. All other argument types are converted by UsualUnaryConversions().
144void Sema::DefaultArgumentPromotion(Expr *&Expr) {
145  QualType Ty = Expr->getType();
146  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
147
148  // If this is a 'float' (CVR qualified or typedef) promote to double.
149  if (const BuiltinType *BT = Ty->getAsBuiltinType())
150    if (BT->getKind() == BuiltinType::Float)
151      return ImpCastExprToType(Expr, Context.DoubleTy);
152
153  UsualUnaryConversions(Expr);
154}
155
156// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
157// will warn if the resulting type is not a POD type.
158void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
159  DefaultArgumentPromotion(Expr);
160
161  if (!Expr->getType()->isPODType()) {
162    Diag(Expr->getLocStart(),
163         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
164    Expr->getType() << CT;
165  }
166}
167
168
169/// UsualArithmeticConversions - Performs various conversions that are common to
170/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
171/// routine returns the first non-arithmetic type found. The client is
172/// responsible for emitting appropriate error diagnostics.
173/// FIXME: verify the conversion rules for "complex int" are consistent with
174/// GCC.
175QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
176                                          bool isCompAssign) {
177  if (!isCompAssign) {
178    UsualUnaryConversions(lhsExpr);
179    UsualUnaryConversions(rhsExpr);
180  }
181
182  // For conversion purposes, we ignore any qualifiers.
183  // For example, "const float" and "float" are equivalent.
184  QualType lhs =
185    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
186  QualType rhs =
187    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
188
189  // If both types are identical, no conversion is needed.
190  if (lhs == rhs)
191    return lhs;
192
193  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
194  // The caller can deal with this (e.g. pointer + int).
195  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
196    return lhs;
197
198  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
199  if (!isCompAssign) {
200    ImpCastExprToType(lhsExpr, destType);
201    ImpCastExprToType(rhsExpr, destType);
202  }
203  return destType;
204}
205
206QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
207  // Perform the usual unary conversions. We do this early so that
208  // integral promotions to "int" can allow us to exit early, in the
209  // lhs == rhs check. Also, for conversion purposes, we ignore any
210  // qualifiers.  For example, "const float" and "float" are
211  // equivalent.
212  if (lhs->isPromotableIntegerType())
213    lhs = Context.IntTy;
214  else
215    lhs = lhs.getUnqualifiedType();
216  if (rhs->isPromotableIntegerType())
217    rhs = Context.IntTy;
218  else
219    rhs = rhs.getUnqualifiedType();
220
221  // If both types are identical, no conversion is needed.
222  if (lhs == rhs)
223    return lhs;
224
225  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
226  // The caller can deal with this (e.g. pointer + int).
227  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
228    return lhs;
229
230  // At this point, we have two different arithmetic types.
231
232  // Handle complex types first (C99 6.3.1.8p1).
233  if (lhs->isComplexType() || rhs->isComplexType()) {
234    // if we have an integer operand, the result is the complex type.
235    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
236      // convert the rhs to the lhs complex type.
237      return lhs;
238    }
239    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
240      // convert the lhs to the rhs complex type.
241      return rhs;
242    }
243    // This handles complex/complex, complex/float, or float/complex.
244    // When both operands are complex, the shorter operand is converted to the
245    // type of the longer, and that is the type of the result. This corresponds
246    // to what is done when combining two real floating-point operands.
247    // The fun begins when size promotion occur across type domains.
248    // From H&S 6.3.4: When one operand is complex and the other is a real
249    // floating-point type, the less precise type is converted, within it's
250    // real or complex domain, to the precision of the other type. For example,
251    // when combining a "long double" with a "double _Complex", the
252    // "double _Complex" is promoted to "long double _Complex".
253    int result = Context.getFloatingTypeOrder(lhs, rhs);
254
255    if (result > 0) { // The left side is bigger, convert rhs.
256      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
257    } else if (result < 0) { // The right side is bigger, convert lhs.
258      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
259    }
260    // At this point, lhs and rhs have the same rank/size. Now, make sure the
261    // domains match. This is a requirement for our implementation, C99
262    // does not require this promotion.
263    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
264      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
265        return rhs;
266      } else { // handle "_Complex double, double".
267        return lhs;
268      }
269    }
270    return lhs; // The domain/size match exactly.
271  }
272  // Now handle "real" floating types (i.e. float, double, long double).
273  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
274    // if we have an integer operand, the result is the real floating type.
275    if (rhs->isIntegerType()) {
276      // convert rhs to the lhs floating point type.
277      return lhs;
278    }
279    if (rhs->isComplexIntegerType()) {
280      // convert rhs to the complex floating point type.
281      return Context.getComplexType(lhs);
282    }
283    if (lhs->isIntegerType()) {
284      // convert lhs to the rhs floating point type.
285      return rhs;
286    }
287    if (lhs->isComplexIntegerType()) {
288      // convert lhs to the complex floating point type.
289      return Context.getComplexType(rhs);
290    }
291    // We have two real floating types, float/complex combos were handled above.
292    // Convert the smaller operand to the bigger result.
293    int result = Context.getFloatingTypeOrder(lhs, rhs);
294    if (result > 0) // convert the rhs
295      return lhs;
296    assert(result < 0 && "illegal float comparison");
297    return rhs;   // convert the lhs
298  }
299  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
300    // Handle GCC complex int extension.
301    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
302    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
303
304    if (lhsComplexInt && rhsComplexInt) {
305      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
306                                      rhsComplexInt->getElementType()) >= 0)
307        return lhs; // convert the rhs
308      return rhs;
309    } else if (lhsComplexInt && rhs->isIntegerType()) {
310      // convert the rhs to the lhs complex type.
311      return lhs;
312    } else if (rhsComplexInt && lhs->isIntegerType()) {
313      // convert the lhs to the rhs complex type.
314      return rhs;
315    }
316  }
317  // Finally, we have two differing integer types.
318  // The rules for this case are in C99 6.3.1.8
319  int compare = Context.getIntegerTypeOrder(lhs, rhs);
320  bool lhsSigned = lhs->isSignedIntegerType(),
321       rhsSigned = rhs->isSignedIntegerType();
322  QualType destType;
323  if (lhsSigned == rhsSigned) {
324    // Same signedness; use the higher-ranked type
325    destType = compare >= 0 ? lhs : rhs;
326  } else if (compare != (lhsSigned ? 1 : -1)) {
327    // The unsigned type has greater than or equal rank to the
328    // signed type, so use the unsigned type
329    destType = lhsSigned ? rhs : lhs;
330  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
331    // The two types are different widths; if we are here, that
332    // means the signed type is larger than the unsigned type, so
333    // use the signed type.
334    destType = lhsSigned ? lhs : rhs;
335  } else {
336    // The signed type is higher-ranked than the unsigned type,
337    // but isn't actually any bigger (like unsigned int and long
338    // on most 32-bit systems).  Use the unsigned type corresponding
339    // to the signed type.
340    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
341  }
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// FIXME: This will create BlockDeclRefExprs for global variables,
397/// function references, etc which is suboptimal :) and breaks
398/// things like "integer constant expression" tests.
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    return Var->hasLocalStorage();
415
416  return true;
417}
418
419
420
421/// ActOnIdentifierExpr - The parser read an identifier in expression context,
422/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
423/// identifier is used in a function call context.
424/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
425/// class or namespace that the identifier must be a member of.
426Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
427                                                 IdentifierInfo &II,
428                                                 bool HasTrailingLParen,
429                                                 const CXXScopeSpec *SS,
430                                                 bool isAddressOfOperand) {
431  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
432                                  isAddressOfOperand);
433}
434
435/// BuildDeclRefExpr - Build either a DeclRefExpr or a
436/// QualifiedDeclRefExpr based on whether or not SS is a
437/// nested-name-specifier.
438DeclRefExpr *
439Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
440                       bool TypeDependent, bool ValueDependent,
441                       const CXXScopeSpec *SS) {
442  if (SS && !SS->isEmpty())
443    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
444                                              ValueDependent,
445                                              SS->getRange().getBegin());
446  else
447    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
448}
449
450/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
451/// variable corresponding to the anonymous union or struct whose type
452/// is Record.
453static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
454  assert(Record->isAnonymousStructOrUnion() &&
455         "Record must be an anonymous struct or union!");
456
457  // FIXME: Once Decls are directly linked together, this will
458  // be an O(1) operation rather than a slow walk through DeclContext's
459  // vector (which itself will be eliminated). DeclGroups might make
460  // this even better.
461  DeclContext *Ctx = Record->getDeclContext();
462  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
463                               DEnd = Ctx->decls_end();
464       D != DEnd; ++D) {
465    if (*D == Record) {
466      // The object for the anonymous struct/union directly
467      // follows its type in the list of declarations.
468      ++D;
469      assert(D != DEnd && "Missing object for anonymous record");
470      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
471      return *D;
472    }
473  }
474
475  assert(false && "Missing object for anonymous record");
476  return 0;
477}
478
479Sema::OwningExprResult
480Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
481                                               FieldDecl *Field,
482                                               Expr *BaseObjectExpr,
483                                               SourceLocation OpLoc) {
484  assert(Field->getDeclContext()->isRecord() &&
485         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
486         && "Field must be stored inside an anonymous struct or union");
487
488  // Construct the sequence of field member references
489  // we'll have to perform to get to the field in the anonymous
490  // union/struct. The list of members is built from the field
491  // outward, so traverse it backwards to go from an object in
492  // the current context to the field we found.
493  llvm::SmallVector<FieldDecl *, 4> AnonFields;
494  AnonFields.push_back(Field);
495  VarDecl *BaseObject = 0;
496  DeclContext *Ctx = Field->getDeclContext();
497  do {
498    RecordDecl *Record = cast<RecordDecl>(Ctx);
499    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
500    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
501      AnonFields.push_back(AnonField);
502    else {
503      BaseObject = cast<VarDecl>(AnonObject);
504      break;
505    }
506    Ctx = Ctx->getParent();
507  } while (Ctx->isRecord() &&
508           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
509
510  // Build the expression that refers to the base object, from
511  // which we will build a sequence of member references to each
512  // of the anonymous union objects and, eventually, the field we
513  // found via name lookup.
514  bool BaseObjectIsPointer = false;
515  unsigned ExtraQuals = 0;
516  if (BaseObject) {
517    // BaseObject is an anonymous struct/union variable (and is,
518    // therefore, not part of another non-anonymous record).
519    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
520    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
521                                               SourceLocation());
522    ExtraQuals
523      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
524  } else if (BaseObjectExpr) {
525    // The caller provided the base object expression. Determine
526    // whether its a pointer and whether it adds any qualifiers to the
527    // anonymous struct/union fields we're looking into.
528    QualType ObjectType = BaseObjectExpr->getType();
529    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
530      BaseObjectIsPointer = true;
531      ObjectType = ObjectPtr->getPointeeType();
532    }
533    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
534  } else {
535    // We've found a member of an anonymous struct/union that is
536    // inside a non-anonymous struct/union, so in a well-formed
537    // program our base object expression is "this".
538    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
539      if (!MD->isStatic()) {
540        QualType AnonFieldType
541          = Context.getTagDeclType(
542                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
543        QualType ThisType = Context.getTagDeclType(MD->getParent());
544        if ((Context.getCanonicalType(AnonFieldType)
545               == Context.getCanonicalType(ThisType)) ||
546            IsDerivedFrom(ThisType, AnonFieldType)) {
547          // Our base object expression is "this".
548          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
549                                                     MD->getThisType(Context));
550          BaseObjectIsPointer = true;
551        }
552      } else {
553        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
554          << Field->getDeclName());
555      }
556      ExtraQuals = MD->getTypeQualifiers();
557    }
558
559    if (!BaseObjectExpr)
560      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
561        << Field->getDeclName());
562  }
563
564  // Build the implicit member references to the field of the
565  // anonymous struct/union.
566  Expr *Result = BaseObjectExpr;
567  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
568         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
569       FI != FIEnd; ++FI) {
570    QualType MemberType = (*FI)->getType();
571    if (!(*FI)->isMutable()) {
572      unsigned combinedQualifiers
573        = MemberType.getCVRQualifiers() | ExtraQuals;
574      MemberType = MemberType.getQualifiedType(combinedQualifiers);
575    }
576    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
577                                      OpLoc, MemberType);
578    BaseObjectIsPointer = false;
579    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
580  }
581
582  return Owned(Result);
583}
584
585/// ActOnDeclarationNameExpr - The parser has read some kind of name
586/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
587/// performs lookup on that name and returns an expression that refers
588/// to that name. This routine isn't directly called from the parser,
589/// because the parser doesn't know about DeclarationName. Rather,
590/// this routine is called by ActOnIdentifierExpr,
591/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
592/// which form the DeclarationName from the corresponding syntactic
593/// forms.
594///
595/// HasTrailingLParen indicates whether this identifier is used in a
596/// function call context.  LookupCtx is only used for a C++
597/// qualified-id (foo::bar) to indicate the class or namespace that
598/// the identifier must be a member of.
599///
600/// isAddressOfOperand means that this expression is the direct operand
601/// of an address-of operator. This matters because this is the only
602/// situation where a qualified name referencing a non-static member may
603/// appear outside a member function of this class.
604Sema::OwningExprResult
605Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
606                               DeclarationName Name, bool HasTrailingLParen,
607                               const CXXScopeSpec *SS,
608                               bool isAddressOfOperand) {
609  // Could be enum-constant, value decl, instance variable, etc.
610  if (SS && SS->isInvalid())
611    return ExprError();
612  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
613                                         false, true, Loc);
614
615  NamedDecl *D = 0;
616  if (Lookup.isAmbiguous()) {
617    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
618                            SS && SS->isSet() ? SS->getRange()
619                                              : SourceRange());
620    return ExprError();
621  } else
622    D = Lookup.getAsDecl();
623
624  // If this reference is in an Objective-C method, then ivar lookup happens as
625  // well.
626  IdentifierInfo *II = Name.getAsIdentifierInfo();
627  if (II && getCurMethodDecl()) {
628    // There are two cases to handle here.  1) scoped lookup could have failed,
629    // in which case we should look for an ivar.  2) scoped lookup could have
630    // found a decl, but that decl is outside the current instance method (i.e.
631    // a global variable).  In these two cases, we do a lookup for an ivar with
632    // this name, if the lookup sucedes, we replace it our current decl.
633    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
634      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
635      ObjCInterfaceDecl *ClassDeclared;
636      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
637        // Check if referencing a field with __attribute__((deprecated)).
638        if (DiagnoseUseOfDecl(IV, Loc))
639          return ExprError();
640        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
641        // If a class method attemps to use a free standing ivar, this is
642        // an error.
643        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
644           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
645                           << IV->getDeclName());
646        // If a class method uses a global variable, even if an ivar with
647        // same name exists, use the global.
648        if (!IsClsMethod) {
649          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
650              ClassDeclared != IFace)
651           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
652          // FIXME: This should use a new expr for a direct reference, don't turn
653          // this into Self->ivar, just return a BareIVarExpr or something.
654          IdentifierInfo &II = Context.Idents.get("self");
655          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
656          ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
657                                    Loc, static_cast<Expr*>(SelfExpr.release()),
658                                    true, true);
659          Context.setFieldDecl(IFace, IV, MRef);
660          return Owned(MRef);
661        }
662      }
663    }
664    else if (getCurMethodDecl()->isInstanceMethod()) {
665      // We should warn if a local variable hides an ivar.
666      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
667      ObjCInterfaceDecl *ClassDeclared;
668      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
669        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
670            IFace == ClassDeclared)
671          Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
672      }
673    }
674    // Needed to implement property "super.method" notation.
675    if (D == 0 && II->isStr("super")) {
676      QualType T;
677
678      if (getCurMethodDecl()->isInstanceMethod())
679        T = Context.getPointerType(Context.getObjCInterfaceType(
680                                   getCurMethodDecl()->getClassInterface()));
681      else
682        T = Context.getObjCClassType();
683      return Owned(new (Context) ObjCSuperExpr(Loc, T));
684    }
685  }
686
687  // Determine whether this name might be a candidate for
688  // argument-dependent lookup.
689  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
690             HasTrailingLParen;
691
692  if (ADL && D == 0) {
693    // We've seen something of the form
694    //
695    //   identifier(
696    //
697    // and we did not find any entity by the name
698    // "identifier". However, this identifier is still subject to
699    // argument-dependent lookup, so keep track of the name.
700    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
701                                                          Context.OverloadTy,
702                                                          Loc));
703  }
704
705  if (D == 0) {
706    // Otherwise, this could be an implicitly declared function reference (legal
707    // in C90, extension in C99).
708    if (HasTrailingLParen && II &&
709        !getLangOptions().CPlusPlus) // Not in C++.
710      D = ImplicitlyDefineFunction(Loc, *II, S);
711    else {
712      // If this name wasn't predeclared and if this is not a function call,
713      // diagnose the problem.
714      if (SS && !SS->isEmpty())
715        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
716          << Name << SS->getRange());
717      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
718               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
719        return ExprError(Diag(Loc, diag::err_undeclared_use)
720          << Name.getAsString());
721      else
722        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
723    }
724  }
725
726  // If this is an expression of the form &Class::member, don't build an
727  // implicit member ref, because we want a pointer to the member in general,
728  // not any specific instance's member.
729  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
730    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
731    if (D && isa<CXXRecordDecl>(DC)) {
732      QualType DType;
733      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
734        DType = FD->getType().getNonReferenceType();
735      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
736        DType = Method->getType();
737      } else if (isa<OverloadedFunctionDecl>(D)) {
738        DType = Context.OverloadTy;
739      }
740      // Could be an inner type. That's diagnosed below, so ignore it here.
741      if (!DType.isNull()) {
742        // The pointer is type- and value-dependent if it points into something
743        // dependent.
744        bool Dependent = false;
745        for (; DC; DC = DC->getParent()) {
746          // FIXME: could stop early at namespace scope.
747          if (DC->isRecord()) {
748            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
749            if (Context.getTypeDeclType(Record)->isDependentType()) {
750              Dependent = true;
751              break;
752            }
753          }
754        }
755        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
756      }
757    }
758  }
759
760  // We may have found a field within an anonymous union or struct
761  // (C++ [class.union]).
762  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
763    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
764      return BuildAnonymousStructUnionMemberReference(Loc, FD);
765
766  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
767    if (!MD->isStatic()) {
768      // C++ [class.mfct.nonstatic]p2:
769      //   [...] if name lookup (3.4.1) resolves the name in the
770      //   id-expression to a nonstatic nontype member of class X or of
771      //   a base class of X, the id-expression is transformed into a
772      //   class member access expression (5.2.5) using (*this) (9.3.2)
773      //   as the postfix-expression to the left of the '.' operator.
774      DeclContext *Ctx = 0;
775      QualType MemberType;
776      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
777        Ctx = FD->getDeclContext();
778        MemberType = FD->getType();
779
780        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
781          MemberType = RefType->getPointeeType();
782        else if (!FD->isMutable()) {
783          unsigned combinedQualifiers
784            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
785          MemberType = MemberType.getQualifiedType(combinedQualifiers);
786        }
787      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
788        if (!Method->isStatic()) {
789          Ctx = Method->getParent();
790          MemberType = Method->getType();
791        }
792      } else if (OverloadedFunctionDecl *Ovl
793                   = dyn_cast<OverloadedFunctionDecl>(D)) {
794        for (OverloadedFunctionDecl::function_iterator
795               Func = Ovl->function_begin(),
796               FuncEnd = Ovl->function_end();
797             Func != FuncEnd; ++Func) {
798          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
799            if (!DMethod->isStatic()) {
800              Ctx = Ovl->getDeclContext();
801              MemberType = Context.OverloadTy;
802              break;
803            }
804        }
805      }
806
807      if (Ctx && Ctx->isRecord()) {
808        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
809        QualType ThisType = Context.getTagDeclType(MD->getParent());
810        if ((Context.getCanonicalType(CtxType)
811               == Context.getCanonicalType(ThisType)) ||
812            IsDerivedFrom(ThisType, CtxType)) {
813          // Build the implicit member access expression.
814          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
815                                                 MD->getThisType(Context));
816          return Owned(new (Context) MemberExpr(This, true, D,
817                                                SourceLocation(), MemberType));
818        }
819      }
820    }
821  }
822
823  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
824    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
825      if (MD->isStatic())
826        // "invalid use of member 'x' in static member function"
827        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
828          << FD->getDeclName());
829    }
830
831    // Any other ways we could have found the field in a well-formed
832    // program would have been turned into implicit member expressions
833    // above.
834    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
835      << FD->getDeclName());
836  }
837
838  if (isa<TypedefDecl>(D))
839    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
840  if (isa<ObjCInterfaceDecl>(D))
841    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
842  if (isa<NamespaceDecl>(D))
843    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
844
845  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
846  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
847    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
848                                  false, false, SS));
849  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
850    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
851                                  false, false, SS));
852  ValueDecl *VD = cast<ValueDecl>(D);
853
854  // Check whether this declaration can be used. Note that we suppress
855  // this check when we're going to perform argument-dependent lookup
856  // on this function name, because this might not be the function
857  // that overload resolution actually selects.
858  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
859    return ExprError();
860
861  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
862    // Warn about constructs like:
863    //   if (void *X = foo()) { ... } else { X }.
864    // In the else block, the pointer is always false.
865    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
866      Scope *CheckS = S;
867      while (CheckS) {
868        if (CheckS->isWithinElse() &&
869            CheckS->getControlParent()->isDeclScope(Var)) {
870          if (Var->getType()->isBooleanType())
871            ExprError(Diag(Loc, diag::warn_value_always_false)
872              << Var->getDeclName());
873          else
874            ExprError(Diag(Loc, diag::warn_value_always_zero)
875              << Var->getDeclName());
876          break;
877        }
878
879        // Move up one more control parent to check again.
880        CheckS = CheckS->getControlParent();
881        if (CheckS)
882          CheckS = CheckS->getParent();
883      }
884    }
885  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
886    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
887      // C99 DR 316 says that, if a function type comes from a
888      // function definition (without a prototype), that type is only
889      // used for checking compatibility. Therefore, when referencing
890      // the function, we pretend that we don't have the full function
891      // type.
892      QualType T = Func->getType();
893      QualType NoProtoType = T;
894      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
895        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
896      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
897    }
898  }
899
900  // Only create DeclRefExpr's for valid Decl's.
901  if (VD->isInvalidDecl())
902    return ExprError();
903
904  // If the identifier reference is inside a block, and it refers to a value
905  // that is outside the block, create a BlockDeclRefExpr instead of a
906  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
907  // the block is formed.
908  //
909  // We do not do this for things like enum constants, global variables, etc,
910  // as they do not get snapshotted.
911  //
912  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
913    // Blocks that have these can't be constant.
914    CurBlock->hasBlockDeclRefExprs = true;
915
916    // The BlocksAttr indicates the variable is bound by-reference.
917    if (VD->getAttr<BlocksAttr>())
918      return Owned(new (Context) BlockDeclRefExpr(VD,
919                               VD->getType().getNonReferenceType(), Loc, true));
920
921    // Variable will be bound by-copy, make it const within the closure.
922    VD->getType().addConst();
923    return Owned(new (Context) BlockDeclRefExpr(VD,
924                             VD->getType().getNonReferenceType(), Loc, false));
925  }
926  // If this reference is not in a block or if the referenced variable is
927  // within the block, create a normal DeclRefExpr.
928
929  bool TypeDependent = false;
930  bool ValueDependent = false;
931  if (getLangOptions().CPlusPlus) {
932    // C++ [temp.dep.expr]p3:
933    //   An id-expression is type-dependent if it contains:
934    //     - an identifier that was declared with a dependent type,
935    if (VD->getType()->isDependentType())
936      TypeDependent = true;
937    //     - FIXME: a template-id that is dependent,
938    //     - a conversion-function-id that specifies a dependent type,
939    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
940             Name.getCXXNameType()->isDependentType())
941      TypeDependent = true;
942    //     - a nested-name-specifier that contains a class-name that
943    //       names a dependent type.
944    else if (SS && !SS->isEmpty()) {
945      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
946           DC; DC = DC->getParent()) {
947        // FIXME: could stop early at namespace scope.
948        if (DC->isRecord()) {
949          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
950          if (Context.getTypeDeclType(Record)->isDependentType()) {
951            TypeDependent = true;
952            break;
953          }
954        }
955      }
956    }
957
958    // C++ [temp.dep.constexpr]p2:
959    //
960    //   An identifier is value-dependent if it is:
961    //     - a name declared with a dependent type,
962    if (TypeDependent)
963      ValueDependent = true;
964    //     - the name of a non-type template parameter,
965    else if (isa<NonTypeTemplateParmDecl>(VD))
966      ValueDependent = true;
967    //    - a constant with integral or enumeration type and is
968    //      initialized with an expression that is value-dependent
969    //      (FIXME!).
970  }
971
972  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
973                                TypeDependent, ValueDependent, SS));
974}
975
976Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
977                                                 tok::TokenKind Kind) {
978  PredefinedExpr::IdentType IT;
979
980  switch (Kind) {
981  default: assert(0 && "Unknown simple primary expr!");
982  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
983  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
984  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
985  }
986
987  // Pre-defined identifiers are of type char[x], where x is the length of the
988  // string.
989  unsigned Length;
990  if (FunctionDecl *FD = getCurFunctionDecl())
991    Length = FD->getIdentifier()->getLength();
992  else if (ObjCMethodDecl *MD = getCurMethodDecl())
993    Length = MD->getSynthesizedMethodSize();
994  else {
995    Diag(Loc, diag::ext_predef_outside_function);
996    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
997    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
998  }
999
1000
1001  llvm::APInt LengthI(32, Length + 1);
1002  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1003  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1004  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1005}
1006
1007Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1008  llvm::SmallString<16> CharBuffer;
1009  CharBuffer.resize(Tok.getLength());
1010  const char *ThisTokBegin = &CharBuffer[0];
1011  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1012
1013  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1014                            Tok.getLocation(), PP);
1015  if (Literal.hadError())
1016    return ExprError();
1017
1018  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1019
1020  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1021                                              Literal.isWide(),
1022                                              type, Tok.getLocation()));
1023}
1024
1025Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1026  // Fast path for a single digit (which is quite common).  A single digit
1027  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1028  if (Tok.getLength() == 1) {
1029    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1030    unsigned IntSize = Context.Target.getIntWidth();
1031    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1032                    Context.IntTy, Tok.getLocation()));
1033  }
1034
1035  llvm::SmallString<512> IntegerBuffer;
1036  // Add padding so that NumericLiteralParser can overread by one character.
1037  IntegerBuffer.resize(Tok.getLength()+1);
1038  const char *ThisTokBegin = &IntegerBuffer[0];
1039
1040  // Get the spelling of the token, which eliminates trigraphs, etc.
1041  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1042
1043  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1044                               Tok.getLocation(), PP);
1045  if (Literal.hadError)
1046    return ExprError();
1047
1048  Expr *Res;
1049
1050  if (Literal.isFloatingLiteral()) {
1051    QualType Ty;
1052    if (Literal.isFloat)
1053      Ty = Context.FloatTy;
1054    else if (!Literal.isLong)
1055      Ty = Context.DoubleTy;
1056    else
1057      Ty = Context.LongDoubleTy;
1058
1059    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1060
1061    // isExact will be set by GetFloatValue().
1062    bool isExact = false;
1063    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1064                                        &isExact, Ty, Tok.getLocation());
1065
1066  } else if (!Literal.isIntegerLiteral()) {
1067    return ExprError();
1068  } else {
1069    QualType Ty;
1070
1071    // long long is a C99 feature.
1072    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1073        Literal.isLongLong)
1074      Diag(Tok.getLocation(), diag::ext_longlong);
1075
1076    // Get the value in the widest-possible width.
1077    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1078
1079    if (Literal.GetIntegerValue(ResultVal)) {
1080      // If this value didn't fit into uintmax_t, warn and force to ull.
1081      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1082      Ty = Context.UnsignedLongLongTy;
1083      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1084             "long long is not intmax_t?");
1085    } else {
1086      // If this value fits into a ULL, try to figure out what else it fits into
1087      // according to the rules of C99 6.4.4.1p5.
1088
1089      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1090      // be an unsigned int.
1091      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1092
1093      // Check from smallest to largest, picking the smallest type we can.
1094      unsigned Width = 0;
1095      if (!Literal.isLong && !Literal.isLongLong) {
1096        // Are int/unsigned possibilities?
1097        unsigned IntSize = Context.Target.getIntWidth();
1098
1099        // Does it fit in a unsigned int?
1100        if (ResultVal.isIntN(IntSize)) {
1101          // Does it fit in a signed int?
1102          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1103            Ty = Context.IntTy;
1104          else if (AllowUnsigned)
1105            Ty = Context.UnsignedIntTy;
1106          Width = IntSize;
1107        }
1108      }
1109
1110      // Are long/unsigned long possibilities?
1111      if (Ty.isNull() && !Literal.isLongLong) {
1112        unsigned LongSize = Context.Target.getLongWidth();
1113
1114        // Does it fit in a unsigned long?
1115        if (ResultVal.isIntN(LongSize)) {
1116          // Does it fit in a signed long?
1117          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1118            Ty = Context.LongTy;
1119          else if (AllowUnsigned)
1120            Ty = Context.UnsignedLongTy;
1121          Width = LongSize;
1122        }
1123      }
1124
1125      // Finally, check long long if needed.
1126      if (Ty.isNull()) {
1127        unsigned LongLongSize = Context.Target.getLongLongWidth();
1128
1129        // Does it fit in a unsigned long long?
1130        if (ResultVal.isIntN(LongLongSize)) {
1131          // Does it fit in a signed long long?
1132          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1133            Ty = Context.LongLongTy;
1134          else if (AllowUnsigned)
1135            Ty = Context.UnsignedLongLongTy;
1136          Width = LongLongSize;
1137        }
1138      }
1139
1140      // If we still couldn't decide a type, we probably have something that
1141      // does not fit in a signed long long, but has no U suffix.
1142      if (Ty.isNull()) {
1143        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1144        Ty = Context.UnsignedLongLongTy;
1145        Width = Context.Target.getLongLongWidth();
1146      }
1147
1148      if (ResultVal.getBitWidth() != Width)
1149        ResultVal.trunc(Width);
1150    }
1151    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1152  }
1153
1154  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1155  if (Literal.isImaginary)
1156    Res = new (Context) ImaginaryLiteral(Res,
1157                                        Context.getComplexType(Res->getType()));
1158
1159  return Owned(Res);
1160}
1161
1162Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1163                                              SourceLocation R, ExprArg Val) {
1164  Expr *E = (Expr *)Val.release();
1165  assert((E != 0) && "ActOnParenExpr() missing expr");
1166  return Owned(new (Context) ParenExpr(L, R, E));
1167}
1168
1169/// The UsualUnaryConversions() function is *not* called by this routine.
1170/// See C99 6.3.2.1p[2-4] for more details.
1171bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1172                                     SourceLocation OpLoc,
1173                                     const SourceRange &ExprRange,
1174                                     bool isSizeof) {
1175  if (exprType->isDependentType())
1176    return false;
1177
1178  // C99 6.5.3.4p1:
1179  if (isa<FunctionType>(exprType)) {
1180    // alignof(function) is allowed.
1181    if (isSizeof)
1182      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1183    return false;
1184  }
1185
1186  if (exprType->isVoidType()) {
1187    Diag(OpLoc, diag::ext_sizeof_void_type)
1188      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1189    return false;
1190  }
1191
1192  return DiagnoseIncompleteType(OpLoc, exprType,
1193                                isSizeof ? diag::err_sizeof_incomplete_type :
1194                                           diag::err_alignof_incomplete_type,
1195                                ExprRange);
1196}
1197
1198bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1199                            const SourceRange &ExprRange) {
1200  E = E->IgnoreParens();
1201
1202  // alignof decl is always ok.
1203  if (isa<DeclRefExpr>(E))
1204    return false;
1205
1206  // Cannot know anything else if the expression is dependent.
1207  if (E->isTypeDependent())
1208    return false;
1209
1210  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1211    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1212      if (FD->isBitField()) {
1213        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1214        return true;
1215      }
1216      // Other fields are ok.
1217      return false;
1218    }
1219  }
1220  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1221}
1222
1223/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1224/// the same for @c alignof and @c __alignof
1225/// Note that the ArgRange is invalid if isType is false.
1226Action::OwningExprResult
1227Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1228                             void *TyOrEx, const SourceRange &ArgRange) {
1229  // If error parsing type, ignore.
1230  if (TyOrEx == 0) return ExprError();
1231
1232  QualType ArgTy;
1233  SourceRange Range;
1234  if (isType) {
1235    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1236    Range = ArgRange;
1237
1238    // Verify that the operand is valid.
1239    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1240      return ExprError();
1241  } else {
1242    // Get the end location.
1243    Expr *ArgEx = (Expr *)TyOrEx;
1244    Range = ArgEx->getSourceRange();
1245    ArgTy = ArgEx->getType();
1246
1247    // Verify that the operand is valid.
1248    bool isInvalid;
1249    if (!isSizeof) {
1250      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1251    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1252      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1253      isInvalid = true;
1254    } else {
1255      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1256    }
1257
1258    if (isInvalid) {
1259      DeleteExpr(ArgEx);
1260      return ExprError();
1261    }
1262  }
1263
1264  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1265  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1266                                               Context.getSizeType(), OpLoc,
1267                                               Range.getEnd()));
1268}
1269
1270QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1271  if (V->isTypeDependent())
1272    return Context.DependentTy;
1273
1274  DefaultFunctionArrayConversion(V);
1275
1276  // These operators return the element type of a complex type.
1277  if (const ComplexType *CT = V->getType()->getAsComplexType())
1278    return CT->getElementType();
1279
1280  // Otherwise they pass through real integer and floating point types here.
1281  if (V->getType()->isArithmeticType())
1282    return V->getType();
1283
1284  // Reject anything else.
1285  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1286    << (isReal ? "__real" : "__imag");
1287  return QualType();
1288}
1289
1290
1291
1292Action::OwningExprResult
1293Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1294                          tok::TokenKind Kind, ExprArg Input) {
1295  Expr *Arg = (Expr *)Input.get();
1296
1297  UnaryOperator::Opcode Opc;
1298  switch (Kind) {
1299  default: assert(0 && "Unknown unary op!");
1300  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1301  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1302  }
1303
1304  if (getLangOptions().CPlusPlus &&
1305      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1306    // Which overloaded operator?
1307    OverloadedOperatorKind OverOp =
1308      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1309
1310    // C++ [over.inc]p1:
1311    //
1312    //     [...] If the function is a member function with one
1313    //     parameter (which shall be of type int) or a non-member
1314    //     function with two parameters (the second of which shall be
1315    //     of type int), it defines the postfix increment operator ++
1316    //     for objects of that type. When the postfix increment is
1317    //     called as a result of using the ++ operator, the int
1318    //     argument will have value zero.
1319    Expr *Args[2] = {
1320      Arg,
1321      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1322                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1323    };
1324
1325    // Build the candidate set for overloading
1326    OverloadCandidateSet CandidateSet;
1327    if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet))
1328      return ExprError();
1329
1330    // Perform overload resolution.
1331    OverloadCandidateSet::iterator Best;
1332    switch (BestViableFunction(CandidateSet, Best)) {
1333    case OR_Success: {
1334      // We found a built-in operator or an overloaded operator.
1335      FunctionDecl *FnDecl = Best->Function;
1336
1337      if (FnDecl) {
1338        // We matched an overloaded operator. Build a call to that
1339        // operator.
1340
1341        // Convert the arguments.
1342        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1343          if (PerformObjectArgumentInitialization(Arg, Method))
1344            return ExprError();
1345        } else {
1346          // Convert the arguments.
1347          if (PerformCopyInitialization(Arg,
1348                                        FnDecl->getParamDecl(0)->getType(),
1349                                        "passing"))
1350            return ExprError();
1351        }
1352
1353        // Determine the result type
1354        QualType ResultTy
1355          = FnDecl->getType()->getAsFunctionType()->getResultType();
1356        ResultTy = ResultTy.getNonReferenceType();
1357
1358        // Build the actual expression node.
1359        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1360                                                 SourceLocation());
1361        UsualUnaryConversions(FnExpr);
1362
1363        Input.release();
1364        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1365                                                       ResultTy, OpLoc));
1366      } else {
1367        // We matched a built-in operator. Convert the arguments, then
1368        // break out so that we will build the appropriate built-in
1369        // operator node.
1370        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1371                                      "passing"))
1372          return ExprError();
1373
1374        break;
1375      }
1376    }
1377
1378    case OR_No_Viable_Function:
1379      // No viable function; fall through to handling this as a
1380      // built-in operator, which will produce an error message for us.
1381      break;
1382
1383    case OR_Ambiguous:
1384      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1385          << UnaryOperator::getOpcodeStr(Opc)
1386          << Arg->getSourceRange();
1387      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1388      return ExprError();
1389
1390    case OR_Deleted:
1391      Diag(OpLoc, diag::err_ovl_deleted_oper)
1392        << Best->Function->isDeleted()
1393        << UnaryOperator::getOpcodeStr(Opc)
1394        << Arg->getSourceRange();
1395      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1396      return ExprError();
1397    }
1398
1399    // Either we found no viable overloaded operator or we matched a
1400    // built-in operator. In either case, fall through to trying to
1401    // build a built-in operation.
1402  }
1403
1404  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1405                                                 Opc == UnaryOperator::PostInc);
1406  if (result.isNull())
1407    return ExprError();
1408  Input.release();
1409  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1410}
1411
1412Action::OwningExprResult
1413Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1414                              ExprArg Idx, SourceLocation RLoc) {
1415  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1416       *RHSExp = static_cast<Expr*>(Idx.get());
1417
1418  if (getLangOptions().CPlusPlus &&
1419      (LHSExp->getType()->isRecordType() ||
1420       LHSExp->getType()->isEnumeralType() ||
1421       RHSExp->getType()->isRecordType() ||
1422       RHSExp->getType()->isEnumeralType())) {
1423    // Add the appropriate overloaded operators (C++ [over.match.oper])
1424    // to the candidate set.
1425    OverloadCandidateSet CandidateSet;
1426    Expr *Args[2] = { LHSExp, RHSExp };
1427    if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1428                              SourceRange(LLoc, RLoc)))
1429      return ExprError();
1430
1431    // Perform overload resolution.
1432    OverloadCandidateSet::iterator Best;
1433    switch (BestViableFunction(CandidateSet, Best)) {
1434    case OR_Success: {
1435      // We found a built-in operator or an overloaded operator.
1436      FunctionDecl *FnDecl = Best->Function;
1437
1438      if (FnDecl) {
1439        // We matched an overloaded operator. Build a call to that
1440        // operator.
1441
1442        // Convert the arguments.
1443        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1444          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1445              PerformCopyInitialization(RHSExp,
1446                                        FnDecl->getParamDecl(0)->getType(),
1447                                        "passing"))
1448            return ExprError();
1449        } else {
1450          // Convert the arguments.
1451          if (PerformCopyInitialization(LHSExp,
1452                                        FnDecl->getParamDecl(0)->getType(),
1453                                        "passing") ||
1454              PerformCopyInitialization(RHSExp,
1455                                        FnDecl->getParamDecl(1)->getType(),
1456                                        "passing"))
1457            return ExprError();
1458        }
1459
1460        // Determine the result type
1461        QualType ResultTy
1462          = FnDecl->getType()->getAsFunctionType()->getResultType();
1463        ResultTy = ResultTy.getNonReferenceType();
1464
1465        // Build the actual expression node.
1466        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1467                                                 SourceLocation());
1468        UsualUnaryConversions(FnExpr);
1469
1470        Base.release();
1471        Idx.release();
1472        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1473                                                       ResultTy, LLoc));
1474      } else {
1475        // We matched a built-in operator. Convert the arguments, then
1476        // break out so that we will build the appropriate built-in
1477        // operator node.
1478        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1479                                      "passing") ||
1480            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1481                                      "passing"))
1482          return ExprError();
1483
1484        break;
1485      }
1486    }
1487
1488    case OR_No_Viable_Function:
1489      // No viable function; fall through to handling this as a
1490      // built-in operator, which will produce an error message for us.
1491      break;
1492
1493    case OR_Ambiguous:
1494      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1495          << "[]"
1496          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1497      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1498      return ExprError();
1499
1500    case OR_Deleted:
1501      Diag(LLoc, diag::err_ovl_deleted_oper)
1502        << Best->Function->isDeleted()
1503        << "[]"
1504        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1505      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1506      return ExprError();
1507    }
1508
1509    // Either we found no viable overloaded operator or we matched a
1510    // built-in operator. In either case, fall through to trying to
1511    // build a built-in operation.
1512  }
1513
1514  // Perform default conversions.
1515  DefaultFunctionArrayConversion(LHSExp);
1516  DefaultFunctionArrayConversion(RHSExp);
1517
1518  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1519
1520  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1521  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1522  // in the subscript position. As a result, we need to derive the array base
1523  // and index from the expression types.
1524  Expr *BaseExpr, *IndexExpr;
1525  QualType ResultType;
1526  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1527    BaseExpr = LHSExp;
1528    IndexExpr = RHSExp;
1529    ResultType = Context.DependentTy;
1530  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1531    BaseExpr = LHSExp;
1532    IndexExpr = RHSExp;
1533    // FIXME: need to deal with const...
1534    ResultType = PTy->getPointeeType();
1535  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1536     // Handle the uncommon case of "123[Ptr]".
1537    BaseExpr = RHSExp;
1538    IndexExpr = LHSExp;
1539    // FIXME: need to deal with const...
1540    ResultType = PTy->getPointeeType();
1541  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1542    BaseExpr = LHSExp;    // vectors: V[123]
1543    IndexExpr = RHSExp;
1544
1545    // FIXME: need to deal with const...
1546    ResultType = VTy->getElementType();
1547  } else {
1548    return ExprError(Diag(LHSExp->getLocStart(),
1549      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1550  }
1551  // C99 6.5.2.1p1
1552  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1553    return ExprError(Diag(IndexExpr->getLocStart(),
1554      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1555
1556  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1557  // the following check catches trying to index a pointer to a function (e.g.
1558  // void (*)(int)) and pointers to incomplete types.  Functions are not
1559  // objects in C99.
1560  if (!ResultType->isObjectType() && !ResultType->isDependentType())
1561    return ExprError(Diag(BaseExpr->getLocStart(),
1562                diag::err_typecheck_subscript_not_object)
1563      << BaseExpr->getType() << BaseExpr->getSourceRange());
1564
1565  Base.release();
1566  Idx.release();
1567  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1568                                                ResultType, RLoc));
1569}
1570
1571QualType Sema::
1572CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1573                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1574  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1575
1576  // The vector accessor can't exceed the number of elements.
1577  const char *compStr = CompName.getName();
1578
1579  // This flag determines whether or not the component is one of the four
1580  // special names that indicate a subset of exactly half the elements are
1581  // to be selected.
1582  bool HalvingSwizzle = false;
1583
1584  // This flag determines whether or not CompName has an 's' char prefix,
1585  // indicating that it is a string of hex values to be used as vector indices.
1586  bool HexSwizzle = *compStr == 's';
1587
1588  // Check that we've found one of the special components, or that the component
1589  // names must come from the same set.
1590  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1591      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1592    HalvingSwizzle = true;
1593  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1594    do
1595      compStr++;
1596    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1597  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1598    do
1599      compStr++;
1600    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1601  }
1602
1603  if (!HalvingSwizzle && *compStr) {
1604    // We didn't get to the end of the string. This means the component names
1605    // didn't come from the same set *or* we encountered an illegal name.
1606    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1607      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1608    return QualType();
1609  }
1610
1611  // Ensure no component accessor exceeds the width of the vector type it
1612  // operates on.
1613  if (!HalvingSwizzle) {
1614    compStr = CompName.getName();
1615
1616    if (HexSwizzle)
1617      compStr++;
1618
1619    while (*compStr) {
1620      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1621        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1622          << baseType << SourceRange(CompLoc);
1623        return QualType();
1624      }
1625    }
1626  }
1627
1628  // If this is a halving swizzle, verify that the base type has an even
1629  // number of elements.
1630  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1631    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1632      << baseType << SourceRange(CompLoc);
1633    return QualType();
1634  }
1635
1636  // The component accessor looks fine - now we need to compute the actual type.
1637  // The vector type is implied by the component accessor. For example,
1638  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1639  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1640  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1641  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1642                                     : CompName.getLength();
1643  if (HexSwizzle)
1644    CompSize--;
1645
1646  if (CompSize == 1)
1647    return vecType->getElementType();
1648
1649  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1650  // Now look up the TypeDefDecl from the vector type. Without this,
1651  // diagostics look bad. We want extended vector types to appear built-in.
1652  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1653    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1654      return Context.getTypedefType(ExtVectorDecls[i]);
1655  }
1656  return VT; // should never get here (a typedef type should always be found).
1657}
1658
1659
1660/// constructSetterName - Return the setter name for the given
1661/// identifier, i.e. "set" + Name where the initial character of Name
1662/// has been capitalized.
1663// FIXME: Merge with same routine in Parser. But where should this
1664// live?
1665static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1666                                           const IdentifierInfo *Name) {
1667  llvm::SmallString<100> SelectorName;
1668  SelectorName = "set";
1669  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1670  SelectorName[3] = toupper(SelectorName[3]);
1671  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1672}
1673
1674Action::OwningExprResult
1675Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1676                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1677                               IdentifierInfo &Member,
1678                               DeclTy *ObjCImpDecl) {
1679  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1680  assert(BaseExpr && "no record expression");
1681
1682  // Perform default conversions.
1683  DefaultFunctionArrayConversion(BaseExpr);
1684
1685  QualType BaseType = BaseExpr->getType();
1686  assert(!BaseType.isNull() && "no type for member expression");
1687
1688  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1689  // must have pointer type, and the accessed type is the pointee.
1690  if (OpKind == tok::arrow) {
1691    if (const PointerType *PT = BaseType->getAsPointerType())
1692      BaseType = PT->getPointeeType();
1693    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1694      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1695                                            MemberLoc, Member));
1696    else
1697      return ExprError(Diag(MemberLoc,
1698                            diag::err_typecheck_member_reference_arrow)
1699        << BaseType << BaseExpr->getSourceRange());
1700  }
1701
1702  // Handle field access to simple records.  This also handles access to fields
1703  // of the ObjC 'id' struct.
1704  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1705    RecordDecl *RDecl = RTy->getDecl();
1706    if (DiagnoseIncompleteType(OpLoc, BaseType,
1707                               diag::err_typecheck_incomplete_tag,
1708                               BaseExpr->getSourceRange()))
1709      return ExprError();
1710
1711    // The record definition is complete, now make sure the member is valid.
1712    // FIXME: Qualified name lookup for C++ is a bit more complicated
1713    // than this.
1714    LookupResult Result
1715      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1716                            LookupMemberName, false);
1717
1718    NamedDecl *MemberDecl = 0;
1719    if (!Result)
1720      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1721               << &Member << BaseExpr->getSourceRange());
1722    else if (Result.isAmbiguous()) {
1723      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1724                              MemberLoc, BaseExpr->getSourceRange());
1725      return ExprError();
1726    } else
1727      MemberDecl = Result;
1728
1729    // If the decl being referenced had an error, return an error for this
1730    // sub-expr without emitting another error, in order to avoid cascading
1731    // error cases.
1732    if (MemberDecl->isInvalidDecl())
1733      return ExprError();
1734
1735    // Check the use of this field
1736    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1737      return ExprError();
1738
1739    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1740      // We may have found a field within an anonymous union or struct
1741      // (C++ [class.union]).
1742      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1743        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1744                                                        BaseExpr, OpLoc);
1745
1746      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1747      // FIXME: Handle address space modifiers
1748      QualType MemberType = FD->getType();
1749      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1750        MemberType = Ref->getPointeeType();
1751      else {
1752        unsigned combinedQualifiers =
1753          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1754        if (FD->isMutable())
1755          combinedQualifiers &= ~QualType::Const;
1756        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1757      }
1758
1759      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1760                                            MemberLoc, MemberType));
1761    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1762      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1763                                  Var, MemberLoc,
1764                                  Var->getType().getNonReferenceType()));
1765    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1766      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1767                                  MemberFn, MemberLoc, MemberFn->getType()));
1768    else if (OverloadedFunctionDecl *Ovl
1769             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1770      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1771                                  MemberLoc, Context.OverloadTy));
1772    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1773      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1774                                            Enum, MemberLoc, Enum->getType()));
1775    else if (isa<TypeDecl>(MemberDecl))
1776      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1777        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1778
1779    // We found a declaration kind that we didn't expect. This is a
1780    // generic error message that tells the user that she can't refer
1781    // to this member with '.' or '->'.
1782    return ExprError(Diag(MemberLoc,
1783                          diag::err_typecheck_member_reference_unknown)
1784      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1785  }
1786
1787  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1788  // (*Obj).ivar.
1789  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1790    ObjCInterfaceDecl *ClassDeclared;
1791    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member,
1792                                                             ClassDeclared)) {
1793      // If the decl being referenced had an error, return an error for this
1794      // sub-expr without emitting another error, in order to avoid cascading
1795      // error cases.
1796      if (IV->isInvalidDecl())
1797        return ExprError();
1798
1799      // Check whether we can reference this field.
1800      if (DiagnoseUseOfDecl(IV, MemberLoc))
1801        return ExprError();
1802      if (IV->getAccessControl() != ObjCIvarDecl::Public) {
1803        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1804        if (ObjCMethodDecl *MD = getCurMethodDecl())
1805          ClassOfMethodDecl =  MD->getClassInterface();
1806        else if (ObjCImpDecl && getCurFunctionDecl()) {
1807          // Case of a c-function declared inside an objc implementation.
1808          // FIXME: For a c-style function nested inside an objc implementation
1809          // class, there is no implementation context available, so we pass down
1810          // the context as argument to this routine. Ideally, this context need
1811          // be passed down in the AST node and somehow calculated from the AST
1812          // for a function decl.
1813          Decl *ImplDecl = static_cast<Decl *>(ObjCImpDecl);
1814          if (ObjCImplementationDecl *IMPD =
1815              dyn_cast<ObjCImplementationDecl>(ImplDecl))
1816            ClassOfMethodDecl = IMPD->getClassInterface();
1817          else if (ObjCCategoryImplDecl* CatImplClass =
1818                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
1819            ClassOfMethodDecl = CatImplClass->getClassInterface();
1820        }
1821        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1822          if (ClassDeclared != IFTy->getDecl() ||
1823              ClassOfMethodDecl != ClassDeclared)
1824            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
1825        }
1826        // @protected
1827        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
1828          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
1829      }
1830
1831      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1832                                                 MemberLoc, BaseExpr,
1833                                                 OpKind == tok::arrow);
1834      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1835      return Owned(MRef);
1836    }
1837    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1838                       << IFTy->getDecl()->getDeclName() << &Member
1839                       << BaseExpr->getSourceRange());
1840  }
1841
1842  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1843  // pointer to a (potentially qualified) interface type.
1844  const PointerType *PTy;
1845  const ObjCInterfaceType *IFTy;
1846  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1847      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1848    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1849
1850    // Search for a declared property first.
1851    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1852      // Check whether we can reference this property.
1853      if (DiagnoseUseOfDecl(PD, MemberLoc))
1854        return ExprError();
1855
1856      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1857                                                     MemberLoc, BaseExpr));
1858    }
1859
1860    // Check protocols on qualified interfaces.
1861    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1862         E = IFTy->qual_end(); I != E; ++I)
1863      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1864        // Check whether we can reference this property.
1865        if (DiagnoseUseOfDecl(PD, MemberLoc))
1866          return ExprError();
1867
1868        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1869                                                       MemberLoc, BaseExpr));
1870      }
1871
1872    // If that failed, look for an "implicit" property by seeing if the nullary
1873    // selector is implemented.
1874
1875    // FIXME: The logic for looking up nullary and unary selectors should be
1876    // shared with the code in ActOnInstanceMessage.
1877
1878    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1879    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1880
1881    // If this reference is in an @implementation, check for 'private' methods.
1882    if (!Getter)
1883      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1884        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1885          if (ObjCImplementationDecl *ImpDecl =
1886              ObjCImplementations[ClassDecl->getIdentifier()])
1887            Getter = ImpDecl->getInstanceMethod(Sel);
1888
1889    // Look through local category implementations associated with the class.
1890    if (!Getter) {
1891      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1892        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1893          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1894      }
1895    }
1896    if (Getter) {
1897      // Check if we can reference this property.
1898      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1899        return ExprError();
1900
1901      // If we found a getter then this may be a valid dot-reference, we
1902      // will look for the matching setter, in case it is needed.
1903      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1904                                                       &Member);
1905      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1906      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1907      if (!Setter) {
1908        // If this reference is in an @implementation, also check for 'private'
1909        // methods.
1910        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1911          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1912            if (ObjCImplementationDecl *ImpDecl =
1913                  ObjCImplementations[ClassDecl->getIdentifier()])
1914              Setter = ImpDecl->getInstanceMethod(SetterSel);
1915      }
1916      // Look through local category implementations associated with the class.
1917      if (!Setter) {
1918        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1919          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1920            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1921        }
1922      }
1923
1924      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1925        return ExprError();
1926
1927      // FIXME: we must check that the setter has property type.
1928      return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(),
1929                                      Setter, MemberLoc, BaseExpr));
1930    }
1931
1932    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1933      << &Member << BaseType);
1934  }
1935  // Handle properties on qualified "id" protocols.
1936  const ObjCQualifiedIdType *QIdTy;
1937  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1938    // Check protocols on qualified interfaces.
1939    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1940         E = QIdTy->qual_end(); I != E; ++I) {
1941      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1942        // Check the use of this declaration
1943        if (DiagnoseUseOfDecl(PD, MemberLoc))
1944          return ExprError();
1945
1946        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1947                                                       MemberLoc, BaseExpr));
1948      }
1949      // Also must look for a getter name which uses property syntax.
1950      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1951      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1952        // Check the use of this method.
1953        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1954          return ExprError();
1955
1956        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1957                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1958      }
1959    }
1960
1961    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1962                       << &Member << BaseType);
1963  }
1964  // Handle properties on ObjC 'Class' types.
1965  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
1966    // Also must look for a getter name which uses property syntax.
1967    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1968    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1969      ObjCMethodDecl *OMD;
1970      // FIXME: need to also look locally in the implementation.
1971      if ((OMD = MD->getClassInterface()->lookupClassMethod(Sel))) {
1972        // Check the use of this method.
1973        if (DiagnoseUseOfDecl(OMD, MemberLoc))
1974          return ExprError();
1975
1976        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1977                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1978      }
1979    }
1980  }
1981
1982  // Handle 'field access' to vectors, such as 'V.xx'.
1983  if (BaseType->isExtVectorType()) {
1984    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1985    if (ret.isNull())
1986      return ExprError();
1987    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1988                                                    MemberLoc));
1989  }
1990
1991  return ExprError(Diag(MemberLoc,
1992                        diag::err_typecheck_member_reference_struct_union)
1993                     << BaseType << BaseExpr->getSourceRange());
1994}
1995
1996/// ConvertArgumentsForCall - Converts the arguments specified in
1997/// Args/NumArgs to the parameter types of the function FDecl with
1998/// function prototype Proto. Call is the call expression itself, and
1999/// Fn is the function expression. For a C++ member function, this
2000/// routine does not attempt to convert the object argument. Returns
2001/// true if the call is ill-formed.
2002bool
2003Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2004                              FunctionDecl *FDecl,
2005                              const FunctionProtoType *Proto,
2006                              Expr **Args, unsigned NumArgs,
2007                              SourceLocation RParenLoc) {
2008  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2009  // assignment, to the types of the corresponding parameter, ...
2010  unsigned NumArgsInProto = Proto->getNumArgs();
2011  unsigned NumArgsToCheck = NumArgs;
2012  bool Invalid = false;
2013
2014  // If too few arguments are available (and we don't have default
2015  // arguments for the remaining parameters), don't make the call.
2016  if (NumArgs < NumArgsInProto) {
2017    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2018      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2019        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2020    // Use default arguments for missing arguments
2021    NumArgsToCheck = NumArgsInProto;
2022    Call->setNumArgs(Context, NumArgsInProto);
2023  }
2024
2025  // If too many are passed and not variadic, error on the extras and drop
2026  // them.
2027  if (NumArgs > NumArgsInProto) {
2028    if (!Proto->isVariadic()) {
2029      Diag(Args[NumArgsInProto]->getLocStart(),
2030           diag::err_typecheck_call_too_many_args)
2031        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2032        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2033                       Args[NumArgs-1]->getLocEnd());
2034      // This deletes the extra arguments.
2035      Call->setNumArgs(Context, NumArgsInProto);
2036      Invalid = true;
2037    }
2038    NumArgsToCheck = NumArgsInProto;
2039  }
2040
2041  // Continue to check argument types (even if we have too few/many args).
2042  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2043    QualType ProtoArgType = Proto->getArgType(i);
2044
2045    Expr *Arg;
2046    if (i < NumArgs) {
2047      Arg = Args[i];
2048
2049      // Pass the argument.
2050      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2051        return true;
2052    } else
2053      // We already type-checked the argument, so we know it works.
2054      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2055    QualType ArgType = Arg->getType();
2056
2057    Call->setArg(i, Arg);
2058  }
2059
2060  // If this is a variadic call, handle args passed through "...".
2061  if (Proto->isVariadic()) {
2062    VariadicCallType CallType = VariadicFunction;
2063    if (Fn->getType()->isBlockPointerType())
2064      CallType = VariadicBlock; // Block
2065    else if (isa<MemberExpr>(Fn))
2066      CallType = VariadicMethod;
2067
2068    // Promote the arguments (C99 6.5.2.2p7).
2069    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2070      Expr *Arg = Args[i];
2071      DefaultVariadicArgumentPromotion(Arg, CallType);
2072      Call->setArg(i, Arg);
2073    }
2074  }
2075
2076  return Invalid;
2077}
2078
2079/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2080/// This provides the location of the left/right parens and a list of comma
2081/// locations.
2082Action::OwningExprResult
2083Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2084                    MultiExprArg args,
2085                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2086  unsigned NumArgs = args.size();
2087  Expr *Fn = static_cast<Expr *>(fn.release());
2088  Expr **Args = reinterpret_cast<Expr**>(args.release());
2089  assert(Fn && "no function call expression");
2090  FunctionDecl *FDecl = NULL;
2091  DeclarationName UnqualifiedName;
2092
2093  if (getLangOptions().CPlusPlus) {
2094    // Determine whether this is a dependent call inside a C++ template,
2095    // in which case we won't do any semantic analysis now.
2096    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2097    bool Dependent = false;
2098    if (Fn->isTypeDependent())
2099      Dependent = true;
2100    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2101      Dependent = true;
2102
2103    if (Dependent)
2104      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2105                                          Context.DependentTy, RParenLoc));
2106
2107    // Determine whether this is a call to an object (C++ [over.call.object]).
2108    if (Fn->getType()->isRecordType())
2109      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2110                                                CommaLocs, RParenLoc));
2111
2112    // Determine whether this is a call to a member function.
2113    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2114      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2115          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2116        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2117                                               CommaLocs, RParenLoc));
2118  }
2119
2120  // If we're directly calling a function, get the appropriate declaration.
2121  DeclRefExpr *DRExpr = NULL;
2122  Expr *FnExpr = Fn;
2123  bool ADL = true;
2124  while (true) {
2125    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2126      FnExpr = IcExpr->getSubExpr();
2127    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2128      // Parentheses around a function disable ADL
2129      // (C++0x [basic.lookup.argdep]p1).
2130      ADL = false;
2131      FnExpr = PExpr->getSubExpr();
2132    } else if (isa<UnaryOperator>(FnExpr) &&
2133               cast<UnaryOperator>(FnExpr)->getOpcode()
2134                 == UnaryOperator::AddrOf) {
2135      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2136    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2137      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2138      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2139      break;
2140    } else if (UnresolvedFunctionNameExpr *DepName
2141                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2142      UnqualifiedName = DepName->getName();
2143      break;
2144    } else {
2145      // Any kind of name that does not refer to a declaration (or
2146      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2147      ADL = false;
2148      break;
2149    }
2150  }
2151
2152  OverloadedFunctionDecl *Ovl = 0;
2153  if (DRExpr) {
2154    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2155    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2156  }
2157
2158  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2159    // We don't perform ADL for implicit declarations of builtins.
2160    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2161      ADL = false;
2162
2163    // We don't perform ADL in C.
2164    if (!getLangOptions().CPlusPlus)
2165      ADL = false;
2166
2167    if (Ovl || ADL) {
2168      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2169                                      UnqualifiedName, LParenLoc, Args,
2170                                      NumArgs, CommaLocs, RParenLoc, ADL);
2171      if (!FDecl)
2172        return ExprError();
2173
2174      // Update Fn to refer to the actual function selected.
2175      Expr *NewFn = 0;
2176      if (QualifiedDeclRefExpr *QDRExpr
2177            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2178        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2179                                                   QDRExpr->getLocation(),
2180                                                   false, false,
2181                                          QDRExpr->getSourceRange().getBegin());
2182      else
2183        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2184                                          Fn->getSourceRange().getBegin());
2185      Fn->Destroy(Context);
2186      Fn = NewFn;
2187    }
2188  }
2189
2190  // Promote the function operand.
2191  UsualUnaryConversions(Fn);
2192
2193  // Make the call expr early, before semantic checks.  This guarantees cleanup
2194  // of arguments and function on error.
2195  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2196                                                               Args, NumArgs,
2197                                                               Context.BoolTy,
2198                                                               RParenLoc));
2199
2200  const FunctionType *FuncT;
2201  if (!Fn->getType()->isBlockPointerType()) {
2202    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2203    // have type pointer to function".
2204    const PointerType *PT = Fn->getType()->getAsPointerType();
2205    if (PT == 0)
2206      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2207        << Fn->getType() << Fn->getSourceRange());
2208    FuncT = PT->getPointeeType()->getAsFunctionType();
2209  } else { // This is a block call.
2210    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2211                getAsFunctionType();
2212  }
2213  if (FuncT == 0)
2214    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2215      << Fn->getType() << Fn->getSourceRange());
2216
2217  // We know the result type of the call, set it.
2218  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2219
2220  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2221    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2222                                RParenLoc))
2223      return ExprError();
2224  } else {
2225    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2226
2227    // Promote the arguments (C99 6.5.2.2p6).
2228    for (unsigned i = 0; i != NumArgs; i++) {
2229      Expr *Arg = Args[i];
2230      DefaultArgumentPromotion(Arg);
2231      TheCall->setArg(i, Arg);
2232    }
2233  }
2234
2235  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2236    if (!Method->isStatic())
2237      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2238        << Fn->getSourceRange());
2239
2240  // Do special checking on direct calls to functions.
2241  if (FDecl)
2242    return CheckFunctionCall(FDecl, TheCall.take());
2243
2244  return Owned(TheCall.take());
2245}
2246
2247Action::OwningExprResult
2248Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2249                           SourceLocation RParenLoc, ExprArg InitExpr) {
2250  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2251  QualType literalType = QualType::getFromOpaquePtr(Ty);
2252  // FIXME: put back this assert when initializers are worked out.
2253  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2254  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2255
2256  if (literalType->isArrayType()) {
2257    if (literalType->isVariableArrayType())
2258      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2259        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2260  } else if (DiagnoseIncompleteType(LParenLoc, literalType,
2261                                    diag::err_typecheck_decl_incomplete_type,
2262                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2263    return ExprError();
2264
2265  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2266                            DeclarationName(), /*FIXME:DirectInit=*/false))
2267    return ExprError();
2268
2269  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2270  if (isFileScope) { // 6.5.2.5p3
2271    if (CheckForConstantInitializer(literalExpr, literalType))
2272      return ExprError();
2273  }
2274  InitExpr.release();
2275  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2276                                                 literalExpr, isFileScope));
2277}
2278
2279Action::OwningExprResult
2280Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2281                    InitListDesignations &Designators,
2282                    SourceLocation RBraceLoc) {
2283  unsigned NumInit = initlist.size();
2284  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2285
2286  // Semantic analysis for initializers is done by ActOnDeclarator() and
2287  // CheckInitializer() - it requires knowledge of the object being intialized.
2288
2289  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2290                                               RBraceLoc);
2291  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2292  return Owned(E);
2293}
2294
2295/// CheckCastTypes - Check type constraints for casting between types.
2296bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2297  UsualUnaryConversions(castExpr);
2298
2299  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2300  // type needs to be scalar.
2301  if (castType->isVoidType()) {
2302    // Cast to void allows any expr type.
2303  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2304    // We can't check any more until template instantiation time.
2305  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2306    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2307        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2308        (castType->isStructureType() || castType->isUnionType())) {
2309      // GCC struct/union extension: allow cast to self.
2310      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2311        << castType << castExpr->getSourceRange();
2312    } else if (castType->isUnionType()) {
2313      // GCC cast to union extension
2314      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2315      RecordDecl::field_iterator Field, FieldEnd;
2316      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2317           Field != FieldEnd; ++Field) {
2318        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2319            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2320          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2321            << castExpr->getSourceRange();
2322          break;
2323        }
2324      }
2325      if (Field == FieldEnd)
2326        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2327          << castExpr->getType() << castExpr->getSourceRange();
2328    } else {
2329      // Reject any other conversions to non-scalar types.
2330      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2331        << castType << castExpr->getSourceRange();
2332    }
2333  } else if (!castExpr->getType()->isScalarType() &&
2334             !castExpr->getType()->isVectorType()) {
2335    return Diag(castExpr->getLocStart(),
2336                diag::err_typecheck_expect_scalar_operand)
2337      << castExpr->getType() << castExpr->getSourceRange();
2338  } else if (castExpr->getType()->isVectorType()) {
2339    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2340      return true;
2341  } else if (castType->isVectorType()) {
2342    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2343      return true;
2344  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2345    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2346  }
2347  return false;
2348}
2349
2350bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2351  assert(VectorTy->isVectorType() && "Not a vector type!");
2352
2353  if (Ty->isVectorType() || Ty->isIntegerType()) {
2354    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2355      return Diag(R.getBegin(),
2356                  Ty->isVectorType() ?
2357                  diag::err_invalid_conversion_between_vectors :
2358                  diag::err_invalid_conversion_between_vector_and_integer)
2359        << VectorTy << Ty << R;
2360  } else
2361    return Diag(R.getBegin(),
2362                diag::err_invalid_conversion_between_vector_and_scalar)
2363      << VectorTy << Ty << R;
2364
2365  return false;
2366}
2367
2368Action::OwningExprResult
2369Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2370                    SourceLocation RParenLoc, ExprArg Op) {
2371  assert((Ty != 0) && (Op.get() != 0) &&
2372         "ActOnCastExpr(): missing type or expr");
2373
2374  Expr *castExpr = static_cast<Expr*>(Op.release());
2375  QualType castType = QualType::getFromOpaquePtr(Ty);
2376
2377  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2378    return ExprError();
2379  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2380                                            LParenLoc, RParenLoc));
2381}
2382
2383/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2384/// In that case, lhs = cond.
2385/// C99 6.5.15
2386QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2387                                        SourceLocation QuestionLoc) {
2388  UsualUnaryConversions(Cond);
2389  UsualUnaryConversions(LHS);
2390  UsualUnaryConversions(RHS);
2391  QualType CondTy = Cond->getType();
2392  QualType LHSTy = LHS->getType();
2393  QualType RHSTy = RHS->getType();
2394
2395  // first, check the condition.
2396  if (!Cond->isTypeDependent()) {
2397    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2398      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2399        << CondTy;
2400      return QualType();
2401    }
2402  }
2403
2404  // Now check the two expressions.
2405  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2406    return Context.DependentTy;
2407
2408  // If both operands have arithmetic type, do the usual arithmetic conversions
2409  // to find a common type: C99 6.5.15p3,5.
2410  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2411    UsualArithmeticConversions(LHS, RHS);
2412    return LHS->getType();
2413  }
2414
2415  // If both operands are the same structure or union type, the result is that
2416  // type.
2417  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2418    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2419      if (LHSRT->getDecl() == RHSRT->getDecl())
2420        // "If both the operands have structure or union type, the result has
2421        // that type."  This implies that CV qualifiers are dropped.
2422        return LHSTy.getUnqualifiedType();
2423  }
2424
2425  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2426  // The following || allows only one side to be void (a GCC-ism).
2427  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2428    if (!LHSTy->isVoidType())
2429      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2430        << RHS->getSourceRange();
2431    if (!RHSTy->isVoidType())
2432      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2433        << LHS->getSourceRange();
2434    ImpCastExprToType(LHS, Context.VoidTy);
2435    ImpCastExprToType(RHS, Context.VoidTy);
2436    return Context.VoidTy;
2437  }
2438  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2439  // the type of the other operand."
2440  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2441       Context.isObjCObjectPointerType(LHSTy)) &&
2442      RHS->isNullPointerConstant(Context)) {
2443    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2444    return LHSTy;
2445  }
2446  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2447       Context.isObjCObjectPointerType(RHSTy)) &&
2448      LHS->isNullPointerConstant(Context)) {
2449    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2450    return RHSTy;
2451  }
2452
2453  // Handle the case where both operands are pointers before we handle null
2454  // pointer constants in case both operands are null pointer constants.
2455  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2456    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2457      // get the "pointed to" types
2458      QualType lhptee = LHSPT->getPointeeType();
2459      QualType rhptee = RHSPT->getPointeeType();
2460
2461      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2462      if (lhptee->isVoidType() &&
2463          rhptee->isIncompleteOrObjectType()) {
2464        // Figure out necessary qualifiers (C99 6.5.15p6)
2465        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2466        QualType destType = Context.getPointerType(destPointee);
2467        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2468        ImpCastExprToType(RHS, destType); // promote to void*
2469        return destType;
2470      }
2471      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2472        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2473        QualType destType = Context.getPointerType(destPointee);
2474        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2475        ImpCastExprToType(RHS, destType); // promote to void*
2476        return destType;
2477      }
2478
2479      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2480        // Two identical pointer types are always compatible.
2481        return LHSTy;
2482      }
2483
2484      QualType compositeType = LHSTy;
2485
2486      // If either type is an Objective-C object type then check
2487      // compatibility according to Objective-C.
2488      if (Context.isObjCObjectPointerType(LHSTy) ||
2489          Context.isObjCObjectPointerType(RHSTy)) {
2490        // If both operands are interfaces and either operand can be
2491        // assigned to the other, use that type as the composite
2492        // type. This allows
2493        //   xxx ? (A*) a : (B*) b
2494        // where B is a subclass of A.
2495        //
2496        // Additionally, as for assignment, if either type is 'id'
2497        // allow silent coercion. Finally, if the types are
2498        // incompatible then make sure to use 'id' as the composite
2499        // type so the result is acceptable for sending messages to.
2500
2501        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2502        // It could return the composite type.
2503        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2504        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2505        if (LHSIface && RHSIface &&
2506            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2507          compositeType = LHSTy;
2508        } else if (LHSIface && RHSIface &&
2509                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2510          compositeType = RHSTy;
2511        } else if (Context.isObjCIdStructType(lhptee) ||
2512                   Context.isObjCIdStructType(rhptee)) {
2513          compositeType = Context.getObjCIdType();
2514        } else {
2515          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2516               << LHSTy << RHSTy
2517               << LHS->getSourceRange() << RHS->getSourceRange();
2518          QualType incompatTy = Context.getObjCIdType();
2519          ImpCastExprToType(LHS, incompatTy);
2520          ImpCastExprToType(RHS, incompatTy);
2521          return incompatTy;
2522        }
2523      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2524                                             rhptee.getUnqualifiedType())) {
2525        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2526          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2527        // In this situation, we assume void* type. No especially good
2528        // reason, but this is what gcc does, and we do have to pick
2529        // to get a consistent AST.
2530        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2531        ImpCastExprToType(LHS, incompatTy);
2532        ImpCastExprToType(RHS, incompatTy);
2533        return incompatTy;
2534      }
2535      // The pointer types are compatible.
2536      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2537      // differently qualified versions of compatible types, the result type is
2538      // a pointer to an appropriately qualified version of the *composite*
2539      // type.
2540      // FIXME: Need to calculate the composite type.
2541      // FIXME: Need to add qualifiers
2542      ImpCastExprToType(LHS, compositeType);
2543      ImpCastExprToType(RHS, compositeType);
2544      return compositeType;
2545    }
2546  }
2547
2548  // Selection between block pointer types is ok as long as they are the same.
2549  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2550      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2551    return LHSTy;
2552
2553  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2554  // evaluates to "struct objc_object *" (and is handled above when comparing
2555  // id with statically typed objects).
2556  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2557    // GCC allows qualified id and any Objective-C type to devolve to
2558    // id. Currently localizing to here until clear this should be
2559    // part of ObjCQualifiedIdTypesAreCompatible.
2560    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2561        (LHSTy->isObjCQualifiedIdType() &&
2562         Context.isObjCObjectPointerType(RHSTy)) ||
2563        (RHSTy->isObjCQualifiedIdType() &&
2564         Context.isObjCObjectPointerType(LHSTy))) {
2565      // FIXME: This is not the correct composite type. This only
2566      // happens to work because id can more or less be used anywhere,
2567      // however this may change the type of method sends.
2568      // FIXME: gcc adds some type-checking of the arguments and emits
2569      // (confusing) incompatible comparison warnings in some
2570      // cases. Investigate.
2571      QualType compositeType = Context.getObjCIdType();
2572      ImpCastExprToType(LHS, compositeType);
2573      ImpCastExprToType(RHS, compositeType);
2574      return compositeType;
2575    }
2576  }
2577
2578  // Otherwise, the operands are not compatible.
2579  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2580    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2581  return QualType();
2582}
2583
2584/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2585/// in the case of a the GNU conditional expr extension.
2586Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2587                                                  SourceLocation ColonLoc,
2588                                                  ExprArg Cond, ExprArg LHS,
2589                                                  ExprArg RHS) {
2590  Expr *CondExpr = (Expr *) Cond.get();
2591  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2592
2593  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2594  // was the condition.
2595  bool isLHSNull = LHSExpr == 0;
2596  if (isLHSNull)
2597    LHSExpr = CondExpr;
2598
2599  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2600                                             RHSExpr, QuestionLoc);
2601  if (result.isNull())
2602    return ExprError();
2603
2604  Cond.release();
2605  LHS.release();
2606  RHS.release();
2607  return Owned(new (Context) ConditionalOperator(CondExpr,
2608                                                 isLHSNull ? 0 : LHSExpr,
2609                                                 RHSExpr, result));
2610}
2611
2612
2613// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2614// being closely modeled after the C99 spec:-). The odd characteristic of this
2615// routine is it effectively iqnores the qualifiers on the top level pointee.
2616// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2617// FIXME: add a couple examples in this comment.
2618Sema::AssignConvertType
2619Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2620  QualType lhptee, rhptee;
2621
2622  // get the "pointed to" type (ignoring qualifiers at the top level)
2623  lhptee = lhsType->getAsPointerType()->getPointeeType();
2624  rhptee = rhsType->getAsPointerType()->getPointeeType();
2625
2626  // make sure we operate on the canonical type
2627  lhptee = Context.getCanonicalType(lhptee);
2628  rhptee = Context.getCanonicalType(rhptee);
2629
2630  AssignConvertType ConvTy = Compatible;
2631
2632  // C99 6.5.16.1p1: This following citation is common to constraints
2633  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2634  // qualifiers of the type *pointed to* by the right;
2635  // FIXME: Handle ExtQualType
2636  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2637    ConvTy = CompatiblePointerDiscardsQualifiers;
2638
2639  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2640  // incomplete type and the other is a pointer to a qualified or unqualified
2641  // version of void...
2642  if (lhptee->isVoidType()) {
2643    if (rhptee->isIncompleteOrObjectType())
2644      return ConvTy;
2645
2646    // As an extension, we allow cast to/from void* to function pointer.
2647    assert(rhptee->isFunctionType());
2648    return FunctionVoidPointer;
2649  }
2650
2651  if (rhptee->isVoidType()) {
2652    if (lhptee->isIncompleteOrObjectType())
2653      return ConvTy;
2654
2655    // As an extension, we allow cast to/from void* to function pointer.
2656    assert(lhptee->isFunctionType());
2657    return FunctionVoidPointer;
2658  }
2659  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2660  // unqualified versions of compatible types, ...
2661  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2662                                  rhptee.getUnqualifiedType()))
2663    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2664  return ConvTy;
2665}
2666
2667/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2668/// block pointer types are compatible or whether a block and normal pointer
2669/// are compatible. It is more restrict than comparing two function pointer
2670// types.
2671Sema::AssignConvertType
2672Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2673                                          QualType rhsType) {
2674  QualType lhptee, rhptee;
2675
2676  // get the "pointed to" type (ignoring qualifiers at the top level)
2677  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2678  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2679
2680  // make sure we operate on the canonical type
2681  lhptee = Context.getCanonicalType(lhptee);
2682  rhptee = Context.getCanonicalType(rhptee);
2683
2684  AssignConvertType ConvTy = Compatible;
2685
2686  // For blocks we enforce that qualifiers are identical.
2687  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2688    ConvTy = CompatiblePointerDiscardsQualifiers;
2689
2690  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2691    return IncompatibleBlockPointer;
2692  return ConvTy;
2693}
2694
2695/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2696/// has code to accommodate several GCC extensions when type checking
2697/// pointers. Here are some objectionable examples that GCC considers warnings:
2698///
2699///  int a, *pint;
2700///  short *pshort;
2701///  struct foo *pfoo;
2702///
2703///  pint = pshort; // warning: assignment from incompatible pointer type
2704///  a = pint; // warning: assignment makes integer from pointer without a cast
2705///  pint = a; // warning: assignment makes pointer from integer without a cast
2706///  pint = pfoo; // warning: assignment from incompatible pointer type
2707///
2708/// As a result, the code for dealing with pointers is more complex than the
2709/// C99 spec dictates.
2710///
2711Sema::AssignConvertType
2712Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2713  // Get canonical types.  We're not formatting these types, just comparing
2714  // them.
2715  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2716  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2717
2718  if (lhsType == rhsType)
2719    return Compatible; // Common case: fast path an exact match.
2720
2721  // If the left-hand side is a reference type, then we are in a
2722  // (rare!) case where we've allowed the use of references in C,
2723  // e.g., as a parameter type in a built-in function. In this case,
2724  // just make sure that the type referenced is compatible with the
2725  // right-hand side type. The caller is responsible for adjusting
2726  // lhsType so that the resulting expression does not have reference
2727  // type.
2728  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2729    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2730      return Compatible;
2731    return Incompatible;
2732  }
2733
2734  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2735    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2736      return Compatible;
2737    // Relax integer conversions like we do for pointers below.
2738    if (rhsType->isIntegerType())
2739      return IntToPointer;
2740    if (lhsType->isIntegerType())
2741      return PointerToInt;
2742    return IncompatibleObjCQualifiedId;
2743  }
2744
2745  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2746    // For ExtVector, allow vector splats; float -> <n x float>
2747    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2748      if (LV->getElementType() == rhsType)
2749        return Compatible;
2750
2751    // If we are allowing lax vector conversions, and LHS and RHS are both
2752    // vectors, the total size only needs to be the same. This is a bitcast;
2753    // no bits are changed but the result type is different.
2754    if (getLangOptions().LaxVectorConversions &&
2755        lhsType->isVectorType() && rhsType->isVectorType()) {
2756      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2757        return IncompatibleVectors;
2758    }
2759    return Incompatible;
2760  }
2761
2762  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2763    return Compatible;
2764
2765  if (isa<PointerType>(lhsType)) {
2766    if (rhsType->isIntegerType())
2767      return IntToPointer;
2768
2769    if (isa<PointerType>(rhsType))
2770      return CheckPointerTypesForAssignment(lhsType, rhsType);
2771
2772    if (rhsType->getAsBlockPointerType()) {
2773      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2774        return Compatible;
2775
2776      // Treat block pointers as objects.
2777      if (getLangOptions().ObjC1 &&
2778          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2779        return Compatible;
2780    }
2781    return Incompatible;
2782  }
2783
2784  if (isa<BlockPointerType>(lhsType)) {
2785    if (rhsType->isIntegerType())
2786      return IntToBlockPointer;
2787
2788    // Treat block pointers as objects.
2789    if (getLangOptions().ObjC1 &&
2790        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2791      return Compatible;
2792
2793    if (rhsType->isBlockPointerType())
2794      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2795
2796    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2797      if (RHSPT->getPointeeType()->isVoidType())
2798        return Compatible;
2799    }
2800    return Incompatible;
2801  }
2802
2803  if (isa<PointerType>(rhsType)) {
2804    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2805    if (lhsType == Context.BoolTy)
2806      return Compatible;
2807
2808    if (lhsType->isIntegerType())
2809      return PointerToInt;
2810
2811    if (isa<PointerType>(lhsType))
2812      return CheckPointerTypesForAssignment(lhsType, rhsType);
2813
2814    if (isa<BlockPointerType>(lhsType) &&
2815        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2816      return Compatible;
2817    return Incompatible;
2818  }
2819
2820  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2821    if (Context.typesAreCompatible(lhsType, rhsType))
2822      return Compatible;
2823  }
2824  return Incompatible;
2825}
2826
2827Sema::AssignConvertType
2828Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2829  if (getLangOptions().CPlusPlus) {
2830    if (!lhsType->isRecordType()) {
2831      // C++ 5.17p3: If the left operand is not of class type, the
2832      // expression is implicitly converted (C++ 4) to the
2833      // cv-unqualified type of the left operand.
2834      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2835                                    "assigning"))
2836        return Incompatible;
2837      else
2838        return Compatible;
2839    }
2840
2841    // FIXME: Currently, we fall through and treat C++ classes like C
2842    // structures.
2843  }
2844
2845  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2846  // a null pointer constant.
2847  if ((lhsType->isPointerType() ||
2848       lhsType->isObjCQualifiedIdType() ||
2849       lhsType->isBlockPointerType())
2850      && rExpr->isNullPointerConstant(Context)) {
2851    ImpCastExprToType(rExpr, lhsType);
2852    return Compatible;
2853  }
2854
2855  // This check seems unnatural, however it is necessary to ensure the proper
2856  // conversion of functions/arrays. If the conversion were done for all
2857  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2858  // expressions that surpress this implicit conversion (&, sizeof).
2859  //
2860  // Suppress this for references: C++ 8.5.3p5.
2861  if (!lhsType->isReferenceType())
2862    DefaultFunctionArrayConversion(rExpr);
2863
2864  Sema::AssignConvertType result =
2865    CheckAssignmentConstraints(lhsType, rExpr->getType());
2866
2867  // C99 6.5.16.1p2: The value of the right operand is converted to the
2868  // type of the assignment expression.
2869  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2870  // so that we can use references in built-in functions even in C.
2871  // The getNonReferenceType() call makes sure that the resulting expression
2872  // does not have reference type.
2873  if (rExpr->getType() != lhsType)
2874    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2875  return result;
2876}
2877
2878Sema::AssignConvertType
2879Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2880  return CheckAssignmentConstraints(lhsType, rhsType);
2881}
2882
2883QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2884  Diag(Loc, diag::err_typecheck_invalid_operands)
2885    << lex->getType() << rex->getType()
2886    << lex->getSourceRange() << rex->getSourceRange();
2887  return QualType();
2888}
2889
2890inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2891                                                              Expr *&rex) {
2892  // For conversion purposes, we ignore any qualifiers.
2893  // For example, "const float" and "float" are equivalent.
2894  QualType lhsType =
2895    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2896  QualType rhsType =
2897    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2898
2899  // If the vector types are identical, return.
2900  if (lhsType == rhsType)
2901    return lhsType;
2902
2903  // Handle the case of a vector & extvector type of the same size and element
2904  // type.  It would be nice if we only had one vector type someday.
2905  if (getLangOptions().LaxVectorConversions) {
2906    // FIXME: Should we warn here?
2907    if (const VectorType *LV = lhsType->getAsVectorType()) {
2908      if (const VectorType *RV = rhsType->getAsVectorType())
2909        if (LV->getElementType() == RV->getElementType() &&
2910            LV->getNumElements() == RV->getNumElements()) {
2911          return lhsType->isExtVectorType() ? lhsType : rhsType;
2912        }
2913    }
2914  }
2915
2916  // If the lhs is an extended vector and the rhs is a scalar of the same type
2917  // or a literal, promote the rhs to the vector type.
2918  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2919    QualType eltType = V->getElementType();
2920
2921    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2922        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2923        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2924      ImpCastExprToType(rex, lhsType);
2925      return lhsType;
2926    }
2927  }
2928
2929  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2930  // promote the lhs to the vector type.
2931  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2932    QualType eltType = V->getElementType();
2933
2934    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2935        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2936        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2937      ImpCastExprToType(lex, rhsType);
2938      return rhsType;
2939    }
2940  }
2941
2942  // You cannot convert between vector values of different size.
2943  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2944    << lex->getType() << rex->getType()
2945    << lex->getSourceRange() << rex->getSourceRange();
2946  return QualType();
2947}
2948
2949inline QualType Sema::CheckMultiplyDivideOperands(
2950  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2951{
2952  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2953    return CheckVectorOperands(Loc, lex, rex);
2954
2955  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2956
2957  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2958    return compType;
2959  return InvalidOperands(Loc, lex, rex);
2960}
2961
2962inline QualType Sema::CheckRemainderOperands(
2963  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2964{
2965  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2966    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2967      return CheckVectorOperands(Loc, lex, rex);
2968    return InvalidOperands(Loc, lex, rex);
2969  }
2970
2971  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2972
2973  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2974    return compType;
2975  return InvalidOperands(Loc, lex, rex);
2976}
2977
2978inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2979  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2980{
2981  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2982    return CheckVectorOperands(Loc, lex, rex);
2983
2984  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2985
2986  // handle the common case first (both operands are arithmetic).
2987  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2988    return compType;
2989
2990  // Put any potential pointer into PExp
2991  Expr* PExp = lex, *IExp = rex;
2992  if (IExp->getType()->isPointerType())
2993    std::swap(PExp, IExp);
2994
2995  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2996    if (IExp->getType()->isIntegerType()) {
2997      // Check for arithmetic on pointers to incomplete types
2998      if (!PTy->getPointeeType()->isObjectType()) {
2999        if (PTy->getPointeeType()->isVoidType()) {
3000          if (getLangOptions().CPlusPlus) {
3001            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3002              << lex->getSourceRange() << rex->getSourceRange();
3003            return QualType();
3004          }
3005
3006          // GNU extension: arithmetic on pointer to void
3007          Diag(Loc, diag::ext_gnu_void_ptr)
3008            << lex->getSourceRange() << rex->getSourceRange();
3009        } else if (PTy->getPointeeType()->isFunctionType()) {
3010          if (getLangOptions().CPlusPlus) {
3011            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3012              << lex->getType() << lex->getSourceRange();
3013            return QualType();
3014          }
3015
3016          // GNU extension: arithmetic on pointer to function
3017          Diag(Loc, diag::ext_gnu_ptr_func_arith)
3018            << lex->getType() << lex->getSourceRange();
3019        } else {
3020          DiagnoseIncompleteType(Loc, PTy->getPointeeType(),
3021                                 diag::err_typecheck_arithmetic_incomplete_type,
3022                                 lex->getSourceRange(), SourceRange(),
3023                                 lex->getType());
3024          return QualType();
3025        }
3026      }
3027      return PExp->getType();
3028    }
3029  }
3030
3031  return InvalidOperands(Loc, lex, rex);
3032}
3033
3034// C99 6.5.6
3035QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3036                                        SourceLocation Loc, bool isCompAssign) {
3037  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3038    return CheckVectorOperands(Loc, lex, rex);
3039
3040  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3041
3042  // Enforce type constraints: C99 6.5.6p3.
3043
3044  // Handle the common case first (both operands are arithmetic).
3045  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3046    return compType;
3047
3048  // Either ptr - int   or   ptr - ptr.
3049  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3050    QualType lpointee = LHSPTy->getPointeeType();
3051
3052    // The LHS must be an object type, not incomplete, function, etc.
3053    if (!lpointee->isObjectType()) {
3054      // Handle the GNU void* extension.
3055      if (lpointee->isVoidType()) {
3056        Diag(Loc, diag::ext_gnu_void_ptr)
3057          << lex->getSourceRange() << rex->getSourceRange();
3058      } else if (lpointee->isFunctionType()) {
3059        if (getLangOptions().CPlusPlus) {
3060          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3061            << lex->getType() << lex->getSourceRange();
3062          return QualType();
3063        }
3064
3065        // GNU extension: arithmetic on pointer to function
3066        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3067          << lex->getType() << lex->getSourceRange();
3068      } else {
3069        Diag(Loc, diag::err_typecheck_sub_ptr_object)
3070          << lex->getType() << lex->getSourceRange();
3071        return QualType();
3072      }
3073    }
3074
3075    // The result type of a pointer-int computation is the pointer type.
3076    if (rex->getType()->isIntegerType())
3077      return lex->getType();
3078
3079    // Handle pointer-pointer subtractions.
3080    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3081      QualType rpointee = RHSPTy->getPointeeType();
3082
3083      // RHS must be an object type, unless void (GNU).
3084      if (!rpointee->isObjectType()) {
3085        // Handle the GNU void* extension.
3086        if (rpointee->isVoidType()) {
3087          if (!lpointee->isVoidType())
3088            Diag(Loc, diag::ext_gnu_void_ptr)
3089              << lex->getSourceRange() << rex->getSourceRange();
3090        } else if (rpointee->isFunctionType()) {
3091          if (getLangOptions().CPlusPlus) {
3092            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3093              << rex->getType() << rex->getSourceRange();
3094            return QualType();
3095          }
3096
3097          // GNU extension: arithmetic on pointer to function
3098          if (!lpointee->isFunctionType())
3099            Diag(Loc, diag::ext_gnu_ptr_func_arith)
3100              << lex->getType() << lex->getSourceRange();
3101        } else {
3102          Diag(Loc, diag::err_typecheck_sub_ptr_object)
3103            << rex->getType() << rex->getSourceRange();
3104          return QualType();
3105        }
3106      }
3107
3108      // Pointee types must be compatible.
3109      if (!Context.typesAreCompatible(
3110              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3111              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3112        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3113          << lex->getType() << rex->getType()
3114          << lex->getSourceRange() << rex->getSourceRange();
3115        return QualType();
3116      }
3117
3118      return Context.getPointerDiffType();
3119    }
3120  }
3121
3122  return InvalidOperands(Loc, lex, rex);
3123}
3124
3125// C99 6.5.7
3126QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3127                                  bool isCompAssign) {
3128  // C99 6.5.7p2: Each of the operands shall have integer type.
3129  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3130    return InvalidOperands(Loc, lex, rex);
3131
3132  // Shifts don't perform usual arithmetic conversions, they just do integer
3133  // promotions on each operand. C99 6.5.7p3
3134  if (!isCompAssign)
3135    UsualUnaryConversions(lex);
3136  UsualUnaryConversions(rex);
3137
3138  // "The type of the result is that of the promoted left operand."
3139  return lex->getType();
3140}
3141
3142// C99 6.5.8
3143QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3144                                    bool isRelational) {
3145  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3146    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3147
3148  // C99 6.5.8p3 / C99 6.5.9p4
3149  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3150    UsualArithmeticConversions(lex, rex);
3151  else {
3152    UsualUnaryConversions(lex);
3153    UsualUnaryConversions(rex);
3154  }
3155  QualType lType = lex->getType();
3156  QualType rType = rex->getType();
3157
3158  // For non-floating point types, check for self-comparisons of the form
3159  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3160  // often indicate logic errors in the program.
3161  if (!lType->isFloatingType()) {
3162    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3163      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3164        if (DRL->getDecl() == DRR->getDecl())
3165          Diag(Loc, diag::warn_selfcomparison);
3166  }
3167
3168  // The result of comparisons is 'bool' in C++, 'int' in C.
3169  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
3170
3171  if (isRelational) {
3172    if (lType->isRealType() && rType->isRealType())
3173      return ResultTy;
3174  } else {
3175    // Check for comparisons of floating point operands using != and ==.
3176    if (lType->isFloatingType()) {
3177      assert (rType->isFloatingType());
3178      CheckFloatComparison(Loc,lex,rex);
3179    }
3180
3181    if (lType->isArithmeticType() && rType->isArithmeticType())
3182      return ResultTy;
3183  }
3184
3185  bool LHSIsNull = lex->isNullPointerConstant(Context);
3186  bool RHSIsNull = rex->isNullPointerConstant(Context);
3187
3188  // All of the following pointer related warnings are GCC extensions, except
3189  // when handling null pointer constants. One day, we can consider making them
3190  // errors (when -pedantic-errors is enabled).
3191  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3192    QualType LCanPointeeTy =
3193      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3194    QualType RCanPointeeTy =
3195      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3196
3197    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3198        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3199        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3200                                    RCanPointeeTy.getUnqualifiedType()) &&
3201        !Context.areComparableObjCPointerTypes(lType, rType)) {
3202      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3203        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3204    }
3205    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3206    return ResultTy;
3207  }
3208  // Handle block pointer types.
3209  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3210    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3211    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3212
3213    if (!LHSIsNull && !RHSIsNull &&
3214        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3215      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3216        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3217    }
3218    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3219    return ResultTy;
3220  }
3221  // Allow block pointers to be compared with null pointer constants.
3222  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3223      (lType->isPointerType() && rType->isBlockPointerType())) {
3224    if (!LHSIsNull && !RHSIsNull) {
3225      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3226        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3227    }
3228    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3229    return ResultTy;
3230  }
3231
3232  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3233    if (lType->isPointerType() || rType->isPointerType()) {
3234      const PointerType *LPT = lType->getAsPointerType();
3235      const PointerType *RPT = rType->getAsPointerType();
3236      bool LPtrToVoid = LPT ?
3237        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3238      bool RPtrToVoid = RPT ?
3239        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3240
3241      if (!LPtrToVoid && !RPtrToVoid &&
3242          !Context.typesAreCompatible(lType, rType)) {
3243        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3244          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3245        ImpCastExprToType(rex, lType);
3246        return ResultTy;
3247      }
3248      ImpCastExprToType(rex, lType);
3249      return ResultTy;
3250    }
3251    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3252      ImpCastExprToType(rex, lType);
3253      return ResultTy;
3254    } else {
3255      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3256        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3257          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3258        ImpCastExprToType(rex, lType);
3259        return ResultTy;
3260      }
3261    }
3262  }
3263  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3264       rType->isIntegerType()) {
3265    if (!RHSIsNull)
3266      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3267        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3268    ImpCastExprToType(rex, lType); // promote the integer to pointer
3269    return ResultTy;
3270  }
3271  if (lType->isIntegerType() &&
3272      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3273    if (!LHSIsNull)
3274      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3275        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3276    ImpCastExprToType(lex, rType); // promote the integer to pointer
3277    return ResultTy;
3278  }
3279  // Handle block pointers.
3280  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3281    if (!RHSIsNull)
3282      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3283        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3284    ImpCastExprToType(rex, lType); // promote the integer to pointer
3285    return ResultTy;
3286  }
3287  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3288    if (!LHSIsNull)
3289      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3290        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3291    ImpCastExprToType(lex, rType); // promote the integer to pointer
3292    return ResultTy;
3293  }
3294  return InvalidOperands(Loc, lex, rex);
3295}
3296
3297/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3298/// operates on extended vector types.  Instead of producing an IntTy result,
3299/// like a scalar comparison, a vector comparison produces a vector of integer
3300/// types.
3301QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3302                                          SourceLocation Loc,
3303                                          bool isRelational) {
3304  // Check to make sure we're operating on vectors of the same type and width,
3305  // Allowing one side to be a scalar of element type.
3306  QualType vType = CheckVectorOperands(Loc, lex, rex);
3307  if (vType.isNull())
3308    return vType;
3309
3310  QualType lType = lex->getType();
3311  QualType rType = rex->getType();
3312
3313  // For non-floating point types, check for self-comparisons of the form
3314  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3315  // often indicate logic errors in the program.
3316  if (!lType->isFloatingType()) {
3317    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3318      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3319        if (DRL->getDecl() == DRR->getDecl())
3320          Diag(Loc, diag::warn_selfcomparison);
3321  }
3322
3323  // Check for comparisons of floating point operands using != and ==.
3324  if (!isRelational && lType->isFloatingType()) {
3325    assert (rType->isFloatingType());
3326    CheckFloatComparison(Loc,lex,rex);
3327  }
3328
3329  // Return the type for the comparison, which is the same as vector type for
3330  // integer vectors, or an integer type of identical size and number of
3331  // elements for floating point vectors.
3332  if (lType->isIntegerType())
3333    return lType;
3334
3335  const VectorType *VTy = lType->getAsVectorType();
3336  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3337  if (TypeSize == Context.getTypeSize(Context.IntTy))
3338    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3339  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3340    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3341
3342  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3343         "Unhandled vector element size in vector compare");
3344  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3345}
3346
3347inline QualType Sema::CheckBitwiseOperands(
3348  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3349{
3350  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3351    return CheckVectorOperands(Loc, lex, rex);
3352
3353  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3354
3355  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3356    return compType;
3357  return InvalidOperands(Loc, lex, rex);
3358}
3359
3360inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3361  Expr *&lex, Expr *&rex, SourceLocation Loc)
3362{
3363  UsualUnaryConversions(lex);
3364  UsualUnaryConversions(rex);
3365
3366  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3367    return Context.IntTy;
3368  return InvalidOperands(Loc, lex, rex);
3369}
3370
3371/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3372/// is a read-only property; return true if so. A readonly property expression
3373/// depends on various declarations and thus must be treated specially.
3374///
3375static bool IsReadonlyProperty(Expr *E, Sema &S)
3376{
3377  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3378    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3379    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3380      QualType BaseType = PropExpr->getBase()->getType();
3381      if (const PointerType *PTy = BaseType->getAsPointerType())
3382        if (const ObjCInterfaceType *IFTy =
3383            PTy->getPointeeType()->getAsObjCInterfaceType())
3384          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3385            if (S.isPropertyReadonly(PDecl, IFace))
3386              return true;
3387    }
3388  }
3389  return false;
3390}
3391
3392/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3393/// emit an error and return true.  If so, return false.
3394static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3395  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3396  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3397    IsLV = Expr::MLV_ReadonlyProperty;
3398  if (IsLV == Expr::MLV_Valid)
3399    return false;
3400
3401  unsigned Diag = 0;
3402  bool NeedType = false;
3403  switch (IsLV) { // C99 6.5.16p2
3404  default: assert(0 && "Unknown result from isModifiableLvalue!");
3405  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3406  case Expr::MLV_ArrayType:
3407    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3408    NeedType = true;
3409    break;
3410  case Expr::MLV_NotObjectType:
3411    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3412    NeedType = true;
3413    break;
3414  case Expr::MLV_LValueCast:
3415    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3416    break;
3417  case Expr::MLV_InvalidExpression:
3418    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3419    break;
3420  case Expr::MLV_IncompleteType:
3421  case Expr::MLV_IncompleteVoidType:
3422    return S.DiagnoseIncompleteType(Loc, E->getType(),
3423                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3424                                    E->getSourceRange());
3425  case Expr::MLV_DuplicateVectorComponents:
3426    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3427    break;
3428  case Expr::MLV_NotBlockQualified:
3429    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3430    break;
3431  case Expr::MLV_ReadonlyProperty:
3432    Diag = diag::error_readonly_property_assignment;
3433    break;
3434  case Expr::MLV_NoSetterProperty:
3435    Diag = diag::error_nosetter_property_assignment;
3436    break;
3437  }
3438
3439  if (NeedType)
3440    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3441  else
3442    S.Diag(Loc, Diag) << E->getSourceRange();
3443  return true;
3444}
3445
3446
3447
3448// C99 6.5.16.1
3449QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3450                                       SourceLocation Loc,
3451                                       QualType CompoundType) {
3452  // Verify that LHS is a modifiable lvalue, and emit error if not.
3453  if (CheckForModifiableLvalue(LHS, Loc, *this))
3454    return QualType();
3455
3456  QualType LHSType = LHS->getType();
3457  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3458
3459  AssignConvertType ConvTy;
3460  if (CompoundType.isNull()) {
3461    // Simple assignment "x = y".
3462    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3463    // Special case of NSObject attributes on c-style pointer types.
3464    if (ConvTy == IncompatiblePointer &&
3465        ((Context.isObjCNSObjectType(LHSType) &&
3466          Context.isObjCObjectPointerType(RHSType)) ||
3467         (Context.isObjCNSObjectType(RHSType) &&
3468          Context.isObjCObjectPointerType(LHSType))))
3469      ConvTy = Compatible;
3470
3471    // If the RHS is a unary plus or minus, check to see if they = and + are
3472    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3473    // instead of "x += 4".
3474    Expr *RHSCheck = RHS;
3475    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3476      RHSCheck = ICE->getSubExpr();
3477    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3478      if ((UO->getOpcode() == UnaryOperator::Plus ||
3479           UO->getOpcode() == UnaryOperator::Minus) &&
3480          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3481          // Only if the two operators are exactly adjacent.
3482          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3483        Diag(Loc, diag::warn_not_compound_assign)
3484          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3485          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3486    }
3487  } else {
3488    // Compound assignment "x += y"
3489    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3490  }
3491
3492  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3493                               RHS, "assigning"))
3494    return QualType();
3495
3496  // C99 6.5.16p3: The type of an assignment expression is the type of the
3497  // left operand unless the left operand has qualified type, in which case
3498  // it is the unqualified version of the type of the left operand.
3499  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3500  // is converted to the type of the assignment expression (above).
3501  // C++ 5.17p1: the type of the assignment expression is that of its left
3502  // oprdu.
3503  return LHSType.getUnqualifiedType();
3504}
3505
3506// C99 6.5.17
3507QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3508  // FIXME: what is required for LHS?
3509
3510  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3511  DefaultFunctionArrayConversion(RHS);
3512  return RHS->getType();
3513}
3514
3515/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3516/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3517QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3518                                              bool isInc) {
3519  if (Op->isTypeDependent())
3520    return Context.DependentTy;
3521
3522  QualType ResType = Op->getType();
3523  assert(!ResType.isNull() && "no type for increment/decrement expression");
3524
3525  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3526    // Decrement of bool is not allowed.
3527    if (!isInc) {
3528      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3529      return QualType();
3530    }
3531    // Increment of bool sets it to true, but is deprecated.
3532    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3533  } else if (ResType->isRealType()) {
3534    // OK!
3535  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3536    // C99 6.5.2.4p2, 6.5.6p2
3537    if (PT->getPointeeType()->isObjectType()) {
3538      // Pointer to object is ok!
3539    } else if (PT->getPointeeType()->isVoidType()) {
3540      if (getLangOptions().CPlusPlus) {
3541        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3542          << Op->getSourceRange();
3543        return QualType();
3544      }
3545
3546      // Pointer to void is a GNU extension in C.
3547      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3548    } else if (PT->getPointeeType()->isFunctionType()) {
3549      if (getLangOptions().CPlusPlus) {
3550        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3551          << Op->getType() << Op->getSourceRange();
3552        return QualType();
3553      }
3554
3555      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3556        << ResType << Op->getSourceRange();
3557      return QualType();
3558    } else {
3559      DiagnoseIncompleteType(OpLoc, PT->getPointeeType(),
3560                             diag::err_typecheck_arithmetic_incomplete_type,
3561                             Op->getSourceRange(), SourceRange(),
3562                             ResType);
3563      return QualType();
3564    }
3565  } else if (ResType->isComplexType()) {
3566    // C99 does not support ++/-- on complex types, we allow as an extension.
3567    Diag(OpLoc, diag::ext_integer_increment_complex)
3568      << ResType << Op->getSourceRange();
3569  } else {
3570    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3571      << ResType << Op->getSourceRange();
3572    return QualType();
3573  }
3574  // At this point, we know we have a real, complex or pointer type.
3575  // Now make sure the operand is a modifiable lvalue.
3576  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3577    return QualType();
3578  return ResType;
3579}
3580
3581/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3582/// This routine allows us to typecheck complex/recursive expressions
3583/// where the declaration is needed for type checking. We only need to
3584/// handle cases when the expression references a function designator
3585/// or is an lvalue. Here are some examples:
3586///  - &(x) => x
3587///  - &*****f => f for f a function designator.
3588///  - &s.xx => s
3589///  - &s.zz[1].yy -> s, if zz is an array
3590///  - *(x + 1) -> x, if x is an array
3591///  - &"123"[2] -> 0
3592///  - & __real__ x -> x
3593static NamedDecl *getPrimaryDecl(Expr *E) {
3594  switch (E->getStmtClass()) {
3595  case Stmt::DeclRefExprClass:
3596  case Stmt::QualifiedDeclRefExprClass:
3597    return cast<DeclRefExpr>(E)->getDecl();
3598  case Stmt::MemberExprClass:
3599    // Fields cannot be declared with a 'register' storage class.
3600    // &X->f is always ok, even if X is declared register.
3601    if (cast<MemberExpr>(E)->isArrow())
3602      return 0;
3603    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3604  case Stmt::ArraySubscriptExprClass: {
3605    // &X[4] and &4[X] refers to X if X is not a pointer.
3606
3607    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3608    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3609    if (!VD || VD->getType()->isPointerType())
3610      return 0;
3611    else
3612      return VD;
3613  }
3614  case Stmt::UnaryOperatorClass: {
3615    UnaryOperator *UO = cast<UnaryOperator>(E);
3616
3617    switch(UO->getOpcode()) {
3618    case UnaryOperator::Deref: {
3619      // *(X + 1) refers to X if X is not a pointer.
3620      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3621        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3622        if (!VD || VD->getType()->isPointerType())
3623          return 0;
3624        return VD;
3625      }
3626      return 0;
3627    }
3628    case UnaryOperator::Real:
3629    case UnaryOperator::Imag:
3630    case UnaryOperator::Extension:
3631      return getPrimaryDecl(UO->getSubExpr());
3632    default:
3633      return 0;
3634    }
3635  }
3636  case Stmt::BinaryOperatorClass: {
3637    BinaryOperator *BO = cast<BinaryOperator>(E);
3638
3639    // Handle cases involving pointer arithmetic. The result of an
3640    // Assign or AddAssign is not an lvalue so they can be ignored.
3641
3642    // (x + n) or (n + x) => x
3643    if (BO->getOpcode() == BinaryOperator::Add) {
3644      if (BO->getLHS()->getType()->isPointerType()) {
3645        return getPrimaryDecl(BO->getLHS());
3646      } else if (BO->getRHS()->getType()->isPointerType()) {
3647        return getPrimaryDecl(BO->getRHS());
3648      }
3649    }
3650
3651    return 0;
3652  }
3653  case Stmt::ParenExprClass:
3654    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3655  case Stmt::ImplicitCastExprClass:
3656    // &X[4] when X is an array, has an implicit cast from array to pointer.
3657    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3658  default:
3659    return 0;
3660  }
3661}
3662
3663/// CheckAddressOfOperand - The operand of & must be either a function
3664/// designator or an lvalue designating an object. If it is an lvalue, the
3665/// object cannot be declared with storage class register or be a bit field.
3666/// Note: The usual conversions are *not* applied to the operand of the &
3667/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3668/// In C++, the operand might be an overloaded function name, in which case
3669/// we allow the '&' but retain the overloaded-function type.
3670QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3671  if (op->isTypeDependent())
3672    return Context.DependentTy;
3673
3674  if (getLangOptions().C99) {
3675    // Implement C99-only parts of addressof rules.
3676    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3677      if (uOp->getOpcode() == UnaryOperator::Deref)
3678        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3679        // (assuming the deref expression is valid).
3680        return uOp->getSubExpr()->getType();
3681    }
3682    // Technically, there should be a check for array subscript
3683    // expressions here, but the result of one is always an lvalue anyway.
3684  }
3685  NamedDecl *dcl = getPrimaryDecl(op);
3686  Expr::isLvalueResult lval = op->isLvalue(Context);
3687
3688  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3689    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3690      // FIXME: emit more specific diag...
3691      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3692        << op->getSourceRange();
3693      return QualType();
3694    }
3695  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3696    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3697      if (Field->isBitField()) {
3698        Diag(OpLoc, diag::err_typecheck_address_of)
3699          << "bit-field" << op->getSourceRange();
3700        return QualType();
3701      }
3702    }
3703  // Check for Apple extension for accessing vector components.
3704  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3705           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3706    Diag(OpLoc, diag::err_typecheck_address_of)
3707      << "vector element" << op->getSourceRange();
3708    return QualType();
3709  } else if (dcl) { // C99 6.5.3.2p1
3710    // We have an lvalue with a decl. Make sure the decl is not declared
3711    // with the register storage-class specifier.
3712    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3713      if (vd->getStorageClass() == VarDecl::Register) {
3714        Diag(OpLoc, diag::err_typecheck_address_of)
3715          << "register variable" << op->getSourceRange();
3716        return QualType();
3717      }
3718    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3719      return Context.OverloadTy;
3720    } else if (isa<FieldDecl>(dcl)) {
3721      // Okay: we can take the address of a field.
3722      // Could be a pointer to member, though, if there is an explicit
3723      // scope qualifier for the class.
3724      if (isa<QualifiedDeclRefExpr>(op)) {
3725        DeclContext *Ctx = dcl->getDeclContext();
3726        if (Ctx && Ctx->isRecord())
3727          return Context.getMemberPointerType(op->getType(),
3728                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3729      }
3730    } else if (isa<FunctionDecl>(dcl)) {
3731      // Okay: we can take the address of a function.
3732      // As above.
3733      if (isa<QualifiedDeclRefExpr>(op)) {
3734        DeclContext *Ctx = dcl->getDeclContext();
3735        if (Ctx && Ctx->isRecord())
3736          return Context.getMemberPointerType(op->getType(),
3737                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3738      }
3739    }
3740    else
3741      assert(0 && "Unknown/unexpected decl type");
3742  }
3743
3744  // If the operand has type "type", the result has type "pointer to type".
3745  return Context.getPointerType(op->getType());
3746}
3747
3748QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3749  if (Op->isTypeDependent())
3750    return Context.DependentTy;
3751
3752  UsualUnaryConversions(Op);
3753  QualType Ty = Op->getType();
3754
3755  // Note that per both C89 and C99, this is always legal, even if ptype is an
3756  // incomplete type or void.  It would be possible to warn about dereferencing
3757  // a void pointer, but it's completely well-defined, and such a warning is
3758  // unlikely to catch any mistakes.
3759  if (const PointerType *PT = Ty->getAsPointerType())
3760    return PT->getPointeeType();
3761
3762  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3763    << Ty << Op->getSourceRange();
3764  return QualType();
3765}
3766
3767static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3768  tok::TokenKind Kind) {
3769  BinaryOperator::Opcode Opc;
3770  switch (Kind) {
3771  default: assert(0 && "Unknown binop!");
3772  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3773  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3774  case tok::star:                 Opc = BinaryOperator::Mul; break;
3775  case tok::slash:                Opc = BinaryOperator::Div; break;
3776  case tok::percent:              Opc = BinaryOperator::Rem; break;
3777  case tok::plus:                 Opc = BinaryOperator::Add; break;
3778  case tok::minus:                Opc = BinaryOperator::Sub; break;
3779  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3780  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3781  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3782  case tok::less:                 Opc = BinaryOperator::LT; break;
3783  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3784  case tok::greater:              Opc = BinaryOperator::GT; break;
3785  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3786  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3787  case tok::amp:                  Opc = BinaryOperator::And; break;
3788  case tok::caret:                Opc = BinaryOperator::Xor; break;
3789  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3790  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3791  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3792  case tok::equal:                Opc = BinaryOperator::Assign; break;
3793  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3794  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3795  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3796  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3797  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3798  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3799  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3800  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3801  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3802  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3803  case tok::comma:                Opc = BinaryOperator::Comma; break;
3804  }
3805  return Opc;
3806}
3807
3808static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3809  tok::TokenKind Kind) {
3810  UnaryOperator::Opcode Opc;
3811  switch (Kind) {
3812  default: assert(0 && "Unknown unary op!");
3813  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3814  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3815  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3816  case tok::star:         Opc = UnaryOperator::Deref; break;
3817  case tok::plus:         Opc = UnaryOperator::Plus; break;
3818  case tok::minus:        Opc = UnaryOperator::Minus; break;
3819  case tok::tilde:        Opc = UnaryOperator::Not; break;
3820  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3821  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3822  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3823  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3824  }
3825  return Opc;
3826}
3827
3828/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3829/// operator @p Opc at location @c TokLoc. This routine only supports
3830/// built-in operations; ActOnBinOp handles overloaded operators.
3831Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3832                                                  unsigned Op,
3833                                                  Expr *lhs, Expr *rhs) {
3834  QualType ResultTy;  // Result type of the binary operator.
3835  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3836  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3837
3838  switch (Opc) {
3839  default:
3840    assert(0 && "Unknown binary expr!");
3841  case BinaryOperator::Assign:
3842    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3843    break;
3844  case BinaryOperator::PtrMemD:
3845  case BinaryOperator::PtrMemI:
3846    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3847                                            Opc == BinaryOperator::PtrMemI);
3848    break;
3849  case BinaryOperator::Mul:
3850  case BinaryOperator::Div:
3851    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3852    break;
3853  case BinaryOperator::Rem:
3854    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3855    break;
3856  case BinaryOperator::Add:
3857    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3858    break;
3859  case BinaryOperator::Sub:
3860    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3861    break;
3862  case BinaryOperator::Shl:
3863  case BinaryOperator::Shr:
3864    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3865    break;
3866  case BinaryOperator::LE:
3867  case BinaryOperator::LT:
3868  case BinaryOperator::GE:
3869  case BinaryOperator::GT:
3870    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3871    break;
3872  case BinaryOperator::EQ:
3873  case BinaryOperator::NE:
3874    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3875    break;
3876  case BinaryOperator::And:
3877  case BinaryOperator::Xor:
3878  case BinaryOperator::Or:
3879    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3880    break;
3881  case BinaryOperator::LAnd:
3882  case BinaryOperator::LOr:
3883    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3884    break;
3885  case BinaryOperator::MulAssign:
3886  case BinaryOperator::DivAssign:
3887    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3888    if (!CompTy.isNull())
3889      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3890    break;
3891  case BinaryOperator::RemAssign:
3892    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3893    if (!CompTy.isNull())
3894      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3895    break;
3896  case BinaryOperator::AddAssign:
3897    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3898    if (!CompTy.isNull())
3899      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3900    break;
3901  case BinaryOperator::SubAssign:
3902    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3903    if (!CompTy.isNull())
3904      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3905    break;
3906  case BinaryOperator::ShlAssign:
3907  case BinaryOperator::ShrAssign:
3908    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3909    if (!CompTy.isNull())
3910      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3911    break;
3912  case BinaryOperator::AndAssign:
3913  case BinaryOperator::XorAssign:
3914  case BinaryOperator::OrAssign:
3915    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3916    if (!CompTy.isNull())
3917      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3918    break;
3919  case BinaryOperator::Comma:
3920    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3921    break;
3922  }
3923  if (ResultTy.isNull())
3924    return ExprError();
3925  if (CompTy.isNull())
3926    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3927  else
3928    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3929                                                      CompTy, OpLoc));
3930}
3931
3932// Binary Operators.  'Tok' is the token for the operator.
3933Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3934                                          tok::TokenKind Kind,
3935                                          ExprArg LHS, ExprArg RHS) {
3936  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3937  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3938
3939  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3940  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3941
3942  // If either expression is type-dependent, just build the AST.
3943  // FIXME: We'll need to perform some caching of the result of name
3944  // lookup for operator+.
3945  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3946    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3947      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3948                                              Context.DependentTy,
3949                                              Context.DependentTy, TokLoc));
3950    else
3951      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc,
3952                                                Context.DependentTy, TokLoc));
3953  }
3954
3955  if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD &&
3956      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3957       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3958    // If this is one of the assignment operators, we only perform
3959    // overload resolution if the left-hand side is a class or
3960    // enumeration type (C++ [expr.ass]p3).
3961    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3962        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3963      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3964    }
3965
3966    // Determine which overloaded operator we're dealing with.
3967    static const OverloadedOperatorKind OverOps[] = {
3968      // Overloading .* is not possible.
3969      static_cast<OverloadedOperatorKind>(0), OO_ArrowStar,
3970      OO_Star, OO_Slash, OO_Percent,
3971      OO_Plus, OO_Minus,
3972      OO_LessLess, OO_GreaterGreater,
3973      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3974      OO_EqualEqual, OO_ExclaimEqual,
3975      OO_Amp,
3976      OO_Caret,
3977      OO_Pipe,
3978      OO_AmpAmp,
3979      OO_PipePipe,
3980      OO_Equal, OO_StarEqual,
3981      OO_SlashEqual, OO_PercentEqual,
3982      OO_PlusEqual, OO_MinusEqual,
3983      OO_LessLessEqual, OO_GreaterGreaterEqual,
3984      OO_AmpEqual, OO_CaretEqual,
3985      OO_PipeEqual,
3986      OO_Comma
3987    };
3988    OverloadedOperatorKind OverOp = OverOps[Opc];
3989
3990    // Add the appropriate overloaded operators (C++ [over.match.oper])
3991    // to the candidate set.
3992    OverloadCandidateSet CandidateSet;
3993    Expr *Args[2] = { lhs, rhs };
3994    if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet))
3995      return ExprError();
3996
3997    // Perform overload resolution.
3998    OverloadCandidateSet::iterator Best;
3999    switch (BestViableFunction(CandidateSet, Best)) {
4000    case OR_Success: {
4001      // We found a built-in operator or an overloaded operator.
4002      FunctionDecl *FnDecl = Best->Function;
4003
4004      if (FnDecl) {
4005        // We matched an overloaded operator. Build a call to that
4006        // operator.
4007
4008        // Convert the arguments.
4009        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4010          if (PerformObjectArgumentInitialization(lhs, Method) ||
4011              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
4012                                        "passing"))
4013            return ExprError();
4014        } else {
4015          // Convert the arguments.
4016          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
4017                                        "passing") ||
4018              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
4019                                        "passing"))
4020            return ExprError();
4021        }
4022
4023        // Determine the result type
4024        QualType ResultTy
4025          = FnDecl->getType()->getAsFunctionType()->getResultType();
4026        ResultTy = ResultTy.getNonReferenceType();
4027
4028        // Build the actual expression node.
4029        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4030                                                 SourceLocation());
4031        UsualUnaryConversions(FnExpr);
4032
4033        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
4034                                                       ResultTy, TokLoc));
4035      } else {
4036        // We matched a built-in operator. Convert the arguments, then
4037        // break out so that we will build the appropriate built-in
4038        // operator node.
4039        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
4040                                      Best->Conversions[0], "passing") ||
4041            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
4042                                      Best->Conversions[1], "passing"))
4043          return ExprError();
4044
4045        break;
4046      }
4047    }
4048
4049    case OR_No_Viable_Function:
4050      // No viable function; fall through to handling this as a
4051      // built-in operator, which will produce an error message for us.
4052      break;
4053
4054    case OR_Ambiguous:
4055      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
4056          << BinaryOperator::getOpcodeStr(Opc)
4057          << lhs->getSourceRange() << rhs->getSourceRange();
4058      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4059      return ExprError();
4060
4061    case OR_Deleted:
4062      Diag(TokLoc, diag::err_ovl_deleted_oper)
4063        << Best->Function->isDeleted()
4064        << BinaryOperator::getOpcodeStr(Opc)
4065        << lhs->getSourceRange() << rhs->getSourceRange();
4066      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4067      return ExprError();
4068    }
4069
4070    // Either we found no viable overloaded operator or we matched a
4071    // built-in operator. In either case, fall through to trying to
4072    // build a built-in operation.
4073  }
4074
4075  // Build a built-in binary operation.
4076  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4077}
4078
4079// Unary Operators.  'Tok' is the token for the operator.
4080Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4081                                            tok::TokenKind Op, ExprArg input) {
4082  // FIXME: Input is modified later, but smart pointer not reassigned.
4083  Expr *Input = (Expr*)input.get();
4084  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4085
4086  if (getLangOptions().CPlusPlus &&
4087      (Input->getType()->isRecordType()
4088       || Input->getType()->isEnumeralType())) {
4089    // Determine which overloaded operator we're dealing with.
4090    static const OverloadedOperatorKind OverOps[] = {
4091      OO_None, OO_None,
4092      OO_PlusPlus, OO_MinusMinus,
4093      OO_Amp, OO_Star,
4094      OO_Plus, OO_Minus,
4095      OO_Tilde, OO_Exclaim,
4096      OO_None, OO_None,
4097      OO_None,
4098      OO_None
4099    };
4100    OverloadedOperatorKind OverOp = OverOps[Opc];
4101
4102    // Add the appropriate overloaded operators (C++ [over.match.oper])
4103    // to the candidate set.
4104    OverloadCandidateSet CandidateSet;
4105    if (OverOp != OO_None &&
4106        AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet))
4107      return ExprError();
4108
4109    // Perform overload resolution.
4110    OverloadCandidateSet::iterator Best;
4111    switch (BestViableFunction(CandidateSet, Best)) {
4112    case OR_Success: {
4113      // We found a built-in operator or an overloaded operator.
4114      FunctionDecl *FnDecl = Best->Function;
4115
4116      if (FnDecl) {
4117        // We matched an overloaded operator. Build a call to that
4118        // operator.
4119
4120        // Convert the arguments.
4121        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4122          if (PerformObjectArgumentInitialization(Input, Method))
4123            return ExprError();
4124        } else {
4125          // Convert the arguments.
4126          if (PerformCopyInitialization(Input,
4127                                        FnDecl->getParamDecl(0)->getType(),
4128                                        "passing"))
4129            return ExprError();
4130        }
4131
4132        // Determine the result type
4133        QualType ResultTy
4134          = FnDecl->getType()->getAsFunctionType()->getResultType();
4135        ResultTy = ResultTy.getNonReferenceType();
4136
4137        // Build the actual expression node.
4138        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4139                                                 SourceLocation());
4140        UsualUnaryConversions(FnExpr);
4141
4142        input.release();
4143        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input,
4144                                                       1, ResultTy, OpLoc));
4145      } else {
4146        // We matched a built-in operator. Convert the arguments, then
4147        // break out so that we will build the appropriate built-in
4148        // operator node.
4149        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4150                                      Best->Conversions[0], "passing"))
4151          return ExprError();
4152
4153        break;
4154      }
4155    }
4156
4157    case OR_No_Viable_Function:
4158      // No viable function; fall through to handling this as a
4159      // built-in operator, which will produce an error message for us.
4160      break;
4161
4162    case OR_Ambiguous:
4163      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4164          << UnaryOperator::getOpcodeStr(Opc)
4165          << Input->getSourceRange();
4166      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4167      return ExprError();
4168
4169    case OR_Deleted:
4170      Diag(OpLoc, diag::err_ovl_deleted_oper)
4171        << Best->Function->isDeleted()
4172        << UnaryOperator::getOpcodeStr(Opc)
4173        << Input->getSourceRange();
4174      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4175      return ExprError();
4176    }
4177
4178    // Either we found no viable overloaded operator or we matched a
4179    // built-in operator. In either case, fall through to trying to
4180    // build a built-in operation.
4181  }
4182
4183  QualType resultType;
4184  switch (Opc) {
4185  default:
4186    assert(0 && "Unimplemented unary expr!");
4187  case UnaryOperator::PreInc:
4188  case UnaryOperator::PreDec:
4189    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4190                                                Opc == UnaryOperator::PreInc);
4191    break;
4192  case UnaryOperator::AddrOf:
4193    resultType = CheckAddressOfOperand(Input, OpLoc);
4194    break;
4195  case UnaryOperator::Deref:
4196    DefaultFunctionArrayConversion(Input);
4197    resultType = CheckIndirectionOperand(Input, OpLoc);
4198    break;
4199  case UnaryOperator::Plus:
4200  case UnaryOperator::Minus:
4201    UsualUnaryConversions(Input);
4202    resultType = Input->getType();
4203    if (resultType->isDependentType())
4204      break;
4205    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4206      break;
4207    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4208             resultType->isEnumeralType())
4209      break;
4210    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4211             Opc == UnaryOperator::Plus &&
4212             resultType->isPointerType())
4213      break;
4214
4215    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4216      << resultType << Input->getSourceRange());
4217  case UnaryOperator::Not: // bitwise complement
4218    UsualUnaryConversions(Input);
4219    resultType = Input->getType();
4220    if (resultType->isDependentType())
4221      break;
4222    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4223    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4224      // C99 does not support '~' for complex conjugation.
4225      Diag(OpLoc, diag::ext_integer_complement_complex)
4226        << resultType << Input->getSourceRange();
4227    else if (!resultType->isIntegerType())
4228      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4229        << resultType << Input->getSourceRange());
4230    break;
4231  case UnaryOperator::LNot: // logical negation
4232    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4233    DefaultFunctionArrayConversion(Input);
4234    resultType = Input->getType();
4235    if (resultType->isDependentType())
4236      break;
4237    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4238      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4239        << resultType << Input->getSourceRange());
4240    // LNot always has type int. C99 6.5.3.3p5.
4241    // In C++, it's bool. C++ 5.3.1p8
4242    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4243    break;
4244  case UnaryOperator::Real:
4245  case UnaryOperator::Imag:
4246    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4247    break;
4248  case UnaryOperator::Extension:
4249    resultType = Input->getType();
4250    break;
4251  }
4252  if (resultType.isNull())
4253    return ExprError();
4254  input.release();
4255  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4256}
4257
4258/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4259Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4260                                      SourceLocation LabLoc,
4261                                      IdentifierInfo *LabelII) {
4262  // Look up the record for this label identifier.
4263  llvm::DenseMap<IdentifierInfo*, Action::StmtTy*>::iterator I =
4264    ActiveScope->LabelMap.find(LabelII);
4265
4266  LabelStmt *LabelDecl;
4267
4268  // If we haven't seen this label yet, create a forward reference. It
4269  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4270  if (I == ActiveScope->LabelMap.end()) {
4271    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4272
4273    ActiveScope->LabelMap.insert(std::make_pair(LabelII, LabelDecl));
4274  } else
4275    LabelDecl = static_cast<LabelStmt *>(I->second);
4276
4277  // Create the AST node.  The address of a label always has type 'void*'.
4278  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4279                                     Context.getPointerType(Context.VoidTy));
4280}
4281
4282Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
4283                                     SourceLocation RPLoc) { // "({..})"
4284  Stmt *SubStmt = static_cast<Stmt*>(substmt);
4285  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4286  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4287
4288  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4289  if (isFileScope) {
4290    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
4291  }
4292
4293  // FIXME: there are a variety of strange constraints to enforce here, for
4294  // example, it is not possible to goto into a stmt expression apparently.
4295  // More semantic analysis is needed.
4296
4297  // FIXME: the last statement in the compount stmt has its value used.  We
4298  // should not warn about it being unused.
4299
4300  // If there are sub stmts in the compound stmt, take the type of the last one
4301  // as the type of the stmtexpr.
4302  QualType Ty = Context.VoidTy;
4303
4304  if (!Compound->body_empty()) {
4305    Stmt *LastStmt = Compound->body_back();
4306    // If LastStmt is a label, skip down through into the body.
4307    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4308      LastStmt = Label->getSubStmt();
4309
4310    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4311      Ty = LastExpr->getType();
4312  }
4313
4314  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
4315}
4316
4317Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4318                                            SourceLocation BuiltinLoc,
4319                                            SourceLocation TypeLoc,
4320                                            TypeTy *argty,
4321                                            OffsetOfComponent *CompPtr,
4322                                            unsigned NumComponents,
4323                                            SourceLocation RPLoc) {
4324  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4325  assert(!ArgTy.isNull() && "Missing type argument!");
4326
4327  bool Dependent = ArgTy->isDependentType();
4328
4329  // We must have at least one component that refers to the type, and the first
4330  // one is known to be a field designator.  Verify that the ArgTy represents
4331  // a struct/union/class.
4332  if (!Dependent && !ArgTy->isRecordType())
4333    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
4334
4335  // Otherwise, create a null pointer as the base, and iteratively process
4336  // the offsetof designators.
4337  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4338  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4339  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4340                                    ArgTy, SourceLocation());
4341
4342  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4343  // GCC extension, diagnose them.
4344  // FIXME: This diagnostic isn't actually visible because the location is in
4345  // a system header!
4346  if (NumComponents != 1)
4347    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4348      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4349
4350  if (!Dependent) {
4351    // FIXME: Dependent case loses a lot of information here. And probably
4352    // leaks like a sieve.
4353    for (unsigned i = 0; i != NumComponents; ++i) {
4354      const OffsetOfComponent &OC = CompPtr[i];
4355      if (OC.isBrackets) {
4356        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4357        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4358        if (!AT) {
4359          Res->Destroy(Context);
4360          return Diag(OC.LocEnd, diag::err_offsetof_array_type)
4361            << Res->getType();
4362        }
4363
4364        // FIXME: C++: Verify that operator[] isn't overloaded.
4365
4366        // Promote the array so it looks more like a normal array subscript
4367        // expression.
4368        DefaultFunctionArrayConversion(Res);
4369
4370        // C99 6.5.2.1p1
4371        Expr *Idx = static_cast<Expr*>(OC.U.E);
4372        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4373          return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4374            << Idx->getSourceRange();
4375
4376        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4377                                               OC.LocEnd);
4378        continue;
4379      }
4380
4381      const RecordType *RC = Res->getType()->getAsRecordType();
4382      if (!RC) {
4383        Res->Destroy(Context);
4384        return Diag(OC.LocEnd, diag::err_offsetof_record_type)
4385          << Res->getType();
4386      }
4387
4388      // Get the decl corresponding to this.
4389      RecordDecl *RD = RC->getDecl();
4390      FieldDecl *MemberDecl
4391        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4392                                                          LookupMemberName)
4393                                        .getAsDecl());
4394      if (!MemberDecl)
4395        return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4396         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4397
4398      // FIXME: C++: Verify that MemberDecl isn't a static field.
4399      // FIXME: Verify that MemberDecl isn't a bitfield.
4400      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4401      // matter here.
4402      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4403                                   MemberDecl->getType().getNonReferenceType());
4404    }
4405  }
4406
4407  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4408                                     Context.getSizeType(), BuiltinLoc);
4409}
4410
4411
4412Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4413                                                TypeTy *arg1, TypeTy *arg2,
4414                                                SourceLocation RPLoc) {
4415  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4416  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4417
4418  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4419
4420  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4421                                           argT2, RPLoc);
4422}
4423
4424Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4425                                       ExprTy *expr1, ExprTy *expr2,
4426                                       SourceLocation RPLoc) {
4427  Expr *CondExpr = static_cast<Expr*>(cond);
4428  Expr *LHSExpr = static_cast<Expr*>(expr1);
4429  Expr *RHSExpr = static_cast<Expr*>(expr2);
4430
4431  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4432
4433  QualType resType;
4434  if (CondExpr->isValueDependent()) {
4435    resType = Context.DependentTy;
4436  } else {
4437    // The conditional expression is required to be a constant expression.
4438    llvm::APSInt condEval(32);
4439    SourceLocation ExpLoc;
4440    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4441      return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4442        << CondExpr->getSourceRange();
4443
4444    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4445    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4446  }
4447
4448  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4449                                  resType, RPLoc);
4450}
4451
4452//===----------------------------------------------------------------------===//
4453// Clang Extensions.
4454//===----------------------------------------------------------------------===//
4455
4456/// ActOnBlockStart - This callback is invoked when a block literal is started.
4457void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4458  // Analyze block parameters.
4459  BlockSemaInfo *BSI = new BlockSemaInfo();
4460
4461  // Add BSI to CurBlock.
4462  BSI->PrevBlockInfo = CurBlock;
4463  CurBlock = BSI;
4464  ActiveScope = BlockScope;
4465
4466  BSI->ReturnType = 0;
4467  BSI->TheScope = BlockScope;
4468  BSI->hasBlockDeclRefExprs = false;
4469
4470  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4471  PushDeclContext(BlockScope, BSI->TheDecl);
4472}
4473
4474void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4475  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4476
4477  if (ParamInfo.getNumTypeObjects() == 0
4478      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4479    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4480
4481    // The type is entirely optional as well, if none, use DependentTy.
4482    if (T.isNull())
4483      T = Context.DependentTy;
4484
4485    // The parameter list is optional, if there was none, assume ().
4486    if (!T->isFunctionType())
4487      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4488
4489    CurBlock->hasPrototype = true;
4490    CurBlock->isVariadic = false;
4491    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4492      .getTypePtr();
4493
4494    if (!RetTy->isDependentType())
4495      CurBlock->ReturnType = RetTy;
4496    return;
4497  }
4498
4499  // Analyze arguments to block.
4500  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4501         "Not a function declarator!");
4502  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4503
4504  CurBlock->hasPrototype = FTI.hasPrototype;
4505  CurBlock->isVariadic = true;
4506
4507  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4508  // no arguments, not a function that takes a single void argument.
4509  if (FTI.hasPrototype &&
4510      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4511      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4512        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4513    // empty arg list, don't push any params.
4514    CurBlock->isVariadic = false;
4515  } else if (FTI.hasPrototype) {
4516    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4517      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4518    CurBlock->isVariadic = FTI.isVariadic;
4519    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4520
4521    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4522      .getTypePtr();
4523
4524    if (!RetTy->isDependentType())
4525      CurBlock->ReturnType = RetTy;
4526  }
4527  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4528
4529  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4530       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4531    // If this has an identifier, add it to the scope stack.
4532    if ((*AI)->getIdentifier())
4533      PushOnScopeChains(*AI, CurBlock->TheScope);
4534}
4535
4536/// ActOnBlockError - If there is an error parsing a block, this callback
4537/// is invoked to pop the information about the block from the action impl.
4538void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4539  // Ensure that CurBlock is deleted.
4540  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4541
4542  // Pop off CurBlock, handle nested blocks.
4543  CurBlock = CurBlock->PrevBlockInfo;
4544
4545  // FIXME: Delete the ParmVarDecl objects as well???
4546
4547}
4548
4549/// ActOnBlockStmtExpr - This is called when the body of a block statement
4550/// literal was successfully completed.  ^(int x){...}
4551Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4552                                          Scope *CurScope) {
4553  // Ensure that CurBlock is deleted.
4554  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4555  ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body));
4556
4557  PopDeclContext();
4558
4559  // Before poping CurBlock, set ActiveScope to this scopes parent.
4560  ActiveScope = CurBlock->TheScope->getParent();
4561
4562  // Pop off CurBlock, handle nested blocks.
4563  CurBlock = CurBlock->PrevBlockInfo;
4564
4565  QualType RetTy = Context.VoidTy;
4566  if (BSI->ReturnType)
4567    RetTy = QualType(BSI->ReturnType, 0);
4568
4569  llvm::SmallVector<QualType, 8> ArgTypes;
4570  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4571    ArgTypes.push_back(BSI->Params[i]->getType());
4572
4573  QualType BlockTy;
4574  if (!BSI->hasPrototype)
4575    BlockTy = Context.getFunctionNoProtoType(RetTy);
4576  else
4577    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4578                                      BSI->isVariadic, 0);
4579
4580  BlockTy = Context.getBlockPointerType(BlockTy);
4581
4582  BSI->TheDecl->setBody(Body.take());
4583  return new (Context) BlockExpr(BSI->TheDecl, BlockTy, BSI->hasBlockDeclRefExprs);
4584}
4585
4586Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4587                                  ExprTy *expr, TypeTy *type,
4588                                  SourceLocation RPLoc) {
4589  Expr *E = static_cast<Expr*>(expr);
4590  QualType T = QualType::getFromOpaquePtr(type);
4591
4592  InitBuiltinVaListType();
4593
4594  // Get the va_list type
4595  QualType VaListType = Context.getBuiltinVaListType();
4596  // Deal with implicit array decay; for example, on x86-64,
4597  // va_list is an array, but it's supposed to decay to
4598  // a pointer for va_arg.
4599  if (VaListType->isArrayType())
4600    VaListType = Context.getArrayDecayedType(VaListType);
4601  // Make sure the input expression also decays appropriately.
4602  UsualUnaryConversions(E);
4603
4604  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4605    return Diag(E->getLocStart(),
4606                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4607      << E->getType() << E->getSourceRange();
4608
4609  // FIXME: Warn if a non-POD type is passed in.
4610
4611  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4612}
4613
4614Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4615  // The type of __null will be int or long, depending on the size of
4616  // pointers on the target.
4617  QualType Ty;
4618  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4619    Ty = Context.IntTy;
4620  else
4621    Ty = Context.LongTy;
4622
4623  return new (Context) GNUNullExpr(Ty, TokenLoc);
4624}
4625
4626bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4627                                    SourceLocation Loc,
4628                                    QualType DstType, QualType SrcType,
4629                                    Expr *SrcExpr, const char *Flavor) {
4630  // Decode the result (notice that AST's are still created for extensions).
4631  bool isInvalid = false;
4632  unsigned DiagKind;
4633  switch (ConvTy) {
4634  default: assert(0 && "Unknown conversion type");
4635  case Compatible: return false;
4636  case PointerToInt:
4637    DiagKind = diag::ext_typecheck_convert_pointer_int;
4638    break;
4639  case IntToPointer:
4640    DiagKind = diag::ext_typecheck_convert_int_pointer;
4641    break;
4642  case IncompatiblePointer:
4643    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4644    break;
4645  case FunctionVoidPointer:
4646    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4647    break;
4648  case CompatiblePointerDiscardsQualifiers:
4649    // If the qualifiers lost were because we were applying the
4650    // (deprecated) C++ conversion from a string literal to a char*
4651    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4652    // Ideally, this check would be performed in
4653    // CheckPointerTypesForAssignment. However, that would require a
4654    // bit of refactoring (so that the second argument is an
4655    // expression, rather than a type), which should be done as part
4656    // of a larger effort to fix CheckPointerTypesForAssignment for
4657    // C++ semantics.
4658    if (getLangOptions().CPlusPlus &&
4659        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4660      return false;
4661    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4662    break;
4663  case IntToBlockPointer:
4664    DiagKind = diag::err_int_to_block_pointer;
4665    break;
4666  case IncompatibleBlockPointer:
4667    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4668    break;
4669  case IncompatibleObjCQualifiedId:
4670    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4671    // it can give a more specific diagnostic.
4672    DiagKind = diag::warn_incompatible_qualified_id;
4673    break;
4674  case IncompatibleVectors:
4675    DiagKind = diag::warn_incompatible_vectors;
4676    break;
4677  case Incompatible:
4678    DiagKind = diag::err_typecheck_convert_incompatible;
4679    isInvalid = true;
4680    break;
4681  }
4682
4683  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4684    << SrcExpr->getSourceRange();
4685  return isInvalid;
4686}
4687
4688bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4689{
4690  Expr::EvalResult EvalResult;
4691
4692  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4693      EvalResult.HasSideEffects) {
4694    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4695
4696    if (EvalResult.Diag) {
4697      // We only show the note if it's not the usual "invalid subexpression"
4698      // or if it's actually in a subexpression.
4699      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4700          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4701        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4702    }
4703
4704    return true;
4705  }
4706
4707  if (EvalResult.Diag) {
4708    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4709      E->getSourceRange();
4710
4711    // Print the reason it's not a constant.
4712    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4713      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4714  }
4715
4716  if (Result)
4717    *Result = EvalResult.Val.getInt();
4718  return false;
4719}
4720