SemaExpr.cpp revision 32c627e217b55256110f5d7adfd6bff6dd33169a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/LiteralSupport.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/Designator.h"
30#include "clang/Parse/Scope.h"
31#include "clang/Parse/Template.h"
32using namespace clang;
33
34
35/// \brief Determine whether the use of this declaration is valid, and
36/// emit any corresponding diagnostics.
37///
38/// This routine diagnoses various problems with referencing
39/// declarations that can occur when using a declaration. For example,
40/// it might warn if a deprecated or unavailable declaration is being
41/// used, or produce an error (and return true) if a C++0x deleted
42/// function is being used.
43///
44/// If IgnoreDeprecated is set to true, this should not want about deprecated
45/// decls.
46///
47/// \returns true if there was an error (this declaration cannot be
48/// referenced), false otherwise.
49///
50bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
51  // See if the decl is deprecated.
52  if (D->getAttr<DeprecatedAttr>()) {
53    EmitDeprecationWarning(D, Loc);
54  }
55
56  // See if the decl is unavailable
57  if (D->getAttr<UnavailableAttr>()) {
58    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
59    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
60  }
61
62  // See if this is a deleted function.
63  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64    if (FD->isDeleted()) {
65      Diag(Loc, diag::err_deleted_function_use);
66      Diag(D->getLocation(), diag::note_unavailable_here) << true;
67      return true;
68    }
69  }
70
71  return false;
72}
73
74/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
75/// (and other functions in future), which have been declared with sentinel
76/// attribute. It warns if call does not have the sentinel argument.
77///
78void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
79                                 Expr **Args, unsigned NumArgs) {
80  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
81  if (!attr)
82    return;
83  int sentinelPos = attr->getSentinel();
84  int nullPos = attr->getNullPos();
85
86  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
87  // base class. Then we won't be needing two versions of the same code.
88  unsigned int i = 0;
89  bool warnNotEnoughArgs = false;
90  int isMethod = 0;
91  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
92    // skip over named parameters.
93    ObjCMethodDecl::param_iterator P, E = MD->param_end();
94    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
95      if (nullPos)
96        --nullPos;
97      else
98        ++i;
99    }
100    warnNotEnoughArgs = (P != E || i >= NumArgs);
101    isMethod = 1;
102  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = FD->param_end();
105    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
113    // block or function pointer call.
114    QualType Ty = V->getType();
115    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
116      const FunctionType *FT = Ty->isFunctionPointerType()
117      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
118      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
119      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
120        unsigned NumArgsInProto = Proto->getNumArgs();
121        unsigned k;
122        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
123          if (nullPos)
124            --nullPos;
125          else
126            ++i;
127        }
128        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
129      }
130      if (Ty->isBlockPointerType())
131        isMethod = 2;
132    } else
133      return;
134  } else
135    return;
136
137  if (warnNotEnoughArgs) {
138    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
139    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
140    return;
141  }
142  int sentinel = i;
143  while (sentinelPos > 0 && i < NumArgs-1) {
144    --sentinelPos;
145    ++i;
146  }
147  if (sentinelPos > 0) {
148    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
149    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
150    return;
151  }
152  while (i < NumArgs-1) {
153    ++i;
154    ++sentinel;
155  }
156  Expr *sentinelExpr = Args[sentinel];
157  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
158                       (!sentinelExpr->getType()->isPointerType() ||
159                        !sentinelExpr->isNullPointerConstant(Context,
160                                            Expr::NPC_ValueDependentIsNull)))) {
161    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
162    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
163  }
164  return;
165}
166
167SourceRange Sema::getExprRange(ExprTy *E) const {
168  Expr *Ex = (Expr *)E;
169  return Ex? Ex->getSourceRange() : SourceRange();
170}
171
172//===----------------------------------------------------------------------===//
173//  Standard Promotions and Conversions
174//===----------------------------------------------------------------------===//
175
176/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
177void Sema::DefaultFunctionArrayConversion(Expr *&E) {
178  QualType Ty = E->getType();
179  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
180
181  if (Ty->isFunctionType())
182    ImpCastExprToType(E, Context.getPointerType(Ty),
183                      CastExpr::CK_FunctionToPointerDecay);
184  else if (Ty->isArrayType()) {
185    // In C90 mode, arrays only promote to pointers if the array expression is
186    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
187    // type 'array of type' is converted to an expression that has type 'pointer
188    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
189    // that has type 'array of type' ...".  The relevant change is "an lvalue"
190    // (C90) to "an expression" (C99).
191    //
192    // C++ 4.2p1:
193    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
194    // T" can be converted to an rvalue of type "pointer to T".
195    //
196    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
197        E->isLvalue(Context) == Expr::LV_Valid)
198      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
199                        CastExpr::CK_ArrayToPointerDecay);
200  }
201}
202
203void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
204  DefaultFunctionArrayConversion(E);
205
206  QualType Ty = E->getType();
207  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
208  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
209      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
210      E->isLvalue(Context) == Expr::LV_Valid) {
211    // C++ [conv.lval]p1:
212    //   [...] If T is a non-class type, the type of the rvalue is the
213    //   cv-unqualified version of T. Otherwise, the type of the
214    //   rvalue is T
215    //
216    // C99 6.3.2.1p2:
217    //   If the lvalue has qualified type, the value has the unqualified
218    //   version of the type of the lvalue; otherwise, the value has the
219    //   type of the lvalue.
220    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
221  }
222}
223
224
225/// UsualUnaryConversions - Performs various conversions that are common to most
226/// operators (C99 6.3). The conversions of array and function types are
227/// sometimes surpressed. For example, the array->pointer conversion doesn't
228/// apply if the array is an argument to the sizeof or address (&) operators.
229/// In these instances, this routine should *not* be called.
230Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
231  QualType Ty = Expr->getType();
232  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
233
234  // C99 6.3.1.1p2:
235  //
236  //   The following may be used in an expression wherever an int or
237  //   unsigned int may be used:
238  //     - an object or expression with an integer type whose integer
239  //       conversion rank is less than or equal to the rank of int
240  //       and unsigned int.
241  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
242  //
243  //   If an int can represent all values of the original type, the
244  //   value is converted to an int; otherwise, it is converted to an
245  //   unsigned int. These are called the integer promotions. All
246  //   other types are unchanged by the integer promotions.
247  QualType PTy = Context.isPromotableBitField(Expr);
248  if (!PTy.isNull()) {
249    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
250    return Expr;
251  }
252  if (Ty->isPromotableIntegerType()) {
253    QualType PT = Context.getPromotedIntegerType(Ty);
254    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
255    return Expr;
256  }
257
258  DefaultFunctionArrayLvalueConversion(Expr);
259  return Expr;
260}
261
262/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
263/// do not have a prototype. Arguments that have type float are promoted to
264/// double. All other argument types are converted by UsualUnaryConversions().
265void Sema::DefaultArgumentPromotion(Expr *&Expr) {
266  QualType Ty = Expr->getType();
267  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
268
269  // If this is a 'float' (CVR qualified or typedef) promote to double.
270  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
271    if (BT->getKind() == BuiltinType::Float)
272      return ImpCastExprToType(Expr, Context.DoubleTy,
273                               CastExpr::CK_FloatingCast);
274
275  UsualUnaryConversions(Expr);
276}
277
278/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
279/// will warn if the resulting type is not a POD type, and rejects ObjC
280/// interfaces passed by value.  This returns true if the argument type is
281/// completely illegal.
282bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
283  DefaultArgumentPromotion(Expr);
284
285  if (Expr->getType()->isObjCInterfaceType() &&
286      DiagRuntimeBehavior(Expr->getLocStart(),
287        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
288          << Expr->getType() << CT))
289    return true;
290
291  if (!Expr->getType()->isPODType() &&
292      DiagRuntimeBehavior(Expr->getLocStart(),
293                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
294                            << Expr->getType() << CT))
295    return true;
296
297  return false;
298}
299
300
301/// UsualArithmeticConversions - Performs various conversions that are common to
302/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
303/// routine returns the first non-arithmetic type found. The client is
304/// responsible for emitting appropriate error diagnostics.
305/// FIXME: verify the conversion rules for "complex int" are consistent with
306/// GCC.
307QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
308                                          bool isCompAssign) {
309  if (!isCompAssign)
310    UsualUnaryConversions(lhsExpr);
311
312  UsualUnaryConversions(rhsExpr);
313
314  // For conversion purposes, we ignore any qualifiers.
315  // For example, "const float" and "float" are equivalent.
316  QualType lhs =
317    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
318  QualType rhs =
319    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
320
321  // If both types are identical, no conversion is needed.
322  if (lhs == rhs)
323    return lhs;
324
325  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
326  // The caller can deal with this (e.g. pointer + int).
327  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
328    return lhs;
329
330  // Perform bitfield promotions.
331  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
332  if (!LHSBitfieldPromoteTy.isNull())
333    lhs = LHSBitfieldPromoteTy;
334  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
335  if (!RHSBitfieldPromoteTy.isNull())
336    rhs = RHSBitfieldPromoteTy;
337
338  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
339  if (!isCompAssign)
340    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
341  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
397/// up-to-date.
398///
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    if (!Var->hasLocalStorage())
415      return false;
416
417  // Blocks that have these can't be constant.
418  CurBlock->hasBlockDeclRefExprs = true;
419
420  // If we have nested blocks, the decl may be declared in an outer block (in
421  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
422  // be defined outside all of the current blocks (in which case the blocks do
423  // all get the bit).  Walk the nesting chain.
424  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
425       NextBlock = NextBlock->PrevBlockInfo) {
426    // If we found the defining block for the variable, don't mark the block as
427    // having a reference outside it.
428    if (NextBlock->TheDecl == VD->getDeclContext())
429      break;
430
431    // Otherwise, the DeclRef from the inner block causes the outer one to need
432    // a snapshot as well.
433    NextBlock->hasBlockDeclRefExprs = true;
434  }
435
436  return true;
437}
438
439
440
441/// BuildDeclRefExpr - Build a DeclRefExpr.
442Sema::OwningExprResult
443Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
444                       const CXXScopeSpec *SS) {
445  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
446    Diag(Loc,
447         diag::err_auto_variable_cannot_appear_in_own_initializer)
448      << D->getDeclName();
449    return ExprError();
450  }
451
452  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
453    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
454      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
455        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
456          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
457            << D->getIdentifier() << FD->getDeclName();
458          Diag(D->getLocation(), diag::note_local_variable_declared_here)
459            << D->getIdentifier();
460          return ExprError();
461        }
462      }
463    }
464  }
465
466  MarkDeclarationReferenced(Loc, D);
467
468  return Owned(DeclRefExpr::Create(Context,
469                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
470                                   SS? SS->getRange() : SourceRange(),
471                                   D, Loc, Ty));
472}
473
474/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
475/// variable corresponding to the anonymous union or struct whose type
476/// is Record.
477static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
478                                             RecordDecl *Record) {
479  assert(Record->isAnonymousStructOrUnion() &&
480         "Record must be an anonymous struct or union!");
481
482  // FIXME: Once Decls are directly linked together, this will be an O(1)
483  // operation rather than a slow walk through DeclContext's vector (which
484  // itself will be eliminated). DeclGroups might make this even better.
485  DeclContext *Ctx = Record->getDeclContext();
486  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
487                               DEnd = Ctx->decls_end();
488       D != DEnd; ++D) {
489    if (*D == Record) {
490      // The object for the anonymous struct/union directly
491      // follows its type in the list of declarations.
492      ++D;
493      assert(D != DEnd && "Missing object for anonymous record");
494      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
495      return *D;
496    }
497  }
498
499  assert(false && "Missing object for anonymous record");
500  return 0;
501}
502
503/// \brief Given a field that represents a member of an anonymous
504/// struct/union, build the path from that field's context to the
505/// actual member.
506///
507/// Construct the sequence of field member references we'll have to
508/// perform to get to the field in the anonymous union/struct. The
509/// list of members is built from the field outward, so traverse it
510/// backwards to go from an object in the current context to the field
511/// we found.
512///
513/// \returns The variable from which the field access should begin,
514/// for an anonymous struct/union that is not a member of another
515/// class. Otherwise, returns NULL.
516VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
517                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
518  assert(Field->getDeclContext()->isRecord() &&
519         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
520         && "Field must be stored inside an anonymous struct or union");
521
522  Path.push_back(Field);
523  VarDecl *BaseObject = 0;
524  DeclContext *Ctx = Field->getDeclContext();
525  do {
526    RecordDecl *Record = cast<RecordDecl>(Ctx);
527    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
528    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
529      Path.push_back(AnonField);
530    else {
531      BaseObject = cast<VarDecl>(AnonObject);
532      break;
533    }
534    Ctx = Ctx->getParent();
535  } while (Ctx->isRecord() &&
536           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
537
538  return BaseObject;
539}
540
541Sema::OwningExprResult
542Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
543                                               FieldDecl *Field,
544                                               Expr *BaseObjectExpr,
545                                               SourceLocation OpLoc) {
546  llvm::SmallVector<FieldDecl *, 4> AnonFields;
547  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
548                                                            AnonFields);
549
550  // Build the expression that refers to the base object, from
551  // which we will build a sequence of member references to each
552  // of the anonymous union objects and, eventually, the field we
553  // found via name lookup.
554  bool BaseObjectIsPointer = false;
555  Qualifiers BaseQuals;
556  if (BaseObject) {
557    // BaseObject is an anonymous struct/union variable (and is,
558    // therefore, not part of another non-anonymous record).
559    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
560    MarkDeclarationReferenced(Loc, BaseObject);
561    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
562                                               SourceLocation());
563    BaseQuals
564      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
565  } else if (BaseObjectExpr) {
566    // The caller provided the base object expression. Determine
567    // whether its a pointer and whether it adds any qualifiers to the
568    // anonymous struct/union fields we're looking into.
569    QualType ObjectType = BaseObjectExpr->getType();
570    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
571      BaseObjectIsPointer = true;
572      ObjectType = ObjectPtr->getPointeeType();
573    }
574    BaseQuals
575      = Context.getCanonicalType(ObjectType).getQualifiers();
576  } else {
577    // We've found a member of an anonymous struct/union that is
578    // inside a non-anonymous struct/union, so in a well-formed
579    // program our base object expression is "this".
580    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
581      if (!MD->isStatic()) {
582        QualType AnonFieldType
583          = Context.getTagDeclType(
584                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
585        QualType ThisType = Context.getTagDeclType(MD->getParent());
586        if ((Context.getCanonicalType(AnonFieldType)
587               == Context.getCanonicalType(ThisType)) ||
588            IsDerivedFrom(ThisType, AnonFieldType)) {
589          // Our base object expression is "this".
590          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
591                                                     MD->getThisType(Context),
592                                                     /*isImplicit=*/true);
593          BaseObjectIsPointer = true;
594        }
595      } else {
596        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
597          << Field->getDeclName());
598      }
599      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
600    }
601
602    if (!BaseObjectExpr)
603      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
604        << Field->getDeclName());
605  }
606
607  // Build the implicit member references to the field of the
608  // anonymous struct/union.
609  Expr *Result = BaseObjectExpr;
610  Qualifiers ResultQuals = BaseQuals;
611  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
612         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
613       FI != FIEnd; ++FI) {
614    QualType MemberType = (*FI)->getType();
615    Qualifiers MemberTypeQuals =
616      Context.getCanonicalType(MemberType).getQualifiers();
617
618    // CVR attributes from the base are picked up by members,
619    // except that 'mutable' members don't pick up 'const'.
620    if ((*FI)->isMutable())
621      ResultQuals.removeConst();
622
623    // GC attributes are never picked up by members.
624    ResultQuals.removeObjCGCAttr();
625
626    // TR 18037 does not allow fields to be declared with address spaces.
627    assert(!MemberTypeQuals.hasAddressSpace());
628
629    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
630    if (NewQuals != MemberTypeQuals)
631      MemberType = Context.getQualifiedType(MemberType, NewQuals);
632
633    MarkDeclarationReferenced(Loc, *FI);
634    PerformObjectMemberConversion(Result, *FI);
635    // FIXME: Might this end up being a qualified name?
636    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
637                                      OpLoc, MemberType);
638    BaseObjectIsPointer = false;
639    ResultQuals = NewQuals;
640  }
641
642  return Owned(Result);
643}
644
645/// Decomposes the given name into a DeclarationName, its location, and
646/// possibly a list of template arguments.
647///
648/// If this produces template arguments, it is permitted to call
649/// DecomposeTemplateName.
650///
651/// This actually loses a lot of source location information for
652/// non-standard name kinds; we should consider preserving that in
653/// some way.
654static void DecomposeUnqualifiedId(Sema &SemaRef,
655                                   const UnqualifiedId &Id,
656                                   TemplateArgumentListInfo &Buffer,
657                                   DeclarationName &Name,
658                                   SourceLocation &NameLoc,
659                             const TemplateArgumentListInfo *&TemplateArgs) {
660  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
661    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
662    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
663
664    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
665                                       Id.TemplateId->getTemplateArgs(),
666                                       Id.TemplateId->NumArgs);
667    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
668    TemplateArgsPtr.release();
669
670    TemplateName TName =
671      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
672
673    Name = SemaRef.Context.getNameForTemplate(TName);
674    NameLoc = Id.TemplateId->TemplateNameLoc;
675    TemplateArgs = &Buffer;
676  } else {
677    Name = SemaRef.GetNameFromUnqualifiedId(Id);
678    NameLoc = Id.StartLocation;
679    TemplateArgs = 0;
680  }
681}
682
683/// Decompose the given template name into a list of lookup results.
684///
685/// The unqualified ID must name a non-dependent template, which can
686/// be more easily tested by checking whether DecomposeUnqualifiedId
687/// found template arguments.
688static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
689  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
690  TemplateName TName =
691    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
692
693  if (TemplateDecl *TD = TName.getAsTemplateDecl())
694    R.addDecl(TD);
695  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
696    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
697           I != E; ++I)
698      R.addDecl(*I);
699
700  R.resolveKind();
701}
702
703/// Determines whether the given record is "fully-formed" at the given
704/// location, i.e. whether a qualified lookup into it is assured of
705/// getting consistent results already.
706static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
707  if (!Record->hasDefinition())
708    return false;
709
710  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
711         E = Record->bases_end(); I != E; ++I) {
712    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
713    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
714    if (!BaseRT) return false;
715
716    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
717    if (!BaseRecord->hasDefinition() ||
718        !IsFullyFormedScope(SemaRef, BaseRecord))
719      return false;
720  }
721
722  return true;
723}
724
725/// Determines whether we can lookup this id-expression now or whether
726/// we have to wait until template instantiation is complete.
727static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
728  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
729
730  // If the qualifier scope isn't computable, it's definitely dependent.
731  if (!DC) return true;
732
733  // If the qualifier scope doesn't name a record, we can always look into it.
734  if (!isa<CXXRecordDecl>(DC)) return false;
735
736  // We can't look into record types unless they're fully-formed.
737  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
738
739  return false;
740}
741
742/// Determines if the given class is provably not derived from all of
743/// the prospective base classes.
744static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
745                                     CXXRecordDecl *Record,
746                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
747  if (Bases.count(Record->getCanonicalDecl()))
748    return false;
749
750  RecordDecl *RD = Record->getDefinition();
751  if (!RD) return false;
752  Record = cast<CXXRecordDecl>(RD);
753
754  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
755         E = Record->bases_end(); I != E; ++I) {
756    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
757    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
758    if (!BaseRT) return false;
759
760    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
761    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
762      return false;
763  }
764
765  return true;
766}
767
768/// Determines if this is an instance member of a class.
769static bool IsInstanceMember(NamedDecl *D) {
770  assert(D->isCXXClassMember() &&
771         "checking whether non-member is instance member");
772
773  if (isa<FieldDecl>(D)) return true;
774
775  if (isa<CXXMethodDecl>(D))
776    return !cast<CXXMethodDecl>(D)->isStatic();
777
778  if (isa<FunctionTemplateDecl>(D)) {
779    D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
780    return !cast<CXXMethodDecl>(D)->isStatic();
781  }
782
783  return false;
784}
785
786enum IMAKind {
787  /// The reference is definitely not an instance member access.
788  IMA_Static,
789
790  /// The reference may be an implicit instance member access.
791  IMA_Mixed,
792
793  /// The reference may be to an instance member, but it is invalid if
794  /// so, because the context is not an instance method.
795  IMA_Mixed_StaticContext,
796
797  /// The reference may be to an instance member, but it is invalid if
798  /// so, because the context is from an unrelated class.
799  IMA_Mixed_Unrelated,
800
801  /// The reference is definitely an implicit instance member access.
802  IMA_Instance,
803
804  /// The reference may be to an unresolved using declaration.
805  IMA_Unresolved,
806
807  /// The reference may be to an unresolved using declaration and the
808  /// context is not an instance method.
809  IMA_Unresolved_StaticContext,
810
811  /// The reference is to a member of an anonymous structure in a
812  /// non-class context.
813  IMA_AnonymousMember,
814
815  /// All possible referrents are instance members and the current
816  /// context is not an instance method.
817  IMA_Error_StaticContext,
818
819  /// All possible referrents are instance members of an unrelated
820  /// class.
821  IMA_Error_Unrelated
822};
823
824/// The given lookup names class member(s) and is not being used for
825/// an address-of-member expression.  Classify the type of access
826/// according to whether it's possible that this reference names an
827/// instance member.  This is best-effort; it is okay to
828/// conservatively answer "yes", in which case some errors will simply
829/// not be caught until template-instantiation.
830static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
831                                            const LookupResult &R) {
832  assert(!R.empty() && (*R.begin())->isCXXClassMember());
833
834  bool isStaticContext =
835    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
836     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
837
838  if (R.isUnresolvableResult())
839    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
840
841  // Collect all the declaring classes of instance members we find.
842  bool hasNonInstance = false;
843  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
844  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
845    NamedDecl *D = (*I)->getUnderlyingDecl();
846    if (IsInstanceMember(D)) {
847      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
848
849      // If this is a member of an anonymous record, move out to the
850      // innermost non-anonymous struct or union.  If there isn't one,
851      // that's a special case.
852      while (R->isAnonymousStructOrUnion()) {
853        R = dyn_cast<CXXRecordDecl>(R->getParent());
854        if (!R) return IMA_AnonymousMember;
855      }
856      Classes.insert(R->getCanonicalDecl());
857    }
858    else
859      hasNonInstance = true;
860  }
861
862  // If we didn't find any instance members, it can't be an implicit
863  // member reference.
864  if (Classes.empty())
865    return IMA_Static;
866
867  // If the current context is not an instance method, it can't be
868  // an implicit member reference.
869  if (isStaticContext)
870    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
871
872  // If we can prove that the current context is unrelated to all the
873  // declaring classes, it can't be an implicit member reference (in
874  // which case it's an error if any of those members are selected).
875  if (IsProvablyNotDerivedFrom(SemaRef,
876                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
877                               Classes))
878    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
879
880  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
881}
882
883/// Diagnose a reference to a field with no object available.
884static void DiagnoseInstanceReference(Sema &SemaRef,
885                                      const CXXScopeSpec &SS,
886                                      const LookupResult &R) {
887  SourceLocation Loc = R.getNameLoc();
888  SourceRange Range(Loc);
889  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
890
891  if (R.getAsSingle<FieldDecl>()) {
892    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
893      if (MD->isStatic()) {
894        // "invalid use of member 'x' in static member function"
895        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
896          << Range << R.getLookupName();
897        return;
898      }
899    }
900
901    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
902      << R.getLookupName() << Range;
903    return;
904  }
905
906  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
907}
908
909/// Diagnose an empty lookup.
910///
911/// \return false if new lookup candidates were found
912bool Sema::DiagnoseEmptyLookup(Scope *S, const CXXScopeSpec &SS,
913                               LookupResult &R) {
914  DeclarationName Name = R.getLookupName();
915
916  unsigned diagnostic = diag::err_undeclared_var_use;
917  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
918  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
919      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
920      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
921    diagnostic = diag::err_undeclared_use;
922    diagnostic_suggest = diag::err_undeclared_use_suggest;
923  }
924
925  // If the original lookup was an unqualified lookup, fake an
926  // unqualified lookup.  This is useful when (for example) the
927  // original lookup would not have found something because it was a
928  // dependent name.
929  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
930       DC; DC = DC->getParent()) {
931    if (isa<CXXRecordDecl>(DC)) {
932      LookupQualifiedName(R, DC);
933
934      if (!R.empty()) {
935        // Don't give errors about ambiguities in this lookup.
936        R.suppressDiagnostics();
937
938        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
939        bool isInstance = CurMethod &&
940                          CurMethod->isInstance() &&
941                          DC == CurMethod->getParent();
942
943        // Give a code modification hint to insert 'this->'.
944        // TODO: fixit for inserting 'Base<T>::' in the other cases.
945        // Actually quite difficult!
946        if (isInstance)
947          Diag(R.getNameLoc(), diagnostic) << Name
948            << CodeModificationHint::CreateInsertion(R.getNameLoc(),
949                                                     "this->");
950        else
951          Diag(R.getNameLoc(), diagnostic) << Name;
952
953        // Do we really want to note all of these?
954        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
955          Diag((*I)->getLocation(), diag::note_dependent_var_use);
956
957        // Tell the callee to try to recover.
958        return false;
959      }
960    }
961  }
962
963  // We didn't find anything, so try to correct for a typo.
964  if (S && CorrectTypo(R, S, &SS)) {
965    if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
966      if (SS.isEmpty())
967        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
968          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
969                                              R.getLookupName().getAsString());
970      else
971        Diag(R.getNameLoc(), diag::err_no_member_suggest)
972          << Name << computeDeclContext(SS, false) << R.getLookupName()
973          << SS.getRange()
974          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
975                                              R.getLookupName().getAsString());
976      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
977        Diag(ND->getLocation(), diag::note_previous_decl)
978          << ND->getDeclName();
979
980      // Tell the callee to try to recover.
981      return false;
982    }
983
984    if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
985      // FIXME: If we ended up with a typo for a type name or
986      // Objective-C class name, we're in trouble because the parser
987      // is in the wrong place to recover. Suggest the typo
988      // correction, but don't make it a fix-it since we're not going
989      // to recover well anyway.
990      if (SS.isEmpty())
991        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
992      else
993        Diag(R.getNameLoc(), diag::err_no_member_suggest)
994          << Name << computeDeclContext(SS, false) << R.getLookupName()
995          << SS.getRange();
996
997      // Don't try to recover; it won't work.
998      return true;
999    }
1000
1001    R.clear();
1002  }
1003
1004  // Emit a special diagnostic for failed member lookups.
1005  // FIXME: computing the declaration context might fail here (?)
1006  if (!SS.isEmpty()) {
1007    Diag(R.getNameLoc(), diag::err_no_member)
1008      << Name << computeDeclContext(SS, false)
1009      << SS.getRange();
1010    return true;
1011  }
1012
1013  // Give up, we can't recover.
1014  Diag(R.getNameLoc(), diagnostic) << Name;
1015  return true;
1016}
1017
1018Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1019                                               const CXXScopeSpec &SS,
1020                                               UnqualifiedId &Id,
1021                                               bool HasTrailingLParen,
1022                                               bool isAddressOfOperand) {
1023  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1024         "cannot be direct & operand and have a trailing lparen");
1025
1026  if (SS.isInvalid())
1027    return ExprError();
1028
1029  TemplateArgumentListInfo TemplateArgsBuffer;
1030
1031  // Decompose the UnqualifiedId into the following data.
1032  DeclarationName Name;
1033  SourceLocation NameLoc;
1034  const TemplateArgumentListInfo *TemplateArgs;
1035  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1036                         Name, NameLoc, TemplateArgs);
1037
1038  IdentifierInfo *II = Name.getAsIdentifierInfo();
1039
1040  // C++ [temp.dep.expr]p3:
1041  //   An id-expression is type-dependent if it contains:
1042  //     -- an identifier that was declared with a dependent type,
1043  //        (note: handled after lookup)
1044  //     -- a template-id that is dependent,
1045  //        (note: handled in BuildTemplateIdExpr)
1046  //     -- a conversion-function-id that specifies a dependent type,
1047  //     -- a nested-name-specifier that contains a class-name that
1048  //        names a dependent type.
1049  // Determine whether this is a member of an unknown specialization;
1050  // we need to handle these differently.
1051  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1052       Name.getCXXNameType()->isDependentType()) ||
1053      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1054    return ActOnDependentIdExpression(SS, Name, NameLoc,
1055                                      isAddressOfOperand,
1056                                      TemplateArgs);
1057  }
1058
1059  // Perform the required lookup.
1060  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1061  if (TemplateArgs) {
1062    // Just re-use the lookup done by isTemplateName.
1063    DecomposeTemplateName(R, Id);
1064  } else {
1065    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1066    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1067
1068    // If this reference is in an Objective-C method, then we need to do
1069    // some special Objective-C lookup, too.
1070    if (IvarLookupFollowUp) {
1071      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1072      if (E.isInvalid())
1073        return ExprError();
1074
1075      Expr *Ex = E.takeAs<Expr>();
1076      if (Ex) return Owned(Ex);
1077    }
1078  }
1079
1080  if (R.isAmbiguous())
1081    return ExprError();
1082
1083  // Determine whether this name might be a candidate for
1084  // argument-dependent lookup.
1085  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1086
1087  if (R.empty() && !ADL) {
1088    // Otherwise, this could be an implicitly declared function reference (legal
1089    // in C90, extension in C99, forbidden in C++).
1090    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1091      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1092      if (D) R.addDecl(D);
1093    }
1094
1095    // If this name wasn't predeclared and if this is not a function
1096    // call, diagnose the problem.
1097    if (R.empty()) {
1098      if (DiagnoseEmptyLookup(S, SS, R))
1099        return ExprError();
1100
1101      assert(!R.empty() &&
1102             "DiagnoseEmptyLookup returned false but added no results");
1103
1104      // If we found an Objective-C instance variable, let
1105      // LookupInObjCMethod build the appropriate expression to
1106      // reference the ivar.
1107      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1108        R.clear();
1109        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1110        assert(E.isInvalid() || E.get());
1111        return move(E);
1112      }
1113    }
1114  }
1115
1116  // This is guaranteed from this point on.
1117  assert(!R.empty() || ADL);
1118
1119  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1120    // Warn about constructs like:
1121    //   if (void *X = foo()) { ... } else { X }.
1122    // In the else block, the pointer is always false.
1123
1124    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1125      Scope *CheckS = S;
1126      while (CheckS && CheckS->getControlParent()) {
1127        if (CheckS->isWithinElse() &&
1128            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1129          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1130            << Var->getDeclName()
1131            << (Var->getType()->isPointerType()? 2 :
1132                Var->getType()->isBooleanType()? 1 : 0));
1133          break;
1134        }
1135
1136        // Move to the parent of this scope.
1137        CheckS = CheckS->getParent();
1138      }
1139    }
1140  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1141    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1142      // C99 DR 316 says that, if a function type comes from a
1143      // function definition (without a prototype), that type is only
1144      // used for checking compatibility. Therefore, when referencing
1145      // the function, we pretend that we don't have the full function
1146      // type.
1147      if (DiagnoseUseOfDecl(Func, NameLoc))
1148        return ExprError();
1149
1150      QualType T = Func->getType();
1151      QualType NoProtoType = T;
1152      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1153        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1154      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1155    }
1156  }
1157
1158  // Check whether this might be a C++ implicit instance member access.
1159  // C++ [expr.prim.general]p6:
1160  //   Within the definition of a non-static member function, an
1161  //   identifier that names a non-static member is transformed to a
1162  //   class member access expression.
1163  // But note that &SomeClass::foo is grammatically distinct, even
1164  // though we don't parse it that way.
1165  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1166    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1167    if (!isAbstractMemberPointer)
1168      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1169  }
1170
1171  if (TemplateArgs)
1172    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1173
1174  return BuildDeclarationNameExpr(SS, R, ADL);
1175}
1176
1177/// Builds an expression which might be an implicit member expression.
1178Sema::OwningExprResult
1179Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1180                                      LookupResult &R,
1181                                const TemplateArgumentListInfo *TemplateArgs) {
1182  switch (ClassifyImplicitMemberAccess(*this, R)) {
1183  case IMA_Instance:
1184    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1185
1186  case IMA_AnonymousMember:
1187    assert(R.isSingleResult());
1188    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1189                                                    R.getAsSingle<FieldDecl>());
1190
1191  case IMA_Mixed:
1192  case IMA_Mixed_Unrelated:
1193  case IMA_Unresolved:
1194    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1195
1196  case IMA_Static:
1197  case IMA_Mixed_StaticContext:
1198  case IMA_Unresolved_StaticContext:
1199    if (TemplateArgs)
1200      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1201    return BuildDeclarationNameExpr(SS, R, false);
1202
1203  case IMA_Error_StaticContext:
1204  case IMA_Error_Unrelated:
1205    DiagnoseInstanceReference(*this, SS, R);
1206    return ExprError();
1207  }
1208
1209  llvm_unreachable("unexpected instance member access kind");
1210  return ExprError();
1211}
1212
1213/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1214/// declaration name, generally during template instantiation.
1215/// There's a large number of things which don't need to be done along
1216/// this path.
1217Sema::OwningExprResult
1218Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
1219                                        DeclarationName Name,
1220                                        SourceLocation NameLoc) {
1221  DeclContext *DC;
1222  if (!(DC = computeDeclContext(SS, false)) ||
1223      DC->isDependentContext() ||
1224      RequireCompleteDeclContext(SS))
1225    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1226
1227  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1228  LookupQualifiedName(R, DC);
1229
1230  if (R.isAmbiguous())
1231    return ExprError();
1232
1233  if (R.empty()) {
1234    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1235    return ExprError();
1236  }
1237
1238  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1239}
1240
1241/// LookupInObjCMethod - The parser has read a name in, and Sema has
1242/// detected that we're currently inside an ObjC method.  Perform some
1243/// additional lookup.
1244///
1245/// Ideally, most of this would be done by lookup, but there's
1246/// actually quite a lot of extra work involved.
1247///
1248/// Returns a null sentinel to indicate trivial success.
1249Sema::OwningExprResult
1250Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1251                         IdentifierInfo *II,
1252                         bool AllowBuiltinCreation) {
1253  SourceLocation Loc = Lookup.getNameLoc();
1254
1255  // There are two cases to handle here.  1) scoped lookup could have failed,
1256  // in which case we should look for an ivar.  2) scoped lookup could have
1257  // found a decl, but that decl is outside the current instance method (i.e.
1258  // a global variable).  In these two cases, we do a lookup for an ivar with
1259  // this name, if the lookup sucedes, we replace it our current decl.
1260
1261  // If we're in a class method, we don't normally want to look for
1262  // ivars.  But if we don't find anything else, and there's an
1263  // ivar, that's an error.
1264  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
1265
1266  bool LookForIvars;
1267  if (Lookup.empty())
1268    LookForIvars = true;
1269  else if (IsClassMethod)
1270    LookForIvars = false;
1271  else
1272    LookForIvars = (Lookup.isSingleResult() &&
1273                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1274  ObjCInterfaceDecl *IFace = 0;
1275  if (LookForIvars) {
1276    IFace = getCurMethodDecl()->getClassInterface();
1277    ObjCInterfaceDecl *ClassDeclared;
1278    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1279      // Diagnose using an ivar in a class method.
1280      if (IsClassMethod)
1281        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1282                         << IV->getDeclName());
1283
1284      // If we're referencing an invalid decl, just return this as a silent
1285      // error node.  The error diagnostic was already emitted on the decl.
1286      if (IV->isInvalidDecl())
1287        return ExprError();
1288
1289      // Check if referencing a field with __attribute__((deprecated)).
1290      if (DiagnoseUseOfDecl(IV, Loc))
1291        return ExprError();
1292
1293      // Diagnose the use of an ivar outside of the declaring class.
1294      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1295          ClassDeclared != IFace)
1296        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1297
1298      // FIXME: This should use a new expr for a direct reference, don't
1299      // turn this into Self->ivar, just return a BareIVarExpr or something.
1300      IdentifierInfo &II = Context.Idents.get("self");
1301      UnqualifiedId SelfName;
1302      SelfName.setIdentifier(&II, SourceLocation());
1303      CXXScopeSpec SelfScopeSpec;
1304      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1305                                                    SelfName, false, false);
1306      MarkDeclarationReferenced(Loc, IV);
1307      return Owned(new (Context)
1308                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1309                                   SelfExpr.takeAs<Expr>(), true, true));
1310    }
1311  } else if (getCurMethodDecl()->isInstanceMethod()) {
1312    // We should warn if a local variable hides an ivar.
1313    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1314    ObjCInterfaceDecl *ClassDeclared;
1315    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1316      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1317          IFace == ClassDeclared)
1318        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1319    }
1320  }
1321
1322  // Needed to implement property "super.method" notation.
1323  if (Lookup.empty() && II->isStr("super")) {
1324    QualType T;
1325
1326    if (getCurMethodDecl()->isInstanceMethod())
1327      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
1328                                    getCurMethodDecl()->getClassInterface()));
1329    else
1330      T = Context.getObjCClassType();
1331    return Owned(new (Context) ObjCSuperExpr(Loc, T));
1332  }
1333  if (Lookup.empty() && II && AllowBuiltinCreation) {
1334    // FIXME. Consolidate this with similar code in LookupName.
1335    if (unsigned BuiltinID = II->getBuiltinID()) {
1336      if (!(getLangOptions().CPlusPlus &&
1337            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1338        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1339                                           S, Lookup.isForRedeclaration(),
1340                                           Lookup.getNameLoc());
1341        if (D) Lookup.addDecl(D);
1342      }
1343    }
1344  }
1345  if (LangOpts.ObjCNonFragileABI2 && LookForIvars && Lookup.empty()) {
1346    ObjCIvarDecl *Ivar = SynthesizeNewPropertyIvar(IFace, II);
1347    if (Ivar)
1348      return LookupInObjCMethod(Lookup, S, II, AllowBuiltinCreation);
1349  }
1350  // Sentinel value saying that we didn't do anything special.
1351  return Owned((Expr*) 0);
1352}
1353
1354/// \brief Cast member's object to its own class if necessary.
1355bool
1356Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
1357  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
1358    if (CXXRecordDecl *RD =
1359        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
1360      QualType DestType =
1361        Context.getCanonicalType(Context.getTypeDeclType(RD));
1362      if (DestType->isDependentType() || From->getType()->isDependentType())
1363        return false;
1364      QualType FromRecordType = From->getType();
1365      QualType DestRecordType = DestType;
1366      if (FromRecordType->getAs<PointerType>()) {
1367        DestType = Context.getPointerType(DestType);
1368        FromRecordType = FromRecordType->getPointeeType();
1369      }
1370      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
1371          CheckDerivedToBaseConversion(FromRecordType,
1372                                       DestRecordType,
1373                                       From->getSourceRange().getBegin(),
1374                                       From->getSourceRange()))
1375        return true;
1376      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
1377                        /*isLvalue=*/true);
1378    }
1379  return false;
1380}
1381
1382/// \brief Build a MemberExpr AST node.
1383static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1384                                   const CXXScopeSpec &SS, ValueDecl *Member,
1385                                   SourceLocation Loc, QualType Ty,
1386                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1387  NestedNameSpecifier *Qualifier = 0;
1388  SourceRange QualifierRange;
1389  if (SS.isSet()) {
1390    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1391    QualifierRange = SS.getRange();
1392  }
1393
1394  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1395                            Member, Loc, TemplateArgs, Ty);
1396}
1397
1398/// Builds an implicit member access expression.  The current context
1399/// is known to be an instance method, and the given unqualified lookup
1400/// set is known to contain only instance members, at least one of which
1401/// is from an appropriate type.
1402Sema::OwningExprResult
1403Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1404                              LookupResult &R,
1405                              const TemplateArgumentListInfo *TemplateArgs,
1406                              bool IsKnownInstance) {
1407  assert(!R.empty() && !R.isAmbiguous());
1408
1409  SourceLocation Loc = R.getNameLoc();
1410
1411  // We may have found a field within an anonymous union or struct
1412  // (C++ [class.union]).
1413  // FIXME: This needs to happen post-isImplicitMemberReference?
1414  // FIXME: template-ids inside anonymous structs?
1415  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1416    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1417      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1418
1419  // If this is known to be an instance access, go ahead and build a
1420  // 'this' expression now.
1421  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
1422  Expr *This = 0; // null signifies implicit access
1423  if (IsKnownInstance) {
1424    SourceLocation Loc = R.getNameLoc();
1425    if (SS.getRange().isValid())
1426      Loc = SS.getRange().getBegin();
1427    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1428  }
1429
1430  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1431                                  /*OpLoc*/ SourceLocation(),
1432                                  /*IsArrow*/ true,
1433                                  SS,
1434                                  /*FirstQualifierInScope*/ 0,
1435                                  R, TemplateArgs);
1436}
1437
1438bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1439                                      const LookupResult &R,
1440                                      bool HasTrailingLParen) {
1441  // Only when used directly as the postfix-expression of a call.
1442  if (!HasTrailingLParen)
1443    return false;
1444
1445  // Never if a scope specifier was provided.
1446  if (SS.isSet())
1447    return false;
1448
1449  // Only in C++ or ObjC++.
1450  if (!getLangOptions().CPlusPlus)
1451    return false;
1452
1453  // Turn off ADL when we find certain kinds of declarations during
1454  // normal lookup:
1455  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1456    NamedDecl *D = *I;
1457
1458    // C++0x [basic.lookup.argdep]p3:
1459    //     -- a declaration of a class member
1460    // Since using decls preserve this property, we check this on the
1461    // original decl.
1462    if (D->isCXXClassMember())
1463      return false;
1464
1465    // C++0x [basic.lookup.argdep]p3:
1466    //     -- a block-scope function declaration that is not a
1467    //        using-declaration
1468    // NOTE: we also trigger this for function templates (in fact, we
1469    // don't check the decl type at all, since all other decl types
1470    // turn off ADL anyway).
1471    if (isa<UsingShadowDecl>(D))
1472      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1473    else if (D->getDeclContext()->isFunctionOrMethod())
1474      return false;
1475
1476    // C++0x [basic.lookup.argdep]p3:
1477    //     -- a declaration that is neither a function or a function
1478    //        template
1479    // And also for builtin functions.
1480    if (isa<FunctionDecl>(D)) {
1481      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1482
1483      // But also builtin functions.
1484      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1485        return false;
1486    } else if (!isa<FunctionTemplateDecl>(D))
1487      return false;
1488  }
1489
1490  return true;
1491}
1492
1493
1494/// Diagnoses obvious problems with the use of the given declaration
1495/// as an expression.  This is only actually called for lookups that
1496/// were not overloaded, and it doesn't promise that the declaration
1497/// will in fact be used.
1498static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1499  if (isa<TypedefDecl>(D)) {
1500    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1501    return true;
1502  }
1503
1504  if (isa<ObjCInterfaceDecl>(D)) {
1505    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1506    return true;
1507  }
1508
1509  if (isa<NamespaceDecl>(D)) {
1510    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1511    return true;
1512  }
1513
1514  return false;
1515}
1516
1517Sema::OwningExprResult
1518Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1519                               LookupResult &R,
1520                               bool NeedsADL) {
1521  // If this is a single, fully-resolved result and we don't need ADL,
1522  // just build an ordinary singleton decl ref.
1523  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1524    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1525
1526  // We only need to check the declaration if there's exactly one
1527  // result, because in the overloaded case the results can only be
1528  // functions and function templates.
1529  if (R.isSingleResult() &&
1530      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1531    return ExprError();
1532
1533  // Otherwise, just build an unresolved lookup expression.  Suppress
1534  // any lookup-related diagnostics; we'll hash these out later, when
1535  // we've picked a target.
1536  R.suppressDiagnostics();
1537
1538  bool Dependent
1539    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1540  UnresolvedLookupExpr *ULE
1541    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1542                                   (NestedNameSpecifier*) SS.getScopeRep(),
1543                                   SS.getRange(),
1544                                   R.getLookupName(), R.getNameLoc(),
1545                                   NeedsADL, R.isOverloadedResult());
1546  ULE->addDecls(R.begin(), R.end());
1547
1548  return Owned(ULE);
1549}
1550
1551
1552/// \brief Complete semantic analysis for a reference to the given declaration.
1553Sema::OwningExprResult
1554Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1555                               SourceLocation Loc, NamedDecl *D) {
1556  assert(D && "Cannot refer to a NULL declaration");
1557  assert(!isa<FunctionTemplateDecl>(D) &&
1558         "Cannot refer unambiguously to a function template");
1559
1560  if (CheckDeclInExpr(*this, Loc, D))
1561    return ExprError();
1562
1563  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1564    // Specifically diagnose references to class templates that are missing
1565    // a template argument list.
1566    Diag(Loc, diag::err_template_decl_ref)
1567      << Template << SS.getRange();
1568    Diag(Template->getLocation(), diag::note_template_decl_here);
1569    return ExprError();
1570  }
1571
1572  // Make sure that we're referring to a value.
1573  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1574  if (!VD) {
1575    Diag(Loc, diag::err_ref_non_value)
1576      << D << SS.getRange();
1577    Diag(D->getLocation(), diag::note_declared_at);
1578    return ExprError();
1579  }
1580
1581  // Check whether this declaration can be used. Note that we suppress
1582  // this check when we're going to perform argument-dependent lookup
1583  // on this function name, because this might not be the function
1584  // that overload resolution actually selects.
1585  if (DiagnoseUseOfDecl(VD, Loc))
1586    return ExprError();
1587
1588  // Only create DeclRefExpr's for valid Decl's.
1589  if (VD->isInvalidDecl())
1590    return ExprError();
1591
1592  // If the identifier reference is inside a block, and it refers to a value
1593  // that is outside the block, create a BlockDeclRefExpr instead of a
1594  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1595  // the block is formed.
1596  //
1597  // We do not do this for things like enum constants, global variables, etc,
1598  // as they do not get snapshotted.
1599  //
1600  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1601    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1602      Diag(Loc, diag::err_ref_vm_type);
1603      Diag(D->getLocation(), diag::note_declared_at);
1604      return ExprError();
1605    }
1606
1607    if (VD->getType()->isArrayType()) {
1608      Diag(Loc, diag::err_ref_array_type);
1609      Diag(D->getLocation(), diag::note_declared_at);
1610      return ExprError();
1611    }
1612
1613    MarkDeclarationReferenced(Loc, VD);
1614    QualType ExprTy = VD->getType().getNonReferenceType();
1615    // The BlocksAttr indicates the variable is bound by-reference.
1616    if (VD->getAttr<BlocksAttr>())
1617      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1618    // This is to record that a 'const' was actually synthesize and added.
1619    bool constAdded = !ExprTy.isConstQualified();
1620    // Variable will be bound by-copy, make it const within the closure.
1621
1622    ExprTy.addConst();
1623    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1624                                                constAdded));
1625  }
1626  // If this reference is not in a block or if the referenced variable is
1627  // within the block, create a normal DeclRefExpr.
1628
1629  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1630}
1631
1632Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1633                                                 tok::TokenKind Kind) {
1634  PredefinedExpr::IdentType IT;
1635
1636  switch (Kind) {
1637  default: assert(0 && "Unknown simple primary expr!");
1638  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1639  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1640  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1641  }
1642
1643  // Pre-defined identifiers are of type char[x], where x is the length of the
1644  // string.
1645
1646  Decl *currentDecl = getCurFunctionOrMethodDecl();
1647  if (!currentDecl) {
1648    Diag(Loc, diag::ext_predef_outside_function);
1649    currentDecl = Context.getTranslationUnitDecl();
1650  }
1651
1652  QualType ResTy;
1653  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1654    ResTy = Context.DependentTy;
1655  } else {
1656    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1657
1658    llvm::APInt LengthI(32, Length + 1);
1659    ResTy = Context.CharTy.withConst();
1660    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1661  }
1662  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1663}
1664
1665Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1666  llvm::SmallString<16> CharBuffer;
1667  CharBuffer.resize(Tok.getLength());
1668  const char *ThisTokBegin = &CharBuffer[0];
1669  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1670
1671  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1672                            Tok.getLocation(), PP);
1673  if (Literal.hadError())
1674    return ExprError();
1675
1676  QualType Ty;
1677  if (!getLangOptions().CPlusPlus)
1678    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1679  else if (Literal.isWide())
1680    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1681  else if (Literal.isMultiChar())
1682    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1683  else
1684    Ty = Context.CharTy;  // 'x' -> char in C++
1685
1686  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1687                                              Literal.isWide(),
1688                                              Ty, Tok.getLocation()));
1689}
1690
1691Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1692  // Fast path for a single digit (which is quite common).  A single digit
1693  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1694  if (Tok.getLength() == 1) {
1695    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1696    unsigned IntSize = Context.Target.getIntWidth();
1697    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1698                    Context.IntTy, Tok.getLocation()));
1699  }
1700
1701  llvm::SmallString<512> IntegerBuffer;
1702  // Add padding so that NumericLiteralParser can overread by one character.
1703  IntegerBuffer.resize(Tok.getLength()+1);
1704  const char *ThisTokBegin = &IntegerBuffer[0];
1705
1706  // Get the spelling of the token, which eliminates trigraphs, etc.
1707  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1708
1709  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1710                               Tok.getLocation(), PP);
1711  if (Literal.hadError)
1712    return ExprError();
1713
1714  Expr *Res;
1715
1716  if (Literal.isFloatingLiteral()) {
1717    QualType Ty;
1718    if (Literal.isFloat)
1719      Ty = Context.FloatTy;
1720    else if (!Literal.isLong)
1721      Ty = Context.DoubleTy;
1722    else
1723      Ty = Context.LongDoubleTy;
1724
1725    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1726
1727    using llvm::APFloat;
1728    APFloat Val(Format);
1729
1730    APFloat::opStatus result = Literal.GetFloatValue(Val);
1731
1732    // Overflow is always an error, but underflow is only an error if
1733    // we underflowed to zero (APFloat reports denormals as underflow).
1734    if ((result & APFloat::opOverflow) ||
1735        ((result & APFloat::opUnderflow) && Val.isZero())) {
1736      unsigned diagnostic;
1737      llvm::SmallVector<char, 20> buffer;
1738      if (result & APFloat::opOverflow) {
1739        diagnostic = diag::err_float_overflow;
1740        APFloat::getLargest(Format).toString(buffer);
1741      } else {
1742        diagnostic = diag::err_float_underflow;
1743        APFloat::getSmallest(Format).toString(buffer);
1744      }
1745
1746      Diag(Tok.getLocation(), diagnostic)
1747        << Ty
1748        << llvm::StringRef(buffer.data(), buffer.size());
1749    }
1750
1751    bool isExact = (result == APFloat::opOK);
1752    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1753
1754  } else if (!Literal.isIntegerLiteral()) {
1755    return ExprError();
1756  } else {
1757    QualType Ty;
1758
1759    // long long is a C99 feature.
1760    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1761        Literal.isLongLong)
1762      Diag(Tok.getLocation(), diag::ext_longlong);
1763
1764    // Get the value in the widest-possible width.
1765    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1766
1767    if (Literal.GetIntegerValue(ResultVal)) {
1768      // If this value didn't fit into uintmax_t, warn and force to ull.
1769      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1770      Ty = Context.UnsignedLongLongTy;
1771      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1772             "long long is not intmax_t?");
1773    } else {
1774      // If this value fits into a ULL, try to figure out what else it fits into
1775      // according to the rules of C99 6.4.4.1p5.
1776
1777      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1778      // be an unsigned int.
1779      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1780
1781      // Check from smallest to largest, picking the smallest type we can.
1782      unsigned Width = 0;
1783      if (!Literal.isLong && !Literal.isLongLong) {
1784        // Are int/unsigned possibilities?
1785        unsigned IntSize = Context.Target.getIntWidth();
1786
1787        // Does it fit in a unsigned int?
1788        if (ResultVal.isIntN(IntSize)) {
1789          // Does it fit in a signed int?
1790          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1791            Ty = Context.IntTy;
1792          else if (AllowUnsigned)
1793            Ty = Context.UnsignedIntTy;
1794          Width = IntSize;
1795        }
1796      }
1797
1798      // Are long/unsigned long possibilities?
1799      if (Ty.isNull() && !Literal.isLongLong) {
1800        unsigned LongSize = Context.Target.getLongWidth();
1801
1802        // Does it fit in a unsigned long?
1803        if (ResultVal.isIntN(LongSize)) {
1804          // Does it fit in a signed long?
1805          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1806            Ty = Context.LongTy;
1807          else if (AllowUnsigned)
1808            Ty = Context.UnsignedLongTy;
1809          Width = LongSize;
1810        }
1811      }
1812
1813      // Finally, check long long if needed.
1814      if (Ty.isNull()) {
1815        unsigned LongLongSize = Context.Target.getLongLongWidth();
1816
1817        // Does it fit in a unsigned long long?
1818        if (ResultVal.isIntN(LongLongSize)) {
1819          // Does it fit in a signed long long?
1820          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1821            Ty = Context.LongLongTy;
1822          else if (AllowUnsigned)
1823            Ty = Context.UnsignedLongLongTy;
1824          Width = LongLongSize;
1825        }
1826      }
1827
1828      // If we still couldn't decide a type, we probably have something that
1829      // does not fit in a signed long long, but has no U suffix.
1830      if (Ty.isNull()) {
1831        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1832        Ty = Context.UnsignedLongLongTy;
1833        Width = Context.Target.getLongLongWidth();
1834      }
1835
1836      if (ResultVal.getBitWidth() != Width)
1837        ResultVal.trunc(Width);
1838    }
1839    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1840  }
1841
1842  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1843  if (Literal.isImaginary)
1844    Res = new (Context) ImaginaryLiteral(Res,
1845                                        Context.getComplexType(Res->getType()));
1846
1847  return Owned(Res);
1848}
1849
1850Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1851                                              SourceLocation R, ExprArg Val) {
1852  Expr *E = Val.takeAs<Expr>();
1853  assert((E != 0) && "ActOnParenExpr() missing expr");
1854  return Owned(new (Context) ParenExpr(L, R, E));
1855}
1856
1857/// The UsualUnaryConversions() function is *not* called by this routine.
1858/// See C99 6.3.2.1p[2-4] for more details.
1859bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1860                                     SourceLocation OpLoc,
1861                                     const SourceRange &ExprRange,
1862                                     bool isSizeof) {
1863  if (exprType->isDependentType())
1864    return false;
1865
1866  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1867  //   the result is the size of the referenced type."
1868  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1869  //   result shall be the alignment of the referenced type."
1870  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1871    exprType = Ref->getPointeeType();
1872
1873  // C99 6.5.3.4p1:
1874  if (exprType->isFunctionType()) {
1875    // alignof(function) is allowed as an extension.
1876    if (isSizeof)
1877      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1878    return false;
1879  }
1880
1881  // Allow sizeof(void)/alignof(void) as an extension.
1882  if (exprType->isVoidType()) {
1883    Diag(OpLoc, diag::ext_sizeof_void_type)
1884      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1885    return false;
1886  }
1887
1888  if (RequireCompleteType(OpLoc, exprType,
1889                          PDiag(diag::err_sizeof_alignof_incomplete_type)
1890                          << int(!isSizeof) << ExprRange))
1891    return true;
1892
1893  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1894  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1895    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1896      << exprType << isSizeof << ExprRange;
1897    return true;
1898  }
1899
1900  return false;
1901}
1902
1903bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1904                            const SourceRange &ExprRange) {
1905  E = E->IgnoreParens();
1906
1907  // alignof decl is always ok.
1908  if (isa<DeclRefExpr>(E))
1909    return false;
1910
1911  // Cannot know anything else if the expression is dependent.
1912  if (E->isTypeDependent())
1913    return false;
1914
1915  if (E->getBitField()) {
1916    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1917    return true;
1918  }
1919
1920  // Alignment of a field access is always okay, so long as it isn't a
1921  // bit-field.
1922  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1923    if (isa<FieldDecl>(ME->getMemberDecl()))
1924      return false;
1925
1926  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1927}
1928
1929/// \brief Build a sizeof or alignof expression given a type operand.
1930Action::OwningExprResult
1931Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
1932                              SourceLocation OpLoc,
1933                              bool isSizeOf, SourceRange R) {
1934  if (!TInfo)
1935    return ExprError();
1936
1937  QualType T = TInfo->getType();
1938
1939  if (!T->isDependentType() &&
1940      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1941    return ExprError();
1942
1943  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1944  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
1945                                               Context.getSizeType(), OpLoc,
1946                                               R.getEnd()));
1947}
1948
1949/// \brief Build a sizeof or alignof expression given an expression
1950/// operand.
1951Action::OwningExprResult
1952Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1953                              bool isSizeOf, SourceRange R) {
1954  // Verify that the operand is valid.
1955  bool isInvalid = false;
1956  if (E->isTypeDependent()) {
1957    // Delay type-checking for type-dependent expressions.
1958  } else if (!isSizeOf) {
1959    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1960  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1961    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1962    isInvalid = true;
1963  } else {
1964    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1965  }
1966
1967  if (isInvalid)
1968    return ExprError();
1969
1970  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1971  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1972                                               Context.getSizeType(), OpLoc,
1973                                               R.getEnd()));
1974}
1975
1976/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1977/// the same for @c alignof and @c __alignof
1978/// Note that the ArgRange is invalid if isType is false.
1979Action::OwningExprResult
1980Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1981                             void *TyOrEx, const SourceRange &ArgRange) {
1982  // If error parsing type, ignore.
1983  if (TyOrEx == 0) return ExprError();
1984
1985  if (isType) {
1986    TypeSourceInfo *TInfo;
1987    (void) GetTypeFromParser(TyOrEx, &TInfo);
1988    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
1989  }
1990
1991  Expr *ArgEx = (Expr *)TyOrEx;
1992  Action::OwningExprResult Result
1993    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1994
1995  if (Result.isInvalid())
1996    DeleteExpr(ArgEx);
1997
1998  return move(Result);
1999}
2000
2001QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2002  if (V->isTypeDependent())
2003    return Context.DependentTy;
2004
2005  // These operators return the element type of a complex type.
2006  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2007    return CT->getElementType();
2008
2009  // Otherwise they pass through real integer and floating point types here.
2010  if (V->getType()->isArithmeticType())
2011    return V->getType();
2012
2013  // Reject anything else.
2014  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2015    << (isReal ? "__real" : "__imag");
2016  return QualType();
2017}
2018
2019
2020
2021Action::OwningExprResult
2022Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2023                          tok::TokenKind Kind, ExprArg Input) {
2024  UnaryOperator::Opcode Opc;
2025  switch (Kind) {
2026  default: assert(0 && "Unknown unary op!");
2027  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2028  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2029  }
2030
2031  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2032}
2033
2034Action::OwningExprResult
2035Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2036                              ExprArg Idx, SourceLocation RLoc) {
2037  // Since this might be a postfix expression, get rid of ParenListExprs.
2038  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2039
2040  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2041       *RHSExp = static_cast<Expr*>(Idx.get());
2042
2043  if (getLangOptions().CPlusPlus &&
2044      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2045    Base.release();
2046    Idx.release();
2047    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2048                                                  Context.DependentTy, RLoc));
2049  }
2050
2051  if (getLangOptions().CPlusPlus &&
2052      (LHSExp->getType()->isRecordType() ||
2053       LHSExp->getType()->isEnumeralType() ||
2054       RHSExp->getType()->isRecordType() ||
2055       RHSExp->getType()->isEnumeralType())) {
2056    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2057  }
2058
2059  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2060}
2061
2062
2063Action::OwningExprResult
2064Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2065                                     ExprArg Idx, SourceLocation RLoc) {
2066  Expr *LHSExp = static_cast<Expr*>(Base.get());
2067  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2068
2069  // Perform default conversions.
2070  if (!LHSExp->getType()->getAs<VectorType>())
2071      DefaultFunctionArrayLvalueConversion(LHSExp);
2072  DefaultFunctionArrayLvalueConversion(RHSExp);
2073
2074  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2075
2076  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2077  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2078  // in the subscript position. As a result, we need to derive the array base
2079  // and index from the expression types.
2080  Expr *BaseExpr, *IndexExpr;
2081  QualType ResultType;
2082  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2083    BaseExpr = LHSExp;
2084    IndexExpr = RHSExp;
2085    ResultType = Context.DependentTy;
2086  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2087    BaseExpr = LHSExp;
2088    IndexExpr = RHSExp;
2089    ResultType = PTy->getPointeeType();
2090  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2091     // Handle the uncommon case of "123[Ptr]".
2092    BaseExpr = RHSExp;
2093    IndexExpr = LHSExp;
2094    ResultType = PTy->getPointeeType();
2095  } else if (const ObjCObjectPointerType *PTy =
2096               LHSTy->getAs<ObjCObjectPointerType>()) {
2097    BaseExpr = LHSExp;
2098    IndexExpr = RHSExp;
2099    ResultType = PTy->getPointeeType();
2100  } else if (const ObjCObjectPointerType *PTy =
2101               RHSTy->getAs<ObjCObjectPointerType>()) {
2102     // Handle the uncommon case of "123[Ptr]".
2103    BaseExpr = RHSExp;
2104    IndexExpr = LHSExp;
2105    ResultType = PTy->getPointeeType();
2106  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2107    BaseExpr = LHSExp;    // vectors: V[123]
2108    IndexExpr = RHSExp;
2109
2110    // FIXME: need to deal with const...
2111    ResultType = VTy->getElementType();
2112  } else if (LHSTy->isArrayType()) {
2113    // If we see an array that wasn't promoted by
2114    // DefaultFunctionArrayLvalueConversion, it must be an array that
2115    // wasn't promoted because of the C90 rule that doesn't
2116    // allow promoting non-lvalue arrays.  Warn, then
2117    // force the promotion here.
2118    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2119        LHSExp->getSourceRange();
2120    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2121                      CastExpr::CK_ArrayToPointerDecay);
2122    LHSTy = LHSExp->getType();
2123
2124    BaseExpr = LHSExp;
2125    IndexExpr = RHSExp;
2126    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2127  } else if (RHSTy->isArrayType()) {
2128    // Same as previous, except for 123[f().a] case
2129    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2130        RHSExp->getSourceRange();
2131    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2132                      CastExpr::CK_ArrayToPointerDecay);
2133    RHSTy = RHSExp->getType();
2134
2135    BaseExpr = RHSExp;
2136    IndexExpr = LHSExp;
2137    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2138  } else {
2139    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2140       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2141  }
2142  // C99 6.5.2.1p1
2143  if (!(IndexExpr->getType()->isIntegerType() &&
2144        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2145    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2146                     << IndexExpr->getSourceRange());
2147
2148  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2149       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2150         && !IndexExpr->isTypeDependent())
2151    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2152
2153  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2154  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2155  // type. Note that Functions are not objects, and that (in C99 parlance)
2156  // incomplete types are not object types.
2157  if (ResultType->isFunctionType()) {
2158    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2159      << ResultType << BaseExpr->getSourceRange();
2160    return ExprError();
2161  }
2162
2163  if (!ResultType->isDependentType() &&
2164      RequireCompleteType(LLoc, ResultType,
2165                          PDiag(diag::err_subscript_incomplete_type)
2166                            << BaseExpr->getSourceRange()))
2167    return ExprError();
2168
2169  // Diagnose bad cases where we step over interface counts.
2170  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
2171    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2172      << ResultType << BaseExpr->getSourceRange();
2173    return ExprError();
2174  }
2175
2176  Base.release();
2177  Idx.release();
2178  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2179                                                ResultType, RLoc));
2180}
2181
2182QualType Sema::
2183CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2184                        const IdentifierInfo *CompName,
2185                        SourceLocation CompLoc) {
2186  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2187  // see FIXME there.
2188  //
2189  // FIXME: This logic can be greatly simplified by splitting it along
2190  // halving/not halving and reworking the component checking.
2191  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2192
2193  // The vector accessor can't exceed the number of elements.
2194  const char *compStr = CompName->getNameStart();
2195
2196  // This flag determines whether or not the component is one of the four
2197  // special names that indicate a subset of exactly half the elements are
2198  // to be selected.
2199  bool HalvingSwizzle = false;
2200
2201  // This flag determines whether or not CompName has an 's' char prefix,
2202  // indicating that it is a string of hex values to be used as vector indices.
2203  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2204
2205  // Check that we've found one of the special components, or that the component
2206  // names must come from the same set.
2207  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2208      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2209    HalvingSwizzle = true;
2210  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2211    do
2212      compStr++;
2213    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2214  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2215    do
2216      compStr++;
2217    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2218  }
2219
2220  if (!HalvingSwizzle && *compStr) {
2221    // We didn't get to the end of the string. This means the component names
2222    // didn't come from the same set *or* we encountered an illegal name.
2223    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2224      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2225    return QualType();
2226  }
2227
2228  // Ensure no component accessor exceeds the width of the vector type it
2229  // operates on.
2230  if (!HalvingSwizzle) {
2231    compStr = CompName->getNameStart();
2232
2233    if (HexSwizzle)
2234      compStr++;
2235
2236    while (*compStr) {
2237      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2238        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2239          << baseType << SourceRange(CompLoc);
2240        return QualType();
2241      }
2242    }
2243  }
2244
2245  // The component accessor looks fine - now we need to compute the actual type.
2246  // The vector type is implied by the component accessor. For example,
2247  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2248  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2249  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2250  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2251                                     : CompName->getLength();
2252  if (HexSwizzle)
2253    CompSize--;
2254
2255  if (CompSize == 1)
2256    return vecType->getElementType();
2257
2258  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2259  // Now look up the TypeDefDecl from the vector type. Without this,
2260  // diagostics look bad. We want extended vector types to appear built-in.
2261  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2262    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2263      return Context.getTypedefType(ExtVectorDecls[i]);
2264  }
2265  return VT; // should never get here (a typedef type should always be found).
2266}
2267
2268static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2269                                                IdentifierInfo *Member,
2270                                                const Selector &Sel,
2271                                                ASTContext &Context) {
2272
2273  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2274    return PD;
2275  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2276    return OMD;
2277
2278  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2279       E = PDecl->protocol_end(); I != E; ++I) {
2280    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2281                                                     Context))
2282      return D;
2283  }
2284  return 0;
2285}
2286
2287static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2288                                IdentifierInfo *Member,
2289                                const Selector &Sel,
2290                                ASTContext &Context) {
2291  // Check protocols on qualified interfaces.
2292  Decl *GDecl = 0;
2293  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2294       E = QIdTy->qual_end(); I != E; ++I) {
2295    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2296      GDecl = PD;
2297      break;
2298    }
2299    // Also must look for a getter name which uses property syntax.
2300    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2301      GDecl = OMD;
2302      break;
2303    }
2304  }
2305  if (!GDecl) {
2306    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2307         E = QIdTy->qual_end(); I != E; ++I) {
2308      // Search in the protocol-qualifier list of current protocol.
2309      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2310      if (GDecl)
2311        return GDecl;
2312    }
2313  }
2314  return GDecl;
2315}
2316
2317Sema::OwningExprResult
2318Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2319                               bool IsArrow, SourceLocation OpLoc,
2320                               const CXXScopeSpec &SS,
2321                               NamedDecl *FirstQualifierInScope,
2322                               DeclarationName Name, SourceLocation NameLoc,
2323                               const TemplateArgumentListInfo *TemplateArgs) {
2324  Expr *BaseExpr = Base.takeAs<Expr>();
2325
2326  // Even in dependent contexts, try to diagnose base expressions with
2327  // obviously wrong types, e.g.:
2328  //
2329  // T* t;
2330  // t.f;
2331  //
2332  // In Obj-C++, however, the above expression is valid, since it could be
2333  // accessing the 'f' property if T is an Obj-C interface. The extra check
2334  // allows this, while still reporting an error if T is a struct pointer.
2335  if (!IsArrow) {
2336    const PointerType *PT = BaseType->getAs<PointerType>();
2337    if (PT && (!getLangOptions().ObjC1 ||
2338               PT->getPointeeType()->isRecordType())) {
2339      assert(BaseExpr && "cannot happen with implicit member accesses");
2340      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2341        << BaseType << BaseExpr->getSourceRange();
2342      return ExprError();
2343    }
2344  }
2345
2346  assert(BaseType->isDependentType() || Name.isDependentName());
2347
2348  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2349  // must have pointer type, and the accessed type is the pointee.
2350  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2351                                                   IsArrow, OpLoc,
2352                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2353                                                   SS.getRange(),
2354                                                   FirstQualifierInScope,
2355                                                   Name, NameLoc,
2356                                                   TemplateArgs));
2357}
2358
2359/// We know that the given qualified member reference points only to
2360/// declarations which do not belong to the static type of the base
2361/// expression.  Diagnose the problem.
2362static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2363                                             Expr *BaseExpr,
2364                                             QualType BaseType,
2365                                             const CXXScopeSpec &SS,
2366                                             const LookupResult &R) {
2367  // If this is an implicit member access, use a different set of
2368  // diagnostics.
2369  if (!BaseExpr)
2370    return DiagnoseInstanceReference(SemaRef, SS, R);
2371
2372  // FIXME: this is an exceedingly lame diagnostic for some of the more
2373  // complicated cases here.
2374  DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
2375  SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
2376    << SS.getRange() << DC << BaseType;
2377}
2378
2379// Check whether the declarations we found through a nested-name
2380// specifier in a member expression are actually members of the base
2381// type.  The restriction here is:
2382//
2383//   C++ [expr.ref]p2:
2384//     ... In these cases, the id-expression shall name a
2385//     member of the class or of one of its base classes.
2386//
2387// So it's perfectly legitimate for the nested-name specifier to name
2388// an unrelated class, and for us to find an overload set including
2389// decls from classes which are not superclasses, as long as the decl
2390// we actually pick through overload resolution is from a superclass.
2391bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2392                                         QualType BaseType,
2393                                         const CXXScopeSpec &SS,
2394                                         const LookupResult &R) {
2395  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2396  if (!BaseRT) {
2397    // We can't check this yet because the base type is still
2398    // dependent.
2399    assert(BaseType->isDependentType());
2400    return false;
2401  }
2402  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2403
2404  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2405    // If this is an implicit member reference and we find a
2406    // non-instance member, it's not an error.
2407    if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
2408      return false;
2409
2410    // Note that we use the DC of the decl, not the underlying decl.
2411    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2412    while (RecordD->isAnonymousStructOrUnion())
2413      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2414
2415    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2416    MemberRecord.insert(RecordD->getCanonicalDecl());
2417
2418    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2419      return false;
2420  }
2421
2422  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2423  return true;
2424}
2425
2426static bool
2427LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2428                         SourceRange BaseRange, const RecordType *RTy,
2429                         SourceLocation OpLoc, const CXXScopeSpec &SS) {
2430  RecordDecl *RDecl = RTy->getDecl();
2431  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2432                                  PDiag(diag::err_typecheck_incomplete_tag)
2433                                    << BaseRange))
2434    return true;
2435
2436  DeclContext *DC = RDecl;
2437  if (SS.isSet()) {
2438    // If the member name was a qualified-id, look into the
2439    // nested-name-specifier.
2440    DC = SemaRef.computeDeclContext(SS, false);
2441
2442    if (SemaRef.RequireCompleteDeclContext(SS)) {
2443      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2444        << SS.getRange() << DC;
2445      return true;
2446    }
2447
2448    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2449
2450    if (!isa<TypeDecl>(DC)) {
2451      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2452        << DC << SS.getRange();
2453      return true;
2454    }
2455  }
2456
2457  // The record definition is complete, now look up the member.
2458  SemaRef.LookupQualifiedName(R, DC);
2459
2460  if (!R.empty())
2461    return false;
2462
2463  // We didn't find anything with the given name, so try to correct
2464  // for typos.
2465  DeclarationName Name = R.getLookupName();
2466  if (SemaRef.CorrectTypo(R, 0, &SS, DC) &&
2467      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2468    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2469      << Name << DC << R.getLookupName() << SS.getRange()
2470      << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2471                                         R.getLookupName().getAsString());
2472    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2473      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2474        << ND->getDeclName();
2475    return false;
2476  } else {
2477    R.clear();
2478  }
2479
2480  return false;
2481}
2482
2483Sema::OwningExprResult
2484Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2485                               SourceLocation OpLoc, bool IsArrow,
2486                               const CXXScopeSpec &SS,
2487                               NamedDecl *FirstQualifierInScope,
2488                               DeclarationName Name, SourceLocation NameLoc,
2489                               const TemplateArgumentListInfo *TemplateArgs) {
2490  Expr *Base = BaseArg.takeAs<Expr>();
2491
2492  if (BaseType->isDependentType() ||
2493      (SS.isSet() && isDependentScopeSpecifier(SS)))
2494    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2495                                    IsArrow, OpLoc,
2496                                    SS, FirstQualifierInScope,
2497                                    Name, NameLoc,
2498                                    TemplateArgs);
2499
2500  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2501
2502  // Implicit member accesses.
2503  if (!Base) {
2504    QualType RecordTy = BaseType;
2505    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2506    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2507                                 RecordTy->getAs<RecordType>(),
2508                                 OpLoc, SS))
2509      return ExprError();
2510
2511  // Explicit member accesses.
2512  } else {
2513    OwningExprResult Result =
2514      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2515                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2516
2517    if (Result.isInvalid()) {
2518      Owned(Base);
2519      return ExprError();
2520    }
2521
2522    if (Result.get())
2523      return move(Result);
2524  }
2525
2526  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2527                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2528                                  R, TemplateArgs);
2529}
2530
2531Sema::OwningExprResult
2532Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2533                               SourceLocation OpLoc, bool IsArrow,
2534                               const CXXScopeSpec &SS,
2535                               NamedDecl *FirstQualifierInScope,
2536                               LookupResult &R,
2537                         const TemplateArgumentListInfo *TemplateArgs) {
2538  Expr *BaseExpr = Base.takeAs<Expr>();
2539  QualType BaseType = BaseExprType;
2540  if (IsArrow) {
2541    assert(BaseType->isPointerType());
2542    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2543  }
2544
2545  NestedNameSpecifier *Qualifier =
2546    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2547  DeclarationName MemberName = R.getLookupName();
2548  SourceLocation MemberLoc = R.getNameLoc();
2549
2550  if (R.isAmbiguous())
2551    return ExprError();
2552
2553  if (R.empty()) {
2554    // Rederive where we looked up.
2555    DeclContext *DC = (SS.isSet()
2556                       ? computeDeclContext(SS, false)
2557                       : BaseType->getAs<RecordType>()->getDecl());
2558
2559    Diag(R.getNameLoc(), diag::err_no_member)
2560      << MemberName << DC
2561      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2562    return ExprError();
2563  }
2564
2565  // Diagnose lookups that find only declarations from a non-base
2566  // type.  This is possible for either qualified lookups (which may
2567  // have been qualified with an unrelated type) or implicit member
2568  // expressions (which were found with unqualified lookup and thus
2569  // may have come from an enclosing scope).  Note that it's okay for
2570  // lookup to find declarations from a non-base type as long as those
2571  // aren't the ones picked by overload resolution.
2572  if ((SS.isSet() || !BaseExpr ||
2573       (isa<CXXThisExpr>(BaseExpr) &&
2574        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2575      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2576    return ExprError();
2577
2578  // Construct an unresolved result if we in fact got an unresolved
2579  // result.
2580  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2581    bool Dependent =
2582      BaseExprType->isDependentType() ||
2583      R.isUnresolvableResult() ||
2584      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2585
2586    // Suppress any lookup-related diagnostics; we'll do these when we
2587    // pick a member.
2588    R.suppressDiagnostics();
2589
2590    UnresolvedMemberExpr *MemExpr
2591      = UnresolvedMemberExpr::Create(Context, Dependent,
2592                                     R.isUnresolvableResult(),
2593                                     BaseExpr, BaseExprType,
2594                                     IsArrow, OpLoc,
2595                                     Qualifier, SS.getRange(),
2596                                     MemberName, MemberLoc,
2597                                     TemplateArgs);
2598    MemExpr->addDecls(R.begin(), R.end());
2599
2600    return Owned(MemExpr);
2601  }
2602
2603  assert(R.isSingleResult());
2604  NamedDecl *MemberDecl = R.getFoundDecl();
2605
2606  // FIXME: diagnose the presence of template arguments now.
2607
2608  // If the decl being referenced had an error, return an error for this
2609  // sub-expr without emitting another error, in order to avoid cascading
2610  // error cases.
2611  if (MemberDecl->isInvalidDecl())
2612    return ExprError();
2613
2614  // Handle the implicit-member-access case.
2615  if (!BaseExpr) {
2616    // If this is not an instance member, convert to a non-member access.
2617    if (!IsInstanceMember(MemberDecl))
2618      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2619
2620    SourceLocation Loc = R.getNameLoc();
2621    if (SS.getRange().isValid())
2622      Loc = SS.getRange().getBegin();
2623    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2624  }
2625
2626  bool ShouldCheckUse = true;
2627  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2628    // Don't diagnose the use of a virtual member function unless it's
2629    // explicitly qualified.
2630    if (MD->isVirtual() && !SS.isSet())
2631      ShouldCheckUse = false;
2632  }
2633
2634  // Check the use of this member.
2635  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2636    Owned(BaseExpr);
2637    return ExprError();
2638  }
2639
2640  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2641    // We may have found a field within an anonymous union or struct
2642    // (C++ [class.union]).
2643    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2644        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2645      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2646                                                      BaseExpr, OpLoc);
2647
2648    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2649    QualType MemberType = FD->getType();
2650    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2651      MemberType = Ref->getPointeeType();
2652    else {
2653      Qualifiers BaseQuals = BaseType.getQualifiers();
2654      BaseQuals.removeObjCGCAttr();
2655      if (FD->isMutable()) BaseQuals.removeConst();
2656
2657      Qualifiers MemberQuals
2658        = Context.getCanonicalType(MemberType).getQualifiers();
2659
2660      Qualifiers Combined = BaseQuals + MemberQuals;
2661      if (Combined != MemberQuals)
2662        MemberType = Context.getQualifiedType(MemberType, Combined);
2663    }
2664
2665    MarkDeclarationReferenced(MemberLoc, FD);
2666    if (PerformObjectMemberConversion(BaseExpr, FD))
2667      return ExprError();
2668    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2669                                 FD, MemberLoc, MemberType));
2670  }
2671
2672  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2673    MarkDeclarationReferenced(MemberLoc, Var);
2674    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2675                                 Var, MemberLoc,
2676                                 Var->getType().getNonReferenceType()));
2677  }
2678
2679  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2680    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2681    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2682                                 MemberFn, MemberLoc,
2683                                 MemberFn->getType()));
2684  }
2685
2686  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2687    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2688    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2689                                 Enum, MemberLoc, Enum->getType()));
2690  }
2691
2692  Owned(BaseExpr);
2693
2694  if (isa<TypeDecl>(MemberDecl))
2695    return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2696                     << MemberName << int(IsArrow));
2697
2698  // We found a declaration kind that we didn't expect. This is a
2699  // generic error message that tells the user that she can't refer
2700  // to this member with '.' or '->'.
2701  return ExprError(Diag(MemberLoc,
2702                        diag::err_typecheck_member_reference_unknown)
2703      << MemberName << int(IsArrow));
2704}
2705
2706/// Look up the given member of the given non-type-dependent
2707/// expression.  This can return in one of two ways:
2708///  * If it returns a sentinel null-but-valid result, the caller will
2709///    assume that lookup was performed and the results written into
2710///    the provided structure.  It will take over from there.
2711///  * Otherwise, the returned expression will be produced in place of
2712///    an ordinary member expression.
2713///
2714/// The ObjCImpDecl bit is a gross hack that will need to be properly
2715/// fixed for ObjC++.
2716Sema::OwningExprResult
2717Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2718                       bool &IsArrow, SourceLocation OpLoc,
2719                       const CXXScopeSpec &SS,
2720                       DeclPtrTy ObjCImpDecl) {
2721  assert(BaseExpr && "no base expression");
2722
2723  // Perform default conversions.
2724  DefaultFunctionArrayConversion(BaseExpr);
2725
2726  QualType BaseType = BaseExpr->getType();
2727  assert(!BaseType->isDependentType());
2728
2729  DeclarationName MemberName = R.getLookupName();
2730  SourceLocation MemberLoc = R.getNameLoc();
2731
2732  // If the user is trying to apply -> or . to a function pointer
2733  // type, it's probably because they forgot parentheses to call that
2734  // function. Suggest the addition of those parentheses, build the
2735  // call, and continue on.
2736  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2737    if (const FunctionProtoType *Fun
2738          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2739      QualType ResultTy = Fun->getResultType();
2740      if (Fun->getNumArgs() == 0 &&
2741          ((!IsArrow && ResultTy->isRecordType()) ||
2742           (IsArrow && ResultTy->isPointerType() &&
2743            ResultTy->getAs<PointerType>()->getPointeeType()
2744                                                          ->isRecordType()))) {
2745        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2746        Diag(Loc, diag::err_member_reference_needs_call)
2747          << QualType(Fun, 0)
2748          << CodeModificationHint::CreateInsertion(Loc, "()");
2749
2750        OwningExprResult NewBase
2751          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2752                          MultiExprArg(*this, 0, 0), 0, Loc);
2753        if (NewBase.isInvalid())
2754          return ExprError();
2755
2756        BaseExpr = NewBase.takeAs<Expr>();
2757        DefaultFunctionArrayConversion(BaseExpr);
2758        BaseType = BaseExpr->getType();
2759      }
2760    }
2761  }
2762
2763  // If this is an Objective-C pseudo-builtin and a definition is provided then
2764  // use that.
2765  if (BaseType->isObjCIdType()) {
2766    if (IsArrow) {
2767      // Handle the following exceptional case PObj->isa.
2768      if (const ObjCObjectPointerType *OPT =
2769          BaseType->getAs<ObjCObjectPointerType>()) {
2770        if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2771            MemberName.getAsIdentifierInfo()->isStr("isa"))
2772          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2773                                                 Context.getObjCClassType()));
2774      }
2775    }
2776    // We have an 'id' type. Rather than fall through, we check if this
2777    // is a reference to 'isa'.
2778    if (BaseType != Context.ObjCIdRedefinitionType) {
2779      BaseType = Context.ObjCIdRedefinitionType;
2780      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2781    }
2782  }
2783
2784  // If this is an Objective-C pseudo-builtin and a definition is provided then
2785  // use that.
2786  if (Context.isObjCSelType(BaseType)) {
2787    // We have an 'SEL' type. Rather than fall through, we check if this
2788    // is a reference to 'sel_id'.
2789    if (BaseType != Context.ObjCSelRedefinitionType) {
2790      BaseType = Context.ObjCSelRedefinitionType;
2791      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2792    }
2793  }
2794
2795  assert(!BaseType.isNull() && "no type for member expression");
2796
2797  // Handle properties on ObjC 'Class' types.
2798  if (!IsArrow && BaseType->isObjCClassType()) {
2799    // Also must look for a getter name which uses property syntax.
2800    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2801    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2802    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2803      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2804      ObjCMethodDecl *Getter;
2805      // FIXME: need to also look locally in the implementation.
2806      if ((Getter = IFace->lookupClassMethod(Sel))) {
2807        // Check the use of this method.
2808        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2809          return ExprError();
2810      }
2811      // If we found a getter then this may be a valid dot-reference, we
2812      // will look for the matching setter, in case it is needed.
2813      Selector SetterSel =
2814      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2815                                         PP.getSelectorTable(), Member);
2816      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2817      if (!Setter) {
2818        // If this reference is in an @implementation, also check for 'private'
2819        // methods.
2820        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2821      }
2822      // Look through local category implementations associated with the class.
2823      if (!Setter)
2824        Setter = IFace->getCategoryClassMethod(SetterSel);
2825
2826      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2827        return ExprError();
2828
2829      if (Getter || Setter) {
2830        QualType PType;
2831
2832        if (Getter)
2833          PType = Getter->getResultType();
2834        else
2835          // Get the expression type from Setter's incoming parameter.
2836          PType = (*(Setter->param_end() -1))->getType();
2837        // FIXME: we must check that the setter has property type.
2838        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2839                                                  PType,
2840                                                  Setter, MemberLoc, BaseExpr));
2841      }
2842      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2843                       << MemberName << BaseType);
2844    }
2845  }
2846
2847  if (BaseType->isObjCClassType() &&
2848      BaseType != Context.ObjCClassRedefinitionType) {
2849    BaseType = Context.ObjCClassRedefinitionType;
2850    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2851  }
2852
2853  if (IsArrow) {
2854    if (const PointerType *PT = BaseType->getAs<PointerType>())
2855      BaseType = PT->getPointeeType();
2856    else if (BaseType->isObjCObjectPointerType())
2857      ;
2858    else if (BaseType->isRecordType()) {
2859      // Recover from arrow accesses to records, e.g.:
2860      //   struct MyRecord foo;
2861      //   foo->bar
2862      // This is actually well-formed in C++ if MyRecord has an
2863      // overloaded operator->, but that should have been dealt with
2864      // by now.
2865      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2866        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2867        << CodeModificationHint::CreateReplacement(OpLoc, ".");
2868      IsArrow = false;
2869    } else {
2870      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
2871        << BaseType << BaseExpr->getSourceRange();
2872      return ExprError();
2873    }
2874  } else {
2875    // Recover from dot accesses to pointers, e.g.:
2876    //   type *foo;
2877    //   foo.bar
2878    // This is actually well-formed in two cases:
2879    //   - 'type' is an Objective C type
2880    //   - 'bar' is a pseudo-destructor name which happens to refer to
2881    //     the appropriate pointer type
2882    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
2883      const PointerType *PT = BaseType->getAs<PointerType>();
2884      if (PT && PT->getPointeeType()->isRecordType()) {
2885        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2886          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2887          << CodeModificationHint::CreateReplacement(OpLoc, "->");
2888        BaseType = PT->getPointeeType();
2889        IsArrow = true;
2890      }
2891    }
2892  }
2893
2894  // Handle field access to simple records.  This also handles access
2895  // to fields of the ObjC 'id' struct.
2896  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2897    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
2898                                 RTy, OpLoc, SS))
2899      return ExprError();
2900    return Owned((Expr*) 0);
2901  }
2902
2903  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2904  // into a record type was handled above, any destructor we see here is a
2905  // pseudo-destructor.
2906  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2907    // C++ [expr.pseudo]p2:
2908    //   The left hand side of the dot operator shall be of scalar type. The
2909    //   left hand side of the arrow operator shall be of pointer to scalar
2910    //   type.
2911    if (!BaseType->isScalarType())
2912      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2913                     << BaseType << BaseExpr->getSourceRange());
2914
2915    //   [...] The type designated by the pseudo-destructor-name shall be the
2916    //   same as the object type.
2917    if (!MemberName.getCXXNameType()->isDependentType() &&
2918        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2919      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2920                     << BaseType << MemberName.getCXXNameType()
2921                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2922
2923    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2924    //   the form
2925    //
2926    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2927    //
2928    //   shall designate the same scalar type.
2929    //
2930    // FIXME: DPG can't see any way to trigger this particular clause, so it
2931    // isn't checked here.
2932
2933    // FIXME: We've lost the precise spelling of the type by going through
2934    // DeclarationName. Can we do better?
2935    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2936                                                       IsArrow, OpLoc,
2937                               (NestedNameSpecifier *) SS.getScopeRep(),
2938                                                       SS.getRange(),
2939                                                   MemberName.getCXXNameType(),
2940                                                       MemberLoc));
2941  }
2942
2943  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2944  // (*Obj).ivar.
2945  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
2946      (!IsArrow && BaseType->isObjCInterfaceType())) {
2947    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2948    const ObjCInterfaceType *IFaceT =
2949      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2950    if (IFaceT) {
2951      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2952
2953      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2954      ObjCInterfaceDecl *ClassDeclared;
2955      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2956
2957      if (!IV) {
2958        // Attempt to correct for typos in ivar names.
2959        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
2960                         LookupMemberName);
2961        if (CorrectTypo(Res, 0, 0, IDecl) &&
2962            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
2963          Diag(R.getNameLoc(),
2964               diag::err_typecheck_member_reference_ivar_suggest)
2965            << IDecl->getDeclName() << MemberName << IV->getDeclName()
2966            << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2967                                                       IV->getNameAsString());
2968          Diag(IV->getLocation(), diag::note_previous_decl)
2969            << IV->getDeclName();
2970        }
2971      }
2972
2973      if (IV) {
2974        // If the decl being referenced had an error, return an error for this
2975        // sub-expr without emitting another error, in order to avoid cascading
2976        // error cases.
2977        if (IV->isInvalidDecl())
2978          return ExprError();
2979
2980        // Check whether we can reference this field.
2981        if (DiagnoseUseOfDecl(IV, MemberLoc))
2982          return ExprError();
2983        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2984            IV->getAccessControl() != ObjCIvarDecl::Package) {
2985          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2986          if (ObjCMethodDecl *MD = getCurMethodDecl())
2987            ClassOfMethodDecl =  MD->getClassInterface();
2988          else if (ObjCImpDecl && getCurFunctionDecl()) {
2989            // Case of a c-function declared inside an objc implementation.
2990            // FIXME: For a c-style function nested inside an objc implementation
2991            // class, there is no implementation context available, so we pass
2992            // down the context as argument to this routine. Ideally, this context
2993            // need be passed down in the AST node and somehow calculated from the
2994            // AST for a function decl.
2995            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2996            if (ObjCImplementationDecl *IMPD =
2997                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2998              ClassOfMethodDecl = IMPD->getClassInterface();
2999            else if (ObjCCategoryImplDecl* CatImplClass =
3000                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3001              ClassOfMethodDecl = CatImplClass->getClassInterface();
3002          }
3003
3004          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3005            if (ClassDeclared != IDecl ||
3006                ClassOfMethodDecl != ClassDeclared)
3007              Diag(MemberLoc, diag::error_private_ivar_access)
3008                << IV->getDeclName();
3009          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3010            // @protected
3011            Diag(MemberLoc, diag::error_protected_ivar_access)
3012              << IV->getDeclName();
3013        }
3014
3015        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3016                                                   MemberLoc, BaseExpr,
3017                                                   IsArrow));
3018      }
3019      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3020                         << IDecl->getDeclName() << MemberName
3021                         << BaseExpr->getSourceRange());
3022    }
3023  }
3024  // Handle properties on 'id' and qualified "id".
3025  if (!IsArrow && (BaseType->isObjCIdType() ||
3026                   BaseType->isObjCQualifiedIdType())) {
3027    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3028    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3029
3030    // Check protocols on qualified interfaces.
3031    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3032    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3033      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3034        // Check the use of this declaration
3035        if (DiagnoseUseOfDecl(PD, MemberLoc))
3036          return ExprError();
3037
3038        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3039                                                       MemberLoc, BaseExpr));
3040      }
3041      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3042        // Check the use of this method.
3043        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3044          return ExprError();
3045
3046        return Owned(new (Context) ObjCMessageExpr(Context, BaseExpr, Sel,
3047                                                   OMD->getResultType(),
3048                                                   OMD, OpLoc, MemberLoc,
3049                                                   NULL, 0));
3050      }
3051    }
3052
3053    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3054                       << MemberName << BaseType);
3055  }
3056  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3057  // pointer to a (potentially qualified) interface type.
3058  const ObjCObjectPointerType *OPT;
3059  if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
3060    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
3061    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
3062    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3063
3064    // Search for a declared property first.
3065    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
3066      // Check whether we can reference this property.
3067      if (DiagnoseUseOfDecl(PD, MemberLoc))
3068        return ExprError();
3069      QualType ResTy = PD->getType();
3070      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3071      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3072      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
3073        ResTy = Getter->getResultType();
3074      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
3075                                                     MemberLoc, BaseExpr));
3076    }
3077    // Check protocols on qualified interfaces.
3078    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3079         E = OPT->qual_end(); I != E; ++I)
3080      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3081        // Check whether we can reference this property.
3082        if (DiagnoseUseOfDecl(PD, MemberLoc))
3083          return ExprError();
3084
3085        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3086                                                       MemberLoc, BaseExpr));
3087      }
3088    // If that failed, look for an "implicit" property by seeing if the nullary
3089    // selector is implemented.
3090
3091    // FIXME: The logic for looking up nullary and unary selectors should be
3092    // shared with the code in ActOnInstanceMessage.
3093
3094    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3095    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3096
3097    // If this reference is in an @implementation, check for 'private' methods.
3098    if (!Getter)
3099      Getter = IFace->lookupPrivateInstanceMethod(Sel);
3100
3101    // Look through local category implementations associated with the class.
3102    if (!Getter)
3103      Getter = IFace->getCategoryInstanceMethod(Sel);
3104    if (Getter) {
3105      // Check if we can reference this property.
3106      if (DiagnoseUseOfDecl(Getter, MemberLoc))
3107        return ExprError();
3108    }
3109    // If we found a getter then this may be a valid dot-reference, we
3110    // will look for the matching setter, in case it is needed.
3111    Selector SetterSel =
3112      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3113                                         PP.getSelectorTable(), Member);
3114    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
3115    if (!Setter) {
3116      // If this reference is in an @implementation, also check for 'private'
3117      // methods.
3118      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3119    }
3120    // Look through local category implementations associated with the class.
3121    if (!Setter)
3122      Setter = IFace->getCategoryInstanceMethod(SetterSel);
3123
3124    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3125      return ExprError();
3126
3127    if (Getter) {
3128      QualType PType;
3129      PType = Getter->getResultType();
3130      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
3131                                      Setter, MemberLoc, BaseExpr));
3132    }
3133
3134    // Attempt to correct for typos in property names.
3135    LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3136                     LookupOrdinaryName);
3137    if (CorrectTypo(Res, 0, 0, IFace, false, OPT) &&
3138        Res.getAsSingle<ObjCPropertyDecl>()) {
3139      Diag(R.getNameLoc(), diag::err_property_not_found_suggest)
3140        << MemberName << BaseType << Res.getLookupName()
3141        << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3142                                           Res.getLookupName().getAsString());
3143      ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
3144      Diag(Property->getLocation(), diag::note_previous_decl)
3145        << Property->getDeclName();
3146
3147      return LookupMemberExpr(Res, BaseExpr, IsArrow, OpLoc, SS,
3148                              ObjCImpDecl);
3149    }
3150    Diag(MemberLoc, diag::err_property_not_found)
3151      << MemberName << BaseType;
3152    if (Setter && !Getter)
3153      Diag(Setter->getLocation(), diag::note_getter_unavailable)
3154        << MemberName << BaseExpr->getSourceRange();
3155    return ExprError();
3156  }
3157
3158  // Handle the following exceptional case (*Obj).isa.
3159  if (!IsArrow &&
3160      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
3161      MemberName.getAsIdentifierInfo()->isStr("isa"))
3162    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3163                                           Context.getObjCClassType()));
3164
3165  // Handle 'field access' to vectors, such as 'V.xx'.
3166  if (BaseType->isExtVectorType()) {
3167    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3168    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3169    if (ret.isNull())
3170      return ExprError();
3171    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3172                                                    MemberLoc));
3173  }
3174
3175  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3176    << BaseType << BaseExpr->getSourceRange();
3177
3178  return ExprError();
3179}
3180
3181/// The main callback when the parser finds something like
3182///   expression . [nested-name-specifier] identifier
3183///   expression -> [nested-name-specifier] identifier
3184/// where 'identifier' encompasses a fairly broad spectrum of
3185/// possibilities, including destructor and operator references.
3186///
3187/// \param OpKind either tok::arrow or tok::period
3188/// \param HasTrailingLParen whether the next token is '(', which
3189///   is used to diagnose mis-uses of special members that can
3190///   only be called
3191/// \param ObjCImpDecl the current ObjC @implementation decl;
3192///   this is an ugly hack around the fact that ObjC @implementations
3193///   aren't properly put in the context chain
3194Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3195                                                   SourceLocation OpLoc,
3196                                                   tok::TokenKind OpKind,
3197                                                   const CXXScopeSpec &SS,
3198                                                   UnqualifiedId &Id,
3199                                                   DeclPtrTy ObjCImpDecl,
3200                                                   bool HasTrailingLParen) {
3201  if (SS.isSet() && SS.isInvalid())
3202    return ExprError();
3203
3204  TemplateArgumentListInfo TemplateArgsBuffer;
3205
3206  // Decompose the name into its component parts.
3207  DeclarationName Name;
3208  SourceLocation NameLoc;
3209  const TemplateArgumentListInfo *TemplateArgs;
3210  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3211                         Name, NameLoc, TemplateArgs);
3212
3213  bool IsArrow = (OpKind == tok::arrow);
3214
3215  NamedDecl *FirstQualifierInScope
3216    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3217                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3218
3219  // This is a postfix expression, so get rid of ParenListExprs.
3220  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3221
3222  Expr *Base = BaseArg.takeAs<Expr>();
3223  OwningExprResult Result(*this);
3224  if (Base->getType()->isDependentType() || Name.isDependentName()) {
3225    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3226                                      IsArrow, OpLoc,
3227                                      SS, FirstQualifierInScope,
3228                                      Name, NameLoc,
3229                                      TemplateArgs);
3230  } else {
3231    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3232    if (TemplateArgs) {
3233      // Re-use the lookup done for the template name.
3234      DecomposeTemplateName(R, Id);
3235    } else {
3236      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3237                                SS, ObjCImpDecl);
3238
3239      if (Result.isInvalid()) {
3240        Owned(Base);
3241        return ExprError();
3242      }
3243
3244      if (Result.get()) {
3245        // The only way a reference to a destructor can be used is to
3246        // immediately call it, which falls into this case.  If the
3247        // next token is not a '(', produce a diagnostic and build the
3248        // call now.
3249        if (!HasTrailingLParen &&
3250            Id.getKind() == UnqualifiedId::IK_DestructorName)
3251          return DiagnoseDtorReference(NameLoc, move(Result));
3252
3253        return move(Result);
3254      }
3255    }
3256
3257    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3258                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3259                                      R, TemplateArgs);
3260  }
3261
3262  return move(Result);
3263}
3264
3265Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3266                                                    FunctionDecl *FD,
3267                                                    ParmVarDecl *Param) {
3268  if (Param->hasUnparsedDefaultArg()) {
3269    Diag (CallLoc,
3270          diag::err_use_of_default_argument_to_function_declared_later) <<
3271      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3272    Diag(UnparsedDefaultArgLocs[Param],
3273          diag::note_default_argument_declared_here);
3274  } else {
3275    if (Param->hasUninstantiatedDefaultArg()) {
3276      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3277
3278      // Instantiate the expression.
3279      MultiLevelTemplateArgumentList ArgList
3280        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3281
3282      InstantiatingTemplate Inst(*this, CallLoc, Param,
3283                                 ArgList.getInnermost().getFlatArgumentList(),
3284                                 ArgList.getInnermost().flat_size());
3285
3286      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3287      if (Result.isInvalid())
3288        return ExprError();
3289
3290      // Check the expression as an initializer for the parameter.
3291      InitializedEntity Entity
3292        = InitializedEntity::InitializeParameter(Param);
3293      InitializationKind Kind
3294        = InitializationKind::CreateCopy(Param->getLocation(),
3295               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3296      Expr *ResultE = Result.takeAs<Expr>();
3297
3298      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3299      Result = InitSeq.Perform(*this, Entity, Kind,
3300                               MultiExprArg(*this, (void**)&ResultE, 1));
3301      if (Result.isInvalid())
3302        return ExprError();
3303
3304      // Build the default argument expression.
3305      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3306                                             Result.takeAs<Expr>()));
3307    }
3308
3309    // If the default expression creates temporaries, we need to
3310    // push them to the current stack of expression temporaries so they'll
3311    // be properly destroyed.
3312    // FIXME: We should really be rebuilding the default argument with new
3313    // bound temporaries; see the comment in PR5810.
3314    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3315      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3316  }
3317
3318  // We already type-checked the argument, so we know it works.
3319  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3320}
3321
3322/// ConvertArgumentsForCall - Converts the arguments specified in
3323/// Args/NumArgs to the parameter types of the function FDecl with
3324/// function prototype Proto. Call is the call expression itself, and
3325/// Fn is the function expression. For a C++ member function, this
3326/// routine does not attempt to convert the object argument. Returns
3327/// true if the call is ill-formed.
3328bool
3329Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3330                              FunctionDecl *FDecl,
3331                              const FunctionProtoType *Proto,
3332                              Expr **Args, unsigned NumArgs,
3333                              SourceLocation RParenLoc) {
3334  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3335  // assignment, to the types of the corresponding parameter, ...
3336  unsigned NumArgsInProto = Proto->getNumArgs();
3337  bool Invalid = false;
3338
3339  // If too few arguments are available (and we don't have default
3340  // arguments for the remaining parameters), don't make the call.
3341  if (NumArgs < NumArgsInProto) {
3342    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3343      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3344        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
3345    Call->setNumArgs(Context, NumArgsInProto);
3346  }
3347
3348  // If too many are passed and not variadic, error on the extras and drop
3349  // them.
3350  if (NumArgs > NumArgsInProto) {
3351    if (!Proto->isVariadic()) {
3352      Diag(Args[NumArgsInProto]->getLocStart(),
3353           diag::err_typecheck_call_too_many_args)
3354        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
3355        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3356                       Args[NumArgs-1]->getLocEnd());
3357      // This deletes the extra arguments.
3358      Call->setNumArgs(Context, NumArgsInProto);
3359      return true;
3360    }
3361  }
3362  llvm::SmallVector<Expr *, 8> AllArgs;
3363  VariadicCallType CallType =
3364    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3365  if (Fn->getType()->isBlockPointerType())
3366    CallType = VariadicBlock; // Block
3367  else if (isa<MemberExpr>(Fn))
3368    CallType = VariadicMethod;
3369  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3370                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3371  if (Invalid)
3372    return true;
3373  unsigned TotalNumArgs = AllArgs.size();
3374  for (unsigned i = 0; i < TotalNumArgs; ++i)
3375    Call->setArg(i, AllArgs[i]);
3376
3377  return false;
3378}
3379
3380bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3381                                  FunctionDecl *FDecl,
3382                                  const FunctionProtoType *Proto,
3383                                  unsigned FirstProtoArg,
3384                                  Expr **Args, unsigned NumArgs,
3385                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3386                                  VariadicCallType CallType) {
3387  unsigned NumArgsInProto = Proto->getNumArgs();
3388  unsigned NumArgsToCheck = NumArgs;
3389  bool Invalid = false;
3390  if (NumArgs != NumArgsInProto)
3391    // Use default arguments for missing arguments
3392    NumArgsToCheck = NumArgsInProto;
3393  unsigned ArgIx = 0;
3394  // Continue to check argument types (even if we have too few/many args).
3395  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3396    QualType ProtoArgType = Proto->getArgType(i);
3397
3398    Expr *Arg;
3399    if (ArgIx < NumArgs) {
3400      Arg = Args[ArgIx++];
3401
3402      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3403                              ProtoArgType,
3404                              PDiag(diag::err_call_incomplete_argument)
3405                              << Arg->getSourceRange()))
3406        return true;
3407
3408      // Pass the argument
3409      ParmVarDecl *Param = 0;
3410      if (FDecl && i < FDecl->getNumParams())
3411        Param = FDecl->getParamDecl(i);
3412
3413
3414      InitializedEntity Entity =
3415        Param? InitializedEntity::InitializeParameter(Param)
3416             : InitializedEntity::InitializeParameter(ProtoArgType);
3417      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3418                                                        SourceLocation(),
3419                                                        Owned(Arg));
3420      if (ArgE.isInvalid())
3421        return true;
3422
3423      Arg = ArgE.takeAs<Expr>();
3424    } else {
3425      ParmVarDecl *Param = FDecl->getParamDecl(i);
3426
3427      OwningExprResult ArgExpr =
3428        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3429      if (ArgExpr.isInvalid())
3430        return true;
3431
3432      Arg = ArgExpr.takeAs<Expr>();
3433    }
3434    AllArgs.push_back(Arg);
3435  }
3436
3437  // If this is a variadic call, handle args passed through "...".
3438  if (CallType != VariadicDoesNotApply) {
3439    // Promote the arguments (C99 6.5.2.2p7).
3440    for (unsigned i = ArgIx; i < NumArgs; i++) {
3441      Expr *Arg = Args[i];
3442      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
3443      AllArgs.push_back(Arg);
3444    }
3445  }
3446  return Invalid;
3447}
3448
3449/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3450/// This provides the location of the left/right parens and a list of comma
3451/// locations.
3452Action::OwningExprResult
3453Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3454                    MultiExprArg args,
3455                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3456  unsigned NumArgs = args.size();
3457
3458  // Since this might be a postfix expression, get rid of ParenListExprs.
3459  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3460
3461  Expr *Fn = fn.takeAs<Expr>();
3462  Expr **Args = reinterpret_cast<Expr**>(args.release());
3463  assert(Fn && "no function call expression");
3464
3465  if (getLangOptions().CPlusPlus) {
3466    // If this is a pseudo-destructor expression, build the call immediately.
3467    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3468      if (NumArgs > 0) {
3469        // Pseudo-destructor calls should not have any arguments.
3470        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3471          << CodeModificationHint::CreateRemoval(
3472                                    SourceRange(Args[0]->getLocStart(),
3473                                                Args[NumArgs-1]->getLocEnd()));
3474
3475        for (unsigned I = 0; I != NumArgs; ++I)
3476          Args[I]->Destroy(Context);
3477
3478        NumArgs = 0;
3479      }
3480
3481      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3482                                          RParenLoc));
3483    }
3484
3485    // Determine whether this is a dependent call inside a C++ template,
3486    // in which case we won't do any semantic analysis now.
3487    // FIXME: Will need to cache the results of name lookup (including ADL) in
3488    // Fn.
3489    bool Dependent = false;
3490    if (Fn->isTypeDependent())
3491      Dependent = true;
3492    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3493      Dependent = true;
3494
3495    if (Dependent)
3496      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3497                                          Context.DependentTy, RParenLoc));
3498
3499    // Determine whether this is a call to an object (C++ [over.call.object]).
3500    if (Fn->getType()->isRecordType())
3501      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3502                                                CommaLocs, RParenLoc));
3503
3504    Expr *NakedFn = Fn->IgnoreParens();
3505
3506    // Determine whether this is a call to an unresolved member function.
3507    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3508      // If lookup was unresolved but not dependent (i.e. didn't find
3509      // an unresolved using declaration), it has to be an overloaded
3510      // function set, which means it must contain either multiple
3511      // declarations (all methods or method templates) or a single
3512      // method template.
3513      assert((MemE->getNumDecls() > 1) ||
3514             isa<FunctionTemplateDecl>(*MemE->decls_begin()));
3515      (void)MemE;
3516
3517      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3518                                       CommaLocs, RParenLoc);
3519    }
3520
3521    // Determine whether this is a call to a member function.
3522    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3523      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3524      if (isa<CXXMethodDecl>(MemDecl))
3525        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3526                                         CommaLocs, RParenLoc);
3527    }
3528
3529    // Determine whether this is a call to a pointer-to-member function.
3530    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3531      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3532          BO->getOpcode() == BinaryOperator::PtrMemI) {
3533        if (const FunctionProtoType *FPT =
3534              dyn_cast<FunctionProtoType>(BO->getType())) {
3535          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3536
3537          ExprOwningPtr<CXXMemberCallExpr>
3538            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3539                                                          NumArgs, ResultTy,
3540                                                          RParenLoc));
3541
3542          if (CheckCallReturnType(FPT->getResultType(),
3543                                  BO->getRHS()->getSourceRange().getBegin(),
3544                                  TheCall.get(), 0))
3545            return ExprError();
3546
3547          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3548                                      RParenLoc))
3549            return ExprError();
3550
3551          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3552        }
3553        return ExprError(Diag(Fn->getLocStart(),
3554                              diag::err_typecheck_call_not_function)
3555                              << Fn->getType() << Fn->getSourceRange());
3556      }
3557    }
3558  }
3559
3560  // If we're directly calling a function, get the appropriate declaration.
3561  // Also, in C++, keep track of whether we should perform argument-dependent
3562  // lookup and whether there were any explicitly-specified template arguments.
3563
3564  Expr *NakedFn = Fn->IgnoreParens();
3565  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3566    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3567    return BuildOverloadedCallExpr(Fn, ULE, LParenLoc, Args, NumArgs,
3568                                   CommaLocs, RParenLoc);
3569  }
3570
3571  NamedDecl *NDecl = 0;
3572  if (isa<DeclRefExpr>(NakedFn))
3573    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3574
3575  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3576}
3577
3578/// BuildResolvedCallExpr - Build a call to a resolved expression,
3579/// i.e. an expression not of \p OverloadTy.  The expression should
3580/// unary-convert to an expression of function-pointer or
3581/// block-pointer type.
3582///
3583/// \param NDecl the declaration being called, if available
3584Sema::OwningExprResult
3585Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3586                            SourceLocation LParenLoc,
3587                            Expr **Args, unsigned NumArgs,
3588                            SourceLocation RParenLoc) {
3589  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3590
3591  // Promote the function operand.
3592  UsualUnaryConversions(Fn);
3593
3594  // Make the call expr early, before semantic checks.  This guarantees cleanup
3595  // of arguments and function on error.
3596  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3597                                                               Args, NumArgs,
3598                                                               Context.BoolTy,
3599                                                               RParenLoc));
3600
3601  const FunctionType *FuncT;
3602  if (!Fn->getType()->isBlockPointerType()) {
3603    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3604    // have type pointer to function".
3605    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3606    if (PT == 0)
3607      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3608        << Fn->getType() << Fn->getSourceRange());
3609    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3610  } else { // This is a block call.
3611    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3612                getAs<FunctionType>();
3613  }
3614  if (FuncT == 0)
3615    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3616      << Fn->getType() << Fn->getSourceRange());
3617
3618  // Check for a valid return type
3619  if (CheckCallReturnType(FuncT->getResultType(),
3620                          Fn->getSourceRange().getBegin(), TheCall.get(),
3621                          FDecl))
3622    return ExprError();
3623
3624  // We know the result type of the call, set it.
3625  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3626
3627  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3628    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3629                                RParenLoc))
3630      return ExprError();
3631  } else {
3632    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3633
3634    if (FDecl) {
3635      // Check if we have too few/too many template arguments, based
3636      // on our knowledge of the function definition.
3637      const FunctionDecl *Def = 0;
3638      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3639        const FunctionProtoType *Proto =
3640            Def->getType()->getAs<FunctionProtoType>();
3641        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3642          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3643            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3644        }
3645      }
3646    }
3647
3648    // Promote the arguments (C99 6.5.2.2p6).
3649    for (unsigned i = 0; i != NumArgs; i++) {
3650      Expr *Arg = Args[i];
3651      DefaultArgumentPromotion(Arg);
3652      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3653                              Arg->getType(),
3654                              PDiag(diag::err_call_incomplete_argument)
3655                                << Arg->getSourceRange()))
3656        return ExprError();
3657      TheCall->setArg(i, Arg);
3658    }
3659  }
3660
3661  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3662    if (!Method->isStatic())
3663      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3664        << Fn->getSourceRange());
3665
3666  // Check for sentinels
3667  if (NDecl)
3668    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3669
3670  // Do special checking on direct calls to functions.
3671  if (FDecl) {
3672    if (CheckFunctionCall(FDecl, TheCall.get()))
3673      return ExprError();
3674
3675    if (unsigned BuiltinID = FDecl->getBuiltinID())
3676      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3677  } else if (NDecl) {
3678    if (CheckBlockCall(NDecl, TheCall.get()))
3679      return ExprError();
3680  }
3681
3682  return MaybeBindToTemporary(TheCall.take());
3683}
3684
3685Action::OwningExprResult
3686Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3687                           SourceLocation RParenLoc, ExprArg InitExpr) {
3688  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3689  // FIXME: put back this assert when initializers are worked out.
3690  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3691
3692  TypeSourceInfo *TInfo;
3693  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3694  if (!TInfo)
3695    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3696
3697  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3698}
3699
3700Action::OwningExprResult
3701Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3702                               SourceLocation RParenLoc, ExprArg InitExpr) {
3703  QualType literalType = TInfo->getType();
3704  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3705
3706  if (literalType->isArrayType()) {
3707    if (literalType->isVariableArrayType())
3708      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3709        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3710  } else if (!literalType->isDependentType() &&
3711             RequireCompleteType(LParenLoc, literalType,
3712                      PDiag(diag::err_typecheck_decl_incomplete_type)
3713                        << SourceRange(LParenLoc,
3714                                       literalExpr->getSourceRange().getEnd())))
3715    return ExprError();
3716
3717  InitializedEntity Entity
3718    = InitializedEntity::InitializeTemporary(literalType);
3719  InitializationKind Kind
3720    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3721                                     /*IsCStyleCast=*/true);
3722  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3723  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3724                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3725                                            &literalType);
3726  if (Result.isInvalid())
3727    return ExprError();
3728  InitExpr.release();
3729  literalExpr = static_cast<Expr*>(Result.get());
3730
3731  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3732  if (isFileScope) { // 6.5.2.5p3
3733    if (CheckForConstantInitializer(literalExpr, literalType))
3734      return ExprError();
3735  }
3736
3737  Result.release();
3738
3739  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3740                                                 literalExpr, isFileScope));
3741}
3742
3743Action::OwningExprResult
3744Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3745                    SourceLocation RBraceLoc) {
3746  unsigned NumInit = initlist.size();
3747  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3748
3749  // Semantic analysis for initializers is done by ActOnDeclarator() and
3750  // CheckInitializer() - it requires knowledge of the object being intialized.
3751
3752  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3753                                               RBraceLoc);
3754  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3755  return Owned(E);
3756}
3757
3758static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3759                                            QualType SrcTy, QualType DestTy) {
3760  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3761    return CastExpr::CK_NoOp;
3762
3763  if (SrcTy->hasPointerRepresentation()) {
3764    if (DestTy->hasPointerRepresentation())
3765      return DestTy->isObjCObjectPointerType() ?
3766                CastExpr::CK_AnyPointerToObjCPointerCast :
3767                CastExpr::CK_BitCast;
3768    if (DestTy->isIntegerType())
3769      return CastExpr::CK_PointerToIntegral;
3770  }
3771
3772  if (SrcTy->isIntegerType()) {
3773    if (DestTy->isIntegerType())
3774      return CastExpr::CK_IntegralCast;
3775    if (DestTy->hasPointerRepresentation())
3776      return CastExpr::CK_IntegralToPointer;
3777    if (DestTy->isRealFloatingType())
3778      return CastExpr::CK_IntegralToFloating;
3779  }
3780
3781  if (SrcTy->isRealFloatingType()) {
3782    if (DestTy->isRealFloatingType())
3783      return CastExpr::CK_FloatingCast;
3784    if (DestTy->isIntegerType())
3785      return CastExpr::CK_FloatingToIntegral;
3786  }
3787
3788  // FIXME: Assert here.
3789  // assert(false && "Unhandled cast combination!");
3790  return CastExpr::CK_Unknown;
3791}
3792
3793/// CheckCastTypes - Check type constraints for casting between types.
3794bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3795                          CastExpr::CastKind& Kind,
3796                          CXXMethodDecl *& ConversionDecl,
3797                          bool FunctionalStyle) {
3798  if (getLangOptions().CPlusPlus)
3799    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3800                              ConversionDecl);
3801
3802  DefaultFunctionArrayLvalueConversion(castExpr);
3803
3804  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3805  // type needs to be scalar.
3806  if (castType->isVoidType()) {
3807    // Cast to void allows any expr type.
3808    Kind = CastExpr::CK_ToVoid;
3809    return false;
3810  }
3811
3812  if (!castType->isScalarType() && !castType->isVectorType()) {
3813    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3814        (castType->isStructureType() || castType->isUnionType())) {
3815      // GCC struct/union extension: allow cast to self.
3816      // FIXME: Check that the cast destination type is complete.
3817      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3818        << castType << castExpr->getSourceRange();
3819      Kind = CastExpr::CK_NoOp;
3820      return false;
3821    }
3822
3823    if (castType->isUnionType()) {
3824      // GCC cast to union extension
3825      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3826      RecordDecl::field_iterator Field, FieldEnd;
3827      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3828           Field != FieldEnd; ++Field) {
3829        if (Context.hasSameUnqualifiedType(Field->getType(),
3830                                           castExpr->getType())) {
3831          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3832            << castExpr->getSourceRange();
3833          break;
3834        }
3835      }
3836      if (Field == FieldEnd)
3837        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3838          << castExpr->getType() << castExpr->getSourceRange();
3839      Kind = CastExpr::CK_ToUnion;
3840      return false;
3841    }
3842
3843    // Reject any other conversions to non-scalar types.
3844    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3845      << castType << castExpr->getSourceRange();
3846  }
3847
3848  if (!castExpr->getType()->isScalarType() &&
3849      !castExpr->getType()->isVectorType()) {
3850    return Diag(castExpr->getLocStart(),
3851                diag::err_typecheck_expect_scalar_operand)
3852      << castExpr->getType() << castExpr->getSourceRange();
3853  }
3854
3855  if (castType->isExtVectorType())
3856    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3857
3858  if (castType->isVectorType())
3859    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3860  if (castExpr->getType()->isVectorType())
3861    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3862
3863  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3864    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3865
3866  if (isa<ObjCSelectorExpr>(castExpr))
3867    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3868
3869  if (!castType->isArithmeticType()) {
3870    QualType castExprType = castExpr->getType();
3871    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3872      return Diag(castExpr->getLocStart(),
3873                  diag::err_cast_pointer_from_non_pointer_int)
3874        << castExprType << castExpr->getSourceRange();
3875  } else if (!castExpr->getType()->isArithmeticType()) {
3876    if (!castType->isIntegralType() && castType->isArithmeticType())
3877      return Diag(castExpr->getLocStart(),
3878                  diag::err_cast_pointer_to_non_pointer_int)
3879        << castType << castExpr->getSourceRange();
3880  }
3881
3882  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3883  return false;
3884}
3885
3886bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3887                           CastExpr::CastKind &Kind) {
3888  assert(VectorTy->isVectorType() && "Not a vector type!");
3889
3890  if (Ty->isVectorType() || Ty->isIntegerType()) {
3891    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3892      return Diag(R.getBegin(),
3893                  Ty->isVectorType() ?
3894                  diag::err_invalid_conversion_between_vectors :
3895                  diag::err_invalid_conversion_between_vector_and_integer)
3896        << VectorTy << Ty << R;
3897  } else
3898    return Diag(R.getBegin(),
3899                diag::err_invalid_conversion_between_vector_and_scalar)
3900      << VectorTy << Ty << R;
3901
3902  Kind = CastExpr::CK_BitCast;
3903  return false;
3904}
3905
3906bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3907                              CastExpr::CastKind &Kind) {
3908  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3909
3910  QualType SrcTy = CastExpr->getType();
3911
3912  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3913  // an ExtVectorType.
3914  if (SrcTy->isVectorType()) {
3915    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3916      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3917        << DestTy << SrcTy << R;
3918    Kind = CastExpr::CK_BitCast;
3919    return false;
3920  }
3921
3922  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3923  // conversion will take place first from scalar to elt type, and then
3924  // splat from elt type to vector.
3925  if (SrcTy->isPointerType())
3926    return Diag(R.getBegin(),
3927                diag::err_invalid_conversion_between_vector_and_scalar)
3928      << DestTy << SrcTy << R;
3929
3930  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3931  ImpCastExprToType(CastExpr, DestElemTy,
3932                    getScalarCastKind(Context, SrcTy, DestElemTy));
3933
3934  Kind = CastExpr::CK_VectorSplat;
3935  return false;
3936}
3937
3938Action::OwningExprResult
3939Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3940                    SourceLocation RParenLoc, ExprArg Op) {
3941  assert((Ty != 0) && (Op.get() != 0) &&
3942         "ActOnCastExpr(): missing type or expr");
3943
3944  TypeSourceInfo *castTInfo;
3945  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3946  if (!castTInfo)
3947    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3948
3949  // If the Expr being casted is a ParenListExpr, handle it specially.
3950  Expr *castExpr = (Expr *)Op.get();
3951  if (isa<ParenListExpr>(castExpr))
3952    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3953                                    castTInfo);
3954
3955  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3956}
3957
3958Action::OwningExprResult
3959Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
3960                          SourceLocation RParenLoc, ExprArg Op) {
3961  Expr *castExpr = static_cast<Expr*>(Op.get());
3962
3963  CXXMethodDecl *Method = 0;
3964  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3965  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
3966                     Kind, Method))
3967    return ExprError();
3968
3969  if (Method) {
3970    // FIXME: preserve type source info here
3971    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, Ty->getType(),
3972                                                    Kind, Method, move(Op));
3973
3974    if (CastArg.isInvalid())
3975      return ExprError();
3976
3977    castExpr = CastArg.takeAs<Expr>();
3978  } else {
3979    Op.release();
3980  }
3981
3982  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
3983                                            Kind, castExpr, Ty,
3984                                            LParenLoc, RParenLoc));
3985}
3986
3987/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3988/// of comma binary operators.
3989Action::OwningExprResult
3990Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3991  Expr *expr = EA.takeAs<Expr>();
3992  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3993  if (!E)
3994    return Owned(expr);
3995
3996  OwningExprResult Result(*this, E->getExpr(0));
3997
3998  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3999    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4000                        Owned(E->getExpr(i)));
4001
4002  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4003}
4004
4005Action::OwningExprResult
4006Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4007                               SourceLocation RParenLoc, ExprArg Op,
4008                               TypeSourceInfo *TInfo) {
4009  ParenListExpr *PE = (ParenListExpr *)Op.get();
4010  QualType Ty = TInfo->getType();
4011
4012  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4013  // then handle it as such.
4014  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4015    if (PE->getNumExprs() == 0) {
4016      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4017      return ExprError();
4018    }
4019
4020    llvm::SmallVector<Expr *, 8> initExprs;
4021    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4022      initExprs.push_back(PE->getExpr(i));
4023
4024    // FIXME: This means that pretty-printing the final AST will produce curly
4025    // braces instead of the original commas.
4026    Op.release();
4027    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
4028                                                 initExprs.size(), RParenLoc);
4029    E->setType(Ty);
4030    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4031  } else {
4032    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4033    // sequence of BinOp comma operators.
4034    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4035    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4036  }
4037}
4038
4039Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4040                                                  SourceLocation R,
4041                                                  MultiExprArg Val,
4042                                                  TypeTy *TypeOfCast) {
4043  unsigned nexprs = Val.size();
4044  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4045  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4046  Expr *expr;
4047  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4048    expr = new (Context) ParenExpr(L, R, exprs[0]);
4049  else
4050    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4051  return Owned(expr);
4052}
4053
4054/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4055/// In that case, lhs = cond.
4056/// C99 6.5.15
4057QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4058                                        SourceLocation QuestionLoc) {
4059  // C++ is sufficiently different to merit its own checker.
4060  if (getLangOptions().CPlusPlus)
4061    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4062
4063  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
4064
4065  UsualUnaryConversions(Cond);
4066  UsualUnaryConversions(LHS);
4067  UsualUnaryConversions(RHS);
4068  QualType CondTy = Cond->getType();
4069  QualType LHSTy = LHS->getType();
4070  QualType RHSTy = RHS->getType();
4071
4072  // first, check the condition.
4073  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4074    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4075      << CondTy;
4076    return QualType();
4077  }
4078
4079  // Now check the two expressions.
4080  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4081    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4082
4083  // If both operands have arithmetic type, do the usual arithmetic conversions
4084  // to find a common type: C99 6.5.15p3,5.
4085  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4086    UsualArithmeticConversions(LHS, RHS);
4087    return LHS->getType();
4088  }
4089
4090  // If both operands are the same structure or union type, the result is that
4091  // type.
4092  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4093    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4094      if (LHSRT->getDecl() == RHSRT->getDecl())
4095        // "If both the operands have structure or union type, the result has
4096        // that type."  This implies that CV qualifiers are dropped.
4097        return LHSTy.getUnqualifiedType();
4098    // FIXME: Type of conditional expression must be complete in C mode.
4099  }
4100
4101  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4102  // The following || allows only one side to be void (a GCC-ism).
4103  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4104    if (!LHSTy->isVoidType())
4105      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4106        << RHS->getSourceRange();
4107    if (!RHSTy->isVoidType())
4108      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4109        << LHS->getSourceRange();
4110    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4111    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4112    return Context.VoidTy;
4113  }
4114  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4115  // the type of the other operand."
4116  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4117      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4118    // promote the null to a pointer.
4119    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4120    return LHSTy;
4121  }
4122  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4123      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4124    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4125    return RHSTy;
4126  }
4127
4128  // All objective-c pointer type analysis is done here.
4129  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4130                                                        QuestionLoc);
4131  if (!compositeType.isNull())
4132    return compositeType;
4133
4134
4135  // Handle block pointer types.
4136  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4137    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4138      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4139        QualType destType = Context.getPointerType(Context.VoidTy);
4140        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4141        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4142        return destType;
4143      }
4144      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4145      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4146      return QualType();
4147    }
4148    // We have 2 block pointer types.
4149    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4150      // Two identical block pointer types are always compatible.
4151      return LHSTy;
4152    }
4153    // The block pointer types aren't identical, continue checking.
4154    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4155    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4156
4157    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4158                                    rhptee.getUnqualifiedType())) {
4159      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4160      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4161      // In this situation, we assume void* type. No especially good
4162      // reason, but this is what gcc does, and we do have to pick
4163      // to get a consistent AST.
4164      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4165      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4166      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4167      return incompatTy;
4168    }
4169    // The block pointer types are compatible.
4170    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4171    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4172    return LHSTy;
4173  }
4174
4175  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4176  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4177    // get the "pointed to" types
4178    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4179    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4180
4181    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4182    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4183      // Figure out necessary qualifiers (C99 6.5.15p6)
4184      QualType destPointee
4185        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4186      QualType destType = Context.getPointerType(destPointee);
4187      // Add qualifiers if necessary.
4188      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4189      // Promote to void*.
4190      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4191      return destType;
4192    }
4193    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4194      QualType destPointee
4195        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4196      QualType destType = Context.getPointerType(destPointee);
4197      // Add qualifiers if necessary.
4198      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4199      // Promote to void*.
4200      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4201      return destType;
4202    }
4203
4204    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4205      // Two identical pointer types are always compatible.
4206      return LHSTy;
4207    }
4208    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4209                                    rhptee.getUnqualifiedType())) {
4210      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4211        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4212      // In this situation, we assume void* type. No especially good
4213      // reason, but this is what gcc does, and we do have to pick
4214      // to get a consistent AST.
4215      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4216      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4217      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4218      return incompatTy;
4219    }
4220    // The pointer types are compatible.
4221    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4222    // differently qualified versions of compatible types, the result type is
4223    // a pointer to an appropriately qualified version of the *composite*
4224    // type.
4225    // FIXME: Need to calculate the composite type.
4226    // FIXME: Need to add qualifiers
4227    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4228    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4229    return LHSTy;
4230  }
4231
4232  // GCC compatibility: soften pointer/integer mismatch.
4233  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4234    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4235      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4236    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4237    return RHSTy;
4238  }
4239  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4240    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4241      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4242    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4243    return LHSTy;
4244  }
4245
4246  // Otherwise, the operands are not compatible.
4247  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4248    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4249  return QualType();
4250}
4251
4252/// FindCompositeObjCPointerType - Helper method to find composite type of
4253/// two objective-c pointer types of the two input expressions.
4254QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4255                                        SourceLocation QuestionLoc) {
4256  QualType LHSTy = LHS->getType();
4257  QualType RHSTy = RHS->getType();
4258
4259  // Handle things like Class and struct objc_class*.  Here we case the result
4260  // to the pseudo-builtin, because that will be implicitly cast back to the
4261  // redefinition type if an attempt is made to access its fields.
4262  if (LHSTy->isObjCClassType() &&
4263      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4264    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4265    return LHSTy;
4266  }
4267  if (RHSTy->isObjCClassType() &&
4268      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4269    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4270    return RHSTy;
4271  }
4272  // And the same for struct objc_object* / id
4273  if (LHSTy->isObjCIdType() &&
4274      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4275    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4276    return LHSTy;
4277  }
4278  if (RHSTy->isObjCIdType() &&
4279      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4280    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4281    return RHSTy;
4282  }
4283  // And the same for struct objc_selector* / SEL
4284  if (Context.isObjCSelType(LHSTy) &&
4285      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4286    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4287    return LHSTy;
4288  }
4289  if (Context.isObjCSelType(RHSTy) &&
4290      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4291    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4292    return RHSTy;
4293  }
4294  // Check constraints for Objective-C object pointers types.
4295  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4296
4297    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4298      // Two identical object pointer types are always compatible.
4299      return LHSTy;
4300    }
4301    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4302    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4303    QualType compositeType = LHSTy;
4304
4305    // If both operands are interfaces and either operand can be
4306    // assigned to the other, use that type as the composite
4307    // type. This allows
4308    //   xxx ? (A*) a : (B*) b
4309    // where B is a subclass of A.
4310    //
4311    // Additionally, as for assignment, if either type is 'id'
4312    // allow silent coercion. Finally, if the types are
4313    // incompatible then make sure to use 'id' as the composite
4314    // type so the result is acceptable for sending messages to.
4315
4316    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4317    // It could return the composite type.
4318    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4319      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4320    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4321      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4322    } else if ((LHSTy->isObjCQualifiedIdType() ||
4323                RHSTy->isObjCQualifiedIdType()) &&
4324               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4325      // Need to handle "id<xx>" explicitly.
4326      // GCC allows qualified id and any Objective-C type to devolve to
4327      // id. Currently localizing to here until clear this should be
4328      // part of ObjCQualifiedIdTypesAreCompatible.
4329      compositeType = Context.getObjCIdType();
4330    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4331      compositeType = Context.getObjCIdType();
4332    } else if (!(compositeType =
4333                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4334      ;
4335    else {
4336      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4337      << LHSTy << RHSTy
4338      << LHS->getSourceRange() << RHS->getSourceRange();
4339      QualType incompatTy = Context.getObjCIdType();
4340      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4341      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4342      return incompatTy;
4343    }
4344    // The object pointer types are compatible.
4345    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4346    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4347    return compositeType;
4348  }
4349  // Check Objective-C object pointer types and 'void *'
4350  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4351    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4352    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4353    QualType destPointee
4354    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4355    QualType destType = Context.getPointerType(destPointee);
4356    // Add qualifiers if necessary.
4357    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4358    // Promote to void*.
4359    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4360    return destType;
4361  }
4362  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4363    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4364    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4365    QualType destPointee
4366    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4367    QualType destType = Context.getPointerType(destPointee);
4368    // Add qualifiers if necessary.
4369    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4370    // Promote to void*.
4371    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4372    return destType;
4373  }
4374  return QualType();
4375}
4376
4377/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4378/// in the case of a the GNU conditional expr extension.
4379Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4380                                                  SourceLocation ColonLoc,
4381                                                  ExprArg Cond, ExprArg LHS,
4382                                                  ExprArg RHS) {
4383  Expr *CondExpr = (Expr *) Cond.get();
4384  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4385
4386  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4387  // was the condition.
4388  bool isLHSNull = LHSExpr == 0;
4389  if (isLHSNull)
4390    LHSExpr = CondExpr;
4391
4392  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4393                                             RHSExpr, QuestionLoc);
4394  if (result.isNull())
4395    return ExprError();
4396
4397  Cond.release();
4398  LHS.release();
4399  RHS.release();
4400  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4401                                                 isLHSNull ? 0 : LHSExpr,
4402                                                 ColonLoc, RHSExpr, result));
4403}
4404
4405// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4406// being closely modeled after the C99 spec:-). The odd characteristic of this
4407// routine is it effectively iqnores the qualifiers on the top level pointee.
4408// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4409// FIXME: add a couple examples in this comment.
4410Sema::AssignConvertType
4411Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4412  QualType lhptee, rhptee;
4413
4414  if ((lhsType->isObjCClassType() &&
4415       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4416     (rhsType->isObjCClassType() &&
4417       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4418      return Compatible;
4419  }
4420
4421  // get the "pointed to" type (ignoring qualifiers at the top level)
4422  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4423  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4424
4425  // make sure we operate on the canonical type
4426  lhptee = Context.getCanonicalType(lhptee);
4427  rhptee = Context.getCanonicalType(rhptee);
4428
4429  AssignConvertType ConvTy = Compatible;
4430
4431  // C99 6.5.16.1p1: This following citation is common to constraints
4432  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4433  // qualifiers of the type *pointed to* by the right;
4434  // FIXME: Handle ExtQualType
4435  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4436    ConvTy = CompatiblePointerDiscardsQualifiers;
4437
4438  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4439  // incomplete type and the other is a pointer to a qualified or unqualified
4440  // version of void...
4441  if (lhptee->isVoidType()) {
4442    if (rhptee->isIncompleteOrObjectType())
4443      return ConvTy;
4444
4445    // As an extension, we allow cast to/from void* to function pointer.
4446    assert(rhptee->isFunctionType());
4447    return FunctionVoidPointer;
4448  }
4449
4450  if (rhptee->isVoidType()) {
4451    if (lhptee->isIncompleteOrObjectType())
4452      return ConvTy;
4453
4454    // As an extension, we allow cast to/from void* to function pointer.
4455    assert(lhptee->isFunctionType());
4456    return FunctionVoidPointer;
4457  }
4458  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4459  // unqualified versions of compatible types, ...
4460  lhptee = lhptee.getUnqualifiedType();
4461  rhptee = rhptee.getUnqualifiedType();
4462  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4463    // Check if the pointee types are compatible ignoring the sign.
4464    // We explicitly check for char so that we catch "char" vs
4465    // "unsigned char" on systems where "char" is unsigned.
4466    if (lhptee->isCharType())
4467      lhptee = Context.UnsignedCharTy;
4468    else if (lhptee->isSignedIntegerType())
4469      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4470
4471    if (rhptee->isCharType())
4472      rhptee = Context.UnsignedCharTy;
4473    else if (rhptee->isSignedIntegerType())
4474      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4475
4476    if (lhptee == rhptee) {
4477      // Types are compatible ignoring the sign. Qualifier incompatibility
4478      // takes priority over sign incompatibility because the sign
4479      // warning can be disabled.
4480      if (ConvTy != Compatible)
4481        return ConvTy;
4482      return IncompatiblePointerSign;
4483    }
4484
4485    // If we are a multi-level pointer, it's possible that our issue is simply
4486    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4487    // the eventual target type is the same and the pointers have the same
4488    // level of indirection, this must be the issue.
4489    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4490      do {
4491        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4492        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4493
4494        lhptee = Context.getCanonicalType(lhptee);
4495        rhptee = Context.getCanonicalType(rhptee);
4496      } while (lhptee->isPointerType() && rhptee->isPointerType());
4497
4498      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4499        return IncompatibleNestedPointerQualifiers;
4500    }
4501
4502    // General pointer incompatibility takes priority over qualifiers.
4503    return IncompatiblePointer;
4504  }
4505  return ConvTy;
4506}
4507
4508/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4509/// block pointer types are compatible or whether a block and normal pointer
4510/// are compatible. It is more restrict than comparing two function pointer
4511// types.
4512Sema::AssignConvertType
4513Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4514                                          QualType rhsType) {
4515  QualType lhptee, rhptee;
4516
4517  // get the "pointed to" type (ignoring qualifiers at the top level)
4518  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4519  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4520
4521  // make sure we operate on the canonical type
4522  lhptee = Context.getCanonicalType(lhptee);
4523  rhptee = Context.getCanonicalType(rhptee);
4524
4525  AssignConvertType ConvTy = Compatible;
4526
4527  // For blocks we enforce that qualifiers are identical.
4528  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4529    ConvTy = CompatiblePointerDiscardsQualifiers;
4530
4531  if (!Context.typesAreCompatible(lhptee, rhptee))
4532    return IncompatibleBlockPointer;
4533  return ConvTy;
4534}
4535
4536/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4537/// for assignment compatibility.
4538Sema::AssignConvertType
4539Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4540  if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
4541    return Compatible;
4542  QualType lhptee =
4543  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4544  QualType rhptee =
4545  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4546  // make sure we operate on the canonical type
4547  lhptee = Context.getCanonicalType(lhptee);
4548  rhptee = Context.getCanonicalType(rhptee);
4549  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4550    return CompatiblePointerDiscardsQualifiers;
4551
4552  if (Context.typesAreCompatible(lhsType, rhsType))
4553    return Compatible;
4554  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4555    return IncompatibleObjCQualifiedId;
4556  return IncompatiblePointer;
4557}
4558
4559/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4560/// has code to accommodate several GCC extensions when type checking
4561/// pointers. Here are some objectionable examples that GCC considers warnings:
4562///
4563///  int a, *pint;
4564///  short *pshort;
4565///  struct foo *pfoo;
4566///
4567///  pint = pshort; // warning: assignment from incompatible pointer type
4568///  a = pint; // warning: assignment makes integer from pointer without a cast
4569///  pint = a; // warning: assignment makes pointer from integer without a cast
4570///  pint = pfoo; // warning: assignment from incompatible pointer type
4571///
4572/// As a result, the code for dealing with pointers is more complex than the
4573/// C99 spec dictates.
4574///
4575Sema::AssignConvertType
4576Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4577  // Get canonical types.  We're not formatting these types, just comparing
4578  // them.
4579  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4580  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4581
4582  if (lhsType == rhsType)
4583    return Compatible; // Common case: fast path an exact match.
4584
4585  if ((lhsType->isObjCClassType() &&
4586       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4587     (rhsType->isObjCClassType() &&
4588       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4589      return Compatible;
4590  }
4591
4592  // If the left-hand side is a reference type, then we are in a
4593  // (rare!) case where we've allowed the use of references in C,
4594  // e.g., as a parameter type in a built-in function. In this case,
4595  // just make sure that the type referenced is compatible with the
4596  // right-hand side type. The caller is responsible for adjusting
4597  // lhsType so that the resulting expression does not have reference
4598  // type.
4599  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4600    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4601      return Compatible;
4602    return Incompatible;
4603  }
4604  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4605  // to the same ExtVector type.
4606  if (lhsType->isExtVectorType()) {
4607    if (rhsType->isExtVectorType())
4608      return lhsType == rhsType ? Compatible : Incompatible;
4609    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4610      return Compatible;
4611  }
4612
4613  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4614    // If we are allowing lax vector conversions, and LHS and RHS are both
4615    // vectors, the total size only needs to be the same. This is a bitcast;
4616    // no bits are changed but the result type is different.
4617    if (getLangOptions().LaxVectorConversions &&
4618        lhsType->isVectorType() && rhsType->isVectorType()) {
4619      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4620        return IncompatibleVectors;
4621    }
4622    return Incompatible;
4623  }
4624
4625  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4626    return Compatible;
4627
4628  if (isa<PointerType>(lhsType)) {
4629    if (rhsType->isIntegerType())
4630      return IntToPointer;
4631
4632    if (isa<PointerType>(rhsType))
4633      return CheckPointerTypesForAssignment(lhsType, rhsType);
4634
4635    // In general, C pointers are not compatible with ObjC object pointers.
4636    if (isa<ObjCObjectPointerType>(rhsType)) {
4637      if (lhsType->isVoidPointerType()) // an exception to the rule.
4638        return Compatible;
4639      return IncompatiblePointer;
4640    }
4641    if (rhsType->getAs<BlockPointerType>()) {
4642      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4643        return Compatible;
4644
4645      // Treat block pointers as objects.
4646      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4647        return Compatible;
4648    }
4649    return Incompatible;
4650  }
4651
4652  if (isa<BlockPointerType>(lhsType)) {
4653    if (rhsType->isIntegerType())
4654      return IntToBlockPointer;
4655
4656    // Treat block pointers as objects.
4657    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4658      return Compatible;
4659
4660    if (rhsType->isBlockPointerType())
4661      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4662
4663    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4664      if (RHSPT->getPointeeType()->isVoidType())
4665        return Compatible;
4666    }
4667    return Incompatible;
4668  }
4669
4670  if (isa<ObjCObjectPointerType>(lhsType)) {
4671    if (rhsType->isIntegerType())
4672      return IntToPointer;
4673
4674    // In general, C pointers are not compatible with ObjC object pointers.
4675    if (isa<PointerType>(rhsType)) {
4676      if (rhsType->isVoidPointerType()) // an exception to the rule.
4677        return Compatible;
4678      return IncompatiblePointer;
4679    }
4680    if (rhsType->isObjCObjectPointerType()) {
4681      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4682    }
4683    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4684      if (RHSPT->getPointeeType()->isVoidType())
4685        return Compatible;
4686    }
4687    // Treat block pointers as objects.
4688    if (rhsType->isBlockPointerType())
4689      return Compatible;
4690    return Incompatible;
4691  }
4692  if (isa<PointerType>(rhsType)) {
4693    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4694    if (lhsType == Context.BoolTy)
4695      return Compatible;
4696
4697    if (lhsType->isIntegerType())
4698      return PointerToInt;
4699
4700    if (isa<PointerType>(lhsType))
4701      return CheckPointerTypesForAssignment(lhsType, rhsType);
4702
4703    if (isa<BlockPointerType>(lhsType) &&
4704        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4705      return Compatible;
4706    return Incompatible;
4707  }
4708  if (isa<ObjCObjectPointerType>(rhsType)) {
4709    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4710    if (lhsType == Context.BoolTy)
4711      return Compatible;
4712
4713    if (lhsType->isIntegerType())
4714      return PointerToInt;
4715
4716    // In general, C pointers are not compatible with ObjC object pointers.
4717    if (isa<PointerType>(lhsType)) {
4718      if (lhsType->isVoidPointerType()) // an exception to the rule.
4719        return Compatible;
4720      return IncompatiblePointer;
4721    }
4722    if (isa<BlockPointerType>(lhsType) &&
4723        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4724      return Compatible;
4725    return Incompatible;
4726  }
4727
4728  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4729    if (Context.typesAreCompatible(lhsType, rhsType))
4730      return Compatible;
4731  }
4732  return Incompatible;
4733}
4734
4735/// \brief Constructs a transparent union from an expression that is
4736/// used to initialize the transparent union.
4737static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4738                                      QualType UnionType, FieldDecl *Field) {
4739  // Build an initializer list that designates the appropriate member
4740  // of the transparent union.
4741  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
4742                                                   &E, 1,
4743                                                   SourceLocation());
4744  Initializer->setType(UnionType);
4745  Initializer->setInitializedFieldInUnion(Field);
4746
4747  // Build a compound literal constructing a value of the transparent
4748  // union type from this initializer list.
4749  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4750  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4751                                  Initializer, false);
4752}
4753
4754Sema::AssignConvertType
4755Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4756  QualType FromType = rExpr->getType();
4757
4758  // If the ArgType is a Union type, we want to handle a potential
4759  // transparent_union GCC extension.
4760  const RecordType *UT = ArgType->getAsUnionType();
4761  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4762    return Incompatible;
4763
4764  // The field to initialize within the transparent union.
4765  RecordDecl *UD = UT->getDecl();
4766  FieldDecl *InitField = 0;
4767  // It's compatible if the expression matches any of the fields.
4768  for (RecordDecl::field_iterator it = UD->field_begin(),
4769         itend = UD->field_end();
4770       it != itend; ++it) {
4771    if (it->getType()->isPointerType()) {
4772      // If the transparent union contains a pointer type, we allow:
4773      // 1) void pointer
4774      // 2) null pointer constant
4775      if (FromType->isPointerType())
4776        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4777          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4778          InitField = *it;
4779          break;
4780        }
4781
4782      if (rExpr->isNullPointerConstant(Context,
4783                                       Expr::NPC_ValueDependentIsNull)) {
4784        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4785        InitField = *it;
4786        break;
4787      }
4788    }
4789
4790    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4791          == Compatible) {
4792      InitField = *it;
4793      break;
4794    }
4795  }
4796
4797  if (!InitField)
4798    return Incompatible;
4799
4800  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4801  return Compatible;
4802}
4803
4804Sema::AssignConvertType
4805Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4806  if (getLangOptions().CPlusPlus) {
4807    if (!lhsType->isRecordType()) {
4808      // C++ 5.17p3: If the left operand is not of class type, the
4809      // expression is implicitly converted (C++ 4) to the
4810      // cv-unqualified type of the left operand.
4811      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4812                                    AA_Assigning))
4813        return Incompatible;
4814      return Compatible;
4815    }
4816
4817    // FIXME: Currently, we fall through and treat C++ classes like C
4818    // structures.
4819  }
4820
4821  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4822  // a null pointer constant.
4823  if ((lhsType->isPointerType() ||
4824       lhsType->isObjCObjectPointerType() ||
4825       lhsType->isBlockPointerType())
4826      && rExpr->isNullPointerConstant(Context,
4827                                      Expr::NPC_ValueDependentIsNull)) {
4828    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4829    return Compatible;
4830  }
4831
4832  // This check seems unnatural, however it is necessary to ensure the proper
4833  // conversion of functions/arrays. If the conversion were done for all
4834  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4835  // expressions that surpress this implicit conversion (&, sizeof).
4836  //
4837  // Suppress this for references: C++ 8.5.3p5.
4838  if (!lhsType->isReferenceType())
4839    DefaultFunctionArrayLvalueConversion(rExpr);
4840
4841  Sema::AssignConvertType result =
4842    CheckAssignmentConstraints(lhsType, rExpr->getType());
4843
4844  // C99 6.5.16.1p2: The value of the right operand is converted to the
4845  // type of the assignment expression.
4846  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4847  // so that we can use references in built-in functions even in C.
4848  // The getNonReferenceType() call makes sure that the resulting expression
4849  // does not have reference type.
4850  if (result != Incompatible && rExpr->getType() != lhsType)
4851    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4852                      CastExpr::CK_Unknown);
4853  return result;
4854}
4855
4856QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4857  Diag(Loc, diag::err_typecheck_invalid_operands)
4858    << lex->getType() << rex->getType()
4859    << lex->getSourceRange() << rex->getSourceRange();
4860  return QualType();
4861}
4862
4863QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4864  // For conversion purposes, we ignore any qualifiers.
4865  // For example, "const float" and "float" are equivalent.
4866  QualType lhsType =
4867    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4868  QualType rhsType =
4869    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4870
4871  // If the vector types are identical, return.
4872  if (lhsType == rhsType)
4873    return lhsType;
4874
4875  // Handle the case of a vector & extvector type of the same size and element
4876  // type.  It would be nice if we only had one vector type someday.
4877  if (getLangOptions().LaxVectorConversions) {
4878    // FIXME: Should we warn here?
4879    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4880      if (const VectorType *RV = rhsType->getAs<VectorType>())
4881        if (LV->getElementType() == RV->getElementType() &&
4882            LV->getNumElements() == RV->getNumElements()) {
4883          return lhsType->isExtVectorType() ? lhsType : rhsType;
4884        }
4885    }
4886  }
4887
4888  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4889  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4890  bool swapped = false;
4891  if (rhsType->isExtVectorType()) {
4892    swapped = true;
4893    std::swap(rex, lex);
4894    std::swap(rhsType, lhsType);
4895  }
4896
4897  // Handle the case of an ext vector and scalar.
4898  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4899    QualType EltTy = LV->getElementType();
4900    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4901      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4902        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4903        if (swapped) std::swap(rex, lex);
4904        return lhsType;
4905      }
4906    }
4907    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4908        rhsType->isRealFloatingType()) {
4909      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4910        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4911        if (swapped) std::swap(rex, lex);
4912        return lhsType;
4913      }
4914    }
4915  }
4916
4917  // Vectors of different size or scalar and non-ext-vector are errors.
4918  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4919    << lex->getType() << rex->getType()
4920    << lex->getSourceRange() << rex->getSourceRange();
4921  return QualType();
4922}
4923
4924QualType Sema::CheckMultiplyDivideOperands(
4925  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4926  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4927    return CheckVectorOperands(Loc, lex, rex);
4928
4929  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4930
4931  if (!lex->getType()->isArithmeticType() ||
4932      !rex->getType()->isArithmeticType())
4933    return InvalidOperands(Loc, lex, rex);
4934
4935  // Check for division by zero.
4936  if (isDiv &&
4937      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4938    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4939                                     << rex->getSourceRange());
4940
4941  return compType;
4942}
4943
4944QualType Sema::CheckRemainderOperands(
4945  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4946  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4947    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4948      return CheckVectorOperands(Loc, lex, rex);
4949    return InvalidOperands(Loc, lex, rex);
4950  }
4951
4952  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4953
4954  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4955    return InvalidOperands(Loc, lex, rex);
4956
4957  // Check for remainder by zero.
4958  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4959    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
4960                                 << rex->getSourceRange());
4961
4962  return compType;
4963}
4964
4965QualType Sema::CheckAdditionOperands( // C99 6.5.6
4966  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4967  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4968    QualType compType = CheckVectorOperands(Loc, lex, rex);
4969    if (CompLHSTy) *CompLHSTy = compType;
4970    return compType;
4971  }
4972
4973  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4974
4975  // handle the common case first (both operands are arithmetic).
4976  if (lex->getType()->isArithmeticType() &&
4977      rex->getType()->isArithmeticType()) {
4978    if (CompLHSTy) *CompLHSTy = compType;
4979    return compType;
4980  }
4981
4982  // Put any potential pointer into PExp
4983  Expr* PExp = lex, *IExp = rex;
4984  if (IExp->getType()->isAnyPointerType())
4985    std::swap(PExp, IExp);
4986
4987  if (PExp->getType()->isAnyPointerType()) {
4988
4989    if (IExp->getType()->isIntegerType()) {
4990      QualType PointeeTy = PExp->getType()->getPointeeType();
4991
4992      // Check for arithmetic on pointers to incomplete types.
4993      if (PointeeTy->isVoidType()) {
4994        if (getLangOptions().CPlusPlus) {
4995          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4996            << lex->getSourceRange() << rex->getSourceRange();
4997          return QualType();
4998        }
4999
5000        // GNU extension: arithmetic on pointer to void
5001        Diag(Loc, diag::ext_gnu_void_ptr)
5002          << lex->getSourceRange() << rex->getSourceRange();
5003      } else if (PointeeTy->isFunctionType()) {
5004        if (getLangOptions().CPlusPlus) {
5005          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5006            << lex->getType() << lex->getSourceRange();
5007          return QualType();
5008        }
5009
5010        // GNU extension: arithmetic on pointer to function
5011        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5012          << lex->getType() << lex->getSourceRange();
5013      } else {
5014        // Check if we require a complete type.
5015        if (((PExp->getType()->isPointerType() &&
5016              !PExp->getType()->isDependentType()) ||
5017              PExp->getType()->isObjCObjectPointerType()) &&
5018             RequireCompleteType(Loc, PointeeTy,
5019                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5020                             << PExp->getSourceRange()
5021                             << PExp->getType()))
5022          return QualType();
5023      }
5024      // Diagnose bad cases where we step over interface counts.
5025      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5026        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5027          << PointeeTy << PExp->getSourceRange();
5028        return QualType();
5029      }
5030
5031      if (CompLHSTy) {
5032        QualType LHSTy = Context.isPromotableBitField(lex);
5033        if (LHSTy.isNull()) {
5034          LHSTy = lex->getType();
5035          if (LHSTy->isPromotableIntegerType())
5036            LHSTy = Context.getPromotedIntegerType(LHSTy);
5037        }
5038        *CompLHSTy = LHSTy;
5039      }
5040      return PExp->getType();
5041    }
5042  }
5043
5044  return InvalidOperands(Loc, lex, rex);
5045}
5046
5047// C99 6.5.6
5048QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5049                                        SourceLocation Loc, QualType* CompLHSTy) {
5050  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5051    QualType compType = CheckVectorOperands(Loc, lex, rex);
5052    if (CompLHSTy) *CompLHSTy = compType;
5053    return compType;
5054  }
5055
5056  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5057
5058  // Enforce type constraints: C99 6.5.6p3.
5059
5060  // Handle the common case first (both operands are arithmetic).
5061  if (lex->getType()->isArithmeticType()
5062      && rex->getType()->isArithmeticType()) {
5063    if (CompLHSTy) *CompLHSTy = compType;
5064    return compType;
5065  }
5066
5067  // Either ptr - int   or   ptr - ptr.
5068  if (lex->getType()->isAnyPointerType()) {
5069    QualType lpointee = lex->getType()->getPointeeType();
5070
5071    // The LHS must be an completely-defined object type.
5072
5073    bool ComplainAboutVoid = false;
5074    Expr *ComplainAboutFunc = 0;
5075    if (lpointee->isVoidType()) {
5076      if (getLangOptions().CPlusPlus) {
5077        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5078          << lex->getSourceRange() << rex->getSourceRange();
5079        return QualType();
5080      }
5081
5082      // GNU C extension: arithmetic on pointer to void
5083      ComplainAboutVoid = true;
5084    } else if (lpointee->isFunctionType()) {
5085      if (getLangOptions().CPlusPlus) {
5086        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5087          << lex->getType() << lex->getSourceRange();
5088        return QualType();
5089      }
5090
5091      // GNU C extension: arithmetic on pointer to function
5092      ComplainAboutFunc = lex;
5093    } else if (!lpointee->isDependentType() &&
5094               RequireCompleteType(Loc, lpointee,
5095                                   PDiag(diag::err_typecheck_sub_ptr_object)
5096                                     << lex->getSourceRange()
5097                                     << lex->getType()))
5098      return QualType();
5099
5100    // Diagnose bad cases where we step over interface counts.
5101    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5102      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5103        << lpointee << lex->getSourceRange();
5104      return QualType();
5105    }
5106
5107    // The result type of a pointer-int computation is the pointer type.
5108    if (rex->getType()->isIntegerType()) {
5109      if (ComplainAboutVoid)
5110        Diag(Loc, diag::ext_gnu_void_ptr)
5111          << lex->getSourceRange() << rex->getSourceRange();
5112      if (ComplainAboutFunc)
5113        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5114          << ComplainAboutFunc->getType()
5115          << ComplainAboutFunc->getSourceRange();
5116
5117      if (CompLHSTy) *CompLHSTy = lex->getType();
5118      return lex->getType();
5119    }
5120
5121    // Handle pointer-pointer subtractions.
5122    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5123      QualType rpointee = RHSPTy->getPointeeType();
5124
5125      // RHS must be a completely-type object type.
5126      // Handle the GNU void* extension.
5127      if (rpointee->isVoidType()) {
5128        if (getLangOptions().CPlusPlus) {
5129          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5130            << lex->getSourceRange() << rex->getSourceRange();
5131          return QualType();
5132        }
5133
5134        ComplainAboutVoid = true;
5135      } else if (rpointee->isFunctionType()) {
5136        if (getLangOptions().CPlusPlus) {
5137          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5138            << rex->getType() << rex->getSourceRange();
5139          return QualType();
5140        }
5141
5142        // GNU extension: arithmetic on pointer to function
5143        if (!ComplainAboutFunc)
5144          ComplainAboutFunc = rex;
5145      } else if (!rpointee->isDependentType() &&
5146                 RequireCompleteType(Loc, rpointee,
5147                                     PDiag(diag::err_typecheck_sub_ptr_object)
5148                                       << rex->getSourceRange()
5149                                       << rex->getType()))
5150        return QualType();
5151
5152      if (getLangOptions().CPlusPlus) {
5153        // Pointee types must be the same: C++ [expr.add]
5154        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5155          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5156            << lex->getType() << rex->getType()
5157            << lex->getSourceRange() << rex->getSourceRange();
5158          return QualType();
5159        }
5160      } else {
5161        // Pointee types must be compatible C99 6.5.6p3
5162        if (!Context.typesAreCompatible(
5163                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5164                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5165          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5166            << lex->getType() << rex->getType()
5167            << lex->getSourceRange() << rex->getSourceRange();
5168          return QualType();
5169        }
5170      }
5171
5172      if (ComplainAboutVoid)
5173        Diag(Loc, diag::ext_gnu_void_ptr)
5174          << lex->getSourceRange() << rex->getSourceRange();
5175      if (ComplainAboutFunc)
5176        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5177          << ComplainAboutFunc->getType()
5178          << ComplainAboutFunc->getSourceRange();
5179
5180      if (CompLHSTy) *CompLHSTy = lex->getType();
5181      return Context.getPointerDiffType();
5182    }
5183  }
5184
5185  return InvalidOperands(Loc, lex, rex);
5186}
5187
5188// C99 6.5.7
5189QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5190                                  bool isCompAssign) {
5191  // C99 6.5.7p2: Each of the operands shall have integer type.
5192  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5193    return InvalidOperands(Loc, lex, rex);
5194
5195  // Vector shifts promote their scalar inputs to vector type.
5196  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5197    return CheckVectorOperands(Loc, lex, rex);
5198
5199  // Shifts don't perform usual arithmetic conversions, they just do integer
5200  // promotions on each operand. C99 6.5.7p3
5201  QualType LHSTy = Context.isPromotableBitField(lex);
5202  if (LHSTy.isNull()) {
5203    LHSTy = lex->getType();
5204    if (LHSTy->isPromotableIntegerType())
5205      LHSTy = Context.getPromotedIntegerType(LHSTy);
5206  }
5207  if (!isCompAssign)
5208    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5209
5210  UsualUnaryConversions(rex);
5211
5212  // Sanity-check shift operands
5213  llvm::APSInt Right;
5214  // Check right/shifter operand
5215  if (!rex->isValueDependent() &&
5216      rex->isIntegerConstantExpr(Right, Context)) {
5217    if (Right.isNegative())
5218      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5219    else {
5220      llvm::APInt LeftBits(Right.getBitWidth(),
5221                          Context.getTypeSize(lex->getType()));
5222      if (Right.uge(LeftBits))
5223        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5224    }
5225  }
5226
5227  // "The type of the result is that of the promoted left operand."
5228  return LHSTy;
5229}
5230
5231// C99 6.5.8, C++ [expr.rel]
5232QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5233                                    unsigned OpaqueOpc, bool isRelational) {
5234  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5235
5236  // Handle vector comparisons separately.
5237  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5238    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5239
5240  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
5241                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
5242
5243  // C99 6.5.8p3 / C99 6.5.9p4
5244  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5245    UsualArithmeticConversions(lex, rex);
5246  else {
5247    UsualUnaryConversions(lex);
5248    UsualUnaryConversions(rex);
5249  }
5250  QualType lType = lex->getType();
5251  QualType rType = rex->getType();
5252
5253  if (!lType->isFloatingType()
5254      && !(lType->isBlockPointerType() && isRelational)) {
5255    // For non-floating point types, check for self-comparisons of the form
5256    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5257    // often indicate logic errors in the program.
5258    // NOTE: Don't warn about comparisons of enum constants. These can arise
5259    //  from macro expansions, and are usually quite deliberate.
5260    Expr *LHSStripped = lex->IgnoreParens();
5261    Expr *RHSStripped = rex->IgnoreParens();
5262    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5263      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5264        if (DRL->getDecl() == DRR->getDecl() &&
5265            !isa<EnumConstantDecl>(DRL->getDecl()))
5266          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5267
5268    if (isa<CastExpr>(LHSStripped))
5269      LHSStripped = LHSStripped->IgnoreParenCasts();
5270    if (isa<CastExpr>(RHSStripped))
5271      RHSStripped = RHSStripped->IgnoreParenCasts();
5272
5273    // Warn about comparisons against a string constant (unless the other
5274    // operand is null), the user probably wants strcmp.
5275    Expr *literalString = 0;
5276    Expr *literalStringStripped = 0;
5277    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5278        !RHSStripped->isNullPointerConstant(Context,
5279                                            Expr::NPC_ValueDependentIsNull)) {
5280      literalString = lex;
5281      literalStringStripped = LHSStripped;
5282    } else if ((isa<StringLiteral>(RHSStripped) ||
5283                isa<ObjCEncodeExpr>(RHSStripped)) &&
5284               !LHSStripped->isNullPointerConstant(Context,
5285                                            Expr::NPC_ValueDependentIsNull)) {
5286      literalString = rex;
5287      literalStringStripped = RHSStripped;
5288    }
5289
5290    if (literalString) {
5291      std::string resultComparison;
5292      switch (Opc) {
5293      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5294      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5295      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5296      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5297      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5298      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5299      default: assert(false && "Invalid comparison operator");
5300      }
5301
5302      DiagRuntimeBehavior(Loc,
5303        PDiag(diag::warn_stringcompare)
5304          << isa<ObjCEncodeExpr>(literalStringStripped)
5305          << literalString->getSourceRange()
5306          << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
5307          << CodeModificationHint::CreateInsertion(lex->getLocStart(),
5308                                                   "strcmp(")
5309          << CodeModificationHint::CreateInsertion(
5310                                         PP.getLocForEndOfToken(rex->getLocEnd()),
5311                                         resultComparison));
5312    }
5313  }
5314
5315  // The result of comparisons is 'bool' in C++, 'int' in C.
5316  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5317
5318  if (isRelational) {
5319    if (lType->isRealType() && rType->isRealType())
5320      return ResultTy;
5321  } else {
5322    // Check for comparisons of floating point operands using != and ==.
5323    if (lType->isFloatingType() && rType->isFloatingType())
5324      CheckFloatComparison(Loc,lex,rex);
5325
5326    if (lType->isArithmeticType() && rType->isArithmeticType())
5327      return ResultTy;
5328  }
5329
5330  bool LHSIsNull = lex->isNullPointerConstant(Context,
5331                                              Expr::NPC_ValueDependentIsNull);
5332  bool RHSIsNull = rex->isNullPointerConstant(Context,
5333                                              Expr::NPC_ValueDependentIsNull);
5334
5335  // All of the following pointer related warnings are GCC extensions, except
5336  // when handling null pointer constants. One day, we can consider making them
5337  // errors (when -pedantic-errors is enabled).
5338  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5339    QualType LCanPointeeTy =
5340      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5341    QualType RCanPointeeTy =
5342      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5343
5344    if (getLangOptions().CPlusPlus) {
5345      if (LCanPointeeTy == RCanPointeeTy)
5346        return ResultTy;
5347      if (!isRelational &&
5348          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5349        // Valid unless comparison between non-null pointer and function pointer
5350        // This is a gcc extension compatibility comparison.
5351        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5352            && !LHSIsNull && !RHSIsNull) {
5353          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5354            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5355          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5356          return ResultTy;
5357        }
5358      }
5359      // C++ [expr.rel]p2:
5360      //   [...] Pointer conversions (4.10) and qualification
5361      //   conversions (4.4) are performed on pointer operands (or on
5362      //   a pointer operand and a null pointer constant) to bring
5363      //   them to their composite pointer type. [...]
5364      //
5365      // C++ [expr.eq]p1 uses the same notion for (in)equality
5366      // comparisons of pointers.
5367      QualType T = FindCompositePointerType(lex, rex);
5368      if (T.isNull()) {
5369        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5370          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5371        return QualType();
5372      }
5373
5374      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5375      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5376      return ResultTy;
5377    }
5378    // C99 6.5.9p2 and C99 6.5.8p2
5379    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5380                                   RCanPointeeTy.getUnqualifiedType())) {
5381      // Valid unless a relational comparison of function pointers
5382      if (isRelational && LCanPointeeTy->isFunctionType()) {
5383        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5384          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5385      }
5386    } else if (!isRelational &&
5387               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5388      // Valid unless comparison between non-null pointer and function pointer
5389      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5390          && !LHSIsNull && !RHSIsNull) {
5391        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5392          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5393      }
5394    } else {
5395      // Invalid
5396      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5397        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5398    }
5399    if (LCanPointeeTy != RCanPointeeTy)
5400      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5401    return ResultTy;
5402  }
5403
5404  if (getLangOptions().CPlusPlus) {
5405    // Comparison of pointers with null pointer constants and equality
5406    // comparisons of member pointers to null pointer constants.
5407    if (RHSIsNull &&
5408        (lType->isPointerType() ||
5409         (!isRelational && lType->isMemberPointerType()))) {
5410      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5411      return ResultTy;
5412    }
5413    if (LHSIsNull &&
5414        (rType->isPointerType() ||
5415         (!isRelational && rType->isMemberPointerType()))) {
5416      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5417      return ResultTy;
5418    }
5419
5420    // Comparison of member pointers.
5421    if (!isRelational &&
5422        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5423      // C++ [expr.eq]p2:
5424      //   In addition, pointers to members can be compared, or a pointer to
5425      //   member and a null pointer constant. Pointer to member conversions
5426      //   (4.11) and qualification conversions (4.4) are performed to bring
5427      //   them to a common type. If one operand is a null pointer constant,
5428      //   the common type is the type of the other operand. Otherwise, the
5429      //   common type is a pointer to member type similar (4.4) to the type
5430      //   of one of the operands, with a cv-qualification signature (4.4)
5431      //   that is the union of the cv-qualification signatures of the operand
5432      //   types.
5433      QualType T = FindCompositePointerType(lex, rex);
5434      if (T.isNull()) {
5435        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5436        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5437        return QualType();
5438      }
5439
5440      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5441      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5442      return ResultTy;
5443    }
5444
5445    // Comparison of nullptr_t with itself.
5446    if (lType->isNullPtrType() && rType->isNullPtrType())
5447      return ResultTy;
5448  }
5449
5450  // Handle block pointer types.
5451  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5452    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5453    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5454
5455    if (!LHSIsNull && !RHSIsNull &&
5456        !Context.typesAreCompatible(lpointee, rpointee)) {
5457      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5458        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5459    }
5460    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5461    return ResultTy;
5462  }
5463  // Allow block pointers to be compared with null pointer constants.
5464  if (!isRelational
5465      && ((lType->isBlockPointerType() && rType->isPointerType())
5466          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5467    if (!LHSIsNull && !RHSIsNull) {
5468      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5469             ->getPointeeType()->isVoidType())
5470            || (lType->isPointerType() && lType->getAs<PointerType>()
5471                ->getPointeeType()->isVoidType())))
5472        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5473          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5474    }
5475    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5476    return ResultTy;
5477  }
5478
5479  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5480    if (lType->isPointerType() || rType->isPointerType()) {
5481      const PointerType *LPT = lType->getAs<PointerType>();
5482      const PointerType *RPT = rType->getAs<PointerType>();
5483      bool LPtrToVoid = LPT ?
5484        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5485      bool RPtrToVoid = RPT ?
5486        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5487
5488      if (!LPtrToVoid && !RPtrToVoid &&
5489          !Context.typesAreCompatible(lType, rType)) {
5490        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5491          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5492      }
5493      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5494      return ResultTy;
5495    }
5496    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5497      if (!Context.areComparableObjCPointerTypes(lType, rType))
5498        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5499          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5500      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5501      return ResultTy;
5502    }
5503  }
5504  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5505    unsigned DiagID = 0;
5506    if (RHSIsNull) {
5507      if (isRelational)
5508        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5509    } else if (isRelational)
5510      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5511    else
5512      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5513
5514    if (DiagID) {
5515      Diag(Loc, DiagID)
5516        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5517    }
5518    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5519    return ResultTy;
5520  }
5521  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5522    unsigned DiagID = 0;
5523    if (LHSIsNull) {
5524      if (isRelational)
5525        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5526    } else if (isRelational)
5527      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5528    else
5529      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5530
5531    if (DiagID) {
5532      Diag(Loc, DiagID)
5533        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5534    }
5535    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5536    return ResultTy;
5537  }
5538  // Handle block pointers.
5539  if (!isRelational && RHSIsNull
5540      && lType->isBlockPointerType() && rType->isIntegerType()) {
5541    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5542    return ResultTy;
5543  }
5544  if (!isRelational && LHSIsNull
5545      && lType->isIntegerType() && rType->isBlockPointerType()) {
5546    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5547    return ResultTy;
5548  }
5549  return InvalidOperands(Loc, lex, rex);
5550}
5551
5552/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5553/// operates on extended vector types.  Instead of producing an IntTy result,
5554/// like a scalar comparison, a vector comparison produces a vector of integer
5555/// types.
5556QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5557                                          SourceLocation Loc,
5558                                          bool isRelational) {
5559  // Check to make sure we're operating on vectors of the same type and width,
5560  // Allowing one side to be a scalar of element type.
5561  QualType vType = CheckVectorOperands(Loc, lex, rex);
5562  if (vType.isNull())
5563    return vType;
5564
5565  QualType lType = lex->getType();
5566  QualType rType = rex->getType();
5567
5568  // For non-floating point types, check for self-comparisons of the form
5569  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5570  // often indicate logic errors in the program.
5571  if (!lType->isFloatingType()) {
5572    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5573      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5574        if (DRL->getDecl() == DRR->getDecl())
5575          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5576  }
5577
5578  // Check for comparisons of floating point operands using != and ==.
5579  if (!isRelational && lType->isFloatingType()) {
5580    assert (rType->isFloatingType());
5581    CheckFloatComparison(Loc,lex,rex);
5582  }
5583
5584  // Return the type for the comparison, which is the same as vector type for
5585  // integer vectors, or an integer type of identical size and number of
5586  // elements for floating point vectors.
5587  if (lType->isIntegerType())
5588    return lType;
5589
5590  const VectorType *VTy = lType->getAs<VectorType>();
5591  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5592  if (TypeSize == Context.getTypeSize(Context.IntTy))
5593    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5594  if (TypeSize == Context.getTypeSize(Context.LongTy))
5595    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5596
5597  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5598         "Unhandled vector element size in vector compare");
5599  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5600}
5601
5602inline QualType Sema::CheckBitwiseOperands(
5603  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5604  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5605    return CheckVectorOperands(Loc, lex, rex);
5606
5607  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5608
5609  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5610    return compType;
5611  return InvalidOperands(Loc, lex, rex);
5612}
5613
5614inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5615  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5616  if (!Context.getLangOptions().CPlusPlus) {
5617    UsualUnaryConversions(lex);
5618    UsualUnaryConversions(rex);
5619
5620    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5621      return InvalidOperands(Loc, lex, rex);
5622
5623    return Context.IntTy;
5624  }
5625
5626  // C++ [expr.log.and]p1
5627  // C++ [expr.log.or]p1
5628  // The operands are both implicitly converted to type bool (clause 4).
5629  StandardConversionSequence LHS;
5630  if (!IsStandardConversion(lex, Context.BoolTy,
5631                            /*InOverloadResolution=*/false, LHS))
5632    return InvalidOperands(Loc, lex, rex);
5633
5634  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5635                                AA_Passing, /*IgnoreBaseAccess=*/false))
5636    return InvalidOperands(Loc, lex, rex);
5637
5638  StandardConversionSequence RHS;
5639  if (!IsStandardConversion(rex, Context.BoolTy,
5640                            /*InOverloadResolution=*/false, RHS))
5641    return InvalidOperands(Loc, lex, rex);
5642
5643  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5644                                AA_Passing, /*IgnoreBaseAccess=*/false))
5645    return InvalidOperands(Loc, lex, rex);
5646
5647  // C++ [expr.log.and]p2
5648  // C++ [expr.log.or]p2
5649  // The result is a bool.
5650  return Context.BoolTy;
5651}
5652
5653/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5654/// is a read-only property; return true if so. A readonly property expression
5655/// depends on various declarations and thus must be treated specially.
5656///
5657static bool IsReadonlyProperty(Expr *E, Sema &S) {
5658  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5659    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5660    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5661      QualType BaseType = PropExpr->getBase()->getType();
5662      if (const ObjCObjectPointerType *OPT =
5663            BaseType->getAsObjCInterfacePointerType())
5664        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5665          if (S.isPropertyReadonly(PDecl, IFace))
5666            return true;
5667    }
5668  }
5669  return false;
5670}
5671
5672/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5673/// emit an error and return true.  If so, return false.
5674static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5675  SourceLocation OrigLoc = Loc;
5676  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5677                                                              &Loc);
5678  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5679    IsLV = Expr::MLV_ReadonlyProperty;
5680  if (IsLV == Expr::MLV_Valid)
5681    return false;
5682
5683  unsigned Diag = 0;
5684  bool NeedType = false;
5685  switch (IsLV) { // C99 6.5.16p2
5686  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5687  case Expr::MLV_ArrayType:
5688    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5689    NeedType = true;
5690    break;
5691  case Expr::MLV_NotObjectType:
5692    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5693    NeedType = true;
5694    break;
5695  case Expr::MLV_LValueCast:
5696    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5697    break;
5698  case Expr::MLV_Valid:
5699    llvm_unreachable("did not take early return for MLV_Valid");
5700  case Expr::MLV_InvalidExpression:
5701  case Expr::MLV_MemberFunction:
5702  case Expr::MLV_ClassTemporary:
5703    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5704    break;
5705  case Expr::MLV_IncompleteType:
5706  case Expr::MLV_IncompleteVoidType:
5707    return S.RequireCompleteType(Loc, E->getType(),
5708                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5709                  << E->getSourceRange());
5710  case Expr::MLV_DuplicateVectorComponents:
5711    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5712    break;
5713  case Expr::MLV_NotBlockQualified:
5714    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5715    break;
5716  case Expr::MLV_ReadonlyProperty:
5717    Diag = diag::error_readonly_property_assignment;
5718    break;
5719  case Expr::MLV_NoSetterProperty:
5720    Diag = diag::error_nosetter_property_assignment;
5721    break;
5722  case Expr::MLV_SubObjCPropertySetting:
5723    Diag = diag::error_no_subobject_property_setting;
5724    break;
5725  case Expr::MLV_SubObjCPropertyGetterSetting:
5726    Diag = diag::error_no_subobject_property_getter_setting;
5727    break;
5728  }
5729
5730  SourceRange Assign;
5731  if (Loc != OrigLoc)
5732    Assign = SourceRange(OrigLoc, OrigLoc);
5733  if (NeedType)
5734    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5735  else
5736    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5737  return true;
5738}
5739
5740
5741
5742// C99 6.5.16.1
5743QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5744                                       SourceLocation Loc,
5745                                       QualType CompoundType) {
5746  // Verify that LHS is a modifiable lvalue, and emit error if not.
5747  if (CheckForModifiableLvalue(LHS, Loc, *this))
5748    return QualType();
5749
5750  QualType LHSType = LHS->getType();
5751  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5752
5753  AssignConvertType ConvTy;
5754  if (CompoundType.isNull()) {
5755    // Simple assignment "x = y".
5756    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5757    // Special case of NSObject attributes on c-style pointer types.
5758    if (ConvTy == IncompatiblePointer &&
5759        ((Context.isObjCNSObjectType(LHSType) &&
5760          RHSType->isObjCObjectPointerType()) ||
5761         (Context.isObjCNSObjectType(RHSType) &&
5762          LHSType->isObjCObjectPointerType())))
5763      ConvTy = Compatible;
5764
5765    // If the RHS is a unary plus or minus, check to see if they = and + are
5766    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5767    // instead of "x += 4".
5768    Expr *RHSCheck = RHS;
5769    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5770      RHSCheck = ICE->getSubExpr();
5771    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5772      if ((UO->getOpcode() == UnaryOperator::Plus ||
5773           UO->getOpcode() == UnaryOperator::Minus) &&
5774          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5775          // Only if the two operators are exactly adjacent.
5776          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5777          // And there is a space or other character before the subexpr of the
5778          // unary +/-.  We don't want to warn on "x=-1".
5779          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5780          UO->getSubExpr()->getLocStart().isFileID()) {
5781        Diag(Loc, diag::warn_not_compound_assign)
5782          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5783          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5784      }
5785    }
5786  } else {
5787    // Compound assignment "x += y"
5788    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5789  }
5790
5791  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5792                               RHS, AA_Assigning))
5793    return QualType();
5794
5795  // C99 6.5.16p3: The type of an assignment expression is the type of the
5796  // left operand unless the left operand has qualified type, in which case
5797  // it is the unqualified version of the type of the left operand.
5798  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5799  // is converted to the type of the assignment expression (above).
5800  // C++ 5.17p1: the type of the assignment expression is that of its left
5801  // operand.
5802  return LHSType.getUnqualifiedType();
5803}
5804
5805// C99 6.5.17
5806QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5807  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5808  // C++ does not perform this conversion (C++ [expr.comma]p1).
5809  if (!getLangOptions().CPlusPlus)
5810    DefaultFunctionArrayLvalueConversion(RHS);
5811
5812  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5813  // incomplete in C++).
5814
5815  return RHS->getType();
5816}
5817
5818/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5819/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5820QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5821                                              bool isInc) {
5822  if (Op->isTypeDependent())
5823    return Context.DependentTy;
5824
5825  QualType ResType = Op->getType();
5826  assert(!ResType.isNull() && "no type for increment/decrement expression");
5827
5828  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5829    // Decrement of bool is not allowed.
5830    if (!isInc) {
5831      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5832      return QualType();
5833    }
5834    // Increment of bool sets it to true, but is deprecated.
5835    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5836  } else if (ResType->isRealType()) {
5837    // OK!
5838  } else if (ResType->isAnyPointerType()) {
5839    QualType PointeeTy = ResType->getPointeeType();
5840
5841    // C99 6.5.2.4p2, 6.5.6p2
5842    if (PointeeTy->isVoidType()) {
5843      if (getLangOptions().CPlusPlus) {
5844        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5845          << Op->getSourceRange();
5846        return QualType();
5847      }
5848
5849      // Pointer to void is a GNU extension in C.
5850      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5851    } else if (PointeeTy->isFunctionType()) {
5852      if (getLangOptions().CPlusPlus) {
5853        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5854          << Op->getType() << Op->getSourceRange();
5855        return QualType();
5856      }
5857
5858      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5859        << ResType << Op->getSourceRange();
5860    } else if (RequireCompleteType(OpLoc, PointeeTy,
5861                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5862                             << Op->getSourceRange()
5863                             << ResType))
5864      return QualType();
5865    // Diagnose bad cases where we step over interface counts.
5866    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5867      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5868        << PointeeTy << Op->getSourceRange();
5869      return QualType();
5870    }
5871  } else if (ResType->isAnyComplexType()) {
5872    // C99 does not support ++/-- on complex types, we allow as an extension.
5873    Diag(OpLoc, diag::ext_integer_increment_complex)
5874      << ResType << Op->getSourceRange();
5875  } else {
5876    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5877      << ResType << int(isInc) << Op->getSourceRange();
5878    return QualType();
5879  }
5880  // At this point, we know we have a real, complex or pointer type.
5881  // Now make sure the operand is a modifiable lvalue.
5882  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5883    return QualType();
5884  return ResType;
5885}
5886
5887/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5888/// This routine allows us to typecheck complex/recursive expressions
5889/// where the declaration is needed for type checking. We only need to
5890/// handle cases when the expression references a function designator
5891/// or is an lvalue. Here are some examples:
5892///  - &(x) => x
5893///  - &*****f => f for f a function designator.
5894///  - &s.xx => s
5895///  - &s.zz[1].yy -> s, if zz is an array
5896///  - *(x + 1) -> x, if x is an array
5897///  - &"123"[2] -> 0
5898///  - & __real__ x -> x
5899static NamedDecl *getPrimaryDecl(Expr *E) {
5900  switch (E->getStmtClass()) {
5901  case Stmt::DeclRefExprClass:
5902    return cast<DeclRefExpr>(E)->getDecl();
5903  case Stmt::MemberExprClass:
5904    // If this is an arrow operator, the address is an offset from
5905    // the base's value, so the object the base refers to is
5906    // irrelevant.
5907    if (cast<MemberExpr>(E)->isArrow())
5908      return 0;
5909    // Otherwise, the expression refers to a part of the base
5910    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5911  case Stmt::ArraySubscriptExprClass: {
5912    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5913    // promotion of register arrays earlier.
5914    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5915    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5916      if (ICE->getSubExpr()->getType()->isArrayType())
5917        return getPrimaryDecl(ICE->getSubExpr());
5918    }
5919    return 0;
5920  }
5921  case Stmt::UnaryOperatorClass: {
5922    UnaryOperator *UO = cast<UnaryOperator>(E);
5923
5924    switch(UO->getOpcode()) {
5925    case UnaryOperator::Real:
5926    case UnaryOperator::Imag:
5927    case UnaryOperator::Extension:
5928      return getPrimaryDecl(UO->getSubExpr());
5929    default:
5930      return 0;
5931    }
5932  }
5933  case Stmt::ParenExprClass:
5934    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5935  case Stmt::ImplicitCastExprClass:
5936    // If the result of an implicit cast is an l-value, we care about
5937    // the sub-expression; otherwise, the result here doesn't matter.
5938    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5939  default:
5940    return 0;
5941  }
5942}
5943
5944/// CheckAddressOfOperand - The operand of & must be either a function
5945/// designator or an lvalue designating an object. If it is an lvalue, the
5946/// object cannot be declared with storage class register or be a bit field.
5947/// Note: The usual conversions are *not* applied to the operand of the &
5948/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5949/// In C++, the operand might be an overloaded function name, in which case
5950/// we allow the '&' but retain the overloaded-function type.
5951QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5952  // Make sure to ignore parentheses in subsequent checks
5953  op = op->IgnoreParens();
5954
5955  if (op->isTypeDependent())
5956    return Context.DependentTy;
5957
5958  if (getLangOptions().C99) {
5959    // Implement C99-only parts of addressof rules.
5960    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5961      if (uOp->getOpcode() == UnaryOperator::Deref)
5962        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5963        // (assuming the deref expression is valid).
5964        return uOp->getSubExpr()->getType();
5965    }
5966    // Technically, there should be a check for array subscript
5967    // expressions here, but the result of one is always an lvalue anyway.
5968  }
5969  NamedDecl *dcl = getPrimaryDecl(op);
5970  Expr::isLvalueResult lval = op->isLvalue(Context);
5971
5972  MemberExpr *ME = dyn_cast<MemberExpr>(op);
5973  if (lval == Expr::LV_MemberFunction && ME &&
5974      isa<CXXMethodDecl>(ME->getMemberDecl())) {
5975    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
5976    // &f where f is a member of the current object, or &o.f, or &p->f
5977    // All these are not allowed, and we need to catch them before the dcl
5978    // branch of the if, below.
5979    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
5980        << dcl;
5981    // FIXME: Improve this diagnostic and provide a fixit.
5982
5983    // Now recover by acting as if the function had been accessed qualified.
5984    return Context.getMemberPointerType(op->getType(),
5985                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
5986                       .getTypePtr());
5987  } else if (lval == Expr::LV_ClassTemporary) {
5988    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
5989                                 : diag::ext_typecheck_addrof_class_temporary)
5990      << op->getType() << op->getSourceRange();
5991    if (isSFINAEContext())
5992      return QualType();
5993  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5994    // C99 6.5.3.2p1
5995    // The operand must be either an l-value or a function designator
5996    if (!op->getType()->isFunctionType()) {
5997      // FIXME: emit more specific diag...
5998      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5999        << op->getSourceRange();
6000      return QualType();
6001    }
6002  } else if (op->getBitField()) { // C99 6.5.3.2p1
6003    // The operand cannot be a bit-field
6004    Diag(OpLoc, diag::err_typecheck_address_of)
6005      << "bit-field" << op->getSourceRange();
6006        return QualType();
6007  } else if (op->refersToVectorElement()) {
6008    // The operand cannot be an element of a vector
6009    Diag(OpLoc, diag::err_typecheck_address_of)
6010      << "vector element" << op->getSourceRange();
6011    return QualType();
6012  } else if (isa<ObjCPropertyRefExpr>(op)) {
6013    // cannot take address of a property expression.
6014    Diag(OpLoc, diag::err_typecheck_address_of)
6015      << "property expression" << op->getSourceRange();
6016    return QualType();
6017  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6018    // FIXME: Can LHS ever be null here?
6019    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6020      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6021  } else if (isa<UnresolvedLookupExpr>(op)) {
6022    return Context.OverloadTy;
6023  } else if (dcl) { // C99 6.5.3.2p1
6024    // We have an lvalue with a decl. Make sure the decl is not declared
6025    // with the register storage-class specifier.
6026    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6027      if (vd->getStorageClass() == VarDecl::Register) {
6028        Diag(OpLoc, diag::err_typecheck_address_of)
6029          << "register variable" << op->getSourceRange();
6030        return QualType();
6031      }
6032    } else if (isa<FunctionTemplateDecl>(dcl)) {
6033      return Context.OverloadTy;
6034    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6035      // Okay: we can take the address of a field.
6036      // Could be a pointer to member, though, if there is an explicit
6037      // scope qualifier for the class.
6038      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6039        DeclContext *Ctx = dcl->getDeclContext();
6040        if (Ctx && Ctx->isRecord()) {
6041          if (FD->getType()->isReferenceType()) {
6042            Diag(OpLoc,
6043                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6044              << FD->getDeclName() << FD->getType();
6045            return QualType();
6046          }
6047
6048          return Context.getMemberPointerType(op->getType(),
6049                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6050        }
6051      }
6052    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6053      // Okay: we can take the address of a function.
6054      // As above.
6055      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6056          MD->isInstance())
6057        return Context.getMemberPointerType(op->getType(),
6058              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6059    } else if (!isa<FunctionDecl>(dcl))
6060      assert(0 && "Unknown/unexpected decl type");
6061  }
6062
6063  if (lval == Expr::LV_IncompleteVoidType) {
6064    // Taking the address of a void variable is technically illegal, but we
6065    // allow it in cases which are otherwise valid.
6066    // Example: "extern void x; void* y = &x;".
6067    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6068  }
6069
6070  // If the operand has type "type", the result has type "pointer to type".
6071  return Context.getPointerType(op->getType());
6072}
6073
6074QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6075  if (Op->isTypeDependent())
6076    return Context.DependentTy;
6077
6078  UsualUnaryConversions(Op);
6079  QualType Ty = Op->getType();
6080
6081  // Note that per both C89 and C99, this is always legal, even if ptype is an
6082  // incomplete type or void.  It would be possible to warn about dereferencing
6083  // a void pointer, but it's completely well-defined, and such a warning is
6084  // unlikely to catch any mistakes.
6085  if (const PointerType *PT = Ty->getAs<PointerType>())
6086    return PT->getPointeeType();
6087
6088  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6089    return OPT->getPointeeType();
6090
6091  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6092    << Ty << Op->getSourceRange();
6093  return QualType();
6094}
6095
6096static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6097  tok::TokenKind Kind) {
6098  BinaryOperator::Opcode Opc;
6099  switch (Kind) {
6100  default: assert(0 && "Unknown binop!");
6101  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6102  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6103  case tok::star:                 Opc = BinaryOperator::Mul; break;
6104  case tok::slash:                Opc = BinaryOperator::Div; break;
6105  case tok::percent:              Opc = BinaryOperator::Rem; break;
6106  case tok::plus:                 Opc = BinaryOperator::Add; break;
6107  case tok::minus:                Opc = BinaryOperator::Sub; break;
6108  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6109  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6110  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6111  case tok::less:                 Opc = BinaryOperator::LT; break;
6112  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6113  case tok::greater:              Opc = BinaryOperator::GT; break;
6114  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6115  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6116  case tok::amp:                  Opc = BinaryOperator::And; break;
6117  case tok::caret:                Opc = BinaryOperator::Xor; break;
6118  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6119  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6120  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6121  case tok::equal:                Opc = BinaryOperator::Assign; break;
6122  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6123  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6124  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6125  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6126  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6127  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6128  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6129  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6130  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6131  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6132  case tok::comma:                Opc = BinaryOperator::Comma; break;
6133  }
6134  return Opc;
6135}
6136
6137static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6138  tok::TokenKind Kind) {
6139  UnaryOperator::Opcode Opc;
6140  switch (Kind) {
6141  default: assert(0 && "Unknown unary op!");
6142  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6143  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6144  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6145  case tok::star:         Opc = UnaryOperator::Deref; break;
6146  case tok::plus:         Opc = UnaryOperator::Plus; break;
6147  case tok::minus:        Opc = UnaryOperator::Minus; break;
6148  case tok::tilde:        Opc = UnaryOperator::Not; break;
6149  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6150  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6151  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6152  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6153  }
6154  return Opc;
6155}
6156
6157/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6158/// operator @p Opc at location @c TokLoc. This routine only supports
6159/// built-in operations; ActOnBinOp handles overloaded operators.
6160Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6161                                                  unsigned Op,
6162                                                  Expr *lhs, Expr *rhs) {
6163  QualType ResultTy;     // Result type of the binary operator.
6164  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6165  // The following two variables are used for compound assignment operators
6166  QualType CompLHSTy;    // Type of LHS after promotions for computation
6167  QualType CompResultTy; // Type of computation result
6168
6169  switch (Opc) {
6170  case BinaryOperator::Assign:
6171    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6172    break;
6173  case BinaryOperator::PtrMemD:
6174  case BinaryOperator::PtrMemI:
6175    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6176                                            Opc == BinaryOperator::PtrMemI);
6177    break;
6178  case BinaryOperator::Mul:
6179  case BinaryOperator::Div:
6180    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6181                                           Opc == BinaryOperator::Div);
6182    break;
6183  case BinaryOperator::Rem:
6184    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6185    break;
6186  case BinaryOperator::Add:
6187    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6188    break;
6189  case BinaryOperator::Sub:
6190    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6191    break;
6192  case BinaryOperator::Shl:
6193  case BinaryOperator::Shr:
6194    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6195    break;
6196  case BinaryOperator::LE:
6197  case BinaryOperator::LT:
6198  case BinaryOperator::GE:
6199  case BinaryOperator::GT:
6200    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6201    break;
6202  case BinaryOperator::EQ:
6203  case BinaryOperator::NE:
6204    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6205    break;
6206  case BinaryOperator::And:
6207  case BinaryOperator::Xor:
6208  case BinaryOperator::Or:
6209    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6210    break;
6211  case BinaryOperator::LAnd:
6212  case BinaryOperator::LOr:
6213    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6214    break;
6215  case BinaryOperator::MulAssign:
6216  case BinaryOperator::DivAssign:
6217    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6218                                              Opc == BinaryOperator::DivAssign);
6219    CompLHSTy = CompResultTy;
6220    if (!CompResultTy.isNull())
6221      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6222    break;
6223  case BinaryOperator::RemAssign:
6224    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6225    CompLHSTy = CompResultTy;
6226    if (!CompResultTy.isNull())
6227      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6228    break;
6229  case BinaryOperator::AddAssign:
6230    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6231    if (!CompResultTy.isNull())
6232      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6233    break;
6234  case BinaryOperator::SubAssign:
6235    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6236    if (!CompResultTy.isNull())
6237      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6238    break;
6239  case BinaryOperator::ShlAssign:
6240  case BinaryOperator::ShrAssign:
6241    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6242    CompLHSTy = CompResultTy;
6243    if (!CompResultTy.isNull())
6244      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6245    break;
6246  case BinaryOperator::AndAssign:
6247  case BinaryOperator::XorAssign:
6248  case BinaryOperator::OrAssign:
6249    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6250    CompLHSTy = CompResultTy;
6251    if (!CompResultTy.isNull())
6252      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6253    break;
6254  case BinaryOperator::Comma:
6255    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6256    break;
6257  }
6258  if (ResultTy.isNull())
6259    return ExprError();
6260  if (CompResultTy.isNull())
6261    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6262  else
6263    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6264                                                      CompLHSTy, CompResultTy,
6265                                                      OpLoc));
6266}
6267
6268/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6269/// ParenRange in parentheses.
6270static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6271                               const PartialDiagnostic &PD,
6272                               SourceRange ParenRange,
6273                      const PartialDiagnostic &SecondPD = PartialDiagnostic(0),
6274                               SourceRange SecondParenRange = SourceRange()) {
6275  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6276  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6277    // We can't display the parentheses, so just dig the
6278    // warning/error and return.
6279    Self.Diag(Loc, PD);
6280    return;
6281  }
6282
6283  Self.Diag(Loc, PD)
6284    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
6285    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6286
6287  if (!SecondPD.getDiagID())
6288    return;
6289
6290  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6291  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6292    // We can't display the parentheses, so just dig the
6293    // warning/error and return.
6294    Self.Diag(Loc, SecondPD);
6295    return;
6296  }
6297
6298  Self.Diag(Loc, SecondPD)
6299    << CodeModificationHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6300    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6301}
6302
6303/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6304/// operators are mixed in a way that suggests that the programmer forgot that
6305/// comparison operators have higher precedence. The most typical example of
6306/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6307static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6308                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6309  typedef BinaryOperator BinOp;
6310  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6311                rhsopc = static_cast<BinOp::Opcode>(-1);
6312  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6313    lhsopc = BO->getOpcode();
6314  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6315    rhsopc = BO->getOpcode();
6316
6317  // Subs are not binary operators.
6318  if (lhsopc == -1 && rhsopc == -1)
6319    return;
6320
6321  // Bitwise operations are sometimes used as eager logical ops.
6322  // Don't diagnose this.
6323  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6324      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6325    return;
6326
6327  if (BinOp::isComparisonOp(lhsopc))
6328    SuggestParentheses(Self, OpLoc,
6329      PDiag(diag::warn_precedence_bitwise_rel)
6330          << SourceRange(lhs->getLocStart(), OpLoc)
6331          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6332      lhs->getSourceRange(),
6333      PDiag(diag::note_precedence_bitwise_first)
6334          << BinOp::getOpcodeStr(Opc),
6335      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
6336  else if (BinOp::isComparisonOp(rhsopc))
6337    SuggestParentheses(Self, OpLoc,
6338      PDiag(diag::warn_precedence_bitwise_rel)
6339          << SourceRange(OpLoc, rhs->getLocEnd())
6340          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6341      rhs->getSourceRange(),
6342      PDiag(diag::note_precedence_bitwise_first)
6343        << BinOp::getOpcodeStr(Opc),
6344      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
6345}
6346
6347/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6348/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6349/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6350static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6351                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6352  if (BinaryOperator::isBitwiseOp(Opc))
6353    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6354}
6355
6356// Binary Operators.  'Tok' is the token for the operator.
6357Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6358                                          tok::TokenKind Kind,
6359                                          ExprArg LHS, ExprArg RHS) {
6360  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6361  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6362
6363  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6364  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6365
6366  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6367  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6368
6369  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6370}
6371
6372Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6373                                          BinaryOperator::Opcode Opc,
6374                                          Expr *lhs, Expr *rhs) {
6375  if (getLangOptions().CPlusPlus &&
6376      (lhs->getType()->isOverloadableType() ||
6377       rhs->getType()->isOverloadableType())) {
6378    // Find all of the overloaded operators visible from this
6379    // point. We perform both an operator-name lookup from the local
6380    // scope and an argument-dependent lookup based on the types of
6381    // the arguments.
6382    UnresolvedSet<16> Functions;
6383    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6384    if (S && OverOp != OO_None)
6385      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6386                                   Functions);
6387
6388    // Build the (potentially-overloaded, potentially-dependent)
6389    // binary operation.
6390    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6391  }
6392
6393  // Build a built-in binary operation.
6394  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6395}
6396
6397Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6398                                                    unsigned OpcIn,
6399                                                    ExprArg InputArg) {
6400  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6401
6402  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6403  Expr *Input = (Expr *)InputArg.get();
6404  QualType resultType;
6405  switch (Opc) {
6406  case UnaryOperator::OffsetOf:
6407    assert(false && "Invalid unary operator");
6408    break;
6409
6410  case UnaryOperator::PreInc:
6411  case UnaryOperator::PreDec:
6412  case UnaryOperator::PostInc:
6413  case UnaryOperator::PostDec:
6414    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6415                                                Opc == UnaryOperator::PreInc ||
6416                                                Opc == UnaryOperator::PostInc);
6417    break;
6418  case UnaryOperator::AddrOf:
6419    resultType = CheckAddressOfOperand(Input, OpLoc);
6420    break;
6421  case UnaryOperator::Deref:
6422    DefaultFunctionArrayLvalueConversion(Input);
6423    resultType = CheckIndirectionOperand(Input, OpLoc);
6424    break;
6425  case UnaryOperator::Plus:
6426  case UnaryOperator::Minus:
6427    UsualUnaryConversions(Input);
6428    resultType = Input->getType();
6429    if (resultType->isDependentType())
6430      break;
6431    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6432      break;
6433    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6434             resultType->isEnumeralType())
6435      break;
6436    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6437             Opc == UnaryOperator::Plus &&
6438             resultType->isPointerType())
6439      break;
6440
6441    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6442      << resultType << Input->getSourceRange());
6443  case UnaryOperator::Not: // bitwise complement
6444    UsualUnaryConversions(Input);
6445    resultType = Input->getType();
6446    if (resultType->isDependentType())
6447      break;
6448    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6449    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6450      // C99 does not support '~' for complex conjugation.
6451      Diag(OpLoc, diag::ext_integer_complement_complex)
6452        << resultType << Input->getSourceRange();
6453    else if (!resultType->isIntegerType())
6454      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6455        << resultType << Input->getSourceRange());
6456    break;
6457  case UnaryOperator::LNot: // logical negation
6458    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6459    DefaultFunctionArrayLvalueConversion(Input);
6460    resultType = Input->getType();
6461    if (resultType->isDependentType())
6462      break;
6463    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6464      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6465        << resultType << Input->getSourceRange());
6466    // LNot always has type int. C99 6.5.3.3p5.
6467    // In C++, it's bool. C++ 5.3.1p8
6468    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6469    break;
6470  case UnaryOperator::Real:
6471  case UnaryOperator::Imag:
6472    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6473    break;
6474  case UnaryOperator::Extension:
6475    resultType = Input->getType();
6476    break;
6477  }
6478  if (resultType.isNull())
6479    return ExprError();
6480
6481  InputArg.release();
6482  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6483}
6484
6485Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6486                                            UnaryOperator::Opcode Opc,
6487                                            ExprArg input) {
6488  Expr *Input = (Expr*)input.get();
6489  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6490      Opc != UnaryOperator::Extension) {
6491    // Find all of the overloaded operators visible from this
6492    // point. We perform both an operator-name lookup from the local
6493    // scope and an argument-dependent lookup based on the types of
6494    // the arguments.
6495    UnresolvedSet<16> Functions;
6496    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6497    if (S && OverOp != OO_None)
6498      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6499                                   Functions);
6500
6501    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6502  }
6503
6504  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6505}
6506
6507// Unary Operators.  'Tok' is the token for the operator.
6508Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6509                                            tok::TokenKind Op, ExprArg input) {
6510  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6511}
6512
6513/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6514Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6515                                            SourceLocation LabLoc,
6516                                            IdentifierInfo *LabelII) {
6517  // Look up the record for this label identifier.
6518  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6519
6520  // If we haven't seen this label yet, create a forward reference. It
6521  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6522  if (LabelDecl == 0)
6523    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6524
6525  // Create the AST node.  The address of a label always has type 'void*'.
6526  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6527                                       Context.getPointerType(Context.VoidTy)));
6528}
6529
6530Sema::OwningExprResult
6531Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6532                    SourceLocation RPLoc) { // "({..})"
6533  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6534  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6535  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6536
6537  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
6538  if (isFileScope)
6539    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6540
6541  // FIXME: there are a variety of strange constraints to enforce here, for
6542  // example, it is not possible to goto into a stmt expression apparently.
6543  // More semantic analysis is needed.
6544
6545  // If there are sub stmts in the compound stmt, take the type of the last one
6546  // as the type of the stmtexpr.
6547  QualType Ty = Context.VoidTy;
6548
6549  if (!Compound->body_empty()) {
6550    Stmt *LastStmt = Compound->body_back();
6551    // If LastStmt is a label, skip down through into the body.
6552    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6553      LastStmt = Label->getSubStmt();
6554
6555    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6556      Ty = LastExpr->getType();
6557  }
6558
6559  // FIXME: Check that expression type is complete/non-abstract; statement
6560  // expressions are not lvalues.
6561
6562  substmt.release();
6563  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6564}
6565
6566Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6567                                                  SourceLocation BuiltinLoc,
6568                                                  SourceLocation TypeLoc,
6569                                                  TypeTy *argty,
6570                                                  OffsetOfComponent *CompPtr,
6571                                                  unsigned NumComponents,
6572                                                  SourceLocation RPLoc) {
6573  // FIXME: This function leaks all expressions in the offset components on
6574  // error.
6575  // FIXME: Preserve type source info.
6576  QualType ArgTy = GetTypeFromParser(argty);
6577  assert(!ArgTy.isNull() && "Missing type argument!");
6578
6579  bool Dependent = ArgTy->isDependentType();
6580
6581  // We must have at least one component that refers to the type, and the first
6582  // one is known to be a field designator.  Verify that the ArgTy represents
6583  // a struct/union/class.
6584  if (!Dependent && !ArgTy->isRecordType())
6585    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6586
6587  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6588  // with an incomplete type would be illegal.
6589
6590  // Otherwise, create a null pointer as the base, and iteratively process
6591  // the offsetof designators.
6592  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6593  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6594  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6595                                    ArgTy, SourceLocation());
6596
6597  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6598  // GCC extension, diagnose them.
6599  // FIXME: This diagnostic isn't actually visible because the location is in
6600  // a system header!
6601  if (NumComponents != 1)
6602    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6603      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6604
6605  if (!Dependent) {
6606    bool DidWarnAboutNonPOD = false;
6607
6608    if (RequireCompleteType(TypeLoc, Res->getType(),
6609                            diag::err_offsetof_incomplete_type))
6610      return ExprError();
6611
6612    // FIXME: Dependent case loses a lot of information here. And probably
6613    // leaks like a sieve.
6614    for (unsigned i = 0; i != NumComponents; ++i) {
6615      const OffsetOfComponent &OC = CompPtr[i];
6616      if (OC.isBrackets) {
6617        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6618        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6619        if (!AT) {
6620          Res->Destroy(Context);
6621          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6622            << Res->getType());
6623        }
6624
6625        // FIXME: C++: Verify that operator[] isn't overloaded.
6626
6627        // Promote the array so it looks more like a normal array subscript
6628        // expression.
6629        DefaultFunctionArrayLvalueConversion(Res);
6630
6631        // C99 6.5.2.1p1
6632        Expr *Idx = static_cast<Expr*>(OC.U.E);
6633        // FIXME: Leaks Res
6634        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6635          return ExprError(Diag(Idx->getLocStart(),
6636                                diag::err_typecheck_subscript_not_integer)
6637            << Idx->getSourceRange());
6638
6639        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6640                                               OC.LocEnd);
6641        continue;
6642      }
6643
6644      const RecordType *RC = Res->getType()->getAs<RecordType>();
6645      if (!RC) {
6646        Res->Destroy(Context);
6647        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6648          << Res->getType());
6649      }
6650
6651      // Get the decl corresponding to this.
6652      RecordDecl *RD = RC->getDecl();
6653      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6654        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6655            DiagRuntimeBehavior(BuiltinLoc,
6656                                PDiag(diag::warn_offsetof_non_pod_type)
6657                                  << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6658                                  << Res->getType()))
6659          DidWarnAboutNonPOD = true;
6660      }
6661
6662      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6663      LookupQualifiedName(R, RD);
6664
6665      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6666      // FIXME: Leaks Res
6667      if (!MemberDecl)
6668        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6669         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6670
6671      // FIXME: C++: Verify that MemberDecl isn't a static field.
6672      // FIXME: Verify that MemberDecl isn't a bitfield.
6673      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6674        Res = BuildAnonymousStructUnionMemberReference(
6675            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6676      } else {
6677        PerformObjectMemberConversion(Res, MemberDecl);
6678        // MemberDecl->getType() doesn't get the right qualifiers, but it
6679        // doesn't matter here.
6680        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6681                MemberDecl->getType().getNonReferenceType());
6682      }
6683    }
6684  }
6685
6686  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6687                                           Context.getSizeType(), BuiltinLoc));
6688}
6689
6690
6691Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6692                                                      TypeTy *arg1,TypeTy *arg2,
6693                                                      SourceLocation RPLoc) {
6694  // FIXME: Preserve type source info.
6695  QualType argT1 = GetTypeFromParser(arg1);
6696  QualType argT2 = GetTypeFromParser(arg2);
6697
6698  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6699
6700  if (getLangOptions().CPlusPlus) {
6701    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6702      << SourceRange(BuiltinLoc, RPLoc);
6703    return ExprError();
6704  }
6705
6706  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6707                                                 argT1, argT2, RPLoc));
6708}
6709
6710Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6711                                             ExprArg cond,
6712                                             ExprArg expr1, ExprArg expr2,
6713                                             SourceLocation RPLoc) {
6714  Expr *CondExpr = static_cast<Expr*>(cond.get());
6715  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6716  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6717
6718  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6719
6720  QualType resType;
6721  bool ValueDependent = false;
6722  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6723    resType = Context.DependentTy;
6724    ValueDependent = true;
6725  } else {
6726    // The conditional expression is required to be a constant expression.
6727    llvm::APSInt condEval(32);
6728    SourceLocation ExpLoc;
6729    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6730      return ExprError(Diag(ExpLoc,
6731                       diag::err_typecheck_choose_expr_requires_constant)
6732        << CondExpr->getSourceRange());
6733
6734    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6735    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6736    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6737                                             : RHSExpr->isValueDependent();
6738  }
6739
6740  cond.release(); expr1.release(); expr2.release();
6741  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6742                                        resType, RPLoc,
6743                                        resType->isDependentType(),
6744                                        ValueDependent));
6745}
6746
6747//===----------------------------------------------------------------------===//
6748// Clang Extensions.
6749//===----------------------------------------------------------------------===//
6750
6751/// ActOnBlockStart - This callback is invoked when a block literal is started.
6752void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6753  // Analyze block parameters.
6754  BlockSemaInfo *BSI = new BlockSemaInfo();
6755
6756  // Add BSI to CurBlock.
6757  BSI->PrevBlockInfo = CurBlock;
6758  CurBlock = BSI;
6759
6760  BSI->ReturnType = QualType();
6761  BSI->TheScope = BlockScope;
6762  BSI->hasBlockDeclRefExprs = false;
6763  BSI->hasPrototype = false;
6764  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
6765  CurFunctionNeedsScopeChecking = false;
6766
6767  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
6768  CurContext->addDecl(BSI->TheDecl);
6769  PushDeclContext(BlockScope, BSI->TheDecl);
6770}
6771
6772void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6773  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6774
6775  if (ParamInfo.getNumTypeObjects() == 0
6776      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6777    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6778    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6779
6780    if (T->isArrayType()) {
6781      Diag(ParamInfo.getSourceRange().getBegin(),
6782           diag::err_block_returns_array);
6783      return;
6784    }
6785
6786    // The parameter list is optional, if there was none, assume ().
6787    if (!T->isFunctionType())
6788      T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0, false,
6789                                  CC_Default);
6790
6791    CurBlock->hasPrototype = true;
6792    CurBlock->isVariadic = false;
6793    // Check for a valid sentinel attribute on this block.
6794    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6795      Diag(ParamInfo.getAttributes()->getLoc(),
6796           diag::warn_attribute_sentinel_not_variadic) << 1;
6797      // FIXME: remove the attribute.
6798    }
6799    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6800
6801    // Do not allow returning a objc interface by-value.
6802    if (RetTy->isObjCInterfaceType()) {
6803      Diag(ParamInfo.getSourceRange().getBegin(),
6804           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6805      return;
6806    }
6807
6808    CurBlock->ReturnType = RetTy;
6809    return;
6810  }
6811
6812  // Analyze arguments to block.
6813  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6814         "Not a function declarator!");
6815  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6816
6817  CurBlock->hasPrototype = FTI.hasPrototype;
6818  CurBlock->isVariadic = true;
6819
6820  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6821  // no arguments, not a function that takes a single void argument.
6822  if (FTI.hasPrototype &&
6823      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6824     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6825        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6826    // empty arg list, don't push any params.
6827    CurBlock->isVariadic = false;
6828  } else if (FTI.hasPrototype) {
6829    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6830      ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
6831      if (Param->getIdentifier() == 0 &&
6832          !Param->isImplicit() &&
6833          !Param->isInvalidDecl() &&
6834          !getLangOptions().CPlusPlus)
6835        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6836      CurBlock->Params.push_back(Param);
6837    }
6838    CurBlock->isVariadic = FTI.isVariadic;
6839  }
6840  CurBlock->TheDecl->setParams(CurBlock->Params.data(),
6841                               CurBlock->Params.size());
6842  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6843  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6844  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6845         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
6846    (*AI)->setOwningFunction(CurBlock->TheDecl);
6847
6848    // If this has an identifier, add it to the scope stack.
6849    if ((*AI)->getIdentifier())
6850      PushOnScopeChains(*AI, CurBlock->TheScope);
6851  }
6852
6853  // Check for a valid sentinel attribute on this block.
6854  if (!CurBlock->isVariadic &&
6855      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6856    Diag(ParamInfo.getAttributes()->getLoc(),
6857         diag::warn_attribute_sentinel_not_variadic) << 1;
6858    // FIXME: remove the attribute.
6859  }
6860
6861  // Analyze the return type.
6862  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6863  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6864
6865  // Do not allow returning a objc interface by-value.
6866  if (RetTy->isObjCInterfaceType()) {
6867    Diag(ParamInfo.getSourceRange().getBegin(),
6868         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6869  } else if (!RetTy->isDependentType())
6870    CurBlock->ReturnType = RetTy;
6871}
6872
6873/// ActOnBlockError - If there is an error parsing a block, this callback
6874/// is invoked to pop the information about the block from the action impl.
6875void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6876  // Ensure that CurBlock is deleted.
6877  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
6878
6879  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
6880
6881  // Pop off CurBlock, handle nested blocks.
6882  PopDeclContext();
6883  CurBlock = CurBlock->PrevBlockInfo;
6884  // FIXME: Delete the ParmVarDecl objects as well???
6885}
6886
6887/// ActOnBlockStmtExpr - This is called when the body of a block statement
6888/// literal was successfully completed.  ^(int x){...}
6889Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6890                                                StmtArg body, Scope *CurScope) {
6891  // If blocks are disabled, emit an error.
6892  if (!LangOpts.Blocks)
6893    Diag(CaretLoc, diag::err_blocks_disable);
6894
6895  // Ensure that CurBlock is deleted.
6896  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6897
6898  PopDeclContext();
6899
6900  // Pop off CurBlock, handle nested blocks.
6901  CurBlock = CurBlock->PrevBlockInfo;
6902
6903  QualType RetTy = Context.VoidTy;
6904  if (!BSI->ReturnType.isNull())
6905    RetTy = BSI->ReturnType;
6906
6907  llvm::SmallVector<QualType, 8> ArgTypes;
6908  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6909    ArgTypes.push_back(BSI->Params[i]->getType());
6910
6911  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6912  QualType BlockTy;
6913  if (!BSI->hasPrototype)
6914    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6915                                      NoReturn, CC_Default);
6916  else
6917    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6918                                      BSI->isVariadic, 0, false, false, 0, 0,
6919                                      NoReturn, CC_Default);
6920
6921  // FIXME: Check that return/parameter types are complete/non-abstract
6922  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6923  BlockTy = Context.getBlockPointerType(BlockTy);
6924
6925  // If needed, diagnose invalid gotos and switches in the block.
6926  if (CurFunctionNeedsScopeChecking)
6927    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6928  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6929
6930  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6931
6932  bool Good = true;
6933  // Check goto/label use.
6934  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
6935         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
6936    LabelStmt *L = I->second;
6937
6938    // Verify that we have no forward references left.  If so, there was a goto
6939    // or address of a label taken, but no definition of it.
6940    if (L->getSubStmt() != 0)
6941      continue;
6942
6943    // Emit error.
6944    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
6945    Good = false;
6946  }
6947  BSI->LabelMap.clear();
6948  if (!Good)
6949    return ExprError();
6950
6951  AnalysisContext AC(BSI->TheDecl);
6952  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody(), AC);
6953  CheckUnreachable(AC);
6954  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6955                                       BSI->hasBlockDeclRefExprs));
6956}
6957
6958Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6959                                        ExprArg expr, TypeTy *type,
6960                                        SourceLocation RPLoc) {
6961  QualType T = GetTypeFromParser(type);
6962  Expr *E = static_cast<Expr*>(expr.get());
6963  Expr *OrigExpr = E;
6964
6965  InitBuiltinVaListType();
6966
6967  // Get the va_list type
6968  QualType VaListType = Context.getBuiltinVaListType();
6969  if (VaListType->isArrayType()) {
6970    // Deal with implicit array decay; for example, on x86-64,
6971    // va_list is an array, but it's supposed to decay to
6972    // a pointer for va_arg.
6973    VaListType = Context.getArrayDecayedType(VaListType);
6974    // Make sure the input expression also decays appropriately.
6975    UsualUnaryConversions(E);
6976  } else {
6977    // Otherwise, the va_list argument must be an l-value because
6978    // it is modified by va_arg.
6979    if (!E->isTypeDependent() &&
6980        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6981      return ExprError();
6982  }
6983
6984  if (!E->isTypeDependent() &&
6985      !Context.hasSameType(VaListType, E->getType())) {
6986    return ExprError(Diag(E->getLocStart(),
6987                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6988      << OrigExpr->getType() << E->getSourceRange());
6989  }
6990
6991  // FIXME: Check that type is complete/non-abstract
6992  // FIXME: Warn if a non-POD type is passed in.
6993
6994  expr.release();
6995  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6996                                       RPLoc));
6997}
6998
6999Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7000  // The type of __null will be int or long, depending on the size of
7001  // pointers on the target.
7002  QualType Ty;
7003  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7004    Ty = Context.IntTy;
7005  else
7006    Ty = Context.LongTy;
7007
7008  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7009}
7010
7011static void
7012MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
7013                                          QualType DstType,
7014                                          Expr *SrcExpr,
7015                                          CodeModificationHint &Hint) {
7016  if (!SemaRef.getLangOptions().ObjC1)
7017    return;
7018
7019  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7020  if (!PT)
7021    return;
7022
7023  // Check if the destination is of type 'id'.
7024  if (!PT->isObjCIdType()) {
7025    // Check if the destination is the 'NSString' interface.
7026    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7027    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7028      return;
7029  }
7030
7031  // Strip off any parens and casts.
7032  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7033  if (!SL || SL->isWide())
7034    return;
7035
7036  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
7037}
7038
7039bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7040                                    SourceLocation Loc,
7041                                    QualType DstType, QualType SrcType,
7042                                    Expr *SrcExpr, AssignmentAction Action) {
7043  // Decode the result (notice that AST's are still created for extensions).
7044  bool isInvalid = false;
7045  unsigned DiagKind;
7046  CodeModificationHint Hint;
7047
7048  switch (ConvTy) {
7049  default: assert(0 && "Unknown conversion type");
7050  case Compatible: return false;
7051  case PointerToInt:
7052    DiagKind = diag::ext_typecheck_convert_pointer_int;
7053    break;
7054  case IntToPointer:
7055    DiagKind = diag::ext_typecheck_convert_int_pointer;
7056    break;
7057  case IncompatiblePointer:
7058    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
7059    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7060    break;
7061  case IncompatiblePointerSign:
7062    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7063    break;
7064  case FunctionVoidPointer:
7065    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7066    break;
7067  case CompatiblePointerDiscardsQualifiers:
7068    // If the qualifiers lost were because we were applying the
7069    // (deprecated) C++ conversion from a string literal to a char*
7070    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7071    // Ideally, this check would be performed in
7072    // CheckPointerTypesForAssignment. However, that would require a
7073    // bit of refactoring (so that the second argument is an
7074    // expression, rather than a type), which should be done as part
7075    // of a larger effort to fix CheckPointerTypesForAssignment for
7076    // C++ semantics.
7077    if (getLangOptions().CPlusPlus &&
7078        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7079      return false;
7080    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7081    break;
7082  case IncompatibleNestedPointerQualifiers:
7083    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7084    break;
7085  case IntToBlockPointer:
7086    DiagKind = diag::err_int_to_block_pointer;
7087    break;
7088  case IncompatibleBlockPointer:
7089    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7090    break;
7091  case IncompatibleObjCQualifiedId:
7092    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7093    // it can give a more specific diagnostic.
7094    DiagKind = diag::warn_incompatible_qualified_id;
7095    break;
7096  case IncompatibleVectors:
7097    DiagKind = diag::warn_incompatible_vectors;
7098    break;
7099  case Incompatible:
7100    DiagKind = diag::err_typecheck_convert_incompatible;
7101    isInvalid = true;
7102    break;
7103  }
7104
7105  Diag(Loc, DiagKind) << DstType << SrcType << Action
7106    << SrcExpr->getSourceRange() << Hint;
7107  return isInvalid;
7108}
7109
7110bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7111  llvm::APSInt ICEResult;
7112  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7113    if (Result)
7114      *Result = ICEResult;
7115    return false;
7116  }
7117
7118  Expr::EvalResult EvalResult;
7119
7120  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7121      EvalResult.HasSideEffects) {
7122    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7123
7124    if (EvalResult.Diag) {
7125      // We only show the note if it's not the usual "invalid subexpression"
7126      // or if it's actually in a subexpression.
7127      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7128          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7129        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7130    }
7131
7132    return true;
7133  }
7134
7135  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7136    E->getSourceRange();
7137
7138  if (EvalResult.Diag &&
7139      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7140    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7141
7142  if (Result)
7143    *Result = EvalResult.Val.getInt();
7144  return false;
7145}
7146
7147void
7148Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7149  ExprEvalContexts.push_back(
7150        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7151}
7152
7153void
7154Sema::PopExpressionEvaluationContext() {
7155  // Pop the current expression evaluation context off the stack.
7156  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7157  ExprEvalContexts.pop_back();
7158
7159  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7160    if (Rec.PotentiallyReferenced) {
7161      // Mark any remaining declarations in the current position of the stack
7162      // as "referenced". If they were not meant to be referenced, semantic
7163      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7164      for (PotentiallyReferencedDecls::iterator
7165             I = Rec.PotentiallyReferenced->begin(),
7166             IEnd = Rec.PotentiallyReferenced->end();
7167           I != IEnd; ++I)
7168        MarkDeclarationReferenced(I->first, I->second);
7169    }
7170
7171    if (Rec.PotentiallyDiagnosed) {
7172      // Emit any pending diagnostics.
7173      for (PotentiallyEmittedDiagnostics::iterator
7174                I = Rec.PotentiallyDiagnosed->begin(),
7175             IEnd = Rec.PotentiallyDiagnosed->end();
7176           I != IEnd; ++I)
7177        Diag(I->first, I->second);
7178    }
7179  }
7180
7181  // When are coming out of an unevaluated context, clear out any
7182  // temporaries that we may have created as part of the evaluation of
7183  // the expression in that context: they aren't relevant because they
7184  // will never be constructed.
7185  if (Rec.Context == Unevaluated &&
7186      ExprTemporaries.size() > Rec.NumTemporaries)
7187    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7188                          ExprTemporaries.end());
7189
7190  // Destroy the popped expression evaluation record.
7191  Rec.Destroy();
7192}
7193
7194/// \brief Note that the given declaration was referenced in the source code.
7195///
7196/// This routine should be invoke whenever a given declaration is referenced
7197/// in the source code, and where that reference occurred. If this declaration
7198/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7199/// C99 6.9p3), then the declaration will be marked as used.
7200///
7201/// \param Loc the location where the declaration was referenced.
7202///
7203/// \param D the declaration that has been referenced by the source code.
7204void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7205  assert(D && "No declaration?");
7206
7207  if (D->isUsed())
7208    return;
7209
7210  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7211  // template or not. The reason for this is that unevaluated expressions
7212  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7213  // -Wunused-parameters)
7214  if (isa<ParmVarDecl>(D) ||
7215      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
7216    D->setUsed(true);
7217
7218  // Do not mark anything as "used" within a dependent context; wait for
7219  // an instantiation.
7220  if (CurContext->isDependentContext())
7221    return;
7222
7223  switch (ExprEvalContexts.back().Context) {
7224    case Unevaluated:
7225      // We are in an expression that is not potentially evaluated; do nothing.
7226      return;
7227
7228    case PotentiallyEvaluated:
7229      // We are in a potentially-evaluated expression, so this declaration is
7230      // "used"; handle this below.
7231      break;
7232
7233    case PotentiallyPotentiallyEvaluated:
7234      // We are in an expression that may be potentially evaluated; queue this
7235      // declaration reference until we know whether the expression is
7236      // potentially evaluated.
7237      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7238      return;
7239  }
7240
7241  // Note that this declaration has been used.
7242  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7243    unsigned TypeQuals;
7244    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7245        if (!Constructor->isUsed())
7246          DefineImplicitDefaultConstructor(Loc, Constructor);
7247    } else if (Constructor->isImplicit() &&
7248               Constructor->isCopyConstructor(TypeQuals)) {
7249      if (!Constructor->isUsed())
7250        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7251    }
7252
7253    MaybeMarkVirtualMembersReferenced(Loc, Constructor);
7254  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7255    if (Destructor->isImplicit() && !Destructor->isUsed())
7256      DefineImplicitDestructor(Loc, Destructor);
7257
7258  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7259    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7260        MethodDecl->getOverloadedOperator() == OO_Equal) {
7261      if (!MethodDecl->isUsed())
7262        DefineImplicitOverloadedAssign(Loc, MethodDecl);
7263    }
7264  }
7265  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7266    // Implicit instantiation of function templates and member functions of
7267    // class templates.
7268    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
7269      bool AlreadyInstantiated = false;
7270      if (FunctionTemplateSpecializationInfo *SpecInfo
7271                                = Function->getTemplateSpecializationInfo()) {
7272        if (SpecInfo->getPointOfInstantiation().isInvalid())
7273          SpecInfo->setPointOfInstantiation(Loc);
7274        else if (SpecInfo->getTemplateSpecializationKind()
7275                   == TSK_ImplicitInstantiation)
7276          AlreadyInstantiated = true;
7277      } else if (MemberSpecializationInfo *MSInfo
7278                                  = Function->getMemberSpecializationInfo()) {
7279        if (MSInfo->getPointOfInstantiation().isInvalid())
7280          MSInfo->setPointOfInstantiation(Loc);
7281        else if (MSInfo->getTemplateSpecializationKind()
7282                   == TSK_ImplicitInstantiation)
7283          AlreadyInstantiated = true;
7284      }
7285
7286      if (!AlreadyInstantiated) {
7287        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7288            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7289          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7290                                                                      Loc));
7291        else
7292          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7293                                                                 Loc));
7294      }
7295    }
7296
7297    // FIXME: keep track of references to static functions
7298    Function->setUsed(true);
7299
7300    return;
7301  }
7302
7303  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7304    // Implicit instantiation of static data members of class templates.
7305    if (Var->isStaticDataMember() &&
7306        Var->getInstantiatedFromStaticDataMember()) {
7307      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7308      assert(MSInfo && "Missing member specialization information?");
7309      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7310          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7311        MSInfo->setPointOfInstantiation(Loc);
7312        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7313      }
7314    }
7315
7316    // FIXME: keep track of references to static data?
7317
7318    D->setUsed(true);
7319    return;
7320  }
7321}
7322
7323/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7324/// of the program being compiled.
7325///
7326/// This routine emits the given diagnostic when the code currently being
7327/// type-checked is "potentially evaluated", meaning that there is a
7328/// possibility that the code will actually be executable. Code in sizeof()
7329/// expressions, code used only during overload resolution, etc., are not
7330/// potentially evaluated. This routine will suppress such diagnostics or,
7331/// in the absolutely nutty case of potentially potentially evaluated
7332/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7333/// later.
7334///
7335/// This routine should be used for all diagnostics that describe the run-time
7336/// behavior of a program, such as passing a non-POD value through an ellipsis.
7337/// Failure to do so will likely result in spurious diagnostics or failures
7338/// during overload resolution or within sizeof/alignof/typeof/typeid.
7339bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7340                               const PartialDiagnostic &PD) {
7341  switch (ExprEvalContexts.back().Context ) {
7342  case Unevaluated:
7343    // The argument will never be evaluated, so don't complain.
7344    break;
7345
7346  case PotentiallyEvaluated:
7347    Diag(Loc, PD);
7348    return true;
7349
7350  case PotentiallyPotentiallyEvaluated:
7351    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7352    break;
7353  }
7354
7355  return false;
7356}
7357
7358bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7359                               CallExpr *CE, FunctionDecl *FD) {
7360  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7361    return false;
7362
7363  PartialDiagnostic Note =
7364    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7365    << FD->getDeclName() : PDiag();
7366  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7367
7368  if (RequireCompleteType(Loc, ReturnType,
7369                          FD ?
7370                          PDiag(diag::err_call_function_incomplete_return)
7371                            << CE->getSourceRange() << FD->getDeclName() :
7372                          PDiag(diag::err_call_incomplete_return)
7373                            << CE->getSourceRange(),
7374                          std::make_pair(NoteLoc, Note)))
7375    return true;
7376
7377  return false;
7378}
7379
7380// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7381// will prevent this condition from triggering, which is what we want.
7382void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7383  SourceLocation Loc;
7384
7385  unsigned diagnostic = diag::warn_condition_is_assignment;
7386
7387  if (isa<BinaryOperator>(E)) {
7388    BinaryOperator *Op = cast<BinaryOperator>(E);
7389    if (Op->getOpcode() != BinaryOperator::Assign)
7390      return;
7391
7392    // Greylist some idioms by putting them into a warning subcategory.
7393    if (ObjCMessageExpr *ME
7394          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7395      Selector Sel = ME->getSelector();
7396
7397      // self = [<foo> init...]
7398      if (isSelfExpr(Op->getLHS())
7399          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7400        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7401
7402      // <foo> = [<bar> nextObject]
7403      else if (Sel.isUnarySelector() &&
7404               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7405        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7406    }
7407
7408    Loc = Op->getOperatorLoc();
7409  } else if (isa<CXXOperatorCallExpr>(E)) {
7410    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7411    if (Op->getOperator() != OO_Equal)
7412      return;
7413
7414    Loc = Op->getOperatorLoc();
7415  } else {
7416    // Not an assignment.
7417    return;
7418  }
7419
7420  SourceLocation Open = E->getSourceRange().getBegin();
7421  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7422
7423  Diag(Loc, diagnostic)
7424    << E->getSourceRange()
7425    << CodeModificationHint::CreateInsertion(Open, "(")
7426    << CodeModificationHint::CreateInsertion(Close, ")");
7427  Diag(Loc, diag::note_condition_assign_to_comparison)
7428    << CodeModificationHint::CreateReplacement(Loc, "==");
7429}
7430
7431bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7432  DiagnoseAssignmentAsCondition(E);
7433
7434  if (!E->isTypeDependent()) {
7435    DefaultFunctionArrayLvalueConversion(E);
7436
7437    QualType T = E->getType();
7438
7439    if (getLangOptions().CPlusPlus) {
7440      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7441        return true;
7442    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7443      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7444        << T << E->getSourceRange();
7445      return true;
7446    }
7447  }
7448
7449  return false;
7450}
7451