SemaExpr.cpp revision 3a45f668dfd4187637ef83ddac66efd2a34f2e56
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90SourceRange Sema::getExprRange(ExprTy *E) const {
91  Expr *Ex = (Expr *)E;
92  return Ex? Ex->getSourceRange() : SourceRange();
93}
94
95//===----------------------------------------------------------------------===//
96//  Standard Promotions and Conversions
97//===----------------------------------------------------------------------===//
98
99/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
100void Sema::DefaultFunctionArrayConversion(Expr *&E) {
101  QualType Ty = E->getType();
102  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
103
104  if (Ty->isFunctionType())
105    ImpCastExprToType(E, Context.getPointerType(Ty));
106  else if (Ty->isArrayType()) {
107    // In C90 mode, arrays only promote to pointers if the array expression is
108    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
109    // type 'array of type' is converted to an expression that has type 'pointer
110    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
111    // that has type 'array of type' ...".  The relevant change is "an lvalue"
112    // (C90) to "an expression" (C99).
113    //
114    // C++ 4.2p1:
115    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
116    // T" can be converted to an rvalue of type "pointer to T".
117    //
118    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
119        E->isLvalue(Context) == Expr::LV_Valid)
120      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
121  }
122}
123
124/// UsualUnaryConversions - Performs various conversions that are common to most
125/// operators (C99 6.3). The conversions of array and function types are
126/// sometimes surpressed. For example, the array->pointer conversion doesn't
127/// apply if the array is an argument to the sizeof or address (&) operators.
128/// In these instances, this routine should *not* be called.
129Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
130  QualType Ty = Expr->getType();
131  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
132
133  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
134    ImpCastExprToType(Expr, Context.IntTy);
135  else
136    DefaultFunctionArrayConversion(Expr);
137
138  return Expr;
139}
140
141/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
142/// do not have a prototype. Arguments that have type float are promoted to
143/// double. All other argument types are converted by UsualUnaryConversions().
144void Sema::DefaultArgumentPromotion(Expr *&Expr) {
145  QualType Ty = Expr->getType();
146  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
147
148  // If this is a 'float' (CVR qualified or typedef) promote to double.
149  if (const BuiltinType *BT = Ty->getAsBuiltinType())
150    if (BT->getKind() == BuiltinType::Float)
151      return ImpCastExprToType(Expr, Context.DoubleTy);
152
153  UsualUnaryConversions(Expr);
154}
155
156// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
157// will warn if the resulting type is not a POD type.
158void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
159  DefaultArgumentPromotion(Expr);
160
161  if (!Expr->getType()->isPODType()) {
162    Diag(Expr->getLocStart(),
163         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
164    Expr->getType() << CT;
165  }
166}
167
168
169/// UsualArithmeticConversions - Performs various conversions that are common to
170/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
171/// routine returns the first non-arithmetic type found. The client is
172/// responsible for emitting appropriate error diagnostics.
173/// FIXME: verify the conversion rules for "complex int" are consistent with
174/// GCC.
175QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
176                                          bool isCompAssign) {
177  if (!isCompAssign) {
178    UsualUnaryConversions(lhsExpr);
179    UsualUnaryConversions(rhsExpr);
180  }
181
182  // For conversion purposes, we ignore any qualifiers.
183  // For example, "const float" and "float" are equivalent.
184  QualType lhs =
185    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
186  QualType rhs =
187    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
188
189  // If both types are identical, no conversion is needed.
190  if (lhs == rhs)
191    return lhs;
192
193  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
194  // The caller can deal with this (e.g. pointer + int).
195  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
196    return lhs;
197
198  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
199  if (!isCompAssign) {
200    ImpCastExprToType(lhsExpr, destType);
201    ImpCastExprToType(rhsExpr, destType);
202  }
203  return destType;
204}
205
206QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
207  // Perform the usual unary conversions. We do this early so that
208  // integral promotions to "int" can allow us to exit early, in the
209  // lhs == rhs check. Also, for conversion purposes, we ignore any
210  // qualifiers.  For example, "const float" and "float" are
211  // equivalent.
212  if (lhs->isPromotableIntegerType())
213    lhs = Context.IntTy;
214  else
215    lhs = lhs.getUnqualifiedType();
216  if (rhs->isPromotableIntegerType())
217    rhs = Context.IntTy;
218  else
219    rhs = rhs.getUnqualifiedType();
220
221  // If both types are identical, no conversion is needed.
222  if (lhs == rhs)
223    return lhs;
224
225  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
226  // The caller can deal with this (e.g. pointer + int).
227  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
228    return lhs;
229
230  // At this point, we have two different arithmetic types.
231
232  // Handle complex types first (C99 6.3.1.8p1).
233  if (lhs->isComplexType() || rhs->isComplexType()) {
234    // if we have an integer operand, the result is the complex type.
235    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
236      // convert the rhs to the lhs complex type.
237      return lhs;
238    }
239    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
240      // convert the lhs to the rhs complex type.
241      return rhs;
242    }
243    // This handles complex/complex, complex/float, or float/complex.
244    // When both operands are complex, the shorter operand is converted to the
245    // type of the longer, and that is the type of the result. This corresponds
246    // to what is done when combining two real floating-point operands.
247    // The fun begins when size promotion occur across type domains.
248    // From H&S 6.3.4: When one operand is complex and the other is a real
249    // floating-point type, the less precise type is converted, within it's
250    // real or complex domain, to the precision of the other type. For example,
251    // when combining a "long double" with a "double _Complex", the
252    // "double _Complex" is promoted to "long double _Complex".
253    int result = Context.getFloatingTypeOrder(lhs, rhs);
254
255    if (result > 0) { // The left side is bigger, convert rhs.
256      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
257    } else if (result < 0) { // The right side is bigger, convert lhs.
258      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
259    }
260    // At this point, lhs and rhs have the same rank/size. Now, make sure the
261    // domains match. This is a requirement for our implementation, C99
262    // does not require this promotion.
263    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
264      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
265        return rhs;
266      } else { // handle "_Complex double, double".
267        return lhs;
268      }
269    }
270    return lhs; // The domain/size match exactly.
271  }
272  // Now handle "real" floating types (i.e. float, double, long double).
273  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
274    // if we have an integer operand, the result is the real floating type.
275    if (rhs->isIntegerType()) {
276      // convert rhs to the lhs floating point type.
277      return lhs;
278    }
279    if (rhs->isComplexIntegerType()) {
280      // convert rhs to the complex floating point type.
281      return Context.getComplexType(lhs);
282    }
283    if (lhs->isIntegerType()) {
284      // convert lhs to the rhs floating point type.
285      return rhs;
286    }
287    if (lhs->isComplexIntegerType()) {
288      // convert lhs to the complex floating point type.
289      return Context.getComplexType(rhs);
290    }
291    // We have two real floating types, float/complex combos were handled above.
292    // Convert the smaller operand to the bigger result.
293    int result = Context.getFloatingTypeOrder(lhs, rhs);
294    if (result > 0) // convert the rhs
295      return lhs;
296    assert(result < 0 && "illegal float comparison");
297    return rhs;   // convert the lhs
298  }
299  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
300    // Handle GCC complex int extension.
301    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
302    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
303
304    if (lhsComplexInt && rhsComplexInt) {
305      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
306                                      rhsComplexInt->getElementType()) >= 0)
307        return lhs; // convert the rhs
308      return rhs;
309    } else if (lhsComplexInt && rhs->isIntegerType()) {
310      // convert the rhs to the lhs complex type.
311      return lhs;
312    } else if (rhsComplexInt && lhs->isIntegerType()) {
313      // convert the lhs to the rhs complex type.
314      return rhs;
315    }
316  }
317  // Finally, we have two differing integer types.
318  // The rules for this case are in C99 6.3.1.8
319  int compare = Context.getIntegerTypeOrder(lhs, rhs);
320  bool lhsSigned = lhs->isSignedIntegerType(),
321       rhsSigned = rhs->isSignedIntegerType();
322  QualType destType;
323  if (lhsSigned == rhsSigned) {
324    // Same signedness; use the higher-ranked type
325    destType = compare >= 0 ? lhs : rhs;
326  } else if (compare != (lhsSigned ? 1 : -1)) {
327    // The unsigned type has greater than or equal rank to the
328    // signed type, so use the unsigned type
329    destType = lhsSigned ? rhs : lhs;
330  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
331    // The two types are different widths; if we are here, that
332    // means the signed type is larger than the unsigned type, so
333    // use the signed type.
334    destType = lhsSigned ? lhs : rhs;
335  } else {
336    // The signed type is higher-ranked than the unsigned type,
337    // but isn't actually any bigger (like unsigned int and long
338    // on most 32-bit systems).  Use the unsigned type corresponding
339    // to the signed type.
340    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
341  }
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// FIXME: This will create BlockDeclRefExprs for global variables,
397/// function references, etc which is suboptimal :) and breaks
398/// things like "integer constant expression" tests.
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    return Var->hasLocalStorage();
415
416  return true;
417}
418
419
420
421/// ActOnIdentifierExpr - The parser read an identifier in expression context,
422/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
423/// identifier is used in a function call context.
424/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
425/// class or namespace that the identifier must be a member of.
426Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
427                                                 IdentifierInfo &II,
428                                                 bool HasTrailingLParen,
429                                                 const CXXScopeSpec *SS,
430                                                 bool isAddressOfOperand) {
431  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
432                                  isAddressOfOperand);
433}
434
435/// BuildDeclRefExpr - Build either a DeclRefExpr or a
436/// QualifiedDeclRefExpr based on whether or not SS is a
437/// nested-name-specifier.
438DeclRefExpr *
439Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
440                       bool TypeDependent, bool ValueDependent,
441                       const CXXScopeSpec *SS) {
442  if (SS && !SS->isEmpty()) {
443    llvm::SmallVector<NestedNameSpecifier, 16> Specs;
444    for (CXXScopeSpec::iterator Spec = SS->begin(), SpecEnd = SS->end();
445         Spec != SpecEnd; ++Spec)
446      Specs.push_back(NestedNameSpecifier::getFromOpaquePtr(*Spec));
447    return QualifiedDeclRefExpr::Create(Context, D, Ty, Loc, TypeDependent,
448                                        ValueDependent, SS->getRange(),
449                                        &Specs[0], Specs.size());
450  } else
451    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
452}
453
454/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
455/// variable corresponding to the anonymous union or struct whose type
456/// is Record.
457static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
458  assert(Record->isAnonymousStructOrUnion() &&
459         "Record must be an anonymous struct or union!");
460
461  // FIXME: Once Decls are directly linked together, this will
462  // be an O(1) operation rather than a slow walk through DeclContext's
463  // vector (which itself will be eliminated). DeclGroups might make
464  // this even better.
465  DeclContext *Ctx = Record->getDeclContext();
466  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
467                               DEnd = Ctx->decls_end();
468       D != DEnd; ++D) {
469    if (*D == Record) {
470      // The object for the anonymous struct/union directly
471      // follows its type in the list of declarations.
472      ++D;
473      assert(D != DEnd && "Missing object for anonymous record");
474      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
475      return *D;
476    }
477  }
478
479  assert(false && "Missing object for anonymous record");
480  return 0;
481}
482
483Sema::OwningExprResult
484Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
485                                               FieldDecl *Field,
486                                               Expr *BaseObjectExpr,
487                                               SourceLocation OpLoc) {
488  assert(Field->getDeclContext()->isRecord() &&
489         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
490         && "Field must be stored inside an anonymous struct or union");
491
492  // Construct the sequence of field member references
493  // we'll have to perform to get to the field in the anonymous
494  // union/struct. The list of members is built from the field
495  // outward, so traverse it backwards to go from an object in
496  // the current context to the field we found.
497  llvm::SmallVector<FieldDecl *, 4> AnonFields;
498  AnonFields.push_back(Field);
499  VarDecl *BaseObject = 0;
500  DeclContext *Ctx = Field->getDeclContext();
501  do {
502    RecordDecl *Record = cast<RecordDecl>(Ctx);
503    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
504    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
505      AnonFields.push_back(AnonField);
506    else {
507      BaseObject = cast<VarDecl>(AnonObject);
508      break;
509    }
510    Ctx = Ctx->getParent();
511  } while (Ctx->isRecord() &&
512           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
513
514  // Build the expression that refers to the base object, from
515  // which we will build a sequence of member references to each
516  // of the anonymous union objects and, eventually, the field we
517  // found via name lookup.
518  bool BaseObjectIsPointer = false;
519  unsigned ExtraQuals = 0;
520  if (BaseObject) {
521    // BaseObject is an anonymous struct/union variable (and is,
522    // therefore, not part of another non-anonymous record).
523    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
524    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
525                                               SourceLocation());
526    ExtraQuals
527      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
528  } else if (BaseObjectExpr) {
529    // The caller provided the base object expression. Determine
530    // whether its a pointer and whether it adds any qualifiers to the
531    // anonymous struct/union fields we're looking into.
532    QualType ObjectType = BaseObjectExpr->getType();
533    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
534      BaseObjectIsPointer = true;
535      ObjectType = ObjectPtr->getPointeeType();
536    }
537    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
538  } else {
539    // We've found a member of an anonymous struct/union that is
540    // inside a non-anonymous struct/union, so in a well-formed
541    // program our base object expression is "this".
542    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
543      if (!MD->isStatic()) {
544        QualType AnonFieldType
545          = Context.getTagDeclType(
546                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
547        QualType ThisType = Context.getTagDeclType(MD->getParent());
548        if ((Context.getCanonicalType(AnonFieldType)
549               == Context.getCanonicalType(ThisType)) ||
550            IsDerivedFrom(ThisType, AnonFieldType)) {
551          // Our base object expression is "this".
552          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
553                                                     MD->getThisType(Context));
554          BaseObjectIsPointer = true;
555        }
556      } else {
557        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
558          << Field->getDeclName());
559      }
560      ExtraQuals = MD->getTypeQualifiers();
561    }
562
563    if (!BaseObjectExpr)
564      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
565        << Field->getDeclName());
566  }
567
568  // Build the implicit member references to the field of the
569  // anonymous struct/union.
570  Expr *Result = BaseObjectExpr;
571  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
572         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
573       FI != FIEnd; ++FI) {
574    QualType MemberType = (*FI)->getType();
575    if (!(*FI)->isMutable()) {
576      unsigned combinedQualifiers
577        = MemberType.getCVRQualifiers() | ExtraQuals;
578      MemberType = MemberType.getQualifiedType(combinedQualifiers);
579    }
580    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
581                                      OpLoc, MemberType);
582    BaseObjectIsPointer = false;
583    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
584  }
585
586  return Owned(Result);
587}
588
589/// ActOnDeclarationNameExpr - The parser has read some kind of name
590/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
591/// performs lookup on that name and returns an expression that refers
592/// to that name. This routine isn't directly called from the parser,
593/// because the parser doesn't know about DeclarationName. Rather,
594/// this routine is called by ActOnIdentifierExpr,
595/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
596/// which form the DeclarationName from the corresponding syntactic
597/// forms.
598///
599/// HasTrailingLParen indicates whether this identifier is used in a
600/// function call context.  LookupCtx is only used for a C++
601/// qualified-id (foo::bar) to indicate the class or namespace that
602/// the identifier must be a member of.
603///
604/// isAddressOfOperand means that this expression is the direct operand
605/// of an address-of operator. This matters because this is the only
606/// situation where a qualified name referencing a non-static member may
607/// appear outside a member function of this class.
608Sema::OwningExprResult
609Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
610                               DeclarationName Name, bool HasTrailingLParen,
611                               const CXXScopeSpec *SS,
612                               bool isAddressOfOperand) {
613  // Could be enum-constant, value decl, instance variable, etc.
614  if (SS && SS->isInvalid())
615    return ExprError();
616
617  // C++ [temp.dep.expr]p3:
618  //   An id-expression is type-dependent if it contains:
619  //     -- a nested-name-specifier that contains a class-name that
620  //        names a dependent type.
621  if (SS && isDependentScopeSpecifier(*SS)) {
622    llvm::SmallVector<NestedNameSpecifier, 16> Specs;
623    for (CXXScopeSpec::iterator Spec = SS->begin(), SpecEnd = SS->end();
624         Spec != SpecEnd; ++Spec)
625      Specs.push_back(NestedNameSpecifier::getFromOpaquePtr(*Spec));
626    return Owned(UnresolvedDeclRefExpr::Create(Context, Name, Loc,
627                                               SS->getRange(), &Specs[0],
628                                               Specs.size()));
629  }
630
631  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
632                                         false, true, Loc);
633
634  NamedDecl *D = 0;
635  if (Lookup.isAmbiguous()) {
636    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
637                            SS && SS->isSet() ? SS->getRange()
638                                              : SourceRange());
639    return ExprError();
640  } else
641    D = Lookup.getAsDecl();
642
643  // If this reference is in an Objective-C method, then ivar lookup happens as
644  // well.
645  IdentifierInfo *II = Name.getAsIdentifierInfo();
646  if (II && getCurMethodDecl()) {
647    // There are two cases to handle here.  1) scoped lookup could have failed,
648    // in which case we should look for an ivar.  2) scoped lookup could have
649    // found a decl, but that decl is outside the current instance method (i.e.
650    // a global variable).  In these two cases, we do a lookup for an ivar with
651    // this name, if the lookup sucedes, we replace it our current decl.
652    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
653      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
654      ObjCInterfaceDecl *ClassDeclared;
655      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
656        // Check if referencing a field with __attribute__((deprecated)).
657        if (DiagnoseUseOfDecl(IV, Loc))
658          return ExprError();
659        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
660        // If a class method attemps to use a free standing ivar, this is
661        // an error.
662        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
663           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
664                           << IV->getDeclName());
665        // If a class method uses a global variable, even if an ivar with
666        // same name exists, use the global.
667        if (!IsClsMethod) {
668          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
669              ClassDeclared != IFace)
670           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
671          // FIXME: This should use a new expr for a direct reference, don't turn
672          // this into Self->ivar, just return a BareIVarExpr or something.
673          IdentifierInfo &II = Context.Idents.get("self");
674          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
675          ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
676                                    Loc, static_cast<Expr*>(SelfExpr.release()),
677                                    true, true);
678          Context.setFieldDecl(IFace, IV, MRef);
679          return Owned(MRef);
680        }
681      }
682    }
683    else if (getCurMethodDecl()->isInstanceMethod()) {
684      // We should warn if a local variable hides an ivar.
685      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
686      ObjCInterfaceDecl *ClassDeclared;
687      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
688        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
689            IFace == ClassDeclared)
690          Diag(Loc, diag::warn_ivar_use_hidden)<<IV->getDeclName();
691      }
692    }
693    // Needed to implement property "super.method" notation.
694    if (D == 0 && II->isStr("super")) {
695      QualType T;
696
697      if (getCurMethodDecl()->isInstanceMethod())
698        T = Context.getPointerType(Context.getObjCInterfaceType(
699                                   getCurMethodDecl()->getClassInterface()));
700      else
701        T = Context.getObjCClassType();
702      return Owned(new (Context) ObjCSuperExpr(Loc, T));
703    }
704  }
705
706  // Determine whether this name might be a candidate for
707  // argument-dependent lookup.
708  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
709             HasTrailingLParen;
710
711  if (ADL && D == 0) {
712    // We've seen something of the form
713    //
714    //   identifier(
715    //
716    // and we did not find any entity by the name
717    // "identifier". However, this identifier is still subject to
718    // argument-dependent lookup, so keep track of the name.
719    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
720                                                          Context.OverloadTy,
721                                                          Loc));
722  }
723
724  if (D == 0) {
725    // Otherwise, this could be an implicitly declared function reference (legal
726    // in C90, extension in C99).
727    if (HasTrailingLParen && II &&
728        !getLangOptions().CPlusPlus) // Not in C++.
729      D = ImplicitlyDefineFunction(Loc, *II, S);
730    else {
731      // If this name wasn't predeclared and if this is not a function call,
732      // diagnose the problem.
733      if (SS && !SS->isEmpty())
734        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
735          << Name << SS->getRange());
736      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
737               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
738        return ExprError(Diag(Loc, diag::err_undeclared_use)
739          << Name.getAsString());
740      else
741        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
742    }
743  }
744
745  // If this is an expression of the form &Class::member, don't build an
746  // implicit member ref, because we want a pointer to the member in general,
747  // not any specific instance's member.
748  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
749    DeclContext *DC = computeDeclContext(*SS);
750    if (D && isa<CXXRecordDecl>(DC)) {
751      QualType DType;
752      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
753        DType = FD->getType().getNonReferenceType();
754      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
755        DType = Method->getType();
756      } else if (isa<OverloadedFunctionDecl>(D)) {
757        DType = Context.OverloadTy;
758      }
759      // Could be an inner type. That's diagnosed below, so ignore it here.
760      if (!DType.isNull()) {
761        // The pointer is type- and value-dependent if it points into something
762        // dependent.
763        bool Dependent = false;
764        for (; DC; DC = DC->getParent()) {
765          // FIXME: could stop early at namespace scope.
766          if (DC->isRecord()) {
767            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
768            if (Context.getTypeDeclType(Record)->isDependentType()) {
769              Dependent = true;
770              break;
771            }
772          }
773        }
774        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
775      }
776    }
777  }
778
779  // We may have found a field within an anonymous union or struct
780  // (C++ [class.union]).
781  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
782    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
783      return BuildAnonymousStructUnionMemberReference(Loc, FD);
784
785  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
786    if (!MD->isStatic()) {
787      // C++ [class.mfct.nonstatic]p2:
788      //   [...] if name lookup (3.4.1) resolves the name in the
789      //   id-expression to a nonstatic nontype member of class X or of
790      //   a base class of X, the id-expression is transformed into a
791      //   class member access expression (5.2.5) using (*this) (9.3.2)
792      //   as the postfix-expression to the left of the '.' operator.
793      DeclContext *Ctx = 0;
794      QualType MemberType;
795      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
796        Ctx = FD->getDeclContext();
797        MemberType = FD->getType();
798
799        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
800          MemberType = RefType->getPointeeType();
801        else if (!FD->isMutable()) {
802          unsigned combinedQualifiers
803            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
804          MemberType = MemberType.getQualifiedType(combinedQualifiers);
805        }
806      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
807        if (!Method->isStatic()) {
808          Ctx = Method->getParent();
809          MemberType = Method->getType();
810        }
811      } else if (OverloadedFunctionDecl *Ovl
812                   = dyn_cast<OverloadedFunctionDecl>(D)) {
813        for (OverloadedFunctionDecl::function_iterator
814               Func = Ovl->function_begin(),
815               FuncEnd = Ovl->function_end();
816             Func != FuncEnd; ++Func) {
817          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
818            if (!DMethod->isStatic()) {
819              Ctx = Ovl->getDeclContext();
820              MemberType = Context.OverloadTy;
821              break;
822            }
823        }
824      }
825
826      if (Ctx && Ctx->isRecord()) {
827        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
828        QualType ThisType = Context.getTagDeclType(MD->getParent());
829        if ((Context.getCanonicalType(CtxType)
830               == Context.getCanonicalType(ThisType)) ||
831            IsDerivedFrom(ThisType, CtxType)) {
832          // Build the implicit member access expression.
833          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
834                                                 MD->getThisType(Context));
835          return Owned(new (Context) MemberExpr(This, true, D,
836                                                SourceLocation(), MemberType));
837        }
838      }
839    }
840  }
841
842  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
843    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
844      if (MD->isStatic())
845        // "invalid use of member 'x' in static member function"
846        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
847          << FD->getDeclName());
848    }
849
850    // Any other ways we could have found the field in a well-formed
851    // program would have been turned into implicit member expressions
852    // above.
853    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
854      << FD->getDeclName());
855  }
856
857  if (isa<TypedefDecl>(D))
858    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
859  if (isa<ObjCInterfaceDecl>(D))
860    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
861  if (isa<NamespaceDecl>(D))
862    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
863
864  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
865  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
866    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
867                                  false, false, SS));
868  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
869    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
870                                  false, false, SS));
871  ValueDecl *VD = cast<ValueDecl>(D);
872
873  // Check whether this declaration can be used. Note that we suppress
874  // this check when we're going to perform argument-dependent lookup
875  // on this function name, because this might not be the function
876  // that overload resolution actually selects.
877  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
878    return ExprError();
879
880  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
881    // Warn about constructs like:
882    //   if (void *X = foo()) { ... } else { X }.
883    // In the else block, the pointer is always false.
884    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
885      Scope *CheckS = S;
886      while (CheckS) {
887        if (CheckS->isWithinElse() &&
888            CheckS->getControlParent()->isDeclScope(Var)) {
889          if (Var->getType()->isBooleanType())
890            ExprError(Diag(Loc, diag::warn_value_always_false)
891              << Var->getDeclName());
892          else
893            ExprError(Diag(Loc, diag::warn_value_always_zero)
894              << Var->getDeclName());
895          break;
896        }
897
898        // Move up one more control parent to check again.
899        CheckS = CheckS->getControlParent();
900        if (CheckS)
901          CheckS = CheckS->getParent();
902      }
903    }
904  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
905    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
906      // C99 DR 316 says that, if a function type comes from a
907      // function definition (without a prototype), that type is only
908      // used for checking compatibility. Therefore, when referencing
909      // the function, we pretend that we don't have the full function
910      // type.
911      QualType T = Func->getType();
912      QualType NoProtoType = T;
913      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
914        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
915      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
916    }
917  }
918
919  // Only create DeclRefExpr's for valid Decl's.
920  if (VD->isInvalidDecl())
921    return ExprError();
922
923  // If the identifier reference is inside a block, and it refers to a value
924  // that is outside the block, create a BlockDeclRefExpr instead of a
925  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
926  // the block is formed.
927  //
928  // We do not do this for things like enum constants, global variables, etc,
929  // as they do not get snapshotted.
930  //
931  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
932    // Blocks that have these can't be constant.
933    CurBlock->hasBlockDeclRefExprs = true;
934
935    // The BlocksAttr indicates the variable is bound by-reference.
936    if (VD->getAttr<BlocksAttr>())
937      return Owned(new (Context) BlockDeclRefExpr(VD,
938                               VD->getType().getNonReferenceType(), Loc, true));
939
940    // Variable will be bound by-copy, make it const within the closure.
941    VD->getType().addConst();
942    return Owned(new (Context) BlockDeclRefExpr(VD,
943                             VD->getType().getNonReferenceType(), Loc, false));
944  }
945  // If this reference is not in a block or if the referenced variable is
946  // within the block, create a normal DeclRefExpr.
947
948  bool TypeDependent = false;
949  bool ValueDependent = false;
950  if (getLangOptions().CPlusPlus) {
951    // C++ [temp.dep.expr]p3:
952    //   An id-expression is type-dependent if it contains:
953    //     - an identifier that was declared with a dependent type,
954    if (VD->getType()->isDependentType())
955      TypeDependent = true;
956    //     - FIXME: a template-id that is dependent,
957    //     - a conversion-function-id that specifies a dependent type,
958    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
959             Name.getCXXNameType()->isDependentType())
960      TypeDependent = true;
961    //     - a nested-name-specifier that contains a class-name that
962    //       names a dependent type.
963    else if (SS && !SS->isEmpty()) {
964      for (DeclContext *DC = computeDeclContext(*SS);
965           DC; DC = DC->getParent()) {
966        // FIXME: could stop early at namespace scope.
967        if (DC->isRecord()) {
968          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
969          if (Context.getTypeDeclType(Record)->isDependentType()) {
970            TypeDependent = true;
971            break;
972          }
973        }
974      }
975    }
976
977    // C++ [temp.dep.constexpr]p2:
978    //
979    //   An identifier is value-dependent if it is:
980    //     - a name declared with a dependent type,
981    if (TypeDependent)
982      ValueDependent = true;
983    //     - the name of a non-type template parameter,
984    else if (isa<NonTypeTemplateParmDecl>(VD))
985      ValueDependent = true;
986    //    - a constant with integral or enumeration type and is
987    //      initialized with an expression that is value-dependent
988    //      (FIXME!).
989  }
990
991  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
992                                TypeDependent, ValueDependent, SS));
993}
994
995Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
996                                                 tok::TokenKind Kind) {
997  PredefinedExpr::IdentType IT;
998
999  switch (Kind) {
1000  default: assert(0 && "Unknown simple primary expr!");
1001  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1002  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1003  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1004  }
1005
1006  // Pre-defined identifiers are of type char[x], where x is the length of the
1007  // string.
1008  unsigned Length;
1009  if (FunctionDecl *FD = getCurFunctionDecl())
1010    Length = FD->getIdentifier()->getLength();
1011  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1012    Length = MD->getSynthesizedMethodSize();
1013  else {
1014    Diag(Loc, diag::ext_predef_outside_function);
1015    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1016    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1017  }
1018
1019
1020  llvm::APInt LengthI(32, Length + 1);
1021  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1022  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1023  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1024}
1025
1026Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1027  llvm::SmallString<16> CharBuffer;
1028  CharBuffer.resize(Tok.getLength());
1029  const char *ThisTokBegin = &CharBuffer[0];
1030  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1031
1032  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1033                            Tok.getLocation(), PP);
1034  if (Literal.hadError())
1035    return ExprError();
1036
1037  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1038
1039  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1040                                              Literal.isWide(),
1041                                              type, Tok.getLocation()));
1042}
1043
1044Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1045  // Fast path for a single digit (which is quite common).  A single digit
1046  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1047  if (Tok.getLength() == 1) {
1048    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1049    unsigned IntSize = Context.Target.getIntWidth();
1050    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1051                    Context.IntTy, Tok.getLocation()));
1052  }
1053
1054  llvm::SmallString<512> IntegerBuffer;
1055  // Add padding so that NumericLiteralParser can overread by one character.
1056  IntegerBuffer.resize(Tok.getLength()+1);
1057  const char *ThisTokBegin = &IntegerBuffer[0];
1058
1059  // Get the spelling of the token, which eliminates trigraphs, etc.
1060  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1061
1062  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1063                               Tok.getLocation(), PP);
1064  if (Literal.hadError)
1065    return ExprError();
1066
1067  Expr *Res;
1068
1069  if (Literal.isFloatingLiteral()) {
1070    QualType Ty;
1071    if (Literal.isFloat)
1072      Ty = Context.FloatTy;
1073    else if (!Literal.isLong)
1074      Ty = Context.DoubleTy;
1075    else
1076      Ty = Context.LongDoubleTy;
1077
1078    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1079
1080    // isExact will be set by GetFloatValue().
1081    bool isExact = false;
1082    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1083                                        &isExact, Ty, Tok.getLocation());
1084
1085  } else if (!Literal.isIntegerLiteral()) {
1086    return ExprError();
1087  } else {
1088    QualType Ty;
1089
1090    // long long is a C99 feature.
1091    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1092        Literal.isLongLong)
1093      Diag(Tok.getLocation(), diag::ext_longlong);
1094
1095    // Get the value in the widest-possible width.
1096    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1097
1098    if (Literal.GetIntegerValue(ResultVal)) {
1099      // If this value didn't fit into uintmax_t, warn and force to ull.
1100      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1101      Ty = Context.UnsignedLongLongTy;
1102      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1103             "long long is not intmax_t?");
1104    } else {
1105      // If this value fits into a ULL, try to figure out what else it fits into
1106      // according to the rules of C99 6.4.4.1p5.
1107
1108      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1109      // be an unsigned int.
1110      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1111
1112      // Check from smallest to largest, picking the smallest type we can.
1113      unsigned Width = 0;
1114      if (!Literal.isLong && !Literal.isLongLong) {
1115        // Are int/unsigned possibilities?
1116        unsigned IntSize = Context.Target.getIntWidth();
1117
1118        // Does it fit in a unsigned int?
1119        if (ResultVal.isIntN(IntSize)) {
1120          // Does it fit in a signed int?
1121          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1122            Ty = Context.IntTy;
1123          else if (AllowUnsigned)
1124            Ty = Context.UnsignedIntTy;
1125          Width = IntSize;
1126        }
1127      }
1128
1129      // Are long/unsigned long possibilities?
1130      if (Ty.isNull() && !Literal.isLongLong) {
1131        unsigned LongSize = Context.Target.getLongWidth();
1132
1133        // Does it fit in a unsigned long?
1134        if (ResultVal.isIntN(LongSize)) {
1135          // Does it fit in a signed long?
1136          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1137            Ty = Context.LongTy;
1138          else if (AllowUnsigned)
1139            Ty = Context.UnsignedLongTy;
1140          Width = LongSize;
1141        }
1142      }
1143
1144      // Finally, check long long if needed.
1145      if (Ty.isNull()) {
1146        unsigned LongLongSize = Context.Target.getLongLongWidth();
1147
1148        // Does it fit in a unsigned long long?
1149        if (ResultVal.isIntN(LongLongSize)) {
1150          // Does it fit in a signed long long?
1151          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1152            Ty = Context.LongLongTy;
1153          else if (AllowUnsigned)
1154            Ty = Context.UnsignedLongLongTy;
1155          Width = LongLongSize;
1156        }
1157      }
1158
1159      // If we still couldn't decide a type, we probably have something that
1160      // does not fit in a signed long long, but has no U suffix.
1161      if (Ty.isNull()) {
1162        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1163        Ty = Context.UnsignedLongLongTy;
1164        Width = Context.Target.getLongLongWidth();
1165      }
1166
1167      if (ResultVal.getBitWidth() != Width)
1168        ResultVal.trunc(Width);
1169    }
1170    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1171  }
1172
1173  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1174  if (Literal.isImaginary)
1175    Res = new (Context) ImaginaryLiteral(Res,
1176                                        Context.getComplexType(Res->getType()));
1177
1178  return Owned(Res);
1179}
1180
1181Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1182                                              SourceLocation R, ExprArg Val) {
1183  Expr *E = (Expr *)Val.release();
1184  assert((E != 0) && "ActOnParenExpr() missing expr");
1185  return Owned(new (Context) ParenExpr(L, R, E));
1186}
1187
1188/// The UsualUnaryConversions() function is *not* called by this routine.
1189/// See C99 6.3.2.1p[2-4] for more details.
1190bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1191                                     SourceLocation OpLoc,
1192                                     const SourceRange &ExprRange,
1193                                     bool isSizeof) {
1194  if (exprType->isDependentType())
1195    return false;
1196
1197  // C99 6.5.3.4p1:
1198  if (isa<FunctionType>(exprType)) {
1199    // alignof(function) is allowed.
1200    if (isSizeof)
1201      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1202    return false;
1203  }
1204
1205  if (exprType->isVoidType()) {
1206    Diag(OpLoc, diag::ext_sizeof_void_type)
1207      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1208    return false;
1209  }
1210
1211  return RequireCompleteType(OpLoc, exprType,
1212                                isSizeof ? diag::err_sizeof_incomplete_type :
1213                                           diag::err_alignof_incomplete_type,
1214                                ExprRange);
1215}
1216
1217bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1218                            const SourceRange &ExprRange) {
1219  E = E->IgnoreParens();
1220
1221  // alignof decl is always ok.
1222  if (isa<DeclRefExpr>(E))
1223    return false;
1224
1225  // Cannot know anything else if the expression is dependent.
1226  if (E->isTypeDependent())
1227    return false;
1228
1229  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1230    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1231      if (FD->isBitField()) {
1232        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1233        return true;
1234      }
1235      // Other fields are ok.
1236      return false;
1237    }
1238  }
1239  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1240}
1241
1242/// \brief Build a sizeof or alignof expression given a type operand.
1243Action::OwningExprResult
1244Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1245                              bool isSizeOf, SourceRange R) {
1246  if (T.isNull())
1247    return ExprError();
1248
1249  if (!T->isDependentType() &&
1250      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1251    return ExprError();
1252
1253  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1254  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1255                                               Context.getSizeType(), OpLoc,
1256                                               R.getEnd()));
1257}
1258
1259/// \brief Build a sizeof or alignof expression given an expression
1260/// operand.
1261Action::OwningExprResult
1262Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1263                              bool isSizeOf, SourceRange R) {
1264  // Verify that the operand is valid.
1265  bool isInvalid = false;
1266  if (E->isTypeDependent()) {
1267    // Delay type-checking for type-dependent expressions.
1268  } else if (!isSizeOf) {
1269    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1270  } else if (E->isBitField()) {  // C99 6.5.3.4p1.
1271    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1272    isInvalid = true;
1273  } else {
1274    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1275  }
1276
1277  if (isInvalid)
1278    return ExprError();
1279
1280  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1281  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1282                                               Context.getSizeType(), OpLoc,
1283                                               R.getEnd()));
1284}
1285
1286/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1287/// the same for @c alignof and @c __alignof
1288/// Note that the ArgRange is invalid if isType is false.
1289Action::OwningExprResult
1290Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1291                             void *TyOrEx, const SourceRange &ArgRange) {
1292  // If error parsing type, ignore.
1293  if (TyOrEx == 0) return ExprError();
1294
1295  if (isType) {
1296    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1297    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1298  }
1299
1300  // Get the end location.
1301  Expr *ArgEx = (Expr *)TyOrEx;
1302  Action::OwningExprResult Result
1303    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1304
1305  if (Result.isInvalid())
1306    DeleteExpr(ArgEx);
1307
1308  return move(Result);
1309}
1310
1311QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1312  if (V->isTypeDependent())
1313    return Context.DependentTy;
1314
1315  DefaultFunctionArrayConversion(V);
1316
1317  // These operators return the element type of a complex type.
1318  if (const ComplexType *CT = V->getType()->getAsComplexType())
1319    return CT->getElementType();
1320
1321  // Otherwise they pass through real integer and floating point types here.
1322  if (V->getType()->isArithmeticType())
1323    return V->getType();
1324
1325  // Reject anything else.
1326  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1327    << (isReal ? "__real" : "__imag");
1328  return QualType();
1329}
1330
1331
1332
1333Action::OwningExprResult
1334Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1335                          tok::TokenKind Kind, ExprArg Input) {
1336  Expr *Arg = (Expr *)Input.get();
1337
1338  UnaryOperator::Opcode Opc;
1339  switch (Kind) {
1340  default: assert(0 && "Unknown unary op!");
1341  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1342  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1343  }
1344
1345  if (getLangOptions().CPlusPlus &&
1346      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1347    // Which overloaded operator?
1348    OverloadedOperatorKind OverOp =
1349      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1350
1351    // C++ [over.inc]p1:
1352    //
1353    //     [...] If the function is a member function with one
1354    //     parameter (which shall be of type int) or a non-member
1355    //     function with two parameters (the second of which shall be
1356    //     of type int), it defines the postfix increment operator ++
1357    //     for objects of that type. When the postfix increment is
1358    //     called as a result of using the ++ operator, the int
1359    //     argument will have value zero.
1360    Expr *Args[2] = {
1361      Arg,
1362      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1363                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1364    };
1365
1366    // Build the candidate set for overloading
1367    OverloadCandidateSet CandidateSet;
1368    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1369
1370    // Perform overload resolution.
1371    OverloadCandidateSet::iterator Best;
1372    switch (BestViableFunction(CandidateSet, Best)) {
1373    case OR_Success: {
1374      // We found a built-in operator or an overloaded operator.
1375      FunctionDecl *FnDecl = Best->Function;
1376
1377      if (FnDecl) {
1378        // We matched an overloaded operator. Build a call to that
1379        // operator.
1380
1381        // Convert the arguments.
1382        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1383          if (PerformObjectArgumentInitialization(Arg, Method))
1384            return ExprError();
1385        } else {
1386          // Convert the arguments.
1387          if (PerformCopyInitialization(Arg,
1388                                        FnDecl->getParamDecl(0)->getType(),
1389                                        "passing"))
1390            return ExprError();
1391        }
1392
1393        // Determine the result type
1394        QualType ResultTy
1395          = FnDecl->getType()->getAsFunctionType()->getResultType();
1396        ResultTy = ResultTy.getNonReferenceType();
1397
1398        // Build the actual expression node.
1399        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1400                                                 SourceLocation());
1401        UsualUnaryConversions(FnExpr);
1402
1403        Input.release();
1404        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1405                                                       Args, 2, ResultTy,
1406                                                       OpLoc));
1407      } else {
1408        // We matched a built-in operator. Convert the arguments, then
1409        // break out so that we will build the appropriate built-in
1410        // operator node.
1411        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1412                                      "passing"))
1413          return ExprError();
1414
1415        break;
1416      }
1417    }
1418
1419    case OR_No_Viable_Function:
1420      // No viable function; fall through to handling this as a
1421      // built-in operator, which will produce an error message for us.
1422      break;
1423
1424    case OR_Ambiguous:
1425      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1426          << UnaryOperator::getOpcodeStr(Opc)
1427          << Arg->getSourceRange();
1428      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1429      return ExprError();
1430
1431    case OR_Deleted:
1432      Diag(OpLoc, diag::err_ovl_deleted_oper)
1433        << Best->Function->isDeleted()
1434        << UnaryOperator::getOpcodeStr(Opc)
1435        << Arg->getSourceRange();
1436      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1437      return ExprError();
1438    }
1439
1440    // Either we found no viable overloaded operator or we matched a
1441    // built-in operator. In either case, fall through to trying to
1442    // build a built-in operation.
1443  }
1444
1445  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1446                                                 Opc == UnaryOperator::PostInc);
1447  if (result.isNull())
1448    return ExprError();
1449  Input.release();
1450  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1451}
1452
1453Action::OwningExprResult
1454Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1455                              ExprArg Idx, SourceLocation RLoc) {
1456  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1457       *RHSExp = static_cast<Expr*>(Idx.get());
1458
1459  if (getLangOptions().CPlusPlus &&
1460      (LHSExp->getType()->isRecordType() ||
1461       LHSExp->getType()->isEnumeralType() ||
1462       RHSExp->getType()->isRecordType() ||
1463       RHSExp->getType()->isEnumeralType())) {
1464    // Add the appropriate overloaded operators (C++ [over.match.oper])
1465    // to the candidate set.
1466    OverloadCandidateSet CandidateSet;
1467    Expr *Args[2] = { LHSExp, RHSExp };
1468    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1469                          SourceRange(LLoc, RLoc));
1470
1471    // Perform overload resolution.
1472    OverloadCandidateSet::iterator Best;
1473    switch (BestViableFunction(CandidateSet, Best)) {
1474    case OR_Success: {
1475      // We found a built-in operator or an overloaded operator.
1476      FunctionDecl *FnDecl = Best->Function;
1477
1478      if (FnDecl) {
1479        // We matched an overloaded operator. Build a call to that
1480        // operator.
1481
1482        // Convert the arguments.
1483        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1484          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1485              PerformCopyInitialization(RHSExp,
1486                                        FnDecl->getParamDecl(0)->getType(),
1487                                        "passing"))
1488            return ExprError();
1489        } else {
1490          // Convert the arguments.
1491          if (PerformCopyInitialization(LHSExp,
1492                                        FnDecl->getParamDecl(0)->getType(),
1493                                        "passing") ||
1494              PerformCopyInitialization(RHSExp,
1495                                        FnDecl->getParamDecl(1)->getType(),
1496                                        "passing"))
1497            return ExprError();
1498        }
1499
1500        // Determine the result type
1501        QualType ResultTy
1502          = FnDecl->getType()->getAsFunctionType()->getResultType();
1503        ResultTy = ResultTy.getNonReferenceType();
1504
1505        // Build the actual expression node.
1506        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1507                                                 SourceLocation());
1508        UsualUnaryConversions(FnExpr);
1509
1510        Base.release();
1511        Idx.release();
1512        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1513                                                       FnExpr, Args, 2,
1514                                                       ResultTy, LLoc));
1515      } else {
1516        // We matched a built-in operator. Convert the arguments, then
1517        // break out so that we will build the appropriate built-in
1518        // operator node.
1519        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1520                                      "passing") ||
1521            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1522                                      "passing"))
1523          return ExprError();
1524
1525        break;
1526      }
1527    }
1528
1529    case OR_No_Viable_Function:
1530      // No viable function; fall through to handling this as a
1531      // built-in operator, which will produce an error message for us.
1532      break;
1533
1534    case OR_Ambiguous:
1535      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1536          << "[]"
1537          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1538      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1539      return ExprError();
1540
1541    case OR_Deleted:
1542      Diag(LLoc, diag::err_ovl_deleted_oper)
1543        << Best->Function->isDeleted()
1544        << "[]"
1545        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1546      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1547      return ExprError();
1548    }
1549
1550    // Either we found no viable overloaded operator or we matched a
1551    // built-in operator. In either case, fall through to trying to
1552    // build a built-in operation.
1553  }
1554
1555  // Perform default conversions.
1556  DefaultFunctionArrayConversion(LHSExp);
1557  DefaultFunctionArrayConversion(RHSExp);
1558
1559  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1560
1561  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1562  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1563  // in the subscript position. As a result, we need to derive the array base
1564  // and index from the expression types.
1565  Expr *BaseExpr, *IndexExpr;
1566  QualType ResultType;
1567  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1568    BaseExpr = LHSExp;
1569    IndexExpr = RHSExp;
1570    ResultType = Context.DependentTy;
1571  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1572    BaseExpr = LHSExp;
1573    IndexExpr = RHSExp;
1574    // FIXME: need to deal with const...
1575    ResultType = PTy->getPointeeType();
1576  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1577     // Handle the uncommon case of "123[Ptr]".
1578    BaseExpr = RHSExp;
1579    IndexExpr = LHSExp;
1580    // FIXME: need to deal with const...
1581    ResultType = PTy->getPointeeType();
1582  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1583    BaseExpr = LHSExp;    // vectors: V[123]
1584    IndexExpr = RHSExp;
1585
1586    // FIXME: need to deal with const...
1587    ResultType = VTy->getElementType();
1588  } else {
1589    return ExprError(Diag(LHSExp->getLocStart(),
1590      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1591  }
1592  // C99 6.5.2.1p1
1593  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1594    return ExprError(Diag(IndexExpr->getLocStart(),
1595      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1596
1597  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1598  // the following check catches trying to index a pointer to a function (e.g.
1599  // void (*)(int)) and pointers to incomplete types.  Functions are not
1600  // objects in C99.
1601  if (!ResultType->isObjectType() && !ResultType->isDependentType())
1602    return ExprError(Diag(BaseExpr->getLocStart(),
1603                diag::err_typecheck_subscript_not_object)
1604      << BaseExpr->getType() << BaseExpr->getSourceRange());
1605
1606  Base.release();
1607  Idx.release();
1608  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1609                                                ResultType, RLoc));
1610}
1611
1612QualType Sema::
1613CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1614                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1615  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1616
1617  // The vector accessor can't exceed the number of elements.
1618  const char *compStr = CompName.getName();
1619
1620  // This flag determines whether or not the component is one of the four
1621  // special names that indicate a subset of exactly half the elements are
1622  // to be selected.
1623  bool HalvingSwizzle = false;
1624
1625  // This flag determines whether or not CompName has an 's' char prefix,
1626  // indicating that it is a string of hex values to be used as vector indices.
1627  bool HexSwizzle = *compStr == 's';
1628
1629  // Check that we've found one of the special components, or that the component
1630  // names must come from the same set.
1631  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1632      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1633    HalvingSwizzle = true;
1634  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1635    do
1636      compStr++;
1637    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1638  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1639    do
1640      compStr++;
1641    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1642  }
1643
1644  if (!HalvingSwizzle && *compStr) {
1645    // We didn't get to the end of the string. This means the component names
1646    // didn't come from the same set *or* we encountered an illegal name.
1647    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1648      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1649    return QualType();
1650  }
1651
1652  // Ensure no component accessor exceeds the width of the vector type it
1653  // operates on.
1654  if (!HalvingSwizzle) {
1655    compStr = CompName.getName();
1656
1657    if (HexSwizzle)
1658      compStr++;
1659
1660    while (*compStr) {
1661      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1662        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1663          << baseType << SourceRange(CompLoc);
1664        return QualType();
1665      }
1666    }
1667  }
1668
1669  // If this is a halving swizzle, verify that the base type has an even
1670  // number of elements.
1671  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1672    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1673      << baseType << SourceRange(CompLoc);
1674    return QualType();
1675  }
1676
1677  // The component accessor looks fine - now we need to compute the actual type.
1678  // The vector type is implied by the component accessor. For example,
1679  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1680  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1681  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1682  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1683                                     : CompName.getLength();
1684  if (HexSwizzle)
1685    CompSize--;
1686
1687  if (CompSize == 1)
1688    return vecType->getElementType();
1689
1690  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1691  // Now look up the TypeDefDecl from the vector type. Without this,
1692  // diagostics look bad. We want extended vector types to appear built-in.
1693  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1694    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1695      return Context.getTypedefType(ExtVectorDecls[i]);
1696  }
1697  return VT; // should never get here (a typedef type should always be found).
1698}
1699
1700static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1701                                                IdentifierInfo &Member,
1702                                                const Selector &Sel) {
1703
1704  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
1705    return PD;
1706  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1707    return OMD;
1708
1709  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1710       E = PDecl->protocol_end(); I != E; ++I) {
1711    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel))
1712      return D;
1713  }
1714  return 0;
1715}
1716
1717static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1718                                IdentifierInfo &Member,
1719                                const Selector &Sel) {
1720  // Check protocols on qualified interfaces.
1721  Decl *GDecl = 0;
1722  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1723       E = QIdTy->qual_end(); I != E; ++I) {
1724    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1725      GDecl = PD;
1726      break;
1727    }
1728    // Also must look for a getter name which uses property syntax.
1729    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1730      GDecl = OMD;
1731      break;
1732    }
1733  }
1734  if (!GDecl) {
1735    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1736         E = QIdTy->qual_end(); I != E; ++I) {
1737      // Search in the protocol-qualifier list of current protocol.
1738      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel);
1739      if (GDecl)
1740        return GDecl;
1741    }
1742  }
1743  return GDecl;
1744}
1745
1746Action::OwningExprResult
1747Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1748                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1749                               IdentifierInfo &Member,
1750                               DeclTy *ObjCImpDecl) {
1751  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1752  assert(BaseExpr && "no record expression");
1753
1754  // Perform default conversions.
1755  DefaultFunctionArrayConversion(BaseExpr);
1756
1757  QualType BaseType = BaseExpr->getType();
1758  assert(!BaseType.isNull() && "no type for member expression");
1759
1760  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1761  // must have pointer type, and the accessed type is the pointee.
1762  if (OpKind == tok::arrow) {
1763    if (const PointerType *PT = BaseType->getAsPointerType())
1764      BaseType = PT->getPointeeType();
1765    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1766      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1767                                            MemberLoc, Member));
1768    else
1769      return ExprError(Diag(MemberLoc,
1770                            diag::err_typecheck_member_reference_arrow)
1771        << BaseType << BaseExpr->getSourceRange());
1772  }
1773
1774  // Handle field access to simple records.  This also handles access to fields
1775  // of the ObjC 'id' struct.
1776  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1777    RecordDecl *RDecl = RTy->getDecl();
1778    if (RequireCompleteType(OpLoc, BaseType,
1779                               diag::err_typecheck_incomplete_tag,
1780                               BaseExpr->getSourceRange()))
1781      return ExprError();
1782
1783    // The record definition is complete, now make sure the member is valid.
1784    // FIXME: Qualified name lookup for C++ is a bit more complicated
1785    // than this.
1786    LookupResult Result
1787      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1788                            LookupMemberName, false);
1789
1790    NamedDecl *MemberDecl = 0;
1791    if (!Result)
1792      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1793               << &Member << BaseExpr->getSourceRange());
1794    else if (Result.isAmbiguous()) {
1795      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1796                              MemberLoc, BaseExpr->getSourceRange());
1797      return ExprError();
1798    } else
1799      MemberDecl = Result;
1800
1801    // If the decl being referenced had an error, return an error for this
1802    // sub-expr without emitting another error, in order to avoid cascading
1803    // error cases.
1804    if (MemberDecl->isInvalidDecl())
1805      return ExprError();
1806
1807    // Check the use of this field
1808    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1809      return ExprError();
1810
1811    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1812      // We may have found a field within an anonymous union or struct
1813      // (C++ [class.union]).
1814      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1815        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1816                                                        BaseExpr, OpLoc);
1817
1818      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1819      // FIXME: Handle address space modifiers
1820      QualType MemberType = FD->getType();
1821      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1822        MemberType = Ref->getPointeeType();
1823      else {
1824        unsigned combinedQualifiers =
1825          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1826        if (FD->isMutable())
1827          combinedQualifiers &= ~QualType::Const;
1828        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1829      }
1830
1831      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1832                                            MemberLoc, MemberType));
1833    } else if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
1834      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1835                                  Var, MemberLoc,
1836                                  Var->getType().getNonReferenceType()));
1837    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1838      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1839                                  MemberFn, MemberLoc, MemberFn->getType()));
1840    else if (OverloadedFunctionDecl *Ovl
1841             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1842      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1843                                  MemberLoc, Context.OverloadTy));
1844    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1845      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1846                                            Enum, MemberLoc, Enum->getType()));
1847    else if (isa<TypeDecl>(MemberDecl))
1848      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1849        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1850
1851    // We found a declaration kind that we didn't expect. This is a
1852    // generic error message that tells the user that she can't refer
1853    // to this member with '.' or '->'.
1854    return ExprError(Diag(MemberLoc,
1855                          diag::err_typecheck_member_reference_unknown)
1856      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1857  }
1858
1859  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1860  // (*Obj).ivar.
1861  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1862    ObjCInterfaceDecl *ClassDeclared;
1863    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member,
1864                                                             ClassDeclared)) {
1865      // If the decl being referenced had an error, return an error for this
1866      // sub-expr without emitting another error, in order to avoid cascading
1867      // error cases.
1868      if (IV->isInvalidDecl())
1869        return ExprError();
1870
1871      // Check whether we can reference this field.
1872      if (DiagnoseUseOfDecl(IV, MemberLoc))
1873        return ExprError();
1874      if (IV->getAccessControl() != ObjCIvarDecl::Public) {
1875        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1876        if (ObjCMethodDecl *MD = getCurMethodDecl())
1877          ClassOfMethodDecl =  MD->getClassInterface();
1878        else if (ObjCImpDecl && getCurFunctionDecl()) {
1879          // Case of a c-function declared inside an objc implementation.
1880          // FIXME: For a c-style function nested inside an objc implementation
1881          // class, there is no implementation context available, so we pass down
1882          // the context as argument to this routine. Ideally, this context need
1883          // be passed down in the AST node and somehow calculated from the AST
1884          // for a function decl.
1885          Decl *ImplDecl = static_cast<Decl *>(ObjCImpDecl);
1886          if (ObjCImplementationDecl *IMPD =
1887              dyn_cast<ObjCImplementationDecl>(ImplDecl))
1888            ClassOfMethodDecl = IMPD->getClassInterface();
1889          else if (ObjCCategoryImplDecl* CatImplClass =
1890                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
1891            ClassOfMethodDecl = CatImplClass->getClassInterface();
1892        }
1893        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1894          if (ClassDeclared != IFTy->getDecl() ||
1895              ClassOfMethodDecl != ClassDeclared)
1896            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
1897        }
1898        // @protected
1899        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
1900          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
1901      }
1902
1903      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1904                                                 MemberLoc, BaseExpr,
1905                                                 OpKind == tok::arrow);
1906      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1907      return Owned(MRef);
1908    }
1909    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1910                       << IFTy->getDecl()->getDeclName() << &Member
1911                       << BaseExpr->getSourceRange());
1912  }
1913
1914  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1915  // pointer to a (potentially qualified) interface type.
1916  const PointerType *PTy;
1917  const ObjCInterfaceType *IFTy;
1918  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1919      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1920    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1921
1922    // Search for a declared property first.
1923    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
1924      // Check whether we can reference this property.
1925      if (DiagnoseUseOfDecl(PD, MemberLoc))
1926        return ExprError();
1927
1928      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1929                                                     MemberLoc, BaseExpr));
1930    }
1931
1932    // Check protocols on qualified interfaces.
1933    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1934         E = IFTy->qual_end(); I != E; ++I)
1935      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
1936        // Check whether we can reference this property.
1937        if (DiagnoseUseOfDecl(PD, MemberLoc))
1938          return ExprError();
1939
1940        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1941                                                       MemberLoc, BaseExpr));
1942      }
1943
1944    // If that failed, look for an "implicit" property by seeing if the nullary
1945    // selector is implemented.
1946
1947    // FIXME: The logic for looking up nullary and unary selectors should be
1948    // shared with the code in ActOnInstanceMessage.
1949
1950    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1951    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1952
1953    // If this reference is in an @implementation, check for 'private' methods.
1954    if (!Getter)
1955      if (ObjCImplementationDecl *ImpDecl =
1956          ObjCImplementations[IFace->getIdentifier()])
1957        Getter = ImpDecl->getInstanceMethod(Sel);
1958
1959    // Look through local category implementations associated with the class.
1960    if (!Getter) {
1961      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1962        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1963          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1964      }
1965    }
1966    if (Getter) {
1967      // Check if we can reference this property.
1968      if (DiagnoseUseOfDecl(Getter, MemberLoc))
1969        return ExprError();
1970    }
1971    // If we found a getter then this may be a valid dot-reference, we
1972    // will look for the matching setter, in case it is needed.
1973    Selector SetterSel =
1974      SelectorTable::constructSetterName(PP.getIdentifierTable(),
1975                                         PP.getSelectorTable(), &Member);
1976    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1977    if (!Setter) {
1978      // If this reference is in an @implementation, also check for 'private'
1979      // methods.
1980      if (ObjCImplementationDecl *ImpDecl =
1981          ObjCImplementations[IFace->getIdentifier()])
1982        Setter = ImpDecl->getInstanceMethod(SetterSel);
1983    }
1984    // Look through local category implementations associated with the class.
1985    if (!Setter) {
1986      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1987        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1988          Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1989      }
1990    }
1991
1992    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1993      return ExprError();
1994
1995    if (Getter || Setter) {
1996      QualType PType;
1997
1998      if (Getter)
1999        PType = Getter->getResultType();
2000      else {
2001        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2002             E = Setter->param_end(); PI != E; ++PI)
2003          PType = (*PI)->getType();
2004      }
2005      // FIXME: we must check that the setter has property type.
2006      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2007                                      Setter, MemberLoc, BaseExpr));
2008    }
2009    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2010      << &Member << BaseType);
2011  }
2012  // Handle properties on qualified "id" protocols.
2013  const ObjCQualifiedIdType *QIdTy;
2014  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2015    // Check protocols on qualified interfaces.
2016    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2017    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel)) {
2018      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2019        // Check the use of this declaration
2020        if (DiagnoseUseOfDecl(PD, MemberLoc))
2021          return ExprError();
2022
2023        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2024                                                       MemberLoc, BaseExpr));
2025      }
2026      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2027        // Check the use of this method.
2028        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2029          return ExprError();
2030
2031        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2032                                                   OMD->getResultType(),
2033                                                   OMD, OpLoc, MemberLoc,
2034                                                   NULL, 0));
2035      }
2036    }
2037
2038    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2039                       << &Member << BaseType);
2040  }
2041  // Handle properties on ObjC 'Class' types.
2042  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2043    // Also must look for a getter name which uses property syntax.
2044    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2045    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2046      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2047      ObjCMethodDecl *Getter;
2048      // FIXME: need to also look locally in the implementation.
2049      if ((Getter = IFace->lookupClassMethod(Sel))) {
2050        // Check the use of this method.
2051        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2052          return ExprError();
2053      }
2054      // If we found a getter then this may be a valid dot-reference, we
2055      // will look for the matching setter, in case it is needed.
2056      Selector SetterSel =
2057        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2058                                           PP.getSelectorTable(), &Member);
2059      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2060      if (!Setter) {
2061        // If this reference is in an @implementation, also check for 'private'
2062        // methods.
2063        if (ObjCImplementationDecl *ImpDecl =
2064            ObjCImplementations[IFace->getIdentifier()])
2065          Setter = ImpDecl->getInstanceMethod(SetterSel);
2066      }
2067      // Look through local category implementations associated with the class.
2068      if (!Setter) {
2069        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2070          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2071            Setter = ObjCCategoryImpls[i]->getClassMethod(SetterSel);
2072        }
2073      }
2074
2075      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2076        return ExprError();
2077
2078      if (Getter || Setter) {
2079        QualType PType;
2080
2081        if (Getter)
2082          PType = Getter->getResultType();
2083        else {
2084          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2085               E = Setter->param_end(); PI != E; ++PI)
2086            PType = (*PI)->getType();
2087        }
2088        // FIXME: we must check that the setter has property type.
2089        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2090                                        Setter, MemberLoc, BaseExpr));
2091      }
2092      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2093        << &Member << BaseType);
2094    }
2095  }
2096
2097  // Handle 'field access' to vectors, such as 'V.xx'.
2098  if (BaseType->isExtVectorType()) {
2099    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2100    if (ret.isNull())
2101      return ExprError();
2102    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2103                                                    MemberLoc));
2104  }
2105
2106  return ExprError(Diag(MemberLoc,
2107                        diag::err_typecheck_member_reference_struct_union)
2108                     << BaseType << BaseExpr->getSourceRange());
2109}
2110
2111/// ConvertArgumentsForCall - Converts the arguments specified in
2112/// Args/NumArgs to the parameter types of the function FDecl with
2113/// function prototype Proto. Call is the call expression itself, and
2114/// Fn is the function expression. For a C++ member function, this
2115/// routine does not attempt to convert the object argument. Returns
2116/// true if the call is ill-formed.
2117bool
2118Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2119                              FunctionDecl *FDecl,
2120                              const FunctionProtoType *Proto,
2121                              Expr **Args, unsigned NumArgs,
2122                              SourceLocation RParenLoc) {
2123  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2124  // assignment, to the types of the corresponding parameter, ...
2125  unsigned NumArgsInProto = Proto->getNumArgs();
2126  unsigned NumArgsToCheck = NumArgs;
2127  bool Invalid = false;
2128
2129  // If too few arguments are available (and we don't have default
2130  // arguments for the remaining parameters), don't make the call.
2131  if (NumArgs < NumArgsInProto) {
2132    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2133      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2134        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2135    // Use default arguments for missing arguments
2136    NumArgsToCheck = NumArgsInProto;
2137    Call->setNumArgs(Context, NumArgsInProto);
2138  }
2139
2140  // If too many are passed and not variadic, error on the extras and drop
2141  // them.
2142  if (NumArgs > NumArgsInProto) {
2143    if (!Proto->isVariadic()) {
2144      Diag(Args[NumArgsInProto]->getLocStart(),
2145           diag::err_typecheck_call_too_many_args)
2146        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2147        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2148                       Args[NumArgs-1]->getLocEnd());
2149      // This deletes the extra arguments.
2150      Call->setNumArgs(Context, NumArgsInProto);
2151      Invalid = true;
2152    }
2153    NumArgsToCheck = NumArgsInProto;
2154  }
2155
2156  // Continue to check argument types (even if we have too few/many args).
2157  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2158    QualType ProtoArgType = Proto->getArgType(i);
2159
2160    Expr *Arg;
2161    if (i < NumArgs) {
2162      Arg = Args[i];
2163
2164      // Pass the argument.
2165      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2166        return true;
2167    } else
2168      // We already type-checked the argument, so we know it works.
2169      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2170    QualType ArgType = Arg->getType();
2171
2172    Call->setArg(i, Arg);
2173  }
2174
2175  // If this is a variadic call, handle args passed through "...".
2176  if (Proto->isVariadic()) {
2177    VariadicCallType CallType = VariadicFunction;
2178    if (Fn->getType()->isBlockPointerType())
2179      CallType = VariadicBlock; // Block
2180    else if (isa<MemberExpr>(Fn))
2181      CallType = VariadicMethod;
2182
2183    // Promote the arguments (C99 6.5.2.2p7).
2184    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2185      Expr *Arg = Args[i];
2186      DefaultVariadicArgumentPromotion(Arg, CallType);
2187      Call->setArg(i, Arg);
2188    }
2189  }
2190
2191  return Invalid;
2192}
2193
2194/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2195/// This provides the location of the left/right parens and a list of comma
2196/// locations.
2197Action::OwningExprResult
2198Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2199                    MultiExprArg args,
2200                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2201  unsigned NumArgs = args.size();
2202  Expr *Fn = static_cast<Expr *>(fn.release());
2203  Expr **Args = reinterpret_cast<Expr**>(args.release());
2204  assert(Fn && "no function call expression");
2205  FunctionDecl *FDecl = NULL;
2206  DeclarationName UnqualifiedName;
2207
2208  if (getLangOptions().CPlusPlus) {
2209    // Determine whether this is a dependent call inside a C++ template,
2210    // in which case we won't do any semantic analysis now.
2211    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
2212    bool Dependent = false;
2213    if (Fn->isTypeDependent())
2214      Dependent = true;
2215    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2216      Dependent = true;
2217
2218    if (Dependent)
2219      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2220                                          Context.DependentTy, RParenLoc));
2221
2222    // Determine whether this is a call to an object (C++ [over.call.object]).
2223    if (Fn->getType()->isRecordType())
2224      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2225                                                CommaLocs, RParenLoc));
2226
2227    // Determine whether this is a call to a member function.
2228    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2229      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2230          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2231        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2232                                               CommaLocs, RParenLoc));
2233  }
2234
2235  // If we're directly calling a function, get the appropriate declaration.
2236  DeclRefExpr *DRExpr = NULL;
2237  Expr *FnExpr = Fn;
2238  bool ADL = true;
2239  while (true) {
2240    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2241      FnExpr = IcExpr->getSubExpr();
2242    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2243      // Parentheses around a function disable ADL
2244      // (C++0x [basic.lookup.argdep]p1).
2245      ADL = false;
2246      FnExpr = PExpr->getSubExpr();
2247    } else if (isa<UnaryOperator>(FnExpr) &&
2248               cast<UnaryOperator>(FnExpr)->getOpcode()
2249                 == UnaryOperator::AddrOf) {
2250      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2251    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2252      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2253      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2254      break;
2255    } else if (UnresolvedFunctionNameExpr *DepName
2256                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2257      UnqualifiedName = DepName->getName();
2258      break;
2259    } else {
2260      // Any kind of name that does not refer to a declaration (or
2261      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2262      ADL = false;
2263      break;
2264    }
2265  }
2266
2267  OverloadedFunctionDecl *Ovl = 0;
2268  if (DRExpr) {
2269    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2270    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2271  }
2272
2273  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2274    // We don't perform ADL for implicit declarations of builtins.
2275    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2276      ADL = false;
2277
2278    // We don't perform ADL in C.
2279    if (!getLangOptions().CPlusPlus)
2280      ADL = false;
2281
2282    if (Ovl || ADL) {
2283      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2284                                      UnqualifiedName, LParenLoc, Args,
2285                                      NumArgs, CommaLocs, RParenLoc, ADL);
2286      if (!FDecl)
2287        return ExprError();
2288
2289      // Update Fn to refer to the actual function selected.
2290      Expr *NewFn = 0;
2291      if (QualifiedDeclRefExpr *QDRExpr
2292            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2293        NewFn = QualifiedDeclRefExpr::Create(Context, FDecl, FDecl->getType(),
2294                                             QDRExpr->getLocation(),
2295                                             false, false,
2296                                             QDRExpr->getQualifierRange(),
2297                                             QDRExpr->begin(),
2298                                             QDRExpr->size());
2299      else
2300        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2301                                          Fn->getSourceRange().getBegin());
2302      Fn->Destroy(Context);
2303      Fn = NewFn;
2304    }
2305  }
2306
2307  // Promote the function operand.
2308  UsualUnaryConversions(Fn);
2309
2310  // Make the call expr early, before semantic checks.  This guarantees cleanup
2311  // of arguments and function on error.
2312  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2313                                                               Args, NumArgs,
2314                                                               Context.BoolTy,
2315                                                               RParenLoc));
2316
2317  const FunctionType *FuncT;
2318  if (!Fn->getType()->isBlockPointerType()) {
2319    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2320    // have type pointer to function".
2321    const PointerType *PT = Fn->getType()->getAsPointerType();
2322    if (PT == 0)
2323      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2324        << Fn->getType() << Fn->getSourceRange());
2325    FuncT = PT->getPointeeType()->getAsFunctionType();
2326  } else { // This is a block call.
2327    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2328                getAsFunctionType();
2329  }
2330  if (FuncT == 0)
2331    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2332      << Fn->getType() << Fn->getSourceRange());
2333
2334  // We know the result type of the call, set it.
2335  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2336
2337  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2338    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2339                                RParenLoc))
2340      return ExprError();
2341  } else {
2342    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2343
2344    // Promote the arguments (C99 6.5.2.2p6).
2345    for (unsigned i = 0; i != NumArgs; i++) {
2346      Expr *Arg = Args[i];
2347      DefaultArgumentPromotion(Arg);
2348      TheCall->setArg(i, Arg);
2349    }
2350  }
2351
2352  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2353    if (!Method->isStatic())
2354      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2355        << Fn->getSourceRange());
2356
2357  // Do special checking on direct calls to functions.
2358  if (FDecl)
2359    return CheckFunctionCall(FDecl, TheCall.take());
2360
2361  return Owned(TheCall.take());
2362}
2363
2364Action::OwningExprResult
2365Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2366                           SourceLocation RParenLoc, ExprArg InitExpr) {
2367  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2368  QualType literalType = QualType::getFromOpaquePtr(Ty);
2369  // FIXME: put back this assert when initializers are worked out.
2370  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2371  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2372
2373  if (literalType->isArrayType()) {
2374    if (literalType->isVariableArrayType())
2375      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2376        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2377  } else if (RequireCompleteType(LParenLoc, literalType,
2378                                    diag::err_typecheck_decl_incomplete_type,
2379                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2380    return ExprError();
2381
2382  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2383                            DeclarationName(), /*FIXME:DirectInit=*/false))
2384    return ExprError();
2385
2386  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2387  if (isFileScope) { // 6.5.2.5p3
2388    if (CheckForConstantInitializer(literalExpr, literalType))
2389      return ExprError();
2390  }
2391  InitExpr.release();
2392  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2393                                                 literalExpr, isFileScope));
2394}
2395
2396Action::OwningExprResult
2397Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2398                    SourceLocation RBraceLoc) {
2399  unsigned NumInit = initlist.size();
2400  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2401
2402  // Semantic analysis for initializers is done by ActOnDeclarator() and
2403  // CheckInitializer() - it requires knowledge of the object being intialized.
2404
2405  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2406                                               RBraceLoc);
2407  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2408  return Owned(E);
2409}
2410
2411/// CheckCastTypes - Check type constraints for casting between types.
2412bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2413  UsualUnaryConversions(castExpr);
2414
2415  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2416  // type needs to be scalar.
2417  if (castType->isVoidType()) {
2418    // Cast to void allows any expr type.
2419  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2420    // We can't check any more until template instantiation time.
2421  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2422    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2423        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2424        (castType->isStructureType() || castType->isUnionType())) {
2425      // GCC struct/union extension: allow cast to self.
2426      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2427        << castType << castExpr->getSourceRange();
2428    } else if (castType->isUnionType()) {
2429      // GCC cast to union extension
2430      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2431      RecordDecl::field_iterator Field, FieldEnd;
2432      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2433           Field != FieldEnd; ++Field) {
2434        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2435            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2436          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2437            << castExpr->getSourceRange();
2438          break;
2439        }
2440      }
2441      if (Field == FieldEnd)
2442        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2443          << castExpr->getType() << castExpr->getSourceRange();
2444    } else {
2445      // Reject any other conversions to non-scalar types.
2446      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2447        << castType << castExpr->getSourceRange();
2448    }
2449  } else if (!castExpr->getType()->isScalarType() &&
2450             !castExpr->getType()->isVectorType()) {
2451    return Diag(castExpr->getLocStart(),
2452                diag::err_typecheck_expect_scalar_operand)
2453      << castExpr->getType() << castExpr->getSourceRange();
2454  } else if (castExpr->getType()->isVectorType()) {
2455    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2456      return true;
2457  } else if (castType->isVectorType()) {
2458    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2459      return true;
2460  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2461    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2462  }
2463  return false;
2464}
2465
2466bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2467  assert(VectorTy->isVectorType() && "Not a vector type!");
2468
2469  if (Ty->isVectorType() || Ty->isIntegerType()) {
2470    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2471      return Diag(R.getBegin(),
2472                  Ty->isVectorType() ?
2473                  diag::err_invalid_conversion_between_vectors :
2474                  diag::err_invalid_conversion_between_vector_and_integer)
2475        << VectorTy << Ty << R;
2476  } else
2477    return Diag(R.getBegin(),
2478                diag::err_invalid_conversion_between_vector_and_scalar)
2479      << VectorTy << Ty << R;
2480
2481  return false;
2482}
2483
2484Action::OwningExprResult
2485Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2486                    SourceLocation RParenLoc, ExprArg Op) {
2487  assert((Ty != 0) && (Op.get() != 0) &&
2488         "ActOnCastExpr(): missing type or expr");
2489
2490  Expr *castExpr = static_cast<Expr*>(Op.release());
2491  QualType castType = QualType::getFromOpaquePtr(Ty);
2492
2493  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2494    return ExprError();
2495  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2496                                            LParenLoc, RParenLoc));
2497}
2498
2499/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2500/// In that case, lhs = cond.
2501/// C99 6.5.15
2502QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2503                                        SourceLocation QuestionLoc) {
2504  UsualUnaryConversions(Cond);
2505  UsualUnaryConversions(LHS);
2506  UsualUnaryConversions(RHS);
2507  QualType CondTy = Cond->getType();
2508  QualType LHSTy = LHS->getType();
2509  QualType RHSTy = RHS->getType();
2510
2511  // first, check the condition.
2512  if (!Cond->isTypeDependent()) {
2513    if (!CondTy->isScalarType()) { // C99 6.5.15p2
2514      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2515        << CondTy;
2516      return QualType();
2517    }
2518  }
2519
2520  // Now check the two expressions.
2521  if ((LHS && LHS->isTypeDependent()) || (RHS && RHS->isTypeDependent()))
2522    return Context.DependentTy;
2523
2524  // If both operands have arithmetic type, do the usual arithmetic conversions
2525  // to find a common type: C99 6.5.15p3,5.
2526  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2527    UsualArithmeticConversions(LHS, RHS);
2528    return LHS->getType();
2529  }
2530
2531  // If both operands are the same structure or union type, the result is that
2532  // type.
2533  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2534    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2535      if (LHSRT->getDecl() == RHSRT->getDecl())
2536        // "If both the operands have structure or union type, the result has
2537        // that type."  This implies that CV qualifiers are dropped.
2538        return LHSTy.getUnqualifiedType();
2539  }
2540
2541  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2542  // The following || allows only one side to be void (a GCC-ism).
2543  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2544    if (!LHSTy->isVoidType())
2545      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2546        << RHS->getSourceRange();
2547    if (!RHSTy->isVoidType())
2548      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2549        << LHS->getSourceRange();
2550    ImpCastExprToType(LHS, Context.VoidTy);
2551    ImpCastExprToType(RHS, Context.VoidTy);
2552    return Context.VoidTy;
2553  }
2554  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2555  // the type of the other operand."
2556  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2557       Context.isObjCObjectPointerType(LHSTy)) &&
2558      RHS->isNullPointerConstant(Context)) {
2559    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2560    return LHSTy;
2561  }
2562  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2563       Context.isObjCObjectPointerType(RHSTy)) &&
2564      LHS->isNullPointerConstant(Context)) {
2565    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2566    return RHSTy;
2567  }
2568
2569  // Handle the case where both operands are pointers before we handle null
2570  // pointer constants in case both operands are null pointer constants.
2571  if (const PointerType *LHSPT = LHSTy->getAsPointerType()) { // C99 6.5.15p3,6
2572    if (const PointerType *RHSPT = RHSTy->getAsPointerType()) {
2573      // get the "pointed to" types
2574      QualType lhptee = LHSPT->getPointeeType();
2575      QualType rhptee = RHSPT->getPointeeType();
2576
2577      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2578      if (lhptee->isVoidType() &&
2579          rhptee->isIncompleteOrObjectType()) {
2580        // Figure out necessary qualifiers (C99 6.5.15p6)
2581        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2582        QualType destType = Context.getPointerType(destPointee);
2583        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2584        ImpCastExprToType(RHS, destType); // promote to void*
2585        return destType;
2586      }
2587      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2588        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2589        QualType destType = Context.getPointerType(destPointee);
2590        ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2591        ImpCastExprToType(RHS, destType); // promote to void*
2592        return destType;
2593      }
2594
2595      if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2596        // Two identical pointer types are always compatible.
2597        return LHSTy;
2598      }
2599
2600      QualType compositeType = LHSTy;
2601
2602      // If either type is an Objective-C object type then check
2603      // compatibility according to Objective-C.
2604      if (Context.isObjCObjectPointerType(LHSTy) ||
2605          Context.isObjCObjectPointerType(RHSTy)) {
2606        // If both operands are interfaces and either operand can be
2607        // assigned to the other, use that type as the composite
2608        // type. This allows
2609        //   xxx ? (A*) a : (B*) b
2610        // where B is a subclass of A.
2611        //
2612        // Additionally, as for assignment, if either type is 'id'
2613        // allow silent coercion. Finally, if the types are
2614        // incompatible then make sure to use 'id' as the composite
2615        // type so the result is acceptable for sending messages to.
2616
2617        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2618        // It could return the composite type.
2619        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2620        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2621        if (LHSIface && RHSIface &&
2622            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2623          compositeType = LHSTy;
2624        } else if (LHSIface && RHSIface &&
2625                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2626          compositeType = RHSTy;
2627        } else if (Context.isObjCIdStructType(lhptee) ||
2628                   Context.isObjCIdStructType(rhptee)) {
2629          compositeType = Context.getObjCIdType();
2630        } else {
2631          Diag(QuestionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2632               << LHSTy << RHSTy
2633               << LHS->getSourceRange() << RHS->getSourceRange();
2634          QualType incompatTy = Context.getObjCIdType();
2635          ImpCastExprToType(LHS, incompatTy);
2636          ImpCastExprToType(RHS, incompatTy);
2637          return incompatTy;
2638        }
2639      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2640                                             rhptee.getUnqualifiedType())) {
2641        Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2642          << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2643        // In this situation, we assume void* type. No especially good
2644        // reason, but this is what gcc does, and we do have to pick
2645        // to get a consistent AST.
2646        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2647        ImpCastExprToType(LHS, incompatTy);
2648        ImpCastExprToType(RHS, incompatTy);
2649        return incompatTy;
2650      }
2651      // The pointer types are compatible.
2652      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2653      // differently qualified versions of compatible types, the result type is
2654      // a pointer to an appropriately qualified version of the *composite*
2655      // type.
2656      // FIXME: Need to calculate the composite type.
2657      // FIXME: Need to add qualifiers
2658      ImpCastExprToType(LHS, compositeType);
2659      ImpCastExprToType(RHS, compositeType);
2660      return compositeType;
2661    }
2662  }
2663
2664  // Selection between block pointer types is ok as long as they are the same.
2665  if (LHSTy->isBlockPointerType() && RHSTy->isBlockPointerType() &&
2666      Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy))
2667    return LHSTy;
2668
2669  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2670  // evaluates to "struct objc_object *" (and is handled above when comparing
2671  // id with statically typed objects).
2672  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
2673    // GCC allows qualified id and any Objective-C type to devolve to
2674    // id. Currently localizing to here until clear this should be
2675    // part of ObjCQualifiedIdTypesAreCompatible.
2676    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
2677        (LHSTy->isObjCQualifiedIdType() &&
2678         Context.isObjCObjectPointerType(RHSTy)) ||
2679        (RHSTy->isObjCQualifiedIdType() &&
2680         Context.isObjCObjectPointerType(LHSTy))) {
2681      // FIXME: This is not the correct composite type. This only
2682      // happens to work because id can more or less be used anywhere,
2683      // however this may change the type of method sends.
2684      // FIXME: gcc adds some type-checking of the arguments and emits
2685      // (confusing) incompatible comparison warnings in some
2686      // cases. Investigate.
2687      QualType compositeType = Context.getObjCIdType();
2688      ImpCastExprToType(LHS, compositeType);
2689      ImpCastExprToType(RHS, compositeType);
2690      return compositeType;
2691    }
2692  }
2693
2694  // Otherwise, the operands are not compatible.
2695  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2696    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
2697  return QualType();
2698}
2699
2700/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2701/// in the case of a the GNU conditional expr extension.
2702Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2703                                                  SourceLocation ColonLoc,
2704                                                  ExprArg Cond, ExprArg LHS,
2705                                                  ExprArg RHS) {
2706  Expr *CondExpr = (Expr *) Cond.get();
2707  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2708
2709  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2710  // was the condition.
2711  bool isLHSNull = LHSExpr == 0;
2712  if (isLHSNull)
2713    LHSExpr = CondExpr;
2714
2715  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2716                                             RHSExpr, QuestionLoc);
2717  if (result.isNull())
2718    return ExprError();
2719
2720  Cond.release();
2721  LHS.release();
2722  RHS.release();
2723  return Owned(new (Context) ConditionalOperator(CondExpr,
2724                                                 isLHSNull ? 0 : LHSExpr,
2725                                                 RHSExpr, result));
2726}
2727
2728
2729// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2730// being closely modeled after the C99 spec:-). The odd characteristic of this
2731// routine is it effectively iqnores the qualifiers on the top level pointee.
2732// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2733// FIXME: add a couple examples in this comment.
2734Sema::AssignConvertType
2735Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2736  QualType lhptee, rhptee;
2737
2738  // get the "pointed to" type (ignoring qualifiers at the top level)
2739  lhptee = lhsType->getAsPointerType()->getPointeeType();
2740  rhptee = rhsType->getAsPointerType()->getPointeeType();
2741
2742  // make sure we operate on the canonical type
2743  lhptee = Context.getCanonicalType(lhptee);
2744  rhptee = Context.getCanonicalType(rhptee);
2745
2746  AssignConvertType ConvTy = Compatible;
2747
2748  // C99 6.5.16.1p1: This following citation is common to constraints
2749  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2750  // qualifiers of the type *pointed to* by the right;
2751  // FIXME: Handle ExtQualType
2752  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2753    ConvTy = CompatiblePointerDiscardsQualifiers;
2754
2755  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2756  // incomplete type and the other is a pointer to a qualified or unqualified
2757  // version of void...
2758  if (lhptee->isVoidType()) {
2759    if (rhptee->isIncompleteOrObjectType())
2760      return ConvTy;
2761
2762    // As an extension, we allow cast to/from void* to function pointer.
2763    assert(rhptee->isFunctionType());
2764    return FunctionVoidPointer;
2765  }
2766
2767  if (rhptee->isVoidType()) {
2768    if (lhptee->isIncompleteOrObjectType())
2769      return ConvTy;
2770
2771    // As an extension, we allow cast to/from void* to function pointer.
2772    assert(lhptee->isFunctionType());
2773    return FunctionVoidPointer;
2774  }
2775  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2776  // unqualified versions of compatible types, ...
2777  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2778                                  rhptee.getUnqualifiedType()))
2779    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2780  return ConvTy;
2781}
2782
2783/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2784/// block pointer types are compatible or whether a block and normal pointer
2785/// are compatible. It is more restrict than comparing two function pointer
2786// types.
2787Sema::AssignConvertType
2788Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2789                                          QualType rhsType) {
2790  QualType lhptee, rhptee;
2791
2792  // get the "pointed to" type (ignoring qualifiers at the top level)
2793  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2794  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2795
2796  // make sure we operate on the canonical type
2797  lhptee = Context.getCanonicalType(lhptee);
2798  rhptee = Context.getCanonicalType(rhptee);
2799
2800  AssignConvertType ConvTy = Compatible;
2801
2802  // For blocks we enforce that qualifiers are identical.
2803  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2804    ConvTy = CompatiblePointerDiscardsQualifiers;
2805
2806  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2807    return IncompatibleBlockPointer;
2808  return ConvTy;
2809}
2810
2811/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2812/// has code to accommodate several GCC extensions when type checking
2813/// pointers. Here are some objectionable examples that GCC considers warnings:
2814///
2815///  int a, *pint;
2816///  short *pshort;
2817///  struct foo *pfoo;
2818///
2819///  pint = pshort; // warning: assignment from incompatible pointer type
2820///  a = pint; // warning: assignment makes integer from pointer without a cast
2821///  pint = a; // warning: assignment makes pointer from integer without a cast
2822///  pint = pfoo; // warning: assignment from incompatible pointer type
2823///
2824/// As a result, the code for dealing with pointers is more complex than the
2825/// C99 spec dictates.
2826///
2827Sema::AssignConvertType
2828Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2829  // Get canonical types.  We're not formatting these types, just comparing
2830  // them.
2831  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2832  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2833
2834  if (lhsType == rhsType)
2835    return Compatible; // Common case: fast path an exact match.
2836
2837  // If the left-hand side is a reference type, then we are in a
2838  // (rare!) case where we've allowed the use of references in C,
2839  // e.g., as a parameter type in a built-in function. In this case,
2840  // just make sure that the type referenced is compatible with the
2841  // right-hand side type. The caller is responsible for adjusting
2842  // lhsType so that the resulting expression does not have reference
2843  // type.
2844  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2845    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2846      return Compatible;
2847    return Incompatible;
2848  }
2849
2850  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2851    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2852      return Compatible;
2853    // Relax integer conversions like we do for pointers below.
2854    if (rhsType->isIntegerType())
2855      return IntToPointer;
2856    if (lhsType->isIntegerType())
2857      return PointerToInt;
2858    return IncompatibleObjCQualifiedId;
2859  }
2860
2861  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2862    // For ExtVector, allow vector splats; float -> <n x float>
2863    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2864      if (LV->getElementType() == rhsType)
2865        return Compatible;
2866
2867    // If we are allowing lax vector conversions, and LHS and RHS are both
2868    // vectors, the total size only needs to be the same. This is a bitcast;
2869    // no bits are changed but the result type is different.
2870    if (getLangOptions().LaxVectorConversions &&
2871        lhsType->isVectorType() && rhsType->isVectorType()) {
2872      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2873        return IncompatibleVectors;
2874    }
2875    return Incompatible;
2876  }
2877
2878  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2879    return Compatible;
2880
2881  if (isa<PointerType>(lhsType)) {
2882    if (rhsType->isIntegerType())
2883      return IntToPointer;
2884
2885    if (isa<PointerType>(rhsType))
2886      return CheckPointerTypesForAssignment(lhsType, rhsType);
2887
2888    if (rhsType->getAsBlockPointerType()) {
2889      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2890        return Compatible;
2891
2892      // Treat block pointers as objects.
2893      if (getLangOptions().ObjC1 &&
2894          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2895        return Compatible;
2896    }
2897    return Incompatible;
2898  }
2899
2900  if (isa<BlockPointerType>(lhsType)) {
2901    if (rhsType->isIntegerType())
2902      return IntToBlockPointer;
2903
2904    // Treat block pointers as objects.
2905    if (getLangOptions().ObjC1 &&
2906        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2907      return Compatible;
2908
2909    if (rhsType->isBlockPointerType())
2910      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2911
2912    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2913      if (RHSPT->getPointeeType()->isVoidType())
2914        return Compatible;
2915    }
2916    return Incompatible;
2917  }
2918
2919  if (isa<PointerType>(rhsType)) {
2920    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2921    if (lhsType == Context.BoolTy)
2922      return Compatible;
2923
2924    if (lhsType->isIntegerType())
2925      return PointerToInt;
2926
2927    if (isa<PointerType>(lhsType))
2928      return CheckPointerTypesForAssignment(lhsType, rhsType);
2929
2930    if (isa<BlockPointerType>(lhsType) &&
2931        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2932      return Compatible;
2933    return Incompatible;
2934  }
2935
2936  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2937    if (Context.typesAreCompatible(lhsType, rhsType))
2938      return Compatible;
2939  }
2940  return Incompatible;
2941}
2942
2943Sema::AssignConvertType
2944Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2945  if (getLangOptions().CPlusPlus) {
2946    if (!lhsType->isRecordType()) {
2947      // C++ 5.17p3: If the left operand is not of class type, the
2948      // expression is implicitly converted (C++ 4) to the
2949      // cv-unqualified type of the left operand.
2950      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2951                                    "assigning"))
2952        return Incompatible;
2953      else
2954        return Compatible;
2955    }
2956
2957    // FIXME: Currently, we fall through and treat C++ classes like C
2958    // structures.
2959  }
2960
2961  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2962  // a null pointer constant.
2963  if ((lhsType->isPointerType() ||
2964       lhsType->isObjCQualifiedIdType() ||
2965       lhsType->isBlockPointerType())
2966      && rExpr->isNullPointerConstant(Context)) {
2967    ImpCastExprToType(rExpr, lhsType);
2968    return Compatible;
2969  }
2970
2971  // This check seems unnatural, however it is necessary to ensure the proper
2972  // conversion of functions/arrays. If the conversion were done for all
2973  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2974  // expressions that surpress this implicit conversion (&, sizeof).
2975  //
2976  // Suppress this for references: C++ 8.5.3p5.
2977  if (!lhsType->isReferenceType())
2978    DefaultFunctionArrayConversion(rExpr);
2979
2980  Sema::AssignConvertType result =
2981    CheckAssignmentConstraints(lhsType, rExpr->getType());
2982
2983  // C99 6.5.16.1p2: The value of the right operand is converted to the
2984  // type of the assignment expression.
2985  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2986  // so that we can use references in built-in functions even in C.
2987  // The getNonReferenceType() call makes sure that the resulting expression
2988  // does not have reference type.
2989  if (rExpr->getType() != lhsType)
2990    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2991  return result;
2992}
2993
2994Sema::AssignConvertType
2995Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2996  return CheckAssignmentConstraints(lhsType, rhsType);
2997}
2998
2999QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3000  Diag(Loc, diag::err_typecheck_invalid_operands)
3001    << lex->getType() << rex->getType()
3002    << lex->getSourceRange() << rex->getSourceRange();
3003  return QualType();
3004}
3005
3006inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3007                                                              Expr *&rex) {
3008  // For conversion purposes, we ignore any qualifiers.
3009  // For example, "const float" and "float" are equivalent.
3010  QualType lhsType =
3011    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3012  QualType rhsType =
3013    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3014
3015  // If the vector types are identical, return.
3016  if (lhsType == rhsType)
3017    return lhsType;
3018
3019  // Handle the case of a vector & extvector type of the same size and element
3020  // type.  It would be nice if we only had one vector type someday.
3021  if (getLangOptions().LaxVectorConversions) {
3022    // FIXME: Should we warn here?
3023    if (const VectorType *LV = lhsType->getAsVectorType()) {
3024      if (const VectorType *RV = rhsType->getAsVectorType())
3025        if (LV->getElementType() == RV->getElementType() &&
3026            LV->getNumElements() == RV->getNumElements()) {
3027          return lhsType->isExtVectorType() ? lhsType : rhsType;
3028        }
3029    }
3030  }
3031
3032  // If the lhs is an extended vector and the rhs is a scalar of the same type
3033  // or a literal, promote the rhs to the vector type.
3034  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3035    QualType eltType = V->getElementType();
3036
3037    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3038        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3039        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3040      ImpCastExprToType(rex, lhsType);
3041      return lhsType;
3042    }
3043  }
3044
3045  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3046  // promote the lhs to the vector type.
3047  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3048    QualType eltType = V->getElementType();
3049
3050    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3051        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3052        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3053      ImpCastExprToType(lex, rhsType);
3054      return rhsType;
3055    }
3056  }
3057
3058  // You cannot convert between vector values of different size.
3059  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3060    << lex->getType() << rex->getType()
3061    << lex->getSourceRange() << rex->getSourceRange();
3062  return QualType();
3063}
3064
3065inline QualType Sema::CheckMultiplyDivideOperands(
3066  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3067{
3068  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3069    return CheckVectorOperands(Loc, lex, rex);
3070
3071  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3072
3073  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3074    return compType;
3075  return InvalidOperands(Loc, lex, rex);
3076}
3077
3078inline QualType Sema::CheckRemainderOperands(
3079  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3080{
3081  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3082    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3083      return CheckVectorOperands(Loc, lex, rex);
3084    return InvalidOperands(Loc, lex, rex);
3085  }
3086
3087  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3088
3089  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3090    return compType;
3091  return InvalidOperands(Loc, lex, rex);
3092}
3093
3094inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3095  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3096{
3097  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3098    return CheckVectorOperands(Loc, lex, rex);
3099
3100  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3101
3102  // handle the common case first (both operands are arithmetic).
3103  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3104    return compType;
3105
3106  // Put any potential pointer into PExp
3107  Expr* PExp = lex, *IExp = rex;
3108  if (IExp->getType()->isPointerType())
3109    std::swap(PExp, IExp);
3110
3111  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
3112    if (IExp->getType()->isIntegerType()) {
3113      // Check for arithmetic on pointers to incomplete types
3114      if (!PTy->getPointeeType()->isObjectType()) {
3115        if (PTy->getPointeeType()->isVoidType()) {
3116          if (getLangOptions().CPlusPlus) {
3117            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3118              << lex->getSourceRange() << rex->getSourceRange();
3119            return QualType();
3120          }
3121
3122          // GNU extension: arithmetic on pointer to void
3123          Diag(Loc, diag::ext_gnu_void_ptr)
3124            << lex->getSourceRange() << rex->getSourceRange();
3125        } else if (PTy->getPointeeType()->isFunctionType()) {
3126          if (getLangOptions().CPlusPlus) {
3127            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3128              << lex->getType() << lex->getSourceRange();
3129            return QualType();
3130          }
3131
3132          // GNU extension: arithmetic on pointer to function
3133          Diag(Loc, diag::ext_gnu_ptr_func_arith)
3134            << lex->getType() << lex->getSourceRange();
3135        } else {
3136          RequireCompleteType(Loc, PTy->getPointeeType(),
3137                                 diag::err_typecheck_arithmetic_incomplete_type,
3138                                 lex->getSourceRange(), SourceRange(),
3139                                 lex->getType());
3140          return QualType();
3141        }
3142      }
3143      return PExp->getType();
3144    }
3145  }
3146
3147  return InvalidOperands(Loc, lex, rex);
3148}
3149
3150// C99 6.5.6
3151QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3152                                        SourceLocation Loc, bool isCompAssign) {
3153  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3154    return CheckVectorOperands(Loc, lex, rex);
3155
3156  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3157
3158  // Enforce type constraints: C99 6.5.6p3.
3159
3160  // Handle the common case first (both operands are arithmetic).
3161  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3162    return compType;
3163
3164  // Either ptr - int   or   ptr - ptr.
3165  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3166    QualType lpointee = LHSPTy->getPointeeType();
3167
3168    // The LHS must be an object type, not incomplete, function, etc.
3169    if (!lpointee->isObjectType()) {
3170      // Handle the GNU void* extension.
3171      if (lpointee->isVoidType()) {
3172        Diag(Loc, diag::ext_gnu_void_ptr)
3173          << lex->getSourceRange() << rex->getSourceRange();
3174      } else if (lpointee->isFunctionType()) {
3175        if (getLangOptions().CPlusPlus) {
3176          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3177            << lex->getType() << lex->getSourceRange();
3178          return QualType();
3179        }
3180
3181        // GNU extension: arithmetic on pointer to function
3182        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3183          << lex->getType() << lex->getSourceRange();
3184      } else {
3185        Diag(Loc, diag::err_typecheck_sub_ptr_object)
3186          << lex->getType() << lex->getSourceRange();
3187        return QualType();
3188      }
3189    }
3190
3191    // The result type of a pointer-int computation is the pointer type.
3192    if (rex->getType()->isIntegerType())
3193      return lex->getType();
3194
3195    // Handle pointer-pointer subtractions.
3196    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3197      QualType rpointee = RHSPTy->getPointeeType();
3198
3199      // RHS must be an object type, unless void (GNU).
3200      if (!rpointee->isObjectType()) {
3201        // Handle the GNU void* extension.
3202        if (rpointee->isVoidType()) {
3203          if (!lpointee->isVoidType())
3204            Diag(Loc, diag::ext_gnu_void_ptr)
3205              << lex->getSourceRange() << rex->getSourceRange();
3206        } else if (rpointee->isFunctionType()) {
3207          if (getLangOptions().CPlusPlus) {
3208            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3209              << rex->getType() << rex->getSourceRange();
3210            return QualType();
3211          }
3212
3213          // GNU extension: arithmetic on pointer to function
3214          if (!lpointee->isFunctionType())
3215            Diag(Loc, diag::ext_gnu_ptr_func_arith)
3216              << lex->getType() << lex->getSourceRange();
3217        } else {
3218          Diag(Loc, diag::err_typecheck_sub_ptr_object)
3219            << rex->getType() << rex->getSourceRange();
3220          return QualType();
3221        }
3222      }
3223
3224      // Pointee types must be compatible.
3225      if (!Context.typesAreCompatible(
3226              Context.getCanonicalType(lpointee).getUnqualifiedType(),
3227              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3228        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3229          << lex->getType() << rex->getType()
3230          << lex->getSourceRange() << rex->getSourceRange();
3231        return QualType();
3232      }
3233
3234      return Context.getPointerDiffType();
3235    }
3236  }
3237
3238  return InvalidOperands(Loc, lex, rex);
3239}
3240
3241// C99 6.5.7
3242QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3243                                  bool isCompAssign) {
3244  // C99 6.5.7p2: Each of the operands shall have integer type.
3245  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3246    return InvalidOperands(Loc, lex, rex);
3247
3248  // Shifts don't perform usual arithmetic conversions, they just do integer
3249  // promotions on each operand. C99 6.5.7p3
3250  if (!isCompAssign)
3251    UsualUnaryConversions(lex);
3252  UsualUnaryConversions(rex);
3253
3254  // "The type of the result is that of the promoted left operand."
3255  return lex->getType();
3256}
3257
3258// C99 6.5.8
3259QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3260                                    bool isRelational) {
3261  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3262    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3263
3264  // C99 6.5.8p3 / C99 6.5.9p4
3265  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3266    UsualArithmeticConversions(lex, rex);
3267  else {
3268    UsualUnaryConversions(lex);
3269    UsualUnaryConversions(rex);
3270  }
3271  QualType lType = lex->getType();
3272  QualType rType = rex->getType();
3273
3274  if (!lType->isFloatingType()) {
3275    // For non-floating point types, check for self-comparisons of the form
3276    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3277    // often indicate logic errors in the program.
3278    // NOTE: Don't warn about comparisons of enum constants. These can arise
3279    //  from macro expansions, and are usually quite deliberate.
3280    Expr *LHSStripped = lex->IgnoreParens();
3281    Expr *RHSStripped = rex->IgnoreParens();
3282    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3283      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3284        if (DRL->getDecl() == DRR->getDecl() &&
3285            !isa<EnumConstantDecl>(DRL->getDecl()))
3286          Diag(Loc, diag::warn_selfcomparison);
3287
3288    if (isa<CastExpr>(LHSStripped))
3289      LHSStripped = LHSStripped->IgnoreParenCasts();
3290    if (isa<CastExpr>(RHSStripped))
3291      RHSStripped = RHSStripped->IgnoreParenCasts();
3292
3293    // Warn about comparisons against a string constant (unless the other
3294    // operand is null), the user probably wants strcmp.
3295    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3296        !RHSStripped->isNullPointerConstant(Context))
3297      Diag(Loc, diag::warn_stringcompare) << lex->getSourceRange();
3298    else if ((isa<StringLiteral>(RHSStripped) ||
3299              isa<ObjCEncodeExpr>(RHSStripped)) &&
3300             !LHSStripped->isNullPointerConstant(Context))
3301      Diag(Loc, diag::warn_stringcompare) << rex->getSourceRange();
3302  }
3303
3304  // The result of comparisons is 'bool' in C++, 'int' in C.
3305  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3306
3307  if (isRelational) {
3308    if (lType->isRealType() && rType->isRealType())
3309      return ResultTy;
3310  } else {
3311    // Check for comparisons of floating point operands using != and ==.
3312    if (lType->isFloatingType()) {
3313      assert(rType->isFloatingType());
3314      CheckFloatComparison(Loc,lex,rex);
3315    }
3316
3317    if (lType->isArithmeticType() && rType->isArithmeticType())
3318      return ResultTy;
3319  }
3320
3321  bool LHSIsNull = lex->isNullPointerConstant(Context);
3322  bool RHSIsNull = rex->isNullPointerConstant(Context);
3323
3324  // All of the following pointer related warnings are GCC extensions, except
3325  // when handling null pointer constants. One day, we can consider making them
3326  // errors (when -pedantic-errors is enabled).
3327  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3328    QualType LCanPointeeTy =
3329      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3330    QualType RCanPointeeTy =
3331      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3332
3333    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3334        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3335        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3336                                    RCanPointeeTy.getUnqualifiedType()) &&
3337        !Context.areComparableObjCPointerTypes(lType, rType)) {
3338      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3339        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3340    }
3341    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3342    return ResultTy;
3343  }
3344  // Handle block pointer types.
3345  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
3346    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3347    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3348
3349    if (!LHSIsNull && !RHSIsNull &&
3350        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3351      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3352        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3353    }
3354    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3355    return ResultTy;
3356  }
3357  // Allow block pointers to be compared with null pointer constants.
3358  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3359      (lType->isPointerType() && rType->isBlockPointerType())) {
3360    if (!LHSIsNull && !RHSIsNull) {
3361      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3362        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3363    }
3364    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3365    return ResultTy;
3366  }
3367
3368  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3369    if (lType->isPointerType() || rType->isPointerType()) {
3370      const PointerType *LPT = lType->getAsPointerType();
3371      const PointerType *RPT = rType->getAsPointerType();
3372      bool LPtrToVoid = LPT ?
3373        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3374      bool RPtrToVoid = RPT ?
3375        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3376
3377      if (!LPtrToVoid && !RPtrToVoid &&
3378          !Context.typesAreCompatible(lType, rType)) {
3379        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3380          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3381        ImpCastExprToType(rex, lType);
3382        return ResultTy;
3383      }
3384      ImpCastExprToType(rex, lType);
3385      return ResultTy;
3386    }
3387    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3388      ImpCastExprToType(rex, lType);
3389      return ResultTy;
3390    } else {
3391      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3392        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3393          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3394        ImpCastExprToType(rex, lType);
3395        return ResultTy;
3396      }
3397    }
3398  }
3399  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3400       rType->isIntegerType()) {
3401    if (!RHSIsNull)
3402      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3403        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3404    ImpCastExprToType(rex, lType); // promote the integer to pointer
3405    return ResultTy;
3406  }
3407  if (lType->isIntegerType() &&
3408      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3409    if (!LHSIsNull)
3410      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3411        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3412    ImpCastExprToType(lex, rType); // promote the integer to pointer
3413    return ResultTy;
3414  }
3415  // Handle block pointers.
3416  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3417    if (!RHSIsNull)
3418      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3419        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3420    ImpCastExprToType(rex, lType); // promote the integer to pointer
3421    return ResultTy;
3422  }
3423  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3424    if (!LHSIsNull)
3425      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3426        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3427    ImpCastExprToType(lex, rType); // promote the integer to pointer
3428    return ResultTy;
3429  }
3430  return InvalidOperands(Loc, lex, rex);
3431}
3432
3433/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3434/// operates on extended vector types.  Instead of producing an IntTy result,
3435/// like a scalar comparison, a vector comparison produces a vector of integer
3436/// types.
3437QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3438                                          SourceLocation Loc,
3439                                          bool isRelational) {
3440  // Check to make sure we're operating on vectors of the same type and width,
3441  // Allowing one side to be a scalar of element type.
3442  QualType vType = CheckVectorOperands(Loc, lex, rex);
3443  if (vType.isNull())
3444    return vType;
3445
3446  QualType lType = lex->getType();
3447  QualType rType = rex->getType();
3448
3449  // For non-floating point types, check for self-comparisons of the form
3450  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3451  // often indicate logic errors in the program.
3452  if (!lType->isFloatingType()) {
3453    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3454      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3455        if (DRL->getDecl() == DRR->getDecl())
3456          Diag(Loc, diag::warn_selfcomparison);
3457  }
3458
3459  // Check for comparisons of floating point operands using != and ==.
3460  if (!isRelational && lType->isFloatingType()) {
3461    assert (rType->isFloatingType());
3462    CheckFloatComparison(Loc,lex,rex);
3463  }
3464
3465  // Return the type for the comparison, which is the same as vector type for
3466  // integer vectors, or an integer type of identical size and number of
3467  // elements for floating point vectors.
3468  if (lType->isIntegerType())
3469    return lType;
3470
3471  const VectorType *VTy = lType->getAsVectorType();
3472  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3473  if (TypeSize == Context.getTypeSize(Context.IntTy))
3474    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3475  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3476    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3477
3478  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3479         "Unhandled vector element size in vector compare");
3480  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3481}
3482
3483inline QualType Sema::CheckBitwiseOperands(
3484  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3485{
3486  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3487    return CheckVectorOperands(Loc, lex, rex);
3488
3489  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3490
3491  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3492    return compType;
3493  return InvalidOperands(Loc, lex, rex);
3494}
3495
3496inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3497  Expr *&lex, Expr *&rex, SourceLocation Loc)
3498{
3499  UsualUnaryConversions(lex);
3500  UsualUnaryConversions(rex);
3501
3502  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3503    return Context.IntTy;
3504  return InvalidOperands(Loc, lex, rex);
3505}
3506
3507/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3508/// is a read-only property; return true if so. A readonly property expression
3509/// depends on various declarations and thus must be treated specially.
3510///
3511static bool IsReadonlyProperty(Expr *E, Sema &S)
3512{
3513  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3514    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3515    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3516      QualType BaseType = PropExpr->getBase()->getType();
3517      if (const PointerType *PTy = BaseType->getAsPointerType())
3518        if (const ObjCInterfaceType *IFTy =
3519            PTy->getPointeeType()->getAsObjCInterfaceType())
3520          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3521            if (S.isPropertyReadonly(PDecl, IFace))
3522              return true;
3523    }
3524  }
3525  return false;
3526}
3527
3528/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3529/// emit an error and return true.  If so, return false.
3530static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3531  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3532  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3533    IsLV = Expr::MLV_ReadonlyProperty;
3534  if (IsLV == Expr::MLV_Valid)
3535    return false;
3536
3537  unsigned Diag = 0;
3538  bool NeedType = false;
3539  switch (IsLV) { // C99 6.5.16p2
3540  default: assert(0 && "Unknown result from isModifiableLvalue!");
3541  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3542  case Expr::MLV_ArrayType:
3543    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3544    NeedType = true;
3545    break;
3546  case Expr::MLV_NotObjectType:
3547    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3548    NeedType = true;
3549    break;
3550  case Expr::MLV_LValueCast:
3551    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3552    break;
3553  case Expr::MLV_InvalidExpression:
3554    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3555    break;
3556  case Expr::MLV_IncompleteType:
3557  case Expr::MLV_IncompleteVoidType:
3558    return S.RequireCompleteType(Loc, E->getType(),
3559                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3560                                    E->getSourceRange());
3561  case Expr::MLV_DuplicateVectorComponents:
3562    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3563    break;
3564  case Expr::MLV_NotBlockQualified:
3565    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3566    break;
3567  case Expr::MLV_ReadonlyProperty:
3568    Diag = diag::error_readonly_property_assignment;
3569    break;
3570  case Expr::MLV_NoSetterProperty:
3571    Diag = diag::error_nosetter_property_assignment;
3572    break;
3573  }
3574
3575  if (NeedType)
3576    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3577  else
3578    S.Diag(Loc, Diag) << E->getSourceRange();
3579  return true;
3580}
3581
3582
3583
3584// C99 6.5.16.1
3585QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3586                                       SourceLocation Loc,
3587                                       QualType CompoundType) {
3588  // Verify that LHS is a modifiable lvalue, and emit error if not.
3589  if (CheckForModifiableLvalue(LHS, Loc, *this))
3590    return QualType();
3591
3592  QualType LHSType = LHS->getType();
3593  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3594
3595  AssignConvertType ConvTy;
3596  if (CompoundType.isNull()) {
3597    // Simple assignment "x = y".
3598    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3599    // Special case of NSObject attributes on c-style pointer types.
3600    if (ConvTy == IncompatiblePointer &&
3601        ((Context.isObjCNSObjectType(LHSType) &&
3602          Context.isObjCObjectPointerType(RHSType)) ||
3603         (Context.isObjCNSObjectType(RHSType) &&
3604          Context.isObjCObjectPointerType(LHSType))))
3605      ConvTy = Compatible;
3606
3607    // If the RHS is a unary plus or minus, check to see if they = and + are
3608    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3609    // instead of "x += 4".
3610    Expr *RHSCheck = RHS;
3611    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3612      RHSCheck = ICE->getSubExpr();
3613    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3614      if ((UO->getOpcode() == UnaryOperator::Plus ||
3615           UO->getOpcode() == UnaryOperator::Minus) &&
3616          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3617          // Only if the two operators are exactly adjacent.
3618          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
3619          // And there is a space or other character before the subexpr of the
3620          // unary +/-.  We don't want to warn on "x=-1".
3621          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
3622          UO->getSubExpr()->getLocStart().isFileID()) {
3623        Diag(Loc, diag::warn_not_compound_assign)
3624          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3625          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3626      }
3627    }
3628  } else {
3629    // Compound assignment "x += y"
3630    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3631  }
3632
3633  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3634                               RHS, "assigning"))
3635    return QualType();
3636
3637  // C99 6.5.16p3: The type of an assignment expression is the type of the
3638  // left operand unless the left operand has qualified type, in which case
3639  // it is the unqualified version of the type of the left operand.
3640  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3641  // is converted to the type of the assignment expression (above).
3642  // C++ 5.17p1: the type of the assignment expression is that of its left
3643  // oprdu.
3644  return LHSType.getUnqualifiedType();
3645}
3646
3647// C99 6.5.17
3648QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3649  // FIXME: what is required for LHS?
3650
3651  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3652  DefaultFunctionArrayConversion(RHS);
3653  return RHS->getType();
3654}
3655
3656/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3657/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3658QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3659                                              bool isInc) {
3660  if (Op->isTypeDependent())
3661    return Context.DependentTy;
3662
3663  QualType ResType = Op->getType();
3664  assert(!ResType.isNull() && "no type for increment/decrement expression");
3665
3666  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3667    // Decrement of bool is not allowed.
3668    if (!isInc) {
3669      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3670      return QualType();
3671    }
3672    // Increment of bool sets it to true, but is deprecated.
3673    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3674  } else if (ResType->isRealType()) {
3675    // OK!
3676  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3677    // C99 6.5.2.4p2, 6.5.6p2
3678    if (PT->getPointeeType()->isObjectType()) {
3679      // Pointer to object is ok!
3680    } else if (PT->getPointeeType()->isVoidType()) {
3681      if (getLangOptions().CPlusPlus) {
3682        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3683          << Op->getSourceRange();
3684        return QualType();
3685      }
3686
3687      // Pointer to void is a GNU extension in C.
3688      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3689    } else if (PT->getPointeeType()->isFunctionType()) {
3690      if (getLangOptions().CPlusPlus) {
3691        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3692          << Op->getType() << Op->getSourceRange();
3693        return QualType();
3694      }
3695
3696      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3697        << ResType << Op->getSourceRange();
3698    } else {
3699      RequireCompleteType(OpLoc, PT->getPointeeType(),
3700                             diag::err_typecheck_arithmetic_incomplete_type,
3701                             Op->getSourceRange(), SourceRange(),
3702                             ResType);
3703      return QualType();
3704    }
3705  } else if (ResType->isComplexType()) {
3706    // C99 does not support ++/-- on complex types, we allow as an extension.
3707    Diag(OpLoc, diag::ext_integer_increment_complex)
3708      << ResType << Op->getSourceRange();
3709  } else {
3710    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3711      << ResType << Op->getSourceRange();
3712    return QualType();
3713  }
3714  // At this point, we know we have a real, complex or pointer type.
3715  // Now make sure the operand is a modifiable lvalue.
3716  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3717    return QualType();
3718  return ResType;
3719}
3720
3721/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3722/// This routine allows us to typecheck complex/recursive expressions
3723/// where the declaration is needed for type checking. We only need to
3724/// handle cases when the expression references a function designator
3725/// or is an lvalue. Here are some examples:
3726///  - &(x) => x
3727///  - &*****f => f for f a function designator.
3728///  - &s.xx => s
3729///  - &s.zz[1].yy -> s, if zz is an array
3730///  - *(x + 1) -> x, if x is an array
3731///  - &"123"[2] -> 0
3732///  - & __real__ x -> x
3733static NamedDecl *getPrimaryDecl(Expr *E) {
3734  switch (E->getStmtClass()) {
3735  case Stmt::DeclRefExprClass:
3736  case Stmt::QualifiedDeclRefExprClass:
3737    return cast<DeclRefExpr>(E)->getDecl();
3738  case Stmt::MemberExprClass:
3739    // Fields cannot be declared with a 'register' storage class.
3740    // &X->f is always ok, even if X is declared register.
3741    if (cast<MemberExpr>(E)->isArrow())
3742      return 0;
3743    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3744  case Stmt::ArraySubscriptExprClass: {
3745    // &X[4] and &4[X] refers to X if X is not a pointer.
3746
3747    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3748    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3749    if (!VD || VD->getType()->isPointerType())
3750      return 0;
3751    else
3752      return VD;
3753  }
3754  case Stmt::UnaryOperatorClass: {
3755    UnaryOperator *UO = cast<UnaryOperator>(E);
3756
3757    switch(UO->getOpcode()) {
3758    case UnaryOperator::Deref: {
3759      // *(X + 1) refers to X if X is not a pointer.
3760      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3761        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3762        if (!VD || VD->getType()->isPointerType())
3763          return 0;
3764        return VD;
3765      }
3766      return 0;
3767    }
3768    case UnaryOperator::Real:
3769    case UnaryOperator::Imag:
3770    case UnaryOperator::Extension:
3771      return getPrimaryDecl(UO->getSubExpr());
3772    default:
3773      return 0;
3774    }
3775  }
3776  case Stmt::BinaryOperatorClass: {
3777    BinaryOperator *BO = cast<BinaryOperator>(E);
3778
3779    // Handle cases involving pointer arithmetic. The result of an
3780    // Assign or AddAssign is not an lvalue so they can be ignored.
3781
3782    // (x + n) or (n + x) => x
3783    if (BO->getOpcode() == BinaryOperator::Add) {
3784      if (BO->getLHS()->getType()->isPointerType()) {
3785        return getPrimaryDecl(BO->getLHS());
3786      } else if (BO->getRHS()->getType()->isPointerType()) {
3787        return getPrimaryDecl(BO->getRHS());
3788      }
3789    }
3790
3791    return 0;
3792  }
3793  case Stmt::ParenExprClass:
3794    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3795  case Stmt::ImplicitCastExprClass:
3796    // &X[4] when X is an array, has an implicit cast from array to pointer.
3797    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3798  default:
3799    return 0;
3800  }
3801}
3802
3803/// CheckAddressOfOperand - The operand of & must be either a function
3804/// designator or an lvalue designating an object. If it is an lvalue, the
3805/// object cannot be declared with storage class register or be a bit field.
3806/// Note: The usual conversions are *not* applied to the operand of the &
3807/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3808/// In C++, the operand might be an overloaded function name, in which case
3809/// we allow the '&' but retain the overloaded-function type.
3810QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3811  if (op->isTypeDependent())
3812    return Context.DependentTy;
3813
3814  if (getLangOptions().C99) {
3815    // Implement C99-only parts of addressof rules.
3816    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3817      if (uOp->getOpcode() == UnaryOperator::Deref)
3818        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3819        // (assuming the deref expression is valid).
3820        return uOp->getSubExpr()->getType();
3821    }
3822    // Technically, there should be a check for array subscript
3823    // expressions here, but the result of one is always an lvalue anyway.
3824  }
3825  NamedDecl *dcl = getPrimaryDecl(op);
3826  Expr::isLvalueResult lval = op->isLvalue(Context);
3827
3828  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3829    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3830      // FIXME: emit more specific diag...
3831      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3832        << op->getSourceRange();
3833      return QualType();
3834    }
3835  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3836    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3837      if (Field->isBitField()) {
3838        Diag(OpLoc, diag::err_typecheck_address_of)
3839          << "bit-field" << op->getSourceRange();
3840        return QualType();
3841      }
3842    }
3843  // Check for Apple extension for accessing vector components.
3844  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
3845           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
3846    Diag(OpLoc, diag::err_typecheck_address_of)
3847      << "vector element" << op->getSourceRange();
3848    return QualType();
3849  } else if (dcl) { // C99 6.5.3.2p1
3850    // We have an lvalue with a decl. Make sure the decl is not declared
3851    // with the register storage-class specifier.
3852    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3853      if (vd->getStorageClass() == VarDecl::Register) {
3854        Diag(OpLoc, diag::err_typecheck_address_of)
3855          << "register variable" << op->getSourceRange();
3856        return QualType();
3857      }
3858    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3859      return Context.OverloadTy;
3860    } else if (isa<FieldDecl>(dcl)) {
3861      // Okay: we can take the address of a field.
3862      // Could be a pointer to member, though, if there is an explicit
3863      // scope qualifier for the class.
3864      if (isa<QualifiedDeclRefExpr>(op)) {
3865        DeclContext *Ctx = dcl->getDeclContext();
3866        if (Ctx && Ctx->isRecord())
3867          return Context.getMemberPointerType(op->getType(),
3868                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3869      }
3870    } else if (isa<FunctionDecl>(dcl)) {
3871      // Okay: we can take the address of a function.
3872      // As above.
3873      if (isa<QualifiedDeclRefExpr>(op)) {
3874        DeclContext *Ctx = dcl->getDeclContext();
3875        if (Ctx && Ctx->isRecord())
3876          return Context.getMemberPointerType(op->getType(),
3877                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3878      }
3879    }
3880    else
3881      assert(0 && "Unknown/unexpected decl type");
3882  }
3883
3884  // If the operand has type "type", the result has type "pointer to type".
3885  return Context.getPointerType(op->getType());
3886}
3887
3888QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3889  if (Op->isTypeDependent())
3890    return Context.DependentTy;
3891
3892  UsualUnaryConversions(Op);
3893  QualType Ty = Op->getType();
3894
3895  // Note that per both C89 and C99, this is always legal, even if ptype is an
3896  // incomplete type or void.  It would be possible to warn about dereferencing
3897  // a void pointer, but it's completely well-defined, and such a warning is
3898  // unlikely to catch any mistakes.
3899  if (const PointerType *PT = Ty->getAsPointerType())
3900    return PT->getPointeeType();
3901
3902  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3903    << Ty << Op->getSourceRange();
3904  return QualType();
3905}
3906
3907static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3908  tok::TokenKind Kind) {
3909  BinaryOperator::Opcode Opc;
3910  switch (Kind) {
3911  default: assert(0 && "Unknown binop!");
3912  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3913  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3914  case tok::star:                 Opc = BinaryOperator::Mul; break;
3915  case tok::slash:                Opc = BinaryOperator::Div; break;
3916  case tok::percent:              Opc = BinaryOperator::Rem; break;
3917  case tok::plus:                 Opc = BinaryOperator::Add; break;
3918  case tok::minus:                Opc = BinaryOperator::Sub; break;
3919  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3920  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3921  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3922  case tok::less:                 Opc = BinaryOperator::LT; break;
3923  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3924  case tok::greater:              Opc = BinaryOperator::GT; break;
3925  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3926  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3927  case tok::amp:                  Opc = BinaryOperator::And; break;
3928  case tok::caret:                Opc = BinaryOperator::Xor; break;
3929  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3930  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3931  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3932  case tok::equal:                Opc = BinaryOperator::Assign; break;
3933  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3934  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3935  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3936  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3937  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3938  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3939  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3940  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3941  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3942  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3943  case tok::comma:                Opc = BinaryOperator::Comma; break;
3944  }
3945  return Opc;
3946}
3947
3948static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3949  tok::TokenKind Kind) {
3950  UnaryOperator::Opcode Opc;
3951  switch (Kind) {
3952  default: assert(0 && "Unknown unary op!");
3953  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3954  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3955  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3956  case tok::star:         Opc = UnaryOperator::Deref; break;
3957  case tok::plus:         Opc = UnaryOperator::Plus; break;
3958  case tok::minus:        Opc = UnaryOperator::Minus; break;
3959  case tok::tilde:        Opc = UnaryOperator::Not; break;
3960  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3961  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3962  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3963  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3964  }
3965  return Opc;
3966}
3967
3968/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3969/// operator @p Opc at location @c TokLoc. This routine only supports
3970/// built-in operations; ActOnBinOp handles overloaded operators.
3971Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3972                                                  unsigned Op,
3973                                                  Expr *lhs, Expr *rhs) {
3974  QualType ResultTy;  // Result type of the binary operator.
3975  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3976  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3977
3978  switch (Opc) {
3979  case BinaryOperator::Assign:
3980    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3981    break;
3982  case BinaryOperator::PtrMemD:
3983  case BinaryOperator::PtrMemI:
3984    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3985                                            Opc == BinaryOperator::PtrMemI);
3986    break;
3987  case BinaryOperator::Mul:
3988  case BinaryOperator::Div:
3989    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3990    break;
3991  case BinaryOperator::Rem:
3992    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3993    break;
3994  case BinaryOperator::Add:
3995    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3996    break;
3997  case BinaryOperator::Sub:
3998    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3999    break;
4000  case BinaryOperator::Shl:
4001  case BinaryOperator::Shr:
4002    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4003    break;
4004  case BinaryOperator::LE:
4005  case BinaryOperator::LT:
4006  case BinaryOperator::GE:
4007  case BinaryOperator::GT:
4008    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
4009    break;
4010  case BinaryOperator::EQ:
4011  case BinaryOperator::NE:
4012    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
4013    break;
4014  case BinaryOperator::And:
4015  case BinaryOperator::Xor:
4016  case BinaryOperator::Or:
4017    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4018    break;
4019  case BinaryOperator::LAnd:
4020  case BinaryOperator::LOr:
4021    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4022    break;
4023  case BinaryOperator::MulAssign:
4024  case BinaryOperator::DivAssign:
4025    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4026    if (!CompTy.isNull())
4027      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4028    break;
4029  case BinaryOperator::RemAssign:
4030    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4031    if (!CompTy.isNull())
4032      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4033    break;
4034  case BinaryOperator::AddAssign:
4035    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
4036    if (!CompTy.isNull())
4037      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4038    break;
4039  case BinaryOperator::SubAssign:
4040    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
4041    if (!CompTy.isNull())
4042      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4043    break;
4044  case BinaryOperator::ShlAssign:
4045  case BinaryOperator::ShrAssign:
4046    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4047    if (!CompTy.isNull())
4048      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4049    break;
4050  case BinaryOperator::AndAssign:
4051  case BinaryOperator::XorAssign:
4052  case BinaryOperator::OrAssign:
4053    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4054    if (!CompTy.isNull())
4055      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
4056    break;
4057  case BinaryOperator::Comma:
4058    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4059    break;
4060  }
4061  if (ResultTy.isNull())
4062    return ExprError();
4063  if (CompTy.isNull())
4064    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4065  else
4066    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4067                                                      CompTy, OpLoc));
4068}
4069
4070// Binary Operators.  'Tok' is the token for the operator.
4071Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4072                                          tok::TokenKind Kind,
4073                                          ExprArg LHS, ExprArg RHS) {
4074  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4075  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
4076
4077  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4078  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4079
4080  if (getLangOptions().CPlusPlus &&
4081      (lhs->getType()->isOverloadableType() ||
4082       rhs->getType()->isOverloadableType())) {
4083    // Find all of the overloaded operators visible from this
4084    // point. We perform both an operator-name lookup from the local
4085    // scope and an argument-dependent lookup based on the types of
4086    // the arguments.
4087    FunctionSet Functions;
4088    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4089    if (OverOp != OO_None) {
4090      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4091                                   Functions);
4092      Expr *Args[2] = { lhs, rhs };
4093      DeclarationName OpName
4094        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4095      ArgumentDependentLookup(OpName, Args, 2, Functions);
4096    }
4097
4098    // Build the (potentially-overloaded, potentially-dependent)
4099    // binary operation.
4100    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4101  }
4102
4103  // Build a built-in binary operation.
4104  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4105}
4106
4107Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4108                                                    unsigned OpcIn,
4109                                                    ExprArg InputArg) {
4110  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4111
4112  // FIXME: Input is modified below, but InputArg is not updated
4113  // appropriately.
4114  Expr *Input = (Expr *)InputArg.get();
4115  QualType resultType;
4116  switch (Opc) {
4117  case UnaryOperator::PostInc:
4118  case UnaryOperator::PostDec:
4119  case UnaryOperator::OffsetOf:
4120    assert(false && "Invalid unary operator");
4121    break;
4122
4123  case UnaryOperator::PreInc:
4124  case UnaryOperator::PreDec:
4125    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4126                                                Opc == UnaryOperator::PreInc);
4127    break;
4128  case UnaryOperator::AddrOf:
4129    resultType = CheckAddressOfOperand(Input, OpLoc);
4130    break;
4131  case UnaryOperator::Deref:
4132    DefaultFunctionArrayConversion(Input);
4133    resultType = CheckIndirectionOperand(Input, OpLoc);
4134    break;
4135  case UnaryOperator::Plus:
4136  case UnaryOperator::Minus:
4137    UsualUnaryConversions(Input);
4138    resultType = Input->getType();
4139    if (resultType->isDependentType())
4140      break;
4141    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4142      break;
4143    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4144             resultType->isEnumeralType())
4145      break;
4146    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4147             Opc == UnaryOperator::Plus &&
4148             resultType->isPointerType())
4149      break;
4150
4151    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4152      << resultType << Input->getSourceRange());
4153  case UnaryOperator::Not: // bitwise complement
4154    UsualUnaryConversions(Input);
4155    resultType = Input->getType();
4156    if (resultType->isDependentType())
4157      break;
4158    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4159    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4160      // C99 does not support '~' for complex conjugation.
4161      Diag(OpLoc, diag::ext_integer_complement_complex)
4162        << resultType << Input->getSourceRange();
4163    else if (!resultType->isIntegerType())
4164      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4165        << resultType << Input->getSourceRange());
4166    break;
4167  case UnaryOperator::LNot: // logical negation
4168    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4169    DefaultFunctionArrayConversion(Input);
4170    resultType = Input->getType();
4171    if (resultType->isDependentType())
4172      break;
4173    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4174      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4175        << resultType << Input->getSourceRange());
4176    // LNot always has type int. C99 6.5.3.3p5.
4177    // In C++, it's bool. C++ 5.3.1p8
4178    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4179    break;
4180  case UnaryOperator::Real:
4181  case UnaryOperator::Imag:
4182    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4183    break;
4184  case UnaryOperator::Extension:
4185    resultType = Input->getType();
4186    break;
4187  }
4188  if (resultType.isNull())
4189    return ExprError();
4190
4191  InputArg.release();
4192  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4193}
4194
4195// Unary Operators.  'Tok' is the token for the operator.
4196Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4197                                            tok::TokenKind Op, ExprArg input) {
4198  Expr *Input = (Expr*)input.get();
4199  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4200
4201  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4202    // Find all of the overloaded operators visible from this
4203    // point. We perform both an operator-name lookup from the local
4204    // scope and an argument-dependent lookup based on the types of
4205    // the arguments.
4206    FunctionSet Functions;
4207    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4208    if (OverOp != OO_None) {
4209      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4210                                   Functions);
4211      DeclarationName OpName
4212        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4213      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4214    }
4215
4216    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4217  }
4218
4219  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4220}
4221
4222/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4223Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4224                                            SourceLocation LabLoc,
4225                                            IdentifierInfo *LabelII) {
4226  // Look up the record for this label identifier.
4227  LabelStmt *&LabelDecl = CurBlock ? CurBlock->LabelMap[LabelII] :
4228                                     LabelMap[LabelII];
4229
4230  // If we haven't seen this label yet, create a forward reference. It
4231  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4232  if (LabelDecl == 0)
4233    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4234
4235  // Create the AST node.  The address of a label always has type 'void*'.
4236  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4237                                       Context.getPointerType(Context.VoidTy)));
4238}
4239
4240Sema::OwningExprResult
4241Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4242                    SourceLocation RPLoc) { // "({..})"
4243  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4244  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4245  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4246
4247  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4248  if (isFileScope) {
4249    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4250  }
4251
4252  // FIXME: there are a variety of strange constraints to enforce here, for
4253  // example, it is not possible to goto into a stmt expression apparently.
4254  // More semantic analysis is needed.
4255
4256  // FIXME: the last statement in the compount stmt has its value used.  We
4257  // should not warn about it being unused.
4258
4259  // If there are sub stmts in the compound stmt, take the type of the last one
4260  // as the type of the stmtexpr.
4261  QualType Ty = Context.VoidTy;
4262
4263  if (!Compound->body_empty()) {
4264    Stmt *LastStmt = Compound->body_back();
4265    // If LastStmt is a label, skip down through into the body.
4266    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4267      LastStmt = Label->getSubStmt();
4268
4269    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4270      Ty = LastExpr->getType();
4271  }
4272
4273  substmt.release();
4274  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4275}
4276
4277Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4278                                                  SourceLocation BuiltinLoc,
4279                                                  SourceLocation TypeLoc,
4280                                                  TypeTy *argty,
4281                                                  OffsetOfComponent *CompPtr,
4282                                                  unsigned NumComponents,
4283                                                  SourceLocation RPLoc) {
4284  // FIXME: This function leaks all expressions in the offset components on
4285  // error.
4286  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4287  assert(!ArgTy.isNull() && "Missing type argument!");
4288
4289  bool Dependent = ArgTy->isDependentType();
4290
4291  // We must have at least one component that refers to the type, and the first
4292  // one is known to be a field designator.  Verify that the ArgTy represents
4293  // a struct/union/class.
4294  if (!Dependent && !ArgTy->isRecordType())
4295    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4296
4297  // FIXME: Does the type need to be complete?
4298
4299  // Otherwise, create a null pointer as the base, and iteratively process
4300  // the offsetof designators.
4301  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4302  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4303  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4304                                    ArgTy, SourceLocation());
4305
4306  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4307  // GCC extension, diagnose them.
4308  // FIXME: This diagnostic isn't actually visible because the location is in
4309  // a system header!
4310  if (NumComponents != 1)
4311    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4312      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4313
4314  if (!Dependent) {
4315    // FIXME: Dependent case loses a lot of information here. And probably
4316    // leaks like a sieve.
4317    for (unsigned i = 0; i != NumComponents; ++i) {
4318      const OffsetOfComponent &OC = CompPtr[i];
4319      if (OC.isBrackets) {
4320        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4321        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4322        if (!AT) {
4323          Res->Destroy(Context);
4324          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4325            << Res->getType());
4326        }
4327
4328        // FIXME: C++: Verify that operator[] isn't overloaded.
4329
4330        // Promote the array so it looks more like a normal array subscript
4331        // expression.
4332        DefaultFunctionArrayConversion(Res);
4333
4334        // C99 6.5.2.1p1
4335        Expr *Idx = static_cast<Expr*>(OC.U.E);
4336        // FIXME: Leaks Res
4337        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4338          return ExprError(Diag(Idx->getLocStart(),
4339                                diag::err_typecheck_subscript)
4340            << Idx->getSourceRange());
4341
4342        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4343                                               OC.LocEnd);
4344        continue;
4345      }
4346
4347      const RecordType *RC = Res->getType()->getAsRecordType();
4348      if (!RC) {
4349        Res->Destroy(Context);
4350        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4351          << Res->getType());
4352      }
4353
4354      // Get the decl corresponding to this.
4355      RecordDecl *RD = RC->getDecl();
4356      FieldDecl *MemberDecl
4357        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4358                                                          LookupMemberName)
4359                                        .getAsDecl());
4360      // FIXME: Leaks Res
4361      if (!MemberDecl)
4362        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
4363         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
4364
4365      // FIXME: C++: Verify that MemberDecl isn't a static field.
4366      // FIXME: Verify that MemberDecl isn't a bitfield.
4367      // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4368      // matter here.
4369      Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4370                                   MemberDecl->getType().getNonReferenceType());
4371    }
4372  }
4373
4374  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4375                                           Context.getSizeType(), BuiltinLoc));
4376}
4377
4378
4379Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4380                                                      TypeTy *arg1,TypeTy *arg2,
4381                                                      SourceLocation RPLoc) {
4382  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4383  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4384
4385  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4386
4387  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
4388                                                 argT1, argT2, RPLoc));
4389}
4390
4391Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
4392                                             ExprArg cond,
4393                                             ExprArg expr1, ExprArg expr2,
4394                                             SourceLocation RPLoc) {
4395  Expr *CondExpr = static_cast<Expr*>(cond.get());
4396  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
4397  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
4398
4399  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4400
4401  QualType resType;
4402  if (CondExpr->isValueDependent()) {
4403    resType = Context.DependentTy;
4404  } else {
4405    // The conditional expression is required to be a constant expression.
4406    llvm::APSInt condEval(32);
4407    SourceLocation ExpLoc;
4408    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4409      return ExprError(Diag(ExpLoc,
4410                       diag::err_typecheck_choose_expr_requires_constant)
4411        << CondExpr->getSourceRange());
4412
4413    // If the condition is > zero, then the AST type is the same as the LSHExpr.
4414    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
4415  }
4416
4417  cond.release(); expr1.release(); expr2.release();
4418  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4419                                        resType, RPLoc));
4420}
4421
4422//===----------------------------------------------------------------------===//
4423// Clang Extensions.
4424//===----------------------------------------------------------------------===//
4425
4426/// ActOnBlockStart - This callback is invoked when a block literal is started.
4427void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4428  // Analyze block parameters.
4429  BlockSemaInfo *BSI = new BlockSemaInfo();
4430
4431  // Add BSI to CurBlock.
4432  BSI->PrevBlockInfo = CurBlock;
4433  CurBlock = BSI;
4434
4435  BSI->ReturnType = 0;
4436  BSI->TheScope = BlockScope;
4437  BSI->hasBlockDeclRefExprs = false;
4438
4439  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4440  PushDeclContext(BlockScope, BSI->TheDecl);
4441}
4442
4443void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4444  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4445
4446  if (ParamInfo.getNumTypeObjects() == 0
4447      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4448    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4449
4450    // The type is entirely optional as well, if none, use DependentTy.
4451    if (T.isNull())
4452      T = Context.DependentTy;
4453
4454    // The parameter list is optional, if there was none, assume ().
4455    if (!T->isFunctionType())
4456      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4457
4458    CurBlock->hasPrototype = true;
4459    CurBlock->isVariadic = false;
4460    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4461      .getTypePtr();
4462
4463    if (!RetTy->isDependentType())
4464      CurBlock->ReturnType = RetTy;
4465    return;
4466  }
4467
4468  // Analyze arguments to block.
4469  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4470         "Not a function declarator!");
4471  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4472
4473  CurBlock->hasPrototype = FTI.hasPrototype;
4474  CurBlock->isVariadic = true;
4475
4476  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4477  // no arguments, not a function that takes a single void argument.
4478  if (FTI.hasPrototype &&
4479      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4480      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4481        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4482    // empty arg list, don't push any params.
4483    CurBlock->isVariadic = false;
4484  } else if (FTI.hasPrototype) {
4485    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4486      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4487    CurBlock->isVariadic = FTI.isVariadic;
4488    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4489
4490    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4491      .getTypePtr();
4492
4493    if (!RetTy->isDependentType())
4494      CurBlock->ReturnType = RetTy;
4495  }
4496  CurBlock->TheDecl->setParams(Context, &CurBlock->Params[0],
4497                                        CurBlock->Params.size());
4498
4499  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4500       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4501    // If this has an identifier, add it to the scope stack.
4502    if ((*AI)->getIdentifier())
4503      PushOnScopeChains(*AI, CurBlock->TheScope);
4504}
4505
4506/// ActOnBlockError - If there is an error parsing a block, this callback
4507/// is invoked to pop the information about the block from the action impl.
4508void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4509  // Ensure that CurBlock is deleted.
4510  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4511
4512  // Pop off CurBlock, handle nested blocks.
4513  CurBlock = CurBlock->PrevBlockInfo;
4514
4515  // FIXME: Delete the ParmVarDecl objects as well???
4516
4517}
4518
4519/// ActOnBlockStmtExpr - This is called when the body of a block statement
4520/// literal was successfully completed.  ^(int x){...}
4521Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
4522                                                StmtArg body, Scope *CurScope) {
4523  // Ensure that CurBlock is deleted.
4524  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4525
4526  PopDeclContext();
4527
4528  // Pop off CurBlock, handle nested blocks.
4529  CurBlock = CurBlock->PrevBlockInfo;
4530
4531  QualType RetTy = Context.VoidTy;
4532  if (BSI->ReturnType)
4533    RetTy = QualType(BSI->ReturnType, 0);
4534
4535  llvm::SmallVector<QualType, 8> ArgTypes;
4536  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4537    ArgTypes.push_back(BSI->Params[i]->getType());
4538
4539  QualType BlockTy;
4540  if (!BSI->hasPrototype)
4541    BlockTy = Context.getFunctionNoProtoType(RetTy);
4542  else
4543    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4544                                      BSI->isVariadic, 0);
4545
4546  BlockTy = Context.getBlockPointerType(BlockTy);
4547
4548  BSI->TheDecl->setBody(static_cast<CompoundStmt*>(body.release()));
4549  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
4550                                       BSI->hasBlockDeclRefExprs));
4551}
4552
4553Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4554                                        ExprArg expr, TypeTy *type,
4555                                        SourceLocation RPLoc) {
4556  QualType T = QualType::getFromOpaquePtr(type);
4557
4558  InitBuiltinVaListType();
4559
4560  // Get the va_list type
4561  QualType VaListType = Context.getBuiltinVaListType();
4562  // Deal with implicit array decay; for example, on x86-64,
4563  // va_list is an array, but it's supposed to decay to
4564  // a pointer for va_arg.
4565  if (VaListType->isArrayType())
4566    VaListType = Context.getArrayDecayedType(VaListType);
4567  // Make sure the input expression also decays appropriately.
4568  Expr *E = static_cast<Expr*>(expr.get());
4569  UsualUnaryConversions(E);
4570
4571  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4572    return ExprError(Diag(E->getLocStart(),
4573                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
4574      << E->getType() << E->getSourceRange());
4575
4576  // FIXME: Warn if a non-POD type is passed in.
4577
4578  expr.release();
4579  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
4580                                       RPLoc));
4581}
4582
4583Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4584  // The type of __null will be int or long, depending on the size of
4585  // pointers on the target.
4586  QualType Ty;
4587  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4588    Ty = Context.IntTy;
4589  else
4590    Ty = Context.LongTy;
4591
4592  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
4593}
4594
4595bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4596                                    SourceLocation Loc,
4597                                    QualType DstType, QualType SrcType,
4598                                    Expr *SrcExpr, const char *Flavor) {
4599  // Decode the result (notice that AST's are still created for extensions).
4600  bool isInvalid = false;
4601  unsigned DiagKind;
4602  switch (ConvTy) {
4603  default: assert(0 && "Unknown conversion type");
4604  case Compatible: return false;
4605  case PointerToInt:
4606    DiagKind = diag::ext_typecheck_convert_pointer_int;
4607    break;
4608  case IntToPointer:
4609    DiagKind = diag::ext_typecheck_convert_int_pointer;
4610    break;
4611  case IncompatiblePointer:
4612    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4613    break;
4614  case FunctionVoidPointer:
4615    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4616    break;
4617  case CompatiblePointerDiscardsQualifiers:
4618    // If the qualifiers lost were because we were applying the
4619    // (deprecated) C++ conversion from a string literal to a char*
4620    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4621    // Ideally, this check would be performed in
4622    // CheckPointerTypesForAssignment. However, that would require a
4623    // bit of refactoring (so that the second argument is an
4624    // expression, rather than a type), which should be done as part
4625    // of a larger effort to fix CheckPointerTypesForAssignment for
4626    // C++ semantics.
4627    if (getLangOptions().CPlusPlus &&
4628        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4629      return false;
4630    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4631    break;
4632  case IntToBlockPointer:
4633    DiagKind = diag::err_int_to_block_pointer;
4634    break;
4635  case IncompatibleBlockPointer:
4636    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4637    break;
4638  case IncompatibleObjCQualifiedId:
4639    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4640    // it can give a more specific diagnostic.
4641    DiagKind = diag::warn_incompatible_qualified_id;
4642    break;
4643  case IncompatibleVectors:
4644    DiagKind = diag::warn_incompatible_vectors;
4645    break;
4646  case Incompatible:
4647    DiagKind = diag::err_typecheck_convert_incompatible;
4648    isInvalid = true;
4649    break;
4650  }
4651
4652  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4653    << SrcExpr->getSourceRange();
4654  return isInvalid;
4655}
4656
4657bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4658{
4659  Expr::EvalResult EvalResult;
4660
4661  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4662      EvalResult.HasSideEffects) {
4663    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4664
4665    if (EvalResult.Diag) {
4666      // We only show the note if it's not the usual "invalid subexpression"
4667      // or if it's actually in a subexpression.
4668      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4669          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4670        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4671    }
4672
4673    return true;
4674  }
4675
4676  if (EvalResult.Diag) {
4677    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4678      E->getSourceRange();
4679
4680    // Print the reason it's not a constant.
4681    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4682      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4683  }
4684
4685  if (Result)
4686    *Result = EvalResult.Val.getInt();
4687  return false;
4688}
4689