SemaExpr.cpp revision 3ae1c807337467cb2e324c7f00397401e6bc7b9a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
91/// (and other functions in future), which have been declared with sentinel
92/// attribute. It warns if call does not have the sentinel argument.
93///
94void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
95                                 Expr **Args, unsigned NumArgs)
96{
97  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
98  if (!attr)
99    return;
100  int sentinelPos = attr->getSentinel();
101  int nullPos = attr->getNullPos();
102
103  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
104  // base class. Then we won't be needing two versions of the same code.
105  unsigned int i = 0;
106  bool warnNotEnoughArgs = false;
107  int isMethod = 0;
108  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
109    // skip over named parameters.
110    ObjCMethodDecl::param_iterator P, E = MD->param_end();
111    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
112      if (nullPos)
113        --nullPos;
114      else
115        ++i;
116    }
117    warnNotEnoughArgs = (P != E || i >= NumArgs);
118    isMethod = 1;
119  }
120  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
121    // skip over named parameters.
122    ObjCMethodDecl::param_iterator P, E = FD->param_end();
123    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
124      if (nullPos)
125        --nullPos;
126      else
127        ++i;
128    }
129    warnNotEnoughArgs = (P != E || i >= NumArgs);
130  }
131  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
132    // block or function pointer call.
133    QualType Ty = V->getType();
134    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
135      const FunctionType *FT = Ty->isFunctionPointerType()
136      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
137      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
138      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
139        unsigned NumArgsInProto = Proto->getNumArgs();
140        unsigned k;
141        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
142          if (nullPos)
143            --nullPos;
144          else
145            ++i;
146        }
147        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
148      }
149      if (Ty->isBlockPointerType())
150        isMethod = 2;
151    }
152    else
153      return;
154  }
155  else
156    return;
157
158  if (warnNotEnoughArgs) {
159    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161    return;
162  }
163  int sentinel = i;
164  while (sentinelPos > 0 && i < NumArgs-1) {
165    --sentinelPos;
166    ++i;
167  }
168  if (sentinelPos > 0) {
169    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
170    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
171    return;
172  }
173  while (i < NumArgs-1) {
174    ++i;
175    ++sentinel;
176  }
177  Expr *sentinelExpr = Args[sentinel];
178  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
179                       !sentinelExpr->isNullPointerConstant(Context))) {
180    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
181    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
182  }
183  return;
184}
185
186SourceRange Sema::getExprRange(ExprTy *E) const {
187  Expr *Ex = (Expr *)E;
188  return Ex? Ex->getSourceRange() : SourceRange();
189}
190
191//===----------------------------------------------------------------------===//
192//  Standard Promotions and Conversions
193//===----------------------------------------------------------------------===//
194
195/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
196void Sema::DefaultFunctionArrayConversion(Expr *&E) {
197  QualType Ty = E->getType();
198  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
199
200  if (Ty->isFunctionType())
201    ImpCastExprToType(E, Context.getPointerType(Ty));
202  else if (Ty->isArrayType()) {
203    // In C90 mode, arrays only promote to pointers if the array expression is
204    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
205    // type 'array of type' is converted to an expression that has type 'pointer
206    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
207    // that has type 'array of type' ...".  The relevant change is "an lvalue"
208    // (C90) to "an expression" (C99).
209    //
210    // C++ 4.2p1:
211    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
212    // T" can be converted to an rvalue of type "pointer to T".
213    //
214    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
215        E->isLvalue(Context) == Expr::LV_Valid)
216      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
217  }
218}
219
220/// \brief Whether this is a promotable bitfield reference according
221/// to C99 6.3.1.1p2, bullet 2.
222///
223/// \returns the type this bit-field will promote to, or NULL if no
224/// promotion occurs.
225static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
226  FieldDecl *Field = E->getBitField();
227  if (!Field)
228    return QualType();
229
230  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
231  if (!BT)
232    return QualType();
233
234  if (BT->getKind() != BuiltinType::Bool &&
235      BT->getKind() != BuiltinType::Int &&
236      BT->getKind() != BuiltinType::UInt)
237    return QualType();
238
239  llvm::APSInt BitWidthAP;
240  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
241    return QualType();
242
243  uint64_t BitWidth = BitWidthAP.getZExtValue();
244  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
245  if (BitWidth < IntSize ||
246      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
247    return Context.IntTy;
248
249  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
250    return Context.UnsignedIntTy;
251
252  return QualType();
253}
254
255/// UsualUnaryConversions - Performs various conversions that are common to most
256/// operators (C99 6.3). The conversions of array and function types are
257/// sometimes surpressed. For example, the array->pointer conversion doesn't
258/// apply if the array is an argument to the sizeof or address (&) operators.
259/// In these instances, this routine should *not* be called.
260Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
261  QualType Ty = Expr->getType();
262  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
263
264  // C99 6.3.1.1p2:
265  //
266  //   The following may be used in an expression wherever an int or
267  //   unsigned int may be used:
268  //     - an object or expression with an integer type whose integer
269  //       conversion rank is less than or equal to the rank of int
270  //       and unsigned int.
271  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
272  //
273  //   If an int can represent all values of the original type, the
274  //   value is converted to an int; otherwise, it is converted to an
275  //   unsigned int. These are called the integer promotions. All
276  //   other types are unchanged by the integer promotions.
277  if (Ty->isPromotableIntegerType()) {
278    ImpCastExprToType(Expr, Context.IntTy);
279    return Expr;
280  } else {
281    QualType T = isPromotableBitField(Expr, Context);
282    if (!T.isNull()) {
283      ImpCastExprToType(Expr, T);
284      return Expr;
285    }
286  }
287
288  DefaultFunctionArrayConversion(Expr);
289  return Expr;
290}
291
292/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
293/// do not have a prototype. Arguments that have type float are promoted to
294/// double. All other argument types are converted by UsualUnaryConversions().
295void Sema::DefaultArgumentPromotion(Expr *&Expr) {
296  QualType Ty = Expr->getType();
297  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
298
299  // If this is a 'float' (CVR qualified or typedef) promote to double.
300  if (const BuiltinType *BT = Ty->getAsBuiltinType())
301    if (BT->getKind() == BuiltinType::Float)
302      return ImpCastExprToType(Expr, Context.DoubleTy);
303
304  UsualUnaryConversions(Expr);
305}
306
307/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
308/// will warn if the resulting type is not a POD type, and rejects ObjC
309/// interfaces passed by value.  This returns true if the argument type is
310/// completely illegal.
311bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
312  DefaultArgumentPromotion(Expr);
313
314  if (Expr->getType()->isObjCInterfaceType()) {
315    Diag(Expr->getLocStart(),
316         diag::err_cannot_pass_objc_interface_to_vararg)
317      << Expr->getType() << CT;
318    return true;
319  }
320
321  if (!Expr->getType()->isPODType())
322    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
323      << Expr->getType() << CT;
324
325  return false;
326}
327
328
329/// UsualArithmeticConversions - Performs various conversions that are common to
330/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
331/// routine returns the first non-arithmetic type found. The client is
332/// responsible for emitting appropriate error diagnostics.
333/// FIXME: verify the conversion rules for "complex int" are consistent with
334/// GCC.
335QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
336                                          bool isCompAssign) {
337  if (!isCompAssign)
338    UsualUnaryConversions(lhsExpr);
339
340  UsualUnaryConversions(rhsExpr);
341
342  // For conversion purposes, we ignore any qualifiers.
343  // For example, "const float" and "float" are equivalent.
344  QualType lhs =
345    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
346  QualType rhs =
347    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
348
349  // If both types are identical, no conversion is needed.
350  if (lhs == rhs)
351    return lhs;
352
353  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
354  // The caller can deal with this (e.g. pointer + int).
355  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
356    return lhs;
357
358  // Perform bitfield promotions.
359  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
360  if (!LHSBitfieldPromoteTy.isNull())
361    lhs = LHSBitfieldPromoteTy;
362  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
363  if (!RHSBitfieldPromoteTy.isNull())
364    rhs = RHSBitfieldPromoteTy;
365
366  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
367  if (!isCompAssign)
368    ImpCastExprToType(lhsExpr, destType);
369  ImpCastExprToType(rhsExpr, destType);
370  return destType;
371}
372
373QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
374  // Perform the usual unary conversions. We do this early so that
375  // integral promotions to "int" can allow us to exit early, in the
376  // lhs == rhs check. Also, for conversion purposes, we ignore any
377  // qualifiers.  For example, "const float" and "float" are
378  // equivalent.
379  if (lhs->isPromotableIntegerType())
380    lhs = Context.IntTy;
381  else
382    lhs = lhs.getUnqualifiedType();
383  if (rhs->isPromotableIntegerType())
384    rhs = Context.IntTy;
385  else
386    rhs = rhs.getUnqualifiedType();
387
388  // If both types are identical, no conversion is needed.
389  if (lhs == rhs)
390    return lhs;
391
392  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
393  // The caller can deal with this (e.g. pointer + int).
394  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
395    return lhs;
396
397  // At this point, we have two different arithmetic types.
398
399  // Handle complex types first (C99 6.3.1.8p1).
400  if (lhs->isComplexType() || rhs->isComplexType()) {
401    // if we have an integer operand, the result is the complex type.
402    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
403      // convert the rhs to the lhs complex type.
404      return lhs;
405    }
406    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
407      // convert the lhs to the rhs complex type.
408      return rhs;
409    }
410    // This handles complex/complex, complex/float, or float/complex.
411    // When both operands are complex, the shorter operand is converted to the
412    // type of the longer, and that is the type of the result. This corresponds
413    // to what is done when combining two real floating-point operands.
414    // The fun begins when size promotion occur across type domains.
415    // From H&S 6.3.4: When one operand is complex and the other is a real
416    // floating-point type, the less precise type is converted, within it's
417    // real or complex domain, to the precision of the other type. For example,
418    // when combining a "long double" with a "double _Complex", the
419    // "double _Complex" is promoted to "long double _Complex".
420    int result = Context.getFloatingTypeOrder(lhs, rhs);
421
422    if (result > 0) { // The left side is bigger, convert rhs.
423      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
424    } else if (result < 0) { // The right side is bigger, convert lhs.
425      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
426    }
427    // At this point, lhs and rhs have the same rank/size. Now, make sure the
428    // domains match. This is a requirement for our implementation, C99
429    // does not require this promotion.
430    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
431      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
432        return rhs;
433      } else { // handle "_Complex double, double".
434        return lhs;
435      }
436    }
437    return lhs; // The domain/size match exactly.
438  }
439  // Now handle "real" floating types (i.e. float, double, long double).
440  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
441    // if we have an integer operand, the result is the real floating type.
442    if (rhs->isIntegerType()) {
443      // convert rhs to the lhs floating point type.
444      return lhs;
445    }
446    if (rhs->isComplexIntegerType()) {
447      // convert rhs to the complex floating point type.
448      return Context.getComplexType(lhs);
449    }
450    if (lhs->isIntegerType()) {
451      // convert lhs to the rhs floating point type.
452      return rhs;
453    }
454    if (lhs->isComplexIntegerType()) {
455      // convert lhs to the complex floating point type.
456      return Context.getComplexType(rhs);
457    }
458    // We have two real floating types, float/complex combos were handled above.
459    // Convert the smaller operand to the bigger result.
460    int result = Context.getFloatingTypeOrder(lhs, rhs);
461    if (result > 0) // convert the rhs
462      return lhs;
463    assert(result < 0 && "illegal float comparison");
464    return rhs;   // convert the lhs
465  }
466  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
467    // Handle GCC complex int extension.
468    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
469    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
470
471    if (lhsComplexInt && rhsComplexInt) {
472      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
473                                      rhsComplexInt->getElementType()) >= 0)
474        return lhs; // convert the rhs
475      return rhs;
476    } else if (lhsComplexInt && rhs->isIntegerType()) {
477      // convert the rhs to the lhs complex type.
478      return lhs;
479    } else if (rhsComplexInt && lhs->isIntegerType()) {
480      // convert the lhs to the rhs complex type.
481      return rhs;
482    }
483  }
484  // Finally, we have two differing integer types.
485  // The rules for this case are in C99 6.3.1.8
486  int compare = Context.getIntegerTypeOrder(lhs, rhs);
487  bool lhsSigned = lhs->isSignedIntegerType(),
488       rhsSigned = rhs->isSignedIntegerType();
489  QualType destType;
490  if (lhsSigned == rhsSigned) {
491    // Same signedness; use the higher-ranked type
492    destType = compare >= 0 ? lhs : rhs;
493  } else if (compare != (lhsSigned ? 1 : -1)) {
494    // The unsigned type has greater than or equal rank to the
495    // signed type, so use the unsigned type
496    destType = lhsSigned ? rhs : lhs;
497  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
498    // The two types are different widths; if we are here, that
499    // means the signed type is larger than the unsigned type, so
500    // use the signed type.
501    destType = lhsSigned ? lhs : rhs;
502  } else {
503    // The signed type is higher-ranked than the unsigned type,
504    // but isn't actually any bigger (like unsigned int and long
505    // on most 32-bit systems).  Use the unsigned type corresponding
506    // to the signed type.
507    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
508  }
509  return destType;
510}
511
512//===----------------------------------------------------------------------===//
513//  Semantic Analysis for various Expression Types
514//===----------------------------------------------------------------------===//
515
516
517/// ActOnStringLiteral - The specified tokens were lexed as pasted string
518/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
519/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
520/// multiple tokens.  However, the common case is that StringToks points to one
521/// string.
522///
523Action::OwningExprResult
524Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
525  assert(NumStringToks && "Must have at least one string!");
526
527  StringLiteralParser Literal(StringToks, NumStringToks, PP);
528  if (Literal.hadError)
529    return ExprError();
530
531  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
532  for (unsigned i = 0; i != NumStringToks; ++i)
533    StringTokLocs.push_back(StringToks[i].getLocation());
534
535  QualType StrTy = Context.CharTy;
536  if (Literal.AnyWide) StrTy = Context.getWCharType();
537  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
538
539  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
540  if (getLangOptions().CPlusPlus)
541    StrTy.addConst();
542
543  // Get an array type for the string, according to C99 6.4.5.  This includes
544  // the nul terminator character as well as the string length for pascal
545  // strings.
546  StrTy = Context.getConstantArrayType(StrTy,
547                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
548                                       ArrayType::Normal, 0);
549
550  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
551  return Owned(StringLiteral::Create(Context, Literal.GetString(),
552                                     Literal.GetStringLength(),
553                                     Literal.AnyWide, StrTy,
554                                     &StringTokLocs[0],
555                                     StringTokLocs.size()));
556}
557
558/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
559/// CurBlock to VD should cause it to be snapshotted (as we do for auto
560/// variables defined outside the block) or false if this is not needed (e.g.
561/// for values inside the block or for globals).
562///
563/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
564/// up-to-date.
565///
566static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
567                                              ValueDecl *VD) {
568  // If the value is defined inside the block, we couldn't snapshot it even if
569  // we wanted to.
570  if (CurBlock->TheDecl == VD->getDeclContext())
571    return false;
572
573  // If this is an enum constant or function, it is constant, don't snapshot.
574  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
575    return false;
576
577  // If this is a reference to an extern, static, or global variable, no need to
578  // snapshot it.
579  // FIXME: What about 'const' variables in C++?
580  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
581    if (!Var->hasLocalStorage())
582      return false;
583
584  // Blocks that have these can't be constant.
585  CurBlock->hasBlockDeclRefExprs = true;
586
587  // If we have nested blocks, the decl may be declared in an outer block (in
588  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
589  // be defined outside all of the current blocks (in which case the blocks do
590  // all get the bit).  Walk the nesting chain.
591  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
592       NextBlock = NextBlock->PrevBlockInfo) {
593    // If we found the defining block for the variable, don't mark the block as
594    // having a reference outside it.
595    if (NextBlock->TheDecl == VD->getDeclContext())
596      break;
597
598    // Otherwise, the DeclRef from the inner block causes the outer one to need
599    // a snapshot as well.
600    NextBlock->hasBlockDeclRefExprs = true;
601  }
602
603  return true;
604}
605
606
607
608/// ActOnIdentifierExpr - The parser read an identifier in expression context,
609/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
610/// identifier is used in a function call context.
611/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
612/// class or namespace that the identifier must be a member of.
613Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
614                                                 IdentifierInfo &II,
615                                                 bool HasTrailingLParen,
616                                                 const CXXScopeSpec *SS,
617                                                 bool isAddressOfOperand) {
618  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
619                                  isAddressOfOperand);
620}
621
622/// BuildDeclRefExpr - Build either a DeclRefExpr or a
623/// QualifiedDeclRefExpr based on whether or not SS is a
624/// nested-name-specifier.
625Sema::OwningExprResult
626Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
627                       bool TypeDependent, bool ValueDependent,
628                       const CXXScopeSpec *SS) {
629  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
630    Diag(Loc,
631         diag::err_auto_variable_cannot_appear_in_own_initializer)
632      << D->getDeclName();
633    return ExprError();
634  }
635
636  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
637    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
638      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
639        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
640          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
641            << D->getIdentifier() << FD->getDeclName();
642          Diag(D->getLocation(), diag::note_local_variable_declared_here)
643            << D->getIdentifier();
644          return ExprError();
645        }
646      }
647    }
648  }
649
650  MarkDeclarationReferenced(Loc, D);
651
652  Expr *E;
653  if (SS && !SS->isEmpty()) {
654    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
655                                          ValueDependent, SS->getRange(),
656                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
657  } else
658    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
659
660  return Owned(E);
661}
662
663/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
664/// variable corresponding to the anonymous union or struct whose type
665/// is Record.
666static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
667                                             RecordDecl *Record) {
668  assert(Record->isAnonymousStructOrUnion() &&
669         "Record must be an anonymous struct or union!");
670
671  // FIXME: Once Decls are directly linked together, this will be an O(1)
672  // operation rather than a slow walk through DeclContext's vector (which
673  // itself will be eliminated). DeclGroups might make this even better.
674  DeclContext *Ctx = Record->getDeclContext();
675  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
676                               DEnd = Ctx->decls_end();
677       D != DEnd; ++D) {
678    if (*D == Record) {
679      // The object for the anonymous struct/union directly
680      // follows its type in the list of declarations.
681      ++D;
682      assert(D != DEnd && "Missing object for anonymous record");
683      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
684      return *D;
685    }
686  }
687
688  assert(false && "Missing object for anonymous record");
689  return 0;
690}
691
692/// \brief Given a field that represents a member of an anonymous
693/// struct/union, build the path from that field's context to the
694/// actual member.
695///
696/// Construct the sequence of field member references we'll have to
697/// perform to get to the field in the anonymous union/struct. The
698/// list of members is built from the field outward, so traverse it
699/// backwards to go from an object in the current context to the field
700/// we found.
701///
702/// \returns The variable from which the field access should begin,
703/// for an anonymous struct/union that is not a member of another
704/// class. Otherwise, returns NULL.
705VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
706                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
707  assert(Field->getDeclContext()->isRecord() &&
708         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
709         && "Field must be stored inside an anonymous struct or union");
710
711  Path.push_back(Field);
712  VarDecl *BaseObject = 0;
713  DeclContext *Ctx = Field->getDeclContext();
714  do {
715    RecordDecl *Record = cast<RecordDecl>(Ctx);
716    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
717    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
718      Path.push_back(AnonField);
719    else {
720      BaseObject = cast<VarDecl>(AnonObject);
721      break;
722    }
723    Ctx = Ctx->getParent();
724  } while (Ctx->isRecord() &&
725           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
726
727  return BaseObject;
728}
729
730Sema::OwningExprResult
731Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
732                                               FieldDecl *Field,
733                                               Expr *BaseObjectExpr,
734                                               SourceLocation OpLoc) {
735  llvm::SmallVector<FieldDecl *, 4> AnonFields;
736  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
737                                                            AnonFields);
738
739  // Build the expression that refers to the base object, from
740  // which we will build a sequence of member references to each
741  // of the anonymous union objects and, eventually, the field we
742  // found via name lookup.
743  bool BaseObjectIsPointer = false;
744  unsigned ExtraQuals = 0;
745  if (BaseObject) {
746    // BaseObject is an anonymous struct/union variable (and is,
747    // therefore, not part of another non-anonymous record).
748    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
749    MarkDeclarationReferenced(Loc, BaseObject);
750    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
751                                               SourceLocation());
752    ExtraQuals
753      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
754  } else if (BaseObjectExpr) {
755    // The caller provided the base object expression. Determine
756    // whether its a pointer and whether it adds any qualifiers to the
757    // anonymous struct/union fields we're looking into.
758    QualType ObjectType = BaseObjectExpr->getType();
759    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
760      BaseObjectIsPointer = true;
761      ObjectType = ObjectPtr->getPointeeType();
762    }
763    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
764  } else {
765    // We've found a member of an anonymous struct/union that is
766    // inside a non-anonymous struct/union, so in a well-formed
767    // program our base object expression is "this".
768    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
769      if (!MD->isStatic()) {
770        QualType AnonFieldType
771          = Context.getTagDeclType(
772                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
773        QualType ThisType = Context.getTagDeclType(MD->getParent());
774        if ((Context.getCanonicalType(AnonFieldType)
775               == Context.getCanonicalType(ThisType)) ||
776            IsDerivedFrom(ThisType, AnonFieldType)) {
777          // Our base object expression is "this".
778          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
779                                                     MD->getThisType(Context));
780          BaseObjectIsPointer = true;
781        }
782      } else {
783        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
784          << Field->getDeclName());
785      }
786      ExtraQuals = MD->getTypeQualifiers();
787    }
788
789    if (!BaseObjectExpr)
790      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
791        << Field->getDeclName());
792  }
793
794  // Build the implicit member references to the field of the
795  // anonymous struct/union.
796  Expr *Result = BaseObjectExpr;
797  unsigned BaseAddrSpace = BaseObjectExpr->getType().getAddressSpace();
798  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
799         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
800       FI != FIEnd; ++FI) {
801    QualType MemberType = (*FI)->getType();
802    if (!(*FI)->isMutable()) {
803      unsigned combinedQualifiers
804        = MemberType.getCVRQualifiers() | ExtraQuals;
805      MemberType = MemberType.getQualifiedType(combinedQualifiers);
806    }
807    if (BaseAddrSpace != MemberType.getAddressSpace())
808      MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
809    MarkDeclarationReferenced(Loc, *FI);
810    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
811                                      OpLoc, MemberType);
812    BaseObjectIsPointer = false;
813    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
814  }
815
816  return Owned(Result);
817}
818
819/// ActOnDeclarationNameExpr - The parser has read some kind of name
820/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
821/// performs lookup on that name and returns an expression that refers
822/// to that name. This routine isn't directly called from the parser,
823/// because the parser doesn't know about DeclarationName. Rather,
824/// this routine is called by ActOnIdentifierExpr,
825/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
826/// which form the DeclarationName from the corresponding syntactic
827/// forms.
828///
829/// HasTrailingLParen indicates whether this identifier is used in a
830/// function call context.  LookupCtx is only used for a C++
831/// qualified-id (foo::bar) to indicate the class or namespace that
832/// the identifier must be a member of.
833///
834/// isAddressOfOperand means that this expression is the direct operand
835/// of an address-of operator. This matters because this is the only
836/// situation where a qualified name referencing a non-static member may
837/// appear outside a member function of this class.
838Sema::OwningExprResult
839Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
840                               DeclarationName Name, bool HasTrailingLParen,
841                               const CXXScopeSpec *SS,
842                               bool isAddressOfOperand) {
843  // Could be enum-constant, value decl, instance variable, etc.
844  if (SS && SS->isInvalid())
845    return ExprError();
846
847  // C++ [temp.dep.expr]p3:
848  //   An id-expression is type-dependent if it contains:
849  //     -- a nested-name-specifier that contains a class-name that
850  //        names a dependent type.
851  // FIXME: Member of the current instantiation.
852  if (SS && isDependentScopeSpecifier(*SS)) {
853    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
854                                                     Loc, SS->getRange(),
855                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
856                                                     isAddressOfOperand));
857  }
858
859  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
860                                         false, true, Loc);
861
862  if (Lookup.isAmbiguous()) {
863    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
864                            SS && SS->isSet() ? SS->getRange()
865                                              : SourceRange());
866    return ExprError();
867  }
868
869  NamedDecl *D = Lookup.getAsDecl();
870
871  // If this reference is in an Objective-C method, then ivar lookup happens as
872  // well.
873  IdentifierInfo *II = Name.getAsIdentifierInfo();
874  if (II && getCurMethodDecl()) {
875    // There are two cases to handle here.  1) scoped lookup could have failed,
876    // in which case we should look for an ivar.  2) scoped lookup could have
877    // found a decl, but that decl is outside the current instance method (i.e.
878    // a global variable).  In these two cases, we do a lookup for an ivar with
879    // this name, if the lookup sucedes, we replace it our current decl.
880    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
881      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
882      ObjCInterfaceDecl *ClassDeclared;
883      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
884        // Check if referencing a field with __attribute__((deprecated)).
885        if (DiagnoseUseOfDecl(IV, Loc))
886          return ExprError();
887
888        // If we're referencing an invalid decl, just return this as a silent
889        // error node.  The error diagnostic was already emitted on the decl.
890        if (IV->isInvalidDecl())
891          return ExprError();
892
893        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
894        // If a class method attemps to use a free standing ivar, this is
895        // an error.
896        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
897           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
898                           << IV->getDeclName());
899        // If a class method uses a global variable, even if an ivar with
900        // same name exists, use the global.
901        if (!IsClsMethod) {
902          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
903              ClassDeclared != IFace)
904           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
905          // FIXME: This should use a new expr for a direct reference, don't
906          // turn this into Self->ivar, just return a BareIVarExpr or something.
907          IdentifierInfo &II = Context.Idents.get("self");
908          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
909                                                          II, false);
910          MarkDeclarationReferenced(Loc, IV);
911          return Owned(new (Context)
912                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
913                                       SelfExpr.takeAs<Expr>(), true, true));
914        }
915      }
916    }
917    else if (getCurMethodDecl()->isInstanceMethod()) {
918      // We should warn if a local variable hides an ivar.
919      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
920      ObjCInterfaceDecl *ClassDeclared;
921      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
922        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
923            IFace == ClassDeclared)
924          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
925      }
926    }
927    // Needed to implement property "super.method" notation.
928    if (D == 0 && II->isStr("super")) {
929      QualType T;
930
931      if (getCurMethodDecl()->isInstanceMethod())
932        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
933                                      getCurMethodDecl()->getClassInterface()));
934      else
935        T = Context.getObjCClassType();
936      return Owned(new (Context) ObjCSuperExpr(Loc, T));
937    }
938  }
939
940  // Determine whether this name might be a candidate for
941  // argument-dependent lookup.
942  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
943             HasTrailingLParen;
944
945  if (ADL && D == 0) {
946    // We've seen something of the form
947    //
948    //   identifier(
949    //
950    // and we did not find any entity by the name
951    // "identifier". However, this identifier is still subject to
952    // argument-dependent lookup, so keep track of the name.
953    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
954                                                          Context.OverloadTy,
955                                                          Loc));
956  }
957
958  if (D == 0) {
959    // Otherwise, this could be an implicitly declared function reference (legal
960    // in C90, extension in C99).
961    if (HasTrailingLParen && II &&
962        !getLangOptions().CPlusPlus) // Not in C++.
963      D = ImplicitlyDefineFunction(Loc, *II, S);
964    else {
965      // If this name wasn't predeclared and if this is not a function call,
966      // diagnose the problem.
967      if (SS && !SS->isEmpty())
968        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
969          << Name << SS->getRange());
970      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
971               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
972        return ExprError(Diag(Loc, diag::err_undeclared_use)
973          << Name.getAsString());
974      else
975        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
976    }
977  }
978
979  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
980    // Warn about constructs like:
981    //   if (void *X = foo()) { ... } else { X }.
982    // In the else block, the pointer is always false.
983
984    // FIXME: In a template instantiation, we don't have scope
985    // information to check this property.
986    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
987      Scope *CheckS = S;
988      while (CheckS) {
989        if (CheckS->isWithinElse() &&
990            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
991          if (Var->getType()->isBooleanType())
992            ExprError(Diag(Loc, diag::warn_value_always_false)
993                      << Var->getDeclName());
994          else
995            ExprError(Diag(Loc, diag::warn_value_always_zero)
996                      << Var->getDeclName());
997          break;
998        }
999
1000        // Move up one more control parent to check again.
1001        CheckS = CheckS->getControlParent();
1002        if (CheckS)
1003          CheckS = CheckS->getParent();
1004      }
1005    }
1006  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
1007    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1008      // C99 DR 316 says that, if a function type comes from a
1009      // function definition (without a prototype), that type is only
1010      // used for checking compatibility. Therefore, when referencing
1011      // the function, we pretend that we don't have the full function
1012      // type.
1013      if (DiagnoseUseOfDecl(Func, Loc))
1014        return ExprError();
1015
1016      QualType T = Func->getType();
1017      QualType NoProtoType = T;
1018      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1019        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1020      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
1021    }
1022  }
1023
1024  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
1025}
1026/// \brief Cast member's object to its own class if necessary.
1027bool
1028Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
1029  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
1030    if (CXXRecordDecl *RD =
1031        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
1032      QualType DestType =
1033        Context.getCanonicalType(Context.getTypeDeclType(RD));
1034      if (DestType->isDependentType() || From->getType()->isDependentType())
1035        return false;
1036      QualType FromRecordType = From->getType();
1037      QualType DestRecordType = DestType;
1038      if (FromRecordType->getAsPointerType()) {
1039        DestType = Context.getPointerType(DestType);
1040        FromRecordType = FromRecordType->getPointeeType();
1041      }
1042      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
1043          CheckDerivedToBaseConversion(FromRecordType,
1044                                       DestRecordType,
1045                                       From->getSourceRange().getBegin(),
1046                                       From->getSourceRange()))
1047        return true;
1048      ImpCastExprToType(From, DestType, /*isLvalue=*/true);
1049    }
1050  return false;
1051}
1052
1053/// \brief Complete semantic analysis for a reference to the given declaration.
1054Sema::OwningExprResult
1055Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
1056                               bool HasTrailingLParen,
1057                               const CXXScopeSpec *SS,
1058                               bool isAddressOfOperand) {
1059  assert(D && "Cannot refer to a NULL declaration");
1060  DeclarationName Name = D->getDeclName();
1061
1062  // If this is an expression of the form &Class::member, don't build an
1063  // implicit member ref, because we want a pointer to the member in general,
1064  // not any specific instance's member.
1065  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
1066    DeclContext *DC = computeDeclContext(*SS);
1067    if (D && isa<CXXRecordDecl>(DC)) {
1068      QualType DType;
1069      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1070        DType = FD->getType().getNonReferenceType();
1071      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1072        DType = Method->getType();
1073      } else if (isa<OverloadedFunctionDecl>(D)) {
1074        DType = Context.OverloadTy;
1075      }
1076      // Could be an inner type. That's diagnosed below, so ignore it here.
1077      if (!DType.isNull()) {
1078        // The pointer is type- and value-dependent if it points into something
1079        // dependent.
1080        bool Dependent = DC->isDependentContext();
1081        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
1082      }
1083    }
1084  }
1085
1086  // We may have found a field within an anonymous union or struct
1087  // (C++ [class.union]).
1088  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
1089    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1090      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1091
1092  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1093    if (!MD->isStatic()) {
1094      // C++ [class.mfct.nonstatic]p2:
1095      //   [...] if name lookup (3.4.1) resolves the name in the
1096      //   id-expression to a nonstatic nontype member of class X or of
1097      //   a base class of X, the id-expression is transformed into a
1098      //   class member access expression (5.2.5) using (*this) (9.3.2)
1099      //   as the postfix-expression to the left of the '.' operator.
1100      DeclContext *Ctx = 0;
1101      QualType MemberType;
1102      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1103        Ctx = FD->getDeclContext();
1104        MemberType = FD->getType();
1105
1106        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1107          MemberType = RefType->getPointeeType();
1108        else if (!FD->isMutable()) {
1109          unsigned combinedQualifiers
1110            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1111          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1112        }
1113      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1114        if (!Method->isStatic()) {
1115          Ctx = Method->getParent();
1116          MemberType = Method->getType();
1117        }
1118      } else if (OverloadedFunctionDecl *Ovl
1119                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1120        for (OverloadedFunctionDecl::function_iterator
1121               Func = Ovl->function_begin(),
1122               FuncEnd = Ovl->function_end();
1123             Func != FuncEnd; ++Func) {
1124          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1125            if (!DMethod->isStatic()) {
1126              Ctx = Ovl->getDeclContext();
1127              MemberType = Context.OverloadTy;
1128              break;
1129            }
1130        }
1131      }
1132
1133      if (Ctx && Ctx->isRecord()) {
1134        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1135        QualType ThisType = Context.getTagDeclType(MD->getParent());
1136        if ((Context.getCanonicalType(CtxType)
1137               == Context.getCanonicalType(ThisType)) ||
1138            IsDerivedFrom(ThisType, CtxType)) {
1139          // Build the implicit member access expression.
1140          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1141                                                 MD->getThisType(Context));
1142          MarkDeclarationReferenced(Loc, D);
1143          if (PerformObjectMemberConversion(This, D))
1144            return ExprError();
1145          return Owned(new (Context) MemberExpr(This, true, D,
1146                                                Loc, MemberType));
1147        }
1148      }
1149    }
1150  }
1151
1152  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1153    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1154      if (MD->isStatic())
1155        // "invalid use of member 'x' in static member function"
1156        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1157          << FD->getDeclName());
1158    }
1159
1160    // Any other ways we could have found the field in a well-formed
1161    // program would have been turned into implicit member expressions
1162    // above.
1163    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1164      << FD->getDeclName());
1165  }
1166
1167  if (isa<TypedefDecl>(D))
1168    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1169  if (isa<ObjCInterfaceDecl>(D))
1170    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1171  if (isa<NamespaceDecl>(D))
1172    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1173
1174  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1175  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1176    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1177                           false, false, SS);
1178  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1179    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1180                            false, false, SS);
1181  ValueDecl *VD = cast<ValueDecl>(D);
1182
1183  // Check whether this declaration can be used. Note that we suppress
1184  // this check when we're going to perform argument-dependent lookup
1185  // on this function name, because this might not be the function
1186  // that overload resolution actually selects.
1187  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1188             HasTrailingLParen;
1189  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1190    return ExprError();
1191
1192  // Only create DeclRefExpr's for valid Decl's.
1193  if (VD->isInvalidDecl())
1194    return ExprError();
1195
1196  // If the identifier reference is inside a block, and it refers to a value
1197  // that is outside the block, create a BlockDeclRefExpr instead of a
1198  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1199  // the block is formed.
1200  //
1201  // We do not do this for things like enum constants, global variables, etc,
1202  // as they do not get snapshotted.
1203  //
1204  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1205    MarkDeclarationReferenced(Loc, VD);
1206    QualType ExprTy = VD->getType().getNonReferenceType();
1207    // The BlocksAttr indicates the variable is bound by-reference.
1208    if (VD->getAttr<BlocksAttr>())
1209      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1210    // This is to record that a 'const' was actually synthesize and added.
1211    bool constAdded = !ExprTy.isConstQualified();
1212    // Variable will be bound by-copy, make it const within the closure.
1213
1214    ExprTy.addConst();
1215    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1216                                                constAdded));
1217  }
1218  // If this reference is not in a block or if the referenced variable is
1219  // within the block, create a normal DeclRefExpr.
1220
1221  bool TypeDependent = false;
1222  bool ValueDependent = false;
1223  if (getLangOptions().CPlusPlus) {
1224    // C++ [temp.dep.expr]p3:
1225    //   An id-expression is type-dependent if it contains:
1226    //     - an identifier that was declared with a dependent type,
1227    if (VD->getType()->isDependentType())
1228      TypeDependent = true;
1229    //     - FIXME: a template-id that is dependent,
1230    //     - a conversion-function-id that specifies a dependent type,
1231    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1232             Name.getCXXNameType()->isDependentType())
1233      TypeDependent = true;
1234    //     - a nested-name-specifier that contains a class-name that
1235    //       names a dependent type.
1236    else if (SS && !SS->isEmpty()) {
1237      for (DeclContext *DC = computeDeclContext(*SS);
1238           DC; DC = DC->getParent()) {
1239        // FIXME: could stop early at namespace scope.
1240        if (DC->isRecord()) {
1241          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1242          if (Context.getTypeDeclType(Record)->isDependentType()) {
1243            TypeDependent = true;
1244            break;
1245          }
1246        }
1247      }
1248    }
1249
1250    // C++ [temp.dep.constexpr]p2:
1251    //
1252    //   An identifier is value-dependent if it is:
1253    //     - a name declared with a dependent type,
1254    if (TypeDependent)
1255      ValueDependent = true;
1256    //     - the name of a non-type template parameter,
1257    else if (isa<NonTypeTemplateParmDecl>(VD))
1258      ValueDependent = true;
1259    //    - a constant with integral or enumeration type and is
1260    //      initialized with an expression that is value-dependent
1261    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1262      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1263          Dcl->getInit()) {
1264        ValueDependent = Dcl->getInit()->isValueDependent();
1265      }
1266    }
1267  }
1268
1269  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1270                          TypeDependent, ValueDependent, SS);
1271}
1272
1273Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1274                                                 tok::TokenKind Kind) {
1275  PredefinedExpr::IdentType IT;
1276
1277  switch (Kind) {
1278  default: assert(0 && "Unknown simple primary expr!");
1279  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1280  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1281  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1282  }
1283
1284  // Pre-defined identifiers are of type char[x], where x is the length of the
1285  // string.
1286  unsigned Length;
1287  if (FunctionDecl *FD = getCurFunctionDecl())
1288    Length = FD->getIdentifier()->getLength();
1289  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1290    Length = MD->getSynthesizedMethodSize();
1291  else {
1292    Diag(Loc, diag::ext_predef_outside_function);
1293    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1294    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1295  }
1296
1297
1298  llvm::APInt LengthI(32, Length + 1);
1299  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1300  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1301  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1302}
1303
1304Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1305  llvm::SmallString<16> CharBuffer;
1306  CharBuffer.resize(Tok.getLength());
1307  const char *ThisTokBegin = &CharBuffer[0];
1308  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1309
1310  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1311                            Tok.getLocation(), PP);
1312  if (Literal.hadError())
1313    return ExprError();
1314
1315  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1316
1317  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1318                                              Literal.isWide(),
1319                                              type, Tok.getLocation()));
1320}
1321
1322Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1323  // Fast path for a single digit (which is quite common).  A single digit
1324  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1325  if (Tok.getLength() == 1) {
1326    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1327    unsigned IntSize = Context.Target.getIntWidth();
1328    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1329                    Context.IntTy, Tok.getLocation()));
1330  }
1331
1332  llvm::SmallString<512> IntegerBuffer;
1333  // Add padding so that NumericLiteralParser can overread by one character.
1334  IntegerBuffer.resize(Tok.getLength()+1);
1335  const char *ThisTokBegin = &IntegerBuffer[0];
1336
1337  // Get the spelling of the token, which eliminates trigraphs, etc.
1338  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1339
1340  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1341                               Tok.getLocation(), PP);
1342  if (Literal.hadError)
1343    return ExprError();
1344
1345  Expr *Res;
1346
1347  if (Literal.isFloatingLiteral()) {
1348    QualType Ty;
1349    if (Literal.isFloat)
1350      Ty = Context.FloatTy;
1351    else if (!Literal.isLong)
1352      Ty = Context.DoubleTy;
1353    else
1354      Ty = Context.LongDoubleTy;
1355
1356    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1357
1358    // isExact will be set by GetFloatValue().
1359    bool isExact = false;
1360    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1361    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1362
1363  } else if (!Literal.isIntegerLiteral()) {
1364    return ExprError();
1365  } else {
1366    QualType Ty;
1367
1368    // long long is a C99 feature.
1369    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1370        Literal.isLongLong)
1371      Diag(Tok.getLocation(), diag::ext_longlong);
1372
1373    // Get the value in the widest-possible width.
1374    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1375
1376    if (Literal.GetIntegerValue(ResultVal)) {
1377      // If this value didn't fit into uintmax_t, warn and force to ull.
1378      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1379      Ty = Context.UnsignedLongLongTy;
1380      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1381             "long long is not intmax_t?");
1382    } else {
1383      // If this value fits into a ULL, try to figure out what else it fits into
1384      // according to the rules of C99 6.4.4.1p5.
1385
1386      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1387      // be an unsigned int.
1388      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1389
1390      // Check from smallest to largest, picking the smallest type we can.
1391      unsigned Width = 0;
1392      if (!Literal.isLong && !Literal.isLongLong) {
1393        // Are int/unsigned possibilities?
1394        unsigned IntSize = Context.Target.getIntWidth();
1395
1396        // Does it fit in a unsigned int?
1397        if (ResultVal.isIntN(IntSize)) {
1398          // Does it fit in a signed int?
1399          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1400            Ty = Context.IntTy;
1401          else if (AllowUnsigned)
1402            Ty = Context.UnsignedIntTy;
1403          Width = IntSize;
1404        }
1405      }
1406
1407      // Are long/unsigned long possibilities?
1408      if (Ty.isNull() && !Literal.isLongLong) {
1409        unsigned LongSize = Context.Target.getLongWidth();
1410
1411        // Does it fit in a unsigned long?
1412        if (ResultVal.isIntN(LongSize)) {
1413          // Does it fit in a signed long?
1414          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1415            Ty = Context.LongTy;
1416          else if (AllowUnsigned)
1417            Ty = Context.UnsignedLongTy;
1418          Width = LongSize;
1419        }
1420      }
1421
1422      // Finally, check long long if needed.
1423      if (Ty.isNull()) {
1424        unsigned LongLongSize = Context.Target.getLongLongWidth();
1425
1426        // Does it fit in a unsigned long long?
1427        if (ResultVal.isIntN(LongLongSize)) {
1428          // Does it fit in a signed long long?
1429          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1430            Ty = Context.LongLongTy;
1431          else if (AllowUnsigned)
1432            Ty = Context.UnsignedLongLongTy;
1433          Width = LongLongSize;
1434        }
1435      }
1436
1437      // If we still couldn't decide a type, we probably have something that
1438      // does not fit in a signed long long, but has no U suffix.
1439      if (Ty.isNull()) {
1440        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1441        Ty = Context.UnsignedLongLongTy;
1442        Width = Context.Target.getLongLongWidth();
1443      }
1444
1445      if (ResultVal.getBitWidth() != Width)
1446        ResultVal.trunc(Width);
1447    }
1448    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1449  }
1450
1451  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1452  if (Literal.isImaginary)
1453    Res = new (Context) ImaginaryLiteral(Res,
1454                                        Context.getComplexType(Res->getType()));
1455
1456  return Owned(Res);
1457}
1458
1459Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1460                                              SourceLocation R, ExprArg Val) {
1461  Expr *E = Val.takeAs<Expr>();
1462  assert((E != 0) && "ActOnParenExpr() missing expr");
1463  return Owned(new (Context) ParenExpr(L, R, E));
1464}
1465
1466/// The UsualUnaryConversions() function is *not* called by this routine.
1467/// See C99 6.3.2.1p[2-4] for more details.
1468bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1469                                     SourceLocation OpLoc,
1470                                     const SourceRange &ExprRange,
1471                                     bool isSizeof) {
1472  if (exprType->isDependentType())
1473    return false;
1474
1475  // C99 6.5.3.4p1:
1476  if (isa<FunctionType>(exprType)) {
1477    // alignof(function) is allowed as an extension.
1478    if (isSizeof)
1479      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1480    return false;
1481  }
1482
1483  // Allow sizeof(void)/alignof(void) as an extension.
1484  if (exprType->isVoidType()) {
1485    Diag(OpLoc, diag::ext_sizeof_void_type)
1486      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1487    return false;
1488  }
1489
1490  if (RequireCompleteType(OpLoc, exprType,
1491                          isSizeof ? diag::err_sizeof_incomplete_type :
1492                          diag::err_alignof_incomplete_type,
1493                          ExprRange))
1494    return true;
1495
1496  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1497  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1498    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1499      << exprType << isSizeof << ExprRange;
1500    return true;
1501  }
1502
1503  return false;
1504}
1505
1506bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1507                            const SourceRange &ExprRange) {
1508  E = E->IgnoreParens();
1509
1510  // alignof decl is always ok.
1511  if (isa<DeclRefExpr>(E))
1512    return false;
1513
1514  // Cannot know anything else if the expression is dependent.
1515  if (E->isTypeDependent())
1516    return false;
1517
1518  if (E->getBitField()) {
1519    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1520    return true;
1521  }
1522
1523  // Alignment of a field access is always okay, so long as it isn't a
1524  // bit-field.
1525  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1526    if (isa<FieldDecl>(ME->getMemberDecl()))
1527      return false;
1528
1529  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1530}
1531
1532/// \brief Build a sizeof or alignof expression given a type operand.
1533Action::OwningExprResult
1534Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1535                              bool isSizeOf, SourceRange R) {
1536  if (T.isNull())
1537    return ExprError();
1538
1539  if (!T->isDependentType() &&
1540      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1541    return ExprError();
1542
1543  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1544  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1545                                               Context.getSizeType(), OpLoc,
1546                                               R.getEnd()));
1547}
1548
1549/// \brief Build a sizeof or alignof expression given an expression
1550/// operand.
1551Action::OwningExprResult
1552Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1553                              bool isSizeOf, SourceRange R) {
1554  // Verify that the operand is valid.
1555  bool isInvalid = false;
1556  if (E->isTypeDependent()) {
1557    // Delay type-checking for type-dependent expressions.
1558  } else if (!isSizeOf) {
1559    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1560  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1561    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1562    isInvalid = true;
1563  } else {
1564    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1565  }
1566
1567  if (isInvalid)
1568    return ExprError();
1569
1570  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1571  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1572                                               Context.getSizeType(), OpLoc,
1573                                               R.getEnd()));
1574}
1575
1576/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1577/// the same for @c alignof and @c __alignof
1578/// Note that the ArgRange is invalid if isType is false.
1579Action::OwningExprResult
1580Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1581                             void *TyOrEx, const SourceRange &ArgRange) {
1582  // If error parsing type, ignore.
1583  if (TyOrEx == 0) return ExprError();
1584
1585  if (isType) {
1586    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1587    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1588  }
1589
1590  // Get the end location.
1591  Expr *ArgEx = (Expr *)TyOrEx;
1592  Action::OwningExprResult Result
1593    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1594
1595  if (Result.isInvalid())
1596    DeleteExpr(ArgEx);
1597
1598  return move(Result);
1599}
1600
1601QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1602  if (V->isTypeDependent())
1603    return Context.DependentTy;
1604
1605  // These operators return the element type of a complex type.
1606  if (const ComplexType *CT = V->getType()->getAsComplexType())
1607    return CT->getElementType();
1608
1609  // Otherwise they pass through real integer and floating point types here.
1610  if (V->getType()->isArithmeticType())
1611    return V->getType();
1612
1613  // Reject anything else.
1614  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1615    << (isReal ? "__real" : "__imag");
1616  return QualType();
1617}
1618
1619
1620
1621Action::OwningExprResult
1622Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1623                          tok::TokenKind Kind, ExprArg Input) {
1624  Expr *Arg = (Expr *)Input.get();
1625
1626  UnaryOperator::Opcode Opc;
1627  switch (Kind) {
1628  default: assert(0 && "Unknown unary op!");
1629  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1630  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1631  }
1632
1633  if (getLangOptions().CPlusPlus &&
1634      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1635    // Which overloaded operator?
1636    OverloadedOperatorKind OverOp =
1637      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1638
1639    // C++ [over.inc]p1:
1640    //
1641    //     [...] If the function is a member function with one
1642    //     parameter (which shall be of type int) or a non-member
1643    //     function with two parameters (the second of which shall be
1644    //     of type int), it defines the postfix increment operator ++
1645    //     for objects of that type. When the postfix increment is
1646    //     called as a result of using the ++ operator, the int
1647    //     argument will have value zero.
1648    Expr *Args[2] = {
1649      Arg,
1650      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1651                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1652    };
1653
1654    // Build the candidate set for overloading
1655    OverloadCandidateSet CandidateSet;
1656    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1657
1658    // Perform overload resolution.
1659    OverloadCandidateSet::iterator Best;
1660    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1661    case OR_Success: {
1662      // We found a built-in operator or an overloaded operator.
1663      FunctionDecl *FnDecl = Best->Function;
1664
1665      if (FnDecl) {
1666        // We matched an overloaded operator. Build a call to that
1667        // operator.
1668
1669        // Convert the arguments.
1670        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1671          if (PerformObjectArgumentInitialization(Arg, Method))
1672            return ExprError();
1673        } else {
1674          // Convert the arguments.
1675          if (PerformCopyInitialization(Arg,
1676                                        FnDecl->getParamDecl(0)->getType(),
1677                                        "passing"))
1678            return ExprError();
1679        }
1680
1681        // Determine the result type
1682        QualType ResultTy
1683          = FnDecl->getType()->getAsFunctionType()->getResultType();
1684        ResultTy = ResultTy.getNonReferenceType();
1685
1686        // Build the actual expression node.
1687        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1688                                                 SourceLocation());
1689        UsualUnaryConversions(FnExpr);
1690
1691        Input.release();
1692        Args[0] = Arg;
1693        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1694                                                       Args, 2, ResultTy,
1695                                                       OpLoc));
1696      } else {
1697        // We matched a built-in operator. Convert the arguments, then
1698        // break out so that we will build the appropriate built-in
1699        // operator node.
1700        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1701                                      "passing"))
1702          return ExprError();
1703
1704        break;
1705      }
1706    }
1707
1708    case OR_No_Viable_Function:
1709      // No viable function; fall through to handling this as a
1710      // built-in operator, which will produce an error message for us.
1711      break;
1712
1713    case OR_Ambiguous:
1714      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1715          << UnaryOperator::getOpcodeStr(Opc)
1716          << Arg->getSourceRange();
1717      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1718      return ExprError();
1719
1720    case OR_Deleted:
1721      Diag(OpLoc, diag::err_ovl_deleted_oper)
1722        << Best->Function->isDeleted()
1723        << UnaryOperator::getOpcodeStr(Opc)
1724        << Arg->getSourceRange();
1725      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1726      return ExprError();
1727    }
1728
1729    // Either we found no viable overloaded operator or we matched a
1730    // built-in operator. In either case, fall through to trying to
1731    // build a built-in operation.
1732  }
1733
1734  Input.release();
1735  Input = Arg;
1736  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1737}
1738
1739Action::OwningExprResult
1740Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1741                              ExprArg Idx, SourceLocation RLoc) {
1742  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1743       *RHSExp = static_cast<Expr*>(Idx.get());
1744
1745  if (getLangOptions().CPlusPlus &&
1746      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1747    Base.release();
1748    Idx.release();
1749    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1750                                                  Context.DependentTy, RLoc));
1751  }
1752
1753  if (getLangOptions().CPlusPlus &&
1754      (LHSExp->getType()->isRecordType() ||
1755       LHSExp->getType()->isEnumeralType() ||
1756       RHSExp->getType()->isRecordType() ||
1757       RHSExp->getType()->isEnumeralType())) {
1758    // Add the appropriate overloaded operators (C++ [over.match.oper])
1759    // to the candidate set.
1760    OverloadCandidateSet CandidateSet;
1761    Expr *Args[2] = { LHSExp, RHSExp };
1762    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1763                          SourceRange(LLoc, RLoc));
1764
1765    // Perform overload resolution.
1766    OverloadCandidateSet::iterator Best;
1767    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1768    case OR_Success: {
1769      // We found a built-in operator or an overloaded operator.
1770      FunctionDecl *FnDecl = Best->Function;
1771
1772      if (FnDecl) {
1773        // We matched an overloaded operator. Build a call to that
1774        // operator.
1775
1776        // Convert the arguments.
1777        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1778          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1779              PerformCopyInitialization(RHSExp,
1780                                        FnDecl->getParamDecl(0)->getType(),
1781                                        "passing"))
1782            return ExprError();
1783        } else {
1784          // Convert the arguments.
1785          if (PerformCopyInitialization(LHSExp,
1786                                        FnDecl->getParamDecl(0)->getType(),
1787                                        "passing") ||
1788              PerformCopyInitialization(RHSExp,
1789                                        FnDecl->getParamDecl(1)->getType(),
1790                                        "passing"))
1791            return ExprError();
1792        }
1793
1794        // Determine the result type
1795        QualType ResultTy
1796          = FnDecl->getType()->getAsFunctionType()->getResultType();
1797        ResultTy = ResultTy.getNonReferenceType();
1798
1799        // Build the actual expression node.
1800        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1801                                                 SourceLocation());
1802        UsualUnaryConversions(FnExpr);
1803
1804        Base.release();
1805        Idx.release();
1806        Args[0] = LHSExp;
1807        Args[1] = RHSExp;
1808        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1809                                                       FnExpr, Args, 2,
1810                                                       ResultTy, LLoc));
1811      } else {
1812        // We matched a built-in operator. Convert the arguments, then
1813        // break out so that we will build the appropriate built-in
1814        // operator node.
1815        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1816                                      "passing") ||
1817            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1818                                      "passing"))
1819          return ExprError();
1820
1821        break;
1822      }
1823    }
1824
1825    case OR_No_Viable_Function:
1826      // No viable function; fall through to handling this as a
1827      // built-in operator, which will produce an error message for us.
1828      break;
1829
1830    case OR_Ambiguous:
1831      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1832          << "[]"
1833          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1834      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1835      return ExprError();
1836
1837    case OR_Deleted:
1838      Diag(LLoc, diag::err_ovl_deleted_oper)
1839        << Best->Function->isDeleted()
1840        << "[]"
1841        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1842      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1843      return ExprError();
1844    }
1845
1846    // Either we found no viable overloaded operator or we matched a
1847    // built-in operator. In either case, fall through to trying to
1848    // build a built-in operation.
1849  }
1850
1851  // Perform default conversions.
1852  DefaultFunctionArrayConversion(LHSExp);
1853  DefaultFunctionArrayConversion(RHSExp);
1854
1855  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1856
1857  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1858  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1859  // in the subscript position. As a result, we need to derive the array base
1860  // and index from the expression types.
1861  Expr *BaseExpr, *IndexExpr;
1862  QualType ResultType;
1863  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1864    BaseExpr = LHSExp;
1865    IndexExpr = RHSExp;
1866    ResultType = Context.DependentTy;
1867  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1868    BaseExpr = LHSExp;
1869    IndexExpr = RHSExp;
1870    ResultType = PTy->getPointeeType();
1871  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1872     // Handle the uncommon case of "123[Ptr]".
1873    BaseExpr = RHSExp;
1874    IndexExpr = LHSExp;
1875    ResultType = PTy->getPointeeType();
1876  } else if (const ObjCObjectPointerType *PTy =
1877               LHSTy->getAsObjCObjectPointerType()) {
1878    BaseExpr = LHSExp;
1879    IndexExpr = RHSExp;
1880    ResultType = PTy->getPointeeType();
1881  } else if (const ObjCObjectPointerType *PTy =
1882               RHSTy->getAsObjCObjectPointerType()) {
1883     // Handle the uncommon case of "123[Ptr]".
1884    BaseExpr = RHSExp;
1885    IndexExpr = LHSExp;
1886    ResultType = PTy->getPointeeType();
1887  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1888    BaseExpr = LHSExp;    // vectors: V[123]
1889    IndexExpr = RHSExp;
1890
1891    // FIXME: need to deal with const...
1892    ResultType = VTy->getElementType();
1893  } else if (LHSTy->isArrayType()) {
1894    // If we see an array that wasn't promoted by
1895    // DefaultFunctionArrayConversion, it must be an array that
1896    // wasn't promoted because of the C90 rule that doesn't
1897    // allow promoting non-lvalue arrays.  Warn, then
1898    // force the promotion here.
1899    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1900        LHSExp->getSourceRange();
1901    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1902    LHSTy = LHSExp->getType();
1903
1904    BaseExpr = LHSExp;
1905    IndexExpr = RHSExp;
1906    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1907  } else if (RHSTy->isArrayType()) {
1908    // Same as previous, except for 123[f().a] case
1909    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1910        RHSExp->getSourceRange();
1911    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1912    RHSTy = RHSExp->getType();
1913
1914    BaseExpr = RHSExp;
1915    IndexExpr = LHSExp;
1916    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1917  } else {
1918    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1919       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1920  }
1921  // C99 6.5.2.1p1
1922  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1923    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1924                     << IndexExpr->getSourceRange());
1925
1926  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1927  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1928  // type. Note that Functions are not objects, and that (in C99 parlance)
1929  // incomplete types are not object types.
1930  if (ResultType->isFunctionType()) {
1931    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1932      << ResultType << BaseExpr->getSourceRange();
1933    return ExprError();
1934  }
1935
1936  if (!ResultType->isDependentType() &&
1937      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1938                          BaseExpr->getSourceRange()))
1939    return ExprError();
1940
1941  // Diagnose bad cases where we step over interface counts.
1942  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1943    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1944      << ResultType << BaseExpr->getSourceRange();
1945    return ExprError();
1946  }
1947
1948  Base.release();
1949  Idx.release();
1950  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1951                                                ResultType, RLoc));
1952}
1953
1954QualType Sema::
1955CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1956                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1957  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1958
1959  // The vector accessor can't exceed the number of elements.
1960  const char *compStr = CompName.getName();
1961
1962  // This flag determines whether or not the component is one of the four
1963  // special names that indicate a subset of exactly half the elements are
1964  // to be selected.
1965  bool HalvingSwizzle = false;
1966
1967  // This flag determines whether or not CompName has an 's' char prefix,
1968  // indicating that it is a string of hex values to be used as vector indices.
1969  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1970
1971  // Check that we've found one of the special components, or that the component
1972  // names must come from the same set.
1973  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1974      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1975    HalvingSwizzle = true;
1976  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1977    do
1978      compStr++;
1979    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1980  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1981    do
1982      compStr++;
1983    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1984  }
1985
1986  if (!HalvingSwizzle && *compStr) {
1987    // We didn't get to the end of the string. This means the component names
1988    // didn't come from the same set *or* we encountered an illegal name.
1989    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1990      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1991    return QualType();
1992  }
1993
1994  // Ensure no component accessor exceeds the width of the vector type it
1995  // operates on.
1996  if (!HalvingSwizzle) {
1997    compStr = CompName.getName();
1998
1999    if (HexSwizzle)
2000      compStr++;
2001
2002    while (*compStr) {
2003      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2004        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2005          << baseType << SourceRange(CompLoc);
2006        return QualType();
2007      }
2008    }
2009  }
2010
2011  // If this is a halving swizzle, verify that the base type has an even
2012  // number of elements.
2013  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
2014    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
2015      << baseType << SourceRange(CompLoc);
2016    return QualType();
2017  }
2018
2019  // The component accessor looks fine - now we need to compute the actual type.
2020  // The vector type is implied by the component accessor. For example,
2021  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2022  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2023  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2024  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
2025                                     : CompName.getLength();
2026  if (HexSwizzle)
2027    CompSize--;
2028
2029  if (CompSize == 1)
2030    return vecType->getElementType();
2031
2032  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2033  // Now look up the TypeDefDecl from the vector type. Without this,
2034  // diagostics look bad. We want extended vector types to appear built-in.
2035  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2036    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2037      return Context.getTypedefType(ExtVectorDecls[i]);
2038  }
2039  return VT; // should never get here (a typedef type should always be found).
2040}
2041
2042static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2043                                                IdentifierInfo &Member,
2044                                                const Selector &Sel,
2045                                                ASTContext &Context) {
2046
2047  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
2048    return PD;
2049  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2050    return OMD;
2051
2052  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2053       E = PDecl->protocol_end(); I != E; ++I) {
2054    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2055                                                     Context))
2056      return D;
2057  }
2058  return 0;
2059}
2060
2061static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2062                                IdentifierInfo &Member,
2063                                const Selector &Sel,
2064                                ASTContext &Context) {
2065  // Check protocols on qualified interfaces.
2066  Decl *GDecl = 0;
2067  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2068       E = QIdTy->qual_end(); I != E; ++I) {
2069    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2070      GDecl = PD;
2071      break;
2072    }
2073    // Also must look for a getter name which uses property syntax.
2074    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2075      GDecl = OMD;
2076      break;
2077    }
2078  }
2079  if (!GDecl) {
2080    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2081         E = QIdTy->qual_end(); I != E; ++I) {
2082      // Search in the protocol-qualifier list of current protocol.
2083      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2084      if (GDecl)
2085        return GDecl;
2086    }
2087  }
2088  return GDecl;
2089}
2090
2091/// FindMethodInNestedImplementations - Look up a method in current and
2092/// all base class implementations.
2093///
2094ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2095                                              const ObjCInterfaceDecl *IFace,
2096                                              const Selector &Sel) {
2097  ObjCMethodDecl *Method = 0;
2098  if (ObjCImplementationDecl *ImpDecl = IFace->getImplementation())
2099    Method = ImpDecl->getInstanceMethod(Sel);
2100
2101  if (!Method && IFace->getSuperClass())
2102    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2103  return Method;
2104}
2105
2106Action::OwningExprResult
2107Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2108                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2109                               IdentifierInfo &Member,
2110                               DeclPtrTy ObjCImpDecl) {
2111  Expr *BaseExpr = Base.takeAs<Expr>();
2112  assert(BaseExpr && "no record expression");
2113
2114  // Perform default conversions.
2115  DefaultFunctionArrayConversion(BaseExpr);
2116
2117  QualType BaseType = BaseExpr->getType();
2118  assert(!BaseType.isNull() && "no type for member expression");
2119
2120  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2121  // must have pointer type, and the accessed type is the pointee.
2122  if (OpKind == tok::arrow) {
2123    if (BaseType->isDependentType())
2124      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2125                                                         BaseExpr, true,
2126                                                         OpLoc,
2127                                                     DeclarationName(&Member),
2128                                                         MemberLoc));
2129    else if (const PointerType *PT = BaseType->getAsPointerType())
2130      BaseType = PT->getPointeeType();
2131    else if (BaseType->isObjCObjectPointerType())
2132      ;
2133    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2134      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2135                                            MemberLoc, Member));
2136    else
2137      return ExprError(Diag(MemberLoc,
2138                            diag::err_typecheck_member_reference_arrow)
2139        << BaseType << BaseExpr->getSourceRange());
2140  } else {
2141    if (BaseType->isDependentType()) {
2142      // Require that the base type isn't a pointer type
2143      // (so we'll report an error for)
2144      // T* t;
2145      // t.f;
2146      //
2147      // In Obj-C++, however, the above expression is valid, since it could be
2148      // accessing the 'f' property if T is an Obj-C interface. The extra check
2149      // allows this, while still reporting an error if T is a struct pointer.
2150      const PointerType *PT = BaseType->getAsPointerType();
2151
2152      if (!PT || (getLangOptions().ObjC1 &&
2153                  !PT->getPointeeType()->isRecordType()))
2154        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2155                                                           BaseExpr, false,
2156                                                           OpLoc,
2157                                                     DeclarationName(&Member),
2158                                                           MemberLoc));
2159    }
2160  }
2161
2162  // Handle field access to simple records.  This also handles access to fields
2163  // of the ObjC 'id' struct.
2164  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2165    RecordDecl *RDecl = RTy->getDecl();
2166    if (RequireCompleteType(OpLoc, BaseType,
2167                               diag::err_typecheck_incomplete_tag,
2168                               BaseExpr->getSourceRange()))
2169      return ExprError();
2170
2171    // The record definition is complete, now make sure the member is valid.
2172    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2173    LookupResult Result
2174      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2175                            LookupMemberName, false);
2176
2177    if (!Result)
2178      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2179               << &Member << BaseExpr->getSourceRange());
2180    if (Result.isAmbiguous()) {
2181      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2182                              MemberLoc, BaseExpr->getSourceRange());
2183      return ExprError();
2184    }
2185
2186    NamedDecl *MemberDecl = Result;
2187
2188    // If the decl being referenced had an error, return an error for this
2189    // sub-expr without emitting another error, in order to avoid cascading
2190    // error cases.
2191    if (MemberDecl->isInvalidDecl())
2192      return ExprError();
2193
2194    // Check the use of this field
2195    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2196      return ExprError();
2197
2198    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2199      // We may have found a field within an anonymous union or struct
2200      // (C++ [class.union]).
2201      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2202        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2203                                                        BaseExpr, OpLoc);
2204
2205      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2206      QualType MemberType = FD->getType();
2207      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2208        MemberType = Ref->getPointeeType();
2209      else {
2210        unsigned BaseAddrSpace = BaseType.getAddressSpace();
2211        unsigned combinedQualifiers =
2212          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2213        if (FD->isMutable())
2214          combinedQualifiers &= ~QualType::Const;
2215        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2216        if (BaseAddrSpace != MemberType.getAddressSpace())
2217           MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
2218      }
2219
2220      MarkDeclarationReferenced(MemberLoc, FD);
2221      if (PerformObjectMemberConversion(BaseExpr, FD))
2222        return ExprError();
2223      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2224                                            MemberLoc, MemberType));
2225    }
2226
2227    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2228      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2229      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2230                                            Var, MemberLoc,
2231                                         Var->getType().getNonReferenceType()));
2232    }
2233    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2234      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2235      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2236                                            MemberFn, MemberLoc,
2237                                            MemberFn->getType()));
2238    }
2239    if (OverloadedFunctionDecl *Ovl
2240          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2241      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2242                                            MemberLoc, Context.OverloadTy));
2243    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2244      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2245      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2246                                            Enum, MemberLoc, Enum->getType()));
2247    }
2248    if (isa<TypeDecl>(MemberDecl))
2249      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2250        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2251
2252    // We found a declaration kind that we didn't expect. This is a
2253    // generic error message that tells the user that she can't refer
2254    // to this member with '.' or '->'.
2255    return ExprError(Diag(MemberLoc,
2256                          diag::err_typecheck_member_reference_unknown)
2257      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2258  }
2259
2260  // Handle properties on ObjC 'Class' types.
2261  if (OpKind == tok::period && BaseType->isObjCClassType()) {
2262    // Also must look for a getter name which uses property syntax.
2263    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2264    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2265      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2266      ObjCMethodDecl *Getter;
2267      // FIXME: need to also look locally in the implementation.
2268      if ((Getter = IFace->lookupClassMethod(Sel))) {
2269        // Check the use of this method.
2270        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2271          return ExprError();
2272      }
2273      // If we found a getter then this may be a valid dot-reference, we
2274      // will look for the matching setter, in case it is needed.
2275      Selector SetterSel =
2276        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2277                                           PP.getSelectorTable(), &Member);
2278      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2279      if (!Setter) {
2280        // If this reference is in an @implementation, also check for 'private'
2281        // methods.
2282        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2283      }
2284      // Look through local category implementations associated with the class.
2285      if (!Setter)
2286        Setter = IFace->getCategoryClassMethod(SetterSel);
2287
2288      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2289        return ExprError();
2290
2291      if (Getter || Setter) {
2292        QualType PType;
2293
2294        if (Getter)
2295          PType = Getter->getResultType();
2296        else {
2297          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2298               E = Setter->param_end(); PI != E; ++PI)
2299            PType = (*PI)->getType();
2300        }
2301        // FIXME: we must check that the setter has property type.
2302        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2303                                        Setter, MemberLoc, BaseExpr));
2304      }
2305      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2306        << &Member << BaseType);
2307    }
2308  }
2309  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2310  // (*Obj).ivar.
2311  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2312      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2313    const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
2314    const ObjCInterfaceType *IFaceT =
2315      OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
2316    if (IFaceT) {
2317      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2318      ObjCInterfaceDecl *ClassDeclared;
2319      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(&Member, ClassDeclared);
2320
2321      if (IV) {
2322        // If the decl being referenced had an error, return an error for this
2323        // sub-expr without emitting another error, in order to avoid cascading
2324        // error cases.
2325        if (IV->isInvalidDecl())
2326          return ExprError();
2327
2328        // Check whether we can reference this field.
2329        if (DiagnoseUseOfDecl(IV, MemberLoc))
2330          return ExprError();
2331        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2332            IV->getAccessControl() != ObjCIvarDecl::Package) {
2333          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2334          if (ObjCMethodDecl *MD = getCurMethodDecl())
2335            ClassOfMethodDecl =  MD->getClassInterface();
2336          else if (ObjCImpDecl && getCurFunctionDecl()) {
2337            // Case of a c-function declared inside an objc implementation.
2338            // FIXME: For a c-style function nested inside an objc implementation
2339            // class, there is no implementation context available, so we pass
2340            // down the context as argument to this routine. Ideally, this context
2341            // need be passed down in the AST node and somehow calculated from the
2342            // AST for a function decl.
2343            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2344            if (ObjCImplementationDecl *IMPD =
2345                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2346              ClassOfMethodDecl = IMPD->getClassInterface();
2347            else if (ObjCCategoryImplDecl* CatImplClass =
2348                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2349              ClassOfMethodDecl = CatImplClass->getClassInterface();
2350          }
2351
2352          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2353            if (ClassDeclared != IDecl ||
2354                ClassOfMethodDecl != ClassDeclared)
2355              Diag(MemberLoc, diag::error_private_ivar_access)
2356                << IV->getDeclName();
2357          }
2358          // @protected
2359          else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2360            Diag(MemberLoc, diag::error_protected_ivar_access)
2361              << IV->getDeclName();
2362        }
2363
2364        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2365                                                   MemberLoc, BaseExpr,
2366                                                   OpKind == tok::arrow));
2367      }
2368      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2369                         << IDecl->getDeclName() << &Member
2370                         << BaseExpr->getSourceRange());
2371    }
2372    // We have an 'id' type. Rather than fall through, we check if this
2373    // is a reference to 'isa'.
2374    if (Member.isStr("isa"))
2375      return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2376                                             Context.getObjCIdType()));
2377  }
2378  // Handle properties on 'id' and qualified "id".
2379  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2380                                BaseType->isObjCQualifiedIdType())) {
2381    const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
2382
2383    // Check protocols on qualified interfaces.
2384    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2385    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2386      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2387        // Check the use of this declaration
2388        if (DiagnoseUseOfDecl(PD, MemberLoc))
2389          return ExprError();
2390
2391        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2392                                                       MemberLoc, BaseExpr));
2393      }
2394      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2395        // Check the use of this method.
2396        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2397          return ExprError();
2398
2399        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2400                                                   OMD->getResultType(),
2401                                                   OMD, OpLoc, MemberLoc,
2402                                                   NULL, 0));
2403      }
2404    }
2405
2406    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2407                       << &Member << BaseType);
2408  }
2409  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2410  // pointer to a (potentially qualified) interface type.
2411  const ObjCObjectPointerType *OPT;
2412  if (OpKind == tok::period &&
2413      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2414    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2415    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2416
2417    // Search for a declared property first.
2418    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
2419      // Check whether we can reference this property.
2420      if (DiagnoseUseOfDecl(PD, MemberLoc))
2421        return ExprError();
2422      QualType ResTy = PD->getType();
2423      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2424      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2425      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2426        ResTy = Getter->getResultType();
2427      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2428                                                     MemberLoc, BaseExpr));
2429    }
2430    // Check protocols on qualified interfaces.
2431    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2432         E = OPT->qual_end(); I != E; ++I)
2433      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2434        // Check whether we can reference this property.
2435        if (DiagnoseUseOfDecl(PD, MemberLoc))
2436          return ExprError();
2437
2438        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2439                                                       MemberLoc, BaseExpr));
2440      }
2441    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2442         E = OPT->qual_end(); I != E; ++I)
2443      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2444        // Check whether we can reference this property.
2445        if (DiagnoseUseOfDecl(PD, MemberLoc))
2446          return ExprError();
2447
2448        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2449                                                       MemberLoc, BaseExpr));
2450      }
2451    // If that failed, look for an "implicit" property by seeing if the nullary
2452    // selector is implemented.
2453
2454    // FIXME: The logic for looking up nullary and unary selectors should be
2455    // shared with the code in ActOnInstanceMessage.
2456
2457    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2458    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2459
2460    // If this reference is in an @implementation, check for 'private' methods.
2461    if (!Getter)
2462      Getter = FindMethodInNestedImplementations(IFace, Sel);
2463
2464    // Look through local category implementations associated with the class.
2465    if (!Getter)
2466      Getter = IFace->getCategoryInstanceMethod(Sel);
2467    if (Getter) {
2468      // Check if we can reference this property.
2469      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2470        return ExprError();
2471    }
2472    // If we found a getter then this may be a valid dot-reference, we
2473    // will look for the matching setter, in case it is needed.
2474    Selector SetterSel =
2475      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2476                                         PP.getSelectorTable(), &Member);
2477    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2478    if (!Setter) {
2479      // If this reference is in an @implementation, also check for 'private'
2480      // methods.
2481      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2482    }
2483    // Look through local category implementations associated with the class.
2484    if (!Setter)
2485      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2486
2487    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2488      return ExprError();
2489
2490    if (Getter || Setter) {
2491      QualType PType;
2492
2493      if (Getter)
2494        PType = Getter->getResultType();
2495      else {
2496        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2497             E = Setter->param_end(); PI != E; ++PI)
2498          PType = (*PI)->getType();
2499      }
2500      // FIXME: we must check that the setter has property type.
2501      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2502                                      Setter, MemberLoc, BaseExpr));
2503    }
2504    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2505      << &Member << BaseType);
2506  }
2507
2508  // Handle the following exceptional case (*Obj).isa.
2509  if (OpKind == tok::period &&
2510      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2511      Member.isStr("isa"))
2512    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2513                                           Context.getObjCIdType()));
2514
2515  // Handle 'field access' to vectors, such as 'V.xx'.
2516  if (BaseType->isExtVectorType()) {
2517    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2518    if (ret.isNull())
2519      return ExprError();
2520    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2521                                                    MemberLoc));
2522  }
2523
2524  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2525    << BaseType << BaseExpr->getSourceRange();
2526
2527  // If the user is trying to apply -> or . to a function or function
2528  // pointer, it's probably because they forgot parentheses to call
2529  // the function. Suggest the addition of those parentheses.
2530  if (BaseType == Context.OverloadTy ||
2531      BaseType->isFunctionType() ||
2532      (BaseType->isPointerType() &&
2533       BaseType->getAsPointerType()->isFunctionType())) {
2534    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2535    Diag(Loc, diag::note_member_reference_needs_call)
2536      << CodeModificationHint::CreateInsertion(Loc, "()");
2537  }
2538
2539  return ExprError();
2540}
2541
2542/// ConvertArgumentsForCall - Converts the arguments specified in
2543/// Args/NumArgs to the parameter types of the function FDecl with
2544/// function prototype Proto. Call is the call expression itself, and
2545/// Fn is the function expression. For a C++ member function, this
2546/// routine does not attempt to convert the object argument. Returns
2547/// true if the call is ill-formed.
2548bool
2549Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2550                              FunctionDecl *FDecl,
2551                              const FunctionProtoType *Proto,
2552                              Expr **Args, unsigned NumArgs,
2553                              SourceLocation RParenLoc) {
2554  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2555  // assignment, to the types of the corresponding parameter, ...
2556  unsigned NumArgsInProto = Proto->getNumArgs();
2557  unsigned NumArgsToCheck = NumArgs;
2558  bool Invalid = false;
2559
2560  // If too few arguments are available (and we don't have default
2561  // arguments for the remaining parameters), don't make the call.
2562  if (NumArgs < NumArgsInProto) {
2563    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2564      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2565        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2566    // Use default arguments for missing arguments
2567    NumArgsToCheck = NumArgsInProto;
2568    Call->setNumArgs(Context, NumArgsInProto);
2569  }
2570
2571  // If too many are passed and not variadic, error on the extras and drop
2572  // them.
2573  if (NumArgs > NumArgsInProto) {
2574    if (!Proto->isVariadic()) {
2575      Diag(Args[NumArgsInProto]->getLocStart(),
2576           diag::err_typecheck_call_too_many_args)
2577        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2578        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2579                       Args[NumArgs-1]->getLocEnd());
2580      // This deletes the extra arguments.
2581      Call->setNumArgs(Context, NumArgsInProto);
2582      Invalid = true;
2583    }
2584    NumArgsToCheck = NumArgsInProto;
2585  }
2586
2587  // Continue to check argument types (even if we have too few/many args).
2588  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2589    QualType ProtoArgType = Proto->getArgType(i);
2590
2591    Expr *Arg;
2592    if (i < NumArgs) {
2593      Arg = Args[i];
2594
2595      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2596                              ProtoArgType,
2597                              diag::err_call_incomplete_argument,
2598                              Arg->getSourceRange()))
2599        return true;
2600
2601      // Pass the argument.
2602      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2603        return true;
2604    } else {
2605      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2606        Diag (Call->getSourceRange().getBegin(),
2607              diag::err_use_of_default_argument_to_function_declared_later) <<
2608        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2609        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2610              diag::note_default_argument_declared_here);
2611      } else {
2612        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2613
2614        // If the default expression creates temporaries, we need to
2615        // push them to the current stack of expression temporaries so they'll
2616        // be properly destroyed.
2617        if (CXXExprWithTemporaries *E
2618              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2619          assert(!E->shouldDestroyTemporaries() &&
2620                 "Can't destroy temporaries in a default argument expr!");
2621          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2622            ExprTemporaries.push_back(E->getTemporary(I));
2623        }
2624      }
2625
2626      // We already type-checked the argument, so we know it works.
2627      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2628    }
2629
2630    QualType ArgType = Arg->getType();
2631
2632    Call->setArg(i, Arg);
2633  }
2634
2635  // If this is a variadic call, handle args passed through "...".
2636  if (Proto->isVariadic()) {
2637    VariadicCallType CallType = VariadicFunction;
2638    if (Fn->getType()->isBlockPointerType())
2639      CallType = VariadicBlock; // Block
2640    else if (isa<MemberExpr>(Fn))
2641      CallType = VariadicMethod;
2642
2643    // Promote the arguments (C99 6.5.2.2p7).
2644    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2645      Expr *Arg = Args[i];
2646      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2647      Call->setArg(i, Arg);
2648    }
2649  }
2650
2651  return Invalid;
2652}
2653
2654/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2655/// This provides the location of the left/right parens and a list of comma
2656/// locations.
2657Action::OwningExprResult
2658Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2659                    MultiExprArg args,
2660                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2661  unsigned NumArgs = args.size();
2662  Expr *Fn = fn.takeAs<Expr>();
2663  Expr **Args = reinterpret_cast<Expr**>(args.release());
2664  assert(Fn && "no function call expression");
2665  FunctionDecl *FDecl = NULL;
2666  NamedDecl *NDecl = NULL;
2667  DeclarationName UnqualifiedName;
2668
2669  if (getLangOptions().CPlusPlus) {
2670    // Determine whether this is a dependent call inside a C++ template,
2671    // in which case we won't do any semantic analysis now.
2672    // FIXME: Will need to cache the results of name lookup (including ADL) in
2673    // Fn.
2674    bool Dependent = false;
2675    if (Fn->isTypeDependent())
2676      Dependent = true;
2677    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2678      Dependent = true;
2679
2680    if (Dependent)
2681      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2682                                          Context.DependentTy, RParenLoc));
2683
2684    // Determine whether this is a call to an object (C++ [over.call.object]).
2685    if (Fn->getType()->isRecordType())
2686      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2687                                                CommaLocs, RParenLoc));
2688
2689    // Determine whether this is a call to a member function.
2690    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2691      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2692      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2693          isa<CXXMethodDecl>(MemDecl) ||
2694          (isa<FunctionTemplateDecl>(MemDecl) &&
2695           isa<CXXMethodDecl>(
2696                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2697        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2698                                               CommaLocs, RParenLoc));
2699    }
2700  }
2701
2702  // If we're directly calling a function, get the appropriate declaration.
2703  // Also, in C++, keep track of whether we should perform argument-dependent
2704  // lookup and whether there were any explicitly-specified template arguments.
2705  Expr *FnExpr = Fn;
2706  bool ADL = true;
2707  bool HasExplicitTemplateArgs = 0;
2708  const TemplateArgument *ExplicitTemplateArgs = 0;
2709  unsigned NumExplicitTemplateArgs = 0;
2710  while (true) {
2711    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2712      FnExpr = IcExpr->getSubExpr();
2713    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2714      // Parentheses around a function disable ADL
2715      // (C++0x [basic.lookup.argdep]p1).
2716      ADL = false;
2717      FnExpr = PExpr->getSubExpr();
2718    } else if (isa<UnaryOperator>(FnExpr) &&
2719               cast<UnaryOperator>(FnExpr)->getOpcode()
2720                 == UnaryOperator::AddrOf) {
2721      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2722    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2723      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2724      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2725      NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2726      break;
2727    } else if (UnresolvedFunctionNameExpr *DepName
2728                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2729      UnqualifiedName = DepName->getName();
2730      break;
2731    } else if (TemplateIdRefExpr *TemplateIdRef
2732                 = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2733      NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2734      if (!NDecl)
2735        NDecl = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2736      HasExplicitTemplateArgs = true;
2737      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2738      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2739
2740      // C++ [temp.arg.explicit]p6:
2741      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2742      //   applies even when the function name is not visible within the
2743      //   scope of the call. This is because the call still has the syntactic
2744      //   form of a function call (3.4.1). But when a function template with
2745      //   explicit template arguments is used, the call does not have the
2746      //   correct syntactic form unless there is a function template with
2747      //   that name visible at the point of the call. If no such name is
2748      //   visible, the call is not syntactically well-formed and
2749      //   argument-dependent lookup does not apply. If some such name is
2750      //   visible, argument dependent lookup applies and additional function
2751      //   templates may be found in other namespaces.
2752      //
2753      // The summary of this paragraph is that, if we get to this point and the
2754      // template-id was not a qualified name, then argument-dependent lookup
2755      // is still possible.
2756      if (TemplateIdRef->getQualifier())
2757        ADL = false;
2758      break;
2759    } else {
2760      // Any kind of name that does not refer to a declaration (or
2761      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2762      ADL = false;
2763      break;
2764    }
2765  }
2766
2767  OverloadedFunctionDecl *Ovl = 0;
2768  FunctionTemplateDecl *FunctionTemplate = 0;
2769  if (NDecl) {
2770    FDecl = dyn_cast<FunctionDecl>(NDecl);
2771    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2772      FDecl = FunctionTemplate->getTemplatedDecl();
2773    else
2774      FDecl = dyn_cast<FunctionDecl>(NDecl);
2775    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2776  }
2777
2778  if (Ovl || FunctionTemplate ||
2779      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2780    // We don't perform ADL for implicit declarations of builtins.
2781    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2782      ADL = false;
2783
2784    // We don't perform ADL in C.
2785    if (!getLangOptions().CPlusPlus)
2786      ADL = false;
2787
2788    if (Ovl || FunctionTemplate || ADL) {
2789      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2790                                      HasExplicitTemplateArgs,
2791                                      ExplicitTemplateArgs,
2792                                      NumExplicitTemplateArgs,
2793                                      LParenLoc, Args, NumArgs, CommaLocs,
2794                                      RParenLoc, ADL);
2795      if (!FDecl)
2796        return ExprError();
2797
2798      // Update Fn to refer to the actual function selected.
2799      Expr *NewFn = 0;
2800      if (QualifiedDeclRefExpr *QDRExpr
2801            = dyn_cast<QualifiedDeclRefExpr>(FnExpr))
2802        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2803                                                   QDRExpr->getLocation(),
2804                                                   false, false,
2805                                                 QDRExpr->getQualifierRange(),
2806                                                   QDRExpr->getQualifier());
2807      else
2808        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2809                                          Fn->getSourceRange().getBegin());
2810      Fn->Destroy(Context);
2811      Fn = NewFn;
2812    }
2813  }
2814
2815  // Promote the function operand.
2816  UsualUnaryConversions(Fn);
2817
2818  // Make the call expr early, before semantic checks.  This guarantees cleanup
2819  // of arguments and function on error.
2820  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2821                                                               Args, NumArgs,
2822                                                               Context.BoolTy,
2823                                                               RParenLoc));
2824
2825  const FunctionType *FuncT;
2826  if (!Fn->getType()->isBlockPointerType()) {
2827    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2828    // have type pointer to function".
2829    const PointerType *PT = Fn->getType()->getAsPointerType();
2830    if (PT == 0)
2831      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2832        << Fn->getType() << Fn->getSourceRange());
2833    FuncT = PT->getPointeeType()->getAsFunctionType();
2834  } else { // This is a block call.
2835    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2836                getAsFunctionType();
2837  }
2838  if (FuncT == 0)
2839    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2840      << Fn->getType() << Fn->getSourceRange());
2841
2842  // Check for a valid return type
2843  if (!FuncT->getResultType()->isVoidType() &&
2844      RequireCompleteType(Fn->getSourceRange().getBegin(),
2845                          FuncT->getResultType(),
2846                          diag::err_call_incomplete_return,
2847                          TheCall->getSourceRange()))
2848    return ExprError();
2849
2850  // We know the result type of the call, set it.
2851  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2852
2853  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2854    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2855                                RParenLoc))
2856      return ExprError();
2857  } else {
2858    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2859
2860    if (FDecl) {
2861      // Check if we have too few/too many template arguments, based
2862      // on our knowledge of the function definition.
2863      const FunctionDecl *Def = 0;
2864      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2865        const FunctionProtoType *Proto =
2866            Def->getType()->getAsFunctionProtoType();
2867        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2868          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2869            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2870        }
2871      }
2872    }
2873
2874    // Promote the arguments (C99 6.5.2.2p6).
2875    for (unsigned i = 0; i != NumArgs; i++) {
2876      Expr *Arg = Args[i];
2877      DefaultArgumentPromotion(Arg);
2878      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2879                              Arg->getType(),
2880                              diag::err_call_incomplete_argument,
2881                              Arg->getSourceRange()))
2882        return ExprError();
2883      TheCall->setArg(i, Arg);
2884    }
2885  }
2886
2887  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2888    if (!Method->isStatic())
2889      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2890        << Fn->getSourceRange());
2891
2892  // Check for sentinels
2893  if (NDecl)
2894    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2895  // Do special checking on direct calls to functions.
2896  if (FDecl)
2897    return CheckFunctionCall(FDecl, TheCall.take());
2898  if (NDecl)
2899    return CheckBlockCall(NDecl, TheCall.take());
2900
2901  return Owned(TheCall.take());
2902}
2903
2904Action::OwningExprResult
2905Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2906                           SourceLocation RParenLoc, ExprArg InitExpr) {
2907  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2908  QualType literalType = QualType::getFromOpaquePtr(Ty);
2909  // FIXME: put back this assert when initializers are worked out.
2910  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2911  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2912
2913  if (literalType->isArrayType()) {
2914    if (literalType->isVariableArrayType())
2915      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2916        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2917  } else if (!literalType->isDependentType() &&
2918             RequireCompleteType(LParenLoc, literalType,
2919                                 diag::err_typecheck_decl_incomplete_type,
2920                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2921    return ExprError();
2922
2923  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2924                            DeclarationName(), /*FIXME:DirectInit=*/false))
2925    return ExprError();
2926
2927  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2928  if (isFileScope) { // 6.5.2.5p3
2929    if (CheckForConstantInitializer(literalExpr, literalType))
2930      return ExprError();
2931  }
2932  InitExpr.release();
2933  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2934                                                 literalExpr, isFileScope));
2935}
2936
2937Action::OwningExprResult
2938Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2939                    SourceLocation RBraceLoc) {
2940  unsigned NumInit = initlist.size();
2941  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2942
2943  // Semantic analysis for initializers is done by ActOnDeclarator() and
2944  // CheckInitializer() - it requires knowledge of the object being intialized.
2945
2946  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2947                                               RBraceLoc);
2948  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2949  return Owned(E);
2950}
2951
2952/// CheckCastTypes - Check type constraints for casting between types.
2953bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
2954                          bool FunctionalStyle) {
2955  if (getLangOptions().CPlusPlus)
2956    return CXXCheckCStyleCast(TyR, castType, castExpr, FunctionalStyle);
2957
2958  UsualUnaryConversions(castExpr);
2959
2960  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2961  // type needs to be scalar.
2962  if (castType->isVoidType()) {
2963    // Cast to void allows any expr type.
2964  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2965    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2966        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2967        (castType->isStructureType() || castType->isUnionType())) {
2968      // GCC struct/union extension: allow cast to self.
2969      // FIXME: Check that the cast destination type is complete.
2970      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2971        << castType << castExpr->getSourceRange();
2972    } else if (castType->isUnionType()) {
2973      // GCC cast to union extension
2974      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2975      RecordDecl::field_iterator Field, FieldEnd;
2976      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2977           Field != FieldEnd; ++Field) {
2978        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2979            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2980          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2981            << castExpr->getSourceRange();
2982          break;
2983        }
2984      }
2985      if (Field == FieldEnd)
2986        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2987          << castExpr->getType() << castExpr->getSourceRange();
2988    } else {
2989      // Reject any other conversions to non-scalar types.
2990      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2991        << castType << castExpr->getSourceRange();
2992    }
2993  } else if (!castExpr->getType()->isScalarType() &&
2994             !castExpr->getType()->isVectorType()) {
2995    return Diag(castExpr->getLocStart(),
2996                diag::err_typecheck_expect_scalar_operand)
2997      << castExpr->getType() << castExpr->getSourceRange();
2998  } else if (castType->isExtVectorType()) {
2999    if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
3000      return true;
3001  } else if (castType->isVectorType()) {
3002    if (CheckVectorCast(TyR, castType, castExpr->getType()))
3003      return true;
3004  } else if (castExpr->getType()->isVectorType()) {
3005    if (CheckVectorCast(TyR, castExpr->getType(), castType))
3006      return true;
3007  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
3008    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3009  } else if (!castType->isArithmeticType()) {
3010    QualType castExprType = castExpr->getType();
3011    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3012      return Diag(castExpr->getLocStart(),
3013                  diag::err_cast_pointer_from_non_pointer_int)
3014        << castExprType << castExpr->getSourceRange();
3015  } else if (!castExpr->getType()->isArithmeticType()) {
3016    if (!castType->isIntegralType() && castType->isArithmeticType())
3017      return Diag(castExpr->getLocStart(),
3018                  diag::err_cast_pointer_to_non_pointer_int)
3019        << castType << castExpr->getSourceRange();
3020  }
3021  if (isa<ObjCSelectorExpr>(castExpr))
3022    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3023  return false;
3024}
3025
3026bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
3027  assert(VectorTy->isVectorType() && "Not a vector type!");
3028
3029  if (Ty->isVectorType() || Ty->isIntegerType()) {
3030    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3031      return Diag(R.getBegin(),
3032                  Ty->isVectorType() ?
3033                  diag::err_invalid_conversion_between_vectors :
3034                  diag::err_invalid_conversion_between_vector_and_integer)
3035        << VectorTy << Ty << R;
3036  } else
3037    return Diag(R.getBegin(),
3038                diag::err_invalid_conversion_between_vector_and_scalar)
3039      << VectorTy << Ty << R;
3040
3041  return false;
3042}
3043
3044bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
3045  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3046
3047  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3048  // an ExtVectorType.
3049  if (SrcTy->isVectorType()) {
3050    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3051      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3052        << DestTy << SrcTy << R;
3053    return false;
3054  }
3055
3056  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3057  // conversion will take place first from scalar to elt type, and then
3058  // splat from elt type to vector.
3059  if (SrcTy->isPointerType())
3060    return Diag(R.getBegin(),
3061                diag::err_invalid_conversion_between_vector_and_scalar)
3062      << DestTy << SrcTy << R;
3063  return false;
3064}
3065
3066Action::OwningExprResult
3067Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
3068                    SourceLocation RParenLoc, ExprArg Op) {
3069  assert((Ty != 0) && (Op.get() != 0) &&
3070         "ActOnCastExpr(): missing type or expr");
3071
3072  Expr *castExpr = Op.takeAs<Expr>();
3073  QualType castType = QualType::getFromOpaquePtr(Ty);
3074
3075  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
3076    return ExprError();
3077  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3078                                            castExpr, castType,
3079                                            LParenLoc, RParenLoc));
3080}
3081
3082/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3083/// In that case, lhs = cond.
3084/// C99 6.5.15
3085QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3086                                        SourceLocation QuestionLoc) {
3087  // C++ is sufficiently different to merit its own checker.
3088  if (getLangOptions().CPlusPlus)
3089    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3090
3091  UsualUnaryConversions(Cond);
3092  UsualUnaryConversions(LHS);
3093  UsualUnaryConversions(RHS);
3094  QualType CondTy = Cond->getType();
3095  QualType LHSTy = LHS->getType();
3096  QualType RHSTy = RHS->getType();
3097
3098  // first, check the condition.
3099  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3100    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3101      << CondTy;
3102    return QualType();
3103  }
3104
3105  // Now check the two expressions.
3106
3107  // If both operands have arithmetic type, do the usual arithmetic conversions
3108  // to find a common type: C99 6.5.15p3,5.
3109  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3110    UsualArithmeticConversions(LHS, RHS);
3111    return LHS->getType();
3112  }
3113
3114  // If both operands are the same structure or union type, the result is that
3115  // type.
3116  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
3117    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
3118      if (LHSRT->getDecl() == RHSRT->getDecl())
3119        // "If both the operands have structure or union type, the result has
3120        // that type."  This implies that CV qualifiers are dropped.
3121        return LHSTy.getUnqualifiedType();
3122    // FIXME: Type of conditional expression must be complete in C mode.
3123  }
3124
3125  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3126  // The following || allows only one side to be void (a GCC-ism).
3127  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3128    if (!LHSTy->isVoidType())
3129      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3130        << RHS->getSourceRange();
3131    if (!RHSTy->isVoidType())
3132      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3133        << LHS->getSourceRange();
3134    ImpCastExprToType(LHS, Context.VoidTy);
3135    ImpCastExprToType(RHS, Context.VoidTy);
3136    return Context.VoidTy;
3137  }
3138  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3139  // the type of the other operand."
3140  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3141      RHS->isNullPointerConstant(Context)) {
3142    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
3143    return LHSTy;
3144  }
3145  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3146      LHS->isNullPointerConstant(Context)) {
3147    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
3148    return RHSTy;
3149  }
3150  // Handle block pointer types.
3151  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3152    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3153      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3154        QualType destType = Context.getPointerType(Context.VoidTy);
3155        ImpCastExprToType(LHS, destType);
3156        ImpCastExprToType(RHS, destType);
3157        return destType;
3158      }
3159      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3160            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3161      return QualType();
3162    }
3163    // We have 2 block pointer types.
3164    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3165      // Two identical block pointer types are always compatible.
3166      return LHSTy;
3167    }
3168    // The block pointer types aren't identical, continue checking.
3169    QualType lhptee = LHSTy->getAsBlockPointerType()->getPointeeType();
3170    QualType rhptee = RHSTy->getAsBlockPointerType()->getPointeeType();
3171
3172    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3173                                    rhptee.getUnqualifiedType())) {
3174      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3175        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3176      // In this situation, we assume void* type. No especially good
3177      // reason, but this is what gcc does, and we do have to pick
3178      // to get a consistent AST.
3179      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3180      ImpCastExprToType(LHS, incompatTy);
3181      ImpCastExprToType(RHS, incompatTy);
3182      return incompatTy;
3183    }
3184    // The block pointer types are compatible.
3185    ImpCastExprToType(LHS, LHSTy);
3186    ImpCastExprToType(RHS, LHSTy);
3187    return LHSTy;
3188  }
3189  // Check constraints for Objective-C object pointers types.
3190  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3191
3192    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3193      // Two identical object pointer types are always compatible.
3194      return LHSTy;
3195    }
3196    const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
3197    const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
3198    QualType compositeType = LHSTy;
3199
3200    // If both operands are interfaces and either operand can be
3201    // assigned to the other, use that type as the composite
3202    // type. This allows
3203    //   xxx ? (A*) a : (B*) b
3204    // where B is a subclass of A.
3205    //
3206    // Additionally, as for assignment, if either type is 'id'
3207    // allow silent coercion. Finally, if the types are
3208    // incompatible then make sure to use 'id' as the composite
3209    // type so the result is acceptable for sending messages to.
3210
3211    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3212    // It could return the composite type.
3213    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3214      compositeType = LHSTy;
3215    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3216      compositeType = RHSTy;
3217    } else if ((LHSTy->isObjCQualifiedIdType() ||
3218                RHSTy->isObjCQualifiedIdType()) &&
3219                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3220      // Need to handle "id<xx>" explicitly.
3221      // GCC allows qualified id and any Objective-C type to devolve to
3222      // id. Currently localizing to here until clear this should be
3223      // part of ObjCQualifiedIdTypesAreCompatible.
3224      compositeType = Context.getObjCIdType();
3225    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3226      compositeType = Context.getObjCIdType();
3227    } else {
3228      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3229        << LHSTy << RHSTy
3230        << LHS->getSourceRange() << RHS->getSourceRange();
3231      QualType incompatTy = Context.getObjCIdType();
3232      ImpCastExprToType(LHS, incompatTy);
3233      ImpCastExprToType(RHS, incompatTy);
3234      return incompatTy;
3235    }
3236    // The object pointer types are compatible.
3237    ImpCastExprToType(LHS, compositeType);
3238    ImpCastExprToType(RHS, compositeType);
3239    return compositeType;
3240  }
3241  // Check Objective-C object pointer types and 'void *'
3242  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3243    QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
3244    QualType rhptee = RHSTy->getAsObjCObjectPointerType()->getPointeeType();
3245    QualType destPointee = lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3246    QualType destType = Context.getPointerType(destPointee);
3247    ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3248    ImpCastExprToType(RHS, destType); // promote to void*
3249    return destType;
3250  }
3251  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3252    QualType lhptee = LHSTy->getAsObjCObjectPointerType()->getPointeeType();
3253    QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
3254    QualType destPointee = rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3255    QualType destType = Context.getPointerType(destPointee);
3256    ImpCastExprToType(RHS, destType); // add qualifiers if necessary
3257    ImpCastExprToType(LHS, destType); // promote to void*
3258    return destType;
3259  }
3260  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3261  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3262    // get the "pointed to" types
3263    QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
3264    QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
3265
3266    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3267    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3268      // Figure out necessary qualifiers (C99 6.5.15p6)
3269      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3270      QualType destType = Context.getPointerType(destPointee);
3271      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3272      ImpCastExprToType(RHS, destType); // promote to void*
3273      return destType;
3274    }
3275    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3276      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3277      QualType destType = Context.getPointerType(destPointee);
3278      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3279      ImpCastExprToType(RHS, destType); // promote to void*
3280      return destType;
3281    }
3282
3283    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3284      // Two identical pointer types are always compatible.
3285      return LHSTy;
3286    }
3287    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3288                                    rhptee.getUnqualifiedType())) {
3289      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3290        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3291      // In this situation, we assume void* type. No especially good
3292      // reason, but this is what gcc does, and we do have to pick
3293      // to get a consistent AST.
3294      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3295      ImpCastExprToType(LHS, incompatTy);
3296      ImpCastExprToType(RHS, incompatTy);
3297      return incompatTy;
3298    }
3299    // The pointer types are compatible.
3300    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3301    // differently qualified versions of compatible types, the result type is
3302    // a pointer to an appropriately qualified version of the *composite*
3303    // type.
3304    // FIXME: Need to calculate the composite type.
3305    // FIXME: Need to add qualifiers
3306    ImpCastExprToType(LHS, LHSTy);
3307    ImpCastExprToType(RHS, LHSTy);
3308    return LHSTy;
3309  }
3310
3311  // GCC compatibility: soften pointer/integer mismatch.
3312  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3313    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3314      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3315    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3316    return RHSTy;
3317  }
3318  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3319    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3320      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3321    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3322    return LHSTy;
3323  }
3324
3325  // Otherwise, the operands are not compatible.
3326  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3327    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3328  return QualType();
3329}
3330
3331/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3332/// in the case of a the GNU conditional expr extension.
3333Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3334                                                  SourceLocation ColonLoc,
3335                                                  ExprArg Cond, ExprArg LHS,
3336                                                  ExprArg RHS) {
3337  Expr *CondExpr = (Expr *) Cond.get();
3338  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3339
3340  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3341  // was the condition.
3342  bool isLHSNull = LHSExpr == 0;
3343  if (isLHSNull)
3344    LHSExpr = CondExpr;
3345
3346  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3347                                             RHSExpr, QuestionLoc);
3348  if (result.isNull())
3349    return ExprError();
3350
3351  Cond.release();
3352  LHS.release();
3353  RHS.release();
3354  return Owned(new (Context) ConditionalOperator(CondExpr,
3355                                                 isLHSNull ? 0 : LHSExpr,
3356                                                 RHSExpr, result));
3357}
3358
3359// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3360// being closely modeled after the C99 spec:-). The odd characteristic of this
3361// routine is it effectively iqnores the qualifiers on the top level pointee.
3362// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3363// FIXME: add a couple examples in this comment.
3364Sema::AssignConvertType
3365Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3366  QualType lhptee, rhptee;
3367
3368  // get the "pointed to" type (ignoring qualifiers at the top level)
3369  lhptee = lhsType->getAsPointerType()->getPointeeType();
3370  rhptee = rhsType->getAsPointerType()->getPointeeType();
3371
3372  // make sure we operate on the canonical type
3373  lhptee = Context.getCanonicalType(lhptee);
3374  rhptee = Context.getCanonicalType(rhptee);
3375
3376  AssignConvertType ConvTy = Compatible;
3377
3378  // C99 6.5.16.1p1: This following citation is common to constraints
3379  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3380  // qualifiers of the type *pointed to* by the right;
3381  // FIXME: Handle ExtQualType
3382  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3383    ConvTy = CompatiblePointerDiscardsQualifiers;
3384
3385  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3386  // incomplete type and the other is a pointer to a qualified or unqualified
3387  // version of void...
3388  if (lhptee->isVoidType()) {
3389    if (rhptee->isIncompleteOrObjectType())
3390      return ConvTy;
3391
3392    // As an extension, we allow cast to/from void* to function pointer.
3393    assert(rhptee->isFunctionType());
3394    return FunctionVoidPointer;
3395  }
3396
3397  if (rhptee->isVoidType()) {
3398    if (lhptee->isIncompleteOrObjectType())
3399      return ConvTy;
3400
3401    // As an extension, we allow cast to/from void* to function pointer.
3402    assert(lhptee->isFunctionType());
3403    return FunctionVoidPointer;
3404  }
3405  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3406  // unqualified versions of compatible types, ...
3407  lhptee = lhptee.getUnqualifiedType();
3408  rhptee = rhptee.getUnqualifiedType();
3409  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3410    // Check if the pointee types are compatible ignoring the sign.
3411    // We explicitly check for char so that we catch "char" vs
3412    // "unsigned char" on systems where "char" is unsigned.
3413    if (lhptee->isCharType()) {
3414      lhptee = Context.UnsignedCharTy;
3415    } else if (lhptee->isSignedIntegerType()) {
3416      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3417    }
3418    if (rhptee->isCharType()) {
3419      rhptee = Context.UnsignedCharTy;
3420    } else if (rhptee->isSignedIntegerType()) {
3421      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3422    }
3423    if (lhptee == rhptee) {
3424      // Types are compatible ignoring the sign. Qualifier incompatibility
3425      // takes priority over sign incompatibility because the sign
3426      // warning can be disabled.
3427      if (ConvTy != Compatible)
3428        return ConvTy;
3429      return IncompatiblePointerSign;
3430    }
3431    // General pointer incompatibility takes priority over qualifiers.
3432    return IncompatiblePointer;
3433  }
3434  return ConvTy;
3435}
3436
3437/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3438/// block pointer types are compatible or whether a block and normal pointer
3439/// are compatible. It is more restrict than comparing two function pointer
3440// types.
3441Sema::AssignConvertType
3442Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3443                                          QualType rhsType) {
3444  QualType lhptee, rhptee;
3445
3446  // get the "pointed to" type (ignoring qualifiers at the top level)
3447  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3448  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3449
3450  // make sure we operate on the canonical type
3451  lhptee = Context.getCanonicalType(lhptee);
3452  rhptee = Context.getCanonicalType(rhptee);
3453
3454  AssignConvertType ConvTy = Compatible;
3455
3456  // For blocks we enforce that qualifiers are identical.
3457  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3458    ConvTy = CompatiblePointerDiscardsQualifiers;
3459
3460  if (!Context.typesAreCompatible(lhptee, rhptee))
3461    return IncompatibleBlockPointer;
3462  return ConvTy;
3463}
3464
3465/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3466/// has code to accommodate several GCC extensions when type checking
3467/// pointers. Here are some objectionable examples that GCC considers warnings:
3468///
3469///  int a, *pint;
3470///  short *pshort;
3471///  struct foo *pfoo;
3472///
3473///  pint = pshort; // warning: assignment from incompatible pointer type
3474///  a = pint; // warning: assignment makes integer from pointer without a cast
3475///  pint = a; // warning: assignment makes pointer from integer without a cast
3476///  pint = pfoo; // warning: assignment from incompatible pointer type
3477///
3478/// As a result, the code for dealing with pointers is more complex than the
3479/// C99 spec dictates.
3480///
3481Sema::AssignConvertType
3482Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3483  // Get canonical types.  We're not formatting these types, just comparing
3484  // them.
3485  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3486  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3487
3488  if (lhsType == rhsType)
3489    return Compatible; // Common case: fast path an exact match.
3490
3491  // If the left-hand side is a reference type, then we are in a
3492  // (rare!) case where we've allowed the use of references in C,
3493  // e.g., as a parameter type in a built-in function. In this case,
3494  // just make sure that the type referenced is compatible with the
3495  // right-hand side type. The caller is responsible for adjusting
3496  // lhsType so that the resulting expression does not have reference
3497  // type.
3498  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3499    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3500      return Compatible;
3501    return Incompatible;
3502  }
3503  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3504  // to the same ExtVector type.
3505  if (lhsType->isExtVectorType()) {
3506    if (rhsType->isExtVectorType())
3507      return lhsType == rhsType ? Compatible : Incompatible;
3508    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3509      return Compatible;
3510  }
3511
3512  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3513    // If we are allowing lax vector conversions, and LHS and RHS are both
3514    // vectors, the total size only needs to be the same. This is a bitcast;
3515    // no bits are changed but the result type is different.
3516    if (getLangOptions().LaxVectorConversions &&
3517        lhsType->isVectorType() && rhsType->isVectorType()) {
3518      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3519        return IncompatibleVectors;
3520    }
3521    return Incompatible;
3522  }
3523
3524  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3525    return Compatible;
3526
3527  if (isa<PointerType>(lhsType)) {
3528    if (rhsType->isIntegerType())
3529      return IntToPointer;
3530
3531    if (isa<PointerType>(rhsType))
3532      return CheckPointerTypesForAssignment(lhsType, rhsType);
3533
3534    // In general, C pointers are not compatible with ObjC object pointers.
3535    if (isa<ObjCObjectPointerType>(rhsType)) {
3536      if (lhsType->isVoidPointerType()) // an exception to the rule.
3537        return Compatible;
3538      return IncompatiblePointer;
3539    }
3540    if (rhsType->getAsBlockPointerType()) {
3541      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3542        return Compatible;
3543
3544      // Treat block pointers as objects.
3545      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3546        return Compatible;
3547    }
3548    return Incompatible;
3549  }
3550
3551  if (isa<BlockPointerType>(lhsType)) {
3552    if (rhsType->isIntegerType())
3553      return IntToBlockPointer;
3554
3555    // Treat block pointers as objects.
3556    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3557      return Compatible;
3558
3559    if (rhsType->isBlockPointerType())
3560      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3561
3562    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3563      if (RHSPT->getPointeeType()->isVoidType())
3564        return Compatible;
3565    }
3566    return Incompatible;
3567  }
3568
3569  if (isa<ObjCObjectPointerType>(lhsType)) {
3570    if (rhsType->isIntegerType())
3571      return IntToPointer;
3572
3573    // In general, C pointers are not compatible with ObjC object pointers.
3574    if (isa<PointerType>(rhsType)) {
3575      if (rhsType->isVoidPointerType()) // an exception to the rule.
3576        return Compatible;
3577      return IncompatiblePointer;
3578    }
3579    if (rhsType->isObjCObjectPointerType()) {
3580      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3581        return Compatible;
3582      if (Context.typesAreCompatible(lhsType, rhsType))
3583        return Compatible;
3584      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3585        return IncompatibleObjCQualifiedId;
3586      return IncompatiblePointer;
3587    }
3588    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3589      if (RHSPT->getPointeeType()->isVoidType())
3590        return Compatible;
3591    }
3592    // Treat block pointers as objects.
3593    if (rhsType->isBlockPointerType())
3594      return Compatible;
3595    return Incompatible;
3596  }
3597  if (isa<PointerType>(rhsType)) {
3598    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3599    if (lhsType == Context.BoolTy)
3600      return Compatible;
3601
3602    if (lhsType->isIntegerType())
3603      return PointerToInt;
3604
3605    if (isa<PointerType>(lhsType))
3606      return CheckPointerTypesForAssignment(lhsType, rhsType);
3607
3608    if (isa<BlockPointerType>(lhsType) &&
3609        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3610      return Compatible;
3611    return Incompatible;
3612  }
3613  if (isa<ObjCObjectPointerType>(rhsType)) {
3614    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3615    if (lhsType == Context.BoolTy)
3616      return Compatible;
3617
3618    if (lhsType->isIntegerType())
3619      return PointerToInt;
3620
3621    // In general, C pointers are not compatible with ObjC object pointers.
3622    if (isa<PointerType>(lhsType)) {
3623      if (lhsType->isVoidPointerType()) // an exception to the rule.
3624        return Compatible;
3625      return IncompatiblePointer;
3626    }
3627    if (isa<BlockPointerType>(lhsType) &&
3628        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3629      return Compatible;
3630    return Incompatible;
3631  }
3632
3633  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3634    if (Context.typesAreCompatible(lhsType, rhsType))
3635      return Compatible;
3636  }
3637  return Incompatible;
3638}
3639
3640/// \brief Constructs a transparent union from an expression that is
3641/// used to initialize the transparent union.
3642static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3643                                      QualType UnionType, FieldDecl *Field) {
3644  // Build an initializer list that designates the appropriate member
3645  // of the transparent union.
3646  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3647                                                   &E, 1,
3648                                                   SourceLocation());
3649  Initializer->setType(UnionType);
3650  Initializer->setInitializedFieldInUnion(Field);
3651
3652  // Build a compound literal constructing a value of the transparent
3653  // union type from this initializer list.
3654  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3655                                  false);
3656}
3657
3658Sema::AssignConvertType
3659Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3660  QualType FromType = rExpr->getType();
3661
3662  // If the ArgType is a Union type, we want to handle a potential
3663  // transparent_union GCC extension.
3664  const RecordType *UT = ArgType->getAsUnionType();
3665  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3666    return Incompatible;
3667
3668  // The field to initialize within the transparent union.
3669  RecordDecl *UD = UT->getDecl();
3670  FieldDecl *InitField = 0;
3671  // It's compatible if the expression matches any of the fields.
3672  for (RecordDecl::field_iterator it = UD->field_begin(),
3673         itend = UD->field_end();
3674       it != itend; ++it) {
3675    if (it->getType()->isPointerType()) {
3676      // If the transparent union contains a pointer type, we allow:
3677      // 1) void pointer
3678      // 2) null pointer constant
3679      if (FromType->isPointerType())
3680        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3681          ImpCastExprToType(rExpr, it->getType());
3682          InitField = *it;
3683          break;
3684        }
3685
3686      if (rExpr->isNullPointerConstant(Context)) {
3687        ImpCastExprToType(rExpr, it->getType());
3688        InitField = *it;
3689        break;
3690      }
3691    }
3692
3693    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3694          == Compatible) {
3695      InitField = *it;
3696      break;
3697    }
3698  }
3699
3700  if (!InitField)
3701    return Incompatible;
3702
3703  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3704  return Compatible;
3705}
3706
3707Sema::AssignConvertType
3708Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3709  if (getLangOptions().CPlusPlus) {
3710    if (!lhsType->isRecordType()) {
3711      // C++ 5.17p3: If the left operand is not of class type, the
3712      // expression is implicitly converted (C++ 4) to the
3713      // cv-unqualified type of the left operand.
3714      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3715                                    "assigning"))
3716        return Incompatible;
3717      return Compatible;
3718    }
3719
3720    // FIXME: Currently, we fall through and treat C++ classes like C
3721    // structures.
3722  }
3723
3724  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3725  // a null pointer constant.
3726  if ((lhsType->isPointerType() ||
3727       lhsType->isObjCObjectPointerType() ||
3728       lhsType->isBlockPointerType())
3729      && rExpr->isNullPointerConstant(Context)) {
3730    ImpCastExprToType(rExpr, lhsType);
3731    return Compatible;
3732  }
3733
3734  // This check seems unnatural, however it is necessary to ensure the proper
3735  // conversion of functions/arrays. If the conversion were done for all
3736  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3737  // expressions that surpress this implicit conversion (&, sizeof).
3738  //
3739  // Suppress this for references: C++ 8.5.3p5.
3740  if (!lhsType->isReferenceType())
3741    DefaultFunctionArrayConversion(rExpr);
3742
3743  Sema::AssignConvertType result =
3744    CheckAssignmentConstraints(lhsType, rExpr->getType());
3745
3746  // C99 6.5.16.1p2: The value of the right operand is converted to the
3747  // type of the assignment expression.
3748  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3749  // so that we can use references in built-in functions even in C.
3750  // The getNonReferenceType() call makes sure that the resulting expression
3751  // does not have reference type.
3752  if (result != Incompatible && rExpr->getType() != lhsType)
3753    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3754  return result;
3755}
3756
3757QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3758  Diag(Loc, diag::err_typecheck_invalid_operands)
3759    << lex->getType() << rex->getType()
3760    << lex->getSourceRange() << rex->getSourceRange();
3761  return QualType();
3762}
3763
3764inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3765                                                              Expr *&rex) {
3766  // For conversion purposes, we ignore any qualifiers.
3767  // For example, "const float" and "float" are equivalent.
3768  QualType lhsType =
3769    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3770  QualType rhsType =
3771    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3772
3773  // If the vector types are identical, return.
3774  if (lhsType == rhsType)
3775    return lhsType;
3776
3777  // Handle the case of a vector & extvector type of the same size and element
3778  // type.  It would be nice if we only had one vector type someday.
3779  if (getLangOptions().LaxVectorConversions) {
3780    // FIXME: Should we warn here?
3781    if (const VectorType *LV = lhsType->getAsVectorType()) {
3782      if (const VectorType *RV = rhsType->getAsVectorType())
3783        if (LV->getElementType() == RV->getElementType() &&
3784            LV->getNumElements() == RV->getNumElements()) {
3785          return lhsType->isExtVectorType() ? lhsType : rhsType;
3786        }
3787    }
3788  }
3789
3790  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
3791  // swap back (so that we don't reverse the inputs to a subtract, for instance.
3792  bool swapped = false;
3793  if (rhsType->isExtVectorType()) {
3794    swapped = true;
3795    std::swap(rex, lex);
3796    std::swap(rhsType, lhsType);
3797  }
3798
3799  // Handle the case of an ext vector and scalar.
3800  if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
3801    QualType EltTy = LV->getElementType();
3802    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
3803      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
3804        ImpCastExprToType(rex, lhsType);
3805        if (swapped) std::swap(rex, lex);
3806        return lhsType;
3807      }
3808    }
3809    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
3810        rhsType->isRealFloatingType()) {
3811      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
3812        ImpCastExprToType(rex, lhsType);
3813        if (swapped) std::swap(rex, lex);
3814        return lhsType;
3815      }
3816    }
3817  }
3818
3819  // Vectors of different size or scalar and non-ext-vector are errors.
3820  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3821    << lex->getType() << rex->getType()
3822    << lex->getSourceRange() << rex->getSourceRange();
3823  return QualType();
3824}
3825
3826inline QualType Sema::CheckMultiplyDivideOperands(
3827  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3828{
3829  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3830    return CheckVectorOperands(Loc, lex, rex);
3831
3832  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3833
3834  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3835    return compType;
3836  return InvalidOperands(Loc, lex, rex);
3837}
3838
3839inline QualType Sema::CheckRemainderOperands(
3840  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3841{
3842  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3843    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3844      return CheckVectorOperands(Loc, lex, rex);
3845    return InvalidOperands(Loc, lex, rex);
3846  }
3847
3848  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3849
3850  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3851    return compType;
3852  return InvalidOperands(Loc, lex, rex);
3853}
3854
3855inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3856  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3857{
3858  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3859    QualType compType = CheckVectorOperands(Loc, lex, rex);
3860    if (CompLHSTy) *CompLHSTy = compType;
3861    return compType;
3862  }
3863
3864  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3865
3866  // handle the common case first (both operands are arithmetic).
3867  if (lex->getType()->isArithmeticType() &&
3868      rex->getType()->isArithmeticType()) {
3869    if (CompLHSTy) *CompLHSTy = compType;
3870    return compType;
3871  }
3872
3873  // Put any potential pointer into PExp
3874  Expr* PExp = lex, *IExp = rex;
3875  if (IExp->getType()->isAnyPointerType())
3876    std::swap(PExp, IExp);
3877
3878  if (PExp->getType()->isAnyPointerType()) {
3879
3880    if (IExp->getType()->isIntegerType()) {
3881      QualType PointeeTy = PExp->getType()->getPointeeType();
3882
3883      // Check for arithmetic on pointers to incomplete types.
3884      if (PointeeTy->isVoidType()) {
3885        if (getLangOptions().CPlusPlus) {
3886          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3887            << lex->getSourceRange() << rex->getSourceRange();
3888          return QualType();
3889        }
3890
3891        // GNU extension: arithmetic on pointer to void
3892        Diag(Loc, diag::ext_gnu_void_ptr)
3893          << lex->getSourceRange() << rex->getSourceRange();
3894      } else if (PointeeTy->isFunctionType()) {
3895        if (getLangOptions().CPlusPlus) {
3896          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3897            << lex->getType() << lex->getSourceRange();
3898          return QualType();
3899        }
3900
3901        // GNU extension: arithmetic on pointer to function
3902        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3903          << lex->getType() << lex->getSourceRange();
3904      } else {
3905        // Check if we require a complete type.
3906        if (((PExp->getType()->isPointerType() &&
3907              !PExp->getType()->isDependentType()) ||
3908              PExp->getType()->isObjCObjectPointerType()) &&
3909             RequireCompleteType(Loc, PointeeTy,
3910                                 diag::err_typecheck_arithmetic_incomplete_type,
3911                                 PExp->getSourceRange(), SourceRange(),
3912                                 PExp->getType()))
3913          return QualType();
3914      }
3915      // Diagnose bad cases where we step over interface counts.
3916      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3917        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3918          << PointeeTy << PExp->getSourceRange();
3919        return QualType();
3920      }
3921
3922      if (CompLHSTy) {
3923        QualType LHSTy = lex->getType();
3924        if (LHSTy->isPromotableIntegerType())
3925          LHSTy = Context.IntTy;
3926        else {
3927          QualType T = isPromotableBitField(lex, Context);
3928          if (!T.isNull())
3929            LHSTy = T;
3930        }
3931
3932        *CompLHSTy = LHSTy;
3933      }
3934      return PExp->getType();
3935    }
3936  }
3937
3938  return InvalidOperands(Loc, lex, rex);
3939}
3940
3941// C99 6.5.6
3942QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3943                                        SourceLocation Loc, QualType* CompLHSTy) {
3944  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3945    QualType compType = CheckVectorOperands(Loc, lex, rex);
3946    if (CompLHSTy) *CompLHSTy = compType;
3947    return compType;
3948  }
3949
3950  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3951
3952  // Enforce type constraints: C99 6.5.6p3.
3953
3954  // Handle the common case first (both operands are arithmetic).
3955  if (lex->getType()->isArithmeticType()
3956      && rex->getType()->isArithmeticType()) {
3957    if (CompLHSTy) *CompLHSTy = compType;
3958    return compType;
3959  }
3960
3961  // Either ptr - int   or   ptr - ptr.
3962  if (lex->getType()->isAnyPointerType()) {
3963    QualType lpointee = lex->getType()->getPointeeType();
3964
3965    // The LHS must be an completely-defined object type.
3966
3967    bool ComplainAboutVoid = false;
3968    Expr *ComplainAboutFunc = 0;
3969    if (lpointee->isVoidType()) {
3970      if (getLangOptions().CPlusPlus) {
3971        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3972          << lex->getSourceRange() << rex->getSourceRange();
3973        return QualType();
3974      }
3975
3976      // GNU C extension: arithmetic on pointer to void
3977      ComplainAboutVoid = true;
3978    } else if (lpointee->isFunctionType()) {
3979      if (getLangOptions().CPlusPlus) {
3980        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3981          << lex->getType() << lex->getSourceRange();
3982        return QualType();
3983      }
3984
3985      // GNU C extension: arithmetic on pointer to function
3986      ComplainAboutFunc = lex;
3987    } else if (!lpointee->isDependentType() &&
3988               RequireCompleteType(Loc, lpointee,
3989                                   diag::err_typecheck_sub_ptr_object,
3990                                   lex->getSourceRange(),
3991                                   SourceRange(),
3992                                   lex->getType()))
3993      return QualType();
3994
3995    // Diagnose bad cases where we step over interface counts.
3996    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3997      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3998        << lpointee << lex->getSourceRange();
3999      return QualType();
4000    }
4001
4002    // The result type of a pointer-int computation is the pointer type.
4003    if (rex->getType()->isIntegerType()) {
4004      if (ComplainAboutVoid)
4005        Diag(Loc, diag::ext_gnu_void_ptr)
4006          << lex->getSourceRange() << rex->getSourceRange();
4007      if (ComplainAboutFunc)
4008        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4009          << ComplainAboutFunc->getType()
4010          << ComplainAboutFunc->getSourceRange();
4011
4012      if (CompLHSTy) *CompLHSTy = lex->getType();
4013      return lex->getType();
4014    }
4015
4016    // Handle pointer-pointer subtractions.
4017    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
4018      QualType rpointee = RHSPTy->getPointeeType();
4019
4020      // RHS must be a completely-type object type.
4021      // Handle the GNU void* extension.
4022      if (rpointee->isVoidType()) {
4023        if (getLangOptions().CPlusPlus) {
4024          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4025            << lex->getSourceRange() << rex->getSourceRange();
4026          return QualType();
4027        }
4028
4029        ComplainAboutVoid = true;
4030      } else if (rpointee->isFunctionType()) {
4031        if (getLangOptions().CPlusPlus) {
4032          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4033            << rex->getType() << rex->getSourceRange();
4034          return QualType();
4035        }
4036
4037        // GNU extension: arithmetic on pointer to function
4038        if (!ComplainAboutFunc)
4039          ComplainAboutFunc = rex;
4040      } else if (!rpointee->isDependentType() &&
4041                 RequireCompleteType(Loc, rpointee,
4042                                     diag::err_typecheck_sub_ptr_object,
4043                                     rex->getSourceRange(),
4044                                     SourceRange(),
4045                                     rex->getType()))
4046        return QualType();
4047
4048      if (getLangOptions().CPlusPlus) {
4049        // Pointee types must be the same: C++ [expr.add]
4050        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4051          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4052            << lex->getType() << rex->getType()
4053            << lex->getSourceRange() << rex->getSourceRange();
4054          return QualType();
4055        }
4056      } else {
4057        // Pointee types must be compatible C99 6.5.6p3
4058        if (!Context.typesAreCompatible(
4059                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4060                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4061          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4062            << lex->getType() << rex->getType()
4063            << lex->getSourceRange() << rex->getSourceRange();
4064          return QualType();
4065        }
4066      }
4067
4068      if (ComplainAboutVoid)
4069        Diag(Loc, diag::ext_gnu_void_ptr)
4070          << lex->getSourceRange() << rex->getSourceRange();
4071      if (ComplainAboutFunc)
4072        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4073          << ComplainAboutFunc->getType()
4074          << ComplainAboutFunc->getSourceRange();
4075
4076      if (CompLHSTy) *CompLHSTy = lex->getType();
4077      return Context.getPointerDiffType();
4078    }
4079  }
4080
4081  return InvalidOperands(Loc, lex, rex);
4082}
4083
4084// C99 6.5.7
4085QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4086                                  bool isCompAssign) {
4087  // C99 6.5.7p2: Each of the operands shall have integer type.
4088  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4089    return InvalidOperands(Loc, lex, rex);
4090
4091  // Shifts don't perform usual arithmetic conversions, they just do integer
4092  // promotions on each operand. C99 6.5.7p3
4093  QualType LHSTy;
4094  if (lex->getType()->isPromotableIntegerType())
4095    LHSTy = Context.IntTy;
4096  else {
4097    LHSTy = isPromotableBitField(lex, Context);
4098    if (LHSTy.isNull())
4099      LHSTy = lex->getType();
4100  }
4101  if (!isCompAssign)
4102    ImpCastExprToType(lex, LHSTy);
4103
4104  UsualUnaryConversions(rex);
4105
4106  // "The type of the result is that of the promoted left operand."
4107  return LHSTy;
4108}
4109
4110// C99 6.5.8, C++ [expr.rel]
4111QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4112                                    unsigned OpaqueOpc, bool isRelational) {
4113  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4114
4115  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4116    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4117
4118  // C99 6.5.8p3 / C99 6.5.9p4
4119  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4120    UsualArithmeticConversions(lex, rex);
4121  else {
4122    UsualUnaryConversions(lex);
4123    UsualUnaryConversions(rex);
4124  }
4125  QualType lType = lex->getType();
4126  QualType rType = rex->getType();
4127
4128  if (!lType->isFloatingType()
4129      && !(lType->isBlockPointerType() && isRelational)) {
4130    // For non-floating point types, check for self-comparisons of the form
4131    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4132    // often indicate logic errors in the program.
4133    // NOTE: Don't warn about comparisons of enum constants. These can arise
4134    //  from macro expansions, and are usually quite deliberate.
4135    Expr *LHSStripped = lex->IgnoreParens();
4136    Expr *RHSStripped = rex->IgnoreParens();
4137    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4138      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4139        if (DRL->getDecl() == DRR->getDecl() &&
4140            !isa<EnumConstantDecl>(DRL->getDecl()))
4141          Diag(Loc, diag::warn_selfcomparison);
4142
4143    if (isa<CastExpr>(LHSStripped))
4144      LHSStripped = LHSStripped->IgnoreParenCasts();
4145    if (isa<CastExpr>(RHSStripped))
4146      RHSStripped = RHSStripped->IgnoreParenCasts();
4147
4148    // Warn about comparisons against a string constant (unless the other
4149    // operand is null), the user probably wants strcmp.
4150    Expr *literalString = 0;
4151    Expr *literalStringStripped = 0;
4152    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4153        !RHSStripped->isNullPointerConstant(Context)) {
4154      literalString = lex;
4155      literalStringStripped = LHSStripped;
4156    }
4157    else if ((isa<StringLiteral>(RHSStripped) ||
4158              isa<ObjCEncodeExpr>(RHSStripped)) &&
4159             !LHSStripped->isNullPointerConstant(Context)) {
4160      literalString = rex;
4161      literalStringStripped = RHSStripped;
4162    }
4163
4164    if (literalString) {
4165      std::string resultComparison;
4166      switch (Opc) {
4167      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4168      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4169      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4170      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4171      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4172      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4173      default: assert(false && "Invalid comparison operator");
4174      }
4175      Diag(Loc, diag::warn_stringcompare)
4176        << isa<ObjCEncodeExpr>(literalStringStripped)
4177        << literalString->getSourceRange()
4178        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4179        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4180                                                 "strcmp(")
4181        << CodeModificationHint::CreateInsertion(
4182                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4183                                       resultComparison);
4184    }
4185  }
4186
4187  // The result of comparisons is 'bool' in C++, 'int' in C.
4188  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4189
4190  if (isRelational) {
4191    if (lType->isRealType() && rType->isRealType())
4192      return ResultTy;
4193  } else {
4194    // Check for comparisons of floating point operands using != and ==.
4195    if (lType->isFloatingType()) {
4196      assert(rType->isFloatingType());
4197      CheckFloatComparison(Loc,lex,rex);
4198    }
4199
4200    if (lType->isArithmeticType() && rType->isArithmeticType())
4201      return ResultTy;
4202  }
4203
4204  bool LHSIsNull = lex->isNullPointerConstant(Context);
4205  bool RHSIsNull = rex->isNullPointerConstant(Context);
4206
4207  // All of the following pointer related warnings are GCC extensions, except
4208  // when handling null pointer constants. One day, we can consider making them
4209  // errors (when -pedantic-errors is enabled).
4210  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4211    QualType LCanPointeeTy =
4212      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
4213    QualType RCanPointeeTy =
4214      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
4215
4216    if (isRelational) {
4217      if (lType->isFunctionPointerType() || rType->isFunctionPointerType()) {
4218        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4219          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4220      }
4221      if (LCanPointeeTy->isVoidType() != RCanPointeeTy->isVoidType()) {
4222        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4223          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4224      }
4225    } else {
4226      if (lType->isFunctionPointerType() != rType->isFunctionPointerType()) {
4227        if (!LHSIsNull && !RHSIsNull)
4228          Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4229            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4230      }
4231    }
4232
4233    // Simple check: if the pointee types are identical, we're done.
4234    if (LCanPointeeTy == RCanPointeeTy)
4235      return ResultTy;
4236
4237    if (getLangOptions().CPlusPlus) {
4238      // C++ [expr.rel]p2:
4239      //   [...] Pointer conversions (4.10) and qualification
4240      //   conversions (4.4) are performed on pointer operands (or on
4241      //   a pointer operand and a null pointer constant) to bring
4242      //   them to their composite pointer type. [...]
4243      //
4244      // C++ [expr.eq]p2 uses the same notion for (in)equality
4245      // comparisons of pointers.
4246      QualType T = FindCompositePointerType(lex, rex);
4247      if (T.isNull()) {
4248        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4249          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4250        return QualType();
4251      }
4252
4253      ImpCastExprToType(lex, T);
4254      ImpCastExprToType(rex, T);
4255      return ResultTy;
4256    }
4257
4258    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
4259        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
4260        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4261                                    RCanPointeeTy.getUnqualifiedType())) {
4262      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4263        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4264    }
4265    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4266    return ResultTy;
4267  }
4268  // C++ allows comparison of pointers with null pointer constants.
4269  if (getLangOptions().CPlusPlus) {
4270    if (lType->isPointerType() && RHSIsNull) {
4271      ImpCastExprToType(rex, lType);
4272      return ResultTy;
4273    }
4274    if (rType->isPointerType() && LHSIsNull) {
4275      ImpCastExprToType(lex, rType);
4276      return ResultTy;
4277    }
4278    // And comparison of nullptr_t with itself.
4279    if (lType->isNullPtrType() && rType->isNullPtrType())
4280      return ResultTy;
4281  }
4282  // Handle block pointer types.
4283  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4284    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
4285    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
4286
4287    if (!LHSIsNull && !RHSIsNull &&
4288        !Context.typesAreCompatible(lpointee, rpointee)) {
4289      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4290        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4291    }
4292    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4293    return ResultTy;
4294  }
4295  // Allow block pointers to be compared with null pointer constants.
4296  if (!isRelational
4297      && ((lType->isBlockPointerType() && rType->isPointerType())
4298          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4299    if (!LHSIsNull && !RHSIsNull) {
4300      if (!((rType->isPointerType() && rType->getAsPointerType()
4301             ->getPointeeType()->isVoidType())
4302            || (lType->isPointerType() && lType->getAsPointerType()
4303                ->getPointeeType()->isVoidType())))
4304        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4305          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4306    }
4307    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4308    return ResultTy;
4309  }
4310
4311  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4312    if (lType->isPointerType() || rType->isPointerType()) {
4313      const PointerType *LPT = lType->getAsPointerType();
4314      const PointerType *RPT = rType->getAsPointerType();
4315      bool LPtrToVoid = LPT ?
4316        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4317      bool RPtrToVoid = RPT ?
4318        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4319
4320      if (!LPtrToVoid && !RPtrToVoid &&
4321          !Context.typesAreCompatible(lType, rType)) {
4322        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4323          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4324      }
4325      ImpCastExprToType(rex, lType);
4326      return ResultTy;
4327    }
4328    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4329      if (!Context.areComparableObjCPointerTypes(lType, rType)) {
4330        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4331          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4332      }
4333      ImpCastExprToType(rex, lType);
4334      return ResultTy;
4335    }
4336  }
4337  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4338    if (isRelational)
4339      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4340        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4341    else if (!RHSIsNull)
4342      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4343        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4344    ImpCastExprToType(rex, lType); // promote the integer to pointer
4345    return ResultTy;
4346  }
4347  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4348    if (isRelational)
4349      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4350        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4351    else if (!LHSIsNull)
4352      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4353        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4354    ImpCastExprToType(lex, rType); // promote the integer to pointer
4355    return ResultTy;
4356  }
4357  // Handle block pointers.
4358  if (!isRelational && RHSIsNull
4359      && lType->isBlockPointerType() && rType->isIntegerType()) {
4360    ImpCastExprToType(rex, lType); // promote the integer to pointer
4361    return ResultTy;
4362  }
4363  if (!isRelational && LHSIsNull
4364      && lType->isIntegerType() && rType->isBlockPointerType()) {
4365    ImpCastExprToType(lex, rType); // promote the integer to pointer
4366    return ResultTy;
4367  }
4368  return InvalidOperands(Loc, lex, rex);
4369}
4370
4371/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4372/// operates on extended vector types.  Instead of producing an IntTy result,
4373/// like a scalar comparison, a vector comparison produces a vector of integer
4374/// types.
4375QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4376                                          SourceLocation Loc,
4377                                          bool isRelational) {
4378  // Check to make sure we're operating on vectors of the same type and width,
4379  // Allowing one side to be a scalar of element type.
4380  QualType vType = CheckVectorOperands(Loc, lex, rex);
4381  if (vType.isNull())
4382    return vType;
4383
4384  QualType lType = lex->getType();
4385  QualType rType = rex->getType();
4386
4387  // For non-floating point types, check for self-comparisons of the form
4388  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4389  // often indicate logic errors in the program.
4390  if (!lType->isFloatingType()) {
4391    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4392      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4393        if (DRL->getDecl() == DRR->getDecl())
4394          Diag(Loc, diag::warn_selfcomparison);
4395  }
4396
4397  // Check for comparisons of floating point operands using != and ==.
4398  if (!isRelational && lType->isFloatingType()) {
4399    assert (rType->isFloatingType());
4400    CheckFloatComparison(Loc,lex,rex);
4401  }
4402
4403  // Return the type for the comparison, which is the same as vector type for
4404  // integer vectors, or an integer type of identical size and number of
4405  // elements for floating point vectors.
4406  if (lType->isIntegerType())
4407    return lType;
4408
4409  const VectorType *VTy = lType->getAsVectorType();
4410  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4411  if (TypeSize == Context.getTypeSize(Context.IntTy))
4412    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4413  if (TypeSize == Context.getTypeSize(Context.LongTy))
4414    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4415
4416  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4417         "Unhandled vector element size in vector compare");
4418  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4419}
4420
4421inline QualType Sema::CheckBitwiseOperands(
4422  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4423{
4424  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4425    return CheckVectorOperands(Loc, lex, rex);
4426
4427  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4428
4429  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4430    return compType;
4431  return InvalidOperands(Loc, lex, rex);
4432}
4433
4434inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4435  Expr *&lex, Expr *&rex, SourceLocation Loc)
4436{
4437  UsualUnaryConversions(lex);
4438  UsualUnaryConversions(rex);
4439
4440  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4441    return Context.IntTy;
4442  return InvalidOperands(Loc, lex, rex);
4443}
4444
4445/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4446/// is a read-only property; return true if so. A readonly property expression
4447/// depends on various declarations and thus must be treated specially.
4448///
4449static bool IsReadonlyProperty(Expr *E, Sema &S)
4450{
4451  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4452    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4453    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4454      QualType BaseType = PropExpr->getBase()->getType();
4455      if (const ObjCObjectPointerType *OPT =
4456            BaseType->getAsObjCInterfacePointerType())
4457        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4458          if (S.isPropertyReadonly(PDecl, IFace))
4459            return true;
4460    }
4461  }
4462  return false;
4463}
4464
4465/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4466/// emit an error and return true.  If so, return false.
4467static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4468  SourceLocation OrigLoc = Loc;
4469  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4470                                                              &Loc);
4471  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4472    IsLV = Expr::MLV_ReadonlyProperty;
4473  if (IsLV == Expr::MLV_Valid)
4474    return false;
4475
4476  unsigned Diag = 0;
4477  bool NeedType = false;
4478  switch (IsLV) { // C99 6.5.16p2
4479  default: assert(0 && "Unknown result from isModifiableLvalue!");
4480  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4481  case Expr::MLV_ArrayType:
4482    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4483    NeedType = true;
4484    break;
4485  case Expr::MLV_NotObjectType:
4486    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4487    NeedType = true;
4488    break;
4489  case Expr::MLV_LValueCast:
4490    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4491    break;
4492  case Expr::MLV_InvalidExpression:
4493    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4494    break;
4495  case Expr::MLV_IncompleteType:
4496  case Expr::MLV_IncompleteVoidType:
4497    return S.RequireCompleteType(Loc, E->getType(),
4498                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4499                                    E->getSourceRange());
4500  case Expr::MLV_DuplicateVectorComponents:
4501    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4502    break;
4503  case Expr::MLV_NotBlockQualified:
4504    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4505    break;
4506  case Expr::MLV_ReadonlyProperty:
4507    Diag = diag::error_readonly_property_assignment;
4508    break;
4509  case Expr::MLV_NoSetterProperty:
4510    Diag = diag::error_nosetter_property_assignment;
4511    break;
4512  }
4513
4514  SourceRange Assign;
4515  if (Loc != OrigLoc)
4516    Assign = SourceRange(OrigLoc, OrigLoc);
4517  if (NeedType)
4518    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4519  else
4520    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4521  return true;
4522}
4523
4524
4525
4526// C99 6.5.16.1
4527QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4528                                       SourceLocation Loc,
4529                                       QualType CompoundType) {
4530  // Verify that LHS is a modifiable lvalue, and emit error if not.
4531  if (CheckForModifiableLvalue(LHS, Loc, *this))
4532    return QualType();
4533
4534  QualType LHSType = LHS->getType();
4535  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4536
4537  AssignConvertType ConvTy;
4538  if (CompoundType.isNull()) {
4539    // Simple assignment "x = y".
4540    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4541    // Special case of NSObject attributes on c-style pointer types.
4542    if (ConvTy == IncompatiblePointer &&
4543        ((Context.isObjCNSObjectType(LHSType) &&
4544          RHSType->isObjCObjectPointerType()) ||
4545         (Context.isObjCNSObjectType(RHSType) &&
4546          LHSType->isObjCObjectPointerType())))
4547      ConvTy = Compatible;
4548
4549    // If the RHS is a unary plus or minus, check to see if they = and + are
4550    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4551    // instead of "x += 4".
4552    Expr *RHSCheck = RHS;
4553    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4554      RHSCheck = ICE->getSubExpr();
4555    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4556      if ((UO->getOpcode() == UnaryOperator::Plus ||
4557           UO->getOpcode() == UnaryOperator::Minus) &&
4558          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4559          // Only if the two operators are exactly adjacent.
4560          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4561          // And there is a space or other character before the subexpr of the
4562          // unary +/-.  We don't want to warn on "x=-1".
4563          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4564          UO->getSubExpr()->getLocStart().isFileID()) {
4565        Diag(Loc, diag::warn_not_compound_assign)
4566          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4567          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4568      }
4569    }
4570  } else {
4571    // Compound assignment "x += y"
4572    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4573  }
4574
4575  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4576                               RHS, "assigning"))
4577    return QualType();
4578
4579  // C99 6.5.16p3: The type of an assignment expression is the type of the
4580  // left operand unless the left operand has qualified type, in which case
4581  // it is the unqualified version of the type of the left operand.
4582  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4583  // is converted to the type of the assignment expression (above).
4584  // C++ 5.17p1: the type of the assignment expression is that of its left
4585  // operand.
4586  return LHSType.getUnqualifiedType();
4587}
4588
4589// C99 6.5.17
4590QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4591  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4592  DefaultFunctionArrayConversion(RHS);
4593
4594  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4595  // incomplete in C++).
4596
4597  return RHS->getType();
4598}
4599
4600/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4601/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4602QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4603                                              bool isInc) {
4604  if (Op->isTypeDependent())
4605    return Context.DependentTy;
4606
4607  QualType ResType = Op->getType();
4608  assert(!ResType.isNull() && "no type for increment/decrement expression");
4609
4610  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4611    // Decrement of bool is not allowed.
4612    if (!isInc) {
4613      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4614      return QualType();
4615    }
4616    // Increment of bool sets it to true, but is deprecated.
4617    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4618  } else if (ResType->isRealType()) {
4619    // OK!
4620  } else if (ResType->isAnyPointerType()) {
4621    QualType PointeeTy = ResType->getPointeeType();
4622
4623    // C99 6.5.2.4p2, 6.5.6p2
4624    if (PointeeTy->isVoidType()) {
4625      if (getLangOptions().CPlusPlus) {
4626        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4627          << Op->getSourceRange();
4628        return QualType();
4629      }
4630
4631      // Pointer to void is a GNU extension in C.
4632      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4633    } else if (PointeeTy->isFunctionType()) {
4634      if (getLangOptions().CPlusPlus) {
4635        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4636          << Op->getType() << Op->getSourceRange();
4637        return QualType();
4638      }
4639
4640      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4641        << ResType << Op->getSourceRange();
4642    } else if (RequireCompleteType(OpLoc, PointeeTy,
4643                               diag::err_typecheck_arithmetic_incomplete_type,
4644                                   Op->getSourceRange(), SourceRange(),
4645                                   ResType))
4646      return QualType();
4647    // Diagnose bad cases where we step over interface counts.
4648    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4649      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
4650        << PointeeTy << Op->getSourceRange();
4651      return QualType();
4652    }
4653  } else if (ResType->isComplexType()) {
4654    // C99 does not support ++/-- on complex types, we allow as an extension.
4655    Diag(OpLoc, diag::ext_integer_increment_complex)
4656      << ResType << Op->getSourceRange();
4657  } else {
4658    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4659      << ResType << Op->getSourceRange();
4660    return QualType();
4661  }
4662  // At this point, we know we have a real, complex or pointer type.
4663  // Now make sure the operand is a modifiable lvalue.
4664  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4665    return QualType();
4666  return ResType;
4667}
4668
4669/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4670/// This routine allows us to typecheck complex/recursive expressions
4671/// where the declaration is needed for type checking. We only need to
4672/// handle cases when the expression references a function designator
4673/// or is an lvalue. Here are some examples:
4674///  - &(x) => x
4675///  - &*****f => f for f a function designator.
4676///  - &s.xx => s
4677///  - &s.zz[1].yy -> s, if zz is an array
4678///  - *(x + 1) -> x, if x is an array
4679///  - &"123"[2] -> 0
4680///  - & __real__ x -> x
4681static NamedDecl *getPrimaryDecl(Expr *E) {
4682  switch (E->getStmtClass()) {
4683  case Stmt::DeclRefExprClass:
4684  case Stmt::QualifiedDeclRefExprClass:
4685    return cast<DeclRefExpr>(E)->getDecl();
4686  case Stmt::MemberExprClass:
4687    // If this is an arrow operator, the address is an offset from
4688    // the base's value, so the object the base refers to is
4689    // irrelevant.
4690    if (cast<MemberExpr>(E)->isArrow())
4691      return 0;
4692    // Otherwise, the expression refers to a part of the base
4693    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4694  case Stmt::ArraySubscriptExprClass: {
4695    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4696    // promotion of register arrays earlier.
4697    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4698    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4699      if (ICE->getSubExpr()->getType()->isArrayType())
4700        return getPrimaryDecl(ICE->getSubExpr());
4701    }
4702    return 0;
4703  }
4704  case Stmt::UnaryOperatorClass: {
4705    UnaryOperator *UO = cast<UnaryOperator>(E);
4706
4707    switch(UO->getOpcode()) {
4708    case UnaryOperator::Real:
4709    case UnaryOperator::Imag:
4710    case UnaryOperator::Extension:
4711      return getPrimaryDecl(UO->getSubExpr());
4712    default:
4713      return 0;
4714    }
4715  }
4716  case Stmt::ParenExprClass:
4717    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4718  case Stmt::ImplicitCastExprClass:
4719    // If the result of an implicit cast is an l-value, we care about
4720    // the sub-expression; otherwise, the result here doesn't matter.
4721    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4722  default:
4723    return 0;
4724  }
4725}
4726
4727/// CheckAddressOfOperand - The operand of & must be either a function
4728/// designator or an lvalue designating an object. If it is an lvalue, the
4729/// object cannot be declared with storage class register or be a bit field.
4730/// Note: The usual conversions are *not* applied to the operand of the &
4731/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4732/// In C++, the operand might be an overloaded function name, in which case
4733/// we allow the '&' but retain the overloaded-function type.
4734QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4735  // Make sure to ignore parentheses in subsequent checks
4736  op = op->IgnoreParens();
4737
4738  if (op->isTypeDependent())
4739    return Context.DependentTy;
4740
4741  if (getLangOptions().C99) {
4742    // Implement C99-only parts of addressof rules.
4743    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4744      if (uOp->getOpcode() == UnaryOperator::Deref)
4745        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4746        // (assuming the deref expression is valid).
4747        return uOp->getSubExpr()->getType();
4748    }
4749    // Technically, there should be a check for array subscript
4750    // expressions here, but the result of one is always an lvalue anyway.
4751  }
4752  NamedDecl *dcl = getPrimaryDecl(op);
4753  Expr::isLvalueResult lval = op->isLvalue(Context);
4754
4755  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4756    // C99 6.5.3.2p1
4757    // The operand must be either an l-value or a function designator
4758    if (!op->getType()->isFunctionType()) {
4759      // FIXME: emit more specific diag...
4760      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4761        << op->getSourceRange();
4762      return QualType();
4763    }
4764  } else if (op->getBitField()) { // C99 6.5.3.2p1
4765    // The operand cannot be a bit-field
4766    Diag(OpLoc, diag::err_typecheck_address_of)
4767      << "bit-field" << op->getSourceRange();
4768        return QualType();
4769  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4770           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4771    // The operand cannot be an element of a vector
4772    Diag(OpLoc, diag::err_typecheck_address_of)
4773      << "vector element" << op->getSourceRange();
4774    return QualType();
4775  } else if (isa<ObjCPropertyRefExpr>(op)) {
4776    // cannot take address of a property expression.
4777    Diag(OpLoc, diag::err_typecheck_address_of)
4778      << "property expression" << op->getSourceRange();
4779    return QualType();
4780  } else if (dcl) { // C99 6.5.3.2p1
4781    // We have an lvalue with a decl. Make sure the decl is not declared
4782    // with the register storage-class specifier.
4783    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4784      if (vd->getStorageClass() == VarDecl::Register) {
4785        Diag(OpLoc, diag::err_typecheck_address_of)
4786          << "register variable" << op->getSourceRange();
4787        return QualType();
4788      }
4789    } else if (isa<OverloadedFunctionDecl>(dcl) ||
4790               isa<FunctionTemplateDecl>(dcl)) {
4791      return Context.OverloadTy;
4792    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
4793      // Okay: we can take the address of a field.
4794      // Could be a pointer to member, though, if there is an explicit
4795      // scope qualifier for the class.
4796      if (isa<QualifiedDeclRefExpr>(op)) {
4797        DeclContext *Ctx = dcl->getDeclContext();
4798        if (Ctx && Ctx->isRecord()) {
4799          if (FD->getType()->isReferenceType()) {
4800            Diag(OpLoc,
4801                 diag::err_cannot_form_pointer_to_member_of_reference_type)
4802              << FD->getDeclName() << FD->getType();
4803            return QualType();
4804          }
4805
4806          return Context.getMemberPointerType(op->getType(),
4807                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4808        }
4809      }
4810    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4811      // Okay: we can take the address of a function.
4812      // As above.
4813      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4814        return Context.getMemberPointerType(op->getType(),
4815              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4816    } else if (!isa<FunctionDecl>(dcl))
4817      assert(0 && "Unknown/unexpected decl type");
4818  }
4819
4820  if (lval == Expr::LV_IncompleteVoidType) {
4821    // Taking the address of a void variable is technically illegal, but we
4822    // allow it in cases which are otherwise valid.
4823    // Example: "extern void x; void* y = &x;".
4824    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4825  }
4826
4827  // If the operand has type "type", the result has type "pointer to type".
4828  return Context.getPointerType(op->getType());
4829}
4830
4831QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4832  if (Op->isTypeDependent())
4833    return Context.DependentTy;
4834
4835  UsualUnaryConversions(Op);
4836  QualType Ty = Op->getType();
4837
4838  // Note that per both C89 and C99, this is always legal, even if ptype is an
4839  // incomplete type or void.  It would be possible to warn about dereferencing
4840  // a void pointer, but it's completely well-defined, and such a warning is
4841  // unlikely to catch any mistakes.
4842  if (const PointerType *PT = Ty->getAsPointerType())
4843    return PT->getPointeeType();
4844
4845  if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
4846    return OPT->getPointeeType();
4847
4848  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4849    << Ty << Op->getSourceRange();
4850  return QualType();
4851}
4852
4853static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4854  tok::TokenKind Kind) {
4855  BinaryOperator::Opcode Opc;
4856  switch (Kind) {
4857  default: assert(0 && "Unknown binop!");
4858  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4859  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4860  case tok::star:                 Opc = BinaryOperator::Mul; break;
4861  case tok::slash:                Opc = BinaryOperator::Div; break;
4862  case tok::percent:              Opc = BinaryOperator::Rem; break;
4863  case tok::plus:                 Opc = BinaryOperator::Add; break;
4864  case tok::minus:                Opc = BinaryOperator::Sub; break;
4865  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4866  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4867  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4868  case tok::less:                 Opc = BinaryOperator::LT; break;
4869  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4870  case tok::greater:              Opc = BinaryOperator::GT; break;
4871  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4872  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4873  case tok::amp:                  Opc = BinaryOperator::And; break;
4874  case tok::caret:                Opc = BinaryOperator::Xor; break;
4875  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4876  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4877  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4878  case tok::equal:                Opc = BinaryOperator::Assign; break;
4879  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4880  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4881  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4882  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4883  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4884  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4885  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4886  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4887  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4888  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4889  case tok::comma:                Opc = BinaryOperator::Comma; break;
4890  }
4891  return Opc;
4892}
4893
4894static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4895  tok::TokenKind Kind) {
4896  UnaryOperator::Opcode Opc;
4897  switch (Kind) {
4898  default: assert(0 && "Unknown unary op!");
4899  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4900  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4901  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4902  case tok::star:         Opc = UnaryOperator::Deref; break;
4903  case tok::plus:         Opc = UnaryOperator::Plus; break;
4904  case tok::minus:        Opc = UnaryOperator::Minus; break;
4905  case tok::tilde:        Opc = UnaryOperator::Not; break;
4906  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4907  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4908  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4909  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4910  }
4911  return Opc;
4912}
4913
4914/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4915/// operator @p Opc at location @c TokLoc. This routine only supports
4916/// built-in operations; ActOnBinOp handles overloaded operators.
4917Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4918                                                  unsigned Op,
4919                                                  Expr *lhs, Expr *rhs) {
4920  QualType ResultTy;     // Result type of the binary operator.
4921  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4922  // The following two variables are used for compound assignment operators
4923  QualType CompLHSTy;    // Type of LHS after promotions for computation
4924  QualType CompResultTy; // Type of computation result
4925
4926  switch (Opc) {
4927  case BinaryOperator::Assign:
4928    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4929    break;
4930  case BinaryOperator::PtrMemD:
4931  case BinaryOperator::PtrMemI:
4932    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4933                                            Opc == BinaryOperator::PtrMemI);
4934    break;
4935  case BinaryOperator::Mul:
4936  case BinaryOperator::Div:
4937    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4938    break;
4939  case BinaryOperator::Rem:
4940    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4941    break;
4942  case BinaryOperator::Add:
4943    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4944    break;
4945  case BinaryOperator::Sub:
4946    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4947    break;
4948  case BinaryOperator::Shl:
4949  case BinaryOperator::Shr:
4950    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4951    break;
4952  case BinaryOperator::LE:
4953  case BinaryOperator::LT:
4954  case BinaryOperator::GE:
4955  case BinaryOperator::GT:
4956    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4957    break;
4958  case BinaryOperator::EQ:
4959  case BinaryOperator::NE:
4960    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4961    break;
4962  case BinaryOperator::And:
4963  case BinaryOperator::Xor:
4964  case BinaryOperator::Or:
4965    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4966    break;
4967  case BinaryOperator::LAnd:
4968  case BinaryOperator::LOr:
4969    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4970    break;
4971  case BinaryOperator::MulAssign:
4972  case BinaryOperator::DivAssign:
4973    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4974    CompLHSTy = CompResultTy;
4975    if (!CompResultTy.isNull())
4976      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4977    break;
4978  case BinaryOperator::RemAssign:
4979    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4980    CompLHSTy = CompResultTy;
4981    if (!CompResultTy.isNull())
4982      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4983    break;
4984  case BinaryOperator::AddAssign:
4985    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4986    if (!CompResultTy.isNull())
4987      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4988    break;
4989  case BinaryOperator::SubAssign:
4990    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4991    if (!CompResultTy.isNull())
4992      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4993    break;
4994  case BinaryOperator::ShlAssign:
4995  case BinaryOperator::ShrAssign:
4996    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4997    CompLHSTy = CompResultTy;
4998    if (!CompResultTy.isNull())
4999      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5000    break;
5001  case BinaryOperator::AndAssign:
5002  case BinaryOperator::XorAssign:
5003  case BinaryOperator::OrAssign:
5004    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5005    CompLHSTy = CompResultTy;
5006    if (!CompResultTy.isNull())
5007      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5008    break;
5009  case BinaryOperator::Comma:
5010    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5011    break;
5012  }
5013  if (ResultTy.isNull())
5014    return ExprError();
5015  if (CompResultTy.isNull())
5016    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5017  else
5018    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5019                                                      CompLHSTy, CompResultTy,
5020                                                      OpLoc));
5021}
5022
5023// Binary Operators.  'Tok' is the token for the operator.
5024Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5025                                          tok::TokenKind Kind,
5026                                          ExprArg LHS, ExprArg RHS) {
5027  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5028  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5029
5030  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5031  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5032
5033  if (getLangOptions().CPlusPlus &&
5034      (lhs->getType()->isOverloadableType() ||
5035       rhs->getType()->isOverloadableType())) {
5036    // Find all of the overloaded operators visible from this
5037    // point. We perform both an operator-name lookup from the local
5038    // scope and an argument-dependent lookup based on the types of
5039    // the arguments.
5040    FunctionSet Functions;
5041    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5042    if (OverOp != OO_None) {
5043      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5044                                   Functions);
5045      Expr *Args[2] = { lhs, rhs };
5046      DeclarationName OpName
5047        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5048      ArgumentDependentLookup(OpName, Args, 2, Functions);
5049    }
5050
5051    // Build the (potentially-overloaded, potentially-dependent)
5052    // binary operation.
5053    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5054  }
5055
5056  // Build a built-in binary operation.
5057  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5058}
5059
5060Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5061                                                    unsigned OpcIn,
5062                                                    ExprArg InputArg) {
5063  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5064
5065  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5066  Expr *Input = (Expr *)InputArg.get();
5067  QualType resultType;
5068  switch (Opc) {
5069  case UnaryOperator::OffsetOf:
5070    assert(false && "Invalid unary operator");
5071    break;
5072
5073  case UnaryOperator::PreInc:
5074  case UnaryOperator::PreDec:
5075  case UnaryOperator::PostInc:
5076  case UnaryOperator::PostDec:
5077    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5078                                                Opc == UnaryOperator::PreInc ||
5079                                                Opc == UnaryOperator::PostInc);
5080    break;
5081  case UnaryOperator::AddrOf:
5082    resultType = CheckAddressOfOperand(Input, OpLoc);
5083    break;
5084  case UnaryOperator::Deref:
5085    DefaultFunctionArrayConversion(Input);
5086    resultType = CheckIndirectionOperand(Input, OpLoc);
5087    break;
5088  case UnaryOperator::Plus:
5089  case UnaryOperator::Minus:
5090    UsualUnaryConversions(Input);
5091    resultType = Input->getType();
5092    if (resultType->isDependentType())
5093      break;
5094    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5095      break;
5096    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5097             resultType->isEnumeralType())
5098      break;
5099    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5100             Opc == UnaryOperator::Plus &&
5101             resultType->isPointerType())
5102      break;
5103
5104    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5105      << resultType << Input->getSourceRange());
5106  case UnaryOperator::Not: // bitwise complement
5107    UsualUnaryConversions(Input);
5108    resultType = Input->getType();
5109    if (resultType->isDependentType())
5110      break;
5111    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5112    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5113      // C99 does not support '~' for complex conjugation.
5114      Diag(OpLoc, diag::ext_integer_complement_complex)
5115        << resultType << Input->getSourceRange();
5116    else if (!resultType->isIntegerType())
5117      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5118        << resultType << Input->getSourceRange());
5119    break;
5120  case UnaryOperator::LNot: // logical negation
5121    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5122    DefaultFunctionArrayConversion(Input);
5123    resultType = Input->getType();
5124    if (resultType->isDependentType())
5125      break;
5126    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5127      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5128        << resultType << Input->getSourceRange());
5129    // LNot always has type int. C99 6.5.3.3p5.
5130    // In C++, it's bool. C++ 5.3.1p8
5131    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5132    break;
5133  case UnaryOperator::Real:
5134  case UnaryOperator::Imag:
5135    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5136    break;
5137  case UnaryOperator::Extension:
5138    resultType = Input->getType();
5139    break;
5140  }
5141  if (resultType.isNull())
5142    return ExprError();
5143
5144  InputArg.release();
5145  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5146}
5147
5148// Unary Operators.  'Tok' is the token for the operator.
5149Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5150                                            tok::TokenKind Op, ExprArg input) {
5151  Expr *Input = (Expr*)input.get();
5152  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5153
5154  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5155    // Find all of the overloaded operators visible from this
5156    // point. We perform both an operator-name lookup from the local
5157    // scope and an argument-dependent lookup based on the types of
5158    // the arguments.
5159    FunctionSet Functions;
5160    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5161    if (OverOp != OO_None) {
5162      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5163                                   Functions);
5164      DeclarationName OpName
5165        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5166      ArgumentDependentLookup(OpName, &Input, 1, Functions);
5167    }
5168
5169    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5170  }
5171
5172  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5173}
5174
5175/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5176Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5177                                            SourceLocation LabLoc,
5178                                            IdentifierInfo *LabelII) {
5179  // Look up the record for this label identifier.
5180  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5181
5182  // If we haven't seen this label yet, create a forward reference. It
5183  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5184  if (LabelDecl == 0)
5185    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5186
5187  // Create the AST node.  The address of a label always has type 'void*'.
5188  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5189                                       Context.getPointerType(Context.VoidTy)));
5190}
5191
5192Sema::OwningExprResult
5193Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5194                    SourceLocation RPLoc) { // "({..})"
5195  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5196  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5197  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5198
5199  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5200  if (isFileScope)
5201    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5202
5203  // FIXME: there are a variety of strange constraints to enforce here, for
5204  // example, it is not possible to goto into a stmt expression apparently.
5205  // More semantic analysis is needed.
5206
5207  // If there are sub stmts in the compound stmt, take the type of the last one
5208  // as the type of the stmtexpr.
5209  QualType Ty = Context.VoidTy;
5210
5211  if (!Compound->body_empty()) {
5212    Stmt *LastStmt = Compound->body_back();
5213    // If LastStmt is a label, skip down through into the body.
5214    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5215      LastStmt = Label->getSubStmt();
5216
5217    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5218      Ty = LastExpr->getType();
5219  }
5220
5221  // FIXME: Check that expression type is complete/non-abstract; statement
5222  // expressions are not lvalues.
5223
5224  substmt.release();
5225  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5226}
5227
5228Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5229                                                  SourceLocation BuiltinLoc,
5230                                                  SourceLocation TypeLoc,
5231                                                  TypeTy *argty,
5232                                                  OffsetOfComponent *CompPtr,
5233                                                  unsigned NumComponents,
5234                                                  SourceLocation RPLoc) {
5235  // FIXME: This function leaks all expressions in the offset components on
5236  // error.
5237  QualType ArgTy = QualType::getFromOpaquePtr(argty);
5238  assert(!ArgTy.isNull() && "Missing type argument!");
5239
5240  bool Dependent = ArgTy->isDependentType();
5241
5242  // We must have at least one component that refers to the type, and the first
5243  // one is known to be a field designator.  Verify that the ArgTy represents
5244  // a struct/union/class.
5245  if (!Dependent && !ArgTy->isRecordType())
5246    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5247
5248  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5249  // with an incomplete type would be illegal.
5250
5251  // Otherwise, create a null pointer as the base, and iteratively process
5252  // the offsetof designators.
5253  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5254  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5255  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5256                                    ArgTy, SourceLocation());
5257
5258  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5259  // GCC extension, diagnose them.
5260  // FIXME: This diagnostic isn't actually visible because the location is in
5261  // a system header!
5262  if (NumComponents != 1)
5263    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5264      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5265
5266  if (!Dependent) {
5267    bool DidWarnAboutNonPOD = false;
5268
5269    // FIXME: Dependent case loses a lot of information here. And probably
5270    // leaks like a sieve.
5271    for (unsigned i = 0; i != NumComponents; ++i) {
5272      const OffsetOfComponent &OC = CompPtr[i];
5273      if (OC.isBrackets) {
5274        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5275        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5276        if (!AT) {
5277          Res->Destroy(Context);
5278          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5279            << Res->getType());
5280        }
5281
5282        // FIXME: C++: Verify that operator[] isn't overloaded.
5283
5284        // Promote the array so it looks more like a normal array subscript
5285        // expression.
5286        DefaultFunctionArrayConversion(Res);
5287
5288        // C99 6.5.2.1p1
5289        Expr *Idx = static_cast<Expr*>(OC.U.E);
5290        // FIXME: Leaks Res
5291        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5292          return ExprError(Diag(Idx->getLocStart(),
5293                                diag::err_typecheck_subscript_not_integer)
5294            << Idx->getSourceRange());
5295
5296        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5297                                               OC.LocEnd);
5298        continue;
5299      }
5300
5301      const RecordType *RC = Res->getType()->getAsRecordType();
5302      if (!RC) {
5303        Res->Destroy(Context);
5304        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5305          << Res->getType());
5306      }
5307
5308      // Get the decl corresponding to this.
5309      RecordDecl *RD = RC->getDecl();
5310      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5311        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5312          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5313            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5314            << Res->getType());
5315          DidWarnAboutNonPOD = true;
5316        }
5317      }
5318
5319      FieldDecl *MemberDecl
5320        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5321                                                          LookupMemberName)
5322                                        .getAsDecl());
5323      // FIXME: Leaks Res
5324      if (!MemberDecl)
5325        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5326         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5327
5328      // FIXME: C++: Verify that MemberDecl isn't a static field.
5329      // FIXME: Verify that MemberDecl isn't a bitfield.
5330      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5331        Res = BuildAnonymousStructUnionMemberReference(
5332            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5333      } else {
5334        // MemberDecl->getType() doesn't get the right qualifiers, but it
5335        // doesn't matter here.
5336        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5337                MemberDecl->getType().getNonReferenceType());
5338      }
5339    }
5340  }
5341
5342  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5343                                           Context.getSizeType(), BuiltinLoc));
5344}
5345
5346
5347Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5348                                                      TypeTy *arg1,TypeTy *arg2,
5349                                                      SourceLocation RPLoc) {
5350  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5351  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5352
5353  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5354
5355  if (getLangOptions().CPlusPlus) {
5356    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5357      << SourceRange(BuiltinLoc, RPLoc);
5358    return ExprError();
5359  }
5360
5361  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5362                                                 argT1, argT2, RPLoc));
5363}
5364
5365Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5366                                             ExprArg cond,
5367                                             ExprArg expr1, ExprArg expr2,
5368                                             SourceLocation RPLoc) {
5369  Expr *CondExpr = static_cast<Expr*>(cond.get());
5370  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5371  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5372
5373  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5374
5375  QualType resType;
5376  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5377    resType = Context.DependentTy;
5378  } else {
5379    // The conditional expression is required to be a constant expression.
5380    llvm::APSInt condEval(32);
5381    SourceLocation ExpLoc;
5382    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5383      return ExprError(Diag(ExpLoc,
5384                       diag::err_typecheck_choose_expr_requires_constant)
5385        << CondExpr->getSourceRange());
5386
5387    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5388    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5389  }
5390
5391  cond.release(); expr1.release(); expr2.release();
5392  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5393                                        resType, RPLoc));
5394}
5395
5396//===----------------------------------------------------------------------===//
5397// Clang Extensions.
5398//===----------------------------------------------------------------------===//
5399
5400/// ActOnBlockStart - This callback is invoked when a block literal is started.
5401void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5402  // Analyze block parameters.
5403  BlockSemaInfo *BSI = new BlockSemaInfo();
5404
5405  // Add BSI to CurBlock.
5406  BSI->PrevBlockInfo = CurBlock;
5407  CurBlock = BSI;
5408
5409  BSI->ReturnType = QualType();
5410  BSI->TheScope = BlockScope;
5411  BSI->hasBlockDeclRefExprs = false;
5412  BSI->hasPrototype = false;
5413  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5414  CurFunctionNeedsScopeChecking = false;
5415
5416  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5417  PushDeclContext(BlockScope, BSI->TheDecl);
5418}
5419
5420void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5421  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5422
5423  if (ParamInfo.getNumTypeObjects() == 0
5424      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5425    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5426    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5427
5428    if (T->isArrayType()) {
5429      Diag(ParamInfo.getSourceRange().getBegin(),
5430           diag::err_block_returns_array);
5431      return;
5432    }
5433
5434    // The parameter list is optional, if there was none, assume ().
5435    if (!T->isFunctionType())
5436      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5437
5438    CurBlock->hasPrototype = true;
5439    CurBlock->isVariadic = false;
5440    // Check for a valid sentinel attribute on this block.
5441    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5442      Diag(ParamInfo.getAttributes()->getLoc(),
5443           diag::warn_attribute_sentinel_not_variadic) << 1;
5444      // FIXME: remove the attribute.
5445    }
5446    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5447
5448    // Do not allow returning a objc interface by-value.
5449    if (RetTy->isObjCInterfaceType()) {
5450      Diag(ParamInfo.getSourceRange().getBegin(),
5451           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5452      return;
5453    }
5454    return;
5455  }
5456
5457  // Analyze arguments to block.
5458  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5459         "Not a function declarator!");
5460  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5461
5462  CurBlock->hasPrototype = FTI.hasPrototype;
5463  CurBlock->isVariadic = true;
5464
5465  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5466  // no arguments, not a function that takes a single void argument.
5467  if (FTI.hasPrototype &&
5468      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5469     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5470        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5471    // empty arg list, don't push any params.
5472    CurBlock->isVariadic = false;
5473  } else if (FTI.hasPrototype) {
5474    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5475      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5476    CurBlock->isVariadic = FTI.isVariadic;
5477  }
5478  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5479                               CurBlock->Params.size());
5480  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5481  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5482  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5483       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5484    // If this has an identifier, add it to the scope stack.
5485    if ((*AI)->getIdentifier())
5486      PushOnScopeChains(*AI, CurBlock->TheScope);
5487
5488  // Check for a valid sentinel attribute on this block.
5489  if (!CurBlock->isVariadic &&
5490      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5491    Diag(ParamInfo.getAttributes()->getLoc(),
5492         diag::warn_attribute_sentinel_not_variadic) << 1;
5493    // FIXME: remove the attribute.
5494  }
5495
5496  // Analyze the return type.
5497  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5498  QualType RetTy = T->getAsFunctionType()->getResultType();
5499
5500  // Do not allow returning a objc interface by-value.
5501  if (RetTy->isObjCInterfaceType()) {
5502    Diag(ParamInfo.getSourceRange().getBegin(),
5503         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5504  } else if (!RetTy->isDependentType())
5505    CurBlock->ReturnType = RetTy;
5506}
5507
5508/// ActOnBlockError - If there is an error parsing a block, this callback
5509/// is invoked to pop the information about the block from the action impl.
5510void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5511  // Ensure that CurBlock is deleted.
5512  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5513
5514  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5515
5516  // Pop off CurBlock, handle nested blocks.
5517  PopDeclContext();
5518  CurBlock = CurBlock->PrevBlockInfo;
5519  // FIXME: Delete the ParmVarDecl objects as well???
5520}
5521
5522/// ActOnBlockStmtExpr - This is called when the body of a block statement
5523/// literal was successfully completed.  ^(int x){...}
5524Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5525                                                StmtArg body, Scope *CurScope) {
5526  // If blocks are disabled, emit an error.
5527  if (!LangOpts.Blocks)
5528    Diag(CaretLoc, diag::err_blocks_disable);
5529
5530  // Ensure that CurBlock is deleted.
5531  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5532
5533  PopDeclContext();
5534
5535  // Pop off CurBlock, handle nested blocks.
5536  CurBlock = CurBlock->PrevBlockInfo;
5537
5538  QualType RetTy = Context.VoidTy;
5539  if (!BSI->ReturnType.isNull())
5540    RetTy = BSI->ReturnType;
5541
5542  llvm::SmallVector<QualType, 8> ArgTypes;
5543  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5544    ArgTypes.push_back(BSI->Params[i]->getType());
5545
5546  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
5547  QualType BlockTy;
5548  if (!BSI->hasPrototype)
5549    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
5550                                      NoReturn);
5551  else
5552    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5553                                      BSI->isVariadic, 0, false, false, 0, 0,
5554                                      NoReturn);
5555
5556  // FIXME: Check that return/parameter types are complete/non-abstract
5557  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5558  BlockTy = Context.getBlockPointerType(BlockTy);
5559
5560  // If needed, diagnose invalid gotos and switches in the block.
5561  if (CurFunctionNeedsScopeChecking)
5562    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5563  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5564
5565  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5566  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
5567  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5568                                       BSI->hasBlockDeclRefExprs));
5569}
5570
5571Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5572                                        ExprArg expr, TypeTy *type,
5573                                        SourceLocation RPLoc) {
5574  QualType T = QualType::getFromOpaquePtr(type);
5575  Expr *E = static_cast<Expr*>(expr.get());
5576  Expr *OrigExpr = E;
5577
5578  InitBuiltinVaListType();
5579
5580  // Get the va_list type
5581  QualType VaListType = Context.getBuiltinVaListType();
5582  if (VaListType->isArrayType()) {
5583    // Deal with implicit array decay; for example, on x86-64,
5584    // va_list is an array, but it's supposed to decay to
5585    // a pointer for va_arg.
5586    VaListType = Context.getArrayDecayedType(VaListType);
5587    // Make sure the input expression also decays appropriately.
5588    UsualUnaryConversions(E);
5589  } else {
5590    // Otherwise, the va_list argument must be an l-value because
5591    // it is modified by va_arg.
5592    if (!E->isTypeDependent() &&
5593        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5594      return ExprError();
5595  }
5596
5597  if (!E->isTypeDependent() &&
5598      !Context.hasSameType(VaListType, E->getType())) {
5599    return ExprError(Diag(E->getLocStart(),
5600                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5601      << OrigExpr->getType() << E->getSourceRange());
5602  }
5603
5604  // FIXME: Check that type is complete/non-abstract
5605  // FIXME: Warn if a non-POD type is passed in.
5606
5607  expr.release();
5608  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5609                                       RPLoc));
5610}
5611
5612Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5613  // The type of __null will be int or long, depending on the size of
5614  // pointers on the target.
5615  QualType Ty;
5616  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5617    Ty = Context.IntTy;
5618  else
5619    Ty = Context.LongTy;
5620
5621  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5622}
5623
5624bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5625                                    SourceLocation Loc,
5626                                    QualType DstType, QualType SrcType,
5627                                    Expr *SrcExpr, const char *Flavor) {
5628  // Decode the result (notice that AST's are still created for extensions).
5629  bool isInvalid = false;
5630  unsigned DiagKind;
5631  switch (ConvTy) {
5632  default: assert(0 && "Unknown conversion type");
5633  case Compatible: return false;
5634  case PointerToInt:
5635    DiagKind = diag::ext_typecheck_convert_pointer_int;
5636    break;
5637  case IntToPointer:
5638    DiagKind = diag::ext_typecheck_convert_int_pointer;
5639    break;
5640  case IncompatiblePointer:
5641    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5642    break;
5643  case IncompatiblePointerSign:
5644    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5645    break;
5646  case FunctionVoidPointer:
5647    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5648    break;
5649  case CompatiblePointerDiscardsQualifiers:
5650    // If the qualifiers lost were because we were applying the
5651    // (deprecated) C++ conversion from a string literal to a char*
5652    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5653    // Ideally, this check would be performed in
5654    // CheckPointerTypesForAssignment. However, that would require a
5655    // bit of refactoring (so that the second argument is an
5656    // expression, rather than a type), which should be done as part
5657    // of a larger effort to fix CheckPointerTypesForAssignment for
5658    // C++ semantics.
5659    if (getLangOptions().CPlusPlus &&
5660        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5661      return false;
5662    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5663    break;
5664  case IntToBlockPointer:
5665    DiagKind = diag::err_int_to_block_pointer;
5666    break;
5667  case IncompatibleBlockPointer:
5668    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5669    break;
5670  case IncompatibleObjCQualifiedId:
5671    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5672    // it can give a more specific diagnostic.
5673    DiagKind = diag::warn_incompatible_qualified_id;
5674    break;
5675  case IncompatibleVectors:
5676    DiagKind = diag::warn_incompatible_vectors;
5677    break;
5678  case Incompatible:
5679    DiagKind = diag::err_typecheck_convert_incompatible;
5680    isInvalid = true;
5681    break;
5682  }
5683
5684  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5685    << SrcExpr->getSourceRange();
5686  return isInvalid;
5687}
5688
5689bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5690  llvm::APSInt ICEResult;
5691  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5692    if (Result)
5693      *Result = ICEResult;
5694    return false;
5695  }
5696
5697  Expr::EvalResult EvalResult;
5698
5699  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5700      EvalResult.HasSideEffects) {
5701    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5702
5703    if (EvalResult.Diag) {
5704      // We only show the note if it's not the usual "invalid subexpression"
5705      // or if it's actually in a subexpression.
5706      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5707          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5708        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5709    }
5710
5711    return true;
5712  }
5713
5714  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5715    E->getSourceRange();
5716
5717  if (EvalResult.Diag &&
5718      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5719    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5720
5721  if (Result)
5722    *Result = EvalResult.Val.getInt();
5723  return false;
5724}
5725
5726Sema::ExpressionEvaluationContext
5727Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5728  // Introduce a new set of potentially referenced declarations to the stack.
5729  if (NewContext == PotentiallyPotentiallyEvaluated)
5730    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5731
5732  std::swap(ExprEvalContext, NewContext);
5733  return NewContext;
5734}
5735
5736void
5737Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5738                                     ExpressionEvaluationContext NewContext) {
5739  ExprEvalContext = NewContext;
5740
5741  if (OldContext == PotentiallyPotentiallyEvaluated) {
5742    // Mark any remaining declarations in the current position of the stack
5743    // as "referenced". If they were not meant to be referenced, semantic
5744    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5745    PotentiallyReferencedDecls RemainingDecls;
5746    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5747    PotentiallyReferencedDeclStack.pop_back();
5748
5749    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5750                                           IEnd = RemainingDecls.end();
5751         I != IEnd; ++I)
5752      MarkDeclarationReferenced(I->first, I->second);
5753  }
5754}
5755
5756/// \brief Note that the given declaration was referenced in the source code.
5757///
5758/// This routine should be invoke whenever a given declaration is referenced
5759/// in the source code, and where that reference occurred. If this declaration
5760/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5761/// C99 6.9p3), then the declaration will be marked as used.
5762///
5763/// \param Loc the location where the declaration was referenced.
5764///
5765/// \param D the declaration that has been referenced by the source code.
5766void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5767  assert(D && "No declaration?");
5768
5769  if (D->isUsed())
5770    return;
5771
5772  // Mark a parameter declaration "used", regardless of whether we're in a
5773  // template or not.
5774  if (isa<ParmVarDecl>(D))
5775    D->setUsed(true);
5776
5777  // Do not mark anything as "used" within a dependent context; wait for
5778  // an instantiation.
5779  if (CurContext->isDependentContext())
5780    return;
5781
5782  switch (ExprEvalContext) {
5783    case Unevaluated:
5784      // We are in an expression that is not potentially evaluated; do nothing.
5785      return;
5786
5787    case PotentiallyEvaluated:
5788      // We are in a potentially-evaluated expression, so this declaration is
5789      // "used"; handle this below.
5790      break;
5791
5792    case PotentiallyPotentiallyEvaluated:
5793      // We are in an expression that may be potentially evaluated; queue this
5794      // declaration reference until we know whether the expression is
5795      // potentially evaluated.
5796      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5797      return;
5798  }
5799
5800  // Note that this declaration has been used.
5801  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5802    unsigned TypeQuals;
5803    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5804        if (!Constructor->isUsed())
5805          DefineImplicitDefaultConstructor(Loc, Constructor);
5806    }
5807    else if (Constructor->isImplicit() &&
5808             Constructor->isCopyConstructor(Context, TypeQuals)) {
5809      if (!Constructor->isUsed())
5810        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5811    }
5812  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
5813    if (Destructor->isImplicit() && !Destructor->isUsed())
5814      DefineImplicitDestructor(Loc, Destructor);
5815
5816  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
5817    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
5818        MethodDecl->getOverloadedOperator() == OO_Equal) {
5819      if (!MethodDecl->isUsed())
5820        DefineImplicitOverloadedAssign(Loc, MethodDecl);
5821    }
5822  }
5823  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5824    // Implicit instantiation of function templates and member functions of
5825    // class templates.
5826    if (!Function->getBody()) {
5827      // FIXME: distinguish between implicit instantiations of function
5828      // templates and explicit specializations (the latter don't get
5829      // instantiated, naturally).
5830      if (Function->getInstantiatedFromMemberFunction() ||
5831          Function->getPrimaryTemplate())
5832        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
5833    }
5834
5835
5836    // FIXME: keep track of references to static functions
5837    Function->setUsed(true);
5838    return;
5839  }
5840
5841  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5842    // Implicit instantiation of static data members of class templates.
5843    // FIXME: distinguish between implicit instantiations (which we need to
5844    // actually instantiate) and explicit specializations.
5845    if (Var->isStaticDataMember() &&
5846        Var->getInstantiatedFromStaticDataMember())
5847      PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
5848
5849    // FIXME: keep track of references to static data?
5850
5851    D->setUsed(true);
5852    return;
5853}
5854}
5855
5856