SemaExpr.cpp revision 3e9ea0b8cd7c4691d62e385245556be5fded58a7
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/LiteralSupport.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Designator.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/ParsedTemplate.h"
39#include "clang/Sema/SemaFixItUtils.h"
40#include "clang/Sema/Template.h"
41using namespace clang;
42using namespace sema;
43
44/// \brief Determine whether the use of this declaration is valid, without
45/// emitting diagnostics.
46bool Sema::CanUseDecl(NamedDecl *D) {
47  // See if this is an auto-typed variable whose initializer we are parsing.
48  if (ParsingInitForAutoVars.count(D))
49    return false;
50
51  // See if this is a deleted function.
52  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
53    if (FD->isDeleted())
54      return false;
55  }
56
57  // See if this function is unavailable.
58  if (D->getAvailability() == AR_Unavailable &&
59      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
60    return false;
61
62  return true;
63}
64
65AvailabilityResult
66Sema::DiagnoseAvailabilityOfDecl(
67                              NamedDecl *D, SourceLocation Loc,
68                              const ObjCInterfaceDecl *UnknownObjCClass) {
69  // See if this declaration is unavailable or deprecated.
70  std::string Message;
71  AvailabilityResult Result = D->getAvailability(&Message);
72  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
73    if (Result == AR_Available) {
74      const DeclContext *DC = ECD->getDeclContext();
75      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
76        Result = TheEnumDecl->getAvailability(&Message);
77    }
78
79  switch (Result) {
80    case AR_Available:
81    case AR_NotYetIntroduced:
82      break;
83
84    case AR_Deprecated:
85      EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
86      break;
87
88    case AR_Unavailable:
89      if (getCurContextAvailability() != AR_Unavailable) {
90        if (Message.empty()) {
91          if (!UnknownObjCClass)
92            Diag(Loc, diag::err_unavailable) << D->getDeclName();
93          else
94            Diag(Loc, diag::warn_unavailable_fwdclass_message)
95              << D->getDeclName();
96        }
97        else
98          Diag(Loc, diag::err_unavailable_message)
99            << D->getDeclName() << Message;
100          Diag(D->getLocation(), diag::note_unavailable_here)
101          << isa<FunctionDecl>(D) << false;
102      }
103      break;
104    }
105    return Result;
106}
107
108/// \brief Determine whether the use of this declaration is valid, and
109/// emit any corresponding diagnostics.
110///
111/// This routine diagnoses various problems with referencing
112/// declarations that can occur when using a declaration. For example,
113/// it might warn if a deprecated or unavailable declaration is being
114/// used, or produce an error (and return true) if a C++0x deleted
115/// function is being used.
116///
117/// \returns true if there was an error (this declaration cannot be
118/// referenced), false otherwise.
119///
120bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
121                             const ObjCInterfaceDecl *UnknownObjCClass) {
122  if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
123    // If there were any diagnostics suppressed by template argument deduction,
124    // emit them now.
125    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
126      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
127    if (Pos != SuppressedDiagnostics.end()) {
128      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
129      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
130        Diag(Suppressed[I].first, Suppressed[I].second);
131
132      // Clear out the list of suppressed diagnostics, so that we don't emit
133      // them again for this specialization. However, we don't obsolete this
134      // entry from the table, because we want to avoid ever emitting these
135      // diagnostics again.
136      Suppressed.clear();
137    }
138  }
139
140  // See if this is an auto-typed variable whose initializer we are parsing.
141  if (ParsingInitForAutoVars.count(D)) {
142    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
143      << D->getDeclName();
144    return true;
145  }
146
147  // See if this is a deleted function.
148  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
149    if (FD->isDeleted()) {
150      Diag(Loc, diag::err_deleted_function_use);
151      Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
152      return true;
153    }
154  }
155  DiagnoseAvailabilityOfDecl(D, Loc, UnknownObjCClass);
156
157  // Warn if this is used but marked unused.
158  if (D->hasAttr<UnusedAttr>())
159    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
160  return false;
161}
162
163/// \brief Retrieve the message suffix that should be added to a
164/// diagnostic complaining about the given function being deleted or
165/// unavailable.
166std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
167  // FIXME: C++0x implicitly-deleted special member functions could be
168  // detected here so that we could improve diagnostics to say, e.g.,
169  // "base class 'A' had a deleted copy constructor".
170  if (FD->isDeleted())
171    return std::string();
172
173  std::string Message;
174  if (FD->getAvailability(&Message))
175    return ": " + Message;
176
177  return std::string();
178}
179
180/// DiagnoseSentinelCalls - This routine checks whether a call or
181/// message-send is to a declaration with the sentinel attribute, and
182/// if so, it checks that the requirements of the sentinel are
183/// satisfied.
184void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
185                                 Expr **args, unsigned numArgs) {
186  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
187  if (!attr)
188    return;
189
190  // The number of formal parameters of the declaration.
191  unsigned numFormalParams;
192
193  // The kind of declaration.  This is also an index into a %select in
194  // the diagnostic.
195  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
196
197  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
198    numFormalParams = MD->param_size();
199    calleeType = CT_Method;
200  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
201    numFormalParams = FD->param_size();
202    calleeType = CT_Function;
203  } else if (isa<VarDecl>(D)) {
204    QualType type = cast<ValueDecl>(D)->getType();
205    const FunctionType *fn = 0;
206    if (const PointerType *ptr = type->getAs<PointerType>()) {
207      fn = ptr->getPointeeType()->getAs<FunctionType>();
208      if (!fn) return;
209      calleeType = CT_Function;
210    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
211      fn = ptr->getPointeeType()->castAs<FunctionType>();
212      calleeType = CT_Block;
213    } else {
214      return;
215    }
216
217    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
218      numFormalParams = proto->getNumArgs();
219    } else {
220      numFormalParams = 0;
221    }
222  } else {
223    return;
224  }
225
226  // "nullPos" is the number of formal parameters at the end which
227  // effectively count as part of the variadic arguments.  This is
228  // useful if you would prefer to not have *any* formal parameters,
229  // but the language forces you to have at least one.
230  unsigned nullPos = attr->getNullPos();
231  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
232  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
233
234  // The number of arguments which should follow the sentinel.
235  unsigned numArgsAfterSentinel = attr->getSentinel();
236
237  // If there aren't enough arguments for all the formal parameters,
238  // the sentinel, and the args after the sentinel, complain.
239  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
240    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
241    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
242    return;
243  }
244
245  // Otherwise, find the sentinel expression.
246  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
247  if (!sentinelExpr) return;
248  if (sentinelExpr->isValueDependent()) return;
249
250  // nullptr_t is always treated as null.
251  if (sentinelExpr->getType()->isNullPtrType()) return;
252
253  if (sentinelExpr->getType()->isAnyPointerType() &&
254      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
255                                            Expr::NPC_ValueDependentIsNull))
256    return;
257
258  // Unfortunately, __null has type 'int'.
259  if (isa<GNUNullExpr>(sentinelExpr)) return;
260
261  // Pick a reasonable string to insert.  Optimistically use 'nil' or
262  // 'NULL' if those are actually defined in the context.  Only use
263  // 'nil' for ObjC methods, where it's much more likely that the
264  // variadic arguments form a list of object pointers.
265  SourceLocation MissingNilLoc
266    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
267  std::string NullValue;
268  if (calleeType == CT_Method &&
269      PP.getIdentifierInfo("nil")->hasMacroDefinition())
270    NullValue = "nil";
271  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
272    NullValue = "NULL";
273  else
274    NullValue = "(void*) 0";
275
276  if (MissingNilLoc.isInvalid())
277    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
278  else
279    Diag(MissingNilLoc, diag::warn_missing_sentinel)
280      << calleeType
281      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
282  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
283}
284
285SourceRange Sema::getExprRange(Expr *E) const {
286  return E ? E->getSourceRange() : SourceRange();
287}
288
289//===----------------------------------------------------------------------===//
290//  Standard Promotions and Conversions
291//===----------------------------------------------------------------------===//
292
293/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
294ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
295  // Handle any placeholder expressions which made it here.
296  if (E->getType()->isPlaceholderType()) {
297    ExprResult result = CheckPlaceholderExpr(E);
298    if (result.isInvalid()) return ExprError();
299    E = result.take();
300  }
301
302  QualType Ty = E->getType();
303  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
304
305  if (Ty->isFunctionType())
306    E = ImpCastExprToType(E, Context.getPointerType(Ty),
307                          CK_FunctionToPointerDecay).take();
308  else if (Ty->isArrayType()) {
309    // In C90 mode, arrays only promote to pointers if the array expression is
310    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
311    // type 'array of type' is converted to an expression that has type 'pointer
312    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
313    // that has type 'array of type' ...".  The relevant change is "an lvalue"
314    // (C90) to "an expression" (C99).
315    //
316    // C++ 4.2p1:
317    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
318    // T" can be converted to an rvalue of type "pointer to T".
319    //
320    if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
321      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
322                            CK_ArrayToPointerDecay).take();
323  }
324  return Owned(E);
325}
326
327static void CheckForNullPointerDereference(Sema &S, Expr *E) {
328  // Check to see if we are dereferencing a null pointer.  If so,
329  // and if not volatile-qualified, this is undefined behavior that the
330  // optimizer will delete, so warn about it.  People sometimes try to use this
331  // to get a deterministic trap and are surprised by clang's behavior.  This
332  // only handles the pattern "*null", which is a very syntactic check.
333  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
334    if (UO->getOpcode() == UO_Deref &&
335        UO->getSubExpr()->IgnoreParenCasts()->
336          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
337        !UO->getType().isVolatileQualified()) {
338    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
339                          S.PDiag(diag::warn_indirection_through_null)
340                            << UO->getSubExpr()->getSourceRange());
341    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
342                        S.PDiag(diag::note_indirection_through_null));
343  }
344}
345
346ExprResult Sema::DefaultLvalueConversion(Expr *E) {
347  // Handle any placeholder expressions which made it here.
348  if (E->getType()->isPlaceholderType()) {
349    ExprResult result = CheckPlaceholderExpr(E);
350    if (result.isInvalid()) return ExprError();
351    E = result.take();
352  }
353
354  // C++ [conv.lval]p1:
355  //   A glvalue of a non-function, non-array type T can be
356  //   converted to a prvalue.
357  if (!E->isGLValue()) return Owned(E);
358
359  QualType T = E->getType();
360  assert(!T.isNull() && "r-value conversion on typeless expression?");
361
362  // We can't do lvalue-to-rvalue on atomics yet.
363  if (T->isAtomicType())
364    return Owned(E);
365
366  // We don't want to throw lvalue-to-rvalue casts on top of
367  // expressions of certain types in C++.
368  if (getLangOptions().CPlusPlus &&
369      (E->getType() == Context.OverloadTy ||
370       T->isDependentType() ||
371       T->isRecordType()))
372    return Owned(E);
373
374  // The C standard is actually really unclear on this point, and
375  // DR106 tells us what the result should be but not why.  It's
376  // generally best to say that void types just doesn't undergo
377  // lvalue-to-rvalue at all.  Note that expressions of unqualified
378  // 'void' type are never l-values, but qualified void can be.
379  if (T->isVoidType())
380    return Owned(E);
381
382  CheckForNullPointerDereference(*this, E);
383
384  // C++ [conv.lval]p1:
385  //   [...] If T is a non-class type, the type of the prvalue is the
386  //   cv-unqualified version of T. Otherwise, the type of the
387  //   rvalue is T.
388  //
389  // C99 6.3.2.1p2:
390  //   If the lvalue has qualified type, the value has the unqualified
391  //   version of the type of the lvalue; otherwise, the value has the
392  //   type of the lvalue.
393  if (T.hasQualifiers())
394    T = T.getUnqualifiedType();
395
396  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
397                                                  E, 0, VK_RValue));
398
399  return Res;
400}
401
402ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
403  ExprResult Res = DefaultFunctionArrayConversion(E);
404  if (Res.isInvalid())
405    return ExprError();
406  Res = DefaultLvalueConversion(Res.take());
407  if (Res.isInvalid())
408    return ExprError();
409  return move(Res);
410}
411
412
413/// UsualUnaryConversions - Performs various conversions that are common to most
414/// operators (C99 6.3). The conversions of array and function types are
415/// sometimes suppressed. For example, the array->pointer conversion doesn't
416/// apply if the array is an argument to the sizeof or address (&) operators.
417/// In these instances, this routine should *not* be called.
418ExprResult Sema::UsualUnaryConversions(Expr *E) {
419  // First, convert to an r-value.
420  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
421  if (Res.isInvalid())
422    return Owned(E);
423  E = Res.take();
424
425  QualType Ty = E->getType();
426  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
427
428  // Half FP is a bit different: it's a storage-only type, meaning that any
429  // "use" of it should be promoted to float.
430  if (Ty->isHalfType())
431    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
432
433  // Try to perform integral promotions if the object has a theoretically
434  // promotable type.
435  if (Ty->isIntegralOrUnscopedEnumerationType()) {
436    // C99 6.3.1.1p2:
437    //
438    //   The following may be used in an expression wherever an int or
439    //   unsigned int may be used:
440    //     - an object or expression with an integer type whose integer
441    //       conversion rank is less than or equal to the rank of int
442    //       and unsigned int.
443    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
444    //
445    //   If an int can represent all values of the original type, the
446    //   value is converted to an int; otherwise, it is converted to an
447    //   unsigned int. These are called the integer promotions. All
448    //   other types are unchanged by the integer promotions.
449
450    QualType PTy = Context.isPromotableBitField(E);
451    if (!PTy.isNull()) {
452      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
453      return Owned(E);
454    }
455    if (Ty->isPromotableIntegerType()) {
456      QualType PT = Context.getPromotedIntegerType(Ty);
457      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
458      return Owned(E);
459    }
460  }
461  return Owned(E);
462}
463
464/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
465/// do not have a prototype. Arguments that have type float are promoted to
466/// double. All other argument types are converted by UsualUnaryConversions().
467ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
468  QualType Ty = E->getType();
469  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
470
471  ExprResult Res = UsualUnaryConversions(E);
472  if (Res.isInvalid())
473    return Owned(E);
474  E = Res.take();
475
476  // If this is a 'float' (CVR qualified or typedef) promote to double.
477  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
478    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
479
480  // C++ performs lvalue-to-rvalue conversion as a default argument
481  // promotion, even on class types, but note:
482  //   C++11 [conv.lval]p2:
483  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
484  //     operand or a subexpression thereof the value contained in the
485  //     referenced object is not accessed. Otherwise, if the glvalue
486  //     has a class type, the conversion copy-initializes a temporary
487  //     of type T from the glvalue and the result of the conversion
488  //     is a prvalue for the temporary.
489  // FIXME: add some way to gate this entire thing for correctness in
490  // potentially potentially evaluated contexts.
491  if (getLangOptions().CPlusPlus && E->isGLValue() &&
492      ExprEvalContexts.back().Context != Unevaluated) {
493    ExprResult Temp = PerformCopyInitialization(
494                       InitializedEntity::InitializeTemporary(E->getType()),
495                                                E->getExprLoc(),
496                                                Owned(E));
497    if (Temp.isInvalid())
498      return ExprError();
499    E = Temp.get();
500  }
501
502  return Owned(E);
503}
504
505/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
506/// will warn if the resulting type is not a POD type, and rejects ObjC
507/// interfaces passed by value.
508ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
509                                                  FunctionDecl *FDecl) {
510  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
511    // Strip the unbridged-cast placeholder expression off, if applicable.
512    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
513        (CT == VariadicMethod ||
514         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
515      E = stripARCUnbridgedCast(E);
516
517    // Otherwise, do normal placeholder checking.
518    } else {
519      ExprResult ExprRes = CheckPlaceholderExpr(E);
520      if (ExprRes.isInvalid())
521        return ExprError();
522      E = ExprRes.take();
523    }
524  }
525
526  ExprResult ExprRes = DefaultArgumentPromotion(E);
527  if (ExprRes.isInvalid())
528    return ExprError();
529  E = ExprRes.take();
530
531  // Don't allow one to pass an Objective-C interface to a vararg.
532  if (E->getType()->isObjCObjectType() &&
533    DiagRuntimeBehavior(E->getLocStart(), 0,
534                        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
535                          << E->getType() << CT))
536    return ExprError();
537
538  // Complain about passing non-POD types through varargs. However, don't
539  // perform this check for incomplete types, which we can get here when we're
540  // in an unevaluated context.
541  if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
542    // C++0x [expr.call]p7:
543    //   Passing a potentially-evaluated argument of class type (Clause 9)
544    //   having a non-trivial copy constructor, a non-trivial move constructor,
545    //   or a non-trivial destructor, with no corresponding parameter,
546    //   is conditionally-supported with implementation-defined semantics.
547    bool TrivialEnough = false;
548    if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType())  {
549      if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
550        if (Record->hasTrivialCopyConstructor() &&
551            Record->hasTrivialMoveConstructor() &&
552            Record->hasTrivialDestructor()) {
553          DiagRuntimeBehavior(E->getLocStart(), 0,
554            PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
555              << E->getType() << CT);
556          TrivialEnough = true;
557        }
558      }
559    }
560
561    if (!TrivialEnough &&
562        getLangOptions().ObjCAutoRefCount &&
563        E->getType()->isObjCLifetimeType())
564      TrivialEnough = true;
565
566    if (TrivialEnough) {
567      // Nothing to diagnose. This is okay.
568    } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
569                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
570                            << getLangOptions().CPlusPlus0x << E->getType()
571                            << CT)) {
572      // Turn this into a trap.
573      CXXScopeSpec SS;
574      UnqualifiedId Name;
575      Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
576                         E->getLocStart());
577      ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
578      if (TrapFn.isInvalid())
579        return ExprError();
580
581      ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
582                                      MultiExprArg(), E->getLocEnd());
583      if (Call.isInvalid())
584        return ExprError();
585
586      ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
587                                    Call.get(), E);
588      if (Comma.isInvalid())
589        return ExprError();
590      E = Comma.get();
591    }
592  }
593
594  return Owned(E);
595}
596
597/// \brief Converts an integer to complex float type.  Helper function of
598/// UsualArithmeticConversions()
599///
600/// \return false if the integer expression is an integer type and is
601/// successfully converted to the complex type.
602static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
603                                                  ExprResult &ComplexExpr,
604                                                  QualType IntTy,
605                                                  QualType ComplexTy,
606                                                  bool SkipCast) {
607  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
608  if (SkipCast) return false;
609  if (IntTy->isIntegerType()) {
610    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
611    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
612    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
613                                  CK_FloatingRealToComplex);
614  } else {
615    assert(IntTy->isComplexIntegerType());
616    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
617                                  CK_IntegralComplexToFloatingComplex);
618  }
619  return false;
620}
621
622/// \brief Takes two complex float types and converts them to the same type.
623/// Helper function of UsualArithmeticConversions()
624static QualType
625handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
626                                            ExprResult &RHS, QualType LHSType,
627                                            QualType RHSType,
628                                            bool IsCompAssign) {
629  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
630
631  if (order < 0) {
632    // _Complex float -> _Complex double
633    if (!IsCompAssign)
634      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
635    return RHSType;
636  }
637  if (order > 0)
638    // _Complex float -> _Complex double
639    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
640  return LHSType;
641}
642
643/// \brief Converts otherExpr to complex float and promotes complexExpr if
644/// necessary.  Helper function of UsualArithmeticConversions()
645static QualType handleOtherComplexFloatConversion(Sema &S,
646                                                  ExprResult &ComplexExpr,
647                                                  ExprResult &OtherExpr,
648                                                  QualType ComplexTy,
649                                                  QualType OtherTy,
650                                                  bool ConvertComplexExpr,
651                                                  bool ConvertOtherExpr) {
652  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
653
654  // If just the complexExpr is complex, the otherExpr needs to be converted,
655  // and the complexExpr might need to be promoted.
656  if (order > 0) { // complexExpr is wider
657    // float -> _Complex double
658    if (ConvertOtherExpr) {
659      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
660      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
661      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
662                                      CK_FloatingRealToComplex);
663    }
664    return ComplexTy;
665  }
666
667  // otherTy is at least as wide.  Find its corresponding complex type.
668  QualType result = (order == 0 ? ComplexTy :
669                                  S.Context.getComplexType(OtherTy));
670
671  // double -> _Complex double
672  if (ConvertOtherExpr)
673    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
674                                    CK_FloatingRealToComplex);
675
676  // _Complex float -> _Complex double
677  if (ConvertComplexExpr && order < 0)
678    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
679                                      CK_FloatingComplexCast);
680
681  return result;
682}
683
684/// \brief Handle arithmetic conversion with complex types.  Helper function of
685/// UsualArithmeticConversions()
686static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
687                                             ExprResult &RHS, QualType LHSType,
688                                             QualType RHSType,
689                                             bool IsCompAssign) {
690  // if we have an integer operand, the result is the complex type.
691  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
692                                             /*skipCast*/false))
693    return LHSType;
694  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
695                                             /*skipCast*/IsCompAssign))
696    return RHSType;
697
698  // This handles complex/complex, complex/float, or float/complex.
699  // When both operands are complex, the shorter operand is converted to the
700  // type of the longer, and that is the type of the result. This corresponds
701  // to what is done when combining two real floating-point operands.
702  // The fun begins when size promotion occur across type domains.
703  // From H&S 6.3.4: When one operand is complex and the other is a real
704  // floating-point type, the less precise type is converted, within it's
705  // real or complex domain, to the precision of the other type. For example,
706  // when combining a "long double" with a "double _Complex", the
707  // "double _Complex" is promoted to "long double _Complex".
708
709  bool LHSComplexFloat = LHSType->isComplexType();
710  bool RHSComplexFloat = RHSType->isComplexType();
711
712  // If both are complex, just cast to the more precise type.
713  if (LHSComplexFloat && RHSComplexFloat)
714    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
715                                                       LHSType, RHSType,
716                                                       IsCompAssign);
717
718  // If only one operand is complex, promote it if necessary and convert the
719  // other operand to complex.
720  if (LHSComplexFloat)
721    return handleOtherComplexFloatConversion(
722        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
723        /*convertOtherExpr*/ true);
724
725  assert(RHSComplexFloat);
726  return handleOtherComplexFloatConversion(
727      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
728      /*convertOtherExpr*/ !IsCompAssign);
729}
730
731/// \brief Hande arithmetic conversion from integer to float.  Helper function
732/// of UsualArithmeticConversions()
733static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
734                                           ExprResult &IntExpr,
735                                           QualType FloatTy, QualType IntTy,
736                                           bool ConvertFloat, bool ConvertInt) {
737  if (IntTy->isIntegerType()) {
738    if (ConvertInt)
739      // Convert intExpr to the lhs floating point type.
740      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
741                                    CK_IntegralToFloating);
742    return FloatTy;
743  }
744
745  // Convert both sides to the appropriate complex float.
746  assert(IntTy->isComplexIntegerType());
747  QualType result = S.Context.getComplexType(FloatTy);
748
749  // _Complex int -> _Complex float
750  if (ConvertInt)
751    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
752                                  CK_IntegralComplexToFloatingComplex);
753
754  // float -> _Complex float
755  if (ConvertFloat)
756    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
757                                    CK_FloatingRealToComplex);
758
759  return result;
760}
761
762/// \brief Handle arithmethic conversion with floating point types.  Helper
763/// function of UsualArithmeticConversions()
764static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
765                                      ExprResult &RHS, QualType LHSType,
766                                      QualType RHSType, bool IsCompAssign) {
767  bool LHSFloat = LHSType->isRealFloatingType();
768  bool RHSFloat = RHSType->isRealFloatingType();
769
770  // If we have two real floating types, convert the smaller operand
771  // to the bigger result.
772  if (LHSFloat && RHSFloat) {
773    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
774    if (order > 0) {
775      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
776      return LHSType;
777    }
778
779    assert(order < 0 && "illegal float comparison");
780    if (!IsCompAssign)
781      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
782    return RHSType;
783  }
784
785  if (LHSFloat)
786    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
787                                      /*convertFloat=*/!IsCompAssign,
788                                      /*convertInt=*/ true);
789  assert(RHSFloat);
790  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
791                                    /*convertInt=*/ true,
792                                    /*convertFloat=*/!IsCompAssign);
793}
794
795/// \brief Handle conversions with GCC complex int extension.  Helper function
796/// of UsualArithmeticConversions()
797// FIXME: if the operands are (int, _Complex long), we currently
798// don't promote the complex.  Also, signedness?
799static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
800                                           ExprResult &RHS, QualType LHSType,
801                                           QualType RHSType,
802                                           bool IsCompAssign) {
803  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
804  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
805
806  if (LHSComplexInt && RHSComplexInt) {
807    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
808                                              RHSComplexInt->getElementType());
809    assert(order && "inequal types with equal element ordering");
810    if (order > 0) {
811      // _Complex int -> _Complex long
812      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
813      return LHSType;
814    }
815
816    if (!IsCompAssign)
817      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
818    return RHSType;
819  }
820
821  if (LHSComplexInt) {
822    // int -> _Complex int
823    // FIXME: This needs to take integer ranks into account
824    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
825                              CK_IntegralCast);
826    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
827    return LHSType;
828  }
829
830  assert(RHSComplexInt);
831  // int -> _Complex int
832  // FIXME: This needs to take integer ranks into account
833  if (!IsCompAssign) {
834    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
835                              CK_IntegralCast);
836    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
837  }
838  return RHSType;
839}
840
841/// \brief Handle integer arithmetic conversions.  Helper function of
842/// UsualArithmeticConversions()
843static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
844                                        ExprResult &RHS, QualType LHSType,
845                                        QualType RHSType, bool IsCompAssign) {
846  // The rules for this case are in C99 6.3.1.8
847  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
848  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
849  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
850  if (LHSSigned == RHSSigned) {
851    // Same signedness; use the higher-ranked type
852    if (order >= 0) {
853      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
854      return LHSType;
855    } else if (!IsCompAssign)
856      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
857    return RHSType;
858  } else if (order != (LHSSigned ? 1 : -1)) {
859    // The unsigned type has greater than or equal rank to the
860    // signed type, so use the unsigned type
861    if (RHSSigned) {
862      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
863      return LHSType;
864    } else if (!IsCompAssign)
865      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
866    return RHSType;
867  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
868    // The two types are different widths; if we are here, that
869    // means the signed type is larger than the unsigned type, so
870    // use the signed type.
871    if (LHSSigned) {
872      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
873      return LHSType;
874    } else if (!IsCompAssign)
875      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
876    return RHSType;
877  } else {
878    // The signed type is higher-ranked than the unsigned type,
879    // but isn't actually any bigger (like unsigned int and long
880    // on most 32-bit systems).  Use the unsigned type corresponding
881    // to the signed type.
882    QualType result =
883      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
884    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
885    if (!IsCompAssign)
886      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
887    return result;
888  }
889}
890
891/// UsualArithmeticConversions - Performs various conversions that are common to
892/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
893/// routine returns the first non-arithmetic type found. The client is
894/// responsible for emitting appropriate error diagnostics.
895/// FIXME: verify the conversion rules for "complex int" are consistent with
896/// GCC.
897QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
898                                          bool IsCompAssign) {
899  if (!IsCompAssign) {
900    LHS = UsualUnaryConversions(LHS.take());
901    if (LHS.isInvalid())
902      return QualType();
903  }
904
905  RHS = UsualUnaryConversions(RHS.take());
906  if (RHS.isInvalid())
907    return QualType();
908
909  // For conversion purposes, we ignore any qualifiers.
910  // For example, "const float" and "float" are equivalent.
911  QualType LHSType =
912    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
913  QualType RHSType =
914    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
915
916  // If both types are identical, no conversion is needed.
917  if (LHSType == RHSType)
918    return LHSType;
919
920  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
921  // The caller can deal with this (e.g. pointer + int).
922  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
923    return LHSType;
924
925  // Apply unary and bitfield promotions to the LHS's type.
926  QualType LHSUnpromotedType = LHSType;
927  if (LHSType->isPromotableIntegerType())
928    LHSType = Context.getPromotedIntegerType(LHSType);
929  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
930  if (!LHSBitfieldPromoteTy.isNull())
931    LHSType = LHSBitfieldPromoteTy;
932  if (LHSType != LHSUnpromotedType && !IsCompAssign)
933    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
934
935  // If both types are identical, no conversion is needed.
936  if (LHSType == RHSType)
937    return LHSType;
938
939  // At this point, we have two different arithmetic types.
940
941  // Handle complex types first (C99 6.3.1.8p1).
942  if (LHSType->isComplexType() || RHSType->isComplexType())
943    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
944                                        IsCompAssign);
945
946  // Now handle "real" floating types (i.e. float, double, long double).
947  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
948    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
949                                 IsCompAssign);
950
951  // Handle GCC complex int extension.
952  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
953    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
954                                      IsCompAssign);
955
956  // Finally, we have two differing integer types.
957  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
958                                 IsCompAssign);
959}
960
961//===----------------------------------------------------------------------===//
962//  Semantic Analysis for various Expression Types
963//===----------------------------------------------------------------------===//
964
965
966ExprResult
967Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
968                                SourceLocation DefaultLoc,
969                                SourceLocation RParenLoc,
970                                Expr *ControllingExpr,
971                                MultiTypeArg ArgTypes,
972                                MultiExprArg ArgExprs) {
973  unsigned NumAssocs = ArgTypes.size();
974  assert(NumAssocs == ArgExprs.size());
975
976  ParsedType *ParsedTypes = ArgTypes.release();
977  Expr **Exprs = ArgExprs.release();
978
979  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
980  for (unsigned i = 0; i < NumAssocs; ++i) {
981    if (ParsedTypes[i])
982      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
983    else
984      Types[i] = 0;
985  }
986
987  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
988                                             ControllingExpr, Types, Exprs,
989                                             NumAssocs);
990  delete [] Types;
991  return ER;
992}
993
994ExprResult
995Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
996                                 SourceLocation DefaultLoc,
997                                 SourceLocation RParenLoc,
998                                 Expr *ControllingExpr,
999                                 TypeSourceInfo **Types,
1000                                 Expr **Exprs,
1001                                 unsigned NumAssocs) {
1002  bool TypeErrorFound = false,
1003       IsResultDependent = ControllingExpr->isTypeDependent(),
1004       ContainsUnexpandedParameterPack
1005         = ControllingExpr->containsUnexpandedParameterPack();
1006
1007  for (unsigned i = 0; i < NumAssocs; ++i) {
1008    if (Exprs[i]->containsUnexpandedParameterPack())
1009      ContainsUnexpandedParameterPack = true;
1010
1011    if (Types[i]) {
1012      if (Types[i]->getType()->containsUnexpandedParameterPack())
1013        ContainsUnexpandedParameterPack = true;
1014
1015      if (Types[i]->getType()->isDependentType()) {
1016        IsResultDependent = true;
1017      } else {
1018        // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
1019        // complete object type other than a variably modified type."
1020        unsigned D = 0;
1021        if (Types[i]->getType()->isIncompleteType())
1022          D = diag::err_assoc_type_incomplete;
1023        else if (!Types[i]->getType()->isObjectType())
1024          D = diag::err_assoc_type_nonobject;
1025        else if (Types[i]->getType()->isVariablyModifiedType())
1026          D = diag::err_assoc_type_variably_modified;
1027
1028        if (D != 0) {
1029          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1030            << Types[i]->getTypeLoc().getSourceRange()
1031            << Types[i]->getType();
1032          TypeErrorFound = true;
1033        }
1034
1035        // C1X 6.5.1.1p2 "No two generic associations in the same generic
1036        // selection shall specify compatible types."
1037        for (unsigned j = i+1; j < NumAssocs; ++j)
1038          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1039              Context.typesAreCompatible(Types[i]->getType(),
1040                                         Types[j]->getType())) {
1041            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1042                 diag::err_assoc_compatible_types)
1043              << Types[j]->getTypeLoc().getSourceRange()
1044              << Types[j]->getType()
1045              << Types[i]->getType();
1046            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1047                 diag::note_compat_assoc)
1048              << Types[i]->getTypeLoc().getSourceRange()
1049              << Types[i]->getType();
1050            TypeErrorFound = true;
1051          }
1052      }
1053    }
1054  }
1055  if (TypeErrorFound)
1056    return ExprError();
1057
1058  // If we determined that the generic selection is result-dependent, don't
1059  // try to compute the result expression.
1060  if (IsResultDependent)
1061    return Owned(new (Context) GenericSelectionExpr(
1062                   Context, KeyLoc, ControllingExpr,
1063                   Types, Exprs, NumAssocs, DefaultLoc,
1064                   RParenLoc, ContainsUnexpandedParameterPack));
1065
1066  SmallVector<unsigned, 1> CompatIndices;
1067  unsigned DefaultIndex = -1U;
1068  for (unsigned i = 0; i < NumAssocs; ++i) {
1069    if (!Types[i])
1070      DefaultIndex = i;
1071    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1072                                        Types[i]->getType()))
1073      CompatIndices.push_back(i);
1074  }
1075
1076  // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
1077  // type compatible with at most one of the types named in its generic
1078  // association list."
1079  if (CompatIndices.size() > 1) {
1080    // We strip parens here because the controlling expression is typically
1081    // parenthesized in macro definitions.
1082    ControllingExpr = ControllingExpr->IgnoreParens();
1083    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1084      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1085      << (unsigned) CompatIndices.size();
1086    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1087         E = CompatIndices.end(); I != E; ++I) {
1088      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1089           diag::note_compat_assoc)
1090        << Types[*I]->getTypeLoc().getSourceRange()
1091        << Types[*I]->getType();
1092    }
1093    return ExprError();
1094  }
1095
1096  // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
1097  // its controlling expression shall have type compatible with exactly one of
1098  // the types named in its generic association list."
1099  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1100    // We strip parens here because the controlling expression is typically
1101    // parenthesized in macro definitions.
1102    ControllingExpr = ControllingExpr->IgnoreParens();
1103    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1104      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1105    return ExprError();
1106  }
1107
1108  // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
1109  // type name that is compatible with the type of the controlling expression,
1110  // then the result expression of the generic selection is the expression
1111  // in that generic association. Otherwise, the result expression of the
1112  // generic selection is the expression in the default generic association."
1113  unsigned ResultIndex =
1114    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1115
1116  return Owned(new (Context) GenericSelectionExpr(
1117                 Context, KeyLoc, ControllingExpr,
1118                 Types, Exprs, NumAssocs, DefaultLoc,
1119                 RParenLoc, ContainsUnexpandedParameterPack,
1120                 ResultIndex));
1121}
1122
1123/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1124/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1125/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1126/// multiple tokens.  However, the common case is that StringToks points to one
1127/// string.
1128///
1129ExprResult
1130Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
1131  assert(NumStringToks && "Must have at least one string!");
1132
1133  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1134  if (Literal.hadError)
1135    return ExprError();
1136
1137  SmallVector<SourceLocation, 4> StringTokLocs;
1138  for (unsigned i = 0; i != NumStringToks; ++i)
1139    StringTokLocs.push_back(StringToks[i].getLocation());
1140
1141  QualType StrTy = Context.CharTy;
1142  if (Literal.isWide())
1143    StrTy = Context.getWCharType();
1144  else if (Literal.isUTF16())
1145    StrTy = Context.Char16Ty;
1146  else if (Literal.isUTF32())
1147    StrTy = Context.Char32Ty;
1148  else if (Literal.isPascal())
1149    StrTy = Context.UnsignedCharTy;
1150
1151  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1152  if (Literal.isWide())
1153    Kind = StringLiteral::Wide;
1154  else if (Literal.isUTF8())
1155    Kind = StringLiteral::UTF8;
1156  else if (Literal.isUTF16())
1157    Kind = StringLiteral::UTF16;
1158  else if (Literal.isUTF32())
1159    Kind = StringLiteral::UTF32;
1160
1161  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1162  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
1163    StrTy.addConst();
1164
1165  // Get an array type for the string, according to C99 6.4.5.  This includes
1166  // the nul terminator character as well as the string length for pascal
1167  // strings.
1168  StrTy = Context.getConstantArrayType(StrTy,
1169                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1170                                       ArrayType::Normal, 0);
1171
1172  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1173  return Owned(StringLiteral::Create(Context, Literal.GetString(),
1174                                     Kind, Literal.Pascal, StrTy,
1175                                     &StringTokLocs[0],
1176                                     StringTokLocs.size()));
1177}
1178
1179enum CaptureResult {
1180  /// No capture is required.
1181  CR_NoCapture,
1182
1183  /// A capture is required.
1184  CR_Capture,
1185
1186  /// A by-ref capture is required.
1187  CR_CaptureByRef,
1188
1189  /// An error occurred when trying to capture the given variable.
1190  CR_Error
1191};
1192
1193/// Diagnose an uncapturable value reference.
1194///
1195/// \param var - the variable referenced
1196/// \param DC - the context which we couldn't capture through
1197static CaptureResult
1198diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
1199                                   VarDecl *var, DeclContext *DC) {
1200  switch (S.ExprEvalContexts.back().Context) {
1201  case Sema::Unevaluated:
1202  case Sema::ConstantEvaluated:
1203    // The argument will never be evaluated at runtime, so don't complain.
1204    return CR_NoCapture;
1205
1206  case Sema::PotentiallyEvaluated:
1207  case Sema::PotentiallyEvaluatedIfUsed:
1208    break;
1209
1210  case Sema::PotentiallyPotentiallyEvaluated:
1211    // FIXME: delay these!
1212    break;
1213  }
1214
1215  // Don't diagnose about capture if we're not actually in code right
1216  // now; in general, there are more appropriate places that will
1217  // diagnose this.
1218  if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
1219
1220  // Certain madnesses can happen with parameter declarations, which
1221  // we want to ignore.
1222  if (isa<ParmVarDecl>(var)) {
1223    // - If the parameter still belongs to the translation unit, then
1224    //   we're actually just using one parameter in the declaration of
1225    //   the next.  This is useful in e.g. VLAs.
1226    if (isa<TranslationUnitDecl>(var->getDeclContext()))
1227      return CR_NoCapture;
1228
1229    // - This particular madness can happen in ill-formed default
1230    //   arguments; claim it's okay and let downstream code handle it.
1231    if (S.CurContext == var->getDeclContext()->getParent())
1232      return CR_NoCapture;
1233  }
1234
1235  DeclarationName functionName;
1236  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
1237    functionName = fn->getDeclName();
1238  // FIXME: variable from enclosing block that we couldn't capture from!
1239
1240  S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
1241    << var->getIdentifier() << functionName;
1242  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
1243    << var->getIdentifier();
1244
1245  return CR_Error;
1246}
1247
1248/// There is a well-formed capture at a particular scope level;
1249/// propagate it through all the nested blocks.
1250static CaptureResult propagateCapture(Sema &S, unsigned ValidScopeIndex,
1251                                      const BlockDecl::Capture &Capture) {
1252  VarDecl *var = Capture.getVariable();
1253
1254  // Update all the inner blocks with the capture information.
1255  for (unsigned i = ValidScopeIndex + 1, e = S.FunctionScopes.size();
1256         i != e; ++i) {
1257    BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
1258    innerBlock->Captures.push_back(
1259      BlockDecl::Capture(Capture.getVariable(), Capture.isByRef(),
1260                         /*nested*/ true, Capture.getCopyExpr()));
1261    innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
1262  }
1263
1264  return Capture.isByRef() ? CR_CaptureByRef : CR_Capture;
1265}
1266
1267/// shouldCaptureValueReference - Determine if a reference to the
1268/// given value in the current context requires a variable capture.
1269///
1270/// This also keeps the captures set in the BlockScopeInfo records
1271/// up-to-date.
1272static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
1273                                                 ValueDecl *Value) {
1274  // Only variables ever require capture.
1275  VarDecl *var = dyn_cast<VarDecl>(Value);
1276  if (!var) return CR_NoCapture;
1277
1278  // Fast path: variables from the current context never require capture.
1279  DeclContext *DC = S.CurContext;
1280  if (var->getDeclContext() == DC) return CR_NoCapture;
1281
1282  // Only variables with local storage require capture.
1283  // FIXME: What about 'const' variables in C++?
1284  if (!var->hasLocalStorage()) return CR_NoCapture;
1285
1286  // Otherwise, we need to capture.
1287
1288  unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
1289  do {
1290    // Only blocks (and eventually C++0x closures) can capture; other
1291    // scopes don't work.
1292    if (!isa<BlockDecl>(DC))
1293      return diagnoseUncapturableValueReference(S, loc, var, DC);
1294
1295    BlockScopeInfo *blockScope =
1296      cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1297    assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
1298
1299    // Check whether we've already captured it in this block.  If so,
1300    // we're done.
1301    if (unsigned indexPlus1 = blockScope->CaptureMap[var])
1302      return propagateCapture(S, functionScopesIndex,
1303                              blockScope->Captures[indexPlus1 - 1]);
1304
1305    functionScopesIndex--;
1306    DC = cast<BlockDecl>(DC)->getDeclContext();
1307  } while (var->getDeclContext() != DC);
1308
1309  // Okay, we descended all the way to the block that defines the variable.
1310  // Actually try to capture it.
1311  QualType type = var->getType();
1312
1313  // Prohibit variably-modified types.
1314  if (type->isVariablyModifiedType()) {
1315    S.Diag(loc, diag::err_ref_vm_type);
1316    S.Diag(var->getLocation(), diag::note_declared_at);
1317    return CR_Error;
1318  }
1319
1320  // Prohibit arrays, even in __block variables, but not references to
1321  // them.
1322  if (type->isArrayType()) {
1323    S.Diag(loc, diag::err_ref_array_type);
1324    S.Diag(var->getLocation(), diag::note_declared_at);
1325    return CR_Error;
1326  }
1327
1328  S.MarkDeclarationReferenced(loc, var);
1329
1330  // The BlocksAttr indicates the variable is bound by-reference.
1331  bool byRef = var->hasAttr<BlocksAttr>();
1332
1333  // Build a copy expression.
1334  Expr *copyExpr = 0;
1335  const RecordType *rtype;
1336  if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
1337      (rtype = type->getAs<RecordType>())) {
1338
1339    // The capture logic needs the destructor, so make sure we mark it.
1340    // Usually this is unnecessary because most local variables have
1341    // their destructors marked at declaration time, but parameters are
1342    // an exception because it's technically only the call site that
1343    // actually requires the destructor.
1344    if (isa<ParmVarDecl>(var))
1345      S.FinalizeVarWithDestructor(var, rtype);
1346
1347    // According to the blocks spec, the capture of a variable from
1348    // the stack requires a const copy constructor.  This is not true
1349    // of the copy/move done to move a __block variable to the heap.
1350    type.addConst();
1351
1352    Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
1353    ExprResult result =
1354      S.PerformCopyInitialization(
1355                      InitializedEntity::InitializeBlock(var->getLocation(),
1356                                                         type, false),
1357                                  loc, S.Owned(declRef));
1358
1359    // Build a full-expression copy expression if initialization
1360    // succeeded and used a non-trivial constructor.  Recover from
1361    // errors by pretending that the copy isn't necessary.
1362    if (!result.isInvalid() &&
1363        !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
1364      result = S.MaybeCreateExprWithCleanups(result);
1365      copyExpr = result.take();
1366    }
1367  }
1368
1369  // We're currently at the declarer; go back to the closure.
1370  functionScopesIndex++;
1371  BlockScopeInfo *blockScope =
1372    cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
1373
1374  // Build a valid capture in this scope.
1375  blockScope->Captures.push_back(
1376                 BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
1377  blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
1378
1379  // Propagate that to inner captures if necessary.
1380  return propagateCapture(S, functionScopesIndex,
1381                          blockScope->Captures.back());
1382}
1383
1384static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *VD,
1385                                        const DeclarationNameInfo &NameInfo,
1386                                        bool ByRef) {
1387  assert(isa<VarDecl>(VD) && "capturing non-variable");
1388
1389  VarDecl *var = cast<VarDecl>(VD);
1390  assert(var->hasLocalStorage() && "capturing non-local");
1391  assert(ByRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
1392
1393  QualType exprType = var->getType().getNonReferenceType();
1394
1395  BlockDeclRefExpr *BDRE;
1396  if (!ByRef) {
1397    // The variable will be bound by copy; make it const within the
1398    // closure, but record that this was done in the expression.
1399    bool constAdded = !exprType.isConstQualified();
1400    exprType.addConst();
1401
1402    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1403                                            NameInfo.getLoc(), false,
1404                                            constAdded);
1405  } else {
1406    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
1407                                            NameInfo.getLoc(), true);
1408  }
1409
1410  return S.Owned(BDRE);
1411}
1412
1413ExprResult
1414Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1415                       SourceLocation Loc,
1416                       const CXXScopeSpec *SS) {
1417  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1418  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1419}
1420
1421/// BuildDeclRefExpr - Build an expression that references a
1422/// declaration that does not require a closure capture.
1423ExprResult
1424Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1425                       const DeclarationNameInfo &NameInfo,
1426                       const CXXScopeSpec *SS) {
1427  if (getLangOptions().CUDA)
1428    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1429      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1430        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1431                           CalleeTarget = IdentifyCUDATarget(Callee);
1432        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1433          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1434            << CalleeTarget << D->getIdentifier() << CallerTarget;
1435          Diag(D->getLocation(), diag::note_previous_decl)
1436            << D->getIdentifier();
1437          return ExprError();
1438        }
1439      }
1440
1441  MarkDeclarationReferenced(NameInfo.getLoc(), D);
1442
1443  Expr *E = DeclRefExpr::Create(Context,
1444                                SS? SS->getWithLocInContext(Context)
1445                                  : NestedNameSpecifierLoc(),
1446                                D, NameInfo, Ty, VK);
1447
1448  // Just in case we're building an illegal pointer-to-member.
1449  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1450  if (FD && FD->isBitField())
1451    E->setObjectKind(OK_BitField);
1452
1453  return Owned(E);
1454}
1455
1456/// Decomposes the given name into a DeclarationNameInfo, its location, and
1457/// possibly a list of template arguments.
1458///
1459/// If this produces template arguments, it is permitted to call
1460/// DecomposeTemplateName.
1461///
1462/// This actually loses a lot of source location information for
1463/// non-standard name kinds; we should consider preserving that in
1464/// some way.
1465void
1466Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1467                             TemplateArgumentListInfo &Buffer,
1468                             DeclarationNameInfo &NameInfo,
1469                             const TemplateArgumentListInfo *&TemplateArgs) {
1470  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1471    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1472    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1473
1474    ASTTemplateArgsPtr TemplateArgsPtr(*this,
1475                                       Id.TemplateId->getTemplateArgs(),
1476                                       Id.TemplateId->NumArgs);
1477    translateTemplateArguments(TemplateArgsPtr, Buffer);
1478    TemplateArgsPtr.release();
1479
1480    TemplateName TName = Id.TemplateId->Template.get();
1481    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1482    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1483    TemplateArgs = &Buffer;
1484  } else {
1485    NameInfo = GetNameFromUnqualifiedId(Id);
1486    TemplateArgs = 0;
1487  }
1488}
1489
1490/// Diagnose an empty lookup.
1491///
1492/// \return false if new lookup candidates were found
1493bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1494                               CorrectTypoContext CTC,
1495                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1496                               Expr **Args, unsigned NumArgs) {
1497  DeclarationName Name = R.getLookupName();
1498
1499  unsigned diagnostic = diag::err_undeclared_var_use;
1500  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1501  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1502      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1503      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1504    diagnostic = diag::err_undeclared_use;
1505    diagnostic_suggest = diag::err_undeclared_use_suggest;
1506  }
1507
1508  // If the original lookup was an unqualified lookup, fake an
1509  // unqualified lookup.  This is useful when (for example) the
1510  // original lookup would not have found something because it was a
1511  // dependent name.
1512  DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1513  while (DC) {
1514    if (isa<CXXRecordDecl>(DC)) {
1515      LookupQualifiedName(R, DC);
1516
1517      if (!R.empty()) {
1518        // Don't give errors about ambiguities in this lookup.
1519        R.suppressDiagnostics();
1520
1521        // During a default argument instantiation the CurContext points
1522        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1523        // function parameter list, hence add an explicit check.
1524        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1525                              ActiveTemplateInstantiations.back().Kind ==
1526            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1527        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1528        bool isInstance = CurMethod &&
1529                          CurMethod->isInstance() &&
1530                          DC == CurMethod->getParent() && !isDefaultArgument;
1531
1532
1533        // Give a code modification hint to insert 'this->'.
1534        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1535        // Actually quite difficult!
1536        if (isInstance) {
1537          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1538              CallsUndergoingInstantiation.back()->getCallee());
1539          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1540              CurMethod->getInstantiatedFromMemberFunction());
1541          if (DepMethod) {
1542            if (getLangOptions().MicrosoftMode)
1543              diagnostic = diag::warn_found_via_dependent_bases_lookup;
1544            Diag(R.getNameLoc(), diagnostic) << Name
1545              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1546            QualType DepThisType = DepMethod->getThisType(Context);
1547            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1548                                       R.getNameLoc(), DepThisType, false);
1549            TemplateArgumentListInfo TList;
1550            if (ULE->hasExplicitTemplateArgs())
1551              ULE->copyTemplateArgumentsInto(TList);
1552
1553            CXXScopeSpec SS;
1554            SS.Adopt(ULE->getQualifierLoc());
1555            CXXDependentScopeMemberExpr *DepExpr =
1556                CXXDependentScopeMemberExpr::Create(
1557                    Context, DepThis, DepThisType, true, SourceLocation(),
1558                    SS.getWithLocInContext(Context), NULL,
1559                    R.getLookupNameInfo(),
1560                    ULE->hasExplicitTemplateArgs() ? &TList : 0);
1561            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1562          } else {
1563            // FIXME: we should be able to handle this case too. It is correct
1564            // to add this-> here. This is a workaround for PR7947.
1565            Diag(R.getNameLoc(), diagnostic) << Name;
1566          }
1567        } else {
1568          if (getLangOptions().MicrosoftMode)
1569            diagnostic = diag::warn_found_via_dependent_bases_lookup;
1570          Diag(R.getNameLoc(), diagnostic) << Name;
1571        }
1572
1573        // Do we really want to note all of these?
1574        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1575          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1576
1577        // Return true if we are inside a default argument instantiation
1578        // and the found name refers to an instance member function, otherwise
1579        // the function calling DiagnoseEmptyLookup will try to create an
1580        // implicit member call and this is wrong for default argument.
1581        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1582          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1583          return true;
1584        }
1585
1586        // Tell the callee to try to recover.
1587        return false;
1588      }
1589
1590      R.clear();
1591    }
1592
1593    // In Microsoft mode, if we are performing lookup from within a friend
1594    // function definition declared at class scope then we must set
1595    // DC to the lexical parent to be able to search into the parent
1596    // class.
1597    if (getLangOptions().MicrosoftMode && isa<FunctionDecl>(DC) &&
1598        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1599        DC->getLexicalParent()->isRecord())
1600      DC = DC->getLexicalParent();
1601    else
1602      DC = DC->getParent();
1603  }
1604
1605  // We didn't find anything, so try to correct for a typo.
1606  TypoCorrection Corrected;
1607  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1608                                    S, &SS, NULL, false, CTC))) {
1609    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
1610    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
1611    R.setLookupName(Corrected.getCorrection());
1612
1613    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1614      if (Corrected.isOverloaded()) {
1615        OverloadCandidateSet OCS(R.getNameLoc());
1616        OverloadCandidateSet::iterator Best;
1617        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1618                                        CDEnd = Corrected.end();
1619             CD != CDEnd; ++CD) {
1620          if (FunctionTemplateDecl *FTD =
1621                   dyn_cast<FunctionTemplateDecl>(*CD))
1622            AddTemplateOverloadCandidate(
1623                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1624                Args, NumArgs, OCS);
1625          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1626            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1627              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1628                                   Args, NumArgs, OCS);
1629        }
1630        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1631          case OR_Success:
1632            ND = Best->Function;
1633            break;
1634          default:
1635            break;
1636        }
1637      }
1638      R.addDecl(ND);
1639      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1640        if (SS.isEmpty())
1641          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1642            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1643        else
1644          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1645            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1646            << SS.getRange()
1647            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1648        if (ND)
1649          Diag(ND->getLocation(), diag::note_previous_decl)
1650            << CorrectedQuotedStr;
1651
1652        // Tell the callee to try to recover.
1653        return false;
1654      }
1655
1656      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1657        // FIXME: If we ended up with a typo for a type name or
1658        // Objective-C class name, we're in trouble because the parser
1659        // is in the wrong place to recover. Suggest the typo
1660        // correction, but don't make it a fix-it since we're not going
1661        // to recover well anyway.
1662        if (SS.isEmpty())
1663          Diag(R.getNameLoc(), diagnostic_suggest)
1664            << Name << CorrectedQuotedStr;
1665        else
1666          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1667            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1668            << SS.getRange();
1669
1670        // Don't try to recover; it won't work.
1671        return true;
1672      }
1673    } else {
1674      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1675      // because we aren't able to recover.
1676      if (SS.isEmpty())
1677        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1678      else
1679        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1680        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1681        << SS.getRange();
1682      return true;
1683    }
1684  }
1685  R.clear();
1686
1687  // Emit a special diagnostic for failed member lookups.
1688  // FIXME: computing the declaration context might fail here (?)
1689  if (!SS.isEmpty()) {
1690    Diag(R.getNameLoc(), diag::err_no_member)
1691      << Name << computeDeclContext(SS, false)
1692      << SS.getRange();
1693    return true;
1694  }
1695
1696  // Give up, we can't recover.
1697  Diag(R.getNameLoc(), diagnostic) << Name;
1698  return true;
1699}
1700
1701ExprResult Sema::ActOnIdExpression(Scope *S,
1702                                   CXXScopeSpec &SS,
1703                                   UnqualifiedId &Id,
1704                                   bool HasTrailingLParen,
1705                                   bool IsAddressOfOperand) {
1706  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1707         "cannot be direct & operand and have a trailing lparen");
1708
1709  if (SS.isInvalid())
1710    return ExprError();
1711
1712  TemplateArgumentListInfo TemplateArgsBuffer;
1713
1714  // Decompose the UnqualifiedId into the following data.
1715  DeclarationNameInfo NameInfo;
1716  const TemplateArgumentListInfo *TemplateArgs;
1717  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1718
1719  DeclarationName Name = NameInfo.getName();
1720  IdentifierInfo *II = Name.getAsIdentifierInfo();
1721  SourceLocation NameLoc = NameInfo.getLoc();
1722
1723  // C++ [temp.dep.expr]p3:
1724  //   An id-expression is type-dependent if it contains:
1725  //     -- an identifier that was declared with a dependent type,
1726  //        (note: handled after lookup)
1727  //     -- a template-id that is dependent,
1728  //        (note: handled in BuildTemplateIdExpr)
1729  //     -- a conversion-function-id that specifies a dependent type,
1730  //     -- a nested-name-specifier that contains a class-name that
1731  //        names a dependent type.
1732  // Determine whether this is a member of an unknown specialization;
1733  // we need to handle these differently.
1734  bool DependentID = false;
1735  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1736      Name.getCXXNameType()->isDependentType()) {
1737    DependentID = true;
1738  } else if (SS.isSet()) {
1739    if (DeclContext *DC = computeDeclContext(SS, false)) {
1740      if (RequireCompleteDeclContext(SS, DC))
1741        return ExprError();
1742    } else {
1743      DependentID = true;
1744    }
1745  }
1746
1747  if (DependentID)
1748    return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
1749                                      TemplateArgs);
1750
1751  bool IvarLookupFollowUp = false;
1752  // Perform the required lookup.
1753  LookupResult R(*this, NameInfo,
1754                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1755                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1756  if (TemplateArgs) {
1757    // Lookup the template name again to correctly establish the context in
1758    // which it was found. This is really unfortunate as we already did the
1759    // lookup to determine that it was a template name in the first place. If
1760    // this becomes a performance hit, we can work harder to preserve those
1761    // results until we get here but it's likely not worth it.
1762    bool MemberOfUnknownSpecialization;
1763    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1764                       MemberOfUnknownSpecialization);
1765
1766    if (MemberOfUnknownSpecialization ||
1767        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1768      return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
1769                                        TemplateArgs);
1770  } else {
1771    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1772    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1773
1774    // If the result might be in a dependent base class, this is a dependent
1775    // id-expression.
1776    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1777      return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
1778                                        TemplateArgs);
1779
1780    // If this reference is in an Objective-C method, then we need to do
1781    // some special Objective-C lookup, too.
1782    if (IvarLookupFollowUp) {
1783      ExprResult E(LookupInObjCMethod(R, S, II, true));
1784      if (E.isInvalid())
1785        return ExprError();
1786
1787      if (Expr *Ex = E.takeAs<Expr>())
1788        return Owned(Ex);
1789
1790      // for further use, this must be set to false if in class method.
1791      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1792    }
1793  }
1794
1795  if (R.isAmbiguous())
1796    return ExprError();
1797
1798  // Determine whether this name might be a candidate for
1799  // argument-dependent lookup.
1800  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1801
1802  if (R.empty() && !ADL) {
1803    // Otherwise, this could be an implicitly declared function reference (legal
1804    // in C90, extension in C99, forbidden in C++).
1805    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1806      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1807      if (D) R.addDecl(D);
1808    }
1809
1810    // If this name wasn't predeclared and if this is not a function
1811    // call, diagnose the problem.
1812    if (R.empty()) {
1813
1814      // In Microsoft mode, if we are inside a template class member function
1815      // and we can't resolve an identifier then assume the identifier is type
1816      // dependent. The goal is to postpone name lookup to instantiation time
1817      // to be able to search into type dependent base classes.
1818      if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() &&
1819          isa<CXXMethodDecl>(CurContext))
1820        return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
1821                                          TemplateArgs);
1822
1823      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1824        return ExprError();
1825
1826      assert(!R.empty() &&
1827             "DiagnoseEmptyLookup returned false but added no results");
1828
1829      // If we found an Objective-C instance variable, let
1830      // LookupInObjCMethod build the appropriate expression to
1831      // reference the ivar.
1832      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1833        R.clear();
1834        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1835        // In a hopelessly buggy code, Objective-C instance variable
1836        // lookup fails and no expression will be built to reference it.
1837        if (!E.isInvalid() && !E.get())
1838          return ExprError();
1839        return move(E);
1840      }
1841    }
1842  }
1843
1844  // This is guaranteed from this point on.
1845  assert(!R.empty() || ADL);
1846
1847  // Check whether this might be a C++ implicit instance member access.
1848  // C++ [class.mfct.non-static]p3:
1849  //   When an id-expression that is not part of a class member access
1850  //   syntax and not used to form a pointer to member is used in the
1851  //   body of a non-static member function of class X, if name lookup
1852  //   resolves the name in the id-expression to a non-static non-type
1853  //   member of some class C, the id-expression is transformed into a
1854  //   class member access expression using (*this) as the
1855  //   postfix-expression to the left of the . operator.
1856  //
1857  // But we don't actually need to do this for '&' operands if R
1858  // resolved to a function or overloaded function set, because the
1859  // expression is ill-formed if it actually works out to be a
1860  // non-static member function:
1861  //
1862  // C++ [expr.ref]p4:
1863  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1864  //   [t]he expression can be used only as the left-hand operand of a
1865  //   member function call.
1866  //
1867  // There are other safeguards against such uses, but it's important
1868  // to get this right here so that we don't end up making a
1869  // spuriously dependent expression if we're inside a dependent
1870  // instance method.
1871  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1872    bool MightBeImplicitMember;
1873    if (!IsAddressOfOperand)
1874      MightBeImplicitMember = true;
1875    else if (!SS.isEmpty())
1876      MightBeImplicitMember = false;
1877    else if (R.isOverloadedResult())
1878      MightBeImplicitMember = false;
1879    else if (R.isUnresolvableResult())
1880      MightBeImplicitMember = true;
1881    else
1882      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1883                              isa<IndirectFieldDecl>(R.getFoundDecl());
1884
1885    if (MightBeImplicitMember)
1886      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1887  }
1888
1889  if (TemplateArgs)
1890    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1891
1892  return BuildDeclarationNameExpr(SS, R, ADL);
1893}
1894
1895/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1896/// declaration name, generally during template instantiation.
1897/// There's a large number of things which don't need to be done along
1898/// this path.
1899ExprResult
1900Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1901                                        const DeclarationNameInfo &NameInfo) {
1902  DeclContext *DC;
1903  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1904    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1905
1906  if (RequireCompleteDeclContext(SS, DC))
1907    return ExprError();
1908
1909  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1910  LookupQualifiedName(R, DC);
1911
1912  if (R.isAmbiguous())
1913    return ExprError();
1914
1915  if (R.empty()) {
1916    Diag(NameInfo.getLoc(), diag::err_no_member)
1917      << NameInfo.getName() << DC << SS.getRange();
1918    return ExprError();
1919  }
1920
1921  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1922}
1923
1924/// LookupInObjCMethod - The parser has read a name in, and Sema has
1925/// detected that we're currently inside an ObjC method.  Perform some
1926/// additional lookup.
1927///
1928/// Ideally, most of this would be done by lookup, but there's
1929/// actually quite a lot of extra work involved.
1930///
1931/// Returns a null sentinel to indicate trivial success.
1932ExprResult
1933Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1934                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1935  SourceLocation Loc = Lookup.getNameLoc();
1936  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1937
1938  // There are two cases to handle here.  1) scoped lookup could have failed,
1939  // in which case we should look for an ivar.  2) scoped lookup could have
1940  // found a decl, but that decl is outside the current instance method (i.e.
1941  // a global variable).  In these two cases, we do a lookup for an ivar with
1942  // this name, if the lookup sucedes, we replace it our current decl.
1943
1944  // If we're in a class method, we don't normally want to look for
1945  // ivars.  But if we don't find anything else, and there's an
1946  // ivar, that's an error.
1947  bool IsClassMethod = CurMethod->isClassMethod();
1948
1949  bool LookForIvars;
1950  if (Lookup.empty())
1951    LookForIvars = true;
1952  else if (IsClassMethod)
1953    LookForIvars = false;
1954  else
1955    LookForIvars = (Lookup.isSingleResult() &&
1956                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1957  ObjCInterfaceDecl *IFace = 0;
1958  if (LookForIvars) {
1959    IFace = CurMethod->getClassInterface();
1960    ObjCInterfaceDecl *ClassDeclared;
1961    ObjCIvarDecl *IV = 0;
1962    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1963      // Diagnose using an ivar in a class method.
1964      if (IsClassMethod)
1965        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1966                         << IV->getDeclName());
1967
1968      // If we're referencing an invalid decl, just return this as a silent
1969      // error node.  The error diagnostic was already emitted on the decl.
1970      if (IV->isInvalidDecl())
1971        return ExprError();
1972
1973      // Check if referencing a field with __attribute__((deprecated)).
1974      if (DiagnoseUseOfDecl(IV, Loc))
1975        return ExprError();
1976
1977      // Diagnose the use of an ivar outside of the declaring class.
1978      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1979          !declaresSameEntity(ClassDeclared, IFace))
1980        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1981
1982      // FIXME: This should use a new expr for a direct reference, don't
1983      // turn this into Self->ivar, just return a BareIVarExpr or something.
1984      IdentifierInfo &II = Context.Idents.get("self");
1985      UnqualifiedId SelfName;
1986      SelfName.setIdentifier(&II, SourceLocation());
1987      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1988      CXXScopeSpec SelfScopeSpec;
1989      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1990                                              SelfName, false, false);
1991      if (SelfExpr.isInvalid())
1992        return ExprError();
1993
1994      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1995      if (SelfExpr.isInvalid())
1996        return ExprError();
1997
1998      MarkDeclarationReferenced(Loc, IV);
1999      return Owned(new (Context)
2000                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
2001                                   SelfExpr.take(), true, true));
2002    }
2003  } else if (CurMethod->isInstanceMethod()) {
2004    // We should warn if a local variable hides an ivar.
2005    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2006      ObjCInterfaceDecl *ClassDeclared;
2007      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2008        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2009            declaresSameEntity(IFace, ClassDeclared))
2010          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2011      }
2012    }
2013  } else if (Lookup.isSingleResult() &&
2014             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2015    // If accessing a stand-alone ivar in a class method, this is an error.
2016    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2017      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2018                       << IV->getDeclName());
2019  }
2020
2021  if (Lookup.empty() && II && AllowBuiltinCreation) {
2022    // FIXME. Consolidate this with similar code in LookupName.
2023    if (unsigned BuiltinID = II->getBuiltinID()) {
2024      if (!(getLangOptions().CPlusPlus &&
2025            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2026        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2027                                           S, Lookup.isForRedeclaration(),
2028                                           Lookup.getNameLoc());
2029        if (D) Lookup.addDecl(D);
2030      }
2031    }
2032  }
2033  // Sentinel value saying that we didn't do anything special.
2034  return Owned((Expr*) 0);
2035}
2036
2037/// \brief Cast a base object to a member's actual type.
2038///
2039/// Logically this happens in three phases:
2040///
2041/// * First we cast from the base type to the naming class.
2042///   The naming class is the class into which we were looking
2043///   when we found the member;  it's the qualifier type if a
2044///   qualifier was provided, and otherwise it's the base type.
2045///
2046/// * Next we cast from the naming class to the declaring class.
2047///   If the member we found was brought into a class's scope by
2048///   a using declaration, this is that class;  otherwise it's
2049///   the class declaring the member.
2050///
2051/// * Finally we cast from the declaring class to the "true"
2052///   declaring class of the member.  This conversion does not
2053///   obey access control.
2054ExprResult
2055Sema::PerformObjectMemberConversion(Expr *From,
2056                                    NestedNameSpecifier *Qualifier,
2057                                    NamedDecl *FoundDecl,
2058                                    NamedDecl *Member) {
2059  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2060  if (!RD)
2061    return Owned(From);
2062
2063  QualType DestRecordType;
2064  QualType DestType;
2065  QualType FromRecordType;
2066  QualType FromType = From->getType();
2067  bool PointerConversions = false;
2068  if (isa<FieldDecl>(Member)) {
2069    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2070
2071    if (FromType->getAs<PointerType>()) {
2072      DestType = Context.getPointerType(DestRecordType);
2073      FromRecordType = FromType->getPointeeType();
2074      PointerConversions = true;
2075    } else {
2076      DestType = DestRecordType;
2077      FromRecordType = FromType;
2078    }
2079  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2080    if (Method->isStatic())
2081      return Owned(From);
2082
2083    DestType = Method->getThisType(Context);
2084    DestRecordType = DestType->getPointeeType();
2085
2086    if (FromType->getAs<PointerType>()) {
2087      FromRecordType = FromType->getPointeeType();
2088      PointerConversions = true;
2089    } else {
2090      FromRecordType = FromType;
2091      DestType = DestRecordType;
2092    }
2093  } else {
2094    // No conversion necessary.
2095    return Owned(From);
2096  }
2097
2098  if (DestType->isDependentType() || FromType->isDependentType())
2099    return Owned(From);
2100
2101  // If the unqualified types are the same, no conversion is necessary.
2102  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2103    return Owned(From);
2104
2105  SourceRange FromRange = From->getSourceRange();
2106  SourceLocation FromLoc = FromRange.getBegin();
2107
2108  ExprValueKind VK = From->getValueKind();
2109
2110  // C++ [class.member.lookup]p8:
2111  //   [...] Ambiguities can often be resolved by qualifying a name with its
2112  //   class name.
2113  //
2114  // If the member was a qualified name and the qualified referred to a
2115  // specific base subobject type, we'll cast to that intermediate type
2116  // first and then to the object in which the member is declared. That allows
2117  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2118  //
2119  //   class Base { public: int x; };
2120  //   class Derived1 : public Base { };
2121  //   class Derived2 : public Base { };
2122  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2123  //
2124  //   void VeryDerived::f() {
2125  //     x = 17; // error: ambiguous base subobjects
2126  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2127  //   }
2128  if (Qualifier) {
2129    QualType QType = QualType(Qualifier->getAsType(), 0);
2130    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2131    assert(QType->isRecordType() && "lookup done with non-record type");
2132
2133    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2134
2135    // In C++98, the qualifier type doesn't actually have to be a base
2136    // type of the object type, in which case we just ignore it.
2137    // Otherwise build the appropriate casts.
2138    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2139      CXXCastPath BasePath;
2140      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2141                                       FromLoc, FromRange, &BasePath))
2142        return ExprError();
2143
2144      if (PointerConversions)
2145        QType = Context.getPointerType(QType);
2146      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2147                               VK, &BasePath).take();
2148
2149      FromType = QType;
2150      FromRecordType = QRecordType;
2151
2152      // If the qualifier type was the same as the destination type,
2153      // we're done.
2154      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2155        return Owned(From);
2156    }
2157  }
2158
2159  bool IgnoreAccess = false;
2160
2161  // If we actually found the member through a using declaration, cast
2162  // down to the using declaration's type.
2163  //
2164  // Pointer equality is fine here because only one declaration of a
2165  // class ever has member declarations.
2166  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2167    assert(isa<UsingShadowDecl>(FoundDecl));
2168    QualType URecordType = Context.getTypeDeclType(
2169                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2170
2171    // We only need to do this if the naming-class to declaring-class
2172    // conversion is non-trivial.
2173    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2174      assert(IsDerivedFrom(FromRecordType, URecordType));
2175      CXXCastPath BasePath;
2176      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2177                                       FromLoc, FromRange, &BasePath))
2178        return ExprError();
2179
2180      QualType UType = URecordType;
2181      if (PointerConversions)
2182        UType = Context.getPointerType(UType);
2183      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2184                               VK, &BasePath).take();
2185      FromType = UType;
2186      FromRecordType = URecordType;
2187    }
2188
2189    // We don't do access control for the conversion from the
2190    // declaring class to the true declaring class.
2191    IgnoreAccess = true;
2192  }
2193
2194  CXXCastPath BasePath;
2195  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2196                                   FromLoc, FromRange, &BasePath,
2197                                   IgnoreAccess))
2198    return ExprError();
2199
2200  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2201                           VK, &BasePath);
2202}
2203
2204bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2205                                      const LookupResult &R,
2206                                      bool HasTrailingLParen) {
2207  // Only when used directly as the postfix-expression of a call.
2208  if (!HasTrailingLParen)
2209    return false;
2210
2211  // Never if a scope specifier was provided.
2212  if (SS.isSet())
2213    return false;
2214
2215  // Only in C++ or ObjC++.
2216  if (!getLangOptions().CPlusPlus)
2217    return false;
2218
2219  // Turn off ADL when we find certain kinds of declarations during
2220  // normal lookup:
2221  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2222    NamedDecl *D = *I;
2223
2224    // C++0x [basic.lookup.argdep]p3:
2225    //     -- a declaration of a class member
2226    // Since using decls preserve this property, we check this on the
2227    // original decl.
2228    if (D->isCXXClassMember())
2229      return false;
2230
2231    // C++0x [basic.lookup.argdep]p3:
2232    //     -- a block-scope function declaration that is not a
2233    //        using-declaration
2234    // NOTE: we also trigger this for function templates (in fact, we
2235    // don't check the decl type at all, since all other decl types
2236    // turn off ADL anyway).
2237    if (isa<UsingShadowDecl>(D))
2238      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2239    else if (D->getDeclContext()->isFunctionOrMethod())
2240      return false;
2241
2242    // C++0x [basic.lookup.argdep]p3:
2243    //     -- a declaration that is neither a function or a function
2244    //        template
2245    // And also for builtin functions.
2246    if (isa<FunctionDecl>(D)) {
2247      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2248
2249      // But also builtin functions.
2250      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2251        return false;
2252    } else if (!isa<FunctionTemplateDecl>(D))
2253      return false;
2254  }
2255
2256  return true;
2257}
2258
2259
2260/// Diagnoses obvious problems with the use of the given declaration
2261/// as an expression.  This is only actually called for lookups that
2262/// were not overloaded, and it doesn't promise that the declaration
2263/// will in fact be used.
2264static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2265  if (isa<TypedefNameDecl>(D)) {
2266    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2267    return true;
2268  }
2269
2270  if (isa<ObjCInterfaceDecl>(D)) {
2271    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2272    return true;
2273  }
2274
2275  if (isa<NamespaceDecl>(D)) {
2276    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2277    return true;
2278  }
2279
2280  return false;
2281}
2282
2283ExprResult
2284Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2285                               LookupResult &R,
2286                               bool NeedsADL) {
2287  // If this is a single, fully-resolved result and we don't need ADL,
2288  // just build an ordinary singleton decl ref.
2289  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2290    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2291                                    R.getFoundDecl());
2292
2293  // We only need to check the declaration if there's exactly one
2294  // result, because in the overloaded case the results can only be
2295  // functions and function templates.
2296  if (R.isSingleResult() &&
2297      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2298    return ExprError();
2299
2300  // Otherwise, just build an unresolved lookup expression.  Suppress
2301  // any lookup-related diagnostics; we'll hash these out later, when
2302  // we've picked a target.
2303  R.suppressDiagnostics();
2304
2305  UnresolvedLookupExpr *ULE
2306    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2307                                   SS.getWithLocInContext(Context),
2308                                   R.getLookupNameInfo(),
2309                                   NeedsADL, R.isOverloadedResult(),
2310                                   R.begin(), R.end());
2311
2312  return Owned(ULE);
2313}
2314
2315/// \brief Complete semantic analysis for a reference to the given declaration.
2316ExprResult
2317Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2318                               const DeclarationNameInfo &NameInfo,
2319                               NamedDecl *D) {
2320  assert(D && "Cannot refer to a NULL declaration");
2321  assert(!isa<FunctionTemplateDecl>(D) &&
2322         "Cannot refer unambiguously to a function template");
2323
2324  SourceLocation Loc = NameInfo.getLoc();
2325  if (CheckDeclInExpr(*this, Loc, D))
2326    return ExprError();
2327
2328  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2329    // Specifically diagnose references to class templates that are missing
2330    // a template argument list.
2331    Diag(Loc, diag::err_template_decl_ref)
2332      << Template << SS.getRange();
2333    Diag(Template->getLocation(), diag::note_template_decl_here);
2334    return ExprError();
2335  }
2336
2337  // Make sure that we're referring to a value.
2338  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2339  if (!VD) {
2340    Diag(Loc, diag::err_ref_non_value)
2341      << D << SS.getRange();
2342    Diag(D->getLocation(), diag::note_declared_at);
2343    return ExprError();
2344  }
2345
2346  // Check whether this declaration can be used. Note that we suppress
2347  // this check when we're going to perform argument-dependent lookup
2348  // on this function name, because this might not be the function
2349  // that overload resolution actually selects.
2350  if (DiagnoseUseOfDecl(VD, Loc))
2351    return ExprError();
2352
2353  // Only create DeclRefExpr's for valid Decl's.
2354  if (VD->isInvalidDecl())
2355    return ExprError();
2356
2357  // Handle members of anonymous structs and unions.  If we got here,
2358  // and the reference is to a class member indirect field, then this
2359  // must be the subject of a pointer-to-member expression.
2360  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2361    if (!indirectField->isCXXClassMember())
2362      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2363                                                      indirectField);
2364
2365  // If the identifier reference is inside a block, and it refers to a value
2366  // that is outside the block, create a BlockDeclRefExpr instead of a
2367  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
2368  // the block is formed.
2369  //
2370  // We do not do this for things like enum constants, global variables, etc,
2371  // as they do not get snapshotted.
2372  //
2373  switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
2374  case CR_Error:
2375    return ExprError();
2376
2377  case CR_Capture:
2378    assert(!SS.isSet() && "referenced local variable with scope specifier?");
2379    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
2380
2381  case CR_CaptureByRef:
2382    assert(!SS.isSet() && "referenced local variable with scope specifier?");
2383    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
2384
2385  case CR_NoCapture: {
2386    // If this reference is not in a block or if the referenced
2387    // variable is within the block, create a normal DeclRefExpr.
2388
2389    QualType type = VD->getType();
2390    ExprValueKind valueKind = VK_RValue;
2391
2392    switch (D->getKind()) {
2393    // Ignore all the non-ValueDecl kinds.
2394#define ABSTRACT_DECL(kind)
2395#define VALUE(type, base)
2396#define DECL(type, base) \
2397    case Decl::type:
2398#include "clang/AST/DeclNodes.inc"
2399      llvm_unreachable("invalid value decl kind");
2400      return ExprError();
2401
2402    // These shouldn't make it here.
2403    case Decl::ObjCAtDefsField:
2404    case Decl::ObjCIvar:
2405      llvm_unreachable("forming non-member reference to ivar?");
2406      return ExprError();
2407
2408    // Enum constants are always r-values and never references.
2409    // Unresolved using declarations are dependent.
2410    case Decl::EnumConstant:
2411    case Decl::UnresolvedUsingValue:
2412      valueKind = VK_RValue;
2413      break;
2414
2415    // Fields and indirect fields that got here must be for
2416    // pointer-to-member expressions; we just call them l-values for
2417    // internal consistency, because this subexpression doesn't really
2418    // exist in the high-level semantics.
2419    case Decl::Field:
2420    case Decl::IndirectField:
2421      assert(getLangOptions().CPlusPlus &&
2422             "building reference to field in C?");
2423
2424      // These can't have reference type in well-formed programs, but
2425      // for internal consistency we do this anyway.
2426      type = type.getNonReferenceType();
2427      valueKind = VK_LValue;
2428      break;
2429
2430    // Non-type template parameters are either l-values or r-values
2431    // depending on the type.
2432    case Decl::NonTypeTemplateParm: {
2433      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2434        type = reftype->getPointeeType();
2435        valueKind = VK_LValue; // even if the parameter is an r-value reference
2436        break;
2437      }
2438
2439      // For non-references, we need to strip qualifiers just in case
2440      // the template parameter was declared as 'const int' or whatever.
2441      valueKind = VK_RValue;
2442      type = type.getUnqualifiedType();
2443      break;
2444    }
2445
2446    case Decl::Var:
2447      // In C, "extern void blah;" is valid and is an r-value.
2448      if (!getLangOptions().CPlusPlus &&
2449          !type.hasQualifiers() &&
2450          type->isVoidType()) {
2451        valueKind = VK_RValue;
2452        break;
2453      }
2454      // fallthrough
2455
2456    case Decl::ImplicitParam:
2457    case Decl::ParmVar:
2458      // These are always l-values.
2459      valueKind = VK_LValue;
2460      type = type.getNonReferenceType();
2461      break;
2462
2463    case Decl::Function: {
2464      const FunctionType *fty = type->castAs<FunctionType>();
2465
2466      // If we're referring to a function with an __unknown_anytype
2467      // result type, make the entire expression __unknown_anytype.
2468      if (fty->getResultType() == Context.UnknownAnyTy) {
2469        type = Context.UnknownAnyTy;
2470        valueKind = VK_RValue;
2471        break;
2472      }
2473
2474      // Functions are l-values in C++.
2475      if (getLangOptions().CPlusPlus) {
2476        valueKind = VK_LValue;
2477        break;
2478      }
2479
2480      // C99 DR 316 says that, if a function type comes from a
2481      // function definition (without a prototype), that type is only
2482      // used for checking compatibility. Therefore, when referencing
2483      // the function, we pretend that we don't have the full function
2484      // type.
2485      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2486          isa<FunctionProtoType>(fty))
2487        type = Context.getFunctionNoProtoType(fty->getResultType(),
2488                                              fty->getExtInfo());
2489
2490      // Functions are r-values in C.
2491      valueKind = VK_RValue;
2492      break;
2493    }
2494
2495    case Decl::CXXMethod:
2496      // If we're referring to a method with an __unknown_anytype
2497      // result type, make the entire expression __unknown_anytype.
2498      // This should only be possible with a type written directly.
2499      if (const FunctionProtoType *proto
2500            = dyn_cast<FunctionProtoType>(VD->getType()))
2501        if (proto->getResultType() == Context.UnknownAnyTy) {
2502          type = Context.UnknownAnyTy;
2503          valueKind = VK_RValue;
2504          break;
2505        }
2506
2507      // C++ methods are l-values if static, r-values if non-static.
2508      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2509        valueKind = VK_LValue;
2510        break;
2511      }
2512      // fallthrough
2513
2514    case Decl::CXXConversion:
2515    case Decl::CXXDestructor:
2516    case Decl::CXXConstructor:
2517      valueKind = VK_RValue;
2518      break;
2519    }
2520
2521    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2522  }
2523
2524  }
2525
2526  llvm_unreachable("unknown capture result");
2527  return ExprError();
2528}
2529
2530ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2531  PredefinedExpr::IdentType IT;
2532
2533  switch (Kind) {
2534  default: llvm_unreachable("Unknown simple primary expr!");
2535  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2536  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2537  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2538  }
2539
2540  // Pre-defined identifiers are of type char[x], where x is the length of the
2541  // string.
2542
2543  Decl *currentDecl = getCurFunctionOrMethodDecl();
2544  if (!currentDecl && getCurBlock())
2545    currentDecl = getCurBlock()->TheDecl;
2546  if (!currentDecl) {
2547    Diag(Loc, diag::ext_predef_outside_function);
2548    currentDecl = Context.getTranslationUnitDecl();
2549  }
2550
2551  QualType ResTy;
2552  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2553    ResTy = Context.DependentTy;
2554  } else {
2555    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2556
2557    llvm::APInt LengthI(32, Length + 1);
2558    ResTy = Context.CharTy.withConst();
2559    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2560  }
2561  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2562}
2563
2564ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
2565  llvm::SmallString<16> CharBuffer;
2566  bool Invalid = false;
2567  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2568  if (Invalid)
2569    return ExprError();
2570
2571  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2572                            PP, Tok.getKind());
2573  if (Literal.hadError())
2574    return ExprError();
2575
2576  QualType Ty;
2577  if (!getLangOptions().CPlusPlus)
2578    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
2579  else if (Literal.isWide())
2580    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
2581  else if (Literal.isUTF16())
2582    Ty = Context.Char16Ty; // u'x' -> char16_t in C++0x.
2583  else if (Literal.isUTF32())
2584    Ty = Context.Char32Ty; // U'x' -> char32_t in C++0x.
2585  else if (Literal.isMultiChar())
2586    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
2587  else
2588    Ty = Context.CharTy;  // 'x' -> char in C++
2589
2590  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2591  if (Literal.isWide())
2592    Kind = CharacterLiteral::Wide;
2593  else if (Literal.isUTF16())
2594    Kind = CharacterLiteral::UTF16;
2595  else if (Literal.isUTF32())
2596    Kind = CharacterLiteral::UTF32;
2597
2598  return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2599                                              Tok.getLocation()));
2600}
2601
2602ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
2603  // Fast path for a single digit (which is quite common).  A single digit
2604  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
2605  if (Tok.getLength() == 1) {
2606    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2607    unsigned IntSize = Context.getTargetInfo().getIntWidth();
2608    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
2609                    Context.IntTy, Tok.getLocation()));
2610  }
2611
2612  llvm::SmallString<512> IntegerBuffer;
2613  // Add padding so that NumericLiteralParser can overread by one character.
2614  IntegerBuffer.resize(Tok.getLength()+1);
2615  const char *ThisTokBegin = &IntegerBuffer[0];
2616
2617  // Get the spelling of the token, which eliminates trigraphs, etc.
2618  bool Invalid = false;
2619  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2620  if (Invalid)
2621    return ExprError();
2622
2623  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2624                               Tok.getLocation(), PP);
2625  if (Literal.hadError)
2626    return ExprError();
2627
2628  Expr *Res;
2629
2630  if (Literal.isFloatingLiteral()) {
2631    QualType Ty;
2632    if (Literal.isFloat)
2633      Ty = Context.FloatTy;
2634    else if (!Literal.isLong)
2635      Ty = Context.DoubleTy;
2636    else
2637      Ty = Context.LongDoubleTy;
2638
2639    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
2640
2641    using llvm::APFloat;
2642    APFloat Val(Format);
2643
2644    APFloat::opStatus result = Literal.GetFloatValue(Val);
2645
2646    // Overflow is always an error, but underflow is only an error if
2647    // we underflowed to zero (APFloat reports denormals as underflow).
2648    if ((result & APFloat::opOverflow) ||
2649        ((result & APFloat::opUnderflow) && Val.isZero())) {
2650      unsigned diagnostic;
2651      llvm::SmallString<20> buffer;
2652      if (result & APFloat::opOverflow) {
2653        diagnostic = diag::warn_float_overflow;
2654        APFloat::getLargest(Format).toString(buffer);
2655      } else {
2656        diagnostic = diag::warn_float_underflow;
2657        APFloat::getSmallest(Format).toString(buffer);
2658      }
2659
2660      Diag(Tok.getLocation(), diagnostic)
2661        << Ty
2662        << StringRef(buffer.data(), buffer.size());
2663    }
2664
2665    bool isExact = (result == APFloat::opOK);
2666    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2667
2668    if (Ty == Context.DoubleTy) {
2669      if (getLangOptions().SinglePrecisionConstants) {
2670        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2671      } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2672        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2673        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2674      }
2675    }
2676  } else if (!Literal.isIntegerLiteral()) {
2677    return ExprError();
2678  } else {
2679    QualType Ty;
2680
2681    // long long is a C99 feature.
2682    if (!getLangOptions().C99 && Literal.isLongLong)
2683      Diag(Tok.getLocation(),
2684           getLangOptions().CPlusPlus0x ?
2685             diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2686
2687    // Get the value in the widest-possible width.
2688    llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
2689
2690    if (Literal.GetIntegerValue(ResultVal)) {
2691      // If this value didn't fit into uintmax_t, warn and force to ull.
2692      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2693      Ty = Context.UnsignedLongLongTy;
2694      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2695             "long long is not intmax_t?");
2696    } else {
2697      // If this value fits into a ULL, try to figure out what else it fits into
2698      // according to the rules of C99 6.4.4.1p5.
2699
2700      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2701      // be an unsigned int.
2702      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2703
2704      // Check from smallest to largest, picking the smallest type we can.
2705      unsigned Width = 0;
2706      if (!Literal.isLong && !Literal.isLongLong) {
2707        // Are int/unsigned possibilities?
2708        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2709
2710        // Does it fit in a unsigned int?
2711        if (ResultVal.isIntN(IntSize)) {
2712          // Does it fit in a signed int?
2713          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2714            Ty = Context.IntTy;
2715          else if (AllowUnsigned)
2716            Ty = Context.UnsignedIntTy;
2717          Width = IntSize;
2718        }
2719      }
2720
2721      // Are long/unsigned long possibilities?
2722      if (Ty.isNull() && !Literal.isLongLong) {
2723        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2724
2725        // Does it fit in a unsigned long?
2726        if (ResultVal.isIntN(LongSize)) {
2727          // Does it fit in a signed long?
2728          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2729            Ty = Context.LongTy;
2730          else if (AllowUnsigned)
2731            Ty = Context.UnsignedLongTy;
2732          Width = LongSize;
2733        }
2734      }
2735
2736      // Finally, check long long if needed.
2737      if (Ty.isNull()) {
2738        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2739
2740        // Does it fit in a unsigned long long?
2741        if (ResultVal.isIntN(LongLongSize)) {
2742          // Does it fit in a signed long long?
2743          // To be compatible with MSVC, hex integer literals ending with the
2744          // LL or i64 suffix are always signed in Microsoft mode.
2745          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2746              (getLangOptions().MicrosoftExt && Literal.isLongLong)))
2747            Ty = Context.LongLongTy;
2748          else if (AllowUnsigned)
2749            Ty = Context.UnsignedLongLongTy;
2750          Width = LongLongSize;
2751        }
2752      }
2753
2754      // If we still couldn't decide a type, we probably have something that
2755      // does not fit in a signed long long, but has no U suffix.
2756      if (Ty.isNull()) {
2757        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2758        Ty = Context.UnsignedLongLongTy;
2759        Width = Context.getTargetInfo().getLongLongWidth();
2760      }
2761
2762      if (ResultVal.getBitWidth() != Width)
2763        ResultVal = ResultVal.trunc(Width);
2764    }
2765    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2766  }
2767
2768  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2769  if (Literal.isImaginary)
2770    Res = new (Context) ImaginaryLiteral(Res,
2771                                        Context.getComplexType(Res->getType()));
2772
2773  return Owned(Res);
2774}
2775
2776ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2777  assert((E != 0) && "ActOnParenExpr() missing expr");
2778  return Owned(new (Context) ParenExpr(L, R, E));
2779}
2780
2781static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2782                                         SourceLocation Loc,
2783                                         SourceRange ArgRange) {
2784  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2785  // scalar or vector data type argument..."
2786  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2787  // type (C99 6.2.5p18) or void.
2788  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2789    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2790      << T << ArgRange;
2791    return true;
2792  }
2793
2794  assert((T->isVoidType() || !T->isIncompleteType()) &&
2795         "Scalar types should always be complete");
2796  return false;
2797}
2798
2799static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2800                                           SourceLocation Loc,
2801                                           SourceRange ArgRange,
2802                                           UnaryExprOrTypeTrait TraitKind) {
2803  // C99 6.5.3.4p1:
2804  if (T->isFunctionType()) {
2805    // alignof(function) is allowed as an extension.
2806    if (TraitKind == UETT_SizeOf)
2807      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2808    return false;
2809  }
2810
2811  // Allow sizeof(void)/alignof(void) as an extension.
2812  if (T->isVoidType()) {
2813    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2814    return false;
2815  }
2816
2817  return true;
2818}
2819
2820static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2821                                             SourceLocation Loc,
2822                                             SourceRange ArgRange,
2823                                             UnaryExprOrTypeTrait TraitKind) {
2824  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2825  if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2826    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2827      << T << (TraitKind == UETT_SizeOf)
2828      << ArgRange;
2829    return true;
2830  }
2831
2832  return false;
2833}
2834
2835/// \brief Check the constrains on expression operands to unary type expression
2836/// and type traits.
2837///
2838/// Completes any types necessary and validates the constraints on the operand
2839/// expression. The logic mostly mirrors the type-based overload, but may modify
2840/// the expression as it completes the type for that expression through template
2841/// instantiation, etc.
2842bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2843                                            UnaryExprOrTypeTrait ExprKind) {
2844  QualType ExprTy = E->getType();
2845
2846  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2847  //   the result is the size of the referenced type."
2848  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2849  //   result shall be the alignment of the referenced type."
2850  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2851    ExprTy = Ref->getPointeeType();
2852
2853  if (ExprKind == UETT_VecStep)
2854    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2855                                        E->getSourceRange());
2856
2857  // Whitelist some types as extensions
2858  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2859                                      E->getSourceRange(), ExprKind))
2860    return false;
2861
2862  if (RequireCompleteExprType(E,
2863                              PDiag(diag::err_sizeof_alignof_incomplete_type)
2864                              << ExprKind << E->getSourceRange(),
2865                              std::make_pair(SourceLocation(), PDiag(0))))
2866    return true;
2867
2868  // Completeing the expression's type may have changed it.
2869  ExprTy = E->getType();
2870  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2871    ExprTy = Ref->getPointeeType();
2872
2873  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2874                                       E->getSourceRange(), ExprKind))
2875    return true;
2876
2877  if (ExprKind == UETT_SizeOf) {
2878    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2879      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2880        QualType OType = PVD->getOriginalType();
2881        QualType Type = PVD->getType();
2882        if (Type->isPointerType() && OType->isArrayType()) {
2883          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2884            << Type << OType;
2885          Diag(PVD->getLocation(), diag::note_declared_at);
2886        }
2887      }
2888    }
2889  }
2890
2891  return false;
2892}
2893
2894/// \brief Check the constraints on operands to unary expression and type
2895/// traits.
2896///
2897/// This will complete any types necessary, and validate the various constraints
2898/// on those operands.
2899///
2900/// The UsualUnaryConversions() function is *not* called by this routine.
2901/// C99 6.3.2.1p[2-4] all state:
2902///   Except when it is the operand of the sizeof operator ...
2903///
2904/// C++ [expr.sizeof]p4
2905///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2906///   standard conversions are not applied to the operand of sizeof.
2907///
2908/// This policy is followed for all of the unary trait expressions.
2909bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2910                                            SourceLocation OpLoc,
2911                                            SourceRange ExprRange,
2912                                            UnaryExprOrTypeTrait ExprKind) {
2913  if (ExprType->isDependentType())
2914    return false;
2915
2916  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2917  //   the result is the size of the referenced type."
2918  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2919  //   result shall be the alignment of the referenced type."
2920  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
2921    ExprType = Ref->getPointeeType();
2922
2923  if (ExprKind == UETT_VecStep)
2924    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
2925
2926  // Whitelist some types as extensions
2927  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
2928                                      ExprKind))
2929    return false;
2930
2931  if (RequireCompleteType(OpLoc, ExprType,
2932                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2933                          << ExprKind << ExprRange))
2934    return true;
2935
2936  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
2937                                       ExprKind))
2938    return true;
2939
2940  return false;
2941}
2942
2943static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2944  E = E->IgnoreParens();
2945
2946  // alignof decl is always ok.
2947  if (isa<DeclRefExpr>(E))
2948    return false;
2949
2950  // Cannot know anything else if the expression is dependent.
2951  if (E->isTypeDependent())
2952    return false;
2953
2954  if (E->getBitField()) {
2955    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2956       << 1 << E->getSourceRange();
2957    return true;
2958  }
2959
2960  // Alignment of a field access is always okay, so long as it isn't a
2961  // bit-field.
2962  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2963    if (isa<FieldDecl>(ME->getMemberDecl()))
2964      return false;
2965
2966  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2967}
2968
2969bool Sema::CheckVecStepExpr(Expr *E) {
2970  E = E->IgnoreParens();
2971
2972  // Cannot know anything else if the expression is dependent.
2973  if (E->isTypeDependent())
2974    return false;
2975
2976  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2977}
2978
2979/// \brief Build a sizeof or alignof expression given a type operand.
2980ExprResult
2981Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2982                                     SourceLocation OpLoc,
2983                                     UnaryExprOrTypeTrait ExprKind,
2984                                     SourceRange R) {
2985  if (!TInfo)
2986    return ExprError();
2987
2988  QualType T = TInfo->getType();
2989
2990  if (!T->isDependentType() &&
2991      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2992    return ExprError();
2993
2994  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2995  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2996                                                      Context.getSizeType(),
2997                                                      OpLoc, R.getEnd()));
2998}
2999
3000/// \brief Build a sizeof or alignof expression given an expression
3001/// operand.
3002ExprResult
3003Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3004                                     UnaryExprOrTypeTrait ExprKind) {
3005  ExprResult PE = CheckPlaceholderExpr(E);
3006  if (PE.isInvalid())
3007    return ExprError();
3008
3009  E = PE.get();
3010
3011  // Verify that the operand is valid.
3012  bool isInvalid = false;
3013  if (E->isTypeDependent()) {
3014    // Delay type-checking for type-dependent expressions.
3015  } else if (ExprKind == UETT_AlignOf) {
3016    isInvalid = CheckAlignOfExpr(*this, E);
3017  } else if (ExprKind == UETT_VecStep) {
3018    isInvalid = CheckVecStepExpr(E);
3019  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3020    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3021    isInvalid = true;
3022  } else {
3023    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3024  }
3025
3026  if (isInvalid)
3027    return ExprError();
3028
3029  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3030  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3031      ExprKind, E, Context.getSizeType(), OpLoc,
3032      E->getSourceRange().getEnd()));
3033}
3034
3035/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3036/// expr and the same for @c alignof and @c __alignof
3037/// Note that the ArgRange is invalid if isType is false.
3038ExprResult
3039Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3040                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3041                                    void *TyOrEx, const SourceRange &ArgRange) {
3042  // If error parsing type, ignore.
3043  if (TyOrEx == 0) return ExprError();
3044
3045  if (IsType) {
3046    TypeSourceInfo *TInfo;
3047    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3048    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3049  }
3050
3051  Expr *ArgEx = (Expr *)TyOrEx;
3052  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3053  return move(Result);
3054}
3055
3056static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3057                                     bool IsReal) {
3058  if (V.get()->isTypeDependent())
3059    return S.Context.DependentTy;
3060
3061  // _Real and _Imag are only l-values for normal l-values.
3062  if (V.get()->getObjectKind() != OK_Ordinary) {
3063    V = S.DefaultLvalueConversion(V.take());
3064    if (V.isInvalid())
3065      return QualType();
3066  }
3067
3068  // These operators return the element type of a complex type.
3069  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3070    return CT->getElementType();
3071
3072  // Otherwise they pass through real integer and floating point types here.
3073  if (V.get()->getType()->isArithmeticType())
3074    return V.get()->getType();
3075
3076  // Test for placeholders.
3077  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3078  if (PR.isInvalid()) return QualType();
3079  if (PR.get() != V.get()) {
3080    V = move(PR);
3081    return CheckRealImagOperand(S, V, Loc, IsReal);
3082  }
3083
3084  // Reject anything else.
3085  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3086    << (IsReal ? "__real" : "__imag");
3087  return QualType();
3088}
3089
3090
3091
3092ExprResult
3093Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3094                          tok::TokenKind Kind, Expr *Input) {
3095  UnaryOperatorKind Opc;
3096  switch (Kind) {
3097  default: llvm_unreachable("Unknown unary op!");
3098  case tok::plusplus:   Opc = UO_PostInc; break;
3099  case tok::minusminus: Opc = UO_PostDec; break;
3100  }
3101
3102  return BuildUnaryOp(S, OpLoc, Opc, Input);
3103}
3104
3105ExprResult
3106Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3107                              Expr *Idx, SourceLocation RLoc) {
3108  // Since this might be a postfix expression, get rid of ParenListExprs.
3109  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3110  if (Result.isInvalid()) return ExprError();
3111  Base = Result.take();
3112
3113  Expr *LHSExp = Base, *RHSExp = Idx;
3114
3115  if (getLangOptions().CPlusPlus &&
3116      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3117    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3118                                                  Context.DependentTy,
3119                                                  VK_LValue, OK_Ordinary,
3120                                                  RLoc));
3121  }
3122
3123  if (getLangOptions().CPlusPlus &&
3124      (LHSExp->getType()->isRecordType() ||
3125       LHSExp->getType()->isEnumeralType() ||
3126       RHSExp->getType()->isRecordType() ||
3127       RHSExp->getType()->isEnumeralType())) {
3128    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3129  }
3130
3131  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3132}
3133
3134
3135ExprResult
3136Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3137                                      Expr *Idx, SourceLocation RLoc) {
3138  Expr *LHSExp = Base;
3139  Expr *RHSExp = Idx;
3140
3141  // Perform default conversions.
3142  if (!LHSExp->getType()->getAs<VectorType>()) {
3143    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3144    if (Result.isInvalid())
3145      return ExprError();
3146    LHSExp = Result.take();
3147  }
3148  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3149  if (Result.isInvalid())
3150    return ExprError();
3151  RHSExp = Result.take();
3152
3153  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3154  ExprValueKind VK = VK_LValue;
3155  ExprObjectKind OK = OK_Ordinary;
3156
3157  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3158  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3159  // in the subscript position. As a result, we need to derive the array base
3160  // and index from the expression types.
3161  Expr *BaseExpr, *IndexExpr;
3162  QualType ResultType;
3163  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3164    BaseExpr = LHSExp;
3165    IndexExpr = RHSExp;
3166    ResultType = Context.DependentTy;
3167  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3168    BaseExpr = LHSExp;
3169    IndexExpr = RHSExp;
3170    ResultType = PTy->getPointeeType();
3171  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3172     // Handle the uncommon case of "123[Ptr]".
3173    BaseExpr = RHSExp;
3174    IndexExpr = LHSExp;
3175    ResultType = PTy->getPointeeType();
3176  } else if (const ObjCObjectPointerType *PTy =
3177               LHSTy->getAs<ObjCObjectPointerType>()) {
3178    BaseExpr = LHSExp;
3179    IndexExpr = RHSExp;
3180    ResultType = PTy->getPointeeType();
3181  } else if (const ObjCObjectPointerType *PTy =
3182               RHSTy->getAs<ObjCObjectPointerType>()) {
3183     // Handle the uncommon case of "123[Ptr]".
3184    BaseExpr = RHSExp;
3185    IndexExpr = LHSExp;
3186    ResultType = PTy->getPointeeType();
3187  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3188    BaseExpr = LHSExp;    // vectors: V[123]
3189    IndexExpr = RHSExp;
3190    VK = LHSExp->getValueKind();
3191    if (VK != VK_RValue)
3192      OK = OK_VectorComponent;
3193
3194    // FIXME: need to deal with const...
3195    ResultType = VTy->getElementType();
3196  } else if (LHSTy->isArrayType()) {
3197    // If we see an array that wasn't promoted by
3198    // DefaultFunctionArrayLvalueConversion, it must be an array that
3199    // wasn't promoted because of the C90 rule that doesn't
3200    // allow promoting non-lvalue arrays.  Warn, then
3201    // force the promotion here.
3202    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3203        LHSExp->getSourceRange();
3204    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3205                               CK_ArrayToPointerDecay).take();
3206    LHSTy = LHSExp->getType();
3207
3208    BaseExpr = LHSExp;
3209    IndexExpr = RHSExp;
3210    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3211  } else if (RHSTy->isArrayType()) {
3212    // Same as previous, except for 123[f().a] case
3213    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3214        RHSExp->getSourceRange();
3215    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3216                               CK_ArrayToPointerDecay).take();
3217    RHSTy = RHSExp->getType();
3218
3219    BaseExpr = RHSExp;
3220    IndexExpr = LHSExp;
3221    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3222  } else {
3223    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3224       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3225  }
3226  // C99 6.5.2.1p1
3227  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3228    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3229                     << IndexExpr->getSourceRange());
3230
3231  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3232       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3233         && !IndexExpr->isTypeDependent())
3234    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3235
3236  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3237  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3238  // type. Note that Functions are not objects, and that (in C99 parlance)
3239  // incomplete types are not object types.
3240  if (ResultType->isFunctionType()) {
3241    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3242      << ResultType << BaseExpr->getSourceRange();
3243    return ExprError();
3244  }
3245
3246  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
3247    // GNU extension: subscripting on pointer to void
3248    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3249      << BaseExpr->getSourceRange();
3250
3251    // C forbids expressions of unqualified void type from being l-values.
3252    // See IsCForbiddenLValueType.
3253    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3254  } else if (!ResultType->isDependentType() &&
3255      RequireCompleteType(LLoc, ResultType,
3256                          PDiag(diag::err_subscript_incomplete_type)
3257                            << BaseExpr->getSourceRange()))
3258    return ExprError();
3259
3260  // Diagnose bad cases where we step over interface counts.
3261  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3262    Diag(LLoc, diag::err_subscript_nonfragile_interface)
3263      << ResultType << BaseExpr->getSourceRange();
3264    return ExprError();
3265  }
3266
3267  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3268         !ResultType.isCForbiddenLValueType());
3269
3270  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3271                                                ResultType, VK, OK, RLoc));
3272}
3273
3274ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3275                                        FunctionDecl *FD,
3276                                        ParmVarDecl *Param) {
3277  if (Param->hasUnparsedDefaultArg()) {
3278    Diag(CallLoc,
3279         diag::err_use_of_default_argument_to_function_declared_later) <<
3280      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3281    Diag(UnparsedDefaultArgLocs[Param],
3282         diag::note_default_argument_declared_here);
3283    return ExprError();
3284  }
3285
3286  if (Param->hasUninstantiatedDefaultArg()) {
3287    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3288
3289    // Instantiate the expression.
3290    MultiLevelTemplateArgumentList ArgList
3291      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3292
3293    std::pair<const TemplateArgument *, unsigned> Innermost
3294      = ArgList.getInnermost();
3295    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3296                               Innermost.second);
3297
3298    ExprResult Result;
3299    {
3300      // C++ [dcl.fct.default]p5:
3301      //   The names in the [default argument] expression are bound, and
3302      //   the semantic constraints are checked, at the point where the
3303      //   default argument expression appears.
3304      ContextRAII SavedContext(*this, FD);
3305      Result = SubstExpr(UninstExpr, ArgList);
3306    }
3307    if (Result.isInvalid())
3308      return ExprError();
3309
3310    // Check the expression as an initializer for the parameter.
3311    InitializedEntity Entity
3312      = InitializedEntity::InitializeParameter(Context, Param);
3313    InitializationKind Kind
3314      = InitializationKind::CreateCopy(Param->getLocation(),
3315             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3316    Expr *ResultE = Result.takeAs<Expr>();
3317
3318    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3319    Result = InitSeq.Perform(*this, Entity, Kind,
3320                             MultiExprArg(*this, &ResultE, 1));
3321    if (Result.isInvalid())
3322      return ExprError();
3323
3324    // Build the default argument expression.
3325    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3326                                           Result.takeAs<Expr>()));
3327  }
3328
3329  // If the default expression creates temporaries, we need to
3330  // push them to the current stack of expression temporaries so they'll
3331  // be properly destroyed.
3332  // FIXME: We should really be rebuilding the default argument with new
3333  // bound temporaries; see the comment in PR5810.
3334  // We don't need to do that with block decls, though, because
3335  // blocks in default argument expression can never capture anything.
3336  if (isa<ExprWithCleanups>(Param->getInit())) {
3337    // Set the "needs cleanups" bit regardless of whether there are
3338    // any explicit objects.
3339    ExprNeedsCleanups = true;
3340
3341    // Append all the objects to the cleanup list.  Right now, this
3342    // should always be a no-op, because blocks in default argument
3343    // expressions should never be able to capture anything.
3344    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3345           "default argument expression has capturing blocks?");
3346  }
3347
3348  // We already type-checked the argument, so we know it works.
3349  // Just mark all of the declarations in this potentially-evaluated expression
3350  // as being "referenced".
3351  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3352  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3353}
3354
3355/// ConvertArgumentsForCall - Converts the arguments specified in
3356/// Args/NumArgs to the parameter types of the function FDecl with
3357/// function prototype Proto. Call is the call expression itself, and
3358/// Fn is the function expression. For a C++ member function, this
3359/// routine does not attempt to convert the object argument. Returns
3360/// true if the call is ill-formed.
3361bool
3362Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3363                              FunctionDecl *FDecl,
3364                              const FunctionProtoType *Proto,
3365                              Expr **Args, unsigned NumArgs,
3366                              SourceLocation RParenLoc,
3367                              bool IsExecConfig) {
3368  // Bail out early if calling a builtin with custom typechecking.
3369  // We don't need to do this in the
3370  if (FDecl)
3371    if (unsigned ID = FDecl->getBuiltinID())
3372      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3373        return false;
3374
3375  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3376  // assignment, to the types of the corresponding parameter, ...
3377  unsigned NumArgsInProto = Proto->getNumArgs();
3378  bool Invalid = false;
3379  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3380  unsigned FnKind = Fn->getType()->isBlockPointerType()
3381                       ? 1 /* block */
3382                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3383                                       : 0 /* function */);
3384
3385  // If too few arguments are available (and we don't have default
3386  // arguments for the remaining parameters), don't make the call.
3387  if (NumArgs < NumArgsInProto) {
3388    if (NumArgs < MinArgs) {
3389      Diag(RParenLoc, MinArgs == NumArgsInProto
3390                        ? diag::err_typecheck_call_too_few_args
3391                        : diag::err_typecheck_call_too_few_args_at_least)
3392        << FnKind
3393        << MinArgs << NumArgs << Fn->getSourceRange();
3394
3395      // Emit the location of the prototype.
3396      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3397        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3398          << FDecl;
3399
3400      return true;
3401    }
3402    Call->setNumArgs(Context, NumArgsInProto);
3403  }
3404
3405  // If too many are passed and not variadic, error on the extras and drop
3406  // them.
3407  if (NumArgs > NumArgsInProto) {
3408    if (!Proto->isVariadic()) {
3409      Diag(Args[NumArgsInProto]->getLocStart(),
3410           MinArgs == NumArgsInProto
3411             ? diag::err_typecheck_call_too_many_args
3412             : diag::err_typecheck_call_too_many_args_at_most)
3413        << FnKind
3414        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3415        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3416                       Args[NumArgs-1]->getLocEnd());
3417
3418      // Emit the location of the prototype.
3419      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3420        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3421          << FDecl;
3422
3423      // This deletes the extra arguments.
3424      Call->setNumArgs(Context, NumArgsInProto);
3425      return true;
3426    }
3427  }
3428  SmallVector<Expr *, 8> AllArgs;
3429  VariadicCallType CallType =
3430    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3431  if (Fn->getType()->isBlockPointerType())
3432    CallType = VariadicBlock; // Block
3433  else if (isa<MemberExpr>(Fn))
3434    CallType = VariadicMethod;
3435  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3436                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3437  if (Invalid)
3438    return true;
3439  unsigned TotalNumArgs = AllArgs.size();
3440  for (unsigned i = 0; i < TotalNumArgs; ++i)
3441    Call->setArg(i, AllArgs[i]);
3442
3443  return false;
3444}
3445
3446bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3447                                  FunctionDecl *FDecl,
3448                                  const FunctionProtoType *Proto,
3449                                  unsigned FirstProtoArg,
3450                                  Expr **Args, unsigned NumArgs,
3451                                  SmallVector<Expr *, 8> &AllArgs,
3452                                  VariadicCallType CallType) {
3453  unsigned NumArgsInProto = Proto->getNumArgs();
3454  unsigned NumArgsToCheck = NumArgs;
3455  bool Invalid = false;
3456  if (NumArgs != NumArgsInProto)
3457    // Use default arguments for missing arguments
3458    NumArgsToCheck = NumArgsInProto;
3459  unsigned ArgIx = 0;
3460  // Continue to check argument types (even if we have too few/many args).
3461  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3462    QualType ProtoArgType = Proto->getArgType(i);
3463
3464    Expr *Arg;
3465    ParmVarDecl *Param;
3466    if (ArgIx < NumArgs) {
3467      Arg = Args[ArgIx++];
3468
3469      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3470                              ProtoArgType,
3471                              PDiag(diag::err_call_incomplete_argument)
3472                              << Arg->getSourceRange()))
3473        return true;
3474
3475      // Pass the argument
3476      Param = 0;
3477      if (FDecl && i < FDecl->getNumParams())
3478        Param = FDecl->getParamDecl(i);
3479
3480      // Strip the unbridged-cast placeholder expression off, if applicable.
3481      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3482          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3483          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3484        Arg = stripARCUnbridgedCast(Arg);
3485
3486      InitializedEntity Entity =
3487        Param? InitializedEntity::InitializeParameter(Context, Param)
3488             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3489                                                      Proto->isArgConsumed(i));
3490      ExprResult ArgE = PerformCopyInitialization(Entity,
3491                                                  SourceLocation(),
3492                                                  Owned(Arg));
3493      if (ArgE.isInvalid())
3494        return true;
3495
3496      Arg = ArgE.takeAs<Expr>();
3497    } else {
3498      Param = FDecl->getParamDecl(i);
3499
3500      ExprResult ArgExpr =
3501        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3502      if (ArgExpr.isInvalid())
3503        return true;
3504
3505      Arg = ArgExpr.takeAs<Expr>();
3506    }
3507
3508    // Check for array bounds violations for each argument to the call. This
3509    // check only triggers warnings when the argument isn't a more complex Expr
3510    // with its own checking, such as a BinaryOperator.
3511    CheckArrayAccess(Arg);
3512
3513    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3514    CheckStaticArrayArgument(CallLoc, Param, Arg);
3515
3516    AllArgs.push_back(Arg);
3517  }
3518
3519  // If this is a variadic call, handle args passed through "...".
3520  if (CallType != VariadicDoesNotApply) {
3521
3522    // Assume that extern "C" functions with variadic arguments that
3523    // return __unknown_anytype aren't *really* variadic.
3524    if (Proto->getResultType() == Context.UnknownAnyTy &&
3525        FDecl && FDecl->isExternC()) {
3526      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3527        ExprResult arg;
3528        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3529          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3530        else
3531          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3532        Invalid |= arg.isInvalid();
3533        AllArgs.push_back(arg.take());
3534      }
3535
3536    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3537    } else {
3538      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3539        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3540                                                          FDecl);
3541        Invalid |= Arg.isInvalid();
3542        AllArgs.push_back(Arg.take());
3543      }
3544    }
3545
3546    // Check for array bounds violations.
3547    for (unsigned i = ArgIx; i != NumArgs; ++i)
3548      CheckArrayAccess(Args[i]);
3549  }
3550  return Invalid;
3551}
3552
3553static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3554  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3555  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3556    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3557      << ATL->getLocalSourceRange();
3558}
3559
3560/// CheckStaticArrayArgument - If the given argument corresponds to a static
3561/// array parameter, check that it is non-null, and that if it is formed by
3562/// array-to-pointer decay, the underlying array is sufficiently large.
3563///
3564/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3565/// array type derivation, then for each call to the function, the value of the
3566/// corresponding actual argument shall provide access to the first element of
3567/// an array with at least as many elements as specified by the size expression.
3568void
3569Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3570                               ParmVarDecl *Param,
3571                               const Expr *ArgExpr) {
3572  // Static array parameters are not supported in C++.
3573  if (!Param || getLangOptions().CPlusPlus)
3574    return;
3575
3576  QualType OrigTy = Param->getOriginalType();
3577
3578  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3579  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3580    return;
3581
3582  if (ArgExpr->isNullPointerConstant(Context,
3583                                     Expr::NPC_NeverValueDependent)) {
3584    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3585    DiagnoseCalleeStaticArrayParam(*this, Param);
3586    return;
3587  }
3588
3589  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3590  if (!CAT)
3591    return;
3592
3593  const ConstantArrayType *ArgCAT =
3594    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3595  if (!ArgCAT)
3596    return;
3597
3598  if (ArgCAT->getSize().ult(CAT->getSize())) {
3599    Diag(CallLoc, diag::warn_static_array_too_small)
3600      << ArgExpr->getSourceRange()
3601      << (unsigned) ArgCAT->getSize().getZExtValue()
3602      << (unsigned) CAT->getSize().getZExtValue();
3603    DiagnoseCalleeStaticArrayParam(*this, Param);
3604  }
3605}
3606
3607/// Given a function expression of unknown-any type, try to rebuild it
3608/// to have a function type.
3609static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3610
3611/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3612/// This provides the location of the left/right parens and a list of comma
3613/// locations.
3614ExprResult
3615Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3616                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3617                    Expr *ExecConfig, bool IsExecConfig) {
3618  unsigned NumArgs = ArgExprs.size();
3619
3620  // Since this might be a postfix expression, get rid of ParenListExprs.
3621  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3622  if (Result.isInvalid()) return ExprError();
3623  Fn = Result.take();
3624
3625  Expr **Args = ArgExprs.release();
3626
3627  if (getLangOptions().CPlusPlus) {
3628    // If this is a pseudo-destructor expression, build the call immediately.
3629    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3630      if (NumArgs > 0) {
3631        // Pseudo-destructor calls should not have any arguments.
3632        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3633          << FixItHint::CreateRemoval(
3634                                    SourceRange(Args[0]->getLocStart(),
3635                                                Args[NumArgs-1]->getLocEnd()));
3636
3637        NumArgs = 0;
3638      }
3639
3640      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3641                                          VK_RValue, RParenLoc));
3642    }
3643
3644    // Determine whether this is a dependent call inside a C++ template,
3645    // in which case we won't do any semantic analysis now.
3646    // FIXME: Will need to cache the results of name lookup (including ADL) in
3647    // Fn.
3648    bool Dependent = false;
3649    if (Fn->isTypeDependent())
3650      Dependent = true;
3651    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3652      Dependent = true;
3653
3654    if (Dependent) {
3655      if (ExecConfig) {
3656        return Owned(new (Context) CUDAKernelCallExpr(
3657            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3658            Context.DependentTy, VK_RValue, RParenLoc));
3659      } else {
3660        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3661                                            Context.DependentTy, VK_RValue,
3662                                            RParenLoc));
3663      }
3664    }
3665
3666    // Determine whether this is a call to an object (C++ [over.call.object]).
3667    if (Fn->getType()->isRecordType())
3668      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3669                                                RParenLoc));
3670
3671    if (Fn->getType() == Context.UnknownAnyTy) {
3672      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3673      if (result.isInvalid()) return ExprError();
3674      Fn = result.take();
3675    }
3676
3677    if (Fn->getType() == Context.BoundMemberTy) {
3678      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3679                                       RParenLoc);
3680    }
3681  }
3682
3683  // Check for overloaded calls.  This can happen even in C due to extensions.
3684  if (Fn->getType() == Context.OverloadTy) {
3685    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3686
3687    // We aren't supposed to apply this logic for if there's an '&' involved.
3688    if (!find.HasFormOfMemberPointer) {
3689      OverloadExpr *ovl = find.Expression;
3690      if (isa<UnresolvedLookupExpr>(ovl)) {
3691        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3692        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3693                                       RParenLoc, ExecConfig);
3694      } else {
3695        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3696                                         RParenLoc);
3697      }
3698    }
3699  }
3700
3701  // If we're directly calling a function, get the appropriate declaration.
3702  if (Fn->getType() == Context.UnknownAnyTy) {
3703    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3704    if (result.isInvalid()) return ExprError();
3705    Fn = result.take();
3706  }
3707
3708  Expr *NakedFn = Fn->IgnoreParens();
3709
3710  NamedDecl *NDecl = 0;
3711  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3712    if (UnOp->getOpcode() == UO_AddrOf)
3713      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3714
3715  if (isa<DeclRefExpr>(NakedFn))
3716    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3717  else if (isa<MemberExpr>(NakedFn))
3718    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3719
3720  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3721                               ExecConfig, IsExecConfig);
3722}
3723
3724ExprResult
3725Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3726                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3727  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3728  if (!ConfigDecl)
3729    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3730                          << "cudaConfigureCall");
3731  QualType ConfigQTy = ConfigDecl->getType();
3732
3733  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3734      ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
3735
3736  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3737                       /*IsExecConfig=*/true);
3738}
3739
3740/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3741///
3742/// __builtin_astype( value, dst type )
3743///
3744ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3745                                 SourceLocation BuiltinLoc,
3746                                 SourceLocation RParenLoc) {
3747  ExprValueKind VK = VK_RValue;
3748  ExprObjectKind OK = OK_Ordinary;
3749  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3750  QualType SrcTy = E->getType();
3751  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3752    return ExprError(Diag(BuiltinLoc,
3753                          diag::err_invalid_astype_of_different_size)
3754                     << DstTy
3755                     << SrcTy
3756                     << E->getSourceRange());
3757  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3758               RParenLoc));
3759}
3760
3761/// BuildResolvedCallExpr - Build a call to a resolved expression,
3762/// i.e. an expression not of \p OverloadTy.  The expression should
3763/// unary-convert to an expression of function-pointer or
3764/// block-pointer type.
3765///
3766/// \param NDecl the declaration being called, if available
3767ExprResult
3768Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3769                            SourceLocation LParenLoc,
3770                            Expr **Args, unsigned NumArgs,
3771                            SourceLocation RParenLoc,
3772                            Expr *Config, bool IsExecConfig) {
3773  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3774
3775  // Promote the function operand.
3776  ExprResult Result = UsualUnaryConversions(Fn);
3777  if (Result.isInvalid())
3778    return ExprError();
3779  Fn = Result.take();
3780
3781  // Make the call expr early, before semantic checks.  This guarantees cleanup
3782  // of arguments and function on error.
3783  CallExpr *TheCall;
3784  if (Config) {
3785    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3786                                               cast<CallExpr>(Config),
3787                                               Args, NumArgs,
3788                                               Context.BoolTy,
3789                                               VK_RValue,
3790                                               RParenLoc);
3791  } else {
3792    TheCall = new (Context) CallExpr(Context, Fn,
3793                                     Args, NumArgs,
3794                                     Context.BoolTy,
3795                                     VK_RValue,
3796                                     RParenLoc);
3797  }
3798
3799  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3800
3801  // Bail out early if calling a builtin with custom typechecking.
3802  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3803    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3804
3805 retry:
3806  const FunctionType *FuncT;
3807  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3808    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3809    // have type pointer to function".
3810    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3811    if (FuncT == 0)
3812      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3813                         << Fn->getType() << Fn->getSourceRange());
3814  } else if (const BlockPointerType *BPT =
3815               Fn->getType()->getAs<BlockPointerType>()) {
3816    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3817  } else {
3818    // Handle calls to expressions of unknown-any type.
3819    if (Fn->getType() == Context.UnknownAnyTy) {
3820      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3821      if (rewrite.isInvalid()) return ExprError();
3822      Fn = rewrite.take();
3823      TheCall->setCallee(Fn);
3824      goto retry;
3825    }
3826
3827    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3828      << Fn->getType() << Fn->getSourceRange());
3829  }
3830
3831  if (getLangOptions().CUDA) {
3832    if (Config) {
3833      // CUDA: Kernel calls must be to global functions
3834      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3835        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3836            << FDecl->getName() << Fn->getSourceRange());
3837
3838      // CUDA: Kernel function must have 'void' return type
3839      if (!FuncT->getResultType()->isVoidType())
3840        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3841            << Fn->getType() << Fn->getSourceRange());
3842    } else {
3843      // CUDA: Calls to global functions must be configured
3844      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
3845        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
3846            << FDecl->getName() << Fn->getSourceRange());
3847    }
3848  }
3849
3850  // Check for a valid return type
3851  if (CheckCallReturnType(FuncT->getResultType(),
3852                          Fn->getSourceRange().getBegin(), TheCall,
3853                          FDecl))
3854    return ExprError();
3855
3856  // We know the result type of the call, set it.
3857  TheCall->setType(FuncT->getCallResultType(Context));
3858  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3859
3860  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3861    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3862                                RParenLoc, IsExecConfig))
3863      return ExprError();
3864  } else {
3865    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3866
3867    if (FDecl) {
3868      // Check if we have too few/too many template arguments, based
3869      // on our knowledge of the function definition.
3870      const FunctionDecl *Def = 0;
3871      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3872        const FunctionProtoType *Proto
3873          = Def->getType()->getAs<FunctionProtoType>();
3874        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3875          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3876            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3877      }
3878
3879      // If the function we're calling isn't a function prototype, but we have
3880      // a function prototype from a prior declaratiom, use that prototype.
3881      if (!FDecl->hasPrototype())
3882        Proto = FDecl->getType()->getAs<FunctionProtoType>();
3883    }
3884
3885    // Promote the arguments (C99 6.5.2.2p6).
3886    for (unsigned i = 0; i != NumArgs; i++) {
3887      Expr *Arg = Args[i];
3888
3889      if (Proto && i < Proto->getNumArgs()) {
3890        InitializedEntity Entity
3891          = InitializedEntity::InitializeParameter(Context,
3892                                                   Proto->getArgType(i),
3893                                                   Proto->isArgConsumed(i));
3894        ExprResult ArgE = PerformCopyInitialization(Entity,
3895                                                    SourceLocation(),
3896                                                    Owned(Arg));
3897        if (ArgE.isInvalid())
3898          return true;
3899
3900        Arg = ArgE.takeAs<Expr>();
3901
3902      } else {
3903        ExprResult ArgE = DefaultArgumentPromotion(Arg);
3904
3905        if (ArgE.isInvalid())
3906          return true;
3907
3908        Arg = ArgE.takeAs<Expr>();
3909      }
3910
3911      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3912                              Arg->getType(),
3913                              PDiag(diag::err_call_incomplete_argument)
3914                                << Arg->getSourceRange()))
3915        return ExprError();
3916
3917      TheCall->setArg(i, Arg);
3918    }
3919  }
3920
3921  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3922    if (!Method->isStatic())
3923      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3924        << Fn->getSourceRange());
3925
3926  // Check for sentinels
3927  if (NDecl)
3928    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3929
3930  // Do special checking on direct calls to functions.
3931  if (FDecl) {
3932    if (CheckFunctionCall(FDecl, TheCall))
3933      return ExprError();
3934
3935    if (BuiltinID)
3936      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3937  } else if (NDecl) {
3938    if (CheckBlockCall(NDecl, TheCall))
3939      return ExprError();
3940  }
3941
3942  return MaybeBindToTemporary(TheCall);
3943}
3944
3945ExprResult
3946Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3947                           SourceLocation RParenLoc, Expr *InitExpr) {
3948  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3949  // FIXME: put back this assert when initializers are worked out.
3950  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3951
3952  TypeSourceInfo *TInfo;
3953  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3954  if (!TInfo)
3955    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3956
3957  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3958}
3959
3960ExprResult
3961Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3962                               SourceLocation RParenLoc, Expr *LiteralExpr) {
3963  QualType literalType = TInfo->getType();
3964
3965  if (literalType->isArrayType()) {
3966    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3967             PDiag(diag::err_illegal_decl_array_incomplete_type)
3968               << SourceRange(LParenLoc,
3969                              LiteralExpr->getSourceRange().getEnd())))
3970      return ExprError();
3971    if (literalType->isVariableArrayType())
3972      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3973        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
3974  } else if (!literalType->isDependentType() &&
3975             RequireCompleteType(LParenLoc, literalType,
3976                      PDiag(diag::err_typecheck_decl_incomplete_type)
3977                        << SourceRange(LParenLoc,
3978                                       LiteralExpr->getSourceRange().getEnd())))
3979    return ExprError();
3980
3981  InitializedEntity Entity
3982    = InitializedEntity::InitializeTemporary(literalType);
3983  InitializationKind Kind
3984    = InitializationKind::CreateCStyleCast(LParenLoc,
3985                                           SourceRange(LParenLoc, RParenLoc));
3986  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
3987  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3988                                       MultiExprArg(*this, &LiteralExpr, 1),
3989                                            &literalType);
3990  if (Result.isInvalid())
3991    return ExprError();
3992  LiteralExpr = Result.get();
3993
3994  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3995  if (isFileScope) { // 6.5.2.5p3
3996    if (CheckForConstantInitializer(LiteralExpr, literalType))
3997      return ExprError();
3998  }
3999
4000  // In C, compound literals are l-values for some reason.
4001  ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
4002
4003  return MaybeBindToTemporary(
4004           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4005                                             VK, LiteralExpr, isFileScope));
4006}
4007
4008ExprResult
4009Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4010                    SourceLocation RBraceLoc) {
4011  unsigned NumInit = InitArgList.size();
4012  Expr **InitList = InitArgList.release();
4013
4014  // Immediately handle non-overload placeholders.  Overloads can be
4015  // resolved contextually, but everything else here can't.
4016  for (unsigned I = 0; I != NumInit; ++I) {
4017    if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
4018      ExprResult result = CheckPlaceholderExpr(InitList[I]);
4019
4020      // Ignore failures; dropping the entire initializer list because
4021      // of one failure would be terrible for indexing/etc.
4022      if (result.isInvalid()) continue;
4023
4024      InitList[I] = result.take();
4025    }
4026  }
4027
4028  // Semantic analysis for initializers is done by ActOnDeclarator() and
4029  // CheckInitializer() - it requires knowledge of the object being intialized.
4030
4031  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4032                                               NumInit, RBraceLoc);
4033  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4034  return Owned(E);
4035}
4036
4037/// Do an explicit extend of the given block pointer if we're in ARC.
4038static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4039  assert(E.get()->getType()->isBlockPointerType());
4040  assert(E.get()->isRValue());
4041
4042  // Only do this in an r-value context.
4043  if (!S.getLangOptions().ObjCAutoRefCount) return;
4044
4045  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4046                               CK_ARCExtendBlockObject, E.get(),
4047                               /*base path*/ 0, VK_RValue);
4048  S.ExprNeedsCleanups = true;
4049}
4050
4051/// Prepare a conversion of the given expression to an ObjC object
4052/// pointer type.
4053CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4054  QualType type = E.get()->getType();
4055  if (type->isObjCObjectPointerType()) {
4056    return CK_BitCast;
4057  } else if (type->isBlockPointerType()) {
4058    maybeExtendBlockObject(*this, E);
4059    return CK_BlockPointerToObjCPointerCast;
4060  } else {
4061    assert(type->isPointerType());
4062    return CK_CPointerToObjCPointerCast;
4063  }
4064}
4065
4066/// Prepares for a scalar cast, performing all the necessary stages
4067/// except the final cast and returning the kind required.
4068CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4069  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4070  // Also, callers should have filtered out the invalid cases with
4071  // pointers.  Everything else should be possible.
4072
4073  QualType SrcTy = Src.get()->getType();
4074  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4075    return CK_NoOp;
4076
4077  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4078  case Type::STK_MemberPointer:
4079    llvm_unreachable("member pointer type in C");
4080
4081  case Type::STK_CPointer:
4082  case Type::STK_BlockPointer:
4083  case Type::STK_ObjCObjectPointer:
4084    switch (DestTy->getScalarTypeKind()) {
4085    case Type::STK_CPointer:
4086      return CK_BitCast;
4087    case Type::STK_BlockPointer:
4088      return (SrcKind == Type::STK_BlockPointer
4089                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4090    case Type::STK_ObjCObjectPointer:
4091      if (SrcKind == Type::STK_ObjCObjectPointer)
4092        return CK_BitCast;
4093      else if (SrcKind == Type::STK_CPointer)
4094        return CK_CPointerToObjCPointerCast;
4095      else {
4096        maybeExtendBlockObject(*this, Src);
4097        return CK_BlockPointerToObjCPointerCast;
4098      }
4099    case Type::STK_Bool:
4100      return CK_PointerToBoolean;
4101    case Type::STK_Integral:
4102      return CK_PointerToIntegral;
4103    case Type::STK_Floating:
4104    case Type::STK_FloatingComplex:
4105    case Type::STK_IntegralComplex:
4106    case Type::STK_MemberPointer:
4107      llvm_unreachable("illegal cast from pointer");
4108    }
4109    break;
4110
4111  case Type::STK_Bool: // casting from bool is like casting from an integer
4112  case Type::STK_Integral:
4113    switch (DestTy->getScalarTypeKind()) {
4114    case Type::STK_CPointer:
4115    case Type::STK_ObjCObjectPointer:
4116    case Type::STK_BlockPointer:
4117      if (Src.get()->isNullPointerConstant(Context,
4118                                           Expr::NPC_ValueDependentIsNull))
4119        return CK_NullToPointer;
4120      return CK_IntegralToPointer;
4121    case Type::STK_Bool:
4122      return CK_IntegralToBoolean;
4123    case Type::STK_Integral:
4124      return CK_IntegralCast;
4125    case Type::STK_Floating:
4126      return CK_IntegralToFloating;
4127    case Type::STK_IntegralComplex:
4128      Src = ImpCastExprToType(Src.take(),
4129                              DestTy->castAs<ComplexType>()->getElementType(),
4130                              CK_IntegralCast);
4131      return CK_IntegralRealToComplex;
4132    case Type::STK_FloatingComplex:
4133      Src = ImpCastExprToType(Src.take(),
4134                              DestTy->castAs<ComplexType>()->getElementType(),
4135                              CK_IntegralToFloating);
4136      return CK_FloatingRealToComplex;
4137    case Type::STK_MemberPointer:
4138      llvm_unreachable("member pointer type in C");
4139    }
4140    break;
4141
4142  case Type::STK_Floating:
4143    switch (DestTy->getScalarTypeKind()) {
4144    case Type::STK_Floating:
4145      return CK_FloatingCast;
4146    case Type::STK_Bool:
4147      return CK_FloatingToBoolean;
4148    case Type::STK_Integral:
4149      return CK_FloatingToIntegral;
4150    case Type::STK_FloatingComplex:
4151      Src = ImpCastExprToType(Src.take(),
4152                              DestTy->castAs<ComplexType>()->getElementType(),
4153                              CK_FloatingCast);
4154      return CK_FloatingRealToComplex;
4155    case Type::STK_IntegralComplex:
4156      Src = ImpCastExprToType(Src.take(),
4157                              DestTy->castAs<ComplexType>()->getElementType(),
4158                              CK_FloatingToIntegral);
4159      return CK_IntegralRealToComplex;
4160    case Type::STK_CPointer:
4161    case Type::STK_ObjCObjectPointer:
4162    case Type::STK_BlockPointer:
4163      llvm_unreachable("valid float->pointer cast?");
4164    case Type::STK_MemberPointer:
4165      llvm_unreachable("member pointer type in C");
4166    }
4167    break;
4168
4169  case Type::STK_FloatingComplex:
4170    switch (DestTy->getScalarTypeKind()) {
4171    case Type::STK_FloatingComplex:
4172      return CK_FloatingComplexCast;
4173    case Type::STK_IntegralComplex:
4174      return CK_FloatingComplexToIntegralComplex;
4175    case Type::STK_Floating: {
4176      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4177      if (Context.hasSameType(ET, DestTy))
4178        return CK_FloatingComplexToReal;
4179      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4180      return CK_FloatingCast;
4181    }
4182    case Type::STK_Bool:
4183      return CK_FloatingComplexToBoolean;
4184    case Type::STK_Integral:
4185      Src = ImpCastExprToType(Src.take(),
4186                              SrcTy->castAs<ComplexType>()->getElementType(),
4187                              CK_FloatingComplexToReal);
4188      return CK_FloatingToIntegral;
4189    case Type::STK_CPointer:
4190    case Type::STK_ObjCObjectPointer:
4191    case Type::STK_BlockPointer:
4192      llvm_unreachable("valid complex float->pointer cast?");
4193    case Type::STK_MemberPointer:
4194      llvm_unreachable("member pointer type in C");
4195    }
4196    break;
4197
4198  case Type::STK_IntegralComplex:
4199    switch (DestTy->getScalarTypeKind()) {
4200    case Type::STK_FloatingComplex:
4201      return CK_IntegralComplexToFloatingComplex;
4202    case Type::STK_IntegralComplex:
4203      return CK_IntegralComplexCast;
4204    case Type::STK_Integral: {
4205      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4206      if (Context.hasSameType(ET, DestTy))
4207        return CK_IntegralComplexToReal;
4208      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4209      return CK_IntegralCast;
4210    }
4211    case Type::STK_Bool:
4212      return CK_IntegralComplexToBoolean;
4213    case Type::STK_Floating:
4214      Src = ImpCastExprToType(Src.take(),
4215                              SrcTy->castAs<ComplexType>()->getElementType(),
4216                              CK_IntegralComplexToReal);
4217      return CK_IntegralToFloating;
4218    case Type::STK_CPointer:
4219    case Type::STK_ObjCObjectPointer:
4220    case Type::STK_BlockPointer:
4221      llvm_unreachable("valid complex int->pointer cast?");
4222    case Type::STK_MemberPointer:
4223      llvm_unreachable("member pointer type in C");
4224    }
4225    break;
4226  }
4227
4228  llvm_unreachable("Unhandled scalar cast");
4229}
4230
4231bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4232                           CastKind &Kind) {
4233  assert(VectorTy->isVectorType() && "Not a vector type!");
4234
4235  if (Ty->isVectorType() || Ty->isIntegerType()) {
4236    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4237      return Diag(R.getBegin(),
4238                  Ty->isVectorType() ?
4239                  diag::err_invalid_conversion_between_vectors :
4240                  diag::err_invalid_conversion_between_vector_and_integer)
4241        << VectorTy << Ty << R;
4242  } else
4243    return Diag(R.getBegin(),
4244                diag::err_invalid_conversion_between_vector_and_scalar)
4245      << VectorTy << Ty << R;
4246
4247  Kind = CK_BitCast;
4248  return false;
4249}
4250
4251ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4252                                    Expr *CastExpr, CastKind &Kind) {
4253  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4254
4255  QualType SrcTy = CastExpr->getType();
4256
4257  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4258  // an ExtVectorType.
4259  // In OpenCL, casts between vectors of different types are not allowed.
4260  // (See OpenCL 6.2).
4261  if (SrcTy->isVectorType()) {
4262    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4263        || (getLangOptions().OpenCL &&
4264            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4265      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4266        << DestTy << SrcTy << R;
4267      return ExprError();
4268    }
4269    Kind = CK_BitCast;
4270    return Owned(CastExpr);
4271  }
4272
4273  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4274  // conversion will take place first from scalar to elt type, and then
4275  // splat from elt type to vector.
4276  if (SrcTy->isPointerType())
4277    return Diag(R.getBegin(),
4278                diag::err_invalid_conversion_between_vector_and_scalar)
4279      << DestTy << SrcTy << R;
4280
4281  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4282  ExprResult CastExprRes = Owned(CastExpr);
4283  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4284  if (CastExprRes.isInvalid())
4285    return ExprError();
4286  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4287
4288  Kind = CK_VectorSplat;
4289  return Owned(CastExpr);
4290}
4291
4292ExprResult
4293Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4294                    Declarator &D, ParsedType &Ty,
4295                    SourceLocation RParenLoc, Expr *CastExpr) {
4296  assert(!D.isInvalidType() && (CastExpr != 0) &&
4297         "ActOnCastExpr(): missing type or expr");
4298
4299  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4300  if (D.isInvalidType())
4301    return ExprError();
4302
4303  if (getLangOptions().CPlusPlus) {
4304    // Check that there are no default arguments (C++ only).
4305    CheckExtraCXXDefaultArguments(D);
4306  }
4307
4308  checkUnusedDeclAttributes(D);
4309
4310  QualType castType = castTInfo->getType();
4311  Ty = CreateParsedType(castType, castTInfo);
4312
4313  bool isVectorLiteral = false;
4314
4315  // Check for an altivec or OpenCL literal,
4316  // i.e. all the elements are integer constants.
4317  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4318  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4319  if ((getLangOptions().AltiVec || getLangOptions().OpenCL)
4320       && castType->isVectorType() && (PE || PLE)) {
4321    if (PLE && PLE->getNumExprs() == 0) {
4322      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4323      return ExprError();
4324    }
4325    if (PE || PLE->getNumExprs() == 1) {
4326      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4327      if (!E->getType()->isVectorType())
4328        isVectorLiteral = true;
4329    }
4330    else
4331      isVectorLiteral = true;
4332  }
4333
4334  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4335  // then handle it as such.
4336  if (isVectorLiteral)
4337    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4338
4339  // If the Expr being casted is a ParenListExpr, handle it specially.
4340  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4341  // sequence of BinOp comma operators.
4342  if (isa<ParenListExpr>(CastExpr)) {
4343    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4344    if (Result.isInvalid()) return ExprError();
4345    CastExpr = Result.take();
4346  }
4347
4348  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4349}
4350
4351ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4352                                    SourceLocation RParenLoc, Expr *E,
4353                                    TypeSourceInfo *TInfo) {
4354  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4355         "Expected paren or paren list expression");
4356
4357  Expr **exprs;
4358  unsigned numExprs;
4359  Expr *subExpr;
4360  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4361    exprs = PE->getExprs();
4362    numExprs = PE->getNumExprs();
4363  } else {
4364    subExpr = cast<ParenExpr>(E)->getSubExpr();
4365    exprs = &subExpr;
4366    numExprs = 1;
4367  }
4368
4369  QualType Ty = TInfo->getType();
4370  assert(Ty->isVectorType() && "Expected vector type");
4371
4372  SmallVector<Expr *, 8> initExprs;
4373  const VectorType *VTy = Ty->getAs<VectorType>();
4374  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4375
4376  // '(...)' form of vector initialization in AltiVec: the number of
4377  // initializers must be one or must match the size of the vector.
4378  // If a single value is specified in the initializer then it will be
4379  // replicated to all the components of the vector
4380  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4381    // The number of initializers must be one or must match the size of the
4382    // vector. If a single value is specified in the initializer then it will
4383    // be replicated to all the components of the vector
4384    if (numExprs == 1) {
4385      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4386      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4387      if (Literal.isInvalid())
4388        return ExprError();
4389      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4390                                  PrepareScalarCast(Literal, ElemTy));
4391      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4392    }
4393    else if (numExprs < numElems) {
4394      Diag(E->getExprLoc(),
4395           diag::err_incorrect_number_of_vector_initializers);
4396      return ExprError();
4397    }
4398    else
4399      for (unsigned i = 0, e = numExprs; i != e; ++i)
4400        initExprs.push_back(exprs[i]);
4401  }
4402  else {
4403    // For OpenCL, when the number of initializers is a single value,
4404    // it will be replicated to all components of the vector.
4405    if (getLangOptions().OpenCL &&
4406        VTy->getVectorKind() == VectorType::GenericVector &&
4407        numExprs == 1) {
4408        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4409        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4410        if (Literal.isInvalid())
4411          return ExprError();
4412        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4413                                    PrepareScalarCast(Literal, ElemTy));
4414        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4415    }
4416
4417    for (unsigned i = 0, e = numExprs; i != e; ++i)
4418      initExprs.push_back(exprs[i]);
4419  }
4420  // FIXME: This means that pretty-printing the final AST will produce curly
4421  // braces instead of the original commas.
4422  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4423                                                   &initExprs[0],
4424                                                   initExprs.size(), RParenLoc);
4425  initE->setType(Ty);
4426  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4427}
4428
4429/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4430/// of comma binary operators.
4431ExprResult
4432Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4433  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4434  if (!E)
4435    return Owned(OrigExpr);
4436
4437  ExprResult Result(E->getExpr(0));
4438
4439  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4440    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4441                        E->getExpr(i));
4442
4443  if (Result.isInvalid()) return ExprError();
4444
4445  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4446}
4447
4448ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4449                                           SourceLocation R,
4450                                           MultiExprArg Val) {
4451  unsigned nexprs = Val.size();
4452  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4453  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4454  Expr *expr;
4455  if (nexprs == 1)
4456    expr = new (Context) ParenExpr(L, R, exprs[0]);
4457  else
4458    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R,
4459                                       exprs[nexprs-1]->getType());
4460  return Owned(expr);
4461}
4462
4463/// \brief Emit a specialized diagnostic when one expression is a null pointer
4464/// constant and the other is not a pointer.  Returns true if a diagnostic is
4465/// emitted.
4466bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4467                                      SourceLocation QuestionLoc) {
4468  Expr *NullExpr = LHSExpr;
4469  Expr *NonPointerExpr = RHSExpr;
4470  Expr::NullPointerConstantKind NullKind =
4471      NullExpr->isNullPointerConstant(Context,
4472                                      Expr::NPC_ValueDependentIsNotNull);
4473
4474  if (NullKind == Expr::NPCK_NotNull) {
4475    NullExpr = RHSExpr;
4476    NonPointerExpr = LHSExpr;
4477    NullKind =
4478        NullExpr->isNullPointerConstant(Context,
4479                                        Expr::NPC_ValueDependentIsNotNull);
4480  }
4481
4482  if (NullKind == Expr::NPCK_NotNull)
4483    return false;
4484
4485  if (NullKind == Expr::NPCK_ZeroInteger) {
4486    // In this case, check to make sure that we got here from a "NULL"
4487    // string in the source code.
4488    NullExpr = NullExpr->IgnoreParenImpCasts();
4489    SourceLocation loc = NullExpr->getExprLoc();
4490    if (!findMacroSpelling(loc, "NULL"))
4491      return false;
4492  }
4493
4494  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4495  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4496      << NonPointerExpr->getType() << DiagType
4497      << NonPointerExpr->getSourceRange();
4498  return true;
4499}
4500
4501/// \brief Return false if the condition expression is valid, true otherwise.
4502static bool checkCondition(Sema &S, Expr *Cond) {
4503  QualType CondTy = Cond->getType();
4504
4505  // C99 6.5.15p2
4506  if (CondTy->isScalarType()) return false;
4507
4508  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4509  if (S.getLangOptions().OpenCL && CondTy->isVectorType())
4510    return false;
4511
4512  // Emit the proper error message.
4513  S.Diag(Cond->getLocStart(), S.getLangOptions().OpenCL ?
4514                              diag::err_typecheck_cond_expect_scalar :
4515                              diag::err_typecheck_cond_expect_scalar_or_vector)
4516    << CondTy;
4517  return true;
4518}
4519
4520/// \brief Return false if the two expressions can be converted to a vector,
4521/// true otherwise
4522static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4523                                                    ExprResult &RHS,
4524                                                    QualType CondTy) {
4525  // Both operands should be of scalar type.
4526  if (!LHS.get()->getType()->isScalarType()) {
4527    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4528      << CondTy;
4529    return true;
4530  }
4531  if (!RHS.get()->getType()->isScalarType()) {
4532    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4533      << CondTy;
4534    return true;
4535  }
4536
4537  // Implicity convert these scalars to the type of the condition.
4538  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4539  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4540  return false;
4541}
4542
4543/// \brief Handle when one or both operands are void type.
4544static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4545                                         ExprResult &RHS) {
4546    Expr *LHSExpr = LHS.get();
4547    Expr *RHSExpr = RHS.get();
4548
4549    if (!LHSExpr->getType()->isVoidType())
4550      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4551        << RHSExpr->getSourceRange();
4552    if (!RHSExpr->getType()->isVoidType())
4553      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4554        << LHSExpr->getSourceRange();
4555    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4556    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4557    return S.Context.VoidTy;
4558}
4559
4560/// \brief Return false if the NullExpr can be promoted to PointerTy,
4561/// true otherwise.
4562static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4563                                        QualType PointerTy) {
4564  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4565      !NullExpr.get()->isNullPointerConstant(S.Context,
4566                                            Expr::NPC_ValueDependentIsNull))
4567    return true;
4568
4569  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4570  return false;
4571}
4572
4573/// \brief Checks compatibility between two pointers and return the resulting
4574/// type.
4575static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4576                                                     ExprResult &RHS,
4577                                                     SourceLocation Loc) {
4578  QualType LHSTy = LHS.get()->getType();
4579  QualType RHSTy = RHS.get()->getType();
4580
4581  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4582    // Two identical pointers types are always compatible.
4583    return LHSTy;
4584  }
4585
4586  QualType lhptee, rhptee;
4587
4588  // Get the pointee types.
4589  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4590    lhptee = LHSBTy->getPointeeType();
4591    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4592  } else {
4593    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4594    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4595  }
4596
4597  if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4598                                    rhptee.getUnqualifiedType())) {
4599    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4600      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4601      << RHS.get()->getSourceRange();
4602    // In this situation, we assume void* type. No especially good
4603    // reason, but this is what gcc does, and we do have to pick
4604    // to get a consistent AST.
4605    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4606    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4607    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4608    return incompatTy;
4609  }
4610
4611  // The pointer types are compatible.
4612  // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4613  // differently qualified versions of compatible types, the result type is
4614  // a pointer to an appropriately qualified version of the *composite*
4615  // type.
4616  // FIXME: Need to calculate the composite type.
4617  // FIXME: Need to add qualifiers
4618
4619  LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
4620  RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4621  return LHSTy;
4622}
4623
4624/// \brief Return the resulting type when the operands are both block pointers.
4625static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4626                                                          ExprResult &LHS,
4627                                                          ExprResult &RHS,
4628                                                          SourceLocation Loc) {
4629  QualType LHSTy = LHS.get()->getType();
4630  QualType RHSTy = RHS.get()->getType();
4631
4632  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4633    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4634      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4635      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4636      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4637      return destType;
4638    }
4639    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4640      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4641      << RHS.get()->getSourceRange();
4642    return QualType();
4643  }
4644
4645  // We have 2 block pointer types.
4646  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4647}
4648
4649/// \brief Return the resulting type when the operands are both pointers.
4650static QualType
4651checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4652                                            ExprResult &RHS,
4653                                            SourceLocation Loc) {
4654  // get the pointer types
4655  QualType LHSTy = LHS.get()->getType();
4656  QualType RHSTy = RHS.get()->getType();
4657
4658  // get the "pointed to" types
4659  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4660  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4661
4662  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4663  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4664    // Figure out necessary qualifiers (C99 6.5.15p6)
4665    QualType destPointee
4666      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4667    QualType destType = S.Context.getPointerType(destPointee);
4668    // Add qualifiers if necessary.
4669    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4670    // Promote to void*.
4671    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4672    return destType;
4673  }
4674  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4675    QualType destPointee
4676      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4677    QualType destType = S.Context.getPointerType(destPointee);
4678    // Add qualifiers if necessary.
4679    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4680    // Promote to void*.
4681    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4682    return destType;
4683  }
4684
4685  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4686}
4687
4688/// \brief Return false if the first expression is not an integer and the second
4689/// expression is not a pointer, true otherwise.
4690static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4691                                        Expr* PointerExpr, SourceLocation Loc,
4692                                        bool IsIntFirstExpr) {
4693  if (!PointerExpr->getType()->isPointerType() ||
4694      !Int.get()->getType()->isIntegerType())
4695    return false;
4696
4697  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4698  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4699
4700  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4701    << Expr1->getType() << Expr2->getType()
4702    << Expr1->getSourceRange() << Expr2->getSourceRange();
4703  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4704                            CK_IntegralToPointer);
4705  return true;
4706}
4707
4708/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4709/// In that case, LHS = cond.
4710/// C99 6.5.15
4711QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4712                                        ExprResult &RHS, ExprValueKind &VK,
4713                                        ExprObjectKind &OK,
4714                                        SourceLocation QuestionLoc) {
4715
4716  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4717  if (!LHSResult.isUsable()) return QualType();
4718  LHS = move(LHSResult);
4719
4720  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4721  if (!RHSResult.isUsable()) return QualType();
4722  RHS = move(RHSResult);
4723
4724  // C++ is sufficiently different to merit its own checker.
4725  if (getLangOptions().CPlusPlus)
4726    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4727
4728  VK = VK_RValue;
4729  OK = OK_Ordinary;
4730
4731  Cond = UsualUnaryConversions(Cond.take());
4732  if (Cond.isInvalid())
4733    return QualType();
4734  LHS = UsualUnaryConversions(LHS.take());
4735  if (LHS.isInvalid())
4736    return QualType();
4737  RHS = UsualUnaryConversions(RHS.take());
4738  if (RHS.isInvalid())
4739    return QualType();
4740
4741  QualType CondTy = Cond.get()->getType();
4742  QualType LHSTy = LHS.get()->getType();
4743  QualType RHSTy = RHS.get()->getType();
4744
4745  // first, check the condition.
4746  if (checkCondition(*this, Cond.get()))
4747    return QualType();
4748
4749  // Now check the two expressions.
4750  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4751    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4752
4753  // OpenCL: If the condition is a vector, and both operands are scalar,
4754  // attempt to implicity convert them to the vector type to act like the
4755  // built in select.
4756  if (getLangOptions().OpenCL && CondTy->isVectorType())
4757    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4758      return QualType();
4759
4760  // If both operands have arithmetic type, do the usual arithmetic conversions
4761  // to find a common type: C99 6.5.15p3,5.
4762  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4763    UsualArithmeticConversions(LHS, RHS);
4764    if (LHS.isInvalid() || RHS.isInvalid())
4765      return QualType();
4766    return LHS.get()->getType();
4767  }
4768
4769  // If both operands are the same structure or union type, the result is that
4770  // type.
4771  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4772    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4773      if (LHSRT->getDecl() == RHSRT->getDecl())
4774        // "If both the operands have structure or union type, the result has
4775        // that type."  This implies that CV qualifiers are dropped.
4776        return LHSTy.getUnqualifiedType();
4777    // FIXME: Type of conditional expression must be complete in C mode.
4778  }
4779
4780  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4781  // The following || allows only one side to be void (a GCC-ism).
4782  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4783    return checkConditionalVoidType(*this, LHS, RHS);
4784  }
4785
4786  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4787  // the type of the other operand."
4788  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4789  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4790
4791  // All objective-c pointer type analysis is done here.
4792  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4793                                                        QuestionLoc);
4794  if (LHS.isInvalid() || RHS.isInvalid())
4795    return QualType();
4796  if (!compositeType.isNull())
4797    return compositeType;
4798
4799
4800  // Handle block pointer types.
4801  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4802    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4803                                                     QuestionLoc);
4804
4805  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4806  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4807    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4808                                                       QuestionLoc);
4809
4810  // GCC compatibility: soften pointer/integer mismatch.  Note that
4811  // null pointers have been filtered out by this point.
4812  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4813      /*isIntFirstExpr=*/true))
4814    return RHSTy;
4815  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4816      /*isIntFirstExpr=*/false))
4817    return LHSTy;
4818
4819  // Emit a better diagnostic if one of the expressions is a null pointer
4820  // constant and the other is not a pointer type. In this case, the user most
4821  // likely forgot to take the address of the other expression.
4822  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4823    return QualType();
4824
4825  // Otherwise, the operands are not compatible.
4826  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4827    << LHSTy << RHSTy << LHS.get()->getSourceRange()
4828    << RHS.get()->getSourceRange();
4829  return QualType();
4830}
4831
4832/// FindCompositeObjCPointerType - Helper method to find composite type of
4833/// two objective-c pointer types of the two input expressions.
4834QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4835                                            SourceLocation QuestionLoc) {
4836  QualType LHSTy = LHS.get()->getType();
4837  QualType RHSTy = RHS.get()->getType();
4838
4839  // Handle things like Class and struct objc_class*.  Here we case the result
4840  // to the pseudo-builtin, because that will be implicitly cast back to the
4841  // redefinition type if an attempt is made to access its fields.
4842  if (LHSTy->isObjCClassType() &&
4843      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4844    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4845    return LHSTy;
4846  }
4847  if (RHSTy->isObjCClassType() &&
4848      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4849    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4850    return RHSTy;
4851  }
4852  // And the same for struct objc_object* / id
4853  if (LHSTy->isObjCIdType() &&
4854      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4855    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4856    return LHSTy;
4857  }
4858  if (RHSTy->isObjCIdType() &&
4859      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
4860    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4861    return RHSTy;
4862  }
4863  // And the same for struct objc_selector* / SEL
4864  if (Context.isObjCSelType(LHSTy) &&
4865      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
4866    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4867    return LHSTy;
4868  }
4869  if (Context.isObjCSelType(RHSTy) &&
4870      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
4871    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4872    return RHSTy;
4873  }
4874  // Check constraints for Objective-C object pointers types.
4875  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4876
4877    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4878      // Two identical object pointer types are always compatible.
4879      return LHSTy;
4880    }
4881    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
4882    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
4883    QualType compositeType = LHSTy;
4884
4885    // If both operands are interfaces and either operand can be
4886    // assigned to the other, use that type as the composite
4887    // type. This allows
4888    //   xxx ? (A*) a : (B*) b
4889    // where B is a subclass of A.
4890    //
4891    // Additionally, as for assignment, if either type is 'id'
4892    // allow silent coercion. Finally, if the types are
4893    // incompatible then make sure to use 'id' as the composite
4894    // type so the result is acceptable for sending messages to.
4895
4896    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4897    // It could return the composite type.
4898    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4899      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4900    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4901      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4902    } else if ((LHSTy->isObjCQualifiedIdType() ||
4903                RHSTy->isObjCQualifiedIdType()) &&
4904               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4905      // Need to handle "id<xx>" explicitly.
4906      // GCC allows qualified id and any Objective-C type to devolve to
4907      // id. Currently localizing to here until clear this should be
4908      // part of ObjCQualifiedIdTypesAreCompatible.
4909      compositeType = Context.getObjCIdType();
4910    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4911      compositeType = Context.getObjCIdType();
4912    } else if (!(compositeType =
4913                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4914      ;
4915    else {
4916      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4917      << LHSTy << RHSTy
4918      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4919      QualType incompatTy = Context.getObjCIdType();
4920      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4921      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4922      return incompatTy;
4923    }
4924    // The object pointer types are compatible.
4925    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4926    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4927    return compositeType;
4928  }
4929  // Check Objective-C object pointer types and 'void *'
4930  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4931    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4932    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4933    QualType destPointee
4934    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4935    QualType destType = Context.getPointerType(destPointee);
4936    // Add qualifiers if necessary.
4937    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4938    // Promote to void*.
4939    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4940    return destType;
4941  }
4942  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4943    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4944    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4945    QualType destPointee
4946    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4947    QualType destType = Context.getPointerType(destPointee);
4948    // Add qualifiers if necessary.
4949    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4950    // Promote to void*.
4951    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4952    return destType;
4953  }
4954  return QualType();
4955}
4956
4957/// SuggestParentheses - Emit a note with a fixit hint that wraps
4958/// ParenRange in parentheses.
4959static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4960                               const PartialDiagnostic &Note,
4961                               SourceRange ParenRange) {
4962  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4963  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4964      EndLoc.isValid()) {
4965    Self.Diag(Loc, Note)
4966      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4967      << FixItHint::CreateInsertion(EndLoc, ")");
4968  } else {
4969    // We can't display the parentheses, so just show the bare note.
4970    Self.Diag(Loc, Note) << ParenRange;
4971  }
4972}
4973
4974static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4975  return Opc >= BO_Mul && Opc <= BO_Shr;
4976}
4977
4978/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
4979/// expression, either using a built-in or overloaded operator,
4980/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
4981/// expression.
4982static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
4983                                   Expr **RHSExprs) {
4984  // Don't strip parenthesis: we should not warn if E is in parenthesis.
4985  E = E->IgnoreImpCasts();
4986  E = E->IgnoreConversionOperator();
4987  E = E->IgnoreImpCasts();
4988
4989  // Built-in binary operator.
4990  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
4991    if (IsArithmeticOp(OP->getOpcode())) {
4992      *Opcode = OP->getOpcode();
4993      *RHSExprs = OP->getRHS();
4994      return true;
4995    }
4996  }
4997
4998  // Overloaded operator.
4999  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5000    if (Call->getNumArgs() != 2)
5001      return false;
5002
5003    // Make sure this is really a binary operator that is safe to pass into
5004    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5005    OverloadedOperatorKind OO = Call->getOperator();
5006    if (OO < OO_Plus || OO > OO_Arrow)
5007      return false;
5008
5009    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5010    if (IsArithmeticOp(OpKind)) {
5011      *Opcode = OpKind;
5012      *RHSExprs = Call->getArg(1);
5013      return true;
5014    }
5015  }
5016
5017  return false;
5018}
5019
5020static bool IsLogicOp(BinaryOperatorKind Opc) {
5021  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5022}
5023
5024/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5025/// or is a logical expression such as (x==y) which has int type, but is
5026/// commonly interpreted as boolean.
5027static bool ExprLooksBoolean(Expr *E) {
5028  E = E->IgnoreParenImpCasts();
5029
5030  if (E->getType()->isBooleanType())
5031    return true;
5032  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5033    return IsLogicOp(OP->getOpcode());
5034  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5035    return OP->getOpcode() == UO_LNot;
5036
5037  return false;
5038}
5039
5040/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5041/// and binary operator are mixed in a way that suggests the programmer assumed
5042/// the conditional operator has higher precedence, for example:
5043/// "int x = a + someBinaryCondition ? 1 : 2".
5044static void DiagnoseConditionalPrecedence(Sema &Self,
5045                                          SourceLocation OpLoc,
5046                                          Expr *Condition,
5047                                          Expr *LHSExpr,
5048                                          Expr *RHSExpr) {
5049  BinaryOperatorKind CondOpcode;
5050  Expr *CondRHS;
5051
5052  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5053    return;
5054  if (!ExprLooksBoolean(CondRHS))
5055    return;
5056
5057  // The condition is an arithmetic binary expression, with a right-
5058  // hand side that looks boolean, so warn.
5059
5060  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5061      << Condition->getSourceRange()
5062      << BinaryOperator::getOpcodeStr(CondOpcode);
5063
5064  SuggestParentheses(Self, OpLoc,
5065    Self.PDiag(diag::note_precedence_conditional_silence)
5066      << BinaryOperator::getOpcodeStr(CondOpcode),
5067    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5068
5069  SuggestParentheses(Self, OpLoc,
5070    Self.PDiag(diag::note_precedence_conditional_first),
5071    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5072}
5073
5074/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5075/// in the case of a the GNU conditional expr extension.
5076ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5077                                    SourceLocation ColonLoc,
5078                                    Expr *CondExpr, Expr *LHSExpr,
5079                                    Expr *RHSExpr) {
5080  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5081  // was the condition.
5082  OpaqueValueExpr *opaqueValue = 0;
5083  Expr *commonExpr = 0;
5084  if (LHSExpr == 0) {
5085    commonExpr = CondExpr;
5086
5087    // We usually want to apply unary conversions *before* saving, except
5088    // in the special case of a C++ l-value conditional.
5089    if (!(getLangOptions().CPlusPlus
5090          && !commonExpr->isTypeDependent()
5091          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5092          && commonExpr->isGLValue()
5093          && commonExpr->isOrdinaryOrBitFieldObject()
5094          && RHSExpr->isOrdinaryOrBitFieldObject()
5095          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5096      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5097      if (commonRes.isInvalid())
5098        return ExprError();
5099      commonExpr = commonRes.take();
5100    }
5101
5102    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5103                                                commonExpr->getType(),
5104                                                commonExpr->getValueKind(),
5105                                                commonExpr->getObjectKind());
5106    LHSExpr = CondExpr = opaqueValue;
5107  }
5108
5109  ExprValueKind VK = VK_RValue;
5110  ExprObjectKind OK = OK_Ordinary;
5111  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5112  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5113                                             VK, OK, QuestionLoc);
5114  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5115      RHS.isInvalid())
5116    return ExprError();
5117
5118  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5119                                RHS.get());
5120
5121  if (!commonExpr)
5122    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5123                                                   LHS.take(), ColonLoc,
5124                                                   RHS.take(), result, VK, OK));
5125
5126  return Owned(new (Context)
5127    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5128                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5129                              OK));
5130}
5131
5132// checkPointerTypesForAssignment - This is a very tricky routine (despite
5133// being closely modeled after the C99 spec:-). The odd characteristic of this
5134// routine is it effectively iqnores the qualifiers on the top level pointee.
5135// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5136// FIXME: add a couple examples in this comment.
5137static Sema::AssignConvertType
5138checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5139  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5140  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5141
5142  // get the "pointed to" type (ignoring qualifiers at the top level)
5143  const Type *lhptee, *rhptee;
5144  Qualifiers lhq, rhq;
5145  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5146  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5147
5148  Sema::AssignConvertType ConvTy = Sema::Compatible;
5149
5150  // C99 6.5.16.1p1: This following citation is common to constraints
5151  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5152  // qualifiers of the type *pointed to* by the right;
5153  Qualifiers lq;
5154
5155  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5156  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5157      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5158    // Ignore lifetime for further calculation.
5159    lhq.removeObjCLifetime();
5160    rhq.removeObjCLifetime();
5161  }
5162
5163  if (!lhq.compatiblyIncludes(rhq)) {
5164    // Treat address-space mismatches as fatal.  TODO: address subspaces
5165    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5166      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5167
5168    // It's okay to add or remove GC or lifetime qualifiers when converting to
5169    // and from void*.
5170    else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime()
5171                        .compatiblyIncludes(
5172                                rhq.withoutObjCGCAttr().withoutObjCGLifetime())
5173             && (lhptee->isVoidType() || rhptee->isVoidType()))
5174      ; // keep old
5175
5176    // Treat lifetime mismatches as fatal.
5177    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5178      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5179
5180    // For GCC compatibility, other qualifier mismatches are treated
5181    // as still compatible in C.
5182    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5183  }
5184
5185  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5186  // incomplete type and the other is a pointer to a qualified or unqualified
5187  // version of void...
5188  if (lhptee->isVoidType()) {
5189    if (rhptee->isIncompleteOrObjectType())
5190      return ConvTy;
5191
5192    // As an extension, we allow cast to/from void* to function pointer.
5193    assert(rhptee->isFunctionType());
5194    return Sema::FunctionVoidPointer;
5195  }
5196
5197  if (rhptee->isVoidType()) {
5198    if (lhptee->isIncompleteOrObjectType())
5199      return ConvTy;
5200
5201    // As an extension, we allow cast to/from void* to function pointer.
5202    assert(lhptee->isFunctionType());
5203    return Sema::FunctionVoidPointer;
5204  }
5205
5206  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5207  // unqualified versions of compatible types, ...
5208  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5209  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5210    // Check if the pointee types are compatible ignoring the sign.
5211    // We explicitly check for char so that we catch "char" vs
5212    // "unsigned char" on systems where "char" is unsigned.
5213    if (lhptee->isCharType())
5214      ltrans = S.Context.UnsignedCharTy;
5215    else if (lhptee->hasSignedIntegerRepresentation())
5216      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5217
5218    if (rhptee->isCharType())
5219      rtrans = S.Context.UnsignedCharTy;
5220    else if (rhptee->hasSignedIntegerRepresentation())
5221      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5222
5223    if (ltrans == rtrans) {
5224      // Types are compatible ignoring the sign. Qualifier incompatibility
5225      // takes priority over sign incompatibility because the sign
5226      // warning can be disabled.
5227      if (ConvTy != Sema::Compatible)
5228        return ConvTy;
5229
5230      return Sema::IncompatiblePointerSign;
5231    }
5232
5233    // If we are a multi-level pointer, it's possible that our issue is simply
5234    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5235    // the eventual target type is the same and the pointers have the same
5236    // level of indirection, this must be the issue.
5237    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5238      do {
5239        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5240        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5241      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5242
5243      if (lhptee == rhptee)
5244        return Sema::IncompatibleNestedPointerQualifiers;
5245    }
5246
5247    // General pointer incompatibility takes priority over qualifiers.
5248    return Sema::IncompatiblePointer;
5249  }
5250  if (!S.getLangOptions().CPlusPlus &&
5251      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5252    return Sema::IncompatiblePointer;
5253  return ConvTy;
5254}
5255
5256/// checkBlockPointerTypesForAssignment - This routine determines whether two
5257/// block pointer types are compatible or whether a block and normal pointer
5258/// are compatible. It is more restrict than comparing two function pointer
5259// types.
5260static Sema::AssignConvertType
5261checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5262                                    QualType RHSType) {
5263  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5264  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5265
5266  QualType lhptee, rhptee;
5267
5268  // get the "pointed to" type (ignoring qualifiers at the top level)
5269  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5270  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5271
5272  // In C++, the types have to match exactly.
5273  if (S.getLangOptions().CPlusPlus)
5274    return Sema::IncompatibleBlockPointer;
5275
5276  Sema::AssignConvertType ConvTy = Sema::Compatible;
5277
5278  // For blocks we enforce that qualifiers are identical.
5279  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5280    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5281
5282  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5283    return Sema::IncompatibleBlockPointer;
5284
5285  return ConvTy;
5286}
5287
5288/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5289/// for assignment compatibility.
5290static Sema::AssignConvertType
5291checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5292                                   QualType RHSType) {
5293  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5294  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5295
5296  if (LHSType->isObjCBuiltinType()) {
5297    // Class is not compatible with ObjC object pointers.
5298    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5299        !RHSType->isObjCQualifiedClassType())
5300      return Sema::IncompatiblePointer;
5301    return Sema::Compatible;
5302  }
5303  if (RHSType->isObjCBuiltinType()) {
5304    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5305        !LHSType->isObjCQualifiedClassType())
5306      return Sema::IncompatiblePointer;
5307    return Sema::Compatible;
5308  }
5309  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5310  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5311
5312  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
5313    return Sema::CompatiblePointerDiscardsQualifiers;
5314
5315  if (S.Context.typesAreCompatible(LHSType, RHSType))
5316    return Sema::Compatible;
5317  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5318    return Sema::IncompatibleObjCQualifiedId;
5319  return Sema::IncompatiblePointer;
5320}
5321
5322Sema::AssignConvertType
5323Sema::CheckAssignmentConstraints(SourceLocation Loc,
5324                                 QualType LHSType, QualType RHSType) {
5325  // Fake up an opaque expression.  We don't actually care about what
5326  // cast operations are required, so if CheckAssignmentConstraints
5327  // adds casts to this they'll be wasted, but fortunately that doesn't
5328  // usually happen on valid code.
5329  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5330  ExprResult RHSPtr = &RHSExpr;
5331  CastKind K = CK_Invalid;
5332
5333  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5334}
5335
5336/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5337/// has code to accommodate several GCC extensions when type checking
5338/// pointers. Here are some objectionable examples that GCC considers warnings:
5339///
5340///  int a, *pint;
5341///  short *pshort;
5342///  struct foo *pfoo;
5343///
5344///  pint = pshort; // warning: assignment from incompatible pointer type
5345///  a = pint; // warning: assignment makes integer from pointer without a cast
5346///  pint = a; // warning: assignment makes pointer from integer without a cast
5347///  pint = pfoo; // warning: assignment from incompatible pointer type
5348///
5349/// As a result, the code for dealing with pointers is more complex than the
5350/// C99 spec dictates.
5351///
5352/// Sets 'Kind' for any result kind except Incompatible.
5353Sema::AssignConvertType
5354Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5355                                 CastKind &Kind) {
5356  QualType RHSType = RHS.get()->getType();
5357  QualType OrigLHSType = LHSType;
5358
5359  // Get canonical types.  We're not formatting these types, just comparing
5360  // them.
5361  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5362  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5363
5364  // We can't do assignment from/to atomics yet.
5365  if (LHSType->isAtomicType())
5366    return Incompatible;
5367
5368  // Common case: no conversion required.
5369  if (LHSType == RHSType) {
5370    Kind = CK_NoOp;
5371    return Compatible;
5372  }
5373
5374  // If the left-hand side is a reference type, then we are in a
5375  // (rare!) case where we've allowed the use of references in C,
5376  // e.g., as a parameter type in a built-in function. In this case,
5377  // just make sure that the type referenced is compatible with the
5378  // right-hand side type. The caller is responsible for adjusting
5379  // LHSType so that the resulting expression does not have reference
5380  // type.
5381  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5382    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5383      Kind = CK_LValueBitCast;
5384      return Compatible;
5385    }
5386    return Incompatible;
5387  }
5388
5389  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5390  // to the same ExtVector type.
5391  if (LHSType->isExtVectorType()) {
5392    if (RHSType->isExtVectorType())
5393      return Incompatible;
5394    if (RHSType->isArithmeticType()) {
5395      // CK_VectorSplat does T -> vector T, so first cast to the
5396      // element type.
5397      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5398      if (elType != RHSType) {
5399        Kind = PrepareScalarCast(RHS, elType);
5400        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5401      }
5402      Kind = CK_VectorSplat;
5403      return Compatible;
5404    }
5405  }
5406
5407  // Conversions to or from vector type.
5408  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5409    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5410      // Allow assignments of an AltiVec vector type to an equivalent GCC
5411      // vector type and vice versa
5412      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5413        Kind = CK_BitCast;
5414        return Compatible;
5415      }
5416
5417      // If we are allowing lax vector conversions, and LHS and RHS are both
5418      // vectors, the total size only needs to be the same. This is a bitcast;
5419      // no bits are changed but the result type is different.
5420      if (getLangOptions().LaxVectorConversions &&
5421          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5422        Kind = CK_BitCast;
5423        return IncompatibleVectors;
5424      }
5425    }
5426    return Incompatible;
5427  }
5428
5429  // Arithmetic conversions.
5430  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5431      !(getLangOptions().CPlusPlus && LHSType->isEnumeralType())) {
5432    Kind = PrepareScalarCast(RHS, LHSType);
5433    return Compatible;
5434  }
5435
5436  // Conversions to normal pointers.
5437  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5438    // U* -> T*
5439    if (isa<PointerType>(RHSType)) {
5440      Kind = CK_BitCast;
5441      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5442    }
5443
5444    // int -> T*
5445    if (RHSType->isIntegerType()) {
5446      Kind = CK_IntegralToPointer; // FIXME: null?
5447      return IntToPointer;
5448    }
5449
5450    // C pointers are not compatible with ObjC object pointers,
5451    // with two exceptions:
5452    if (isa<ObjCObjectPointerType>(RHSType)) {
5453      //  - conversions to void*
5454      if (LHSPointer->getPointeeType()->isVoidType()) {
5455        Kind = CK_BitCast;
5456        return Compatible;
5457      }
5458
5459      //  - conversions from 'Class' to the redefinition type
5460      if (RHSType->isObjCClassType() &&
5461          Context.hasSameType(LHSType,
5462                              Context.getObjCClassRedefinitionType())) {
5463        Kind = CK_BitCast;
5464        return Compatible;
5465      }
5466
5467      Kind = CK_BitCast;
5468      return IncompatiblePointer;
5469    }
5470
5471    // U^ -> void*
5472    if (RHSType->getAs<BlockPointerType>()) {
5473      if (LHSPointer->getPointeeType()->isVoidType()) {
5474        Kind = CK_BitCast;
5475        return Compatible;
5476      }
5477    }
5478
5479    return Incompatible;
5480  }
5481
5482  // Conversions to block pointers.
5483  if (isa<BlockPointerType>(LHSType)) {
5484    // U^ -> T^
5485    if (RHSType->isBlockPointerType()) {
5486      Kind = CK_BitCast;
5487      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5488    }
5489
5490    // int or null -> T^
5491    if (RHSType->isIntegerType()) {
5492      Kind = CK_IntegralToPointer; // FIXME: null
5493      return IntToBlockPointer;
5494    }
5495
5496    // id -> T^
5497    if (getLangOptions().ObjC1 && RHSType->isObjCIdType()) {
5498      Kind = CK_AnyPointerToBlockPointerCast;
5499      return Compatible;
5500    }
5501
5502    // void* -> T^
5503    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5504      if (RHSPT->getPointeeType()->isVoidType()) {
5505        Kind = CK_AnyPointerToBlockPointerCast;
5506        return Compatible;
5507      }
5508
5509    return Incompatible;
5510  }
5511
5512  // Conversions to Objective-C pointers.
5513  if (isa<ObjCObjectPointerType>(LHSType)) {
5514    // A* -> B*
5515    if (RHSType->isObjCObjectPointerType()) {
5516      Kind = CK_BitCast;
5517      Sema::AssignConvertType result =
5518        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5519      if (getLangOptions().ObjCAutoRefCount &&
5520          result == Compatible &&
5521          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5522        result = IncompatibleObjCWeakRef;
5523      return result;
5524    }
5525
5526    // int or null -> A*
5527    if (RHSType->isIntegerType()) {
5528      Kind = CK_IntegralToPointer; // FIXME: null
5529      return IntToPointer;
5530    }
5531
5532    // In general, C pointers are not compatible with ObjC object pointers,
5533    // with two exceptions:
5534    if (isa<PointerType>(RHSType)) {
5535      Kind = CK_CPointerToObjCPointerCast;
5536
5537      //  - conversions from 'void*'
5538      if (RHSType->isVoidPointerType()) {
5539        return Compatible;
5540      }
5541
5542      //  - conversions to 'Class' from its redefinition type
5543      if (LHSType->isObjCClassType() &&
5544          Context.hasSameType(RHSType,
5545                              Context.getObjCClassRedefinitionType())) {
5546        return Compatible;
5547      }
5548
5549      return IncompatiblePointer;
5550    }
5551
5552    // T^ -> A*
5553    if (RHSType->isBlockPointerType()) {
5554      maybeExtendBlockObject(*this, RHS);
5555      Kind = CK_BlockPointerToObjCPointerCast;
5556      return Compatible;
5557    }
5558
5559    return Incompatible;
5560  }
5561
5562  // Conversions from pointers that are not covered by the above.
5563  if (isa<PointerType>(RHSType)) {
5564    // T* -> _Bool
5565    if (LHSType == Context.BoolTy) {
5566      Kind = CK_PointerToBoolean;
5567      return Compatible;
5568    }
5569
5570    // T* -> int
5571    if (LHSType->isIntegerType()) {
5572      Kind = CK_PointerToIntegral;
5573      return PointerToInt;
5574    }
5575
5576    return Incompatible;
5577  }
5578
5579  // Conversions from Objective-C pointers that are not covered by the above.
5580  if (isa<ObjCObjectPointerType>(RHSType)) {
5581    // T* -> _Bool
5582    if (LHSType == Context.BoolTy) {
5583      Kind = CK_PointerToBoolean;
5584      return Compatible;
5585    }
5586
5587    // T* -> int
5588    if (LHSType->isIntegerType()) {
5589      Kind = CK_PointerToIntegral;
5590      return PointerToInt;
5591    }
5592
5593    return Incompatible;
5594  }
5595
5596  // struct A -> struct B
5597  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5598    if (Context.typesAreCompatible(LHSType, RHSType)) {
5599      Kind = CK_NoOp;
5600      return Compatible;
5601    }
5602  }
5603
5604  return Incompatible;
5605}
5606
5607/// \brief Constructs a transparent union from an expression that is
5608/// used to initialize the transparent union.
5609static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5610                                      ExprResult &EResult, QualType UnionType,
5611                                      FieldDecl *Field) {
5612  // Build an initializer list that designates the appropriate member
5613  // of the transparent union.
5614  Expr *E = EResult.take();
5615  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5616                                                   &E, 1,
5617                                                   SourceLocation());
5618  Initializer->setType(UnionType);
5619  Initializer->setInitializedFieldInUnion(Field);
5620
5621  // Build a compound literal constructing a value of the transparent
5622  // union type from this initializer list.
5623  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5624  EResult = S.Owned(
5625    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5626                                VK_RValue, Initializer, false));
5627}
5628
5629Sema::AssignConvertType
5630Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5631                                               ExprResult &RHS) {
5632  QualType RHSType = RHS.get()->getType();
5633
5634  // If the ArgType is a Union type, we want to handle a potential
5635  // transparent_union GCC extension.
5636  const RecordType *UT = ArgType->getAsUnionType();
5637  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5638    return Incompatible;
5639
5640  // The field to initialize within the transparent union.
5641  RecordDecl *UD = UT->getDecl();
5642  FieldDecl *InitField = 0;
5643  // It's compatible if the expression matches any of the fields.
5644  for (RecordDecl::field_iterator it = UD->field_begin(),
5645         itend = UD->field_end();
5646       it != itend; ++it) {
5647    if (it->getType()->isPointerType()) {
5648      // If the transparent union contains a pointer type, we allow:
5649      // 1) void pointer
5650      // 2) null pointer constant
5651      if (RHSType->isPointerType())
5652        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5653          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5654          InitField = *it;
5655          break;
5656        }
5657
5658      if (RHS.get()->isNullPointerConstant(Context,
5659                                           Expr::NPC_ValueDependentIsNull)) {
5660        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5661                                CK_NullToPointer);
5662        InitField = *it;
5663        break;
5664      }
5665    }
5666
5667    CastKind Kind = CK_Invalid;
5668    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5669          == Compatible) {
5670      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5671      InitField = *it;
5672      break;
5673    }
5674  }
5675
5676  if (!InitField)
5677    return Incompatible;
5678
5679  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5680  return Compatible;
5681}
5682
5683Sema::AssignConvertType
5684Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5685                                       bool Diagnose) {
5686  if (getLangOptions().CPlusPlus) {
5687    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5688      // C++ 5.17p3: If the left operand is not of class type, the
5689      // expression is implicitly converted (C++ 4) to the
5690      // cv-unqualified type of the left operand.
5691      ExprResult Res;
5692      if (Diagnose) {
5693        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5694                                        AA_Assigning);
5695      } else {
5696        ImplicitConversionSequence ICS =
5697            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5698                                  /*SuppressUserConversions=*/false,
5699                                  /*AllowExplicit=*/false,
5700                                  /*InOverloadResolution=*/false,
5701                                  /*CStyle=*/false,
5702                                  /*AllowObjCWritebackConversion=*/false);
5703        if (ICS.isFailure())
5704          return Incompatible;
5705        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5706                                        ICS, AA_Assigning);
5707      }
5708      if (Res.isInvalid())
5709        return Incompatible;
5710      Sema::AssignConvertType result = Compatible;
5711      if (getLangOptions().ObjCAutoRefCount &&
5712          !CheckObjCARCUnavailableWeakConversion(LHSType,
5713                                                 RHS.get()->getType()))
5714        result = IncompatibleObjCWeakRef;
5715      RHS = move(Res);
5716      return result;
5717    }
5718
5719    // FIXME: Currently, we fall through and treat C++ classes like C
5720    // structures.
5721    // FIXME: We also fall through for atomics; not sure what should
5722    // happen there, though.
5723  }
5724
5725  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5726  // a null pointer constant.
5727  if ((LHSType->isPointerType() ||
5728       LHSType->isObjCObjectPointerType() ||
5729       LHSType->isBlockPointerType())
5730      && RHS.get()->isNullPointerConstant(Context,
5731                                          Expr::NPC_ValueDependentIsNull)) {
5732    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5733    return Compatible;
5734  }
5735
5736  // This check seems unnatural, however it is necessary to ensure the proper
5737  // conversion of functions/arrays. If the conversion were done for all
5738  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5739  // expressions that suppress this implicit conversion (&, sizeof).
5740  //
5741  // Suppress this for references: C++ 8.5.3p5.
5742  if (!LHSType->isReferenceType()) {
5743    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5744    if (RHS.isInvalid())
5745      return Incompatible;
5746  }
5747
5748  CastKind Kind = CK_Invalid;
5749  Sema::AssignConvertType result =
5750    CheckAssignmentConstraints(LHSType, RHS, Kind);
5751
5752  // C99 6.5.16.1p2: The value of the right operand is converted to the
5753  // type of the assignment expression.
5754  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5755  // so that we can use references in built-in functions even in C.
5756  // The getNonReferenceType() call makes sure that the resulting expression
5757  // does not have reference type.
5758  if (result != Incompatible && RHS.get()->getType() != LHSType)
5759    RHS = ImpCastExprToType(RHS.take(),
5760                            LHSType.getNonLValueExprType(Context), Kind);
5761  return result;
5762}
5763
5764QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5765                               ExprResult &RHS) {
5766  Diag(Loc, diag::err_typecheck_invalid_operands)
5767    << LHS.get()->getType() << RHS.get()->getType()
5768    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5769  return QualType();
5770}
5771
5772QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5773                                   SourceLocation Loc, bool IsCompAssign) {
5774  if (!IsCompAssign) {
5775    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5776    if (LHS.isInvalid())
5777      return QualType();
5778  }
5779  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5780  if (RHS.isInvalid())
5781    return QualType();
5782
5783  // For conversion purposes, we ignore any qualifiers.
5784  // For example, "const float" and "float" are equivalent.
5785  QualType LHSType =
5786    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5787  QualType RHSType =
5788    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5789
5790  // If the vector types are identical, return.
5791  if (LHSType == RHSType)
5792    return LHSType;
5793
5794  // Handle the case of equivalent AltiVec and GCC vector types
5795  if (LHSType->isVectorType() && RHSType->isVectorType() &&
5796      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5797    if (LHSType->isExtVectorType()) {
5798      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5799      return LHSType;
5800    }
5801
5802    if (!IsCompAssign)
5803      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5804    return RHSType;
5805  }
5806
5807  if (getLangOptions().LaxVectorConversions &&
5808      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5809    // If we are allowing lax vector conversions, and LHS and RHS are both
5810    // vectors, the total size only needs to be the same. This is a
5811    // bitcast; no bits are changed but the result type is different.
5812    // FIXME: Should we really be allowing this?
5813    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5814    return LHSType;
5815  }
5816
5817  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5818  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5819  bool swapped = false;
5820  if (RHSType->isExtVectorType() && !IsCompAssign) {
5821    swapped = true;
5822    std::swap(RHS, LHS);
5823    std::swap(RHSType, LHSType);
5824  }
5825
5826  // Handle the case of an ext vector and scalar.
5827  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5828    QualType EltTy = LV->getElementType();
5829    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
5830      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
5831      if (order > 0)
5832        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
5833      if (order >= 0) {
5834        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5835        if (swapped) std::swap(RHS, LHS);
5836        return LHSType;
5837      }
5838    }
5839    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
5840        RHSType->isRealFloatingType()) {
5841      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
5842      if (order > 0)
5843        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
5844      if (order >= 0) {
5845        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5846        if (swapped) std::swap(RHS, LHS);
5847        return LHSType;
5848      }
5849    }
5850  }
5851
5852  // Vectors of different size or scalar and non-ext-vector are errors.
5853  if (swapped) std::swap(RHS, LHS);
5854  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5855    << LHS.get()->getType() << RHS.get()->getType()
5856    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5857  return QualType();
5858}
5859
5860// checkArithmeticNull - Detect when a NULL constant is used improperly in an
5861// expression.  These are mainly cases where the null pointer is used as an
5862// integer instead of a pointer.
5863static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
5864                                SourceLocation Loc, bool IsCompare) {
5865  // The canonical way to check for a GNU null is with isNullPointerConstant,
5866  // but we use a bit of a hack here for speed; this is a relatively
5867  // hot path, and isNullPointerConstant is slow.
5868  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
5869  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
5870
5871  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
5872
5873  // Avoid analyzing cases where the result will either be invalid (and
5874  // diagnosed as such) or entirely valid and not something to warn about.
5875  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
5876      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
5877    return;
5878
5879  // Comparison operations would not make sense with a null pointer no matter
5880  // what the other expression is.
5881  if (!IsCompare) {
5882    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
5883        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
5884        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
5885    return;
5886  }
5887
5888  // The rest of the operations only make sense with a null pointer
5889  // if the other expression is a pointer.
5890  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
5891      NonNullType->canDecayToPointerType())
5892    return;
5893
5894  S.Diag(Loc, diag::warn_null_in_comparison_operation)
5895      << LHSNull /* LHS is NULL */ << NonNullType
5896      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5897}
5898
5899QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
5900                                           SourceLocation Loc,
5901                                           bool IsCompAssign, bool IsDiv) {
5902  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5903
5904  if (LHS.get()->getType()->isVectorType() ||
5905      RHS.get()->getType()->isVectorType())
5906    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5907
5908  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5909  if (LHS.isInvalid() || RHS.isInvalid())
5910    return QualType();
5911
5912  if (!LHS.get()->getType()->isArithmeticType() ||
5913      !RHS.get()->getType()->isArithmeticType())
5914    return InvalidOperands(Loc, LHS, RHS);
5915
5916  // Check for division by zero.
5917  if (IsDiv &&
5918      RHS.get()->isNullPointerConstant(Context,
5919                                       Expr::NPC_ValueDependentIsNotNull))
5920    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
5921                                          << RHS.get()->getSourceRange());
5922
5923  return compType;
5924}
5925
5926QualType Sema::CheckRemainderOperands(
5927  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
5928  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5929
5930  if (LHS.get()->getType()->isVectorType() ||
5931      RHS.get()->getType()->isVectorType()) {
5932    if (LHS.get()->getType()->hasIntegerRepresentation() &&
5933        RHS.get()->getType()->hasIntegerRepresentation())
5934      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5935    return InvalidOperands(Loc, LHS, RHS);
5936  }
5937
5938  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5939  if (LHS.isInvalid() || RHS.isInvalid())
5940    return QualType();
5941
5942  if (!LHS.get()->getType()->isIntegerType() ||
5943      !RHS.get()->getType()->isIntegerType())
5944    return InvalidOperands(Loc, LHS, RHS);
5945
5946  // Check for remainder by zero.
5947  if (RHS.get()->isNullPointerConstant(Context,
5948                                       Expr::NPC_ValueDependentIsNotNull))
5949    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
5950                                 << RHS.get()->getSourceRange());
5951
5952  return compType;
5953}
5954
5955/// \brief Diagnose invalid arithmetic on two void pointers.
5956static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
5957                                                Expr *LHSExpr, Expr *RHSExpr) {
5958  S.Diag(Loc, S.getLangOptions().CPlusPlus
5959                ? diag::err_typecheck_pointer_arith_void_type
5960                : diag::ext_gnu_void_ptr)
5961    << 1 /* two pointers */ << LHSExpr->getSourceRange()
5962                            << RHSExpr->getSourceRange();
5963}
5964
5965/// \brief Diagnose invalid arithmetic on a void pointer.
5966static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
5967                                            Expr *Pointer) {
5968  S.Diag(Loc, S.getLangOptions().CPlusPlus
5969                ? diag::err_typecheck_pointer_arith_void_type
5970                : diag::ext_gnu_void_ptr)
5971    << 0 /* one pointer */ << Pointer->getSourceRange();
5972}
5973
5974/// \brief Diagnose invalid arithmetic on two function pointers.
5975static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
5976                                                    Expr *LHS, Expr *RHS) {
5977  assert(LHS->getType()->isAnyPointerType());
5978  assert(RHS->getType()->isAnyPointerType());
5979  S.Diag(Loc, S.getLangOptions().CPlusPlus
5980                ? diag::err_typecheck_pointer_arith_function_type
5981                : diag::ext_gnu_ptr_func_arith)
5982    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
5983    // We only show the second type if it differs from the first.
5984    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
5985                                                   RHS->getType())
5986    << RHS->getType()->getPointeeType()
5987    << LHS->getSourceRange() << RHS->getSourceRange();
5988}
5989
5990/// \brief Diagnose invalid arithmetic on a function pointer.
5991static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
5992                                                Expr *Pointer) {
5993  assert(Pointer->getType()->isAnyPointerType());
5994  S.Diag(Loc, S.getLangOptions().CPlusPlus
5995                ? diag::err_typecheck_pointer_arith_function_type
5996                : diag::ext_gnu_ptr_func_arith)
5997    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
5998    << 0 /* one pointer, so only one type */
5999    << Pointer->getSourceRange();
6000}
6001
6002/// \brief Emit error if Operand is incomplete pointer type
6003///
6004/// \returns True if pointer has incomplete type
6005static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6006                                                 Expr *Operand) {
6007  if ((Operand->getType()->isPointerType() &&
6008       !Operand->getType()->isDependentType()) ||
6009      Operand->getType()->isObjCObjectPointerType()) {
6010    QualType PointeeTy = Operand->getType()->getPointeeType();
6011    if (S.RequireCompleteType(
6012          Loc, PointeeTy,
6013          S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6014            << PointeeTy << Operand->getSourceRange()))
6015      return true;
6016  }
6017  return false;
6018}
6019
6020/// \brief Check the validity of an arithmetic pointer operand.
6021///
6022/// If the operand has pointer type, this code will check for pointer types
6023/// which are invalid in arithmetic operations. These will be diagnosed
6024/// appropriately, including whether or not the use is supported as an
6025/// extension.
6026///
6027/// \returns True when the operand is valid to use (even if as an extension).
6028static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6029                                            Expr *Operand) {
6030  if (!Operand->getType()->isAnyPointerType()) return true;
6031
6032  QualType PointeeTy = Operand->getType()->getPointeeType();
6033  if (PointeeTy->isVoidType()) {
6034    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6035    return !S.getLangOptions().CPlusPlus;
6036  }
6037  if (PointeeTy->isFunctionType()) {
6038    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6039    return !S.getLangOptions().CPlusPlus;
6040  }
6041
6042  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6043
6044  return true;
6045}
6046
6047/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6048/// operands.
6049///
6050/// This routine will diagnose any invalid arithmetic on pointer operands much
6051/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6052/// for emitting a single diagnostic even for operations where both LHS and RHS
6053/// are (potentially problematic) pointers.
6054///
6055/// \returns True when the operand is valid to use (even if as an extension).
6056static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6057                                                Expr *LHSExpr, Expr *RHSExpr) {
6058  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6059  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6060  if (!isLHSPointer && !isRHSPointer) return true;
6061
6062  QualType LHSPointeeTy, RHSPointeeTy;
6063  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6064  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6065
6066  // Check for arithmetic on pointers to incomplete types.
6067  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6068  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6069  if (isLHSVoidPtr || isRHSVoidPtr) {
6070    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6071    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6072    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6073
6074    return !S.getLangOptions().CPlusPlus;
6075  }
6076
6077  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6078  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6079  if (isLHSFuncPtr || isRHSFuncPtr) {
6080    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6081    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6082                                                                RHSExpr);
6083    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6084
6085    return !S.getLangOptions().CPlusPlus;
6086  }
6087
6088  if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
6089  if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
6090
6091  return true;
6092}
6093
6094/// \brief Check bad cases where we step over interface counts.
6095static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
6096                                                   SourceLocation OpLoc,
6097                                                   Expr *Op) {
6098  assert(Op->getType()->isAnyPointerType());
6099  QualType PointeeTy = Op->getType()->getPointeeType();
6100  if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
6101    return true;
6102
6103  S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6104    << PointeeTy << Op->getSourceRange();
6105  return false;
6106}
6107
6108/// \brief Emit error when two pointers are incompatible.
6109static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6110                                           Expr *LHSExpr, Expr *RHSExpr) {
6111  assert(LHSExpr->getType()->isAnyPointerType());
6112  assert(RHSExpr->getType()->isAnyPointerType());
6113  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6114    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6115    << RHSExpr->getSourceRange();
6116}
6117
6118QualType Sema::CheckAdditionOperands( // C99 6.5.6
6119  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy) {
6120  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6121
6122  if (LHS.get()->getType()->isVectorType() ||
6123      RHS.get()->getType()->isVectorType()) {
6124    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6125    if (CompLHSTy) *CompLHSTy = compType;
6126    return compType;
6127  }
6128
6129  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6130  if (LHS.isInvalid() || RHS.isInvalid())
6131    return QualType();
6132
6133  // handle the common case first (both operands are arithmetic).
6134  if (LHS.get()->getType()->isArithmeticType() &&
6135      RHS.get()->getType()->isArithmeticType()) {
6136    if (CompLHSTy) *CompLHSTy = compType;
6137    return compType;
6138  }
6139
6140  // Put any potential pointer into PExp
6141  Expr* PExp = LHS.get(), *IExp = RHS.get();
6142  if (IExp->getType()->isAnyPointerType())
6143    std::swap(PExp, IExp);
6144
6145  if (!PExp->getType()->isAnyPointerType())
6146    return InvalidOperands(Loc, LHS, RHS);
6147
6148  if (!IExp->getType()->isIntegerType())
6149    return InvalidOperands(Loc, LHS, RHS);
6150
6151  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6152    return QualType();
6153
6154  // Diagnose bad cases where we step over interface counts.
6155  if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
6156    return QualType();
6157
6158  // Check array bounds for pointer arithemtic
6159  CheckArrayAccess(PExp, IExp);
6160
6161  if (CompLHSTy) {
6162    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6163    if (LHSTy.isNull()) {
6164      LHSTy = LHS.get()->getType();
6165      if (LHSTy->isPromotableIntegerType())
6166        LHSTy = Context.getPromotedIntegerType(LHSTy);
6167    }
6168    *CompLHSTy = LHSTy;
6169  }
6170
6171  return PExp->getType();
6172}
6173
6174// C99 6.5.6
6175QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6176                                        SourceLocation Loc,
6177                                        QualType* CompLHSTy) {
6178  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6179
6180  if (LHS.get()->getType()->isVectorType() ||
6181      RHS.get()->getType()->isVectorType()) {
6182    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6183    if (CompLHSTy) *CompLHSTy = compType;
6184    return compType;
6185  }
6186
6187  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6188  if (LHS.isInvalid() || RHS.isInvalid())
6189    return QualType();
6190
6191  // Enforce type constraints: C99 6.5.6p3.
6192
6193  // Handle the common case first (both operands are arithmetic).
6194  if (LHS.get()->getType()->isArithmeticType() &&
6195      RHS.get()->getType()->isArithmeticType()) {
6196    if (CompLHSTy) *CompLHSTy = compType;
6197    return compType;
6198  }
6199
6200  // Either ptr - int   or   ptr - ptr.
6201  if (LHS.get()->getType()->isAnyPointerType()) {
6202    QualType lpointee = LHS.get()->getType()->getPointeeType();
6203
6204    // Diagnose bad cases where we step over interface counts.
6205    if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
6206      return QualType();
6207
6208    // The result type of a pointer-int computation is the pointer type.
6209    if (RHS.get()->getType()->isIntegerType()) {
6210      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6211        return QualType();
6212
6213      // Check array bounds for pointer arithemtic
6214      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6215                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6216
6217      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6218      return LHS.get()->getType();
6219    }
6220
6221    // Handle pointer-pointer subtractions.
6222    if (const PointerType *RHSPTy
6223          = RHS.get()->getType()->getAs<PointerType>()) {
6224      QualType rpointee = RHSPTy->getPointeeType();
6225
6226      if (getLangOptions().CPlusPlus) {
6227        // Pointee types must be the same: C++ [expr.add]
6228        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6229          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6230        }
6231      } else {
6232        // Pointee types must be compatible C99 6.5.6p3
6233        if (!Context.typesAreCompatible(
6234                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6235                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6236          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6237          return QualType();
6238        }
6239      }
6240
6241      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6242                                               LHS.get(), RHS.get()))
6243        return QualType();
6244
6245      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6246      return Context.getPointerDiffType();
6247    }
6248  }
6249
6250  return InvalidOperands(Loc, LHS, RHS);
6251}
6252
6253static bool isScopedEnumerationType(QualType T) {
6254  if (const EnumType *ET = dyn_cast<EnumType>(T))
6255    return ET->getDecl()->isScoped();
6256  return false;
6257}
6258
6259static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6260                                   SourceLocation Loc, unsigned Opc,
6261                                   QualType LHSType) {
6262  llvm::APSInt Right;
6263  // Check right/shifter operand
6264  if (RHS.get()->isValueDependent() ||
6265      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6266    return;
6267
6268  if (Right.isNegative()) {
6269    S.DiagRuntimeBehavior(Loc, RHS.get(),
6270                          S.PDiag(diag::warn_shift_negative)
6271                            << RHS.get()->getSourceRange());
6272    return;
6273  }
6274  llvm::APInt LeftBits(Right.getBitWidth(),
6275                       S.Context.getTypeSize(LHS.get()->getType()));
6276  if (Right.uge(LeftBits)) {
6277    S.DiagRuntimeBehavior(Loc, RHS.get(),
6278                          S.PDiag(diag::warn_shift_gt_typewidth)
6279                            << RHS.get()->getSourceRange());
6280    return;
6281  }
6282  if (Opc != BO_Shl)
6283    return;
6284
6285  // When left shifting an ICE which is signed, we can check for overflow which
6286  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6287  // integers have defined behavior modulo one more than the maximum value
6288  // representable in the result type, so never warn for those.
6289  llvm::APSInt Left;
6290  if (LHS.get()->isValueDependent() ||
6291      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6292      LHSType->hasUnsignedIntegerRepresentation())
6293    return;
6294  llvm::APInt ResultBits =
6295      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6296  if (LeftBits.uge(ResultBits))
6297    return;
6298  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6299  Result = Result.shl(Right);
6300
6301  // Print the bit representation of the signed integer as an unsigned
6302  // hexadecimal number.
6303  llvm::SmallString<40> HexResult;
6304  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6305
6306  // If we are only missing a sign bit, this is less likely to result in actual
6307  // bugs -- if the result is cast back to an unsigned type, it will have the
6308  // expected value. Thus we place this behind a different warning that can be
6309  // turned off separately if needed.
6310  if (LeftBits == ResultBits - 1) {
6311    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6312        << HexResult.str() << LHSType
6313        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6314    return;
6315  }
6316
6317  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6318    << HexResult.str() << Result.getMinSignedBits() << LHSType
6319    << Left.getBitWidth() << LHS.get()->getSourceRange()
6320    << RHS.get()->getSourceRange();
6321}
6322
6323// C99 6.5.7
6324QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6325                                  SourceLocation Loc, unsigned Opc,
6326                                  bool IsCompAssign) {
6327  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6328
6329  // C99 6.5.7p2: Each of the operands shall have integer type.
6330  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6331      !RHS.get()->getType()->hasIntegerRepresentation())
6332    return InvalidOperands(Loc, LHS, RHS);
6333
6334  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6335  // hasIntegerRepresentation() above instead of this.
6336  if (isScopedEnumerationType(LHS.get()->getType()) ||
6337      isScopedEnumerationType(RHS.get()->getType())) {
6338    return InvalidOperands(Loc, LHS, RHS);
6339  }
6340
6341  // Vector shifts promote their scalar inputs to vector type.
6342  if (LHS.get()->getType()->isVectorType() ||
6343      RHS.get()->getType()->isVectorType())
6344    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6345
6346  // Shifts don't perform usual arithmetic conversions, they just do integer
6347  // promotions on each operand. C99 6.5.7p3
6348
6349  // For the LHS, do usual unary conversions, but then reset them away
6350  // if this is a compound assignment.
6351  ExprResult OldLHS = LHS;
6352  LHS = UsualUnaryConversions(LHS.take());
6353  if (LHS.isInvalid())
6354    return QualType();
6355  QualType LHSType = LHS.get()->getType();
6356  if (IsCompAssign) LHS = OldLHS;
6357
6358  // The RHS is simpler.
6359  RHS = UsualUnaryConversions(RHS.take());
6360  if (RHS.isInvalid())
6361    return QualType();
6362
6363  // Sanity-check shift operands
6364  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6365
6366  // "The type of the result is that of the promoted left operand."
6367  return LHSType;
6368}
6369
6370static bool IsWithinTemplateSpecialization(Decl *D) {
6371  if (DeclContext *DC = D->getDeclContext()) {
6372    if (isa<ClassTemplateSpecializationDecl>(DC))
6373      return true;
6374    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6375      return FD->isFunctionTemplateSpecialization();
6376  }
6377  return false;
6378}
6379
6380/// If two different enums are compared, raise a warning.
6381static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6382                                ExprResult &RHS) {
6383  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6384  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6385
6386  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6387  if (!LHSEnumType)
6388    return;
6389  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6390  if (!RHSEnumType)
6391    return;
6392
6393  // Ignore anonymous enums.
6394  if (!LHSEnumType->getDecl()->getIdentifier())
6395    return;
6396  if (!RHSEnumType->getDecl()->getIdentifier())
6397    return;
6398
6399  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6400    return;
6401
6402  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6403      << LHSStrippedType << RHSStrippedType
6404      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6405}
6406
6407/// \brief Diagnose bad pointer comparisons.
6408static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6409                                              ExprResult &LHS, ExprResult &RHS,
6410                                              bool IsError) {
6411  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6412                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6413    << LHS.get()->getType() << RHS.get()->getType()
6414    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6415}
6416
6417/// \brief Returns false if the pointers are converted to a composite type,
6418/// true otherwise.
6419static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6420                                           ExprResult &LHS, ExprResult &RHS) {
6421  // C++ [expr.rel]p2:
6422  //   [...] Pointer conversions (4.10) and qualification
6423  //   conversions (4.4) are performed on pointer operands (or on
6424  //   a pointer operand and a null pointer constant) to bring
6425  //   them to their composite pointer type. [...]
6426  //
6427  // C++ [expr.eq]p1 uses the same notion for (in)equality
6428  // comparisons of pointers.
6429
6430  // C++ [expr.eq]p2:
6431  //   In addition, pointers to members can be compared, or a pointer to
6432  //   member and a null pointer constant. Pointer to member conversions
6433  //   (4.11) and qualification conversions (4.4) are performed to bring
6434  //   them to a common type. If one operand is a null pointer constant,
6435  //   the common type is the type of the other operand. Otherwise, the
6436  //   common type is a pointer to member type similar (4.4) to the type
6437  //   of one of the operands, with a cv-qualification signature (4.4)
6438  //   that is the union of the cv-qualification signatures of the operand
6439  //   types.
6440
6441  QualType LHSType = LHS.get()->getType();
6442  QualType RHSType = RHS.get()->getType();
6443  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6444         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6445
6446  bool NonStandardCompositeType = false;
6447  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6448  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6449  if (T.isNull()) {
6450    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6451    return true;
6452  }
6453
6454  if (NonStandardCompositeType)
6455    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6456      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6457      << RHS.get()->getSourceRange();
6458
6459  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6460  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6461  return false;
6462}
6463
6464static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6465                                                    ExprResult &LHS,
6466                                                    ExprResult &RHS,
6467                                                    bool IsError) {
6468  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6469                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6470    << LHS.get()->getType() << RHS.get()->getType()
6471    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6472}
6473
6474// C99 6.5.8, C++ [expr.rel]
6475QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6476                                    SourceLocation Loc, unsigned OpaqueOpc,
6477                                    bool IsRelational) {
6478  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6479
6480  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6481
6482  // Handle vector comparisons separately.
6483  if (LHS.get()->getType()->isVectorType() ||
6484      RHS.get()->getType()->isVectorType())
6485    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6486
6487  QualType LHSType = LHS.get()->getType();
6488  QualType RHSType = RHS.get()->getType();
6489
6490  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6491  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6492
6493  checkEnumComparison(*this, Loc, LHS, RHS);
6494
6495  if (!LHSType->hasFloatingRepresentation() &&
6496      !(LHSType->isBlockPointerType() && IsRelational) &&
6497      !LHS.get()->getLocStart().isMacroID() &&
6498      !RHS.get()->getLocStart().isMacroID()) {
6499    // For non-floating point types, check for self-comparisons of the form
6500    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6501    // often indicate logic errors in the program.
6502    //
6503    // NOTE: Don't warn about comparison expressions resulting from macro
6504    // expansion. Also don't warn about comparisons which are only self
6505    // comparisons within a template specialization. The warnings should catch
6506    // obvious cases in the definition of the template anyways. The idea is to
6507    // warn when the typed comparison operator will always evaluate to the same
6508    // result.
6509    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6510      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6511        if (DRL->getDecl() == DRR->getDecl() &&
6512            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6513          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6514                              << 0 // self-
6515                              << (Opc == BO_EQ
6516                                  || Opc == BO_LE
6517                                  || Opc == BO_GE));
6518        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6519                   !DRL->getDecl()->getType()->isReferenceType() &&
6520                   !DRR->getDecl()->getType()->isReferenceType()) {
6521            // what is it always going to eval to?
6522            char always_evals_to;
6523            switch(Opc) {
6524            case BO_EQ: // e.g. array1 == array2
6525              always_evals_to = 0; // false
6526              break;
6527            case BO_NE: // e.g. array1 != array2
6528              always_evals_to = 1; // true
6529              break;
6530            default:
6531              // best we can say is 'a constant'
6532              always_evals_to = 2; // e.g. array1 <= array2
6533              break;
6534            }
6535            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6536                                << 1 // array
6537                                << always_evals_to);
6538        }
6539      }
6540    }
6541
6542    if (isa<CastExpr>(LHSStripped))
6543      LHSStripped = LHSStripped->IgnoreParenCasts();
6544    if (isa<CastExpr>(RHSStripped))
6545      RHSStripped = RHSStripped->IgnoreParenCasts();
6546
6547    // Warn about comparisons against a string constant (unless the other
6548    // operand is null), the user probably wants strcmp.
6549    Expr *literalString = 0;
6550    Expr *literalStringStripped = 0;
6551    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6552        !RHSStripped->isNullPointerConstant(Context,
6553                                            Expr::NPC_ValueDependentIsNull)) {
6554      literalString = LHS.get();
6555      literalStringStripped = LHSStripped;
6556    } else if ((isa<StringLiteral>(RHSStripped) ||
6557                isa<ObjCEncodeExpr>(RHSStripped)) &&
6558               !LHSStripped->isNullPointerConstant(Context,
6559                                            Expr::NPC_ValueDependentIsNull)) {
6560      literalString = RHS.get();
6561      literalStringStripped = RHSStripped;
6562    }
6563
6564    if (literalString) {
6565      std::string resultComparison;
6566      switch (Opc) {
6567      case BO_LT: resultComparison = ") < 0"; break;
6568      case BO_GT: resultComparison = ") > 0"; break;
6569      case BO_LE: resultComparison = ") <= 0"; break;
6570      case BO_GE: resultComparison = ") >= 0"; break;
6571      case BO_EQ: resultComparison = ") == 0"; break;
6572      case BO_NE: resultComparison = ") != 0"; break;
6573      default: llvm_unreachable("Invalid comparison operator");
6574      }
6575
6576      DiagRuntimeBehavior(Loc, 0,
6577        PDiag(diag::warn_stringcompare)
6578          << isa<ObjCEncodeExpr>(literalStringStripped)
6579          << literalString->getSourceRange());
6580    }
6581  }
6582
6583  // C99 6.5.8p3 / C99 6.5.9p4
6584  if (LHS.get()->getType()->isArithmeticType() &&
6585      RHS.get()->getType()->isArithmeticType()) {
6586    UsualArithmeticConversions(LHS, RHS);
6587    if (LHS.isInvalid() || RHS.isInvalid())
6588      return QualType();
6589  }
6590  else {
6591    LHS = UsualUnaryConversions(LHS.take());
6592    if (LHS.isInvalid())
6593      return QualType();
6594
6595    RHS = UsualUnaryConversions(RHS.take());
6596    if (RHS.isInvalid())
6597      return QualType();
6598  }
6599
6600  LHSType = LHS.get()->getType();
6601  RHSType = RHS.get()->getType();
6602
6603  // The result of comparisons is 'bool' in C++, 'int' in C.
6604  QualType ResultTy = Context.getLogicalOperationType();
6605
6606  if (IsRelational) {
6607    if (LHSType->isRealType() && RHSType->isRealType())
6608      return ResultTy;
6609  } else {
6610    // Check for comparisons of floating point operands using != and ==.
6611    if (LHSType->hasFloatingRepresentation())
6612      CheckFloatComparison(Loc, LHS.get(), RHS.get());
6613
6614    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
6615      return ResultTy;
6616  }
6617
6618  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
6619                                              Expr::NPC_ValueDependentIsNull);
6620  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
6621                                              Expr::NPC_ValueDependentIsNull);
6622
6623  // All of the following pointer-related warnings are GCC extensions, except
6624  // when handling null pointer constants.
6625  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
6626    QualType LCanPointeeTy =
6627      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6628    QualType RCanPointeeTy =
6629      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6630
6631    if (getLangOptions().CPlusPlus) {
6632      if (LCanPointeeTy == RCanPointeeTy)
6633        return ResultTy;
6634      if (!IsRelational &&
6635          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6636        // Valid unless comparison between non-null pointer and function pointer
6637        // This is a gcc extension compatibility comparison.
6638        // In a SFINAE context, we treat this as a hard error to maintain
6639        // conformance with the C++ standard.
6640        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6641            && !LHSIsNull && !RHSIsNull) {
6642          diagnoseFunctionPointerToVoidComparison(
6643              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
6644
6645          if (isSFINAEContext())
6646            return QualType();
6647
6648          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6649          return ResultTy;
6650        }
6651      }
6652
6653      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6654        return QualType();
6655      else
6656        return ResultTy;
6657    }
6658    // C99 6.5.9p2 and C99 6.5.8p2
6659    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6660                                   RCanPointeeTy.getUnqualifiedType())) {
6661      // Valid unless a relational comparison of function pointers
6662      if (IsRelational && LCanPointeeTy->isFunctionType()) {
6663        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6664          << LHSType << RHSType << LHS.get()->getSourceRange()
6665          << RHS.get()->getSourceRange();
6666      }
6667    } else if (!IsRelational &&
6668               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6669      // Valid unless comparison between non-null pointer and function pointer
6670      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6671          && !LHSIsNull && !RHSIsNull)
6672        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
6673                                                /*isError*/false);
6674    } else {
6675      // Invalid
6676      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
6677    }
6678    if (LCanPointeeTy != RCanPointeeTy) {
6679      if (LHSIsNull && !RHSIsNull)
6680        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6681      else
6682        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6683    }
6684    return ResultTy;
6685  }
6686
6687  if (getLangOptions().CPlusPlus) {
6688    // Comparison of nullptr_t with itself.
6689    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
6690      return ResultTy;
6691
6692    // Comparison of pointers with null pointer constants and equality
6693    // comparisons of member pointers to null pointer constants.
6694    if (RHSIsNull &&
6695        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
6696         (!IsRelational &&
6697          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
6698      RHS = ImpCastExprToType(RHS.take(), LHSType,
6699                        LHSType->isMemberPointerType()
6700                          ? CK_NullToMemberPointer
6701                          : CK_NullToPointer);
6702      return ResultTy;
6703    }
6704    if (LHSIsNull &&
6705        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
6706         (!IsRelational &&
6707          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
6708      LHS = ImpCastExprToType(LHS.take(), RHSType,
6709                        RHSType->isMemberPointerType()
6710                          ? CK_NullToMemberPointer
6711                          : CK_NullToPointer);
6712      return ResultTy;
6713    }
6714
6715    // Comparison of member pointers.
6716    if (!IsRelational &&
6717        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
6718      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6719        return QualType();
6720      else
6721        return ResultTy;
6722    }
6723
6724    // Handle scoped enumeration types specifically, since they don't promote
6725    // to integers.
6726    if (LHS.get()->getType()->isEnumeralType() &&
6727        Context.hasSameUnqualifiedType(LHS.get()->getType(),
6728                                       RHS.get()->getType()))
6729      return ResultTy;
6730  }
6731
6732  // Handle block pointer types.
6733  if (!IsRelational && LHSType->isBlockPointerType() &&
6734      RHSType->isBlockPointerType()) {
6735    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
6736    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
6737
6738    if (!LHSIsNull && !RHSIsNull &&
6739        !Context.typesAreCompatible(lpointee, rpointee)) {
6740      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6741        << LHSType << RHSType << LHS.get()->getSourceRange()
6742        << RHS.get()->getSourceRange();
6743    }
6744    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6745    return ResultTy;
6746  }
6747
6748  // Allow block pointers to be compared with null pointer constants.
6749  if (!IsRelational
6750      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
6751          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
6752    if (!LHSIsNull && !RHSIsNull) {
6753      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
6754             ->getPointeeType()->isVoidType())
6755            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
6756                ->getPointeeType()->isVoidType())))
6757        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6758          << LHSType << RHSType << LHS.get()->getSourceRange()
6759          << RHS.get()->getSourceRange();
6760    }
6761    if (LHSIsNull && !RHSIsNull)
6762      LHS = ImpCastExprToType(LHS.take(), RHSType,
6763                              RHSType->isPointerType() ? CK_BitCast
6764                                : CK_AnyPointerToBlockPointerCast);
6765    else
6766      RHS = ImpCastExprToType(RHS.take(), LHSType,
6767                              LHSType->isPointerType() ? CK_BitCast
6768                                : CK_AnyPointerToBlockPointerCast);
6769    return ResultTy;
6770  }
6771
6772  if (LHSType->isObjCObjectPointerType() ||
6773      RHSType->isObjCObjectPointerType()) {
6774    const PointerType *LPT = LHSType->getAs<PointerType>();
6775    const PointerType *RPT = RHSType->getAs<PointerType>();
6776    if (LPT || RPT) {
6777      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6778      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6779
6780      if (!LPtrToVoid && !RPtrToVoid &&
6781          !Context.typesAreCompatible(LHSType, RHSType)) {
6782        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6783                                          /*isError*/false);
6784      }
6785      if (LHSIsNull && !RHSIsNull)
6786        LHS = ImpCastExprToType(LHS.take(), RHSType,
6787                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6788      else
6789        RHS = ImpCastExprToType(RHS.take(), LHSType,
6790                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6791      return ResultTy;
6792    }
6793    if (LHSType->isObjCObjectPointerType() &&
6794        RHSType->isObjCObjectPointerType()) {
6795      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
6796        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6797                                          /*isError*/false);
6798      if (LHSIsNull && !RHSIsNull)
6799        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6800      else
6801        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6802      return ResultTy;
6803    }
6804  }
6805  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
6806      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
6807    unsigned DiagID = 0;
6808    bool isError = false;
6809    if ((LHSIsNull && LHSType->isIntegerType()) ||
6810        (RHSIsNull && RHSType->isIntegerType())) {
6811      if (IsRelational && !getLangOptions().CPlusPlus)
6812        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6813    } else if (IsRelational && !getLangOptions().CPlusPlus)
6814      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6815    else if (getLangOptions().CPlusPlus) {
6816      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6817      isError = true;
6818    } else
6819      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6820
6821    if (DiagID) {
6822      Diag(Loc, DiagID)
6823        << LHSType << RHSType << LHS.get()->getSourceRange()
6824        << RHS.get()->getSourceRange();
6825      if (isError)
6826        return QualType();
6827    }
6828
6829    if (LHSType->isIntegerType())
6830      LHS = ImpCastExprToType(LHS.take(), RHSType,
6831                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6832    else
6833      RHS = ImpCastExprToType(RHS.take(), LHSType,
6834                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6835    return ResultTy;
6836  }
6837
6838  // Handle block pointers.
6839  if (!IsRelational && RHSIsNull
6840      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
6841    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6842    return ResultTy;
6843  }
6844  if (!IsRelational && LHSIsNull
6845      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
6846    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
6847    return ResultTy;
6848  }
6849
6850  return InvalidOperands(Loc, LHS, RHS);
6851}
6852
6853/// CheckVectorCompareOperands - vector comparisons are a clang extension that
6854/// operates on extended vector types.  Instead of producing an IntTy result,
6855/// like a scalar comparison, a vector comparison produces a vector of integer
6856/// types.
6857QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
6858                                          SourceLocation Loc,
6859                                          bool IsRelational) {
6860  // Check to make sure we're operating on vectors of the same type and width,
6861  // Allowing one side to be a scalar of element type.
6862  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
6863  if (vType.isNull())
6864    return vType;
6865
6866  QualType LHSType = LHS.get()->getType();
6867  QualType RHSType = RHS.get()->getType();
6868
6869  // If AltiVec, the comparison results in a numeric type, i.e.
6870  // bool for C++, int for C
6871  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6872    return Context.getLogicalOperationType();
6873
6874  // For non-floating point types, check for self-comparisons of the form
6875  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6876  // often indicate logic errors in the program.
6877  if (!LHSType->hasFloatingRepresentation()) {
6878    if (DeclRefExpr* DRL
6879          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
6880      if (DeclRefExpr* DRR
6881            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
6882        if (DRL->getDecl() == DRR->getDecl())
6883          DiagRuntimeBehavior(Loc, 0,
6884                              PDiag(diag::warn_comparison_always)
6885                                << 0 // self-
6886                                << 2 // "a constant"
6887                              );
6888  }
6889
6890  // Check for comparisons of floating point operands using != and ==.
6891  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
6892    assert (RHSType->hasFloatingRepresentation());
6893    CheckFloatComparison(Loc, LHS.get(), RHS.get());
6894  }
6895
6896  // Return a signed type that is of identical size and number of elements.
6897  // For floating point vectors, return an integer type of identical size
6898  // and number of elements.
6899  const VectorType *VTy = LHSType->getAs<VectorType>();
6900  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6901  if (TypeSize == Context.getTypeSize(Context.CharTy))
6902    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
6903  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
6904    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
6905  else if (TypeSize == Context.getTypeSize(Context.IntTy))
6906    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6907  else if (TypeSize == Context.getTypeSize(Context.LongTy))
6908    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6909  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6910         "Unhandled vector element size in vector compare");
6911  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6912}
6913
6914inline QualType Sema::CheckBitwiseOperands(
6915  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6916  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6917
6918  if (LHS.get()->getType()->isVectorType() ||
6919      RHS.get()->getType()->isVectorType()) {
6920    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6921        RHS.get()->getType()->hasIntegerRepresentation())
6922      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6923
6924    return InvalidOperands(Loc, LHS, RHS);
6925  }
6926
6927  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
6928  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
6929                                                 IsCompAssign);
6930  if (LHSResult.isInvalid() || RHSResult.isInvalid())
6931    return QualType();
6932  LHS = LHSResult.take();
6933  RHS = RHSResult.take();
6934
6935  if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
6936      RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
6937    return compType;
6938  return InvalidOperands(Loc, LHS, RHS);
6939}
6940
6941inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
6942  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
6943
6944  // Diagnose cases where the user write a logical and/or but probably meant a
6945  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
6946  // is a constant.
6947  if (LHS.get()->getType()->isIntegerType() &&
6948      !LHS.get()->getType()->isBooleanType() &&
6949      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
6950      // Don't warn in macros or template instantiations.
6951      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
6952    // If the RHS can be constant folded, and if it constant folds to something
6953    // that isn't 0 or 1 (which indicate a potential logical operation that
6954    // happened to fold to true/false) then warn.
6955    // Parens on the RHS are ignored.
6956    llvm::APSInt Result;
6957    if (RHS.get()->EvaluateAsInt(Result, Context))
6958      if ((getLangOptions().Bool && !RHS.get()->getType()->isBooleanType()) ||
6959          (Result != 0 && Result != 1)) {
6960        Diag(Loc, diag::warn_logical_instead_of_bitwise)
6961          << RHS.get()->getSourceRange()
6962          << (Opc == BO_LAnd ? "&&" : "||");
6963        // Suggest replacing the logical operator with the bitwise version
6964        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
6965            << (Opc == BO_LAnd ? "&" : "|")
6966            << FixItHint::CreateReplacement(SourceRange(
6967                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
6968                                                getLangOptions())),
6969                                            Opc == BO_LAnd ? "&" : "|");
6970        if (Opc == BO_LAnd)
6971          // Suggest replacing "Foo() && kNonZero" with "Foo()"
6972          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
6973              << FixItHint::CreateRemoval(
6974                  SourceRange(
6975                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
6976                                                 0, getSourceManager(),
6977                                                 getLangOptions()),
6978                      RHS.get()->getLocEnd()));
6979      }
6980  }
6981
6982  if (!Context.getLangOptions().CPlusPlus) {
6983    LHS = UsualUnaryConversions(LHS.take());
6984    if (LHS.isInvalid())
6985      return QualType();
6986
6987    RHS = UsualUnaryConversions(RHS.take());
6988    if (RHS.isInvalid())
6989      return QualType();
6990
6991    if (!LHS.get()->getType()->isScalarType() ||
6992        !RHS.get()->getType()->isScalarType())
6993      return InvalidOperands(Loc, LHS, RHS);
6994
6995    return Context.IntTy;
6996  }
6997
6998  // The following is safe because we only use this method for
6999  // non-overloadable operands.
7000
7001  // C++ [expr.log.and]p1
7002  // C++ [expr.log.or]p1
7003  // The operands are both contextually converted to type bool.
7004  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7005  if (LHSRes.isInvalid())
7006    return InvalidOperands(Loc, LHS, RHS);
7007  LHS = move(LHSRes);
7008
7009  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7010  if (RHSRes.isInvalid())
7011    return InvalidOperands(Loc, LHS, RHS);
7012  RHS = move(RHSRes);
7013
7014  // C++ [expr.log.and]p2
7015  // C++ [expr.log.or]p2
7016  // The result is a bool.
7017  return Context.BoolTy;
7018}
7019
7020/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7021/// is a read-only property; return true if so. A readonly property expression
7022/// depends on various declarations and thus must be treated specially.
7023///
7024static bool IsReadonlyProperty(Expr *E, Sema &S) {
7025  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7026  if (!PropExpr) return false;
7027  if (PropExpr->isImplicitProperty()) return false;
7028
7029  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7030  QualType BaseType = PropExpr->isSuperReceiver() ?
7031                            PropExpr->getSuperReceiverType() :
7032                            PropExpr->getBase()->getType();
7033
7034  if (const ObjCObjectPointerType *OPT =
7035      BaseType->getAsObjCInterfacePointerType())
7036    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7037      if (S.isPropertyReadonly(PDecl, IFace))
7038        return true;
7039  return false;
7040}
7041
7042static bool IsConstProperty(Expr *E, Sema &S) {
7043  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7044  if (!PropExpr) return false;
7045  if (PropExpr->isImplicitProperty()) return false;
7046
7047  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7048  QualType T = PDecl->getType().getNonReferenceType();
7049  return T.isConstQualified();
7050}
7051
7052static bool IsReadonlyMessage(Expr *E, Sema &S) {
7053  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7054  if (!ME) return false;
7055  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7056  ObjCMessageExpr *Base =
7057    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7058  if (!Base) return false;
7059  return Base->getMethodDecl() != 0;
7060}
7061
7062/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7063/// emit an error and return true.  If so, return false.
7064static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7065  SourceLocation OrigLoc = Loc;
7066  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7067                                                              &Loc);
7068  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7069    IsLV = Expr::MLV_ReadonlyProperty;
7070  else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
7071    IsLV = Expr::MLV_Valid;
7072  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7073    IsLV = Expr::MLV_InvalidMessageExpression;
7074  if (IsLV == Expr::MLV_Valid)
7075    return false;
7076
7077  unsigned Diag = 0;
7078  bool NeedType = false;
7079  switch (IsLV) { // C99 6.5.16p2
7080  case Expr::MLV_ConstQualified:
7081    Diag = diag::err_typecheck_assign_const;
7082
7083    // In ARC, use some specialized diagnostics for occasions where we
7084    // infer 'const'.  These are always pseudo-strong variables.
7085    if (S.getLangOptions().ObjCAutoRefCount) {
7086      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7087      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7088        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7089
7090        // Use the normal diagnostic if it's pseudo-__strong but the
7091        // user actually wrote 'const'.
7092        if (var->isARCPseudoStrong() &&
7093            (!var->getTypeSourceInfo() ||
7094             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7095          // There are two pseudo-strong cases:
7096          //  - self
7097          ObjCMethodDecl *method = S.getCurMethodDecl();
7098          if (method && var == method->getSelfDecl())
7099            Diag = method->isClassMethod()
7100              ? diag::err_typecheck_arc_assign_self_class_method
7101              : diag::err_typecheck_arc_assign_self;
7102
7103          //  - fast enumeration variables
7104          else
7105            Diag = diag::err_typecheck_arr_assign_enumeration;
7106
7107          SourceRange Assign;
7108          if (Loc != OrigLoc)
7109            Assign = SourceRange(OrigLoc, OrigLoc);
7110          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7111          // We need to preserve the AST regardless, so migration tool
7112          // can do its job.
7113          return false;
7114        }
7115      }
7116    }
7117
7118    break;
7119  case Expr::MLV_ArrayType:
7120    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7121    NeedType = true;
7122    break;
7123  case Expr::MLV_NotObjectType:
7124    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7125    NeedType = true;
7126    break;
7127  case Expr::MLV_LValueCast:
7128    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7129    break;
7130  case Expr::MLV_Valid:
7131    llvm_unreachable("did not take early return for MLV_Valid");
7132  case Expr::MLV_InvalidExpression:
7133  case Expr::MLV_MemberFunction:
7134  case Expr::MLV_ClassTemporary:
7135    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7136    break;
7137  case Expr::MLV_IncompleteType:
7138  case Expr::MLV_IncompleteVoidType:
7139    return S.RequireCompleteType(Loc, E->getType(),
7140              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
7141                  << E->getSourceRange());
7142  case Expr::MLV_DuplicateVectorComponents:
7143    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7144    break;
7145  case Expr::MLV_NotBlockQualified:
7146    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7147    break;
7148  case Expr::MLV_ReadonlyProperty:
7149  case Expr::MLV_NoSetterProperty:
7150    llvm_unreachable("readonly properties should be processed differently");
7151    break;
7152  case Expr::MLV_InvalidMessageExpression:
7153    Diag = diag::error_readonly_message_assignment;
7154    break;
7155  case Expr::MLV_SubObjCPropertySetting:
7156    Diag = diag::error_no_subobject_property_setting;
7157    break;
7158  }
7159
7160  SourceRange Assign;
7161  if (Loc != OrigLoc)
7162    Assign = SourceRange(OrigLoc, OrigLoc);
7163  if (NeedType)
7164    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7165  else
7166    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7167  return true;
7168}
7169
7170
7171
7172// C99 6.5.16.1
7173QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7174                                       SourceLocation Loc,
7175                                       QualType CompoundType) {
7176  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7177
7178  // Verify that LHS is a modifiable lvalue, and emit error if not.
7179  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7180    return QualType();
7181
7182  QualType LHSType = LHSExpr->getType();
7183  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7184                                             CompoundType;
7185  AssignConvertType ConvTy;
7186  if (CompoundType.isNull()) {
7187    QualType LHSTy(LHSType);
7188    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7189    if (RHS.isInvalid())
7190      return QualType();
7191    // Special case of NSObject attributes on c-style pointer types.
7192    if (ConvTy == IncompatiblePointer &&
7193        ((Context.isObjCNSObjectType(LHSType) &&
7194          RHSType->isObjCObjectPointerType()) ||
7195         (Context.isObjCNSObjectType(RHSType) &&
7196          LHSType->isObjCObjectPointerType())))
7197      ConvTy = Compatible;
7198
7199    if (ConvTy == Compatible &&
7200        getLangOptions().ObjCNonFragileABI &&
7201        LHSType->isObjCObjectType())
7202      Diag(Loc, diag::err_assignment_requires_nonfragile_object)
7203        << LHSType;
7204
7205    // If the RHS is a unary plus or minus, check to see if they = and + are
7206    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7207    // instead of "x += 4".
7208    Expr *RHSCheck = RHS.get();
7209    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7210      RHSCheck = ICE->getSubExpr();
7211    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7212      if ((UO->getOpcode() == UO_Plus ||
7213           UO->getOpcode() == UO_Minus) &&
7214          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7215          // Only if the two operators are exactly adjacent.
7216          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7217          // And there is a space or other character before the subexpr of the
7218          // unary +/-.  We don't want to warn on "x=-1".
7219          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7220          UO->getSubExpr()->getLocStart().isFileID()) {
7221        Diag(Loc, diag::warn_not_compound_assign)
7222          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7223          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7224      }
7225    }
7226
7227    if (ConvTy == Compatible) {
7228      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7229        checkRetainCycles(LHSExpr, RHS.get());
7230      else if (getLangOptions().ObjCAutoRefCount)
7231        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7232    }
7233  } else {
7234    // Compound assignment "x += y"
7235    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7236  }
7237
7238  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7239                               RHS.get(), AA_Assigning))
7240    return QualType();
7241
7242  CheckForNullPointerDereference(*this, LHSExpr);
7243
7244  // C99 6.5.16p3: The type of an assignment expression is the type of the
7245  // left operand unless the left operand has qualified type, in which case
7246  // it is the unqualified version of the type of the left operand.
7247  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7248  // is converted to the type of the assignment expression (above).
7249  // C++ 5.17p1: the type of the assignment expression is that of its left
7250  // operand.
7251  return (getLangOptions().CPlusPlus
7252          ? LHSType : LHSType.getUnqualifiedType());
7253}
7254
7255// C99 6.5.17
7256static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7257                                   SourceLocation Loc) {
7258  S.DiagnoseUnusedExprResult(LHS.get());
7259
7260  LHS = S.CheckPlaceholderExpr(LHS.take());
7261  RHS = S.CheckPlaceholderExpr(RHS.take());
7262  if (LHS.isInvalid() || RHS.isInvalid())
7263    return QualType();
7264
7265  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7266  // operands, but not unary promotions.
7267  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7268
7269  // So we treat the LHS as a ignored value, and in C++ we allow the
7270  // containing site to determine what should be done with the RHS.
7271  LHS = S.IgnoredValueConversions(LHS.take());
7272  if (LHS.isInvalid())
7273    return QualType();
7274
7275  if (!S.getLangOptions().CPlusPlus) {
7276    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7277    if (RHS.isInvalid())
7278      return QualType();
7279    if (!RHS.get()->getType()->isVoidType())
7280      S.RequireCompleteType(Loc, RHS.get()->getType(),
7281                            diag::err_incomplete_type);
7282  }
7283
7284  return RHS.get()->getType();
7285}
7286
7287/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7288/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7289static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7290                                               ExprValueKind &VK,
7291                                               SourceLocation OpLoc,
7292                                               bool IsInc, bool IsPrefix) {
7293  if (Op->isTypeDependent())
7294    return S.Context.DependentTy;
7295
7296  QualType ResType = Op->getType();
7297  assert(!ResType.isNull() && "no type for increment/decrement expression");
7298
7299  if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
7300    // Decrement of bool is not allowed.
7301    if (!IsInc) {
7302      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7303      return QualType();
7304    }
7305    // Increment of bool sets it to true, but is deprecated.
7306    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7307  } else if (ResType->isRealType()) {
7308    // OK!
7309  } else if (ResType->isAnyPointerType()) {
7310    // C99 6.5.2.4p2, 6.5.6p2
7311    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7312      return QualType();
7313
7314    // Diagnose bad cases where we step over interface counts.
7315    else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7316      return QualType();
7317  } else if (ResType->isAnyComplexType()) {
7318    // C99 does not support ++/-- on complex types, we allow as an extension.
7319    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7320      << ResType << Op->getSourceRange();
7321  } else if (ResType->isPlaceholderType()) {
7322    ExprResult PR = S.CheckPlaceholderExpr(Op);
7323    if (PR.isInvalid()) return QualType();
7324    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7325                                          IsInc, IsPrefix);
7326  } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
7327    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7328  } else {
7329    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7330      << ResType << int(IsInc) << Op->getSourceRange();
7331    return QualType();
7332  }
7333  // At this point, we know we have a real, complex or pointer type.
7334  // Now make sure the operand is a modifiable lvalue.
7335  if (CheckForModifiableLvalue(Op, OpLoc, S))
7336    return QualType();
7337  // In C++, a prefix increment is the same type as the operand. Otherwise
7338  // (in C or with postfix), the increment is the unqualified type of the
7339  // operand.
7340  if (IsPrefix && S.getLangOptions().CPlusPlus) {
7341    VK = VK_LValue;
7342    return ResType;
7343  } else {
7344    VK = VK_RValue;
7345    return ResType.getUnqualifiedType();
7346  }
7347}
7348
7349
7350/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7351/// This routine allows us to typecheck complex/recursive expressions
7352/// where the declaration is needed for type checking. We only need to
7353/// handle cases when the expression references a function designator
7354/// or is an lvalue. Here are some examples:
7355///  - &(x) => x
7356///  - &*****f => f for f a function designator.
7357///  - &s.xx => s
7358///  - &s.zz[1].yy -> s, if zz is an array
7359///  - *(x + 1) -> x, if x is an array
7360///  - &"123"[2] -> 0
7361///  - & __real__ x -> x
7362static ValueDecl *getPrimaryDecl(Expr *E) {
7363  switch (E->getStmtClass()) {
7364  case Stmt::DeclRefExprClass:
7365    return cast<DeclRefExpr>(E)->getDecl();
7366  case Stmt::MemberExprClass:
7367    // If this is an arrow operator, the address is an offset from
7368    // the base's value, so the object the base refers to is
7369    // irrelevant.
7370    if (cast<MemberExpr>(E)->isArrow())
7371      return 0;
7372    // Otherwise, the expression refers to a part of the base
7373    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7374  case Stmt::ArraySubscriptExprClass: {
7375    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7376    // promotion of register arrays earlier.
7377    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7378    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7379      if (ICE->getSubExpr()->getType()->isArrayType())
7380        return getPrimaryDecl(ICE->getSubExpr());
7381    }
7382    return 0;
7383  }
7384  case Stmt::UnaryOperatorClass: {
7385    UnaryOperator *UO = cast<UnaryOperator>(E);
7386
7387    switch(UO->getOpcode()) {
7388    case UO_Real:
7389    case UO_Imag:
7390    case UO_Extension:
7391      return getPrimaryDecl(UO->getSubExpr());
7392    default:
7393      return 0;
7394    }
7395  }
7396  case Stmt::ParenExprClass:
7397    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7398  case Stmt::ImplicitCastExprClass:
7399    // If the result of an implicit cast is an l-value, we care about
7400    // the sub-expression; otherwise, the result here doesn't matter.
7401    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7402  default:
7403    return 0;
7404  }
7405}
7406
7407namespace {
7408  enum {
7409    AO_Bit_Field = 0,
7410    AO_Vector_Element = 1,
7411    AO_Property_Expansion = 2,
7412    AO_Register_Variable = 3,
7413    AO_No_Error = 4
7414  };
7415}
7416/// \brief Diagnose invalid operand for address of operations.
7417///
7418/// \param Type The type of operand which cannot have its address taken.
7419static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7420                                         Expr *E, unsigned Type) {
7421  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7422}
7423
7424/// CheckAddressOfOperand - The operand of & must be either a function
7425/// designator or an lvalue designating an object. If it is an lvalue, the
7426/// object cannot be declared with storage class register or be a bit field.
7427/// Note: The usual conversions are *not* applied to the operand of the &
7428/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7429/// In C++, the operand might be an overloaded function name, in which case
7430/// we allow the '&' but retain the overloaded-function type.
7431static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7432                                      SourceLocation OpLoc) {
7433  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7434    if (PTy->getKind() == BuiltinType::Overload) {
7435      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7436        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7437          << OrigOp.get()->getSourceRange();
7438        return QualType();
7439      }
7440
7441      return S.Context.OverloadTy;
7442    }
7443
7444    if (PTy->getKind() == BuiltinType::UnknownAny)
7445      return S.Context.UnknownAnyTy;
7446
7447    if (PTy->getKind() == BuiltinType::BoundMember) {
7448      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7449        << OrigOp.get()->getSourceRange();
7450      return QualType();
7451    }
7452
7453    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7454    if (OrigOp.isInvalid()) return QualType();
7455  }
7456
7457  if (OrigOp.get()->isTypeDependent())
7458    return S.Context.DependentTy;
7459
7460  assert(!OrigOp.get()->getType()->isPlaceholderType());
7461
7462  // Make sure to ignore parentheses in subsequent checks
7463  Expr *op = OrigOp.get()->IgnoreParens();
7464
7465  if (S.getLangOptions().C99) {
7466    // Implement C99-only parts of addressof rules.
7467    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7468      if (uOp->getOpcode() == UO_Deref)
7469        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7470        // (assuming the deref expression is valid).
7471        return uOp->getSubExpr()->getType();
7472    }
7473    // Technically, there should be a check for array subscript
7474    // expressions here, but the result of one is always an lvalue anyway.
7475  }
7476  ValueDecl *dcl = getPrimaryDecl(op);
7477  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7478  unsigned AddressOfError = AO_No_Error;
7479
7480  if (lval == Expr::LV_ClassTemporary) {
7481    bool sfinae = S.isSFINAEContext();
7482    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7483                         : diag::ext_typecheck_addrof_class_temporary)
7484      << op->getType() << op->getSourceRange();
7485    if (sfinae)
7486      return QualType();
7487  } else if (isa<ObjCSelectorExpr>(op)) {
7488    return S.Context.getPointerType(op->getType());
7489  } else if (lval == Expr::LV_MemberFunction) {
7490    // If it's an instance method, make a member pointer.
7491    // The expression must have exactly the form &A::foo.
7492
7493    // If the underlying expression isn't a decl ref, give up.
7494    if (!isa<DeclRefExpr>(op)) {
7495      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7496        << OrigOp.get()->getSourceRange();
7497      return QualType();
7498    }
7499    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7500    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7501
7502    // The id-expression was parenthesized.
7503    if (OrigOp.get() != DRE) {
7504      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7505        << OrigOp.get()->getSourceRange();
7506
7507    // The method was named without a qualifier.
7508    } else if (!DRE->getQualifier()) {
7509      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7510        << op->getSourceRange();
7511    }
7512
7513    return S.Context.getMemberPointerType(op->getType(),
7514              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7515  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7516    // C99 6.5.3.2p1
7517    // The operand must be either an l-value or a function designator
7518    if (!op->getType()->isFunctionType()) {
7519      // Use a special diagnostic for loads from property references.
7520      if (isa<PseudoObjectExpr>(op)) {
7521        AddressOfError = AO_Property_Expansion;
7522      } else {
7523        // FIXME: emit more specific diag...
7524        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7525          << op->getSourceRange();
7526        return QualType();
7527      }
7528    }
7529  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7530    // The operand cannot be a bit-field
7531    AddressOfError = AO_Bit_Field;
7532  } else if (op->getObjectKind() == OK_VectorComponent) {
7533    // The operand cannot be an element of a vector
7534    AddressOfError = AO_Vector_Element;
7535  } else if (dcl) { // C99 6.5.3.2p1
7536    // We have an lvalue with a decl. Make sure the decl is not declared
7537    // with the register storage-class specifier.
7538    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7539      // in C++ it is not error to take address of a register
7540      // variable (c++03 7.1.1P3)
7541      if (vd->getStorageClass() == SC_Register &&
7542          !S.getLangOptions().CPlusPlus) {
7543        AddressOfError = AO_Register_Variable;
7544      }
7545    } else if (isa<FunctionTemplateDecl>(dcl)) {
7546      return S.Context.OverloadTy;
7547    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7548      // Okay: we can take the address of a field.
7549      // Could be a pointer to member, though, if there is an explicit
7550      // scope qualifier for the class.
7551      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7552        DeclContext *Ctx = dcl->getDeclContext();
7553        if (Ctx && Ctx->isRecord()) {
7554          if (dcl->getType()->isReferenceType()) {
7555            S.Diag(OpLoc,
7556                   diag::err_cannot_form_pointer_to_member_of_reference_type)
7557              << dcl->getDeclName() << dcl->getType();
7558            return QualType();
7559          }
7560
7561          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7562            Ctx = Ctx->getParent();
7563          return S.Context.getMemberPointerType(op->getType(),
7564                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7565        }
7566      }
7567    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
7568      llvm_unreachable("Unknown/unexpected decl type");
7569  }
7570
7571  if (AddressOfError != AO_No_Error) {
7572    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
7573    return QualType();
7574  }
7575
7576  if (lval == Expr::LV_IncompleteVoidType) {
7577    // Taking the address of a void variable is technically illegal, but we
7578    // allow it in cases which are otherwise valid.
7579    // Example: "extern void x; void* y = &x;".
7580    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7581  }
7582
7583  // If the operand has type "type", the result has type "pointer to type".
7584  if (op->getType()->isObjCObjectType())
7585    return S.Context.getObjCObjectPointerType(op->getType());
7586  return S.Context.getPointerType(op->getType());
7587}
7588
7589/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7590static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7591                                        SourceLocation OpLoc) {
7592  if (Op->isTypeDependent())
7593    return S.Context.DependentTy;
7594
7595  ExprResult ConvResult = S.UsualUnaryConversions(Op);
7596  if (ConvResult.isInvalid())
7597    return QualType();
7598  Op = ConvResult.take();
7599  QualType OpTy = Op->getType();
7600  QualType Result;
7601
7602  if (isa<CXXReinterpretCastExpr>(Op)) {
7603    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7604    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7605                                     Op->getSourceRange());
7606  }
7607
7608  // Note that per both C89 and C99, indirection is always legal, even if OpTy
7609  // is an incomplete type or void.  It would be possible to warn about
7610  // dereferencing a void pointer, but it's completely well-defined, and such a
7611  // warning is unlikely to catch any mistakes.
7612  if (const PointerType *PT = OpTy->getAs<PointerType>())
7613    Result = PT->getPointeeType();
7614  else if (const ObjCObjectPointerType *OPT =
7615             OpTy->getAs<ObjCObjectPointerType>())
7616    Result = OPT->getPointeeType();
7617  else {
7618    ExprResult PR = S.CheckPlaceholderExpr(Op);
7619    if (PR.isInvalid()) return QualType();
7620    if (PR.take() != Op)
7621      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7622  }
7623
7624  if (Result.isNull()) {
7625    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7626      << OpTy << Op->getSourceRange();
7627    return QualType();
7628  }
7629
7630  // Dereferences are usually l-values...
7631  VK = VK_LValue;
7632
7633  // ...except that certain expressions are never l-values in C.
7634  if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
7635    VK = VK_RValue;
7636
7637  return Result;
7638}
7639
7640static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7641  tok::TokenKind Kind) {
7642  BinaryOperatorKind Opc;
7643  switch (Kind) {
7644  default: llvm_unreachable("Unknown binop!");
7645  case tok::periodstar:           Opc = BO_PtrMemD; break;
7646  case tok::arrowstar:            Opc = BO_PtrMemI; break;
7647  case tok::star:                 Opc = BO_Mul; break;
7648  case tok::slash:                Opc = BO_Div; break;
7649  case tok::percent:              Opc = BO_Rem; break;
7650  case tok::plus:                 Opc = BO_Add; break;
7651  case tok::minus:                Opc = BO_Sub; break;
7652  case tok::lessless:             Opc = BO_Shl; break;
7653  case tok::greatergreater:       Opc = BO_Shr; break;
7654  case tok::lessequal:            Opc = BO_LE; break;
7655  case tok::less:                 Opc = BO_LT; break;
7656  case tok::greaterequal:         Opc = BO_GE; break;
7657  case tok::greater:              Opc = BO_GT; break;
7658  case tok::exclaimequal:         Opc = BO_NE; break;
7659  case tok::equalequal:           Opc = BO_EQ; break;
7660  case tok::amp:                  Opc = BO_And; break;
7661  case tok::caret:                Opc = BO_Xor; break;
7662  case tok::pipe:                 Opc = BO_Or; break;
7663  case tok::ampamp:               Opc = BO_LAnd; break;
7664  case tok::pipepipe:             Opc = BO_LOr; break;
7665  case tok::equal:                Opc = BO_Assign; break;
7666  case tok::starequal:            Opc = BO_MulAssign; break;
7667  case tok::slashequal:           Opc = BO_DivAssign; break;
7668  case tok::percentequal:         Opc = BO_RemAssign; break;
7669  case tok::plusequal:            Opc = BO_AddAssign; break;
7670  case tok::minusequal:           Opc = BO_SubAssign; break;
7671  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
7672  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
7673  case tok::ampequal:             Opc = BO_AndAssign; break;
7674  case tok::caretequal:           Opc = BO_XorAssign; break;
7675  case tok::pipeequal:            Opc = BO_OrAssign; break;
7676  case tok::comma:                Opc = BO_Comma; break;
7677  }
7678  return Opc;
7679}
7680
7681static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7682  tok::TokenKind Kind) {
7683  UnaryOperatorKind Opc;
7684  switch (Kind) {
7685  default: llvm_unreachable("Unknown unary op!");
7686  case tok::plusplus:     Opc = UO_PreInc; break;
7687  case tok::minusminus:   Opc = UO_PreDec; break;
7688  case tok::amp:          Opc = UO_AddrOf; break;
7689  case tok::star:         Opc = UO_Deref; break;
7690  case tok::plus:         Opc = UO_Plus; break;
7691  case tok::minus:        Opc = UO_Minus; break;
7692  case tok::tilde:        Opc = UO_Not; break;
7693  case tok::exclaim:      Opc = UO_LNot; break;
7694  case tok::kw___real:    Opc = UO_Real; break;
7695  case tok::kw___imag:    Opc = UO_Imag; break;
7696  case tok::kw___extension__: Opc = UO_Extension; break;
7697  }
7698  return Opc;
7699}
7700
7701/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7702/// This warning is only emitted for builtin assignment operations. It is also
7703/// suppressed in the event of macro expansions.
7704static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
7705                                   SourceLocation OpLoc) {
7706  if (!S.ActiveTemplateInstantiations.empty())
7707    return;
7708  if (OpLoc.isInvalid() || OpLoc.isMacroID())
7709    return;
7710  LHSExpr = LHSExpr->IgnoreParenImpCasts();
7711  RHSExpr = RHSExpr->IgnoreParenImpCasts();
7712  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
7713  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
7714  if (!LHSDeclRef || !RHSDeclRef ||
7715      LHSDeclRef->getLocation().isMacroID() ||
7716      RHSDeclRef->getLocation().isMacroID())
7717    return;
7718  const ValueDecl *LHSDecl =
7719    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
7720  const ValueDecl *RHSDecl =
7721    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
7722  if (LHSDecl != RHSDecl)
7723    return;
7724  if (LHSDecl->getType().isVolatileQualified())
7725    return;
7726  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
7727    if (RefTy->getPointeeType().isVolatileQualified())
7728      return;
7729
7730  S.Diag(OpLoc, diag::warn_self_assignment)
7731      << LHSDeclRef->getType()
7732      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7733}
7734
7735/// CreateBuiltinBinOp - Creates a new built-in binary operation with
7736/// operator @p Opc at location @c TokLoc. This routine only supports
7737/// built-in operations; ActOnBinOp handles overloaded operators.
7738ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7739                                    BinaryOperatorKind Opc,
7740                                    Expr *LHSExpr, Expr *RHSExpr) {
7741  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
7742  QualType ResultTy;     // Result type of the binary operator.
7743  // The following two variables are used for compound assignment operators
7744  QualType CompLHSTy;    // Type of LHS after promotions for computation
7745  QualType CompResultTy; // Type of computation result
7746  ExprValueKind VK = VK_RValue;
7747  ExprObjectKind OK = OK_Ordinary;
7748
7749  switch (Opc) {
7750  case BO_Assign:
7751    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
7752    if (getLangOptions().CPlusPlus &&
7753        LHS.get()->getObjectKind() != OK_ObjCProperty) {
7754      VK = LHS.get()->getValueKind();
7755      OK = LHS.get()->getObjectKind();
7756    }
7757    if (!ResultTy.isNull())
7758      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
7759    break;
7760  case BO_PtrMemD:
7761  case BO_PtrMemI:
7762    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
7763                                            Opc == BO_PtrMemI);
7764    break;
7765  case BO_Mul:
7766  case BO_Div:
7767    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
7768                                           Opc == BO_Div);
7769    break;
7770  case BO_Rem:
7771    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
7772    break;
7773  case BO_Add:
7774    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc);
7775    break;
7776  case BO_Sub:
7777    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
7778    break;
7779  case BO_Shl:
7780  case BO_Shr:
7781    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
7782    break;
7783  case BO_LE:
7784  case BO_LT:
7785  case BO_GE:
7786  case BO_GT:
7787    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
7788    break;
7789  case BO_EQ:
7790  case BO_NE:
7791    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
7792    break;
7793  case BO_And:
7794  case BO_Xor:
7795  case BO_Or:
7796    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
7797    break;
7798  case BO_LAnd:
7799  case BO_LOr:
7800    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
7801    break;
7802  case BO_MulAssign:
7803  case BO_DivAssign:
7804    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
7805                                               Opc == BO_DivAssign);
7806    CompLHSTy = CompResultTy;
7807    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7808      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7809    break;
7810  case BO_RemAssign:
7811    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
7812    CompLHSTy = CompResultTy;
7813    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7814      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7815    break;
7816  case BO_AddAssign:
7817    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, &CompLHSTy);
7818    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7819      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7820    break;
7821  case BO_SubAssign:
7822    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
7823    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7824      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7825    break;
7826  case BO_ShlAssign:
7827  case BO_ShrAssign:
7828    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
7829    CompLHSTy = CompResultTy;
7830    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7831      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7832    break;
7833  case BO_AndAssign:
7834  case BO_XorAssign:
7835  case BO_OrAssign:
7836    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
7837    CompLHSTy = CompResultTy;
7838    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7839      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7840    break;
7841  case BO_Comma:
7842    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
7843    if (getLangOptions().CPlusPlus && !RHS.isInvalid()) {
7844      VK = RHS.get()->getValueKind();
7845      OK = RHS.get()->getObjectKind();
7846    }
7847    break;
7848  }
7849  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
7850    return ExprError();
7851
7852  // Check for array bounds violations for both sides of the BinaryOperator
7853  CheckArrayAccess(LHS.get());
7854  CheckArrayAccess(RHS.get());
7855
7856  if (CompResultTy.isNull())
7857    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
7858                                              ResultTy, VK, OK, OpLoc));
7859  if (getLangOptions().CPlusPlus && LHS.get()->getObjectKind() !=
7860      OK_ObjCProperty) {
7861    VK = VK_LValue;
7862    OK = LHS.get()->getObjectKind();
7863  }
7864  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
7865                                                    ResultTy, VK, OK, CompLHSTy,
7866                                                    CompResultTy, OpLoc));
7867}
7868
7869/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
7870/// operators are mixed in a way that suggests that the programmer forgot that
7871/// comparison operators have higher precedence. The most typical example of
7872/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
7873static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
7874                                      SourceLocation OpLoc, Expr *LHSExpr,
7875                                      Expr *RHSExpr) {
7876  typedef BinaryOperator BinOp;
7877  BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
7878                RHSopc = static_cast<BinOp::Opcode>(-1);
7879  if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
7880    LHSopc = BO->getOpcode();
7881  if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
7882    RHSopc = BO->getOpcode();
7883
7884  // Subs are not binary operators.
7885  if (LHSopc == -1 && RHSopc == -1)
7886    return;
7887
7888  // Bitwise operations are sometimes used as eager logical ops.
7889  // Don't diagnose this.
7890  if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
7891      (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
7892    return;
7893
7894  bool isLeftComp = BinOp::isComparisonOp(LHSopc);
7895  bool isRightComp = BinOp::isComparisonOp(RHSopc);
7896  if (!isLeftComp && !isRightComp) return;
7897
7898  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
7899                                                   OpLoc)
7900                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
7901  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
7902                                 : BinOp::getOpcodeStr(RHSopc);
7903  SourceRange ParensRange = isLeftComp ?
7904      SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
7905                  RHSExpr->getLocEnd())
7906    : SourceRange(LHSExpr->getLocStart(),
7907                  cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
7908
7909  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
7910    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
7911  SuggestParentheses(Self, OpLoc,
7912    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
7913    RHSExpr->getSourceRange());
7914  SuggestParentheses(Self, OpLoc,
7915    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
7916    ParensRange);
7917}
7918
7919/// \brief It accepts a '&' expr that is inside a '|' one.
7920/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
7921/// in parentheses.
7922static void
7923EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
7924                                       BinaryOperator *Bop) {
7925  assert(Bop->getOpcode() == BO_And);
7926  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
7927      << Bop->getSourceRange() << OpLoc;
7928  SuggestParentheses(Self, Bop->getOperatorLoc(),
7929    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
7930    Bop->getSourceRange());
7931}
7932
7933/// \brief It accepts a '&&' expr that is inside a '||' one.
7934/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
7935/// in parentheses.
7936static void
7937EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
7938                                       BinaryOperator *Bop) {
7939  assert(Bop->getOpcode() == BO_LAnd);
7940  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
7941      << Bop->getSourceRange() << OpLoc;
7942  SuggestParentheses(Self, Bop->getOperatorLoc(),
7943    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
7944    Bop->getSourceRange());
7945}
7946
7947/// \brief Returns true if the given expression can be evaluated as a constant
7948/// 'true'.
7949static bool EvaluatesAsTrue(Sema &S, Expr *E) {
7950  bool Res;
7951  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
7952}
7953
7954/// \brief Returns true if the given expression can be evaluated as a constant
7955/// 'false'.
7956static bool EvaluatesAsFalse(Sema &S, Expr *E) {
7957  bool Res;
7958  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
7959}
7960
7961/// \brief Look for '&&' in the left hand of a '||' expr.
7962static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
7963                                             Expr *LHSExpr, Expr *RHSExpr) {
7964  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
7965    if (Bop->getOpcode() == BO_LAnd) {
7966      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
7967      if (EvaluatesAsFalse(S, RHSExpr))
7968        return;
7969      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
7970      if (!EvaluatesAsTrue(S, Bop->getLHS()))
7971        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7972    } else if (Bop->getOpcode() == BO_LOr) {
7973      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
7974        // If it's "a || b && 1 || c" we didn't warn earlier for
7975        // "a || b && 1", but warn now.
7976        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
7977          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
7978      }
7979    }
7980  }
7981}
7982
7983/// \brief Look for '&&' in the right hand of a '||' expr.
7984static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
7985                                             Expr *LHSExpr, Expr *RHSExpr) {
7986  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
7987    if (Bop->getOpcode() == BO_LAnd) {
7988      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
7989      if (EvaluatesAsFalse(S, LHSExpr))
7990        return;
7991      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
7992      if (!EvaluatesAsTrue(S, Bop->getRHS()))
7993        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
7994    }
7995  }
7996}
7997
7998/// \brief Look for '&' in the left or right hand of a '|' expr.
7999static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8000                                             Expr *OrArg) {
8001  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8002    if (Bop->getOpcode() == BO_And)
8003      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8004  }
8005}
8006
8007/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8008/// precedence.
8009static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8010                                    SourceLocation OpLoc, Expr *LHSExpr,
8011                                    Expr *RHSExpr){
8012  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8013  if (BinaryOperator::isBitwiseOp(Opc))
8014    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8015
8016  // Diagnose "arg1 & arg2 | arg3"
8017  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8018    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8019    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8020  }
8021
8022  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8023  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8024  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8025    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8026    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8027  }
8028}
8029
8030// Binary Operators.  'Tok' is the token for the operator.
8031ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8032                            tok::TokenKind Kind,
8033                            Expr *LHSExpr, Expr *RHSExpr) {
8034  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8035  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8036  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8037
8038  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8039  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8040
8041  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8042}
8043
8044/// Build an overloaded binary operator expression in the given scope.
8045static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8046                                       BinaryOperatorKind Opc,
8047                                       Expr *LHS, Expr *RHS) {
8048  // Find all of the overloaded operators visible from this
8049  // point. We perform both an operator-name lookup from the local
8050  // scope and an argument-dependent lookup based on the types of
8051  // the arguments.
8052  UnresolvedSet<16> Functions;
8053  OverloadedOperatorKind OverOp
8054    = BinaryOperator::getOverloadedOperator(Opc);
8055  if (Sc && OverOp != OO_None)
8056    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8057                                   RHS->getType(), Functions);
8058
8059  // Build the (potentially-overloaded, potentially-dependent)
8060  // binary operation.
8061  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8062}
8063
8064ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8065                            BinaryOperatorKind Opc,
8066                            Expr *LHSExpr, Expr *RHSExpr) {
8067  // We want to end up calling one of checkPseudoObjectAssignment
8068  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8069  // both expressions are overloadable or either is type-dependent),
8070  // or CreateBuiltinBinOp (in any other case).  We also want to get
8071  // any placeholder types out of the way.
8072
8073  // Handle pseudo-objects in the LHS.
8074  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8075    // Assignments with a pseudo-object l-value need special analysis.
8076    if (pty->getKind() == BuiltinType::PseudoObject &&
8077        BinaryOperator::isAssignmentOp(Opc))
8078      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8079
8080    // Don't resolve overloads if the other type is overloadable.
8081    if (pty->getKind() == BuiltinType::Overload) {
8082      // We can't actually test that if we still have a placeholder,
8083      // though.  Fortunately, none of the exceptions we see in that
8084      // code below are valid when the LHS is an overload set.  Note
8085      // that an overload set can be dependently-typed, but it never
8086      // instantiates to having an overloadable type.
8087      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8088      if (resolvedRHS.isInvalid()) return ExprError();
8089      RHSExpr = resolvedRHS.take();
8090
8091      if (RHSExpr->isTypeDependent() ||
8092          RHSExpr->getType()->isOverloadableType())
8093        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8094    }
8095
8096    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8097    if (LHS.isInvalid()) return ExprError();
8098    LHSExpr = LHS.take();
8099  }
8100
8101  // Handle pseudo-objects in the RHS.
8102  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8103    // An overload in the RHS can potentially be resolved by the type
8104    // being assigned to.
8105    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8106      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8107        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8108
8109      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8110    }
8111
8112    // Don't resolve overloads if the other type is overloadable.
8113    if (pty->getKind() == BuiltinType::Overload &&
8114        LHSExpr->getType()->isOverloadableType())
8115      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8116
8117    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8118    if (!resolvedRHS.isUsable()) return ExprError();
8119    RHSExpr = resolvedRHS.take();
8120  }
8121
8122  if (getLangOptions().CPlusPlus) {
8123    // If either expression is type-dependent, always build an
8124    // overloaded op.
8125    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8126      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8127
8128    // Otherwise, build an overloaded op if either expression has an
8129    // overloadable type.
8130    if (LHSExpr->getType()->isOverloadableType() ||
8131        RHSExpr->getType()->isOverloadableType())
8132      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8133  }
8134
8135  // Build a built-in binary operation.
8136  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8137}
8138
8139ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8140                                      UnaryOperatorKind Opc,
8141                                      Expr *InputExpr) {
8142  ExprResult Input = Owned(InputExpr);
8143  ExprValueKind VK = VK_RValue;
8144  ExprObjectKind OK = OK_Ordinary;
8145  QualType resultType;
8146  switch (Opc) {
8147  case UO_PreInc:
8148  case UO_PreDec:
8149  case UO_PostInc:
8150  case UO_PostDec:
8151    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8152                                                Opc == UO_PreInc ||
8153                                                Opc == UO_PostInc,
8154                                                Opc == UO_PreInc ||
8155                                                Opc == UO_PreDec);
8156    break;
8157  case UO_AddrOf:
8158    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8159    break;
8160  case UO_Deref: {
8161    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8162    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8163    break;
8164  }
8165  case UO_Plus:
8166  case UO_Minus:
8167    Input = UsualUnaryConversions(Input.take());
8168    if (Input.isInvalid()) return ExprError();
8169    resultType = Input.get()->getType();
8170    if (resultType->isDependentType())
8171      break;
8172    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8173        resultType->isVectorType())
8174      break;
8175    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
8176             resultType->isEnumeralType())
8177      break;
8178    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
8179             Opc == UO_Plus &&
8180             resultType->isPointerType())
8181      break;
8182
8183    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8184      << resultType << Input.get()->getSourceRange());
8185
8186  case UO_Not: // bitwise complement
8187    Input = UsualUnaryConversions(Input.take());
8188    if (Input.isInvalid()) return ExprError();
8189    resultType = Input.get()->getType();
8190    if (resultType->isDependentType())
8191      break;
8192    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8193    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8194      // C99 does not support '~' for complex conjugation.
8195      Diag(OpLoc, diag::ext_integer_complement_complex)
8196        << resultType << Input.get()->getSourceRange();
8197    else if (resultType->hasIntegerRepresentation())
8198      break;
8199    else {
8200      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8201        << resultType << Input.get()->getSourceRange());
8202    }
8203    break;
8204
8205  case UO_LNot: // logical negation
8206    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8207    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8208    if (Input.isInvalid()) return ExprError();
8209    resultType = Input.get()->getType();
8210
8211    // Though we still have to promote half FP to float...
8212    if (resultType->isHalfType()) {
8213      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8214      resultType = Context.FloatTy;
8215    }
8216
8217    if (resultType->isDependentType())
8218      break;
8219    if (resultType->isScalarType()) {
8220      // C99 6.5.3.3p1: ok, fallthrough;
8221      if (Context.getLangOptions().CPlusPlus) {
8222        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8223        // operand contextually converted to bool.
8224        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8225                                  ScalarTypeToBooleanCastKind(resultType));
8226      }
8227    } else {
8228      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8229        << resultType << Input.get()->getSourceRange());
8230    }
8231
8232    // LNot always has type int. C99 6.5.3.3p5.
8233    // In C++, it's bool. C++ 5.3.1p8
8234    resultType = Context.getLogicalOperationType();
8235    break;
8236  case UO_Real:
8237  case UO_Imag:
8238    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8239    // _Real and _Imag map ordinary l-values into ordinary l-values.
8240    if (Input.isInvalid()) return ExprError();
8241    if (Input.get()->getValueKind() != VK_RValue &&
8242        Input.get()->getObjectKind() == OK_Ordinary)
8243      VK = Input.get()->getValueKind();
8244    break;
8245  case UO_Extension:
8246    resultType = Input.get()->getType();
8247    VK = Input.get()->getValueKind();
8248    OK = Input.get()->getObjectKind();
8249    break;
8250  }
8251  if (resultType.isNull() || Input.isInvalid())
8252    return ExprError();
8253
8254  // Check for array bounds violations in the operand of the UnaryOperator,
8255  // except for the '*' and '&' operators that have to be handled specially
8256  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8257  // that are explicitly defined as valid by the standard).
8258  if (Opc != UO_AddrOf && Opc != UO_Deref)
8259    CheckArrayAccess(Input.get());
8260
8261  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8262                                           VK, OK, OpLoc));
8263}
8264
8265/// \brief Determine whether the given expression is a qualified member
8266/// access expression, of a form that could be turned into a pointer to member
8267/// with the address-of operator.
8268static bool isQualifiedMemberAccess(Expr *E) {
8269  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8270    if (!DRE->getQualifier())
8271      return false;
8272
8273    ValueDecl *VD = DRE->getDecl();
8274    if (!VD->isCXXClassMember())
8275      return false;
8276
8277    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8278      return true;
8279    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8280      return Method->isInstance();
8281
8282    return false;
8283  }
8284
8285  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8286    if (!ULE->getQualifier())
8287      return false;
8288
8289    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8290                                           DEnd = ULE->decls_end();
8291         D != DEnd; ++D) {
8292      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8293        if (Method->isInstance())
8294          return true;
8295      } else {
8296        // Overload set does not contain methods.
8297        break;
8298      }
8299    }
8300
8301    return false;
8302  }
8303
8304  return false;
8305}
8306
8307ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8308                              UnaryOperatorKind Opc, Expr *Input) {
8309  // First things first: handle placeholders so that the
8310  // overloaded-operator check considers the right type.
8311  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8312    // Increment and decrement of pseudo-object references.
8313    if (pty->getKind() == BuiltinType::PseudoObject &&
8314        UnaryOperator::isIncrementDecrementOp(Opc))
8315      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8316
8317    // extension is always a builtin operator.
8318    if (Opc == UO_Extension)
8319      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8320
8321    // & gets special logic for several kinds of placeholder.
8322    // The builtin code knows what to do.
8323    if (Opc == UO_AddrOf &&
8324        (pty->getKind() == BuiltinType::Overload ||
8325         pty->getKind() == BuiltinType::UnknownAny ||
8326         pty->getKind() == BuiltinType::BoundMember))
8327      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8328
8329    // Anything else needs to be handled now.
8330    ExprResult Result = CheckPlaceholderExpr(Input);
8331    if (Result.isInvalid()) return ExprError();
8332    Input = Result.take();
8333  }
8334
8335  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
8336      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8337      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8338    // Find all of the overloaded operators visible from this
8339    // point. We perform both an operator-name lookup from the local
8340    // scope and an argument-dependent lookup based on the types of
8341    // the arguments.
8342    UnresolvedSet<16> Functions;
8343    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8344    if (S && OverOp != OO_None)
8345      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8346                                   Functions);
8347
8348    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8349  }
8350
8351  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8352}
8353
8354// Unary Operators.  'Tok' is the token for the operator.
8355ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8356                              tok::TokenKind Op, Expr *Input) {
8357  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8358}
8359
8360/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8361ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8362                                LabelDecl *TheDecl) {
8363  TheDecl->setUsed();
8364  // Create the AST node.  The address of a label always has type 'void*'.
8365  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8366                                       Context.getPointerType(Context.VoidTy)));
8367}
8368
8369/// Given the last statement in a statement-expression, check whether
8370/// the result is a producing expression (like a call to an
8371/// ns_returns_retained function) and, if so, rebuild it to hoist the
8372/// release out of the full-expression.  Otherwise, return null.
8373/// Cannot fail.
8374static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8375  // Should always be wrapped with one of these.
8376  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8377  if (!cleanups) return 0;
8378
8379  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8380  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8381    return 0;
8382
8383  // Splice out the cast.  This shouldn't modify any interesting
8384  // features of the statement.
8385  Expr *producer = cast->getSubExpr();
8386  assert(producer->getType() == cast->getType());
8387  assert(producer->getValueKind() == cast->getValueKind());
8388  cleanups->setSubExpr(producer);
8389  return cleanups;
8390}
8391
8392ExprResult
8393Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8394                    SourceLocation RPLoc) { // "({..})"
8395  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8396  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8397
8398  bool isFileScope
8399    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8400  if (isFileScope)
8401    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8402
8403  // FIXME: there are a variety of strange constraints to enforce here, for
8404  // example, it is not possible to goto into a stmt expression apparently.
8405  // More semantic analysis is needed.
8406
8407  // If there are sub stmts in the compound stmt, take the type of the last one
8408  // as the type of the stmtexpr.
8409  QualType Ty = Context.VoidTy;
8410  bool StmtExprMayBindToTemp = false;
8411  if (!Compound->body_empty()) {
8412    Stmt *LastStmt = Compound->body_back();
8413    LabelStmt *LastLabelStmt = 0;
8414    // If LastStmt is a label, skip down through into the body.
8415    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8416      LastLabelStmt = Label;
8417      LastStmt = Label->getSubStmt();
8418    }
8419
8420    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8421      // Do function/array conversion on the last expression, but not
8422      // lvalue-to-rvalue.  However, initialize an unqualified type.
8423      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8424      if (LastExpr.isInvalid())
8425        return ExprError();
8426      Ty = LastExpr.get()->getType().getUnqualifiedType();
8427
8428      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8429        // In ARC, if the final expression ends in a consume, splice
8430        // the consume out and bind it later.  In the alternate case
8431        // (when dealing with a retainable type), the result
8432        // initialization will create a produce.  In both cases the
8433        // result will be +1, and we'll need to balance that out with
8434        // a bind.
8435        if (Expr *rebuiltLastStmt
8436              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8437          LastExpr = rebuiltLastStmt;
8438        } else {
8439          LastExpr = PerformCopyInitialization(
8440                            InitializedEntity::InitializeResult(LPLoc,
8441                                                                Ty,
8442                                                                false),
8443                                                   SourceLocation(),
8444                                               LastExpr);
8445        }
8446
8447        if (LastExpr.isInvalid())
8448          return ExprError();
8449        if (LastExpr.get() != 0) {
8450          if (!LastLabelStmt)
8451            Compound->setLastStmt(LastExpr.take());
8452          else
8453            LastLabelStmt->setSubStmt(LastExpr.take());
8454          StmtExprMayBindToTemp = true;
8455        }
8456      }
8457    }
8458  }
8459
8460  // FIXME: Check that expression type is complete/non-abstract; statement
8461  // expressions are not lvalues.
8462  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8463  if (StmtExprMayBindToTemp)
8464    return MaybeBindToTemporary(ResStmtExpr);
8465  return Owned(ResStmtExpr);
8466}
8467
8468ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8469                                      TypeSourceInfo *TInfo,
8470                                      OffsetOfComponent *CompPtr,
8471                                      unsigned NumComponents,
8472                                      SourceLocation RParenLoc) {
8473  QualType ArgTy = TInfo->getType();
8474  bool Dependent = ArgTy->isDependentType();
8475  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8476
8477  // We must have at least one component that refers to the type, and the first
8478  // one is known to be a field designator.  Verify that the ArgTy represents
8479  // a struct/union/class.
8480  if (!Dependent && !ArgTy->isRecordType())
8481    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8482                       << ArgTy << TypeRange);
8483
8484  // Type must be complete per C99 7.17p3 because a declaring a variable
8485  // with an incomplete type would be ill-formed.
8486  if (!Dependent
8487      && RequireCompleteType(BuiltinLoc, ArgTy,
8488                             PDiag(diag::err_offsetof_incomplete_type)
8489                               << TypeRange))
8490    return ExprError();
8491
8492  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8493  // GCC extension, diagnose them.
8494  // FIXME: This diagnostic isn't actually visible because the location is in
8495  // a system header!
8496  if (NumComponents != 1)
8497    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8498      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8499
8500  bool DidWarnAboutNonPOD = false;
8501  QualType CurrentType = ArgTy;
8502  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8503  SmallVector<OffsetOfNode, 4> Comps;
8504  SmallVector<Expr*, 4> Exprs;
8505  for (unsigned i = 0; i != NumComponents; ++i) {
8506    const OffsetOfComponent &OC = CompPtr[i];
8507    if (OC.isBrackets) {
8508      // Offset of an array sub-field.  TODO: Should we allow vector elements?
8509      if (!CurrentType->isDependentType()) {
8510        const ArrayType *AT = Context.getAsArrayType(CurrentType);
8511        if(!AT)
8512          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8513                           << CurrentType);
8514        CurrentType = AT->getElementType();
8515      } else
8516        CurrentType = Context.DependentTy;
8517
8518      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
8519      if (IdxRval.isInvalid())
8520        return ExprError();
8521      Expr *Idx = IdxRval.take();
8522
8523      // The expression must be an integral expression.
8524      // FIXME: An integral constant expression?
8525      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8526          !Idx->getType()->isIntegerType())
8527        return ExprError(Diag(Idx->getLocStart(),
8528                              diag::err_typecheck_subscript_not_integer)
8529                         << Idx->getSourceRange());
8530
8531      // Record this array index.
8532      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8533      Exprs.push_back(Idx);
8534      continue;
8535    }
8536
8537    // Offset of a field.
8538    if (CurrentType->isDependentType()) {
8539      // We have the offset of a field, but we can't look into the dependent
8540      // type. Just record the identifier of the field.
8541      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8542      CurrentType = Context.DependentTy;
8543      continue;
8544    }
8545
8546    // We need to have a complete type to look into.
8547    if (RequireCompleteType(OC.LocStart, CurrentType,
8548                            diag::err_offsetof_incomplete_type))
8549      return ExprError();
8550
8551    // Look for the designated field.
8552    const RecordType *RC = CurrentType->getAs<RecordType>();
8553    if (!RC)
8554      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8555                       << CurrentType);
8556    RecordDecl *RD = RC->getDecl();
8557
8558    // C++ [lib.support.types]p5:
8559    //   The macro offsetof accepts a restricted set of type arguments in this
8560    //   International Standard. type shall be a POD structure or a POD union
8561    //   (clause 9).
8562    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8563      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8564          DiagRuntimeBehavior(BuiltinLoc, 0,
8565                              PDiag(diag::warn_offsetof_non_pod_type)
8566                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8567                              << CurrentType))
8568        DidWarnAboutNonPOD = true;
8569    }
8570
8571    // Look for the field.
8572    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8573    LookupQualifiedName(R, RD);
8574    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8575    IndirectFieldDecl *IndirectMemberDecl = 0;
8576    if (!MemberDecl) {
8577      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8578        MemberDecl = IndirectMemberDecl->getAnonField();
8579    }
8580
8581    if (!MemberDecl)
8582      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8583                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8584                                                              OC.LocEnd));
8585
8586    // C99 7.17p3:
8587    //   (If the specified member is a bit-field, the behavior is undefined.)
8588    //
8589    // We diagnose this as an error.
8590    if (MemberDecl->isBitField()) {
8591      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8592        << MemberDecl->getDeclName()
8593        << SourceRange(BuiltinLoc, RParenLoc);
8594      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8595      return ExprError();
8596    }
8597
8598    RecordDecl *Parent = MemberDecl->getParent();
8599    if (IndirectMemberDecl)
8600      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8601
8602    // If the member was found in a base class, introduce OffsetOfNodes for
8603    // the base class indirections.
8604    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8605                       /*DetectVirtual=*/false);
8606    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8607      CXXBasePath &Path = Paths.front();
8608      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8609           B != BEnd; ++B)
8610        Comps.push_back(OffsetOfNode(B->Base));
8611    }
8612
8613    if (IndirectMemberDecl) {
8614      for (IndirectFieldDecl::chain_iterator FI =
8615           IndirectMemberDecl->chain_begin(),
8616           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8617        assert(isa<FieldDecl>(*FI));
8618        Comps.push_back(OffsetOfNode(OC.LocStart,
8619                                     cast<FieldDecl>(*FI), OC.LocEnd));
8620      }
8621    } else
8622      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8623
8624    CurrentType = MemberDecl->getType().getNonReferenceType();
8625  }
8626
8627  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8628                                    TInfo, Comps.data(), Comps.size(),
8629                                    Exprs.data(), Exprs.size(), RParenLoc));
8630}
8631
8632ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8633                                      SourceLocation BuiltinLoc,
8634                                      SourceLocation TypeLoc,
8635                                      ParsedType ParsedArgTy,
8636                                      OffsetOfComponent *CompPtr,
8637                                      unsigned NumComponents,
8638                                      SourceLocation RParenLoc) {
8639
8640  TypeSourceInfo *ArgTInfo;
8641  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
8642  if (ArgTy.isNull())
8643    return ExprError();
8644
8645  if (!ArgTInfo)
8646    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8647
8648  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8649                              RParenLoc);
8650}
8651
8652
8653ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8654                                 Expr *CondExpr,
8655                                 Expr *LHSExpr, Expr *RHSExpr,
8656                                 SourceLocation RPLoc) {
8657  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8658
8659  ExprValueKind VK = VK_RValue;
8660  ExprObjectKind OK = OK_Ordinary;
8661  QualType resType;
8662  bool ValueDependent = false;
8663  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8664    resType = Context.DependentTy;
8665    ValueDependent = true;
8666  } else {
8667    // The conditional expression is required to be a constant expression.
8668    llvm::APSInt condEval(32);
8669    SourceLocation ExpLoc;
8670    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
8671      return ExprError(Diag(ExpLoc,
8672                       diag::err_typecheck_choose_expr_requires_constant)
8673        << CondExpr->getSourceRange());
8674
8675    // If the condition is > zero, then the AST type is the same as the LSHExpr.
8676    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8677
8678    resType = ActiveExpr->getType();
8679    ValueDependent = ActiveExpr->isValueDependent();
8680    VK = ActiveExpr->getValueKind();
8681    OK = ActiveExpr->getObjectKind();
8682  }
8683
8684  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8685                                        resType, VK, OK, RPLoc,
8686                                        resType->isDependentType(),
8687                                        ValueDependent));
8688}
8689
8690//===----------------------------------------------------------------------===//
8691// Clang Extensions.
8692//===----------------------------------------------------------------------===//
8693
8694/// ActOnBlockStart - This callback is invoked when a block literal is started.
8695void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
8696  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8697  PushBlockScope(CurScope, Block);
8698  CurContext->addDecl(Block);
8699  if (CurScope)
8700    PushDeclContext(CurScope, Block);
8701  else
8702    CurContext = Block;
8703
8704  // Enter a new evaluation context to insulate the block from any
8705  // cleanups from the enclosing full-expression.
8706  PushExpressionEvaluationContext(PotentiallyEvaluated);
8707}
8708
8709void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8710  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8711  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8712  BlockScopeInfo *CurBlock = getCurBlock();
8713
8714  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8715  QualType T = Sig->getType();
8716
8717  // GetTypeForDeclarator always produces a function type for a block
8718  // literal signature.  Furthermore, it is always a FunctionProtoType
8719  // unless the function was written with a typedef.
8720  assert(T->isFunctionType() &&
8721         "GetTypeForDeclarator made a non-function block signature");
8722
8723  // Look for an explicit signature in that function type.
8724  FunctionProtoTypeLoc ExplicitSignature;
8725
8726  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8727  if (isa<FunctionProtoTypeLoc>(tmp)) {
8728    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8729
8730    // Check whether that explicit signature was synthesized by
8731    // GetTypeForDeclarator.  If so, don't save that as part of the
8732    // written signature.
8733    if (ExplicitSignature.getLocalRangeBegin() ==
8734        ExplicitSignature.getLocalRangeEnd()) {
8735      // This would be much cheaper if we stored TypeLocs instead of
8736      // TypeSourceInfos.
8737      TypeLoc Result = ExplicitSignature.getResultLoc();
8738      unsigned Size = Result.getFullDataSize();
8739      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8740      Sig->getTypeLoc().initializeFullCopy(Result, Size);
8741
8742      ExplicitSignature = FunctionProtoTypeLoc();
8743    }
8744  }
8745
8746  CurBlock->TheDecl->setSignatureAsWritten(Sig);
8747  CurBlock->FunctionType = T;
8748
8749  const FunctionType *Fn = T->getAs<FunctionType>();
8750  QualType RetTy = Fn->getResultType();
8751  bool isVariadic =
8752    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8753
8754  CurBlock->TheDecl->setIsVariadic(isVariadic);
8755
8756  // Don't allow returning a objc interface by value.
8757  if (RetTy->isObjCObjectType()) {
8758    Diag(ParamInfo.getSourceRange().getBegin(),
8759         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8760    return;
8761  }
8762
8763  // Context.DependentTy is used as a placeholder for a missing block
8764  // return type.  TODO:  what should we do with declarators like:
8765  //   ^ * { ... }
8766  // If the answer is "apply template argument deduction"....
8767  if (RetTy != Context.DependentTy) {
8768    CurBlock->ReturnType = RetTy;
8769    CurBlock->TheDecl->setBlockMissingReturnType(false);
8770  }
8771
8772  // Push block parameters from the declarator if we had them.
8773  SmallVector<ParmVarDecl*, 8> Params;
8774  if (ExplicitSignature) {
8775    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8776      ParmVarDecl *Param = ExplicitSignature.getArg(I);
8777      if (Param->getIdentifier() == 0 &&
8778          !Param->isImplicit() &&
8779          !Param->isInvalidDecl() &&
8780          !getLangOptions().CPlusPlus)
8781        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8782      Params.push_back(Param);
8783    }
8784
8785  // Fake up parameter variables if we have a typedef, like
8786  //   ^ fntype { ... }
8787  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8788    for (FunctionProtoType::arg_type_iterator
8789           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8790      ParmVarDecl *Param =
8791        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8792                                   ParamInfo.getSourceRange().getBegin(),
8793                                   *I);
8794      Params.push_back(Param);
8795    }
8796  }
8797
8798  // Set the parameters on the block decl.
8799  if (!Params.empty()) {
8800    CurBlock->TheDecl->setParams(Params);
8801    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8802                             CurBlock->TheDecl->param_end(),
8803                             /*CheckParameterNames=*/false);
8804  }
8805
8806  // Finally we can process decl attributes.
8807  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8808
8809  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
8810    Diag(ParamInfo.getAttributes()->getLoc(),
8811         diag::warn_attribute_sentinel_not_variadic) << 1;
8812    // FIXME: remove the attribute.
8813  }
8814
8815  // Put the parameter variables in scope.  We can bail out immediately
8816  // if we don't have any.
8817  if (Params.empty())
8818    return;
8819
8820  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
8821         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
8822    (*AI)->setOwningFunction(CurBlock->TheDecl);
8823
8824    // If this has an identifier, add it to the scope stack.
8825    if ((*AI)->getIdentifier()) {
8826      CheckShadow(CurBlock->TheScope, *AI);
8827
8828      PushOnScopeChains(*AI, CurBlock->TheScope);
8829    }
8830  }
8831}
8832
8833/// ActOnBlockError - If there is an error parsing a block, this callback
8834/// is invoked to pop the information about the block from the action impl.
8835void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
8836  // Leave the expression-evaluation context.
8837  DiscardCleanupsInEvaluationContext();
8838  PopExpressionEvaluationContext();
8839
8840  // Pop off CurBlock, handle nested blocks.
8841  PopDeclContext();
8842  PopFunctionOrBlockScope();
8843}
8844
8845/// ActOnBlockStmtExpr - This is called when the body of a block statement
8846/// literal was successfully completed.  ^(int x){...}
8847ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
8848                                    Stmt *Body, Scope *CurScope) {
8849  // If blocks are disabled, emit an error.
8850  if (!LangOpts.Blocks)
8851    Diag(CaretLoc, diag::err_blocks_disable);
8852
8853  // Leave the expression-evaluation context.
8854  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
8855  PopExpressionEvaluationContext();
8856
8857  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
8858
8859  PopDeclContext();
8860
8861  QualType RetTy = Context.VoidTy;
8862  if (!BSI->ReturnType.isNull())
8863    RetTy = BSI->ReturnType;
8864
8865  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
8866  QualType BlockTy;
8867
8868  // Set the captured variables on the block.
8869  BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
8870                            BSI->CapturesCXXThis);
8871
8872  // If the user wrote a function type in some form, try to use that.
8873  if (!BSI->FunctionType.isNull()) {
8874    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
8875
8876    FunctionType::ExtInfo Ext = FTy->getExtInfo();
8877    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
8878
8879    // Turn protoless block types into nullary block types.
8880    if (isa<FunctionNoProtoType>(FTy)) {
8881      FunctionProtoType::ExtProtoInfo EPI;
8882      EPI.ExtInfo = Ext;
8883      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8884
8885    // Otherwise, if we don't need to change anything about the function type,
8886    // preserve its sugar structure.
8887    } else if (FTy->getResultType() == RetTy &&
8888               (!NoReturn || FTy->getNoReturnAttr())) {
8889      BlockTy = BSI->FunctionType;
8890
8891    // Otherwise, make the minimal modifications to the function type.
8892    } else {
8893      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
8894      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8895      EPI.TypeQuals = 0; // FIXME: silently?
8896      EPI.ExtInfo = Ext;
8897      BlockTy = Context.getFunctionType(RetTy,
8898                                        FPT->arg_type_begin(),
8899                                        FPT->getNumArgs(),
8900                                        EPI);
8901    }
8902
8903  // If we don't have a function type, just build one from nothing.
8904  } else {
8905    FunctionProtoType::ExtProtoInfo EPI;
8906    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
8907    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
8908  }
8909
8910  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
8911                           BSI->TheDecl->param_end());
8912  BlockTy = Context.getBlockPointerType(BlockTy);
8913
8914  // If needed, diagnose invalid gotos and switches in the block.
8915  if (getCurFunction()->NeedsScopeChecking() &&
8916      !hasAnyUnrecoverableErrorsInThisFunction())
8917    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
8918
8919  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
8920
8921  for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
8922       ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
8923    const VarDecl *variable = ci->getVariable();
8924    QualType T = variable->getType();
8925    QualType::DestructionKind destructKind = T.isDestructedType();
8926    if (destructKind != QualType::DK_none)
8927      getCurFunction()->setHasBranchProtectedScope();
8928  }
8929
8930  computeNRVO(Body, getCurBlock());
8931
8932  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
8933  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
8934  PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
8935
8936  // If the block isn't obviously global, i.e. it captures anything at
8937  // all, mark this full-expression as needing a cleanup.
8938  if (Result->getBlockDecl()->hasCaptures()) {
8939    ExprCleanupObjects.push_back(Result->getBlockDecl());
8940    ExprNeedsCleanups = true;
8941  }
8942
8943  return Owned(Result);
8944}
8945
8946ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
8947                                        Expr *E, ParsedType Ty,
8948                                        SourceLocation RPLoc) {
8949  TypeSourceInfo *TInfo;
8950  GetTypeFromParser(Ty, &TInfo);
8951  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
8952}
8953
8954ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
8955                                Expr *E, TypeSourceInfo *TInfo,
8956                                SourceLocation RPLoc) {
8957  Expr *OrigExpr = E;
8958
8959  // Get the va_list type
8960  QualType VaListType = Context.getBuiltinVaListType();
8961  if (VaListType->isArrayType()) {
8962    // Deal with implicit array decay; for example, on x86-64,
8963    // va_list is an array, but it's supposed to decay to
8964    // a pointer for va_arg.
8965    VaListType = Context.getArrayDecayedType(VaListType);
8966    // Make sure the input expression also decays appropriately.
8967    ExprResult Result = UsualUnaryConversions(E);
8968    if (Result.isInvalid())
8969      return ExprError();
8970    E = Result.take();
8971  } else {
8972    // Otherwise, the va_list argument must be an l-value because
8973    // it is modified by va_arg.
8974    if (!E->isTypeDependent() &&
8975        CheckForModifiableLvalue(E, BuiltinLoc, *this))
8976      return ExprError();
8977  }
8978
8979  if (!E->isTypeDependent() &&
8980      !Context.hasSameType(VaListType, E->getType())) {
8981    return ExprError(Diag(E->getLocStart(),
8982                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
8983      << OrigExpr->getType() << E->getSourceRange());
8984  }
8985
8986  if (!TInfo->getType()->isDependentType()) {
8987    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
8988          PDiag(diag::err_second_parameter_to_va_arg_incomplete)
8989          << TInfo->getTypeLoc().getSourceRange()))
8990      return ExprError();
8991
8992    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
8993          TInfo->getType(),
8994          PDiag(diag::err_second_parameter_to_va_arg_abstract)
8995          << TInfo->getTypeLoc().getSourceRange()))
8996      return ExprError();
8997
8998    if (!TInfo->getType().isPODType(Context)) {
8999      Diag(TInfo->getTypeLoc().getBeginLoc(),
9000           TInfo->getType()->isObjCLifetimeType()
9001             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9002             : diag::warn_second_parameter_to_va_arg_not_pod)
9003        << TInfo->getType()
9004        << TInfo->getTypeLoc().getSourceRange();
9005    }
9006
9007    // Check for va_arg where arguments of the given type will be promoted
9008    // (i.e. this va_arg is guaranteed to have undefined behavior).
9009    QualType PromoteType;
9010    if (TInfo->getType()->isPromotableIntegerType()) {
9011      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9012      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9013        PromoteType = QualType();
9014    }
9015    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9016      PromoteType = Context.DoubleTy;
9017    if (!PromoteType.isNull())
9018      Diag(TInfo->getTypeLoc().getBeginLoc(),
9019          diag::warn_second_parameter_to_va_arg_never_compatible)
9020        << TInfo->getType()
9021        << PromoteType
9022        << TInfo->getTypeLoc().getSourceRange();
9023  }
9024
9025  QualType T = TInfo->getType().getNonLValueExprType(Context);
9026  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9027}
9028
9029ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9030  // The type of __null will be int or long, depending on the size of
9031  // pointers on the target.
9032  QualType Ty;
9033  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9034  if (pw == Context.getTargetInfo().getIntWidth())
9035    Ty = Context.IntTy;
9036  else if (pw == Context.getTargetInfo().getLongWidth())
9037    Ty = Context.LongTy;
9038  else if (pw == Context.getTargetInfo().getLongLongWidth())
9039    Ty = Context.LongLongTy;
9040  else {
9041    llvm_unreachable("I don't know size of pointer!");
9042  }
9043
9044  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9045}
9046
9047static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9048                                           Expr *SrcExpr, FixItHint &Hint) {
9049  if (!SemaRef.getLangOptions().ObjC1)
9050    return;
9051
9052  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9053  if (!PT)
9054    return;
9055
9056  // Check if the destination is of type 'id'.
9057  if (!PT->isObjCIdType()) {
9058    // Check if the destination is the 'NSString' interface.
9059    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9060    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9061      return;
9062  }
9063
9064  // Ignore any parens, implicit casts (should only be
9065  // array-to-pointer decays), and not-so-opaque values.  The last is
9066  // important for making this trigger for property assignments.
9067  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9068  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9069    if (OV->getSourceExpr())
9070      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9071
9072  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9073  if (!SL || !SL->isAscii())
9074    return;
9075
9076  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9077}
9078
9079bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9080                                    SourceLocation Loc,
9081                                    QualType DstType, QualType SrcType,
9082                                    Expr *SrcExpr, AssignmentAction Action,
9083                                    bool *Complained) {
9084  if (Complained)
9085    *Complained = false;
9086
9087  // Decode the result (notice that AST's are still created for extensions).
9088  bool CheckInferredResultType = false;
9089  bool isInvalid = false;
9090  unsigned DiagKind;
9091  FixItHint Hint;
9092  ConversionFixItGenerator ConvHints;
9093  bool MayHaveConvFixit = false;
9094  bool MayHaveFunctionDiff = false;
9095
9096  switch (ConvTy) {
9097  default: llvm_unreachable("Unknown conversion type");
9098  case Compatible: return false;
9099  case PointerToInt:
9100    DiagKind = diag::ext_typecheck_convert_pointer_int;
9101    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9102    MayHaveConvFixit = true;
9103    break;
9104  case IntToPointer:
9105    DiagKind = diag::ext_typecheck_convert_int_pointer;
9106    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9107    MayHaveConvFixit = true;
9108    break;
9109  case IncompatiblePointer:
9110    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9111    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9112    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9113      SrcType->isObjCObjectPointerType();
9114    if (Hint.isNull() && !CheckInferredResultType) {
9115      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9116    }
9117    MayHaveConvFixit = true;
9118    break;
9119  case IncompatiblePointerSign:
9120    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9121    break;
9122  case FunctionVoidPointer:
9123    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9124    break;
9125  case IncompatiblePointerDiscardsQualifiers: {
9126    // Perform array-to-pointer decay if necessary.
9127    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9128
9129    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9130    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9131    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9132      DiagKind = diag::err_typecheck_incompatible_address_space;
9133      break;
9134
9135
9136    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9137      DiagKind = diag::err_typecheck_incompatible_ownership;
9138      break;
9139    }
9140
9141    llvm_unreachable("unknown error case for discarding qualifiers!");
9142    // fallthrough
9143  }
9144  case CompatiblePointerDiscardsQualifiers:
9145    // If the qualifiers lost were because we were applying the
9146    // (deprecated) C++ conversion from a string literal to a char*
9147    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9148    // Ideally, this check would be performed in
9149    // checkPointerTypesForAssignment. However, that would require a
9150    // bit of refactoring (so that the second argument is an
9151    // expression, rather than a type), which should be done as part
9152    // of a larger effort to fix checkPointerTypesForAssignment for
9153    // C++ semantics.
9154    if (getLangOptions().CPlusPlus &&
9155        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9156      return false;
9157    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9158    break;
9159  case IncompatibleNestedPointerQualifiers:
9160    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9161    break;
9162  case IntToBlockPointer:
9163    DiagKind = diag::err_int_to_block_pointer;
9164    break;
9165  case IncompatibleBlockPointer:
9166    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9167    break;
9168  case IncompatibleObjCQualifiedId:
9169    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9170    // it can give a more specific diagnostic.
9171    DiagKind = diag::warn_incompatible_qualified_id;
9172    break;
9173  case IncompatibleVectors:
9174    DiagKind = diag::warn_incompatible_vectors;
9175    break;
9176  case IncompatibleObjCWeakRef:
9177    DiagKind = diag::err_arc_weak_unavailable_assign;
9178    break;
9179  case Incompatible:
9180    DiagKind = diag::err_typecheck_convert_incompatible;
9181    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9182    MayHaveConvFixit = true;
9183    isInvalid = true;
9184    MayHaveFunctionDiff = true;
9185    break;
9186  }
9187
9188  QualType FirstType, SecondType;
9189  switch (Action) {
9190  case AA_Assigning:
9191  case AA_Initializing:
9192    // The destination type comes first.
9193    FirstType = DstType;
9194    SecondType = SrcType;
9195    break;
9196
9197  case AA_Returning:
9198  case AA_Passing:
9199  case AA_Converting:
9200  case AA_Sending:
9201  case AA_Casting:
9202    // The source type comes first.
9203    FirstType = SrcType;
9204    SecondType = DstType;
9205    break;
9206  }
9207
9208  PartialDiagnostic FDiag = PDiag(DiagKind);
9209  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9210
9211  // If we can fix the conversion, suggest the FixIts.
9212  assert(ConvHints.isNull() || Hint.isNull());
9213  if (!ConvHints.isNull()) {
9214    for (llvm::SmallVector<FixItHint, 1>::iterator
9215        HI = ConvHints.Hints.begin(), HE = ConvHints.Hints.end();
9216        HI != HE; ++HI)
9217      FDiag << *HI;
9218  } else {
9219    FDiag << Hint;
9220  }
9221  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9222
9223  if (MayHaveFunctionDiff)
9224    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9225
9226  Diag(Loc, FDiag);
9227
9228  if (SecondType == Context.OverloadTy)
9229    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9230                              FirstType);
9231
9232  if (CheckInferredResultType)
9233    EmitRelatedResultTypeNote(SrcExpr);
9234
9235  if (Complained)
9236    *Complained = true;
9237  return isInvalid;
9238}
9239
9240bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result,
9241                                           unsigned DiagID, bool AllowFold) {
9242  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9243  // in the non-ICE case.
9244  if (!getLangOptions().CPlusPlus0x) {
9245    if (E->isIntegerConstantExpr(Context)) {
9246      if (Result)
9247        *Result = E->EvaluateKnownConstInt(Context);
9248      return false;
9249    }
9250  }
9251
9252  Expr::EvalResult EvalResult;
9253  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9254  EvalResult.Diag = &Notes;
9255
9256  // Try to evaluate the expression, and produce diagnostics explaining why it's
9257  // not a constant expression as a side-effect.
9258  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9259                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9260
9261  // In C++11, we can rely on diagnostics being produced for any expression
9262  // which is not a constant expression. If no diagnostics were produced, then
9263  // this is a constant expression.
9264  if (Folded && getLangOptions().CPlusPlus0x && Notes.empty()) {
9265    if (Result)
9266      *Result = EvalResult.Val.getInt();
9267    return false;
9268  }
9269
9270  if (!Folded || !AllowFold) {
9271    Diag(E->getSourceRange().getBegin(),
9272         DiagID ? DiagID : unsigned(diag::err_expr_not_ice))
9273      << E->getSourceRange();
9274
9275    // We only show the notes if they're not the usual "invalid subexpression"
9276    // or if they are actually in a subexpression.
9277    if (Notes.size() != 1 ||
9278        Notes[0].second.getDiagID() != diag::note_invalid_subexpr_in_const_expr
9279        || Notes[0].first != E->IgnoreParens()->getExprLoc()) {
9280      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9281        Diag(Notes[I].first, Notes[I].second);
9282    }
9283
9284    return true;
9285  }
9286
9287  Diag(E->getSourceRange().getBegin(), diag::ext_expr_not_ice)
9288    << E->getSourceRange();
9289
9290  if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice, E->getExprLoc())
9291          != DiagnosticsEngine::Ignored)
9292    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9293      Diag(Notes[I].first, Notes[I].second);
9294
9295  if (Result)
9296    *Result = EvalResult.Val.getInt();
9297  return false;
9298}
9299
9300void
9301Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
9302  ExprEvalContexts.push_back(
9303             ExpressionEvaluationContextRecord(NewContext,
9304                                               ExprCleanupObjects.size(),
9305                                               ExprNeedsCleanups));
9306  ExprNeedsCleanups = false;
9307}
9308
9309void Sema::PopExpressionEvaluationContext() {
9310  // Pop the current expression evaluation context off the stack.
9311  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
9312  ExprEvalContexts.pop_back();
9313
9314  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
9315    if (Rec.PotentiallyReferenced) {
9316      // Mark any remaining declarations in the current position of the stack
9317      // as "referenced". If they were not meant to be referenced, semantic
9318      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
9319      for (PotentiallyReferencedDecls::iterator
9320             I = Rec.PotentiallyReferenced->begin(),
9321             IEnd = Rec.PotentiallyReferenced->end();
9322           I != IEnd; ++I)
9323        MarkDeclarationReferenced(I->first, I->second);
9324    }
9325
9326    if (Rec.PotentiallyDiagnosed) {
9327      // Emit any pending diagnostics.
9328      for (PotentiallyEmittedDiagnostics::iterator
9329                I = Rec.PotentiallyDiagnosed->begin(),
9330             IEnd = Rec.PotentiallyDiagnosed->end();
9331           I != IEnd; ++I)
9332        Diag(I->first, I->second);
9333    }
9334  }
9335
9336  // When are coming out of an unevaluated context, clear out any
9337  // temporaries that we may have created as part of the evaluation of
9338  // the expression in that context: they aren't relevant because they
9339  // will never be constructed.
9340  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
9341    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
9342                             ExprCleanupObjects.end());
9343    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
9344
9345  // Otherwise, merge the contexts together.
9346  } else {
9347    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
9348  }
9349
9350  // Destroy the popped expression evaluation record.
9351  Rec.Destroy();
9352}
9353
9354void Sema::DiscardCleanupsInEvaluationContext() {
9355  ExprCleanupObjects.erase(
9356         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
9357         ExprCleanupObjects.end());
9358  ExprNeedsCleanups = false;
9359}
9360
9361/// \brief Note that the given declaration was referenced in the source code.
9362///
9363/// This routine should be invoke whenever a given declaration is referenced
9364/// in the source code, and where that reference occurred. If this declaration
9365/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
9366/// C99 6.9p3), then the declaration will be marked as used.
9367///
9368/// \param Loc the location where the declaration was referenced.
9369///
9370/// \param D the declaration that has been referenced by the source code.
9371void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
9372  assert(D && "No declaration?");
9373
9374  D->setReferenced();
9375
9376  if (D->isUsed(false))
9377    return;
9378
9379  // Mark a parameter or variable declaration "used", regardless of whether
9380  // we're in a template or not. The reason for this is that unevaluated
9381  // expressions (e.g. (void)sizeof()) constitute a use for warning purposes
9382  // (-Wunused-variables and -Wunused-parameters)
9383  if (isa<ParmVarDecl>(D) ||
9384      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
9385    D->setUsed();
9386    return;
9387  }
9388
9389  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
9390    return;
9391
9392  // Do not mark anything as "used" within a dependent context; wait for
9393  // an instantiation.
9394  if (CurContext->isDependentContext())
9395    return;
9396
9397  switch (ExprEvalContexts.back().Context) {
9398    case Unevaluated:
9399      // We are in an expression that is not potentially evaluated; do nothing.
9400      return;
9401
9402    case ConstantEvaluated:
9403      // We are in an expression that will be evaluated during translation; in
9404      // C++11, we need to define any functions which are used in case they're
9405      // constexpr, whereas in C++98, we only need to define static data members
9406      // of class templates.
9407      if (!getLangOptions().CPlusPlus ||
9408          (!getLangOptions().CPlusPlus0x && !isa<VarDecl>(D)))
9409        return;
9410      break;
9411
9412    case PotentiallyEvaluated:
9413      // We are in a potentially-evaluated expression, so this declaration is
9414      // "used"; handle this below.
9415      break;
9416
9417    case PotentiallyPotentiallyEvaluated:
9418      // We are in an expression that may be potentially evaluated; queue this
9419      // declaration reference until we know whether the expression is
9420      // potentially evaluated.
9421      ExprEvalContexts.back().addReferencedDecl(Loc, D);
9422      return;
9423
9424    case PotentiallyEvaluatedIfUsed:
9425      // Referenced declarations will only be used if the construct in the
9426      // containing expression is used.
9427      return;
9428  }
9429
9430  // Note that this declaration has been used.
9431  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
9432    if (Constructor->isDefaulted()) {
9433      if (Constructor->isDefaultConstructor()) {
9434        if (Constructor->isTrivial())
9435          return;
9436        if (!Constructor->isUsed(false))
9437          DefineImplicitDefaultConstructor(Loc, Constructor);
9438      } else if (Constructor->isCopyConstructor()) {
9439        if (!Constructor->isUsed(false))
9440          DefineImplicitCopyConstructor(Loc, Constructor);
9441      } else if (Constructor->isMoveConstructor()) {
9442        if (!Constructor->isUsed(false))
9443          DefineImplicitMoveConstructor(Loc, Constructor);
9444      }
9445    }
9446
9447    MarkVTableUsed(Loc, Constructor->getParent());
9448  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
9449    if (Destructor->isDefaulted() && !Destructor->isUsed(false))
9450      DefineImplicitDestructor(Loc, Destructor);
9451    if (Destructor->isVirtual())
9452      MarkVTableUsed(Loc, Destructor->getParent());
9453  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
9454    if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
9455        MethodDecl->getOverloadedOperator() == OO_Equal) {
9456      if (!MethodDecl->isUsed(false)) {
9457        if (MethodDecl->isCopyAssignmentOperator())
9458          DefineImplicitCopyAssignment(Loc, MethodDecl);
9459        else
9460          DefineImplicitMoveAssignment(Loc, MethodDecl);
9461      }
9462    } else if (MethodDecl->isVirtual())
9463      MarkVTableUsed(Loc, MethodDecl->getParent());
9464  }
9465  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
9466    // Recursive functions should be marked when used from another function.
9467    if (CurContext == Function) return;
9468
9469    // Implicit instantiation of function templates and member functions of
9470    // class templates.
9471    if (Function->isImplicitlyInstantiable()) {
9472      bool AlreadyInstantiated = false;
9473      if (FunctionTemplateSpecializationInfo *SpecInfo
9474                                = Function->getTemplateSpecializationInfo()) {
9475        if (SpecInfo->getPointOfInstantiation().isInvalid())
9476          SpecInfo->setPointOfInstantiation(Loc);
9477        else if (SpecInfo->getTemplateSpecializationKind()
9478                   == TSK_ImplicitInstantiation)
9479          AlreadyInstantiated = true;
9480      } else if (MemberSpecializationInfo *MSInfo
9481                                  = Function->getMemberSpecializationInfo()) {
9482        if (MSInfo->getPointOfInstantiation().isInvalid())
9483          MSInfo->setPointOfInstantiation(Loc);
9484        else if (MSInfo->getTemplateSpecializationKind()
9485                   == TSK_ImplicitInstantiation)
9486          AlreadyInstantiated = true;
9487      }
9488
9489      if (!AlreadyInstantiated) {
9490        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
9491            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
9492          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
9493                                                                      Loc));
9494        else
9495          PendingInstantiations.push_back(std::make_pair(Function, Loc));
9496      }
9497    } else {
9498      // Walk redefinitions, as some of them may be instantiable.
9499      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
9500           e(Function->redecls_end()); i != e; ++i) {
9501        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
9502          MarkDeclarationReferenced(Loc, *i);
9503      }
9504    }
9505
9506    // Keep track of used but undefined functions.
9507    if (!Function->isPure() && !Function->hasBody() &&
9508        Function->getLinkage() != ExternalLinkage) {
9509      SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
9510      if (old.isInvalid()) old = Loc;
9511    }
9512
9513    Function->setUsed(true);
9514    return;
9515  }
9516
9517  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
9518    // Implicit instantiation of static data members of class templates.
9519    if (Var->isStaticDataMember() &&
9520        Var->getInstantiatedFromStaticDataMember()) {
9521      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
9522      assert(MSInfo && "Missing member specialization information?");
9523      if (MSInfo->getPointOfInstantiation().isInvalid() &&
9524          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
9525        MSInfo->setPointOfInstantiation(Loc);
9526        // This is a modification of an existing AST node. Notify listeners.
9527        if (ASTMutationListener *L = getASTMutationListener())
9528          L->StaticDataMemberInstantiated(Var);
9529        QualType T = Var->getType();
9530        if (T.isConstQualified() && !T.isVolatileQualified() &&
9531            T->isIntegralOrEnumerationType())
9532          InstantiateStaticDataMemberDefinition(Loc, Var);
9533        else
9534          PendingInstantiations.push_back(std::make_pair(Var, Loc));
9535      }
9536    }
9537
9538    // Keep track of used but undefined variables.  We make a hole in
9539    // the warning for static const data members with in-line
9540    // initializers.
9541    if (Var->hasDefinition() == VarDecl::DeclarationOnly
9542        && Var->getLinkage() != ExternalLinkage
9543        && !(Var->isStaticDataMember() && Var->hasInit())) {
9544      SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
9545      if (old.isInvalid()) old = Loc;
9546    }
9547
9548    D->setUsed(true);
9549    return;
9550  }
9551}
9552
9553namespace {
9554  // Mark all of the declarations referenced
9555  // FIXME: Not fully implemented yet! We need to have a better understanding
9556  // of when we're entering
9557  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
9558    Sema &S;
9559    SourceLocation Loc;
9560
9561  public:
9562    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
9563
9564    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
9565
9566    bool TraverseTemplateArgument(const TemplateArgument &Arg);
9567    bool TraverseRecordType(RecordType *T);
9568  };
9569}
9570
9571bool MarkReferencedDecls::TraverseTemplateArgument(
9572  const TemplateArgument &Arg) {
9573  if (Arg.getKind() == TemplateArgument::Declaration) {
9574    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
9575  }
9576
9577  return Inherited::TraverseTemplateArgument(Arg);
9578}
9579
9580bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
9581  if (ClassTemplateSpecializationDecl *Spec
9582                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
9583    const TemplateArgumentList &Args = Spec->getTemplateArgs();
9584    return TraverseTemplateArguments(Args.data(), Args.size());
9585  }
9586
9587  return true;
9588}
9589
9590void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
9591  MarkReferencedDecls Marker(*this, Loc);
9592  Marker.TraverseType(Context.getCanonicalType(T));
9593}
9594
9595namespace {
9596  /// \brief Helper class that marks all of the declarations referenced by
9597  /// potentially-evaluated subexpressions as "referenced".
9598  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
9599    Sema &S;
9600
9601  public:
9602    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
9603
9604    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
9605
9606    void VisitDeclRefExpr(DeclRefExpr *E) {
9607      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9608    }
9609
9610    void VisitMemberExpr(MemberExpr *E) {
9611      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
9612      Inherited::VisitMemberExpr(E);
9613    }
9614
9615    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
9616      S.MarkDeclarationReferenced(E->getLocStart(),
9617            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
9618      Visit(E->getSubExpr());
9619    }
9620
9621    void VisitCXXNewExpr(CXXNewExpr *E) {
9622      if (E->getConstructor())
9623        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9624      if (E->getOperatorNew())
9625        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
9626      if (E->getOperatorDelete())
9627        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9628      Inherited::VisitCXXNewExpr(E);
9629    }
9630
9631    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
9632      if (E->getOperatorDelete())
9633        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
9634      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
9635      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
9636        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
9637        S.MarkDeclarationReferenced(E->getLocStart(),
9638                                    S.LookupDestructor(Record));
9639      }
9640
9641      Inherited::VisitCXXDeleteExpr(E);
9642    }
9643
9644    void VisitCXXConstructExpr(CXXConstructExpr *E) {
9645      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
9646      Inherited::VisitCXXConstructExpr(E);
9647    }
9648
9649    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
9650      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
9651    }
9652
9653    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
9654      Visit(E->getExpr());
9655    }
9656  };
9657}
9658
9659/// \brief Mark any declarations that appear within this expression or any
9660/// potentially-evaluated subexpressions as "referenced".
9661void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
9662  EvaluatedExprMarker(*this).Visit(E);
9663}
9664
9665/// \brief Emit a diagnostic that describes an effect on the run-time behavior
9666/// of the program being compiled.
9667///
9668/// This routine emits the given diagnostic when the code currently being
9669/// type-checked is "potentially evaluated", meaning that there is a
9670/// possibility that the code will actually be executable. Code in sizeof()
9671/// expressions, code used only during overload resolution, etc., are not
9672/// potentially evaluated. This routine will suppress such diagnostics or,
9673/// in the absolutely nutty case of potentially potentially evaluated
9674/// expressions (C++ typeid), queue the diagnostic to potentially emit it
9675/// later.
9676///
9677/// This routine should be used for all diagnostics that describe the run-time
9678/// behavior of a program, such as passing a non-POD value through an ellipsis.
9679/// Failure to do so will likely result in spurious diagnostics or failures
9680/// during overload resolution or within sizeof/alignof/typeof/typeid.
9681bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
9682                               const PartialDiagnostic &PD) {
9683  switch (ExprEvalContexts.back().Context) {
9684  case Unevaluated:
9685    // The argument will never be evaluated, so don't complain.
9686    break;
9687
9688  case ConstantEvaluated:
9689    // Relevant diagnostics should be produced by constant evaluation.
9690    break;
9691
9692  case PotentiallyEvaluated:
9693  case PotentiallyEvaluatedIfUsed:
9694    if (Statement && getCurFunctionOrMethodDecl()) {
9695      FunctionScopes.back()->PossiblyUnreachableDiags.
9696        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
9697    }
9698    else
9699      Diag(Loc, PD);
9700
9701    return true;
9702
9703  case PotentiallyPotentiallyEvaluated:
9704    ExprEvalContexts.back().addDiagnostic(Loc, PD);
9705    break;
9706  }
9707
9708  return false;
9709}
9710
9711bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
9712                               CallExpr *CE, FunctionDecl *FD) {
9713  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
9714    return false;
9715
9716  PartialDiagnostic Note =
9717    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
9718    << FD->getDeclName() : PDiag();
9719  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
9720
9721  if (RequireCompleteType(Loc, ReturnType,
9722                          FD ?
9723                          PDiag(diag::err_call_function_incomplete_return)
9724                            << CE->getSourceRange() << FD->getDeclName() :
9725                          PDiag(diag::err_call_incomplete_return)
9726                            << CE->getSourceRange(),
9727                          std::make_pair(NoteLoc, Note)))
9728    return true;
9729
9730  return false;
9731}
9732
9733// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
9734// will prevent this condition from triggering, which is what we want.
9735void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
9736  SourceLocation Loc;
9737
9738  unsigned diagnostic = diag::warn_condition_is_assignment;
9739  bool IsOrAssign = false;
9740
9741  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
9742    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
9743      return;
9744
9745    IsOrAssign = Op->getOpcode() == BO_OrAssign;
9746
9747    // Greylist some idioms by putting them into a warning subcategory.
9748    if (ObjCMessageExpr *ME
9749          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
9750      Selector Sel = ME->getSelector();
9751
9752      // self = [<foo> init...]
9753      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
9754        diagnostic = diag::warn_condition_is_idiomatic_assignment;
9755
9756      // <foo> = [<bar> nextObject]
9757      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
9758        diagnostic = diag::warn_condition_is_idiomatic_assignment;
9759    }
9760
9761    Loc = Op->getOperatorLoc();
9762  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
9763    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
9764      return;
9765
9766    IsOrAssign = Op->getOperator() == OO_PipeEqual;
9767    Loc = Op->getOperatorLoc();
9768  } else {
9769    // Not an assignment.
9770    return;
9771  }
9772
9773  Diag(Loc, diagnostic) << E->getSourceRange();
9774
9775  SourceLocation Open = E->getSourceRange().getBegin();
9776  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
9777  Diag(Loc, diag::note_condition_assign_silence)
9778        << FixItHint::CreateInsertion(Open, "(")
9779        << FixItHint::CreateInsertion(Close, ")");
9780
9781  if (IsOrAssign)
9782    Diag(Loc, diag::note_condition_or_assign_to_comparison)
9783      << FixItHint::CreateReplacement(Loc, "!=");
9784  else
9785    Diag(Loc, diag::note_condition_assign_to_comparison)
9786      << FixItHint::CreateReplacement(Loc, "==");
9787}
9788
9789/// \brief Redundant parentheses over an equality comparison can indicate
9790/// that the user intended an assignment used as condition.
9791void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
9792  // Don't warn if the parens came from a macro.
9793  SourceLocation parenLoc = ParenE->getLocStart();
9794  if (parenLoc.isInvalid() || parenLoc.isMacroID())
9795    return;
9796  // Don't warn for dependent expressions.
9797  if (ParenE->isTypeDependent())
9798    return;
9799
9800  Expr *E = ParenE->IgnoreParens();
9801
9802  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
9803    if (opE->getOpcode() == BO_EQ &&
9804        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
9805                                                           == Expr::MLV_Valid) {
9806      SourceLocation Loc = opE->getOperatorLoc();
9807
9808      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
9809      Diag(Loc, diag::note_equality_comparison_silence)
9810        << FixItHint::CreateRemoval(ParenE->getSourceRange().getBegin())
9811        << FixItHint::CreateRemoval(ParenE->getSourceRange().getEnd());
9812      Diag(Loc, diag::note_equality_comparison_to_assign)
9813        << FixItHint::CreateReplacement(Loc, "=");
9814    }
9815}
9816
9817ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
9818  DiagnoseAssignmentAsCondition(E);
9819  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
9820    DiagnoseEqualityWithExtraParens(parenE);
9821
9822  ExprResult result = CheckPlaceholderExpr(E);
9823  if (result.isInvalid()) return ExprError();
9824  E = result.take();
9825
9826  if (!E->isTypeDependent()) {
9827    if (getLangOptions().CPlusPlus)
9828      return CheckCXXBooleanCondition(E); // C++ 6.4p4
9829
9830    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
9831    if (ERes.isInvalid())
9832      return ExprError();
9833    E = ERes.take();
9834
9835    QualType T = E->getType();
9836    if (!T->isScalarType()) { // C99 6.8.4.1p1
9837      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
9838        << T << E->getSourceRange();
9839      return ExprError();
9840    }
9841  }
9842
9843  return Owned(E);
9844}
9845
9846ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
9847                                       Expr *SubExpr) {
9848  if (!SubExpr)
9849    return ExprError();
9850
9851  return CheckBooleanCondition(SubExpr, Loc);
9852}
9853
9854namespace {
9855  /// A visitor for rebuilding a call to an __unknown_any expression
9856  /// to have an appropriate type.
9857  struct RebuildUnknownAnyFunction
9858    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
9859
9860    Sema &S;
9861
9862    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
9863
9864    ExprResult VisitStmt(Stmt *S) {
9865      llvm_unreachable("unexpected statement!");
9866      return ExprError();
9867    }
9868
9869    ExprResult VisitExpr(Expr *E) {
9870      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
9871        << E->getSourceRange();
9872      return ExprError();
9873    }
9874
9875    /// Rebuild an expression which simply semantically wraps another
9876    /// expression which it shares the type and value kind of.
9877    template <class T> ExprResult rebuildSugarExpr(T *E) {
9878      ExprResult SubResult = Visit(E->getSubExpr());
9879      if (SubResult.isInvalid()) return ExprError();
9880
9881      Expr *SubExpr = SubResult.take();
9882      E->setSubExpr(SubExpr);
9883      E->setType(SubExpr->getType());
9884      E->setValueKind(SubExpr->getValueKind());
9885      assert(E->getObjectKind() == OK_Ordinary);
9886      return E;
9887    }
9888
9889    ExprResult VisitParenExpr(ParenExpr *E) {
9890      return rebuildSugarExpr(E);
9891    }
9892
9893    ExprResult VisitUnaryExtension(UnaryOperator *E) {
9894      return rebuildSugarExpr(E);
9895    }
9896
9897    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
9898      ExprResult SubResult = Visit(E->getSubExpr());
9899      if (SubResult.isInvalid()) return ExprError();
9900
9901      Expr *SubExpr = SubResult.take();
9902      E->setSubExpr(SubExpr);
9903      E->setType(S.Context.getPointerType(SubExpr->getType()));
9904      assert(E->getValueKind() == VK_RValue);
9905      assert(E->getObjectKind() == OK_Ordinary);
9906      return E;
9907    }
9908
9909    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
9910      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
9911
9912      E->setType(VD->getType());
9913
9914      assert(E->getValueKind() == VK_RValue);
9915      if (S.getLangOptions().CPlusPlus &&
9916          !(isa<CXXMethodDecl>(VD) &&
9917            cast<CXXMethodDecl>(VD)->isInstance()))
9918        E->setValueKind(VK_LValue);
9919
9920      return E;
9921    }
9922
9923    ExprResult VisitMemberExpr(MemberExpr *E) {
9924      return resolveDecl(E, E->getMemberDecl());
9925    }
9926
9927    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
9928      return resolveDecl(E, E->getDecl());
9929    }
9930  };
9931}
9932
9933/// Given a function expression of unknown-any type, try to rebuild it
9934/// to have a function type.
9935static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
9936  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
9937  if (Result.isInvalid()) return ExprError();
9938  return S.DefaultFunctionArrayConversion(Result.take());
9939}
9940
9941namespace {
9942  /// A visitor for rebuilding an expression of type __unknown_anytype
9943  /// into one which resolves the type directly on the referring
9944  /// expression.  Strict preservation of the original source
9945  /// structure is not a goal.
9946  struct RebuildUnknownAnyExpr
9947    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
9948
9949    Sema &S;
9950
9951    /// The current destination type.
9952    QualType DestType;
9953
9954    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
9955      : S(S), DestType(CastType) {}
9956
9957    ExprResult VisitStmt(Stmt *S) {
9958      llvm_unreachable("unexpected statement!");
9959      return ExprError();
9960    }
9961
9962    ExprResult VisitExpr(Expr *E) {
9963      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
9964        << E->getSourceRange();
9965      return ExprError();
9966    }
9967
9968    ExprResult VisitCallExpr(CallExpr *E);
9969    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
9970
9971    /// Rebuild an expression which simply semantically wraps another
9972    /// expression which it shares the type and value kind of.
9973    template <class T> ExprResult rebuildSugarExpr(T *E) {
9974      ExprResult SubResult = Visit(E->getSubExpr());
9975      if (SubResult.isInvalid()) return ExprError();
9976      Expr *SubExpr = SubResult.take();
9977      E->setSubExpr(SubExpr);
9978      E->setType(SubExpr->getType());
9979      E->setValueKind(SubExpr->getValueKind());
9980      assert(E->getObjectKind() == OK_Ordinary);
9981      return E;
9982    }
9983
9984    ExprResult VisitParenExpr(ParenExpr *E) {
9985      return rebuildSugarExpr(E);
9986    }
9987
9988    ExprResult VisitUnaryExtension(UnaryOperator *E) {
9989      return rebuildSugarExpr(E);
9990    }
9991
9992    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
9993      const PointerType *Ptr = DestType->getAs<PointerType>();
9994      if (!Ptr) {
9995        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
9996          << E->getSourceRange();
9997        return ExprError();
9998      }
9999      assert(E->getValueKind() == VK_RValue);
10000      assert(E->getObjectKind() == OK_Ordinary);
10001      E->setType(DestType);
10002
10003      // Build the sub-expression as if it were an object of the pointee type.
10004      DestType = Ptr->getPointeeType();
10005      ExprResult SubResult = Visit(E->getSubExpr());
10006      if (SubResult.isInvalid()) return ExprError();
10007      E->setSubExpr(SubResult.take());
10008      return E;
10009    }
10010
10011    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
10012
10013    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
10014
10015    ExprResult VisitMemberExpr(MemberExpr *E) {
10016      return resolveDecl(E, E->getMemberDecl());
10017    }
10018
10019    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10020      return resolveDecl(E, E->getDecl());
10021    }
10022  };
10023}
10024
10025/// Rebuilds a call expression which yielded __unknown_anytype.
10026ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
10027  Expr *CalleeExpr = E->getCallee();
10028
10029  enum FnKind {
10030    FK_MemberFunction,
10031    FK_FunctionPointer,
10032    FK_BlockPointer
10033  };
10034
10035  FnKind Kind;
10036  QualType CalleeType = CalleeExpr->getType();
10037  if (CalleeType == S.Context.BoundMemberTy) {
10038    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
10039    Kind = FK_MemberFunction;
10040    CalleeType = Expr::findBoundMemberType(CalleeExpr);
10041  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
10042    CalleeType = Ptr->getPointeeType();
10043    Kind = FK_FunctionPointer;
10044  } else {
10045    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
10046    Kind = FK_BlockPointer;
10047  }
10048  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
10049
10050  // Verify that this is a legal result type of a function.
10051  if (DestType->isArrayType() || DestType->isFunctionType()) {
10052    unsigned diagID = diag::err_func_returning_array_function;
10053    if (Kind == FK_BlockPointer)
10054      diagID = diag::err_block_returning_array_function;
10055
10056    S.Diag(E->getExprLoc(), diagID)
10057      << DestType->isFunctionType() << DestType;
10058    return ExprError();
10059  }
10060
10061  // Otherwise, go ahead and set DestType as the call's result.
10062  E->setType(DestType.getNonLValueExprType(S.Context));
10063  E->setValueKind(Expr::getValueKindForType(DestType));
10064  assert(E->getObjectKind() == OK_Ordinary);
10065
10066  // Rebuild the function type, replacing the result type with DestType.
10067  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
10068    DestType = S.Context.getFunctionType(DestType,
10069                                         Proto->arg_type_begin(),
10070                                         Proto->getNumArgs(),
10071                                         Proto->getExtProtoInfo());
10072  else
10073    DestType = S.Context.getFunctionNoProtoType(DestType,
10074                                                FnType->getExtInfo());
10075
10076  // Rebuild the appropriate pointer-to-function type.
10077  switch (Kind) {
10078  case FK_MemberFunction:
10079    // Nothing to do.
10080    break;
10081
10082  case FK_FunctionPointer:
10083    DestType = S.Context.getPointerType(DestType);
10084    break;
10085
10086  case FK_BlockPointer:
10087    DestType = S.Context.getBlockPointerType(DestType);
10088    break;
10089  }
10090
10091  // Finally, we can recurse.
10092  ExprResult CalleeResult = Visit(CalleeExpr);
10093  if (!CalleeResult.isUsable()) return ExprError();
10094  E->setCallee(CalleeResult.take());
10095
10096  // Bind a temporary if necessary.
10097  return S.MaybeBindToTemporary(E);
10098}
10099
10100ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
10101  // Verify that this is a legal result type of a call.
10102  if (DestType->isArrayType() || DestType->isFunctionType()) {
10103    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
10104      << DestType->isFunctionType() << DestType;
10105    return ExprError();
10106  }
10107
10108  // Rewrite the method result type if available.
10109  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
10110    assert(Method->getResultType() == S.Context.UnknownAnyTy);
10111    Method->setResultType(DestType);
10112  }
10113
10114  // Change the type of the message.
10115  E->setType(DestType.getNonReferenceType());
10116  E->setValueKind(Expr::getValueKindForType(DestType));
10117
10118  return S.MaybeBindToTemporary(E);
10119}
10120
10121ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
10122  // The only case we should ever see here is a function-to-pointer decay.
10123  assert(E->getCastKind() == CK_FunctionToPointerDecay);
10124  assert(E->getValueKind() == VK_RValue);
10125  assert(E->getObjectKind() == OK_Ordinary);
10126
10127  E->setType(DestType);
10128
10129  // Rebuild the sub-expression as the pointee (function) type.
10130  DestType = DestType->castAs<PointerType>()->getPointeeType();
10131
10132  ExprResult Result = Visit(E->getSubExpr());
10133  if (!Result.isUsable()) return ExprError();
10134
10135  E->setSubExpr(Result.take());
10136  return S.Owned(E);
10137}
10138
10139ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
10140  ExprValueKind ValueKind = VK_LValue;
10141  QualType Type = DestType;
10142
10143  // We know how to make this work for certain kinds of decls:
10144
10145  //  - functions
10146  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
10147    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
10148      DestType = Ptr->getPointeeType();
10149      ExprResult Result = resolveDecl(E, VD);
10150      if (Result.isInvalid()) return ExprError();
10151      return S.ImpCastExprToType(Result.take(), Type,
10152                                 CK_FunctionToPointerDecay, VK_RValue);
10153    }
10154
10155    if (!Type->isFunctionType()) {
10156      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
10157        << VD << E->getSourceRange();
10158      return ExprError();
10159    }
10160
10161    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
10162      if (MD->isInstance()) {
10163        ValueKind = VK_RValue;
10164        Type = S.Context.BoundMemberTy;
10165      }
10166
10167    // Function references aren't l-values in C.
10168    if (!S.getLangOptions().CPlusPlus)
10169      ValueKind = VK_RValue;
10170
10171  //  - variables
10172  } else if (isa<VarDecl>(VD)) {
10173    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
10174      Type = RefTy->getPointeeType();
10175    } else if (Type->isFunctionType()) {
10176      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
10177        << VD << E->getSourceRange();
10178      return ExprError();
10179    }
10180
10181  //  - nothing else
10182  } else {
10183    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
10184      << VD << E->getSourceRange();
10185    return ExprError();
10186  }
10187
10188  VD->setType(DestType);
10189  E->setType(Type);
10190  E->setValueKind(ValueKind);
10191  return S.Owned(E);
10192}
10193
10194/// Check a cast of an unknown-any type.  We intentionally only
10195/// trigger this for C-style casts.
10196ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
10197                                     Expr *CastExpr, CastKind &CastKind,
10198                                     ExprValueKind &VK, CXXCastPath &Path) {
10199  // Rewrite the casted expression from scratch.
10200  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
10201  if (!result.isUsable()) return ExprError();
10202
10203  CastExpr = result.take();
10204  VK = CastExpr->getValueKind();
10205  CastKind = CK_NoOp;
10206
10207  return CastExpr;
10208}
10209
10210ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
10211  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
10212}
10213
10214static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
10215  Expr *orig = E;
10216  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
10217  while (true) {
10218    E = E->IgnoreParenImpCasts();
10219    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
10220      E = call->getCallee();
10221      diagID = diag::err_uncasted_call_of_unknown_any;
10222    } else {
10223      break;
10224    }
10225  }
10226
10227  SourceLocation loc;
10228  NamedDecl *d;
10229  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
10230    loc = ref->getLocation();
10231    d = ref->getDecl();
10232  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
10233    loc = mem->getMemberLoc();
10234    d = mem->getMemberDecl();
10235  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
10236    diagID = diag::err_uncasted_call_of_unknown_any;
10237    loc = msg->getSelectorStartLoc();
10238    d = msg->getMethodDecl();
10239    if (!d) {
10240      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
10241        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
10242        << orig->getSourceRange();
10243      return ExprError();
10244    }
10245  } else {
10246    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10247      << E->getSourceRange();
10248    return ExprError();
10249  }
10250
10251  S.Diag(loc, diagID) << d << orig->getSourceRange();
10252
10253  // Never recoverable.
10254  return ExprError();
10255}
10256
10257/// Check for operands with placeholder types and complain if found.
10258/// Returns true if there was an error and no recovery was possible.
10259ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
10260  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
10261  if (!placeholderType) return Owned(E);
10262
10263  switch (placeholderType->getKind()) {
10264
10265  // Overloaded expressions.
10266  case BuiltinType::Overload: {
10267    // Try to resolve a single function template specialization.
10268    // This is obligatory.
10269    ExprResult result = Owned(E);
10270    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
10271      return result;
10272
10273    // If that failed, try to recover with a call.
10274    } else {
10275      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
10276                           /*complain*/ true);
10277      return result;
10278    }
10279  }
10280
10281  // Bound member functions.
10282  case BuiltinType::BoundMember: {
10283    ExprResult result = Owned(E);
10284    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
10285                         /*complain*/ true);
10286    return result;
10287  }
10288
10289  // ARC unbridged casts.
10290  case BuiltinType::ARCUnbridgedCast: {
10291    Expr *realCast = stripARCUnbridgedCast(E);
10292    diagnoseARCUnbridgedCast(realCast);
10293    return Owned(realCast);
10294  }
10295
10296  // Expressions of unknown type.
10297  case BuiltinType::UnknownAny:
10298    return diagnoseUnknownAnyExpr(*this, E);
10299
10300  // Pseudo-objects.
10301  case BuiltinType::PseudoObject:
10302    return checkPseudoObjectRValue(E);
10303
10304  // Everything else should be impossible.
10305#define BUILTIN_TYPE(Id, SingletonId) \
10306  case BuiltinType::Id:
10307#define PLACEHOLDER_TYPE(Id, SingletonId)
10308#include "clang/AST/BuiltinTypes.def"
10309    break;
10310  }
10311
10312  llvm_unreachable("invalid placeholder type!");
10313}
10314
10315bool Sema::CheckCaseExpression(Expr *E) {
10316  if (E->isTypeDependent())
10317    return true;
10318  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
10319    return E->getType()->isIntegralOrEnumerationType();
10320  return false;
10321}
10322