SemaExpr.cpp revision 3ea917bf3bdf43c4dd8d1aa3469295d4ba2b8a5a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Designator.h"
27#include "clang/Parse/Scope.h"
28using namespace clang;
29
30
31/// \brief Determine whether the use of this declaration is valid, and
32/// emit any corresponding diagnostics.
33///
34/// This routine diagnoses various problems with referencing
35/// declarations that can occur when using a declaration. For example,
36/// it might warn if a deprecated or unavailable declaration is being
37/// used, or produce an error (and return true) if a C++0x deleted
38/// function is being used.
39///
40/// If IgnoreDeprecated is set to true, this should not want about deprecated
41/// decls.
42///
43/// \returns true if there was an error (this declaration cannot be
44/// referenced), false otherwise.
45///
46bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
47                             bool IgnoreDeprecated) {
48  // See if the decl is deprecated.
49  if (D->getAttr<DeprecatedAttr>()) {
50    // Implementing deprecated stuff requires referencing deprecated
51    // stuff. Don't warn if we are implementing a deprecated construct.
52    bool isSilenced = IgnoreDeprecated;
53
54    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
55      // If this reference happens *in* a deprecated function or method, don't
56      // warn.
57      isSilenced |= ND->getAttr<DeprecatedAttr>() != 0;
58
59      // If this is an Objective-C method implementation, check to see if the
60      // method was deprecated on the declaration, not the definition.
61      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
62        // The semantic decl context of a ObjCMethodDecl is the
63        // ObjCImplementationDecl.
64        if (ObjCImplementationDecl *Impl
65              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
66
67          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
68                                                    MD->isInstanceMethod());
69          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
70        }
71      }
72    }
73
74    if (!isSilenced)
75      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
76  }
77
78  // See if the decl is unavailable
79  if (D->getAttr<UnavailableAttr>()) {
80    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
81    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
82  }
83
84  // See if this is a deleted function.
85  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
86    if (FD->isDeleted()) {
87      Diag(Loc, diag::err_deleted_function_use);
88      Diag(D->getLocation(), diag::note_unavailable_here) << true;
89      return true;
90    }
91  }
92
93  return false;
94}
95
96/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
97/// (and other functions in future), which have been declared with sentinel
98/// attribute. It warns if call does not have the sentinel argument.
99///
100void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
101                                 Expr **Args, unsigned NumArgs) {
102  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
103  if (!attr)
104    return;
105  int sentinelPos = attr->getSentinel();
106  int nullPos = attr->getNullPos();
107
108  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
109  // base class. Then we won't be needing two versions of the same code.
110  unsigned int i = 0;
111  bool warnNotEnoughArgs = false;
112  int isMethod = 0;
113  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
114    // skip over named parameters.
115    ObjCMethodDecl::param_iterator P, E = MD->param_end();
116    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
117      if (nullPos)
118        --nullPos;
119      else
120        ++i;
121    }
122    warnNotEnoughArgs = (P != E || i >= NumArgs);
123    isMethod = 1;
124  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
125    // skip over named parameters.
126    ObjCMethodDecl::param_iterator P, E = FD->param_end();
127    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
128      if (nullPos)
129        --nullPos;
130      else
131        ++i;
132    }
133    warnNotEnoughArgs = (P != E || i >= NumArgs);
134  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
135    // block or function pointer call.
136    QualType Ty = V->getType();
137    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
138      const FunctionType *FT = Ty->isFunctionPointerType()
139      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
140      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
141      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
142        unsigned NumArgsInProto = Proto->getNumArgs();
143        unsigned k;
144        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
145          if (nullPos)
146            --nullPos;
147          else
148            ++i;
149        }
150        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
151      }
152      if (Ty->isBlockPointerType())
153        isMethod = 2;
154    } else
155      return;
156  } else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context,
181                                            Expr::NPC_ValueDependentIsNull))) {
182    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
183    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
184  }
185  return;
186}
187
188SourceRange Sema::getExprRange(ExprTy *E) const {
189  Expr *Ex = (Expr *)E;
190  return Ex? Ex->getSourceRange() : SourceRange();
191}
192
193//===----------------------------------------------------------------------===//
194//  Standard Promotions and Conversions
195//===----------------------------------------------------------------------===//
196
197/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
198void Sema::DefaultFunctionArrayConversion(Expr *&E) {
199  QualType Ty = E->getType();
200  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
201
202  if (Ty->isFunctionType())
203    ImpCastExprToType(E, Context.getPointerType(Ty),
204                      CastExpr::CK_FunctionToPointerDecay);
205  else if (Ty->isArrayType()) {
206    // In C90 mode, arrays only promote to pointers if the array expression is
207    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
208    // type 'array of type' is converted to an expression that has type 'pointer
209    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
210    // that has type 'array of type' ...".  The relevant change is "an lvalue"
211    // (C90) to "an expression" (C99).
212    //
213    // C++ 4.2p1:
214    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
215    // T" can be converted to an rvalue of type "pointer to T".
216    //
217    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
218        E->isLvalue(Context) == Expr::LV_Valid)
219      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
220                        CastExpr::CK_ArrayToPointerDecay);
221  }
222}
223
224/// UsualUnaryConversions - Performs various conversions that are common to most
225/// operators (C99 6.3). The conversions of array and function types are
226/// sometimes surpressed. For example, the array->pointer conversion doesn't
227/// apply if the array is an argument to the sizeof or address (&) operators.
228/// In these instances, this routine should *not* be called.
229Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
230  QualType Ty = Expr->getType();
231  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
232
233  // C99 6.3.1.1p2:
234  //
235  //   The following may be used in an expression wherever an int or
236  //   unsigned int may be used:
237  //     - an object or expression with an integer type whose integer
238  //       conversion rank is less than or equal to the rank of int
239  //       and unsigned int.
240  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
241  //
242  //   If an int can represent all values of the original type, the
243  //   value is converted to an int; otherwise, it is converted to an
244  //   unsigned int. These are called the integer promotions. All
245  //   other types are unchanged by the integer promotions.
246  QualType PTy = Context.isPromotableBitField(Expr);
247  if (!PTy.isNull()) {
248    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
249    return Expr;
250  }
251  if (Ty->isPromotableIntegerType()) {
252    QualType PT = Context.getPromotedIntegerType(Ty);
253    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
254    return Expr;
255  }
256
257  DefaultFunctionArrayConversion(Expr);
258  return Expr;
259}
260
261/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
262/// do not have a prototype. Arguments that have type float are promoted to
263/// double. All other argument types are converted by UsualUnaryConversions().
264void Sema::DefaultArgumentPromotion(Expr *&Expr) {
265  QualType Ty = Expr->getType();
266  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
267
268  // If this is a 'float' (CVR qualified or typedef) promote to double.
269  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
270    if (BT->getKind() == BuiltinType::Float)
271      return ImpCastExprToType(Expr, Context.DoubleTy,
272                               CastExpr::CK_FloatingCast);
273
274  UsualUnaryConversions(Expr);
275}
276
277/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
278/// will warn if the resulting type is not a POD type, and rejects ObjC
279/// interfaces passed by value.  This returns true if the argument type is
280/// completely illegal.
281bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
282  DefaultArgumentPromotion(Expr);
283
284  if (Expr->getType()->isObjCInterfaceType()) {
285    Diag(Expr->getLocStart(),
286         diag::err_cannot_pass_objc_interface_to_vararg)
287      << Expr->getType() << CT;
288    return true;
289  }
290
291  if (!Expr->getType()->isPODType())
292    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
293      << Expr->getType() << CT;
294
295  return false;
296}
297
298
299/// UsualArithmeticConversions - Performs various conversions that are common to
300/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
301/// routine returns the first non-arithmetic type found. The client is
302/// responsible for emitting appropriate error diagnostics.
303/// FIXME: verify the conversion rules for "complex int" are consistent with
304/// GCC.
305QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
306                                          bool isCompAssign) {
307  if (!isCompAssign)
308    UsualUnaryConversions(lhsExpr);
309
310  UsualUnaryConversions(rhsExpr);
311
312  // For conversion purposes, we ignore any qualifiers.
313  // For example, "const float" and "float" are equivalent.
314  QualType lhs =
315    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
316  QualType rhs =
317    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
318
319  // If both types are identical, no conversion is needed.
320  if (lhs == rhs)
321    return lhs;
322
323  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
324  // The caller can deal with this (e.g. pointer + int).
325  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
326    return lhs;
327
328  // Perform bitfield promotions.
329  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
330  if (!LHSBitfieldPromoteTy.isNull())
331    lhs = LHSBitfieldPromoteTy;
332  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
333  if (!RHSBitfieldPromoteTy.isNull())
334    rhs = RHSBitfieldPromoteTy;
335
336  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
337  if (!isCompAssign)
338    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
339  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
340  return destType;
341}
342
343//===----------------------------------------------------------------------===//
344//  Semantic Analysis for various Expression Types
345//===----------------------------------------------------------------------===//
346
347
348/// ActOnStringLiteral - The specified tokens were lexed as pasted string
349/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
350/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
351/// multiple tokens.  However, the common case is that StringToks points to one
352/// string.
353///
354Action::OwningExprResult
355Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
356  assert(NumStringToks && "Must have at least one string!");
357
358  StringLiteralParser Literal(StringToks, NumStringToks, PP);
359  if (Literal.hadError)
360    return ExprError();
361
362  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
363  for (unsigned i = 0; i != NumStringToks; ++i)
364    StringTokLocs.push_back(StringToks[i].getLocation());
365
366  QualType StrTy = Context.CharTy;
367  if (Literal.AnyWide) StrTy = Context.getWCharType();
368  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
369
370  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
371  if (getLangOptions().CPlusPlus)
372    StrTy.addConst();
373
374  // Get an array type for the string, according to C99 6.4.5.  This includes
375  // the nul terminator character as well as the string length for pascal
376  // strings.
377  StrTy = Context.getConstantArrayType(StrTy,
378                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
379                                       ArrayType::Normal, 0);
380
381  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
382  return Owned(StringLiteral::Create(Context, Literal.GetString(),
383                                     Literal.GetStringLength(),
384                                     Literal.AnyWide, StrTy,
385                                     &StringTokLocs[0],
386                                     StringTokLocs.size()));
387}
388
389/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
390/// CurBlock to VD should cause it to be snapshotted (as we do for auto
391/// variables defined outside the block) or false if this is not needed (e.g.
392/// for values inside the block or for globals).
393///
394/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
395/// up-to-date.
396///
397static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
398                                              ValueDecl *VD) {
399  // If the value is defined inside the block, we couldn't snapshot it even if
400  // we wanted to.
401  if (CurBlock->TheDecl == VD->getDeclContext())
402    return false;
403
404  // If this is an enum constant or function, it is constant, don't snapshot.
405  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
406    return false;
407
408  // If this is a reference to an extern, static, or global variable, no need to
409  // snapshot it.
410  // FIXME: What about 'const' variables in C++?
411  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
412    if (!Var->hasLocalStorage())
413      return false;
414
415  // Blocks that have these can't be constant.
416  CurBlock->hasBlockDeclRefExprs = true;
417
418  // If we have nested blocks, the decl may be declared in an outer block (in
419  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
420  // be defined outside all of the current blocks (in which case the blocks do
421  // all get the bit).  Walk the nesting chain.
422  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
423       NextBlock = NextBlock->PrevBlockInfo) {
424    // If we found the defining block for the variable, don't mark the block as
425    // having a reference outside it.
426    if (NextBlock->TheDecl == VD->getDeclContext())
427      break;
428
429    // Otherwise, the DeclRef from the inner block causes the outer one to need
430    // a snapshot as well.
431    NextBlock->hasBlockDeclRefExprs = true;
432  }
433
434  return true;
435}
436
437
438
439/// ActOnIdentifierExpr - The parser read an identifier in expression context,
440/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
441/// identifier is used in a function call context.
442/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
443/// class or namespace that the identifier must be a member of.
444Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
445                                                 IdentifierInfo &II,
446                                                 bool HasTrailingLParen,
447                                                 const CXXScopeSpec *SS,
448                                                 bool isAddressOfOperand) {
449  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
450                                  isAddressOfOperand);
451}
452
453/// BuildDeclRefExpr - Build a DeclRefExpr.
454Sema::OwningExprResult
455Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
456                       bool TypeDependent, bool ValueDependent,
457                       const CXXScopeSpec *SS) {
458  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
459    Diag(Loc,
460         diag::err_auto_variable_cannot_appear_in_own_initializer)
461      << D->getDeclName();
462    return ExprError();
463  }
464
465  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
466    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
467      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
468        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
469          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
470            << D->getIdentifier() << FD->getDeclName();
471          Diag(D->getLocation(), diag::note_local_variable_declared_here)
472            << D->getIdentifier();
473          return ExprError();
474        }
475      }
476    }
477  }
478
479  MarkDeclarationReferenced(Loc, D);
480
481  return Owned(DeclRefExpr::Create(Context,
482                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
483                                   SS? SS->getRange() : SourceRange(),
484                                   D, Loc,
485                                   Ty, TypeDependent, ValueDependent));
486}
487
488/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
489/// variable corresponding to the anonymous union or struct whose type
490/// is Record.
491static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
492                                             RecordDecl *Record) {
493  assert(Record->isAnonymousStructOrUnion() &&
494         "Record must be an anonymous struct or union!");
495
496  // FIXME: Once Decls are directly linked together, this will be an O(1)
497  // operation rather than a slow walk through DeclContext's vector (which
498  // itself will be eliminated). DeclGroups might make this even better.
499  DeclContext *Ctx = Record->getDeclContext();
500  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
501                               DEnd = Ctx->decls_end();
502       D != DEnd; ++D) {
503    if (*D == Record) {
504      // The object for the anonymous struct/union directly
505      // follows its type in the list of declarations.
506      ++D;
507      assert(D != DEnd && "Missing object for anonymous record");
508      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
509      return *D;
510    }
511  }
512
513  assert(false && "Missing object for anonymous record");
514  return 0;
515}
516
517/// \brief Given a field that represents a member of an anonymous
518/// struct/union, build the path from that field's context to the
519/// actual member.
520///
521/// Construct the sequence of field member references we'll have to
522/// perform to get to the field in the anonymous union/struct. The
523/// list of members is built from the field outward, so traverse it
524/// backwards to go from an object in the current context to the field
525/// we found.
526///
527/// \returns The variable from which the field access should begin,
528/// for an anonymous struct/union that is not a member of another
529/// class. Otherwise, returns NULL.
530VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
531                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
532  assert(Field->getDeclContext()->isRecord() &&
533         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
534         && "Field must be stored inside an anonymous struct or union");
535
536  Path.push_back(Field);
537  VarDecl *BaseObject = 0;
538  DeclContext *Ctx = Field->getDeclContext();
539  do {
540    RecordDecl *Record = cast<RecordDecl>(Ctx);
541    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
542    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
543      Path.push_back(AnonField);
544    else {
545      BaseObject = cast<VarDecl>(AnonObject);
546      break;
547    }
548    Ctx = Ctx->getParent();
549  } while (Ctx->isRecord() &&
550           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
551
552  return BaseObject;
553}
554
555Sema::OwningExprResult
556Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
557                                               FieldDecl *Field,
558                                               Expr *BaseObjectExpr,
559                                               SourceLocation OpLoc) {
560  llvm::SmallVector<FieldDecl *, 4> AnonFields;
561  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
562                                                            AnonFields);
563
564  // Build the expression that refers to the base object, from
565  // which we will build a sequence of member references to each
566  // of the anonymous union objects and, eventually, the field we
567  // found via name lookup.
568  bool BaseObjectIsPointer = false;
569  Qualifiers BaseQuals;
570  if (BaseObject) {
571    // BaseObject is an anonymous struct/union variable (and is,
572    // therefore, not part of another non-anonymous record).
573    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
574    MarkDeclarationReferenced(Loc, BaseObject);
575    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
576                                               SourceLocation());
577    BaseQuals
578      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
579  } else if (BaseObjectExpr) {
580    // The caller provided the base object expression. Determine
581    // whether its a pointer and whether it adds any qualifiers to the
582    // anonymous struct/union fields we're looking into.
583    QualType ObjectType = BaseObjectExpr->getType();
584    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
585      BaseObjectIsPointer = true;
586      ObjectType = ObjectPtr->getPointeeType();
587    }
588    BaseQuals
589      = Context.getCanonicalType(ObjectType).getQualifiers();
590  } else {
591    // We've found a member of an anonymous struct/union that is
592    // inside a non-anonymous struct/union, so in a well-formed
593    // program our base object expression is "this".
594    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
595      if (!MD->isStatic()) {
596        QualType AnonFieldType
597          = Context.getTagDeclType(
598                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
599        QualType ThisType = Context.getTagDeclType(MD->getParent());
600        if ((Context.getCanonicalType(AnonFieldType)
601               == Context.getCanonicalType(ThisType)) ||
602            IsDerivedFrom(ThisType, AnonFieldType)) {
603          // Our base object expression is "this".
604          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
605                                                     MD->getThisType(Context));
606          BaseObjectIsPointer = true;
607        }
608      } else {
609        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
610          << Field->getDeclName());
611      }
612      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
613    }
614
615    if (!BaseObjectExpr)
616      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
617        << Field->getDeclName());
618  }
619
620  // Build the implicit member references to the field of the
621  // anonymous struct/union.
622  Expr *Result = BaseObjectExpr;
623  Qualifiers ResultQuals = BaseQuals;
624  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
625         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
626       FI != FIEnd; ++FI) {
627    QualType MemberType = (*FI)->getType();
628    Qualifiers MemberTypeQuals =
629      Context.getCanonicalType(MemberType).getQualifiers();
630
631    // CVR attributes from the base are picked up by members,
632    // except that 'mutable' members don't pick up 'const'.
633    if ((*FI)->isMutable())
634      ResultQuals.removeConst();
635
636    // GC attributes are never picked up by members.
637    ResultQuals.removeObjCGCAttr();
638
639    // TR 18037 does not allow fields to be declared with address spaces.
640    assert(!MemberTypeQuals.hasAddressSpace());
641
642    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
643    if (NewQuals != MemberTypeQuals)
644      MemberType = Context.getQualifiedType(MemberType, NewQuals);
645
646    MarkDeclarationReferenced(Loc, *FI);
647    // FIXME: Might this end up being a qualified name?
648    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
649                                      OpLoc, MemberType);
650    BaseObjectIsPointer = false;
651    ResultQuals = NewQuals;
652  }
653
654  return Owned(Result);
655}
656
657/// ActOnDeclarationNameExpr - The parser has read some kind of name
658/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
659/// performs lookup on that name and returns an expression that refers
660/// to that name. This routine isn't directly called from the parser,
661/// because the parser doesn't know about DeclarationName. Rather,
662/// this routine is called by ActOnIdentifierExpr,
663/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
664/// which form the DeclarationName from the corresponding syntactic
665/// forms.
666///
667/// HasTrailingLParen indicates whether this identifier is used in a
668/// function call context.  LookupCtx is only used for a C++
669/// qualified-id (foo::bar) to indicate the class or namespace that
670/// the identifier must be a member of.
671///
672/// isAddressOfOperand means that this expression is the direct operand
673/// of an address-of operator. This matters because this is the only
674/// situation where a qualified name referencing a non-static member may
675/// appear outside a member function of this class.
676Sema::OwningExprResult
677Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
678                               DeclarationName Name, bool HasTrailingLParen,
679                               const CXXScopeSpec *SS,
680                               bool isAddressOfOperand) {
681  // Could be enum-constant, value decl, instance variable, etc.
682  if (SS && SS->isInvalid())
683    return ExprError();
684
685  // C++ [temp.dep.expr]p3:
686  //   An id-expression is type-dependent if it contains:
687  //     -- a nested-name-specifier that contains a class-name that
688  //        names a dependent type.
689  // FIXME: Member of the current instantiation.
690  if (SS && isDependentScopeSpecifier(*SS)) {
691    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
692                                                     Loc, SS->getRange(),
693                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
694                                                     isAddressOfOperand));
695  }
696
697  LookupResult Lookup;
698  LookupParsedName(Lookup, S, SS, Name, LookupOrdinaryName, false, true, Loc);
699
700  if (Lookup.isAmbiguous()) {
701    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
702                            SS && SS->isSet() ? SS->getRange()
703                                              : SourceRange());
704    return ExprError();
705  }
706
707  NamedDecl *D = Lookup.getAsSingleDecl(Context);
708
709  // If this reference is in an Objective-C method, then ivar lookup happens as
710  // well.
711  IdentifierInfo *II = Name.getAsIdentifierInfo();
712  if (II && getCurMethodDecl()) {
713    // There are two cases to handle here.  1) scoped lookup could have failed,
714    // in which case we should look for an ivar.  2) scoped lookup could have
715    // found a decl, but that decl is outside the current instance method (i.e.
716    // a global variable).  In these two cases, we do a lookup for an ivar with
717    // this name, if the lookup sucedes, we replace it our current decl.
718    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
719      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
720      ObjCInterfaceDecl *ClassDeclared;
721      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
722        // Check if referencing a field with __attribute__((deprecated)).
723        if (DiagnoseUseOfDecl(IV, Loc))
724          return ExprError();
725
726        // If we're referencing an invalid decl, just return this as a silent
727        // error node.  The error diagnostic was already emitted on the decl.
728        if (IV->isInvalidDecl())
729          return ExprError();
730
731        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
732        // If a class method attemps to use a free standing ivar, this is
733        // an error.
734        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
735           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
736                           << IV->getDeclName());
737        // If a class method uses a global variable, even if an ivar with
738        // same name exists, use the global.
739        if (!IsClsMethod) {
740          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
741              ClassDeclared != IFace)
742           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
743          // FIXME: This should use a new expr for a direct reference, don't
744          // turn this into Self->ivar, just return a BareIVarExpr or something.
745          IdentifierInfo &II = Context.Idents.get("self");
746          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
747                                                          II, false);
748          MarkDeclarationReferenced(Loc, IV);
749          return Owned(new (Context)
750                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
751                                       SelfExpr.takeAs<Expr>(), true, true));
752        }
753      }
754    } else if (getCurMethodDecl()->isInstanceMethod()) {
755      // We should warn if a local variable hides an ivar.
756      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
757      ObjCInterfaceDecl *ClassDeclared;
758      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
759        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
760            IFace == ClassDeclared)
761          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
762      }
763    }
764    // Needed to implement property "super.method" notation.
765    if (D == 0 && II->isStr("super")) {
766      QualType T;
767
768      if (getCurMethodDecl()->isInstanceMethod())
769        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
770                                      getCurMethodDecl()->getClassInterface()));
771      else
772        T = Context.getObjCClassType();
773      return Owned(new (Context) ObjCSuperExpr(Loc, T));
774    }
775  }
776
777  // Determine whether this name might be a candidate for
778  // argument-dependent lookup.
779  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
780             HasTrailingLParen;
781
782  if (ADL && D == 0) {
783    // We've seen something of the form
784    //
785    //   identifier(
786    //
787    // and we did not find any entity by the name
788    // "identifier". However, this identifier is still subject to
789    // argument-dependent lookup, so keep track of the name.
790    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
791                                                          Context.OverloadTy,
792                                                          Loc));
793  }
794
795  if (D == 0) {
796    // Otherwise, this could be an implicitly declared function reference (legal
797    // in C90, extension in C99).
798    if (HasTrailingLParen && II &&
799        !getLangOptions().CPlusPlus) // Not in C++.
800      D = ImplicitlyDefineFunction(Loc, *II, S);
801    else {
802      // If this name wasn't predeclared and if this is not a function call,
803      // diagnose the problem.
804      if (SS && !SS->isEmpty())
805        return ExprError(Diag(Loc, diag::err_no_member)
806                           << Name << computeDeclContext(*SS, false)
807                           << SS->getRange());
808      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
809               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
810        return ExprError(Diag(Loc, diag::err_undeclared_use)
811          << Name.getAsString());
812      else
813        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
814    }
815  }
816
817  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
818    // Warn about constructs like:
819    //   if (void *X = foo()) { ... } else { X }.
820    // In the else block, the pointer is always false.
821
822    // FIXME: In a template instantiation, we don't have scope
823    // information to check this property.
824    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
825      Scope *CheckS = S;
826      while (CheckS) {
827        if (CheckS->isWithinElse() &&
828            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
829          if (Var->getType()->isBooleanType())
830            ExprError(Diag(Loc, diag::warn_value_always_false)
831                      << Var->getDeclName());
832          else
833            ExprError(Diag(Loc, diag::warn_value_always_zero)
834                      << Var->getDeclName());
835          break;
836        }
837
838        // Move up one more control parent to check again.
839        CheckS = CheckS->getControlParent();
840        if (CheckS)
841          CheckS = CheckS->getParent();
842      }
843    }
844  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
845    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
846      // C99 DR 316 says that, if a function type comes from a
847      // function definition (without a prototype), that type is only
848      // used for checking compatibility. Therefore, when referencing
849      // the function, we pretend that we don't have the full function
850      // type.
851      if (DiagnoseUseOfDecl(Func, Loc))
852        return ExprError();
853
854      QualType T = Func->getType();
855      QualType NoProtoType = T;
856      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
857        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
858      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
859    }
860  }
861
862  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
863}
864/// \brief Cast member's object to its own class if necessary.
865bool
866Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
867  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
868    if (CXXRecordDecl *RD =
869        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
870      QualType DestType =
871        Context.getCanonicalType(Context.getTypeDeclType(RD));
872      if (DestType->isDependentType() || From->getType()->isDependentType())
873        return false;
874      QualType FromRecordType = From->getType();
875      QualType DestRecordType = DestType;
876      if (FromRecordType->getAs<PointerType>()) {
877        DestType = Context.getPointerType(DestType);
878        FromRecordType = FromRecordType->getPointeeType();
879      }
880      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
881          CheckDerivedToBaseConversion(FromRecordType,
882                                       DestRecordType,
883                                       From->getSourceRange().getBegin(),
884                                       From->getSourceRange()))
885        return true;
886      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
887                        /*isLvalue=*/true);
888    }
889  return false;
890}
891
892/// \brief Build a MemberExpr AST node.
893static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
894                                   const CXXScopeSpec *SS, NamedDecl *Member,
895                                   SourceLocation Loc, QualType Ty) {
896  if (SS && SS->isSet())
897    return MemberExpr::Create(C, Base, isArrow,
898                              (NestedNameSpecifier *)SS->getScopeRep(),
899                              SS->getRange(), Member, Loc,
900                              // FIXME: Explicit template argument lists
901                              false, SourceLocation(), 0, 0, SourceLocation(),
902                              Ty);
903
904  return new (C) MemberExpr(Base, isArrow, Member, Loc, Ty);
905}
906
907/// \brief Complete semantic analysis for a reference to the given declaration.
908Sema::OwningExprResult
909Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
910                               bool HasTrailingLParen,
911                               const CXXScopeSpec *SS,
912                               bool isAddressOfOperand) {
913  assert(D && "Cannot refer to a NULL declaration");
914  DeclarationName Name = D->getDeclName();
915
916  // If this is an expression of the form &Class::member, don't build an
917  // implicit member ref, because we want a pointer to the member in general,
918  // not any specific instance's member.
919  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
920    DeclContext *DC = computeDeclContext(*SS);
921    if (D && isa<CXXRecordDecl>(DC)) {
922      QualType DType;
923      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
924        DType = FD->getType().getNonReferenceType();
925      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
926        DType = Method->getType();
927      } else if (isa<OverloadedFunctionDecl>(D)) {
928        DType = Context.OverloadTy;
929      }
930      // Could be an inner type. That's diagnosed below, so ignore it here.
931      if (!DType.isNull()) {
932        // The pointer is type- and value-dependent if it points into something
933        // dependent.
934        bool Dependent = DC->isDependentContext();
935        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
936      }
937    }
938  }
939
940  // We may have found a field within an anonymous union or struct
941  // (C++ [class.union]).
942  // FIXME: This needs to happen post-isImplicitMemberReference?
943  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
944    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
945      return BuildAnonymousStructUnionMemberReference(Loc, FD);
946
947  // Cope with an implicit member access in a C++ non-static member function.
948  QualType ThisType, MemberType;
949  if (isImplicitMemberReference(SS, D, Loc, ThisType, MemberType)) {
950    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
951    MarkDeclarationReferenced(Loc, D);
952    if (PerformObjectMemberConversion(This, D))
953      return ExprError();
954
955    bool ShouldCheckUse = true;
956    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
957      // Don't diagnose the use of a virtual member function unless it's
958      // explicitly qualified.
959      if (MD->isVirtual() && (!SS || !SS->isSet()))
960        ShouldCheckUse = false;
961    }
962
963    if (ShouldCheckUse && DiagnoseUseOfDecl(D, Loc))
964      return ExprError();
965    return Owned(BuildMemberExpr(Context, This, true, SS, D,
966                                 Loc, MemberType));
967  }
968
969  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
970    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
971      if (MD->isStatic())
972        // "invalid use of member 'x' in static member function"
973        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
974          << FD->getDeclName());
975    }
976
977    // Any other ways we could have found the field in a well-formed
978    // program would have been turned into implicit member expressions
979    // above.
980    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
981      << FD->getDeclName());
982  }
983
984  if (isa<TypedefDecl>(D))
985    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
986  if (isa<ObjCInterfaceDecl>(D))
987    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
988  if (isa<NamespaceDecl>(D))
989    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
990
991  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
992  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
993    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
994                           false, false, SS);
995  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
996    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
997                            false, false, SS);
998  else if (UnresolvedUsingDecl *UD = dyn_cast<UnresolvedUsingDecl>(D))
999    return BuildDeclRefExpr(UD, Context.DependentTy, Loc,
1000                            /*TypeDependent=*/true,
1001                            /*ValueDependent=*/true, SS);
1002
1003  ValueDecl *VD = cast<ValueDecl>(D);
1004
1005  // Check whether this declaration can be used. Note that we suppress
1006  // this check when we're going to perform argument-dependent lookup
1007  // on this function name, because this might not be the function
1008  // that overload resolution actually selects.
1009  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1010             HasTrailingLParen;
1011  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1012    return ExprError();
1013
1014  // Only create DeclRefExpr's for valid Decl's.
1015  if (VD->isInvalidDecl())
1016    return ExprError();
1017
1018  // If the identifier reference is inside a block, and it refers to a value
1019  // that is outside the block, create a BlockDeclRefExpr instead of a
1020  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1021  // the block is formed.
1022  //
1023  // We do not do this for things like enum constants, global variables, etc,
1024  // as they do not get snapshotted.
1025  //
1026  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1027    MarkDeclarationReferenced(Loc, VD);
1028    QualType ExprTy = VD->getType().getNonReferenceType();
1029    // The BlocksAttr indicates the variable is bound by-reference.
1030    if (VD->getAttr<BlocksAttr>())
1031      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1032    // This is to record that a 'const' was actually synthesize and added.
1033    bool constAdded = !ExprTy.isConstQualified();
1034    // Variable will be bound by-copy, make it const within the closure.
1035
1036    ExprTy.addConst();
1037    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1038                                                constAdded));
1039  }
1040  // If this reference is not in a block or if the referenced variable is
1041  // within the block, create a normal DeclRefExpr.
1042
1043  bool TypeDependent = false;
1044  bool ValueDependent = false;
1045  if (getLangOptions().CPlusPlus) {
1046    // C++ [temp.dep.expr]p3:
1047    //   An id-expression is type-dependent if it contains:
1048    //     - an identifier that was declared with a dependent type,
1049    if (VD->getType()->isDependentType())
1050      TypeDependent = true;
1051    //     - FIXME: a template-id that is dependent,
1052    //     - a conversion-function-id that specifies a dependent type,
1053    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1054             Name.getCXXNameType()->isDependentType())
1055      TypeDependent = true;
1056    //     - a nested-name-specifier that contains a class-name that
1057    //       names a dependent type.
1058    else if (SS && !SS->isEmpty()) {
1059      for (DeclContext *DC = computeDeclContext(*SS);
1060           DC; DC = DC->getParent()) {
1061        // FIXME: could stop early at namespace scope.
1062        if (DC->isRecord()) {
1063          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1064          if (Context.getTypeDeclType(Record)->isDependentType()) {
1065            TypeDependent = true;
1066            break;
1067          }
1068        }
1069      }
1070    }
1071
1072    // C++ [temp.dep.constexpr]p2:
1073    //
1074    //   An identifier is value-dependent if it is:
1075    //     - a name declared with a dependent type,
1076    if (TypeDependent)
1077      ValueDependent = true;
1078    //     - the name of a non-type template parameter,
1079    else if (isa<NonTypeTemplateParmDecl>(VD))
1080      ValueDependent = true;
1081    //    - a constant with integral or enumeration type and is
1082    //      initialized with an expression that is value-dependent
1083    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1084      if (Dcl->getType().getCVRQualifiers() == Qualifiers::Const &&
1085          Dcl->getInit()) {
1086        ValueDependent = Dcl->getInit()->isValueDependent();
1087      }
1088    }
1089  }
1090
1091  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1092                          TypeDependent, ValueDependent, SS);
1093}
1094
1095Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1096                                                 tok::TokenKind Kind) {
1097  PredefinedExpr::IdentType IT;
1098
1099  switch (Kind) {
1100  default: assert(0 && "Unknown simple primary expr!");
1101  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1102  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1103  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1104  }
1105
1106  // Pre-defined identifiers are of type char[x], where x is the length of the
1107  // string.
1108
1109  Decl *currentDecl = getCurFunctionOrMethodDecl();
1110  if (!currentDecl) {
1111    Diag(Loc, diag::ext_predef_outside_function);
1112    currentDecl = Context.getTranslationUnitDecl();
1113  }
1114
1115  QualType ResTy;
1116  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1117    ResTy = Context.DependentTy;
1118  } else {
1119    unsigned Length =
1120      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1121
1122    llvm::APInt LengthI(32, Length + 1);
1123    ResTy = Context.CharTy.withConst();
1124    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1125  }
1126  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1127}
1128
1129Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1130  llvm::SmallString<16> CharBuffer;
1131  CharBuffer.resize(Tok.getLength());
1132  const char *ThisTokBegin = &CharBuffer[0];
1133  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1134
1135  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1136                            Tok.getLocation(), PP);
1137  if (Literal.hadError())
1138    return ExprError();
1139
1140  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1141
1142  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1143                                              Literal.isWide(),
1144                                              type, Tok.getLocation()));
1145}
1146
1147Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1148  // Fast path for a single digit (which is quite common).  A single digit
1149  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1150  if (Tok.getLength() == 1) {
1151    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1152    unsigned IntSize = Context.Target.getIntWidth();
1153    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1154                    Context.IntTy, Tok.getLocation()));
1155  }
1156
1157  llvm::SmallString<512> IntegerBuffer;
1158  // Add padding so that NumericLiteralParser can overread by one character.
1159  IntegerBuffer.resize(Tok.getLength()+1);
1160  const char *ThisTokBegin = &IntegerBuffer[0];
1161
1162  // Get the spelling of the token, which eliminates trigraphs, etc.
1163  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1164
1165  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1166                               Tok.getLocation(), PP);
1167  if (Literal.hadError)
1168    return ExprError();
1169
1170  Expr *Res;
1171
1172  if (Literal.isFloatingLiteral()) {
1173    QualType Ty;
1174    if (Literal.isFloat)
1175      Ty = Context.FloatTy;
1176    else if (!Literal.isLong)
1177      Ty = Context.DoubleTy;
1178    else
1179      Ty = Context.LongDoubleTy;
1180
1181    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1182
1183    // isExact will be set by GetFloatValue().
1184    bool isExact = false;
1185    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1186    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1187
1188  } else if (!Literal.isIntegerLiteral()) {
1189    return ExprError();
1190  } else {
1191    QualType Ty;
1192
1193    // long long is a C99 feature.
1194    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1195        Literal.isLongLong)
1196      Diag(Tok.getLocation(), diag::ext_longlong);
1197
1198    // Get the value in the widest-possible width.
1199    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1200
1201    if (Literal.GetIntegerValue(ResultVal)) {
1202      // If this value didn't fit into uintmax_t, warn and force to ull.
1203      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1204      Ty = Context.UnsignedLongLongTy;
1205      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1206             "long long is not intmax_t?");
1207    } else {
1208      // If this value fits into a ULL, try to figure out what else it fits into
1209      // according to the rules of C99 6.4.4.1p5.
1210
1211      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1212      // be an unsigned int.
1213      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1214
1215      // Check from smallest to largest, picking the smallest type we can.
1216      unsigned Width = 0;
1217      if (!Literal.isLong && !Literal.isLongLong) {
1218        // Are int/unsigned possibilities?
1219        unsigned IntSize = Context.Target.getIntWidth();
1220
1221        // Does it fit in a unsigned int?
1222        if (ResultVal.isIntN(IntSize)) {
1223          // Does it fit in a signed int?
1224          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1225            Ty = Context.IntTy;
1226          else if (AllowUnsigned)
1227            Ty = Context.UnsignedIntTy;
1228          Width = IntSize;
1229        }
1230      }
1231
1232      // Are long/unsigned long possibilities?
1233      if (Ty.isNull() && !Literal.isLongLong) {
1234        unsigned LongSize = Context.Target.getLongWidth();
1235
1236        // Does it fit in a unsigned long?
1237        if (ResultVal.isIntN(LongSize)) {
1238          // Does it fit in a signed long?
1239          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1240            Ty = Context.LongTy;
1241          else if (AllowUnsigned)
1242            Ty = Context.UnsignedLongTy;
1243          Width = LongSize;
1244        }
1245      }
1246
1247      // Finally, check long long if needed.
1248      if (Ty.isNull()) {
1249        unsigned LongLongSize = Context.Target.getLongLongWidth();
1250
1251        // Does it fit in a unsigned long long?
1252        if (ResultVal.isIntN(LongLongSize)) {
1253          // Does it fit in a signed long long?
1254          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1255            Ty = Context.LongLongTy;
1256          else if (AllowUnsigned)
1257            Ty = Context.UnsignedLongLongTy;
1258          Width = LongLongSize;
1259        }
1260      }
1261
1262      // If we still couldn't decide a type, we probably have something that
1263      // does not fit in a signed long long, but has no U suffix.
1264      if (Ty.isNull()) {
1265        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1266        Ty = Context.UnsignedLongLongTy;
1267        Width = Context.Target.getLongLongWidth();
1268      }
1269
1270      if (ResultVal.getBitWidth() != Width)
1271        ResultVal.trunc(Width);
1272    }
1273    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1274  }
1275
1276  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1277  if (Literal.isImaginary)
1278    Res = new (Context) ImaginaryLiteral(Res,
1279                                        Context.getComplexType(Res->getType()));
1280
1281  return Owned(Res);
1282}
1283
1284Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1285                                              SourceLocation R, ExprArg Val) {
1286  Expr *E = Val.takeAs<Expr>();
1287  assert((E != 0) && "ActOnParenExpr() missing expr");
1288  return Owned(new (Context) ParenExpr(L, R, E));
1289}
1290
1291/// The UsualUnaryConversions() function is *not* called by this routine.
1292/// See C99 6.3.2.1p[2-4] for more details.
1293bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1294                                     SourceLocation OpLoc,
1295                                     const SourceRange &ExprRange,
1296                                     bool isSizeof) {
1297  if (exprType->isDependentType())
1298    return false;
1299
1300  // C99 6.5.3.4p1:
1301  if (isa<FunctionType>(exprType)) {
1302    // alignof(function) is allowed as an extension.
1303    if (isSizeof)
1304      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1305    return false;
1306  }
1307
1308  // Allow sizeof(void)/alignof(void) as an extension.
1309  if (exprType->isVoidType()) {
1310    Diag(OpLoc, diag::ext_sizeof_void_type)
1311      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1312    return false;
1313  }
1314
1315  if (RequireCompleteType(OpLoc, exprType,
1316                          isSizeof ? diag::err_sizeof_incomplete_type :
1317                          PDiag(diag::err_alignof_incomplete_type)
1318                            << ExprRange))
1319    return true;
1320
1321  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1322  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1323    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1324      << exprType << isSizeof << ExprRange;
1325    return true;
1326  }
1327
1328  return false;
1329}
1330
1331bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1332                            const SourceRange &ExprRange) {
1333  E = E->IgnoreParens();
1334
1335  // alignof decl is always ok.
1336  if (isa<DeclRefExpr>(E))
1337    return false;
1338
1339  // Cannot know anything else if the expression is dependent.
1340  if (E->isTypeDependent())
1341    return false;
1342
1343  if (E->getBitField()) {
1344    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1345    return true;
1346  }
1347
1348  // Alignment of a field access is always okay, so long as it isn't a
1349  // bit-field.
1350  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1351    if (isa<FieldDecl>(ME->getMemberDecl()))
1352      return false;
1353
1354  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1355}
1356
1357/// \brief Build a sizeof or alignof expression given a type operand.
1358Action::OwningExprResult
1359Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1360                              bool isSizeOf, SourceRange R) {
1361  if (T.isNull())
1362    return ExprError();
1363
1364  if (!T->isDependentType() &&
1365      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1366    return ExprError();
1367
1368  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1369  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1370                                               Context.getSizeType(), OpLoc,
1371                                               R.getEnd()));
1372}
1373
1374/// \brief Build a sizeof or alignof expression given an expression
1375/// operand.
1376Action::OwningExprResult
1377Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1378                              bool isSizeOf, SourceRange R) {
1379  // Verify that the operand is valid.
1380  bool isInvalid = false;
1381  if (E->isTypeDependent()) {
1382    // Delay type-checking for type-dependent expressions.
1383  } else if (!isSizeOf) {
1384    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1385  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1386    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1387    isInvalid = true;
1388  } else {
1389    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1390  }
1391
1392  if (isInvalid)
1393    return ExprError();
1394
1395  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1396  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1397                                               Context.getSizeType(), OpLoc,
1398                                               R.getEnd()));
1399}
1400
1401/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1402/// the same for @c alignof and @c __alignof
1403/// Note that the ArgRange is invalid if isType is false.
1404Action::OwningExprResult
1405Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1406                             void *TyOrEx, const SourceRange &ArgRange) {
1407  // If error parsing type, ignore.
1408  if (TyOrEx == 0) return ExprError();
1409
1410  if (isType) {
1411    // FIXME: Preserve type source info.
1412    QualType ArgTy = GetTypeFromParser(TyOrEx);
1413    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1414  }
1415
1416  // Get the end location.
1417  Expr *ArgEx = (Expr *)TyOrEx;
1418  Action::OwningExprResult Result
1419    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1420
1421  if (Result.isInvalid())
1422    DeleteExpr(ArgEx);
1423
1424  return move(Result);
1425}
1426
1427QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1428  if (V->isTypeDependent())
1429    return Context.DependentTy;
1430
1431  // These operators return the element type of a complex type.
1432  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1433    return CT->getElementType();
1434
1435  // Otherwise they pass through real integer and floating point types here.
1436  if (V->getType()->isArithmeticType())
1437    return V->getType();
1438
1439  // Reject anything else.
1440  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1441    << (isReal ? "__real" : "__imag");
1442  return QualType();
1443}
1444
1445
1446
1447Action::OwningExprResult
1448Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1449                          tok::TokenKind Kind, ExprArg Input) {
1450  // Since this might be a postfix expression, get rid of ParenListExprs.
1451  Input = MaybeConvertParenListExprToParenExpr(S, move(Input));
1452  Expr *Arg = (Expr *)Input.get();
1453
1454  UnaryOperator::Opcode Opc;
1455  switch (Kind) {
1456  default: assert(0 && "Unknown unary op!");
1457  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1458  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1459  }
1460
1461  if (getLangOptions().CPlusPlus &&
1462      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1463    // Which overloaded operator?
1464    OverloadedOperatorKind OverOp =
1465      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1466
1467    // C++ [over.inc]p1:
1468    //
1469    //     [...] If the function is a member function with one
1470    //     parameter (which shall be of type int) or a non-member
1471    //     function with two parameters (the second of which shall be
1472    //     of type int), it defines the postfix increment operator ++
1473    //     for objects of that type. When the postfix increment is
1474    //     called as a result of using the ++ operator, the int
1475    //     argument will have value zero.
1476    Expr *Args[2] = {
1477      Arg,
1478      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1479                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1480    };
1481
1482    // Build the candidate set for overloading
1483    OverloadCandidateSet CandidateSet;
1484    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1485
1486    // Perform overload resolution.
1487    OverloadCandidateSet::iterator Best;
1488    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1489    case OR_Success: {
1490      // We found a built-in operator or an overloaded operator.
1491      FunctionDecl *FnDecl = Best->Function;
1492
1493      if (FnDecl) {
1494        // We matched an overloaded operator. Build a call to that
1495        // operator.
1496
1497        // Convert the arguments.
1498        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1499          if (PerformObjectArgumentInitialization(Arg, Method))
1500            return ExprError();
1501        } else {
1502          // Convert the arguments.
1503          if (PerformCopyInitialization(Arg,
1504                                        FnDecl->getParamDecl(0)->getType(),
1505                                        "passing"))
1506            return ExprError();
1507        }
1508
1509        // Determine the result type
1510        QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
1511
1512        // Build the actual expression node.
1513        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1514                                                 SourceLocation());
1515        UsualUnaryConversions(FnExpr);
1516
1517        Input.release();
1518        Args[0] = Arg;
1519
1520        ExprOwningPtr<CXXOperatorCallExpr>
1521          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OverOp,
1522                                                          FnExpr, Args, 2,
1523                                                          ResultTy, OpLoc));
1524
1525        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
1526                                FnDecl))
1527          return ExprError();
1528        return Owned(TheCall.release());
1529
1530      } else {
1531        // We matched a built-in operator. Convert the arguments, then
1532        // break out so that we will build the appropriate built-in
1533        // operator node.
1534        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1535                                      "passing"))
1536          return ExprError();
1537
1538        break;
1539      }
1540    }
1541
1542    case OR_No_Viable_Function: {
1543      // No viable function; try checking this as a built-in operator, which
1544      // will fail and provide a diagnostic. Then, print the overload
1545      // candidates.
1546      OwningExprResult Result = CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1547      assert(Result.isInvalid() &&
1548             "C++ postfix-unary operator overloading is missing candidates!");
1549      if (Result.isInvalid())
1550        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1551
1552      return move(Result);
1553    }
1554
1555    case OR_Ambiguous:
1556      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1557          << UnaryOperator::getOpcodeStr(Opc)
1558          << Arg->getSourceRange();
1559      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1560      return ExprError();
1561
1562    case OR_Deleted:
1563      Diag(OpLoc, diag::err_ovl_deleted_oper)
1564        << Best->Function->isDeleted()
1565        << UnaryOperator::getOpcodeStr(Opc)
1566        << Arg->getSourceRange();
1567      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1568      return ExprError();
1569    }
1570
1571    // Either we found no viable overloaded operator or we matched a
1572    // built-in operator. In either case, fall through to trying to
1573    // build a built-in operation.
1574  }
1575
1576  Input.release();
1577  Input = Arg;
1578  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1579}
1580
1581Action::OwningExprResult
1582Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1583                              ExprArg Idx, SourceLocation RLoc) {
1584  // Since this might be a postfix expression, get rid of ParenListExprs.
1585  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1586
1587  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1588       *RHSExp = static_cast<Expr*>(Idx.get());
1589
1590  if (getLangOptions().CPlusPlus &&
1591      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1592    Base.release();
1593    Idx.release();
1594    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1595                                                  Context.DependentTy, RLoc));
1596  }
1597
1598  if (getLangOptions().CPlusPlus &&
1599      (LHSExp->getType()->isRecordType() ||
1600       LHSExp->getType()->isEnumeralType() ||
1601       RHSExp->getType()->isRecordType() ||
1602       RHSExp->getType()->isEnumeralType())) {
1603    // Add the appropriate overloaded operators (C++ [over.match.oper])
1604    // to the candidate set.
1605    OverloadCandidateSet CandidateSet;
1606    Expr *Args[2] = { LHSExp, RHSExp };
1607    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1608                          SourceRange(LLoc, RLoc));
1609
1610    // Perform overload resolution.
1611    OverloadCandidateSet::iterator Best;
1612    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1613    case OR_Success: {
1614      // We found a built-in operator or an overloaded operator.
1615      FunctionDecl *FnDecl = Best->Function;
1616
1617      if (FnDecl) {
1618        // We matched an overloaded operator. Build a call to that
1619        // operator.
1620
1621        // Convert the arguments.
1622        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1623          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1624              PerformCopyInitialization(RHSExp,
1625                                        FnDecl->getParamDecl(0)->getType(),
1626                                        "passing"))
1627            return ExprError();
1628        } else {
1629          // Convert the arguments.
1630          if (PerformCopyInitialization(LHSExp,
1631                                        FnDecl->getParamDecl(0)->getType(),
1632                                        "passing") ||
1633              PerformCopyInitialization(RHSExp,
1634                                        FnDecl->getParamDecl(1)->getType(),
1635                                        "passing"))
1636            return ExprError();
1637        }
1638
1639        // Determine the result type
1640        QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
1641
1642        // Build the actual expression node.
1643        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1644                                                 SourceLocation());
1645        UsualUnaryConversions(FnExpr);
1646
1647        Base.release();
1648        Idx.release();
1649        Args[0] = LHSExp;
1650        Args[1] = RHSExp;
1651
1652        ExprOwningPtr<CXXOperatorCallExpr>
1653          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1654                                                          FnExpr, Args, 2,
1655                                                          ResultTy, RLoc));
1656        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
1657                                FnDecl))
1658          return ExprError();
1659
1660        return Owned(TheCall.release());
1661      } else {
1662        // We matched a built-in operator. Convert the arguments, then
1663        // break out so that we will build the appropriate built-in
1664        // operator node.
1665        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1666                                      "passing") ||
1667            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1668                                      "passing"))
1669          return ExprError();
1670
1671        break;
1672      }
1673    }
1674
1675    case OR_No_Viable_Function:
1676      // No viable function; fall through to handling this as a
1677      // built-in operator, which will produce an error message for us.
1678      break;
1679
1680    case OR_Ambiguous:
1681      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1682          << "[]"
1683          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1684      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1685      return ExprError();
1686
1687    case OR_Deleted:
1688      Diag(LLoc, diag::err_ovl_deleted_oper)
1689        << Best->Function->isDeleted()
1690        << "[]"
1691        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1692      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1693      return ExprError();
1694    }
1695
1696    // Either we found no viable overloaded operator or we matched a
1697    // built-in operator. In either case, fall through to trying to
1698    // build a built-in operation.
1699  }
1700
1701  // Perform default conversions.
1702  DefaultFunctionArrayConversion(LHSExp);
1703  DefaultFunctionArrayConversion(RHSExp);
1704
1705  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1706
1707  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1708  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1709  // in the subscript position. As a result, we need to derive the array base
1710  // and index from the expression types.
1711  Expr *BaseExpr, *IndexExpr;
1712  QualType ResultType;
1713  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1714    BaseExpr = LHSExp;
1715    IndexExpr = RHSExp;
1716    ResultType = Context.DependentTy;
1717  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1718    BaseExpr = LHSExp;
1719    IndexExpr = RHSExp;
1720    ResultType = PTy->getPointeeType();
1721  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1722     // Handle the uncommon case of "123[Ptr]".
1723    BaseExpr = RHSExp;
1724    IndexExpr = LHSExp;
1725    ResultType = PTy->getPointeeType();
1726  } else if (const ObjCObjectPointerType *PTy =
1727               LHSTy->getAs<ObjCObjectPointerType>()) {
1728    BaseExpr = LHSExp;
1729    IndexExpr = RHSExp;
1730    ResultType = PTy->getPointeeType();
1731  } else if (const ObjCObjectPointerType *PTy =
1732               RHSTy->getAs<ObjCObjectPointerType>()) {
1733     // Handle the uncommon case of "123[Ptr]".
1734    BaseExpr = RHSExp;
1735    IndexExpr = LHSExp;
1736    ResultType = PTy->getPointeeType();
1737  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
1738    BaseExpr = LHSExp;    // vectors: V[123]
1739    IndexExpr = RHSExp;
1740
1741    // FIXME: need to deal with const...
1742    ResultType = VTy->getElementType();
1743  } else if (LHSTy->isArrayType()) {
1744    // If we see an array that wasn't promoted by
1745    // DefaultFunctionArrayConversion, it must be an array that
1746    // wasn't promoted because of the C90 rule that doesn't
1747    // allow promoting non-lvalue arrays.  Warn, then
1748    // force the promotion here.
1749    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1750        LHSExp->getSourceRange();
1751    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
1752                      CastExpr::CK_ArrayToPointerDecay);
1753    LHSTy = LHSExp->getType();
1754
1755    BaseExpr = LHSExp;
1756    IndexExpr = RHSExp;
1757    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1758  } else if (RHSTy->isArrayType()) {
1759    // Same as previous, except for 123[f().a] case
1760    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1761        RHSExp->getSourceRange();
1762    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
1763                      CastExpr::CK_ArrayToPointerDecay);
1764    RHSTy = RHSExp->getType();
1765
1766    BaseExpr = RHSExp;
1767    IndexExpr = LHSExp;
1768    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1769  } else {
1770    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1771       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1772  }
1773  // C99 6.5.2.1p1
1774  if (!(IndexExpr->getType()->isIntegerType() &&
1775        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1776    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1777                     << IndexExpr->getSourceRange());
1778
1779  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
1780       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
1781         && !IndexExpr->isTypeDependent())
1782    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
1783
1784  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1785  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1786  // type. Note that Functions are not objects, and that (in C99 parlance)
1787  // incomplete types are not object types.
1788  if (ResultType->isFunctionType()) {
1789    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1790      << ResultType << BaseExpr->getSourceRange();
1791    return ExprError();
1792  }
1793
1794  if (!ResultType->isDependentType() &&
1795      RequireCompleteType(LLoc, ResultType,
1796                          PDiag(diag::err_subscript_incomplete_type)
1797                            << BaseExpr->getSourceRange()))
1798    return ExprError();
1799
1800  // Diagnose bad cases where we step over interface counts.
1801  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1802    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1803      << ResultType << BaseExpr->getSourceRange();
1804    return ExprError();
1805  }
1806
1807  Base.release();
1808  Idx.release();
1809  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1810                                                ResultType, RLoc));
1811}
1812
1813QualType Sema::
1814CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1815                        const IdentifierInfo *CompName,
1816                        SourceLocation CompLoc) {
1817  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
1818  // see FIXME there.
1819  //
1820  // FIXME: This logic can be greatly simplified by splitting it along
1821  // halving/not halving and reworking the component checking.
1822  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
1823
1824  // The vector accessor can't exceed the number of elements.
1825  const char *compStr = CompName->getNameStart();
1826
1827  // This flag determines whether or not the component is one of the four
1828  // special names that indicate a subset of exactly half the elements are
1829  // to be selected.
1830  bool HalvingSwizzle = false;
1831
1832  // This flag determines whether or not CompName has an 's' char prefix,
1833  // indicating that it is a string of hex values to be used as vector indices.
1834  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1835
1836  // Check that we've found one of the special components, or that the component
1837  // names must come from the same set.
1838  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1839      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1840    HalvingSwizzle = true;
1841  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1842    do
1843      compStr++;
1844    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1845  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1846    do
1847      compStr++;
1848    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1849  }
1850
1851  if (!HalvingSwizzle && *compStr) {
1852    // We didn't get to the end of the string. This means the component names
1853    // didn't come from the same set *or* we encountered an illegal name.
1854    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1855      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1856    return QualType();
1857  }
1858
1859  // Ensure no component accessor exceeds the width of the vector type it
1860  // operates on.
1861  if (!HalvingSwizzle) {
1862    compStr = CompName->getNameStart();
1863
1864    if (HexSwizzle)
1865      compStr++;
1866
1867    while (*compStr) {
1868      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1869        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1870          << baseType << SourceRange(CompLoc);
1871        return QualType();
1872      }
1873    }
1874  }
1875
1876  // If this is a halving swizzle, verify that the base type has an even
1877  // number of elements.
1878  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1879    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1880      << baseType << SourceRange(CompLoc);
1881    return QualType();
1882  }
1883
1884  // The component accessor looks fine - now we need to compute the actual type.
1885  // The vector type is implied by the component accessor. For example,
1886  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1887  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1888  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1889  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1890                                     : CompName->getLength();
1891  if (HexSwizzle)
1892    CompSize--;
1893
1894  if (CompSize == 1)
1895    return vecType->getElementType();
1896
1897  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1898  // Now look up the TypeDefDecl from the vector type. Without this,
1899  // diagostics look bad. We want extended vector types to appear built-in.
1900  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1901    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1902      return Context.getTypedefType(ExtVectorDecls[i]);
1903  }
1904  return VT; // should never get here (a typedef type should always be found).
1905}
1906
1907static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1908                                                IdentifierInfo *Member,
1909                                                const Selector &Sel,
1910                                                ASTContext &Context) {
1911
1912  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1913    return PD;
1914  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1915    return OMD;
1916
1917  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1918       E = PDecl->protocol_end(); I != E; ++I) {
1919    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1920                                                     Context))
1921      return D;
1922  }
1923  return 0;
1924}
1925
1926static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1927                                IdentifierInfo *Member,
1928                                const Selector &Sel,
1929                                ASTContext &Context) {
1930  // Check protocols on qualified interfaces.
1931  Decl *GDecl = 0;
1932  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1933       E = QIdTy->qual_end(); I != E; ++I) {
1934    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1935      GDecl = PD;
1936      break;
1937    }
1938    // Also must look for a getter name which uses property syntax.
1939    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1940      GDecl = OMD;
1941      break;
1942    }
1943  }
1944  if (!GDecl) {
1945    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1946         E = QIdTy->qual_end(); I != E; ++I) {
1947      // Search in the protocol-qualifier list of current protocol.
1948      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1949      if (GDecl)
1950        return GDecl;
1951    }
1952  }
1953  return GDecl;
1954}
1955
1956Action::OwningExprResult
1957Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1958                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1959                               DeclarationName MemberName,
1960                               bool HasExplicitTemplateArgs,
1961                               SourceLocation LAngleLoc,
1962                               const TemplateArgument *ExplicitTemplateArgs,
1963                               unsigned NumExplicitTemplateArgs,
1964                               SourceLocation RAngleLoc,
1965                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS,
1966                               NamedDecl *FirstQualifierInScope) {
1967  if (SS && SS->isInvalid())
1968    return ExprError();
1969
1970  // Since this might be a postfix expression, get rid of ParenListExprs.
1971  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1972
1973  Expr *BaseExpr = Base.takeAs<Expr>();
1974  assert(BaseExpr && "no base expression");
1975
1976  // Perform default conversions.
1977  DefaultFunctionArrayConversion(BaseExpr);
1978
1979  QualType BaseType = BaseExpr->getType();
1980  // If this is an Objective-C pseudo-builtin and a definition is provided then
1981  // use that.
1982  if (BaseType->isObjCIdType()) {
1983    // We have an 'id' type. Rather than fall through, we check if this
1984    // is a reference to 'isa'.
1985    if (BaseType != Context.ObjCIdRedefinitionType) {
1986      BaseType = Context.ObjCIdRedefinitionType;
1987      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
1988    }
1989  }
1990  assert(!BaseType.isNull() && "no type for member expression");
1991
1992  // Handle properties on ObjC 'Class' types.
1993  if (OpKind == tok::period && BaseType->isObjCClassType()) {
1994    // Also must look for a getter name which uses property syntax.
1995    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1996    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1997    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1998      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1999      ObjCMethodDecl *Getter;
2000      // FIXME: need to also look locally in the implementation.
2001      if ((Getter = IFace->lookupClassMethod(Sel))) {
2002        // Check the use of this method.
2003        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2004          return ExprError();
2005      }
2006      // If we found a getter then this may be a valid dot-reference, we
2007      // will look for the matching setter, in case it is needed.
2008      Selector SetterSel =
2009      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2010                                         PP.getSelectorTable(), Member);
2011      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2012      if (!Setter) {
2013        // If this reference is in an @implementation, also check for 'private'
2014        // methods.
2015        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2016      }
2017      // Look through local category implementations associated with the class.
2018      if (!Setter)
2019        Setter = IFace->getCategoryClassMethod(SetterSel);
2020
2021      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2022        return ExprError();
2023
2024      if (Getter || Setter) {
2025        QualType PType;
2026
2027        if (Getter)
2028          PType = Getter->getResultType();
2029        else
2030          // Get the expression type from Setter's incoming parameter.
2031          PType = (*(Setter->param_end() -1))->getType();
2032        // FIXME: we must check that the setter has property type.
2033        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2034                                                  PType,
2035                                                  Setter, MemberLoc, BaseExpr));
2036      }
2037      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2038                       << MemberName << BaseType);
2039    }
2040  }
2041
2042  if (BaseType->isObjCClassType() &&
2043      BaseType != Context.ObjCClassRedefinitionType) {
2044    BaseType = Context.ObjCClassRedefinitionType;
2045    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2046  }
2047
2048  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2049  // must have pointer type, and the accessed type is the pointee.
2050  if (OpKind == tok::arrow) {
2051    if (BaseType->isDependentType()) {
2052      NestedNameSpecifier *Qualifier = 0;
2053      if (SS) {
2054        Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2055        if (!FirstQualifierInScope)
2056          FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2057      }
2058
2059      return Owned(CXXUnresolvedMemberExpr::Create(Context, BaseExpr, true,
2060                                                   OpLoc, Qualifier,
2061                                            SS? SS->getRange() : SourceRange(),
2062                                                   FirstQualifierInScope,
2063                                                   MemberName,
2064                                                   MemberLoc,
2065                                                   HasExplicitTemplateArgs,
2066                                                   LAngleLoc,
2067                                                   ExplicitTemplateArgs,
2068                                                   NumExplicitTemplateArgs,
2069                                                   RAngleLoc));
2070    }
2071    else if (const PointerType *PT = BaseType->getAs<PointerType>())
2072      BaseType = PT->getPointeeType();
2073    else if (BaseType->isObjCObjectPointerType())
2074      ;
2075    else
2076      return ExprError(Diag(MemberLoc,
2077                            diag::err_typecheck_member_reference_arrow)
2078        << BaseType << BaseExpr->getSourceRange());
2079  } else if (BaseType->isDependentType()) {
2080      // Require that the base type isn't a pointer type
2081      // (so we'll report an error for)
2082      // T* t;
2083      // t.f;
2084      //
2085      // In Obj-C++, however, the above expression is valid, since it could be
2086      // accessing the 'f' property if T is an Obj-C interface. The extra check
2087      // allows this, while still reporting an error if T is a struct pointer.
2088      const PointerType *PT = BaseType->getAs<PointerType>();
2089
2090      if (!PT || (getLangOptions().ObjC1 &&
2091                  !PT->getPointeeType()->isRecordType())) {
2092        NestedNameSpecifier *Qualifier = 0;
2093        if (SS) {
2094          Qualifier = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
2095          if (!FirstQualifierInScope)
2096            FirstQualifierInScope = FindFirstQualifierInScope(S, Qualifier);
2097        }
2098
2099        return Owned(CXXUnresolvedMemberExpr::Create(Context,
2100                                                     BaseExpr, false,
2101                                                     OpLoc,
2102                                                     Qualifier,
2103                                            SS? SS->getRange() : SourceRange(),
2104                                                     FirstQualifierInScope,
2105                                                     MemberName,
2106                                                     MemberLoc,
2107                                                     HasExplicitTemplateArgs,
2108                                                     LAngleLoc,
2109                                                     ExplicitTemplateArgs,
2110                                                     NumExplicitTemplateArgs,
2111                                                     RAngleLoc));
2112      }
2113    }
2114
2115  // Handle field access to simple records.  This also handles access to fields
2116  // of the ObjC 'id' struct.
2117  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2118    RecordDecl *RDecl = RTy->getDecl();
2119    if (RequireCompleteType(OpLoc, BaseType,
2120                            PDiag(diag::err_typecheck_incomplete_tag)
2121                              << BaseExpr->getSourceRange()))
2122      return ExprError();
2123
2124    DeclContext *DC = RDecl;
2125    if (SS && SS->isSet()) {
2126      // If the member name was a qualified-id, look into the
2127      // nested-name-specifier.
2128      DC = computeDeclContext(*SS, false);
2129
2130      if (!isa<TypeDecl>(DC)) {
2131        Diag(MemberLoc, diag::err_qualified_member_nonclass)
2132          << DC << SS->getRange();
2133        return ExprError();
2134      }
2135
2136      // FIXME: If DC is not computable, we should build a
2137      // CXXUnresolvedMemberExpr.
2138      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2139    }
2140
2141    // The record definition is complete, now make sure the member is valid.
2142    LookupResult Result;
2143    LookupQualifiedName(Result, DC, MemberName, LookupMemberName, false);
2144
2145    if (Result.empty())
2146      return ExprError(Diag(MemberLoc, diag::err_no_member)
2147               << MemberName << DC << BaseExpr->getSourceRange());
2148    if (Result.isAmbiguous()) {
2149      DiagnoseAmbiguousLookup(Result, MemberName, MemberLoc,
2150                              BaseExpr->getSourceRange());
2151      return ExprError();
2152    }
2153
2154    NamedDecl *MemberDecl = Result.getAsSingleDecl(Context);
2155
2156    if (SS && SS->isSet()) {
2157      TypeDecl* TyD = cast<TypeDecl>(MemberDecl->getDeclContext());
2158      QualType BaseTypeCanon
2159        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2160      QualType MemberTypeCanon
2161        = Context.getCanonicalType(Context.getTypeDeclType(TyD));
2162
2163      if (BaseTypeCanon != MemberTypeCanon &&
2164          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2165        return ExprError(Diag(SS->getBeginLoc(),
2166                              diag::err_not_direct_base_or_virtual)
2167                         << MemberTypeCanon << BaseTypeCanon);
2168    }
2169
2170    // If the decl being referenced had an error, return an error for this
2171    // sub-expr without emitting another error, in order to avoid cascading
2172    // error cases.
2173    if (MemberDecl->isInvalidDecl())
2174      return ExprError();
2175
2176    bool ShouldCheckUse = true;
2177    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2178      // Don't diagnose the use of a virtual member function unless it's
2179      // explicitly qualified.
2180      if (MD->isVirtual() && (!SS || !SS->isSet()))
2181        ShouldCheckUse = false;
2182    }
2183
2184    // Check the use of this field
2185    if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2186      return ExprError();
2187
2188    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2189      // We may have found a field within an anonymous union or struct
2190      // (C++ [class.union]).
2191      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2192        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2193                                                        BaseExpr, OpLoc);
2194
2195      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2196      QualType MemberType = FD->getType();
2197      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2198        MemberType = Ref->getPointeeType();
2199      else {
2200        Qualifiers BaseQuals = BaseType.getQualifiers();
2201        BaseQuals.removeObjCGCAttr();
2202        if (FD->isMutable()) BaseQuals.removeConst();
2203
2204        Qualifiers MemberQuals
2205          = Context.getCanonicalType(MemberType).getQualifiers();
2206
2207        Qualifiers Combined = BaseQuals + MemberQuals;
2208        if (Combined != MemberQuals)
2209          MemberType = Context.getQualifiedType(MemberType, Combined);
2210      }
2211
2212      MarkDeclarationReferenced(MemberLoc, FD);
2213      if (PerformObjectMemberConversion(BaseExpr, FD))
2214        return ExprError();
2215      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2216                                   FD, MemberLoc, MemberType));
2217    }
2218
2219    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2220      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2221      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2222                                   Var, MemberLoc,
2223                                   Var->getType().getNonReferenceType()));
2224    }
2225    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2226      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2227      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2228                                   MemberFn, MemberLoc,
2229                                   MemberFn->getType()));
2230    }
2231    if (FunctionTemplateDecl *FunTmpl
2232          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2233      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2234
2235      if (HasExplicitTemplateArgs)
2236        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2237                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2238                                       SS? SS->getRange() : SourceRange(),
2239                                        FunTmpl, MemberLoc, true,
2240                                        LAngleLoc, ExplicitTemplateArgs,
2241                                        NumExplicitTemplateArgs, RAngleLoc,
2242                                        Context.OverloadTy));
2243
2244      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2245                                   FunTmpl, MemberLoc,
2246                                   Context.OverloadTy));
2247    }
2248    if (OverloadedFunctionDecl *Ovl
2249          = dyn_cast<OverloadedFunctionDecl>(MemberDecl)) {
2250      if (HasExplicitTemplateArgs)
2251        return Owned(MemberExpr::Create(Context, BaseExpr, OpKind == tok::arrow,
2252                             (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2253                                        SS? SS->getRange() : SourceRange(),
2254                                        Ovl, MemberLoc, true,
2255                                        LAngleLoc, ExplicitTemplateArgs,
2256                                        NumExplicitTemplateArgs, RAngleLoc,
2257                                        Context.OverloadTy));
2258
2259      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2260                                   Ovl, MemberLoc, Context.OverloadTy));
2261    }
2262    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2263      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2264      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2265                                   Enum, MemberLoc, Enum->getType()));
2266    }
2267    if (isa<TypeDecl>(MemberDecl))
2268      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2269        << MemberName << int(OpKind == tok::arrow));
2270
2271    // We found a declaration kind that we didn't expect. This is a
2272    // generic error message that tells the user that she can't refer
2273    // to this member with '.' or '->'.
2274    return ExprError(Diag(MemberLoc,
2275                          diag::err_typecheck_member_reference_unknown)
2276      << MemberName << int(OpKind == tok::arrow));
2277  }
2278
2279  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2280  // into a record type was handled above, any destructor we see here is a
2281  // pseudo-destructor.
2282  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2283    // C++ [expr.pseudo]p2:
2284    //   The left hand side of the dot operator shall be of scalar type. The
2285    //   left hand side of the arrow operator shall be of pointer to scalar
2286    //   type.
2287    if (!BaseType->isScalarType())
2288      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2289                     << BaseType << BaseExpr->getSourceRange());
2290
2291    //   [...] The type designated by the pseudo-destructor-name shall be the
2292    //   same as the object type.
2293    if (!MemberName.getCXXNameType()->isDependentType() &&
2294        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2295      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2296                     << BaseType << MemberName.getCXXNameType()
2297                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2298
2299    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2300    //   the form
2301    //
2302    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2303    //
2304    //   shall designate the same scalar type.
2305    //
2306    // FIXME: DPG can't see any way to trigger this particular clause, so it
2307    // isn't checked here.
2308
2309    // FIXME: We've lost the precise spelling of the type by going through
2310    // DeclarationName. Can we do better?
2311    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2312                                                       OpKind == tok::arrow,
2313                                                       OpLoc,
2314                            (NestedNameSpecifier *)(SS? SS->getScopeRep() : 0),
2315                                            SS? SS->getRange() : SourceRange(),
2316                                                   MemberName.getCXXNameType(),
2317                                                       MemberLoc));
2318  }
2319
2320  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2321  // (*Obj).ivar.
2322  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2323      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2324    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2325    const ObjCInterfaceType *IFaceT =
2326      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2327    if (IFaceT) {
2328      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2329
2330      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2331      ObjCInterfaceDecl *ClassDeclared;
2332      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2333
2334      if (IV) {
2335        // If the decl being referenced had an error, return an error for this
2336        // sub-expr without emitting another error, in order to avoid cascading
2337        // error cases.
2338        if (IV->isInvalidDecl())
2339          return ExprError();
2340
2341        // Check whether we can reference this field.
2342        if (DiagnoseUseOfDecl(IV, MemberLoc))
2343          return ExprError();
2344        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2345            IV->getAccessControl() != ObjCIvarDecl::Package) {
2346          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2347          if (ObjCMethodDecl *MD = getCurMethodDecl())
2348            ClassOfMethodDecl =  MD->getClassInterface();
2349          else if (ObjCImpDecl && getCurFunctionDecl()) {
2350            // Case of a c-function declared inside an objc implementation.
2351            // FIXME: For a c-style function nested inside an objc implementation
2352            // class, there is no implementation context available, so we pass
2353            // down the context as argument to this routine. Ideally, this context
2354            // need be passed down in the AST node and somehow calculated from the
2355            // AST for a function decl.
2356            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2357            if (ObjCImplementationDecl *IMPD =
2358                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2359              ClassOfMethodDecl = IMPD->getClassInterface();
2360            else if (ObjCCategoryImplDecl* CatImplClass =
2361                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2362              ClassOfMethodDecl = CatImplClass->getClassInterface();
2363          }
2364
2365          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2366            if (ClassDeclared != IDecl ||
2367                ClassOfMethodDecl != ClassDeclared)
2368              Diag(MemberLoc, diag::error_private_ivar_access)
2369                << IV->getDeclName();
2370          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2371            // @protected
2372            Diag(MemberLoc, diag::error_protected_ivar_access)
2373              << IV->getDeclName();
2374        }
2375
2376        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2377                                                   MemberLoc, BaseExpr,
2378                                                   OpKind == tok::arrow));
2379      }
2380      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2381                         << IDecl->getDeclName() << MemberName
2382                         << BaseExpr->getSourceRange());
2383    }
2384  }
2385  // Handle properties on 'id' and qualified "id".
2386  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2387                                BaseType->isObjCQualifiedIdType())) {
2388    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2389    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2390
2391    // Check protocols on qualified interfaces.
2392    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2393    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2394      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2395        // Check the use of this declaration
2396        if (DiagnoseUseOfDecl(PD, MemberLoc))
2397          return ExprError();
2398
2399        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2400                                                       MemberLoc, BaseExpr));
2401      }
2402      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2403        // Check the use of this method.
2404        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2405          return ExprError();
2406
2407        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2408                                                   OMD->getResultType(),
2409                                                   OMD, OpLoc, MemberLoc,
2410                                                   NULL, 0));
2411      }
2412    }
2413
2414    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2415                       << MemberName << BaseType);
2416  }
2417  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2418  // pointer to a (potentially qualified) interface type.
2419  const ObjCObjectPointerType *OPT;
2420  if (OpKind == tok::period &&
2421      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2422    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2423    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2424    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2425
2426    // Search for a declared property first.
2427    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2428      // Check whether we can reference this property.
2429      if (DiagnoseUseOfDecl(PD, MemberLoc))
2430        return ExprError();
2431      QualType ResTy = PD->getType();
2432      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2433      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2434      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2435        ResTy = Getter->getResultType();
2436      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2437                                                     MemberLoc, BaseExpr));
2438    }
2439    // Check protocols on qualified interfaces.
2440    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2441         E = OPT->qual_end(); I != E; ++I)
2442      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2443        // Check whether we can reference this property.
2444        if (DiagnoseUseOfDecl(PD, MemberLoc))
2445          return ExprError();
2446
2447        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2448                                                       MemberLoc, BaseExpr));
2449      }
2450    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2451         E = OPT->qual_end(); I != E; ++I)
2452      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2453        // Check whether we can reference this property.
2454        if (DiagnoseUseOfDecl(PD, MemberLoc))
2455          return ExprError();
2456
2457        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2458                                                       MemberLoc, BaseExpr));
2459      }
2460    // If that failed, look for an "implicit" property by seeing if the nullary
2461    // selector is implemented.
2462
2463    // FIXME: The logic for looking up nullary and unary selectors should be
2464    // shared with the code in ActOnInstanceMessage.
2465
2466    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2467    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2468
2469    // If this reference is in an @implementation, check for 'private' methods.
2470    if (!Getter)
2471      Getter = IFace->lookupPrivateInstanceMethod(Sel);
2472
2473    // Look through local category implementations associated with the class.
2474    if (!Getter)
2475      Getter = IFace->getCategoryInstanceMethod(Sel);
2476    if (Getter) {
2477      // Check if we can reference this property.
2478      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2479        return ExprError();
2480    }
2481    // If we found a getter then this may be a valid dot-reference, we
2482    // will look for the matching setter, in case it is needed.
2483    Selector SetterSel =
2484      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2485                                         PP.getSelectorTable(), Member);
2486    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2487    if (!Setter) {
2488      // If this reference is in an @implementation, also check for 'private'
2489      // methods.
2490      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2491    }
2492    // Look through local category implementations associated with the class.
2493    if (!Setter)
2494      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2495
2496    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2497      return ExprError();
2498
2499    if (Getter || Setter) {
2500      QualType PType;
2501
2502      if (Getter)
2503        PType = Getter->getResultType();
2504      else
2505        // Get the expression type from Setter's incoming parameter.
2506        PType = (*(Setter->param_end() -1))->getType();
2507      // FIXME: we must check that the setter has property type.
2508      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2509                                      Setter, MemberLoc, BaseExpr));
2510    }
2511    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2512      << MemberName << BaseType);
2513  }
2514
2515  // Handle the following exceptional case (*Obj).isa.
2516  if (OpKind == tok::period &&
2517      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2518      MemberName.getAsIdentifierInfo()->isStr("isa"))
2519    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2520                                           Context.getObjCIdType()));
2521
2522  // Handle 'field access' to vectors, such as 'V.xx'.
2523  if (BaseType->isExtVectorType()) {
2524    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2525    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2526    if (ret.isNull())
2527      return ExprError();
2528    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2529                                                    MemberLoc));
2530  }
2531
2532  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2533    << BaseType << BaseExpr->getSourceRange();
2534
2535  // If the user is trying to apply -> or . to a function or function
2536  // pointer, it's probably because they forgot parentheses to call
2537  // the function. Suggest the addition of those parentheses.
2538  if (BaseType == Context.OverloadTy ||
2539      BaseType->isFunctionType() ||
2540      (BaseType->isPointerType() &&
2541       BaseType->getAs<PointerType>()->isFunctionType())) {
2542    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2543    Diag(Loc, diag::note_member_reference_needs_call)
2544      << CodeModificationHint::CreateInsertion(Loc, "()");
2545  }
2546
2547  return ExprError();
2548}
2549
2550Action::OwningExprResult
2551Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2552                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2553                               IdentifierInfo &Member,
2554                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS) {
2555  return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, MemberLoc,
2556                                  DeclarationName(&Member), ObjCImpDecl, SS);
2557}
2558
2559Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2560                                                    FunctionDecl *FD,
2561                                                    ParmVarDecl *Param) {
2562  if (Param->hasUnparsedDefaultArg()) {
2563    Diag (CallLoc,
2564          diag::err_use_of_default_argument_to_function_declared_later) <<
2565      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2566    Diag(UnparsedDefaultArgLocs[Param],
2567          diag::note_default_argument_declared_here);
2568  } else {
2569    if (Param->hasUninstantiatedDefaultArg()) {
2570      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2571
2572      // Instantiate the expression.
2573      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2574
2575      InstantiatingTemplate Inst(*this, CallLoc, Param,
2576                                 ArgList.getInnermost().getFlatArgumentList(),
2577                                 ArgList.getInnermost().flat_size());
2578
2579      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2580      if (Result.isInvalid())
2581        return ExprError();
2582
2583      if (SetParamDefaultArgument(Param, move(Result),
2584                                  /*FIXME:EqualLoc*/
2585                                  UninstExpr->getSourceRange().getBegin()))
2586        return ExprError();
2587    }
2588
2589    Expr *DefaultExpr = Param->getDefaultArg();
2590
2591    // If the default expression creates temporaries, we need to
2592    // push them to the current stack of expression temporaries so they'll
2593    // be properly destroyed.
2594    if (CXXExprWithTemporaries *E
2595          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2596      assert(!E->shouldDestroyTemporaries() &&
2597             "Can't destroy temporaries in a default argument expr!");
2598      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2599        ExprTemporaries.push_back(E->getTemporary(I));
2600    }
2601  }
2602
2603  // We already type-checked the argument, so we know it works.
2604  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2605}
2606
2607/// ConvertArgumentsForCall - Converts the arguments specified in
2608/// Args/NumArgs to the parameter types of the function FDecl with
2609/// function prototype Proto. Call is the call expression itself, and
2610/// Fn is the function expression. For a C++ member function, this
2611/// routine does not attempt to convert the object argument. Returns
2612/// true if the call is ill-formed.
2613bool
2614Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2615                              FunctionDecl *FDecl,
2616                              const FunctionProtoType *Proto,
2617                              Expr **Args, unsigned NumArgs,
2618                              SourceLocation RParenLoc) {
2619  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2620  // assignment, to the types of the corresponding parameter, ...
2621  unsigned NumArgsInProto = Proto->getNumArgs();
2622  unsigned NumArgsToCheck = NumArgs;
2623  bool Invalid = false;
2624
2625  // If too few arguments are available (and we don't have default
2626  // arguments for the remaining parameters), don't make the call.
2627  if (NumArgs < NumArgsInProto) {
2628    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2629      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2630        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2631    // Use default arguments for missing arguments
2632    NumArgsToCheck = NumArgsInProto;
2633    Call->setNumArgs(Context, NumArgsInProto);
2634  }
2635
2636  // If too many are passed and not variadic, error on the extras and drop
2637  // them.
2638  if (NumArgs > NumArgsInProto) {
2639    if (!Proto->isVariadic()) {
2640      Diag(Args[NumArgsInProto]->getLocStart(),
2641           diag::err_typecheck_call_too_many_args)
2642        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2643        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2644                       Args[NumArgs-1]->getLocEnd());
2645      // This deletes the extra arguments.
2646      Call->setNumArgs(Context, NumArgsInProto);
2647      Invalid = true;
2648    }
2649    NumArgsToCheck = NumArgsInProto;
2650  }
2651
2652  // Continue to check argument types (even if we have too few/many args).
2653  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2654    QualType ProtoArgType = Proto->getArgType(i);
2655
2656    Expr *Arg;
2657    if (i < NumArgs) {
2658      Arg = Args[i];
2659
2660      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2661                              ProtoArgType,
2662                              PDiag(diag::err_call_incomplete_argument)
2663                                << Arg->getSourceRange()))
2664        return true;
2665
2666      // Pass the argument.
2667      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2668        return true;
2669    } else {
2670      ParmVarDecl *Param = FDecl->getParamDecl(i);
2671
2672      OwningExprResult ArgExpr =
2673        BuildCXXDefaultArgExpr(Call->getSourceRange().getBegin(),
2674                               FDecl, Param);
2675      if (ArgExpr.isInvalid())
2676        return true;
2677
2678      Arg = ArgExpr.takeAs<Expr>();
2679    }
2680
2681    Call->setArg(i, Arg);
2682  }
2683
2684  // If this is a variadic call, handle args passed through "...".
2685  if (Proto->isVariadic()) {
2686    VariadicCallType CallType = VariadicFunction;
2687    if (Fn->getType()->isBlockPointerType())
2688      CallType = VariadicBlock; // Block
2689    else if (isa<MemberExpr>(Fn))
2690      CallType = VariadicMethod;
2691
2692    // Promote the arguments (C99 6.5.2.2p7).
2693    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2694      Expr *Arg = Args[i];
2695      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2696      Call->setArg(i, Arg);
2697    }
2698  }
2699
2700  return Invalid;
2701}
2702
2703/// \brief "Deconstruct" the function argument of a call expression to find
2704/// the underlying declaration (if any), the name of the called function,
2705/// whether argument-dependent lookup is available, whether it has explicit
2706/// template arguments, etc.
2707void Sema::DeconstructCallFunction(Expr *FnExpr,
2708                                   NamedDecl *&Function,
2709                                   DeclarationName &Name,
2710                                   NestedNameSpecifier *&Qualifier,
2711                                   SourceRange &QualifierRange,
2712                                   bool &ArgumentDependentLookup,
2713                                   bool &HasExplicitTemplateArguments,
2714                                 const TemplateArgument *&ExplicitTemplateArgs,
2715                                   unsigned &NumExplicitTemplateArgs) {
2716  // Set defaults for all of the output parameters.
2717  Function = 0;
2718  Name = DeclarationName();
2719  Qualifier = 0;
2720  QualifierRange = SourceRange();
2721  ArgumentDependentLookup = getLangOptions().CPlusPlus;
2722  HasExplicitTemplateArguments = false;
2723
2724  // If we're directly calling a function, get the appropriate declaration.
2725  // Also, in C++, keep track of whether we should perform argument-dependent
2726  // lookup and whether there were any explicitly-specified template arguments.
2727  while (true) {
2728    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2729      FnExpr = IcExpr->getSubExpr();
2730    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2731      // Parentheses around a function disable ADL
2732      // (C++0x [basic.lookup.argdep]p1).
2733      ArgumentDependentLookup = false;
2734      FnExpr = PExpr->getSubExpr();
2735    } else if (isa<UnaryOperator>(FnExpr) &&
2736               cast<UnaryOperator>(FnExpr)->getOpcode()
2737               == UnaryOperator::AddrOf) {
2738      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2739    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2740      Function = dyn_cast<NamedDecl>(DRExpr->getDecl());
2741      if ((Qualifier = DRExpr->getQualifier())) {
2742        ArgumentDependentLookup = false;
2743        QualifierRange = DRExpr->getQualifierRange();
2744      }
2745      break;
2746    } else if (UnresolvedFunctionNameExpr *DepName
2747               = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2748      Name = DepName->getName();
2749      break;
2750    } else if (TemplateIdRefExpr *TemplateIdRef
2751               = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2752      Function = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2753      if (!Function)
2754        Function = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2755      HasExplicitTemplateArguments = true;
2756      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2757      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2758
2759      // C++ [temp.arg.explicit]p6:
2760      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2761      //   applies even when the function name is not visible within the
2762      //   scope of the call. This is because the call still has the syntactic
2763      //   form of a function call (3.4.1). But when a function template with
2764      //   explicit template arguments is used, the call does not have the
2765      //   correct syntactic form unless there is a function template with
2766      //   that name visible at the point of the call. If no such name is
2767      //   visible, the call is not syntactically well-formed and
2768      //   argument-dependent lookup does not apply. If some such name is
2769      //   visible, argument dependent lookup applies and additional function
2770      //   templates may be found in other namespaces.
2771      //
2772      // The summary of this paragraph is that, if we get to this point and the
2773      // template-id was not a qualified name, then argument-dependent lookup
2774      // is still possible.
2775      if ((Qualifier = TemplateIdRef->getQualifier())) {
2776        ArgumentDependentLookup = false;
2777        QualifierRange = TemplateIdRef->getQualifierRange();
2778      }
2779      break;
2780    } else {
2781      // Any kind of name that does not refer to a declaration (or
2782      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2783      ArgumentDependentLookup = false;
2784      break;
2785    }
2786  }
2787}
2788
2789/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2790/// This provides the location of the left/right parens and a list of comma
2791/// locations.
2792Action::OwningExprResult
2793Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2794                    MultiExprArg args,
2795                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2796  unsigned NumArgs = args.size();
2797
2798  // Since this might be a postfix expression, get rid of ParenListExprs.
2799  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2800
2801  Expr *Fn = fn.takeAs<Expr>();
2802  Expr **Args = reinterpret_cast<Expr**>(args.release());
2803  assert(Fn && "no function call expression");
2804  FunctionDecl *FDecl = NULL;
2805  NamedDecl *NDecl = NULL;
2806  DeclarationName UnqualifiedName;
2807
2808  if (getLangOptions().CPlusPlus) {
2809    // If this is a pseudo-destructor expression, build the call immediately.
2810    if (isa<CXXPseudoDestructorExpr>(Fn)) {
2811      if (NumArgs > 0) {
2812        // Pseudo-destructor calls should not have any arguments.
2813        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
2814          << CodeModificationHint::CreateRemoval(
2815                                    SourceRange(Args[0]->getLocStart(),
2816                                                Args[NumArgs-1]->getLocEnd()));
2817
2818        for (unsigned I = 0; I != NumArgs; ++I)
2819          Args[I]->Destroy(Context);
2820
2821        NumArgs = 0;
2822      }
2823
2824      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
2825                                          RParenLoc));
2826    }
2827
2828    // Determine whether this is a dependent call inside a C++ template,
2829    // in which case we won't do any semantic analysis now.
2830    // FIXME: Will need to cache the results of name lookup (including ADL) in
2831    // Fn.
2832    bool Dependent = false;
2833    if (Fn->isTypeDependent())
2834      Dependent = true;
2835    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2836      Dependent = true;
2837
2838    if (Dependent)
2839      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2840                                          Context.DependentTy, RParenLoc));
2841
2842    // Determine whether this is a call to an object (C++ [over.call.object]).
2843    if (Fn->getType()->isRecordType())
2844      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2845                                                CommaLocs, RParenLoc));
2846
2847    // Determine whether this is a call to a member function.
2848    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2849      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2850      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2851          isa<CXXMethodDecl>(MemDecl) ||
2852          (isa<FunctionTemplateDecl>(MemDecl) &&
2853           isa<CXXMethodDecl>(
2854                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2855        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2856                                               CommaLocs, RParenLoc));
2857    }
2858
2859    // Determine whether this is a call to a pointer-to-member function.
2860    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Fn->IgnoreParens())) {
2861      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
2862          BO->getOpcode() == BinaryOperator::PtrMemI) {
2863        const FunctionProtoType *FPT = cast<FunctionProtoType>(BO->getType());
2864        QualType ResultTy = FPT->getResultType().getNonReferenceType();
2865
2866        ExprOwningPtr<CXXMemberCallExpr>
2867          TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
2868                                                        NumArgs, ResultTy,
2869                                                        RParenLoc));
2870
2871        if (CheckCallReturnType(FPT->getResultType(),
2872                                BO->getRHS()->getSourceRange().getBegin(),
2873                                TheCall.get(), 0))
2874          return ExprError();
2875
2876        if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
2877                                    RParenLoc))
2878          return ExprError();
2879
2880        return Owned(MaybeBindToTemporary(TheCall.release()).release());
2881      }
2882    }
2883  }
2884
2885  // If we're directly calling a function, get the appropriate declaration.
2886  // Also, in C++, keep track of whether we should perform argument-dependent
2887  // lookup and whether there were any explicitly-specified template arguments.
2888  bool ADL = true;
2889  bool HasExplicitTemplateArgs = 0;
2890  const TemplateArgument *ExplicitTemplateArgs = 0;
2891  unsigned NumExplicitTemplateArgs = 0;
2892  NestedNameSpecifier *Qualifier = 0;
2893  SourceRange QualifierRange;
2894  DeconstructCallFunction(Fn, NDecl, UnqualifiedName, Qualifier, QualifierRange,
2895                          ADL,HasExplicitTemplateArgs, ExplicitTemplateArgs,
2896                          NumExplicitTemplateArgs);
2897
2898  OverloadedFunctionDecl *Ovl = 0;
2899  FunctionTemplateDecl *FunctionTemplate = 0;
2900  if (NDecl) {
2901    FDecl = dyn_cast<FunctionDecl>(NDecl);
2902    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2903      FDecl = FunctionTemplate->getTemplatedDecl();
2904    else
2905      FDecl = dyn_cast<FunctionDecl>(NDecl);
2906    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2907  }
2908
2909  if (Ovl || FunctionTemplate ||
2910      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2911    // We don't perform ADL for implicit declarations of builtins.
2912    if (FDecl && FDecl->getBuiltinID() && FDecl->isImplicit())
2913      ADL = false;
2914
2915    // We don't perform ADL in C.
2916    if (!getLangOptions().CPlusPlus)
2917      ADL = false;
2918
2919    if (Ovl || FunctionTemplate || ADL) {
2920      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2921                                      HasExplicitTemplateArgs,
2922                                      ExplicitTemplateArgs,
2923                                      NumExplicitTemplateArgs,
2924                                      LParenLoc, Args, NumArgs, CommaLocs,
2925                                      RParenLoc, ADL);
2926      if (!FDecl)
2927        return ExprError();
2928
2929      Fn = FixOverloadedFunctionReference(Fn, FDecl);
2930    }
2931  }
2932
2933  // Promote the function operand.
2934  UsualUnaryConversions(Fn);
2935
2936  // Make the call expr early, before semantic checks.  This guarantees cleanup
2937  // of arguments and function on error.
2938  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2939                                                               Args, NumArgs,
2940                                                               Context.BoolTy,
2941                                                               RParenLoc));
2942
2943  const FunctionType *FuncT;
2944  if (!Fn->getType()->isBlockPointerType()) {
2945    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2946    // have type pointer to function".
2947    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2948    if (PT == 0)
2949      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2950        << Fn->getType() << Fn->getSourceRange());
2951    FuncT = PT->getPointeeType()->getAs<FunctionType>();
2952  } else { // This is a block call.
2953    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2954                getAs<FunctionType>();
2955  }
2956  if (FuncT == 0)
2957    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2958      << Fn->getType() << Fn->getSourceRange());
2959
2960  // Check for a valid return type
2961  if (CheckCallReturnType(FuncT->getResultType(),
2962                          Fn->getSourceRange().getBegin(), TheCall.get(),
2963                          FDecl))
2964    return ExprError();
2965
2966  // We know the result type of the call, set it.
2967  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2968
2969  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2970    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2971                                RParenLoc))
2972      return ExprError();
2973  } else {
2974    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2975
2976    if (FDecl) {
2977      // Check if we have too few/too many template arguments, based
2978      // on our knowledge of the function definition.
2979      const FunctionDecl *Def = 0;
2980      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2981        const FunctionProtoType *Proto =
2982            Def->getType()->getAs<FunctionProtoType>();
2983        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2984          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2985            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2986        }
2987      }
2988    }
2989
2990    // Promote the arguments (C99 6.5.2.2p6).
2991    for (unsigned i = 0; i != NumArgs; i++) {
2992      Expr *Arg = Args[i];
2993      DefaultArgumentPromotion(Arg);
2994      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2995                              Arg->getType(),
2996                              PDiag(diag::err_call_incomplete_argument)
2997                                << Arg->getSourceRange()))
2998        return ExprError();
2999      TheCall->setArg(i, Arg);
3000    }
3001  }
3002
3003  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3004    if (!Method->isStatic())
3005      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3006        << Fn->getSourceRange());
3007
3008  // Check for sentinels
3009  if (NDecl)
3010    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3011
3012  // Do special checking on direct calls to functions.
3013  if (FDecl) {
3014    if (CheckFunctionCall(FDecl, TheCall.get()))
3015      return ExprError();
3016
3017    if (unsigned BuiltinID = FDecl->getBuiltinID())
3018      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3019  } else if (NDecl) {
3020    if (CheckBlockCall(NDecl, TheCall.get()))
3021      return ExprError();
3022  }
3023
3024  return MaybeBindToTemporary(TheCall.take());
3025}
3026
3027Action::OwningExprResult
3028Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3029                           SourceLocation RParenLoc, ExprArg InitExpr) {
3030  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3031  //FIXME: Preserve type source info.
3032  QualType literalType = GetTypeFromParser(Ty);
3033  // FIXME: put back this assert when initializers are worked out.
3034  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3035  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3036
3037  if (literalType->isArrayType()) {
3038    if (literalType->isVariableArrayType())
3039      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3040        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3041  } else if (!literalType->isDependentType() &&
3042             RequireCompleteType(LParenLoc, literalType,
3043                      PDiag(diag::err_typecheck_decl_incomplete_type)
3044                        << SourceRange(LParenLoc,
3045                                       literalExpr->getSourceRange().getEnd())))
3046    return ExprError();
3047
3048  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
3049                            DeclarationName(), /*FIXME:DirectInit=*/false))
3050    return ExprError();
3051
3052  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3053  if (isFileScope) { // 6.5.2.5p3
3054    if (CheckForConstantInitializer(literalExpr, literalType))
3055      return ExprError();
3056  }
3057  InitExpr.release();
3058  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
3059                                                 literalExpr, isFileScope));
3060}
3061
3062Action::OwningExprResult
3063Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3064                    SourceLocation RBraceLoc) {
3065  unsigned NumInit = initlist.size();
3066  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3067
3068  // Semantic analysis for initializers is done by ActOnDeclarator() and
3069  // CheckInitializer() - it requires knowledge of the object being intialized.
3070
3071  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3072                                               RBraceLoc);
3073  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3074  return Owned(E);
3075}
3076
3077static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3078                                            QualType SrcTy, QualType DestTy) {
3079  if (Context.getCanonicalType(SrcTy).getUnqualifiedType() ==
3080      Context.getCanonicalType(DestTy).getUnqualifiedType())
3081    return CastExpr::CK_NoOp;
3082
3083  if (SrcTy->hasPointerRepresentation()) {
3084    if (DestTy->hasPointerRepresentation())
3085      return CastExpr::CK_BitCast;
3086    if (DestTy->isIntegerType())
3087      return CastExpr::CK_PointerToIntegral;
3088  }
3089
3090  if (SrcTy->isIntegerType()) {
3091    if (DestTy->isIntegerType())
3092      return CastExpr::CK_IntegralCast;
3093    if (DestTy->hasPointerRepresentation())
3094      return CastExpr::CK_IntegralToPointer;
3095    if (DestTy->isRealFloatingType())
3096      return CastExpr::CK_IntegralToFloating;
3097  }
3098
3099  if (SrcTy->isRealFloatingType()) {
3100    if (DestTy->isRealFloatingType())
3101      return CastExpr::CK_FloatingCast;
3102    if (DestTy->isIntegerType())
3103      return CastExpr::CK_FloatingToIntegral;
3104  }
3105
3106  // FIXME: Assert here.
3107  // assert(false && "Unhandled cast combination!");
3108  return CastExpr::CK_Unknown;
3109}
3110
3111/// CheckCastTypes - Check type constraints for casting between types.
3112bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3113                          CastExpr::CastKind& Kind,
3114                          CXXMethodDecl *& ConversionDecl,
3115                          bool FunctionalStyle) {
3116  if (getLangOptions().CPlusPlus)
3117    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3118                              ConversionDecl);
3119
3120  DefaultFunctionArrayConversion(castExpr);
3121
3122  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3123  // type needs to be scalar.
3124  if (castType->isVoidType()) {
3125    // Cast to void allows any expr type.
3126    Kind = CastExpr::CK_ToVoid;
3127    return false;
3128  }
3129
3130  if (!castType->isScalarType() && !castType->isVectorType()) {
3131    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
3132        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
3133        (castType->isStructureType() || castType->isUnionType())) {
3134      // GCC struct/union extension: allow cast to self.
3135      // FIXME: Check that the cast destination type is complete.
3136      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3137        << castType << castExpr->getSourceRange();
3138      Kind = CastExpr::CK_NoOp;
3139      return false;
3140    }
3141
3142    if (castType->isUnionType()) {
3143      // GCC cast to union extension
3144      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3145      RecordDecl::field_iterator Field, FieldEnd;
3146      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3147           Field != FieldEnd; ++Field) {
3148        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
3149            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
3150          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3151            << castExpr->getSourceRange();
3152          break;
3153        }
3154      }
3155      if (Field == FieldEnd)
3156        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3157          << castExpr->getType() << castExpr->getSourceRange();
3158      Kind = CastExpr::CK_ToUnion;
3159      return false;
3160    }
3161
3162    // Reject any other conversions to non-scalar types.
3163    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3164      << castType << castExpr->getSourceRange();
3165  }
3166
3167  if (!castExpr->getType()->isScalarType() &&
3168      !castExpr->getType()->isVectorType()) {
3169    return Diag(castExpr->getLocStart(),
3170                diag::err_typecheck_expect_scalar_operand)
3171      << castExpr->getType() << castExpr->getSourceRange();
3172  }
3173
3174  if (castType->isExtVectorType())
3175    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3176
3177  if (castType->isVectorType())
3178    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3179  if (castExpr->getType()->isVectorType())
3180    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3181
3182  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3183    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3184
3185  if (isa<ObjCSelectorExpr>(castExpr))
3186    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3187
3188  if (!castType->isArithmeticType()) {
3189    QualType castExprType = castExpr->getType();
3190    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3191      return Diag(castExpr->getLocStart(),
3192                  diag::err_cast_pointer_from_non_pointer_int)
3193        << castExprType << castExpr->getSourceRange();
3194  } else if (!castExpr->getType()->isArithmeticType()) {
3195    if (!castType->isIntegralType() && castType->isArithmeticType())
3196      return Diag(castExpr->getLocStart(),
3197                  diag::err_cast_pointer_to_non_pointer_int)
3198        << castType << castExpr->getSourceRange();
3199  }
3200
3201  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3202  return false;
3203}
3204
3205bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3206                           CastExpr::CastKind &Kind) {
3207  assert(VectorTy->isVectorType() && "Not a vector type!");
3208
3209  if (Ty->isVectorType() || Ty->isIntegerType()) {
3210    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3211      return Diag(R.getBegin(),
3212                  Ty->isVectorType() ?
3213                  diag::err_invalid_conversion_between_vectors :
3214                  diag::err_invalid_conversion_between_vector_and_integer)
3215        << VectorTy << Ty << R;
3216  } else
3217    return Diag(R.getBegin(),
3218                diag::err_invalid_conversion_between_vector_and_scalar)
3219      << VectorTy << Ty << R;
3220
3221  Kind = CastExpr::CK_BitCast;
3222  return false;
3223}
3224
3225bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3226                              CastExpr::CastKind &Kind) {
3227  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3228
3229  QualType SrcTy = CastExpr->getType();
3230
3231  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3232  // an ExtVectorType.
3233  if (SrcTy->isVectorType()) {
3234    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3235      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3236        << DestTy << SrcTy << R;
3237    Kind = CastExpr::CK_BitCast;
3238    return false;
3239  }
3240
3241  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3242  // conversion will take place first from scalar to elt type, and then
3243  // splat from elt type to vector.
3244  if (SrcTy->isPointerType())
3245    return Diag(R.getBegin(),
3246                diag::err_invalid_conversion_between_vector_and_scalar)
3247      << DestTy << SrcTy << R;
3248
3249  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3250  ImpCastExprToType(CastExpr, DestElemTy,
3251                    getScalarCastKind(Context, SrcTy, DestElemTy));
3252
3253  Kind = CastExpr::CK_VectorSplat;
3254  return false;
3255}
3256
3257Action::OwningExprResult
3258Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3259                    SourceLocation RParenLoc, ExprArg Op) {
3260  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3261
3262  assert((Ty != 0) && (Op.get() != 0) &&
3263         "ActOnCastExpr(): missing type or expr");
3264
3265  Expr *castExpr = (Expr *)Op.get();
3266  //FIXME: Preserve type source info.
3267  QualType castType = GetTypeFromParser(Ty);
3268
3269  // If the Expr being casted is a ParenListExpr, handle it specially.
3270  if (isa<ParenListExpr>(castExpr))
3271    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3272  CXXMethodDecl *Method = 0;
3273  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3274                     Kind, Method))
3275    return ExprError();
3276
3277  if (Method) {
3278    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, castType, Kind,
3279                                                    Method, move(Op));
3280
3281    if (CastArg.isInvalid())
3282      return ExprError();
3283
3284    castExpr = CastArg.takeAs<Expr>();
3285  } else {
3286    Op.release();
3287  }
3288
3289  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3290                                            Kind, castExpr, castType,
3291                                            LParenLoc, RParenLoc));
3292}
3293
3294/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3295/// of comma binary operators.
3296Action::OwningExprResult
3297Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3298  Expr *expr = EA.takeAs<Expr>();
3299  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3300  if (!E)
3301    return Owned(expr);
3302
3303  OwningExprResult Result(*this, E->getExpr(0));
3304
3305  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3306    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3307                        Owned(E->getExpr(i)));
3308
3309  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3310}
3311
3312Action::OwningExprResult
3313Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3314                               SourceLocation RParenLoc, ExprArg Op,
3315                               QualType Ty) {
3316  ParenListExpr *PE = (ParenListExpr *)Op.get();
3317
3318  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3319  // then handle it as such.
3320  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3321    if (PE->getNumExprs() == 0) {
3322      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3323      return ExprError();
3324    }
3325
3326    llvm::SmallVector<Expr *, 8> initExprs;
3327    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3328      initExprs.push_back(PE->getExpr(i));
3329
3330    // FIXME: This means that pretty-printing the final AST will produce curly
3331    // braces instead of the original commas.
3332    Op.release();
3333    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3334                                                 initExprs.size(), RParenLoc);
3335    E->setType(Ty);
3336    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3337                                Owned(E));
3338  } else {
3339    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3340    // sequence of BinOp comma operators.
3341    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3342    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3343  }
3344}
3345
3346Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3347                                                  SourceLocation R,
3348                                                  MultiExprArg Val) {
3349  unsigned nexprs = Val.size();
3350  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3351  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3352  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3353  return Owned(expr);
3354}
3355
3356/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3357/// In that case, lhs = cond.
3358/// C99 6.5.15
3359QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3360                                        SourceLocation QuestionLoc) {
3361  // C++ is sufficiently different to merit its own checker.
3362  if (getLangOptions().CPlusPlus)
3363    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3364
3365  UsualUnaryConversions(Cond);
3366  UsualUnaryConversions(LHS);
3367  UsualUnaryConversions(RHS);
3368  QualType CondTy = Cond->getType();
3369  QualType LHSTy = LHS->getType();
3370  QualType RHSTy = RHS->getType();
3371
3372  // first, check the condition.
3373  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3374    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3375      << CondTy;
3376    return QualType();
3377  }
3378
3379  // Now check the two expressions.
3380  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3381    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3382
3383  // If both operands have arithmetic type, do the usual arithmetic conversions
3384  // to find a common type: C99 6.5.15p3,5.
3385  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3386    UsualArithmeticConversions(LHS, RHS);
3387    return LHS->getType();
3388  }
3389
3390  // If both operands are the same structure or union type, the result is that
3391  // type.
3392  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3393    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3394      if (LHSRT->getDecl() == RHSRT->getDecl())
3395        // "If both the operands have structure or union type, the result has
3396        // that type."  This implies that CV qualifiers are dropped.
3397        return LHSTy.getUnqualifiedType();
3398    // FIXME: Type of conditional expression must be complete in C mode.
3399  }
3400
3401  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3402  // The following || allows only one side to be void (a GCC-ism).
3403  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3404    if (!LHSTy->isVoidType())
3405      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3406        << RHS->getSourceRange();
3407    if (!RHSTy->isVoidType())
3408      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3409        << LHS->getSourceRange();
3410    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
3411    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
3412    return Context.VoidTy;
3413  }
3414  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3415  // the type of the other operand."
3416  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3417      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3418    // promote the null to a pointer.
3419    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
3420    return LHSTy;
3421  }
3422  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3423      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3424    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
3425    return RHSTy;
3426  }
3427  // Handle things like Class and struct objc_class*.  Here we case the result
3428  // to the pseudo-builtin, because that will be implicitly cast back to the
3429  // redefinition type if an attempt is made to access its fields.
3430  if (LHSTy->isObjCClassType() &&
3431      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3432    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3433    return LHSTy;
3434  }
3435  if (RHSTy->isObjCClassType() &&
3436      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3437    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3438    return RHSTy;
3439  }
3440  // And the same for struct objc_object* / id
3441  if (LHSTy->isObjCIdType() &&
3442      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3443    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3444    return LHSTy;
3445  }
3446  if (RHSTy->isObjCIdType() &&
3447      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3448    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
3449    return RHSTy;
3450  }
3451  // Handle block pointer types.
3452  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3453    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3454      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3455        QualType destType = Context.getPointerType(Context.VoidTy);
3456        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3457        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3458        return destType;
3459      }
3460      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3461            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3462      return QualType();
3463    }
3464    // We have 2 block pointer types.
3465    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3466      // Two identical block pointer types are always compatible.
3467      return LHSTy;
3468    }
3469    // The block pointer types aren't identical, continue checking.
3470    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3471    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3472
3473    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3474                                    rhptee.getUnqualifiedType())) {
3475      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3476        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3477      // In this situation, we assume void* type. No especially good
3478      // reason, but this is what gcc does, and we do have to pick
3479      // to get a consistent AST.
3480      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3481      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3482      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3483      return incompatTy;
3484    }
3485    // The block pointer types are compatible.
3486    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3487    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3488    return LHSTy;
3489  }
3490  // Check constraints for Objective-C object pointers types.
3491  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3492
3493    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3494      // Two identical object pointer types are always compatible.
3495      return LHSTy;
3496    }
3497    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
3498    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
3499    QualType compositeType = LHSTy;
3500
3501    // If both operands are interfaces and either operand can be
3502    // assigned to the other, use that type as the composite
3503    // type. This allows
3504    //   xxx ? (A*) a : (B*) b
3505    // where B is a subclass of A.
3506    //
3507    // Additionally, as for assignment, if either type is 'id'
3508    // allow silent coercion. Finally, if the types are
3509    // incompatible then make sure to use 'id' as the composite
3510    // type so the result is acceptable for sending messages to.
3511
3512    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3513    // It could return the composite type.
3514    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3515      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3516    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3517      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3518    } else if ((LHSTy->isObjCQualifiedIdType() ||
3519                RHSTy->isObjCQualifiedIdType()) &&
3520                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3521      // Need to handle "id<xx>" explicitly.
3522      // GCC allows qualified id and any Objective-C type to devolve to
3523      // id. Currently localizing to here until clear this should be
3524      // part of ObjCQualifiedIdTypesAreCompatible.
3525      compositeType = Context.getObjCIdType();
3526    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3527      compositeType = Context.getObjCIdType();
3528    } else {
3529      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3530        << LHSTy << RHSTy
3531        << LHS->getSourceRange() << RHS->getSourceRange();
3532      QualType incompatTy = Context.getObjCIdType();
3533      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3534      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3535      return incompatTy;
3536    }
3537    // The object pointer types are compatible.
3538    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
3539    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
3540    return compositeType;
3541  }
3542  // Check Objective-C object pointer types and 'void *'
3543  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3544    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3545    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3546    QualType destPointee
3547      = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3548    QualType destType = Context.getPointerType(destPointee);
3549    // Add qualifiers if necessary.
3550    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3551    // Promote to void*.
3552    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3553    return destType;
3554  }
3555  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3556    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
3557    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3558    QualType destPointee
3559      = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3560    QualType destType = Context.getPointerType(destPointee);
3561    // Add qualifiers if necessary.
3562    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
3563    // Promote to void*.
3564    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
3565    return destType;
3566  }
3567  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3568  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3569    // get the "pointed to" types
3570    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3571    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3572
3573    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3574    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3575      // Figure out necessary qualifiers (C99 6.5.15p6)
3576      QualType destPointee
3577        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
3578      QualType destType = Context.getPointerType(destPointee);
3579      // Add qualifiers if necessary.
3580      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3581      // Promote to void*.
3582      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3583      return destType;
3584    }
3585    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3586      QualType destPointee
3587        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
3588      QualType destType = Context.getPointerType(destPointee);
3589      // Add qualifiers if necessary.
3590      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
3591      // Promote to void*.
3592      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
3593      return destType;
3594    }
3595
3596    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3597      // Two identical pointer types are always compatible.
3598      return LHSTy;
3599    }
3600    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3601                                    rhptee.getUnqualifiedType())) {
3602      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3603        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3604      // In this situation, we assume void* type. No especially good
3605      // reason, but this is what gcc does, and we do have to pick
3606      // to get a consistent AST.
3607      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3608      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
3609      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
3610      return incompatTy;
3611    }
3612    // The pointer types are compatible.
3613    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3614    // differently qualified versions of compatible types, the result type is
3615    // a pointer to an appropriately qualified version of the *composite*
3616    // type.
3617    // FIXME: Need to calculate the composite type.
3618    // FIXME: Need to add qualifiers
3619    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
3620    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
3621    return LHSTy;
3622  }
3623
3624  // GCC compatibility: soften pointer/integer mismatch.
3625  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3626    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3627      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3628    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
3629    return RHSTy;
3630  }
3631  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3632    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3633      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3634    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
3635    return LHSTy;
3636  }
3637
3638  // Otherwise, the operands are not compatible.
3639  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3640    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3641  return QualType();
3642}
3643
3644/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3645/// in the case of a the GNU conditional expr extension.
3646Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3647                                                  SourceLocation ColonLoc,
3648                                                  ExprArg Cond, ExprArg LHS,
3649                                                  ExprArg RHS) {
3650  Expr *CondExpr = (Expr *) Cond.get();
3651  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3652
3653  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3654  // was the condition.
3655  bool isLHSNull = LHSExpr == 0;
3656  if (isLHSNull)
3657    LHSExpr = CondExpr;
3658
3659  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3660                                             RHSExpr, QuestionLoc);
3661  if (result.isNull())
3662    return ExprError();
3663
3664  Cond.release();
3665  LHS.release();
3666  RHS.release();
3667  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3668                                                 isLHSNull ? 0 : LHSExpr,
3669                                                 ColonLoc, RHSExpr, result));
3670}
3671
3672// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3673// being closely modeled after the C99 spec:-). The odd characteristic of this
3674// routine is it effectively iqnores the qualifiers on the top level pointee.
3675// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3676// FIXME: add a couple examples in this comment.
3677Sema::AssignConvertType
3678Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3679  QualType lhptee, rhptee;
3680
3681  if ((lhsType->isObjCClassType() &&
3682       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3683     (rhsType->isObjCClassType() &&
3684       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3685      return Compatible;
3686  }
3687
3688  // get the "pointed to" type (ignoring qualifiers at the top level)
3689  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3690  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3691
3692  // make sure we operate on the canonical type
3693  lhptee = Context.getCanonicalType(lhptee);
3694  rhptee = Context.getCanonicalType(rhptee);
3695
3696  AssignConvertType ConvTy = Compatible;
3697
3698  // C99 6.5.16.1p1: This following citation is common to constraints
3699  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3700  // qualifiers of the type *pointed to* by the right;
3701  // FIXME: Handle ExtQualType
3702  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3703    ConvTy = CompatiblePointerDiscardsQualifiers;
3704
3705  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3706  // incomplete type and the other is a pointer to a qualified or unqualified
3707  // version of void...
3708  if (lhptee->isVoidType()) {
3709    if (rhptee->isIncompleteOrObjectType())
3710      return ConvTy;
3711
3712    // As an extension, we allow cast to/from void* to function pointer.
3713    assert(rhptee->isFunctionType());
3714    return FunctionVoidPointer;
3715  }
3716
3717  if (rhptee->isVoidType()) {
3718    if (lhptee->isIncompleteOrObjectType())
3719      return ConvTy;
3720
3721    // As an extension, we allow cast to/from void* to function pointer.
3722    assert(lhptee->isFunctionType());
3723    return FunctionVoidPointer;
3724  }
3725  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3726  // unqualified versions of compatible types, ...
3727  lhptee = lhptee.getUnqualifiedType();
3728  rhptee = rhptee.getUnqualifiedType();
3729  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3730    // Check if the pointee types are compatible ignoring the sign.
3731    // We explicitly check for char so that we catch "char" vs
3732    // "unsigned char" on systems where "char" is unsigned.
3733    if (lhptee->isCharType())
3734      lhptee = Context.UnsignedCharTy;
3735    else if (lhptee->isSignedIntegerType())
3736      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3737
3738    if (rhptee->isCharType())
3739      rhptee = Context.UnsignedCharTy;
3740    else if (rhptee->isSignedIntegerType())
3741      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3742
3743    if (lhptee == rhptee) {
3744      // Types are compatible ignoring the sign. Qualifier incompatibility
3745      // takes priority over sign incompatibility because the sign
3746      // warning can be disabled.
3747      if (ConvTy != Compatible)
3748        return ConvTy;
3749      return IncompatiblePointerSign;
3750    }
3751    // General pointer incompatibility takes priority over qualifiers.
3752    return IncompatiblePointer;
3753  }
3754  return ConvTy;
3755}
3756
3757/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3758/// block pointer types are compatible or whether a block and normal pointer
3759/// are compatible. It is more restrict than comparing two function pointer
3760// types.
3761Sema::AssignConvertType
3762Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3763                                          QualType rhsType) {
3764  QualType lhptee, rhptee;
3765
3766  // get the "pointed to" type (ignoring qualifiers at the top level)
3767  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3768  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3769
3770  // make sure we operate on the canonical type
3771  lhptee = Context.getCanonicalType(lhptee);
3772  rhptee = Context.getCanonicalType(rhptee);
3773
3774  AssignConvertType ConvTy = Compatible;
3775
3776  // For blocks we enforce that qualifiers are identical.
3777  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3778    ConvTy = CompatiblePointerDiscardsQualifiers;
3779
3780  if (!Context.typesAreCompatible(lhptee, rhptee))
3781    return IncompatibleBlockPointer;
3782  return ConvTy;
3783}
3784
3785/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3786/// has code to accommodate several GCC extensions when type checking
3787/// pointers. Here are some objectionable examples that GCC considers warnings:
3788///
3789///  int a, *pint;
3790///  short *pshort;
3791///  struct foo *pfoo;
3792///
3793///  pint = pshort; // warning: assignment from incompatible pointer type
3794///  a = pint; // warning: assignment makes integer from pointer without a cast
3795///  pint = a; // warning: assignment makes pointer from integer without a cast
3796///  pint = pfoo; // warning: assignment from incompatible pointer type
3797///
3798/// As a result, the code for dealing with pointers is more complex than the
3799/// C99 spec dictates.
3800///
3801Sema::AssignConvertType
3802Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3803  // Get canonical types.  We're not formatting these types, just comparing
3804  // them.
3805  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3806  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3807
3808  if (lhsType == rhsType)
3809    return Compatible; // Common case: fast path an exact match.
3810
3811  if ((lhsType->isObjCClassType() &&
3812       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3813     (rhsType->isObjCClassType() &&
3814       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3815      return Compatible;
3816  }
3817
3818  // If the left-hand side is a reference type, then we are in a
3819  // (rare!) case where we've allowed the use of references in C,
3820  // e.g., as a parameter type in a built-in function. In this case,
3821  // just make sure that the type referenced is compatible with the
3822  // right-hand side type. The caller is responsible for adjusting
3823  // lhsType so that the resulting expression does not have reference
3824  // type.
3825  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3826    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3827      return Compatible;
3828    return Incompatible;
3829  }
3830  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3831  // to the same ExtVector type.
3832  if (lhsType->isExtVectorType()) {
3833    if (rhsType->isExtVectorType())
3834      return lhsType == rhsType ? Compatible : Incompatible;
3835    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3836      return Compatible;
3837  }
3838
3839  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3840    // If we are allowing lax vector conversions, and LHS and RHS are both
3841    // vectors, the total size only needs to be the same. This is a bitcast;
3842    // no bits are changed but the result type is different.
3843    if (getLangOptions().LaxVectorConversions &&
3844        lhsType->isVectorType() && rhsType->isVectorType()) {
3845      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3846        return IncompatibleVectors;
3847    }
3848    return Incompatible;
3849  }
3850
3851  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3852    return Compatible;
3853
3854  if (isa<PointerType>(lhsType)) {
3855    if (rhsType->isIntegerType())
3856      return IntToPointer;
3857
3858    if (isa<PointerType>(rhsType))
3859      return CheckPointerTypesForAssignment(lhsType, rhsType);
3860
3861    // In general, C pointers are not compatible with ObjC object pointers.
3862    if (isa<ObjCObjectPointerType>(rhsType)) {
3863      if (lhsType->isVoidPointerType()) // an exception to the rule.
3864        return Compatible;
3865      return IncompatiblePointer;
3866    }
3867    if (rhsType->getAs<BlockPointerType>()) {
3868      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3869        return Compatible;
3870
3871      // Treat block pointers as objects.
3872      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3873        return Compatible;
3874    }
3875    return Incompatible;
3876  }
3877
3878  if (isa<BlockPointerType>(lhsType)) {
3879    if (rhsType->isIntegerType())
3880      return IntToBlockPointer;
3881
3882    // Treat block pointers as objects.
3883    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3884      return Compatible;
3885
3886    if (rhsType->isBlockPointerType())
3887      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3888
3889    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3890      if (RHSPT->getPointeeType()->isVoidType())
3891        return Compatible;
3892    }
3893    return Incompatible;
3894  }
3895
3896  if (isa<ObjCObjectPointerType>(lhsType)) {
3897    if (rhsType->isIntegerType())
3898      return IntToPointer;
3899
3900    // In general, C pointers are not compatible with ObjC object pointers.
3901    if (isa<PointerType>(rhsType)) {
3902      if (rhsType->isVoidPointerType()) // an exception to the rule.
3903        return Compatible;
3904      return IncompatiblePointer;
3905    }
3906    if (rhsType->isObjCObjectPointerType()) {
3907      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3908        return Compatible;
3909      if (Context.typesAreCompatible(lhsType, rhsType))
3910        return Compatible;
3911      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3912        return IncompatibleObjCQualifiedId;
3913      return IncompatiblePointer;
3914    }
3915    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3916      if (RHSPT->getPointeeType()->isVoidType())
3917        return Compatible;
3918    }
3919    // Treat block pointers as objects.
3920    if (rhsType->isBlockPointerType())
3921      return Compatible;
3922    return Incompatible;
3923  }
3924  if (isa<PointerType>(rhsType)) {
3925    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3926    if (lhsType == Context.BoolTy)
3927      return Compatible;
3928
3929    if (lhsType->isIntegerType())
3930      return PointerToInt;
3931
3932    if (isa<PointerType>(lhsType))
3933      return CheckPointerTypesForAssignment(lhsType, rhsType);
3934
3935    if (isa<BlockPointerType>(lhsType) &&
3936        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3937      return Compatible;
3938    return Incompatible;
3939  }
3940  if (isa<ObjCObjectPointerType>(rhsType)) {
3941    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3942    if (lhsType == Context.BoolTy)
3943      return Compatible;
3944
3945    if (lhsType->isIntegerType())
3946      return PointerToInt;
3947
3948    // In general, C pointers are not compatible with ObjC object pointers.
3949    if (isa<PointerType>(lhsType)) {
3950      if (lhsType->isVoidPointerType()) // an exception to the rule.
3951        return Compatible;
3952      return IncompatiblePointer;
3953    }
3954    if (isa<BlockPointerType>(lhsType) &&
3955        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3956      return Compatible;
3957    return Incompatible;
3958  }
3959
3960  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3961    if (Context.typesAreCompatible(lhsType, rhsType))
3962      return Compatible;
3963  }
3964  return Incompatible;
3965}
3966
3967/// \brief Constructs a transparent union from an expression that is
3968/// used to initialize the transparent union.
3969static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3970                                      QualType UnionType, FieldDecl *Field) {
3971  // Build an initializer list that designates the appropriate member
3972  // of the transparent union.
3973  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3974                                                   &E, 1,
3975                                                   SourceLocation());
3976  Initializer->setType(UnionType);
3977  Initializer->setInitializedFieldInUnion(Field);
3978
3979  // Build a compound literal constructing a value of the transparent
3980  // union type from this initializer list.
3981  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3982                                  false);
3983}
3984
3985Sema::AssignConvertType
3986Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3987  QualType FromType = rExpr->getType();
3988
3989  // If the ArgType is a Union type, we want to handle a potential
3990  // transparent_union GCC extension.
3991  const RecordType *UT = ArgType->getAsUnionType();
3992  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3993    return Incompatible;
3994
3995  // The field to initialize within the transparent union.
3996  RecordDecl *UD = UT->getDecl();
3997  FieldDecl *InitField = 0;
3998  // It's compatible if the expression matches any of the fields.
3999  for (RecordDecl::field_iterator it = UD->field_begin(),
4000         itend = UD->field_end();
4001       it != itend; ++it) {
4002    if (it->getType()->isPointerType()) {
4003      // If the transparent union contains a pointer type, we allow:
4004      // 1) void pointer
4005      // 2) null pointer constant
4006      if (FromType->isPointerType())
4007        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4008          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4009          InitField = *it;
4010          break;
4011        }
4012
4013      if (rExpr->isNullPointerConstant(Context,
4014                                       Expr::NPC_ValueDependentIsNull)) {
4015        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4016        InitField = *it;
4017        break;
4018      }
4019    }
4020
4021    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4022          == Compatible) {
4023      InitField = *it;
4024      break;
4025    }
4026  }
4027
4028  if (!InitField)
4029    return Incompatible;
4030
4031  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4032  return Compatible;
4033}
4034
4035Sema::AssignConvertType
4036Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4037  if (getLangOptions().CPlusPlus) {
4038    if (!lhsType->isRecordType()) {
4039      // C++ 5.17p3: If the left operand is not of class type, the
4040      // expression is implicitly converted (C++ 4) to the
4041      // cv-unqualified type of the left operand.
4042      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4043                                    "assigning"))
4044        return Incompatible;
4045      return Compatible;
4046    }
4047
4048    // FIXME: Currently, we fall through and treat C++ classes like C
4049    // structures.
4050  }
4051
4052  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4053  // a null pointer constant.
4054  if ((lhsType->isPointerType() ||
4055       lhsType->isObjCObjectPointerType() ||
4056       lhsType->isBlockPointerType())
4057      && rExpr->isNullPointerConstant(Context,
4058                                      Expr::NPC_ValueDependentIsNull)) {
4059    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4060    return Compatible;
4061  }
4062
4063  // This check seems unnatural, however it is necessary to ensure the proper
4064  // conversion of functions/arrays. If the conversion were done for all
4065  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
4066  // expressions that surpress this implicit conversion (&, sizeof).
4067  //
4068  // Suppress this for references: C++ 8.5.3p5.
4069  if (!lhsType->isReferenceType())
4070    DefaultFunctionArrayConversion(rExpr);
4071
4072  Sema::AssignConvertType result =
4073    CheckAssignmentConstraints(lhsType, rExpr->getType());
4074
4075  // C99 6.5.16.1p2: The value of the right operand is converted to the
4076  // type of the assignment expression.
4077  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4078  // so that we can use references in built-in functions even in C.
4079  // The getNonReferenceType() call makes sure that the resulting expression
4080  // does not have reference type.
4081  if (result != Incompatible && rExpr->getType() != lhsType)
4082    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4083                      CastExpr::CK_Unknown);
4084  return result;
4085}
4086
4087QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4088  Diag(Loc, diag::err_typecheck_invalid_operands)
4089    << lex->getType() << rex->getType()
4090    << lex->getSourceRange() << rex->getSourceRange();
4091  return QualType();
4092}
4093
4094inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
4095                                                              Expr *&rex) {
4096  // For conversion purposes, we ignore any qualifiers.
4097  // For example, "const float" and "float" are equivalent.
4098  QualType lhsType =
4099    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4100  QualType rhsType =
4101    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4102
4103  // If the vector types are identical, return.
4104  if (lhsType == rhsType)
4105    return lhsType;
4106
4107  // Handle the case of a vector & extvector type of the same size and element
4108  // type.  It would be nice if we only had one vector type someday.
4109  if (getLangOptions().LaxVectorConversions) {
4110    // FIXME: Should we warn here?
4111    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4112      if (const VectorType *RV = rhsType->getAs<VectorType>())
4113        if (LV->getElementType() == RV->getElementType() &&
4114            LV->getNumElements() == RV->getNumElements()) {
4115          return lhsType->isExtVectorType() ? lhsType : rhsType;
4116        }
4117    }
4118  }
4119
4120  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4121  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4122  bool swapped = false;
4123  if (rhsType->isExtVectorType()) {
4124    swapped = true;
4125    std::swap(rex, lex);
4126    std::swap(rhsType, lhsType);
4127  }
4128
4129  // Handle the case of an ext vector and scalar.
4130  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4131    QualType EltTy = LV->getElementType();
4132    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4133      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4134        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4135        if (swapped) std::swap(rex, lex);
4136        return lhsType;
4137      }
4138    }
4139    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4140        rhsType->isRealFloatingType()) {
4141      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4142        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4143        if (swapped) std::swap(rex, lex);
4144        return lhsType;
4145      }
4146    }
4147  }
4148
4149  // Vectors of different size or scalar and non-ext-vector are errors.
4150  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4151    << lex->getType() << rex->getType()
4152    << lex->getSourceRange() << rex->getSourceRange();
4153  return QualType();
4154}
4155
4156inline QualType Sema::CheckMultiplyDivideOperands(
4157  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4158  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4159    return CheckVectorOperands(Loc, lex, rex);
4160
4161  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4162
4163  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4164    return compType;
4165  return InvalidOperands(Loc, lex, rex);
4166}
4167
4168inline QualType Sema::CheckRemainderOperands(
4169  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4170  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4171    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4172      return CheckVectorOperands(Loc, lex, rex);
4173    return InvalidOperands(Loc, lex, rex);
4174  }
4175
4176  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4177
4178  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4179    return compType;
4180  return InvalidOperands(Loc, lex, rex);
4181}
4182
4183inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
4184  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4185  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4186    QualType compType = CheckVectorOperands(Loc, lex, rex);
4187    if (CompLHSTy) *CompLHSTy = compType;
4188    return compType;
4189  }
4190
4191  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4192
4193  // handle the common case first (both operands are arithmetic).
4194  if (lex->getType()->isArithmeticType() &&
4195      rex->getType()->isArithmeticType()) {
4196    if (CompLHSTy) *CompLHSTy = compType;
4197    return compType;
4198  }
4199
4200  // Put any potential pointer into PExp
4201  Expr* PExp = lex, *IExp = rex;
4202  if (IExp->getType()->isAnyPointerType())
4203    std::swap(PExp, IExp);
4204
4205  if (PExp->getType()->isAnyPointerType()) {
4206
4207    if (IExp->getType()->isIntegerType()) {
4208      QualType PointeeTy = PExp->getType()->getPointeeType();
4209
4210      // Check for arithmetic on pointers to incomplete types.
4211      if (PointeeTy->isVoidType()) {
4212        if (getLangOptions().CPlusPlus) {
4213          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4214            << lex->getSourceRange() << rex->getSourceRange();
4215          return QualType();
4216        }
4217
4218        // GNU extension: arithmetic on pointer to void
4219        Diag(Loc, diag::ext_gnu_void_ptr)
4220          << lex->getSourceRange() << rex->getSourceRange();
4221      } else if (PointeeTy->isFunctionType()) {
4222        if (getLangOptions().CPlusPlus) {
4223          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4224            << lex->getType() << lex->getSourceRange();
4225          return QualType();
4226        }
4227
4228        // GNU extension: arithmetic on pointer to function
4229        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4230          << lex->getType() << lex->getSourceRange();
4231      } else {
4232        // Check if we require a complete type.
4233        if (((PExp->getType()->isPointerType() &&
4234              !PExp->getType()->isDependentType()) ||
4235              PExp->getType()->isObjCObjectPointerType()) &&
4236             RequireCompleteType(Loc, PointeeTy,
4237                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4238                             << PExp->getSourceRange()
4239                             << PExp->getType()))
4240          return QualType();
4241      }
4242      // Diagnose bad cases where we step over interface counts.
4243      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4244        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4245          << PointeeTy << PExp->getSourceRange();
4246        return QualType();
4247      }
4248
4249      if (CompLHSTy) {
4250        QualType LHSTy = Context.isPromotableBitField(lex);
4251        if (LHSTy.isNull()) {
4252          LHSTy = lex->getType();
4253          if (LHSTy->isPromotableIntegerType())
4254            LHSTy = Context.getPromotedIntegerType(LHSTy);
4255        }
4256        *CompLHSTy = LHSTy;
4257      }
4258      return PExp->getType();
4259    }
4260  }
4261
4262  return InvalidOperands(Loc, lex, rex);
4263}
4264
4265// C99 6.5.6
4266QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4267                                        SourceLocation Loc, QualType* CompLHSTy) {
4268  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4269    QualType compType = CheckVectorOperands(Loc, lex, rex);
4270    if (CompLHSTy) *CompLHSTy = compType;
4271    return compType;
4272  }
4273
4274  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4275
4276  // Enforce type constraints: C99 6.5.6p3.
4277
4278  // Handle the common case first (both operands are arithmetic).
4279  if (lex->getType()->isArithmeticType()
4280      && rex->getType()->isArithmeticType()) {
4281    if (CompLHSTy) *CompLHSTy = compType;
4282    return compType;
4283  }
4284
4285  // Either ptr - int   or   ptr - ptr.
4286  if (lex->getType()->isAnyPointerType()) {
4287    QualType lpointee = lex->getType()->getPointeeType();
4288
4289    // The LHS must be an completely-defined object type.
4290
4291    bool ComplainAboutVoid = false;
4292    Expr *ComplainAboutFunc = 0;
4293    if (lpointee->isVoidType()) {
4294      if (getLangOptions().CPlusPlus) {
4295        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4296          << lex->getSourceRange() << rex->getSourceRange();
4297        return QualType();
4298      }
4299
4300      // GNU C extension: arithmetic on pointer to void
4301      ComplainAboutVoid = true;
4302    } else if (lpointee->isFunctionType()) {
4303      if (getLangOptions().CPlusPlus) {
4304        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4305          << lex->getType() << lex->getSourceRange();
4306        return QualType();
4307      }
4308
4309      // GNU C extension: arithmetic on pointer to function
4310      ComplainAboutFunc = lex;
4311    } else if (!lpointee->isDependentType() &&
4312               RequireCompleteType(Loc, lpointee,
4313                                   PDiag(diag::err_typecheck_sub_ptr_object)
4314                                     << lex->getSourceRange()
4315                                     << lex->getType()))
4316      return QualType();
4317
4318    // Diagnose bad cases where we step over interface counts.
4319    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4320      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4321        << lpointee << lex->getSourceRange();
4322      return QualType();
4323    }
4324
4325    // The result type of a pointer-int computation is the pointer type.
4326    if (rex->getType()->isIntegerType()) {
4327      if (ComplainAboutVoid)
4328        Diag(Loc, diag::ext_gnu_void_ptr)
4329          << lex->getSourceRange() << rex->getSourceRange();
4330      if (ComplainAboutFunc)
4331        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4332          << ComplainAboutFunc->getType()
4333          << ComplainAboutFunc->getSourceRange();
4334
4335      if (CompLHSTy) *CompLHSTy = lex->getType();
4336      return lex->getType();
4337    }
4338
4339    // Handle pointer-pointer subtractions.
4340    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4341      QualType rpointee = RHSPTy->getPointeeType();
4342
4343      // RHS must be a completely-type object type.
4344      // Handle the GNU void* extension.
4345      if (rpointee->isVoidType()) {
4346        if (getLangOptions().CPlusPlus) {
4347          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4348            << lex->getSourceRange() << rex->getSourceRange();
4349          return QualType();
4350        }
4351
4352        ComplainAboutVoid = true;
4353      } else if (rpointee->isFunctionType()) {
4354        if (getLangOptions().CPlusPlus) {
4355          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4356            << rex->getType() << rex->getSourceRange();
4357          return QualType();
4358        }
4359
4360        // GNU extension: arithmetic on pointer to function
4361        if (!ComplainAboutFunc)
4362          ComplainAboutFunc = rex;
4363      } else if (!rpointee->isDependentType() &&
4364                 RequireCompleteType(Loc, rpointee,
4365                                     PDiag(diag::err_typecheck_sub_ptr_object)
4366                                       << rex->getSourceRange()
4367                                       << rex->getType()))
4368        return QualType();
4369
4370      if (getLangOptions().CPlusPlus) {
4371        // Pointee types must be the same: C++ [expr.add]
4372        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4373          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4374            << lex->getType() << rex->getType()
4375            << lex->getSourceRange() << rex->getSourceRange();
4376          return QualType();
4377        }
4378      } else {
4379        // Pointee types must be compatible C99 6.5.6p3
4380        if (!Context.typesAreCompatible(
4381                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4382                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4383          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4384            << lex->getType() << rex->getType()
4385            << lex->getSourceRange() << rex->getSourceRange();
4386          return QualType();
4387        }
4388      }
4389
4390      if (ComplainAboutVoid)
4391        Diag(Loc, diag::ext_gnu_void_ptr)
4392          << lex->getSourceRange() << rex->getSourceRange();
4393      if (ComplainAboutFunc)
4394        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4395          << ComplainAboutFunc->getType()
4396          << ComplainAboutFunc->getSourceRange();
4397
4398      if (CompLHSTy) *CompLHSTy = lex->getType();
4399      return Context.getPointerDiffType();
4400    }
4401  }
4402
4403  return InvalidOperands(Loc, lex, rex);
4404}
4405
4406// C99 6.5.7
4407QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4408                                  bool isCompAssign) {
4409  // C99 6.5.7p2: Each of the operands shall have integer type.
4410  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4411    return InvalidOperands(Loc, lex, rex);
4412
4413  // Vector shifts promote their scalar inputs to vector type.
4414  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4415    return CheckVectorOperands(Loc, lex, rex);
4416
4417  // Shifts don't perform usual arithmetic conversions, they just do integer
4418  // promotions on each operand. C99 6.5.7p3
4419  QualType LHSTy = Context.isPromotableBitField(lex);
4420  if (LHSTy.isNull()) {
4421    LHSTy = lex->getType();
4422    if (LHSTy->isPromotableIntegerType())
4423      LHSTy = Context.getPromotedIntegerType(LHSTy);
4424  }
4425  if (!isCompAssign)
4426    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
4427
4428  UsualUnaryConversions(rex);
4429
4430  // Sanity-check shift operands
4431  llvm::APSInt Right;
4432  // Check right/shifter operand
4433  if (!rex->isValueDependent() &&
4434      rex->isIntegerConstantExpr(Right, Context)) {
4435    if (Right.isNegative())
4436      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4437    else {
4438      llvm::APInt LeftBits(Right.getBitWidth(),
4439                          Context.getTypeSize(lex->getType()));
4440      if (Right.uge(LeftBits))
4441        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4442    }
4443  }
4444
4445  // "The type of the result is that of the promoted left operand."
4446  return LHSTy;
4447}
4448
4449// C99 6.5.8, C++ [expr.rel]
4450QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4451                                    unsigned OpaqueOpc, bool isRelational) {
4452  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4453
4454  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4455    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4456
4457  // C99 6.5.8p3 / C99 6.5.9p4
4458  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4459    UsualArithmeticConversions(lex, rex);
4460  else {
4461    UsualUnaryConversions(lex);
4462    UsualUnaryConversions(rex);
4463  }
4464  QualType lType = lex->getType();
4465  QualType rType = rex->getType();
4466
4467  if (!lType->isFloatingType()
4468      && !(lType->isBlockPointerType() && isRelational)) {
4469    // For non-floating point types, check for self-comparisons of the form
4470    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4471    // often indicate logic errors in the program.
4472    // NOTE: Don't warn about comparisons of enum constants. These can arise
4473    //  from macro expansions, and are usually quite deliberate.
4474    Expr *LHSStripped = lex->IgnoreParens();
4475    Expr *RHSStripped = rex->IgnoreParens();
4476    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4477      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4478        if (DRL->getDecl() == DRR->getDecl() &&
4479            !isa<EnumConstantDecl>(DRL->getDecl()))
4480          Diag(Loc, diag::warn_selfcomparison);
4481
4482    if (isa<CastExpr>(LHSStripped))
4483      LHSStripped = LHSStripped->IgnoreParenCasts();
4484    if (isa<CastExpr>(RHSStripped))
4485      RHSStripped = RHSStripped->IgnoreParenCasts();
4486
4487    // Warn about comparisons against a string constant (unless the other
4488    // operand is null), the user probably wants strcmp.
4489    Expr *literalString = 0;
4490    Expr *literalStringStripped = 0;
4491    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4492        !RHSStripped->isNullPointerConstant(Context,
4493                                            Expr::NPC_ValueDependentIsNull)) {
4494      literalString = lex;
4495      literalStringStripped = LHSStripped;
4496    } else if ((isa<StringLiteral>(RHSStripped) ||
4497                isa<ObjCEncodeExpr>(RHSStripped)) &&
4498               !LHSStripped->isNullPointerConstant(Context,
4499                                            Expr::NPC_ValueDependentIsNull)) {
4500      literalString = rex;
4501      literalStringStripped = RHSStripped;
4502    }
4503
4504    if (literalString) {
4505      std::string resultComparison;
4506      switch (Opc) {
4507      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4508      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4509      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4510      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4511      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4512      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4513      default: assert(false && "Invalid comparison operator");
4514      }
4515      Diag(Loc, diag::warn_stringcompare)
4516        << isa<ObjCEncodeExpr>(literalStringStripped)
4517        << literalString->getSourceRange()
4518        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4519        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4520                                                 "strcmp(")
4521        << CodeModificationHint::CreateInsertion(
4522                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4523                                       resultComparison);
4524    }
4525  }
4526
4527  // The result of comparisons is 'bool' in C++, 'int' in C.
4528  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4529
4530  if (isRelational) {
4531    if (lType->isRealType() && rType->isRealType())
4532      return ResultTy;
4533  } else {
4534    // Check for comparisons of floating point operands using != and ==.
4535    if (lType->isFloatingType()) {
4536      assert(rType->isFloatingType());
4537      CheckFloatComparison(Loc,lex,rex);
4538    }
4539
4540    if (lType->isArithmeticType() && rType->isArithmeticType())
4541      return ResultTy;
4542  }
4543
4544  bool LHSIsNull = lex->isNullPointerConstant(Context,
4545                                              Expr::NPC_ValueDependentIsNull);
4546  bool RHSIsNull = rex->isNullPointerConstant(Context,
4547                                              Expr::NPC_ValueDependentIsNull);
4548
4549  // All of the following pointer related warnings are GCC extensions, except
4550  // when handling null pointer constants. One day, we can consider making them
4551  // errors (when -pedantic-errors is enabled).
4552  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4553    QualType LCanPointeeTy =
4554      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4555    QualType RCanPointeeTy =
4556      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4557
4558    if (getLangOptions().CPlusPlus) {
4559      if (LCanPointeeTy == RCanPointeeTy)
4560        return ResultTy;
4561
4562      // C++ [expr.rel]p2:
4563      //   [...] Pointer conversions (4.10) and qualification
4564      //   conversions (4.4) are performed on pointer operands (or on
4565      //   a pointer operand and a null pointer constant) to bring
4566      //   them to their composite pointer type. [...]
4567      //
4568      // C++ [expr.eq]p1 uses the same notion for (in)equality
4569      // comparisons of pointers.
4570      QualType T = FindCompositePointerType(lex, rex);
4571      if (T.isNull()) {
4572        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4573          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4574        return QualType();
4575      }
4576
4577      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4578      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4579      return ResultTy;
4580    }
4581    // C99 6.5.9p2 and C99 6.5.8p2
4582    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4583                                   RCanPointeeTy.getUnqualifiedType())) {
4584      // Valid unless a relational comparison of function pointers
4585      if (isRelational && LCanPointeeTy->isFunctionType()) {
4586        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4587          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4588      }
4589    } else if (!isRelational &&
4590               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4591      // Valid unless comparison between non-null pointer and function pointer
4592      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4593          && !LHSIsNull && !RHSIsNull) {
4594        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4595          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4596      }
4597    } else {
4598      // Invalid
4599      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4600        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4601    }
4602    if (LCanPointeeTy != RCanPointeeTy)
4603      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4604    return ResultTy;
4605  }
4606
4607  if (getLangOptions().CPlusPlus) {
4608    // Comparison of pointers with null pointer constants and equality
4609    // comparisons of member pointers to null pointer constants.
4610    if (RHSIsNull &&
4611        (lType->isPointerType() ||
4612         (!isRelational && lType->isMemberPointerType()))) {
4613      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4614      return ResultTy;
4615    }
4616    if (LHSIsNull &&
4617        (rType->isPointerType() ||
4618         (!isRelational && rType->isMemberPointerType()))) {
4619      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4620      return ResultTy;
4621    }
4622
4623    // Comparison of member pointers.
4624    if (!isRelational &&
4625        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4626      // C++ [expr.eq]p2:
4627      //   In addition, pointers to members can be compared, or a pointer to
4628      //   member and a null pointer constant. Pointer to member conversions
4629      //   (4.11) and qualification conversions (4.4) are performed to bring
4630      //   them to a common type. If one operand is a null pointer constant,
4631      //   the common type is the type of the other operand. Otherwise, the
4632      //   common type is a pointer to member type similar (4.4) to the type
4633      //   of one of the operands, with a cv-qualification signature (4.4)
4634      //   that is the union of the cv-qualification signatures of the operand
4635      //   types.
4636      QualType T = FindCompositePointerType(lex, rex);
4637      if (T.isNull()) {
4638        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4639        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4640        return QualType();
4641      }
4642
4643      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
4644      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
4645      return ResultTy;
4646    }
4647
4648    // Comparison of nullptr_t with itself.
4649    if (lType->isNullPtrType() && rType->isNullPtrType())
4650      return ResultTy;
4651  }
4652
4653  // Handle block pointer types.
4654  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4655    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4656    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4657
4658    if (!LHSIsNull && !RHSIsNull &&
4659        !Context.typesAreCompatible(lpointee, rpointee)) {
4660      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4661        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4662    }
4663    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4664    return ResultTy;
4665  }
4666  // Allow block pointers to be compared with null pointer constants.
4667  if (!isRelational
4668      && ((lType->isBlockPointerType() && rType->isPointerType())
4669          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4670    if (!LHSIsNull && !RHSIsNull) {
4671      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4672             ->getPointeeType()->isVoidType())
4673            || (lType->isPointerType() && lType->getAs<PointerType>()
4674                ->getPointeeType()->isVoidType())))
4675        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4676          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4677    }
4678    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4679    return ResultTy;
4680  }
4681
4682  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4683    if (lType->isPointerType() || rType->isPointerType()) {
4684      const PointerType *LPT = lType->getAs<PointerType>();
4685      const PointerType *RPT = rType->getAs<PointerType>();
4686      bool LPtrToVoid = LPT ?
4687        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4688      bool RPtrToVoid = RPT ?
4689        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4690
4691      if (!LPtrToVoid && !RPtrToVoid &&
4692          !Context.typesAreCompatible(lType, rType)) {
4693        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4694          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4695      }
4696      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4697      return ResultTy;
4698    }
4699    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4700      if (!Context.areComparableObjCPointerTypes(lType, rType))
4701        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4702          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4703      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
4704      return ResultTy;
4705    }
4706  }
4707  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4708    unsigned DiagID = 0;
4709    if (RHSIsNull) {
4710      if (isRelational)
4711        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4712    } else if (isRelational)
4713      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4714    else
4715      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4716
4717    if (DiagID) {
4718      Diag(Loc, DiagID)
4719        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4720    }
4721    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4722    return ResultTy;
4723  }
4724  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4725    unsigned DiagID = 0;
4726    if (LHSIsNull) {
4727      if (isRelational)
4728        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4729    } else if (isRelational)
4730      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4731    else
4732      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4733
4734    if (DiagID) {
4735      Diag(Loc, DiagID)
4736        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4737    }
4738    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4739    return ResultTy;
4740  }
4741  // Handle block pointers.
4742  if (!isRelational && RHSIsNull
4743      && lType->isBlockPointerType() && rType->isIntegerType()) {
4744    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
4745    return ResultTy;
4746  }
4747  if (!isRelational && LHSIsNull
4748      && lType->isIntegerType() && rType->isBlockPointerType()) {
4749    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
4750    return ResultTy;
4751  }
4752  return InvalidOperands(Loc, lex, rex);
4753}
4754
4755/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4756/// operates on extended vector types.  Instead of producing an IntTy result,
4757/// like a scalar comparison, a vector comparison produces a vector of integer
4758/// types.
4759QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4760                                          SourceLocation Loc,
4761                                          bool isRelational) {
4762  // Check to make sure we're operating on vectors of the same type and width,
4763  // Allowing one side to be a scalar of element type.
4764  QualType vType = CheckVectorOperands(Loc, lex, rex);
4765  if (vType.isNull())
4766    return vType;
4767
4768  QualType lType = lex->getType();
4769  QualType rType = rex->getType();
4770
4771  // For non-floating point types, check for self-comparisons of the form
4772  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4773  // often indicate logic errors in the program.
4774  if (!lType->isFloatingType()) {
4775    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4776      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4777        if (DRL->getDecl() == DRR->getDecl())
4778          Diag(Loc, diag::warn_selfcomparison);
4779  }
4780
4781  // Check for comparisons of floating point operands using != and ==.
4782  if (!isRelational && lType->isFloatingType()) {
4783    assert (rType->isFloatingType());
4784    CheckFloatComparison(Loc,lex,rex);
4785  }
4786
4787  // Return the type for the comparison, which is the same as vector type for
4788  // integer vectors, or an integer type of identical size and number of
4789  // elements for floating point vectors.
4790  if (lType->isIntegerType())
4791    return lType;
4792
4793  const VectorType *VTy = lType->getAs<VectorType>();
4794  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4795  if (TypeSize == Context.getTypeSize(Context.IntTy))
4796    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4797  if (TypeSize == Context.getTypeSize(Context.LongTy))
4798    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4799
4800  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4801         "Unhandled vector element size in vector compare");
4802  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4803}
4804
4805inline QualType Sema::CheckBitwiseOperands(
4806  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4807  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4808    return CheckVectorOperands(Loc, lex, rex);
4809
4810  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4811
4812  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4813    return compType;
4814  return InvalidOperands(Loc, lex, rex);
4815}
4816
4817inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4818  Expr *&lex, Expr *&rex, SourceLocation Loc) {
4819  UsualUnaryConversions(lex);
4820  UsualUnaryConversions(rex);
4821
4822  if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
4823    return InvalidOperands(Loc, lex, rex);
4824
4825  if (Context.getLangOptions().CPlusPlus) {
4826    // C++ [expr.log.and]p2
4827    // C++ [expr.log.or]p2
4828    return Context.BoolTy;
4829  }
4830
4831  return Context.IntTy;
4832}
4833
4834/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4835/// is a read-only property; return true if so. A readonly property expression
4836/// depends on various declarations and thus must be treated specially.
4837///
4838static bool IsReadonlyProperty(Expr *E, Sema &S) {
4839  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4840    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4841    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4842      QualType BaseType = PropExpr->getBase()->getType();
4843      if (const ObjCObjectPointerType *OPT =
4844            BaseType->getAsObjCInterfacePointerType())
4845        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4846          if (S.isPropertyReadonly(PDecl, IFace))
4847            return true;
4848    }
4849  }
4850  return false;
4851}
4852
4853/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4854/// emit an error and return true.  If so, return false.
4855static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4856  SourceLocation OrigLoc = Loc;
4857  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4858                                                              &Loc);
4859  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4860    IsLV = Expr::MLV_ReadonlyProperty;
4861  if (IsLV == Expr::MLV_Valid)
4862    return false;
4863
4864  unsigned Diag = 0;
4865  bool NeedType = false;
4866  switch (IsLV) { // C99 6.5.16p2
4867  default: assert(0 && "Unknown result from isModifiableLvalue!");
4868  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4869  case Expr::MLV_ArrayType:
4870    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4871    NeedType = true;
4872    break;
4873  case Expr::MLV_NotObjectType:
4874    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4875    NeedType = true;
4876    break;
4877  case Expr::MLV_LValueCast:
4878    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4879    break;
4880  case Expr::MLV_InvalidExpression:
4881    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4882    break;
4883  case Expr::MLV_IncompleteType:
4884  case Expr::MLV_IncompleteVoidType:
4885    return S.RequireCompleteType(Loc, E->getType(),
4886                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4887                  << E->getSourceRange());
4888  case Expr::MLV_DuplicateVectorComponents:
4889    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4890    break;
4891  case Expr::MLV_NotBlockQualified:
4892    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4893    break;
4894  case Expr::MLV_ReadonlyProperty:
4895    Diag = diag::error_readonly_property_assignment;
4896    break;
4897  case Expr::MLV_NoSetterProperty:
4898    Diag = diag::error_nosetter_property_assignment;
4899    break;
4900  }
4901
4902  SourceRange Assign;
4903  if (Loc != OrigLoc)
4904    Assign = SourceRange(OrigLoc, OrigLoc);
4905  if (NeedType)
4906    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4907  else
4908    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4909  return true;
4910}
4911
4912
4913
4914// C99 6.5.16.1
4915QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4916                                       SourceLocation Loc,
4917                                       QualType CompoundType) {
4918  // Verify that LHS is a modifiable lvalue, and emit error if not.
4919  if (CheckForModifiableLvalue(LHS, Loc, *this))
4920    return QualType();
4921
4922  QualType LHSType = LHS->getType();
4923  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4924
4925  AssignConvertType ConvTy;
4926  if (CompoundType.isNull()) {
4927    // Simple assignment "x = y".
4928    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4929    // Special case of NSObject attributes on c-style pointer types.
4930    if (ConvTy == IncompatiblePointer &&
4931        ((Context.isObjCNSObjectType(LHSType) &&
4932          RHSType->isObjCObjectPointerType()) ||
4933         (Context.isObjCNSObjectType(RHSType) &&
4934          LHSType->isObjCObjectPointerType())))
4935      ConvTy = Compatible;
4936
4937    // If the RHS is a unary plus or minus, check to see if they = and + are
4938    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4939    // instead of "x += 4".
4940    Expr *RHSCheck = RHS;
4941    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4942      RHSCheck = ICE->getSubExpr();
4943    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4944      if ((UO->getOpcode() == UnaryOperator::Plus ||
4945           UO->getOpcode() == UnaryOperator::Minus) &&
4946          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4947          // Only if the two operators are exactly adjacent.
4948          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4949          // And there is a space or other character before the subexpr of the
4950          // unary +/-.  We don't want to warn on "x=-1".
4951          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4952          UO->getSubExpr()->getLocStart().isFileID()) {
4953        Diag(Loc, diag::warn_not_compound_assign)
4954          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4955          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4956      }
4957    }
4958  } else {
4959    // Compound assignment "x += y"
4960    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4961  }
4962
4963  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4964                               RHS, "assigning"))
4965    return QualType();
4966
4967  // C99 6.5.16p3: The type of an assignment expression is the type of the
4968  // left operand unless the left operand has qualified type, in which case
4969  // it is the unqualified version of the type of the left operand.
4970  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4971  // is converted to the type of the assignment expression (above).
4972  // C++ 5.17p1: the type of the assignment expression is that of its left
4973  // operand.
4974  return LHSType.getUnqualifiedType();
4975}
4976
4977// C99 6.5.17
4978QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4979  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4980  DefaultFunctionArrayConversion(RHS);
4981
4982  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4983  // incomplete in C++).
4984
4985  return RHS->getType();
4986}
4987
4988/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4989/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4990QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4991                                              bool isInc) {
4992  if (Op->isTypeDependent())
4993    return Context.DependentTy;
4994
4995  QualType ResType = Op->getType();
4996  assert(!ResType.isNull() && "no type for increment/decrement expression");
4997
4998  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4999    // Decrement of bool is not allowed.
5000    if (!isInc) {
5001      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5002      return QualType();
5003    }
5004    // Increment of bool sets it to true, but is deprecated.
5005    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5006  } else if (ResType->isRealType()) {
5007    // OK!
5008  } else if (ResType->isAnyPointerType()) {
5009    QualType PointeeTy = ResType->getPointeeType();
5010
5011    // C99 6.5.2.4p2, 6.5.6p2
5012    if (PointeeTy->isVoidType()) {
5013      if (getLangOptions().CPlusPlus) {
5014        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5015          << Op->getSourceRange();
5016        return QualType();
5017      }
5018
5019      // Pointer to void is a GNU extension in C.
5020      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5021    } else if (PointeeTy->isFunctionType()) {
5022      if (getLangOptions().CPlusPlus) {
5023        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5024          << Op->getType() << Op->getSourceRange();
5025        return QualType();
5026      }
5027
5028      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5029        << ResType << Op->getSourceRange();
5030    } else if (RequireCompleteType(OpLoc, PointeeTy,
5031                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5032                             << Op->getSourceRange()
5033                             << ResType))
5034      return QualType();
5035    // Diagnose bad cases where we step over interface counts.
5036    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5037      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5038        << PointeeTy << Op->getSourceRange();
5039      return QualType();
5040    }
5041  } else if (ResType->isComplexType()) {
5042    // C99 does not support ++/-- on complex types, we allow as an extension.
5043    Diag(OpLoc, diag::ext_integer_increment_complex)
5044      << ResType << Op->getSourceRange();
5045  } else {
5046    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5047      << ResType << Op->getSourceRange();
5048    return QualType();
5049  }
5050  // At this point, we know we have a real, complex or pointer type.
5051  // Now make sure the operand is a modifiable lvalue.
5052  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5053    return QualType();
5054  return ResType;
5055}
5056
5057/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5058/// This routine allows us to typecheck complex/recursive expressions
5059/// where the declaration is needed for type checking. We only need to
5060/// handle cases when the expression references a function designator
5061/// or is an lvalue. Here are some examples:
5062///  - &(x) => x
5063///  - &*****f => f for f a function designator.
5064///  - &s.xx => s
5065///  - &s.zz[1].yy -> s, if zz is an array
5066///  - *(x + 1) -> x, if x is an array
5067///  - &"123"[2] -> 0
5068///  - & __real__ x -> x
5069static NamedDecl *getPrimaryDecl(Expr *E) {
5070  switch (E->getStmtClass()) {
5071  case Stmt::DeclRefExprClass:
5072    return cast<DeclRefExpr>(E)->getDecl();
5073  case Stmt::MemberExprClass:
5074    // If this is an arrow operator, the address is an offset from
5075    // the base's value, so the object the base refers to is
5076    // irrelevant.
5077    if (cast<MemberExpr>(E)->isArrow())
5078      return 0;
5079    // Otherwise, the expression refers to a part of the base
5080    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5081  case Stmt::ArraySubscriptExprClass: {
5082    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5083    // promotion of register arrays earlier.
5084    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5085    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5086      if (ICE->getSubExpr()->getType()->isArrayType())
5087        return getPrimaryDecl(ICE->getSubExpr());
5088    }
5089    return 0;
5090  }
5091  case Stmt::UnaryOperatorClass: {
5092    UnaryOperator *UO = cast<UnaryOperator>(E);
5093
5094    switch(UO->getOpcode()) {
5095    case UnaryOperator::Real:
5096    case UnaryOperator::Imag:
5097    case UnaryOperator::Extension:
5098      return getPrimaryDecl(UO->getSubExpr());
5099    default:
5100      return 0;
5101    }
5102  }
5103  case Stmt::ParenExprClass:
5104    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5105  case Stmt::ImplicitCastExprClass:
5106    // If the result of an implicit cast is an l-value, we care about
5107    // the sub-expression; otherwise, the result here doesn't matter.
5108    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5109  default:
5110    return 0;
5111  }
5112}
5113
5114/// CheckAddressOfOperand - The operand of & must be either a function
5115/// designator or an lvalue designating an object. If it is an lvalue, the
5116/// object cannot be declared with storage class register or be a bit field.
5117/// Note: The usual conversions are *not* applied to the operand of the &
5118/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5119/// In C++, the operand might be an overloaded function name, in which case
5120/// we allow the '&' but retain the overloaded-function type.
5121QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5122  // Make sure to ignore parentheses in subsequent checks
5123  op = op->IgnoreParens();
5124
5125  if (op->isTypeDependent())
5126    return Context.DependentTy;
5127
5128  if (getLangOptions().C99) {
5129    // Implement C99-only parts of addressof rules.
5130    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5131      if (uOp->getOpcode() == UnaryOperator::Deref)
5132        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5133        // (assuming the deref expression is valid).
5134        return uOp->getSubExpr()->getType();
5135    }
5136    // Technically, there should be a check for array subscript
5137    // expressions here, but the result of one is always an lvalue anyway.
5138  }
5139  NamedDecl *dcl = getPrimaryDecl(op);
5140  Expr::isLvalueResult lval = op->isLvalue(Context);
5141
5142  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5143    // C99 6.5.3.2p1
5144    // The operand must be either an l-value or a function designator
5145    if (!op->getType()->isFunctionType()) {
5146      // FIXME: emit more specific diag...
5147      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5148        << op->getSourceRange();
5149      return QualType();
5150    }
5151  } else if (op->getBitField()) { // C99 6.5.3.2p1
5152    // The operand cannot be a bit-field
5153    Diag(OpLoc, diag::err_typecheck_address_of)
5154      << "bit-field" << op->getSourceRange();
5155        return QualType();
5156  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5157           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5158    // The operand cannot be an element of a vector
5159    Diag(OpLoc, diag::err_typecheck_address_of)
5160      << "vector element" << op->getSourceRange();
5161    return QualType();
5162  } else if (isa<ObjCPropertyRefExpr>(op)) {
5163    // cannot take address of a property expression.
5164    Diag(OpLoc, diag::err_typecheck_address_of)
5165      << "property expression" << op->getSourceRange();
5166    return QualType();
5167  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5168    // FIXME: Can LHS ever be null here?
5169    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5170      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5171  } else if (dcl) { // C99 6.5.3.2p1
5172    // We have an lvalue with a decl. Make sure the decl is not declared
5173    // with the register storage-class specifier.
5174    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5175      if (vd->getStorageClass() == VarDecl::Register) {
5176        Diag(OpLoc, diag::err_typecheck_address_of)
5177          << "register variable" << op->getSourceRange();
5178        return QualType();
5179      }
5180    } else if (isa<OverloadedFunctionDecl>(dcl) ||
5181               isa<FunctionTemplateDecl>(dcl)) {
5182      return Context.OverloadTy;
5183    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
5184      // Okay: we can take the address of a field.
5185      // Could be a pointer to member, though, if there is an explicit
5186      // scope qualifier for the class.
5187      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
5188        DeclContext *Ctx = dcl->getDeclContext();
5189        if (Ctx && Ctx->isRecord()) {
5190          if (FD->getType()->isReferenceType()) {
5191            Diag(OpLoc,
5192                 diag::err_cannot_form_pointer_to_member_of_reference_type)
5193              << FD->getDeclName() << FD->getType();
5194            return QualType();
5195          }
5196
5197          return Context.getMemberPointerType(op->getType(),
5198                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
5199        }
5200      }
5201    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
5202      // Okay: we can take the address of a function.
5203      // As above.
5204      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
5205          MD->isInstance())
5206        return Context.getMemberPointerType(op->getType(),
5207              Context.getTypeDeclType(MD->getParent()).getTypePtr());
5208    } else if (!isa<FunctionDecl>(dcl))
5209      assert(0 && "Unknown/unexpected decl type");
5210  }
5211
5212  if (lval == Expr::LV_IncompleteVoidType) {
5213    // Taking the address of a void variable is technically illegal, but we
5214    // allow it in cases which are otherwise valid.
5215    // Example: "extern void x; void* y = &x;".
5216    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
5217  }
5218
5219  // If the operand has type "type", the result has type "pointer to type".
5220  return Context.getPointerType(op->getType());
5221}
5222
5223QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
5224  if (Op->isTypeDependent())
5225    return Context.DependentTy;
5226
5227  UsualUnaryConversions(Op);
5228  QualType Ty = Op->getType();
5229
5230  // Note that per both C89 and C99, this is always legal, even if ptype is an
5231  // incomplete type or void.  It would be possible to warn about dereferencing
5232  // a void pointer, but it's completely well-defined, and such a warning is
5233  // unlikely to catch any mistakes.
5234  if (const PointerType *PT = Ty->getAs<PointerType>())
5235    return PT->getPointeeType();
5236
5237  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
5238    return OPT->getPointeeType();
5239
5240  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5241    << Ty << Op->getSourceRange();
5242  return QualType();
5243}
5244
5245static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5246  tok::TokenKind Kind) {
5247  BinaryOperator::Opcode Opc;
5248  switch (Kind) {
5249  default: assert(0 && "Unknown binop!");
5250  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5251  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5252  case tok::star:                 Opc = BinaryOperator::Mul; break;
5253  case tok::slash:                Opc = BinaryOperator::Div; break;
5254  case tok::percent:              Opc = BinaryOperator::Rem; break;
5255  case tok::plus:                 Opc = BinaryOperator::Add; break;
5256  case tok::minus:                Opc = BinaryOperator::Sub; break;
5257  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5258  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5259  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5260  case tok::less:                 Opc = BinaryOperator::LT; break;
5261  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5262  case tok::greater:              Opc = BinaryOperator::GT; break;
5263  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5264  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5265  case tok::amp:                  Opc = BinaryOperator::And; break;
5266  case tok::caret:                Opc = BinaryOperator::Xor; break;
5267  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5268  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5269  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5270  case tok::equal:                Opc = BinaryOperator::Assign; break;
5271  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5272  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5273  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5274  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5275  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5276  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5277  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5278  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5279  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5280  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5281  case tok::comma:                Opc = BinaryOperator::Comma; break;
5282  }
5283  return Opc;
5284}
5285
5286static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5287  tok::TokenKind Kind) {
5288  UnaryOperator::Opcode Opc;
5289  switch (Kind) {
5290  default: assert(0 && "Unknown unary op!");
5291  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5292  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5293  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5294  case tok::star:         Opc = UnaryOperator::Deref; break;
5295  case tok::plus:         Opc = UnaryOperator::Plus; break;
5296  case tok::minus:        Opc = UnaryOperator::Minus; break;
5297  case tok::tilde:        Opc = UnaryOperator::Not; break;
5298  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5299  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5300  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5301  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5302  }
5303  return Opc;
5304}
5305
5306/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5307/// operator @p Opc at location @c TokLoc. This routine only supports
5308/// built-in operations; ActOnBinOp handles overloaded operators.
5309Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5310                                                  unsigned Op,
5311                                                  Expr *lhs, Expr *rhs) {
5312  QualType ResultTy;     // Result type of the binary operator.
5313  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5314  // The following two variables are used for compound assignment operators
5315  QualType CompLHSTy;    // Type of LHS after promotions for computation
5316  QualType CompResultTy; // Type of computation result
5317
5318  switch (Opc) {
5319  case BinaryOperator::Assign:
5320    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5321    break;
5322  case BinaryOperator::PtrMemD:
5323  case BinaryOperator::PtrMemI:
5324    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5325                                            Opc == BinaryOperator::PtrMemI);
5326    break;
5327  case BinaryOperator::Mul:
5328  case BinaryOperator::Div:
5329    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5330    break;
5331  case BinaryOperator::Rem:
5332    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5333    break;
5334  case BinaryOperator::Add:
5335    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5336    break;
5337  case BinaryOperator::Sub:
5338    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5339    break;
5340  case BinaryOperator::Shl:
5341  case BinaryOperator::Shr:
5342    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5343    break;
5344  case BinaryOperator::LE:
5345  case BinaryOperator::LT:
5346  case BinaryOperator::GE:
5347  case BinaryOperator::GT:
5348    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5349    break;
5350  case BinaryOperator::EQ:
5351  case BinaryOperator::NE:
5352    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5353    break;
5354  case BinaryOperator::And:
5355  case BinaryOperator::Xor:
5356  case BinaryOperator::Or:
5357    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5358    break;
5359  case BinaryOperator::LAnd:
5360  case BinaryOperator::LOr:
5361    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5362    break;
5363  case BinaryOperator::MulAssign:
5364  case BinaryOperator::DivAssign:
5365    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5366    CompLHSTy = CompResultTy;
5367    if (!CompResultTy.isNull())
5368      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5369    break;
5370  case BinaryOperator::RemAssign:
5371    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5372    CompLHSTy = CompResultTy;
5373    if (!CompResultTy.isNull())
5374      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5375    break;
5376  case BinaryOperator::AddAssign:
5377    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5378    if (!CompResultTy.isNull())
5379      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5380    break;
5381  case BinaryOperator::SubAssign:
5382    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5383    if (!CompResultTy.isNull())
5384      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5385    break;
5386  case BinaryOperator::ShlAssign:
5387  case BinaryOperator::ShrAssign:
5388    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5389    CompLHSTy = CompResultTy;
5390    if (!CompResultTy.isNull())
5391      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5392    break;
5393  case BinaryOperator::AndAssign:
5394  case BinaryOperator::XorAssign:
5395  case BinaryOperator::OrAssign:
5396    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5397    CompLHSTy = CompResultTy;
5398    if (!CompResultTy.isNull())
5399      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5400    break;
5401  case BinaryOperator::Comma:
5402    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5403    break;
5404  }
5405  if (ResultTy.isNull())
5406    return ExprError();
5407  if (CompResultTy.isNull())
5408    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5409  else
5410    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5411                                                      CompLHSTy, CompResultTy,
5412                                                      OpLoc));
5413}
5414
5415/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
5416/// ParenRange in parentheses.
5417static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5418                               const PartialDiagnostic &PD,
5419                               SourceRange ParenRange)
5420{
5421  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5422  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
5423    // We can't display the parentheses, so just dig the
5424    // warning/error and return.
5425    Self.Diag(Loc, PD);
5426    return;
5427  }
5428
5429  Self.Diag(Loc, PD)
5430    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
5431    << CodeModificationHint::CreateInsertion(EndLoc, ")");
5432}
5433
5434/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
5435/// operators are mixed in a way that suggests that the programmer forgot that
5436/// comparison operators have higher precedence. The most typical example of
5437/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
5438static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5439                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
5440  typedef BinaryOperator BinOp;
5441  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
5442                rhsopc = static_cast<BinOp::Opcode>(-1);
5443  if (BinOp *BO = dyn_cast<BinOp>(lhs))
5444    lhsopc = BO->getOpcode();
5445  if (BinOp *BO = dyn_cast<BinOp>(rhs))
5446    rhsopc = BO->getOpcode();
5447
5448  // Subs are not binary operators.
5449  if (lhsopc == -1 && rhsopc == -1)
5450    return;
5451
5452  // Bitwise operations are sometimes used as eager logical ops.
5453  // Don't diagnose this.
5454  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
5455      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
5456    return;
5457
5458  if (BinOp::isComparisonOp(lhsopc))
5459    SuggestParentheses(Self, OpLoc,
5460      PDiag(diag::warn_precedence_bitwise_rel)
5461          << SourceRange(lhs->getLocStart(), OpLoc)
5462          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
5463      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
5464  else if (BinOp::isComparisonOp(rhsopc))
5465    SuggestParentheses(Self, OpLoc,
5466      PDiag(diag::warn_precedence_bitwise_rel)
5467          << SourceRange(OpLoc, rhs->getLocEnd())
5468          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
5469      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
5470}
5471
5472/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
5473/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
5474/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
5475static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
5476                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
5477  if (BinaryOperator::isBitwiseOp(Opc))
5478    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
5479}
5480
5481// Binary Operators.  'Tok' is the token for the operator.
5482Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5483                                          tok::TokenKind Kind,
5484                                          ExprArg LHS, ExprArg RHS) {
5485  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5486  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5487
5488  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5489  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5490
5491  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
5492  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
5493
5494  if (getLangOptions().CPlusPlus &&
5495      (lhs->getType()->isOverloadableType() ||
5496       rhs->getType()->isOverloadableType())) {
5497    // Find all of the overloaded operators visible from this
5498    // point. We perform both an operator-name lookup from the local
5499    // scope and an argument-dependent lookup based on the types of
5500    // the arguments.
5501    FunctionSet Functions;
5502    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5503    if (OverOp != OO_None) {
5504      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5505                                   Functions);
5506      Expr *Args[2] = { lhs, rhs };
5507      DeclarationName OpName
5508        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5509      ArgumentDependentLookup(OpName, /*Operator*/true, Args, 2, Functions);
5510    }
5511
5512    // Build the (potentially-overloaded, potentially-dependent)
5513    // binary operation.
5514    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5515  }
5516
5517  // Build a built-in binary operation.
5518  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5519}
5520
5521Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5522                                                    unsigned OpcIn,
5523                                                    ExprArg InputArg) {
5524  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5525
5526  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5527  Expr *Input = (Expr *)InputArg.get();
5528  QualType resultType;
5529  switch (Opc) {
5530  case UnaryOperator::OffsetOf:
5531    assert(false && "Invalid unary operator");
5532    break;
5533
5534  case UnaryOperator::PreInc:
5535  case UnaryOperator::PreDec:
5536  case UnaryOperator::PostInc:
5537  case UnaryOperator::PostDec:
5538    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5539                                                Opc == UnaryOperator::PreInc ||
5540                                                Opc == UnaryOperator::PostInc);
5541    break;
5542  case UnaryOperator::AddrOf:
5543    resultType = CheckAddressOfOperand(Input, OpLoc);
5544    break;
5545  case UnaryOperator::Deref:
5546    DefaultFunctionArrayConversion(Input);
5547    resultType = CheckIndirectionOperand(Input, OpLoc);
5548    break;
5549  case UnaryOperator::Plus:
5550  case UnaryOperator::Minus:
5551    UsualUnaryConversions(Input);
5552    resultType = Input->getType();
5553    if (resultType->isDependentType())
5554      break;
5555    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5556      break;
5557    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5558             resultType->isEnumeralType())
5559      break;
5560    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5561             Opc == UnaryOperator::Plus &&
5562             resultType->isPointerType())
5563      break;
5564
5565    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5566      << resultType << Input->getSourceRange());
5567  case UnaryOperator::Not: // bitwise complement
5568    UsualUnaryConversions(Input);
5569    resultType = Input->getType();
5570    if (resultType->isDependentType())
5571      break;
5572    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5573    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5574      // C99 does not support '~' for complex conjugation.
5575      Diag(OpLoc, diag::ext_integer_complement_complex)
5576        << resultType << Input->getSourceRange();
5577    else if (!resultType->isIntegerType())
5578      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5579        << resultType << Input->getSourceRange());
5580    break;
5581  case UnaryOperator::LNot: // logical negation
5582    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5583    DefaultFunctionArrayConversion(Input);
5584    resultType = Input->getType();
5585    if (resultType->isDependentType())
5586      break;
5587    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5588      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5589        << resultType << Input->getSourceRange());
5590    // LNot always has type int. C99 6.5.3.3p5.
5591    // In C++, it's bool. C++ 5.3.1p8
5592    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5593    break;
5594  case UnaryOperator::Real:
5595  case UnaryOperator::Imag:
5596    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5597    break;
5598  case UnaryOperator::Extension:
5599    resultType = Input->getType();
5600    break;
5601  }
5602  if (resultType.isNull())
5603    return ExprError();
5604
5605  InputArg.release();
5606  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5607}
5608
5609// Unary Operators.  'Tok' is the token for the operator.
5610Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5611                                            tok::TokenKind Op, ExprArg input) {
5612  Expr *Input = (Expr*)input.get();
5613  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5614
5615  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5616    // Find all of the overloaded operators visible from this
5617    // point. We perform both an operator-name lookup from the local
5618    // scope and an argument-dependent lookup based on the types of
5619    // the arguments.
5620    FunctionSet Functions;
5621    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5622    if (OverOp != OO_None) {
5623      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5624                                   Functions);
5625      DeclarationName OpName
5626        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5627      ArgumentDependentLookup(OpName, /*Operator*/true, &Input, 1, Functions);
5628    }
5629
5630    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5631  }
5632
5633  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5634}
5635
5636/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5637Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5638                                            SourceLocation LabLoc,
5639                                            IdentifierInfo *LabelII) {
5640  // Look up the record for this label identifier.
5641  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5642
5643  // If we haven't seen this label yet, create a forward reference. It
5644  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5645  if (LabelDecl == 0)
5646    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5647
5648  // Create the AST node.  The address of a label always has type 'void*'.
5649  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5650                                       Context.getPointerType(Context.VoidTy)));
5651}
5652
5653Sema::OwningExprResult
5654Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5655                    SourceLocation RPLoc) { // "({..})"
5656  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5657  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5658  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5659
5660  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5661  if (isFileScope)
5662    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5663
5664  // FIXME: there are a variety of strange constraints to enforce here, for
5665  // example, it is not possible to goto into a stmt expression apparently.
5666  // More semantic analysis is needed.
5667
5668  // If there are sub stmts in the compound stmt, take the type of the last one
5669  // as the type of the stmtexpr.
5670  QualType Ty = Context.VoidTy;
5671
5672  if (!Compound->body_empty()) {
5673    Stmt *LastStmt = Compound->body_back();
5674    // If LastStmt is a label, skip down through into the body.
5675    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5676      LastStmt = Label->getSubStmt();
5677
5678    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5679      Ty = LastExpr->getType();
5680  }
5681
5682  // FIXME: Check that expression type is complete/non-abstract; statement
5683  // expressions are not lvalues.
5684
5685  substmt.release();
5686  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5687}
5688
5689Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5690                                                  SourceLocation BuiltinLoc,
5691                                                  SourceLocation TypeLoc,
5692                                                  TypeTy *argty,
5693                                                  OffsetOfComponent *CompPtr,
5694                                                  unsigned NumComponents,
5695                                                  SourceLocation RPLoc) {
5696  // FIXME: This function leaks all expressions in the offset components on
5697  // error.
5698  // FIXME: Preserve type source info.
5699  QualType ArgTy = GetTypeFromParser(argty);
5700  assert(!ArgTy.isNull() && "Missing type argument!");
5701
5702  bool Dependent = ArgTy->isDependentType();
5703
5704  // We must have at least one component that refers to the type, and the first
5705  // one is known to be a field designator.  Verify that the ArgTy represents
5706  // a struct/union/class.
5707  if (!Dependent && !ArgTy->isRecordType())
5708    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5709
5710  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5711  // with an incomplete type would be illegal.
5712
5713  // Otherwise, create a null pointer as the base, and iteratively process
5714  // the offsetof designators.
5715  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5716  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5717  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5718                                    ArgTy, SourceLocation());
5719
5720  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5721  // GCC extension, diagnose them.
5722  // FIXME: This diagnostic isn't actually visible because the location is in
5723  // a system header!
5724  if (NumComponents != 1)
5725    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5726      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5727
5728  if (!Dependent) {
5729    bool DidWarnAboutNonPOD = false;
5730
5731    // FIXME: Dependent case loses a lot of information here. And probably
5732    // leaks like a sieve.
5733    for (unsigned i = 0; i != NumComponents; ++i) {
5734      const OffsetOfComponent &OC = CompPtr[i];
5735      if (OC.isBrackets) {
5736        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5737        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5738        if (!AT) {
5739          Res->Destroy(Context);
5740          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5741            << Res->getType());
5742        }
5743
5744        // FIXME: C++: Verify that operator[] isn't overloaded.
5745
5746        // Promote the array so it looks more like a normal array subscript
5747        // expression.
5748        DefaultFunctionArrayConversion(Res);
5749
5750        // C99 6.5.2.1p1
5751        Expr *Idx = static_cast<Expr*>(OC.U.E);
5752        // FIXME: Leaks Res
5753        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5754          return ExprError(Diag(Idx->getLocStart(),
5755                                diag::err_typecheck_subscript_not_integer)
5756            << Idx->getSourceRange());
5757
5758        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5759                                               OC.LocEnd);
5760        continue;
5761      }
5762
5763      const RecordType *RC = Res->getType()->getAs<RecordType>();
5764      if (!RC) {
5765        Res->Destroy(Context);
5766        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5767          << Res->getType());
5768      }
5769
5770      // Get the decl corresponding to this.
5771      RecordDecl *RD = RC->getDecl();
5772      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5773        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5774          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5775            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5776            << Res->getType());
5777          DidWarnAboutNonPOD = true;
5778        }
5779      }
5780
5781      LookupResult R;
5782      LookupQualifiedName(R, RD, OC.U.IdentInfo, LookupMemberName);
5783
5784      FieldDecl *MemberDecl
5785        = dyn_cast_or_null<FieldDecl>(R.getAsSingleDecl(Context));
5786      // FIXME: Leaks Res
5787      if (!MemberDecl)
5788        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
5789         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
5790
5791      // FIXME: C++: Verify that MemberDecl isn't a static field.
5792      // FIXME: Verify that MemberDecl isn't a bitfield.
5793      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5794        Res = BuildAnonymousStructUnionMemberReference(
5795            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5796      } else {
5797        // MemberDecl->getType() doesn't get the right qualifiers, but it
5798        // doesn't matter here.
5799        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5800                MemberDecl->getType().getNonReferenceType());
5801      }
5802    }
5803  }
5804
5805  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5806                                           Context.getSizeType(), BuiltinLoc));
5807}
5808
5809
5810Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5811                                                      TypeTy *arg1,TypeTy *arg2,
5812                                                      SourceLocation RPLoc) {
5813  // FIXME: Preserve type source info.
5814  QualType argT1 = GetTypeFromParser(arg1);
5815  QualType argT2 = GetTypeFromParser(arg2);
5816
5817  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5818
5819  if (getLangOptions().CPlusPlus) {
5820    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5821      << SourceRange(BuiltinLoc, RPLoc);
5822    return ExprError();
5823  }
5824
5825  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5826                                                 argT1, argT2, RPLoc));
5827}
5828
5829Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5830                                             ExprArg cond,
5831                                             ExprArg expr1, ExprArg expr2,
5832                                             SourceLocation RPLoc) {
5833  Expr *CondExpr = static_cast<Expr*>(cond.get());
5834  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5835  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5836
5837  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5838
5839  QualType resType;
5840  bool ValueDependent = false;
5841  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5842    resType = Context.DependentTy;
5843    ValueDependent = true;
5844  } else {
5845    // The conditional expression is required to be a constant expression.
5846    llvm::APSInt condEval(32);
5847    SourceLocation ExpLoc;
5848    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5849      return ExprError(Diag(ExpLoc,
5850                       diag::err_typecheck_choose_expr_requires_constant)
5851        << CondExpr->getSourceRange());
5852
5853    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5854    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5855    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
5856                                             : RHSExpr->isValueDependent();
5857  }
5858
5859  cond.release(); expr1.release(); expr2.release();
5860  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5861                                        resType, RPLoc,
5862                                        resType->isDependentType(),
5863                                        ValueDependent));
5864}
5865
5866//===----------------------------------------------------------------------===//
5867// Clang Extensions.
5868//===----------------------------------------------------------------------===//
5869
5870/// ActOnBlockStart - This callback is invoked when a block literal is started.
5871void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5872  // Analyze block parameters.
5873  BlockSemaInfo *BSI = new BlockSemaInfo();
5874
5875  // Add BSI to CurBlock.
5876  BSI->PrevBlockInfo = CurBlock;
5877  CurBlock = BSI;
5878
5879  BSI->ReturnType = QualType();
5880  BSI->TheScope = BlockScope;
5881  BSI->hasBlockDeclRefExprs = false;
5882  BSI->hasPrototype = false;
5883  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5884  CurFunctionNeedsScopeChecking = false;
5885
5886  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5887  PushDeclContext(BlockScope, BSI->TheDecl);
5888}
5889
5890void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5891  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5892
5893  if (ParamInfo.getNumTypeObjects() == 0
5894      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5895    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5896    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5897
5898    if (T->isArrayType()) {
5899      Diag(ParamInfo.getSourceRange().getBegin(),
5900           diag::err_block_returns_array);
5901      return;
5902    }
5903
5904    // The parameter list is optional, if there was none, assume ().
5905    if (!T->isFunctionType())
5906      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5907
5908    CurBlock->hasPrototype = true;
5909    CurBlock->isVariadic = false;
5910    // Check for a valid sentinel attribute on this block.
5911    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5912      Diag(ParamInfo.getAttributes()->getLoc(),
5913           diag::warn_attribute_sentinel_not_variadic) << 1;
5914      // FIXME: remove the attribute.
5915    }
5916    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
5917
5918    // Do not allow returning a objc interface by-value.
5919    if (RetTy->isObjCInterfaceType()) {
5920      Diag(ParamInfo.getSourceRange().getBegin(),
5921           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5922      return;
5923    }
5924    return;
5925  }
5926
5927  // Analyze arguments to block.
5928  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5929         "Not a function declarator!");
5930  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5931
5932  CurBlock->hasPrototype = FTI.hasPrototype;
5933  CurBlock->isVariadic = true;
5934
5935  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5936  // no arguments, not a function that takes a single void argument.
5937  if (FTI.hasPrototype &&
5938      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5939     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5940        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5941    // empty arg list, don't push any params.
5942    CurBlock->isVariadic = false;
5943  } else if (FTI.hasPrototype) {
5944    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5945      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5946    CurBlock->isVariadic = FTI.isVariadic;
5947  }
5948  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5949                               CurBlock->Params.size());
5950  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5951  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5952  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5953       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5954    // If this has an identifier, add it to the scope stack.
5955    if ((*AI)->getIdentifier())
5956      PushOnScopeChains(*AI, CurBlock->TheScope);
5957
5958  // Check for a valid sentinel attribute on this block.
5959  if (!CurBlock->isVariadic &&
5960      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5961    Diag(ParamInfo.getAttributes()->getLoc(),
5962         diag::warn_attribute_sentinel_not_variadic) << 1;
5963    // FIXME: remove the attribute.
5964  }
5965
5966  // Analyze the return type.
5967  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5968  QualType RetTy = T->getAs<FunctionType>()->getResultType();
5969
5970  // Do not allow returning a objc interface by-value.
5971  if (RetTy->isObjCInterfaceType()) {
5972    Diag(ParamInfo.getSourceRange().getBegin(),
5973         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5974  } else if (!RetTy->isDependentType())
5975    CurBlock->ReturnType = RetTy;
5976}
5977
5978/// ActOnBlockError - If there is an error parsing a block, this callback
5979/// is invoked to pop the information about the block from the action impl.
5980void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5981  // Ensure that CurBlock is deleted.
5982  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5983
5984  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5985
5986  // Pop off CurBlock, handle nested blocks.
5987  PopDeclContext();
5988  CurBlock = CurBlock->PrevBlockInfo;
5989  // FIXME: Delete the ParmVarDecl objects as well???
5990}
5991
5992/// ActOnBlockStmtExpr - This is called when the body of a block statement
5993/// literal was successfully completed.  ^(int x){...}
5994Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5995                                                StmtArg body, Scope *CurScope) {
5996  // If blocks are disabled, emit an error.
5997  if (!LangOpts.Blocks)
5998    Diag(CaretLoc, diag::err_blocks_disable);
5999
6000  // Ensure that CurBlock is deleted.
6001  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6002
6003  PopDeclContext();
6004
6005  // Pop off CurBlock, handle nested blocks.
6006  CurBlock = CurBlock->PrevBlockInfo;
6007
6008  QualType RetTy = Context.VoidTy;
6009  if (!BSI->ReturnType.isNull())
6010    RetTy = BSI->ReturnType;
6011
6012  llvm::SmallVector<QualType, 8> ArgTypes;
6013  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6014    ArgTypes.push_back(BSI->Params[i]->getType());
6015
6016  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6017  QualType BlockTy;
6018  if (!BSI->hasPrototype)
6019    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6020                                      NoReturn);
6021  else
6022    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6023                                      BSI->isVariadic, 0, false, false, 0, 0,
6024                                      NoReturn);
6025
6026  // FIXME: Check that return/parameter types are complete/non-abstract
6027  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6028  BlockTy = Context.getBlockPointerType(BlockTy);
6029
6030  // If needed, diagnose invalid gotos and switches in the block.
6031  if (CurFunctionNeedsScopeChecking)
6032    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6033  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6034
6035  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6036  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
6037  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6038                                       BSI->hasBlockDeclRefExprs));
6039}
6040
6041Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6042                                        ExprArg expr, TypeTy *type,
6043                                        SourceLocation RPLoc) {
6044  QualType T = GetTypeFromParser(type);
6045  Expr *E = static_cast<Expr*>(expr.get());
6046  Expr *OrigExpr = E;
6047
6048  InitBuiltinVaListType();
6049
6050  // Get the va_list type
6051  QualType VaListType = Context.getBuiltinVaListType();
6052  if (VaListType->isArrayType()) {
6053    // Deal with implicit array decay; for example, on x86-64,
6054    // va_list is an array, but it's supposed to decay to
6055    // a pointer for va_arg.
6056    VaListType = Context.getArrayDecayedType(VaListType);
6057    // Make sure the input expression also decays appropriately.
6058    UsualUnaryConversions(E);
6059  } else {
6060    // Otherwise, the va_list argument must be an l-value because
6061    // it is modified by va_arg.
6062    if (!E->isTypeDependent() &&
6063        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6064      return ExprError();
6065  }
6066
6067  if (!E->isTypeDependent() &&
6068      !Context.hasSameType(VaListType, E->getType())) {
6069    return ExprError(Diag(E->getLocStart(),
6070                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6071      << OrigExpr->getType() << E->getSourceRange());
6072  }
6073
6074  // FIXME: Check that type is complete/non-abstract
6075  // FIXME: Warn if a non-POD type is passed in.
6076
6077  expr.release();
6078  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6079                                       RPLoc));
6080}
6081
6082Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6083  // The type of __null will be int or long, depending on the size of
6084  // pointers on the target.
6085  QualType Ty;
6086  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6087    Ty = Context.IntTy;
6088  else
6089    Ty = Context.LongTy;
6090
6091  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6092}
6093
6094bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6095                                    SourceLocation Loc,
6096                                    QualType DstType, QualType SrcType,
6097                                    Expr *SrcExpr, const char *Flavor) {
6098  // Decode the result (notice that AST's are still created for extensions).
6099  bool isInvalid = false;
6100  unsigned DiagKind;
6101  switch (ConvTy) {
6102  default: assert(0 && "Unknown conversion type");
6103  case Compatible: return false;
6104  case PointerToInt:
6105    DiagKind = diag::ext_typecheck_convert_pointer_int;
6106    break;
6107  case IntToPointer:
6108    DiagKind = diag::ext_typecheck_convert_int_pointer;
6109    break;
6110  case IncompatiblePointer:
6111    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
6112    break;
6113  case IncompatiblePointerSign:
6114    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
6115    break;
6116  case FunctionVoidPointer:
6117    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
6118    break;
6119  case CompatiblePointerDiscardsQualifiers:
6120    // If the qualifiers lost were because we were applying the
6121    // (deprecated) C++ conversion from a string literal to a char*
6122    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
6123    // Ideally, this check would be performed in
6124    // CheckPointerTypesForAssignment. However, that would require a
6125    // bit of refactoring (so that the second argument is an
6126    // expression, rather than a type), which should be done as part
6127    // of a larger effort to fix CheckPointerTypesForAssignment for
6128    // C++ semantics.
6129    if (getLangOptions().CPlusPlus &&
6130        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
6131      return false;
6132    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
6133    break;
6134  case IntToBlockPointer:
6135    DiagKind = diag::err_int_to_block_pointer;
6136    break;
6137  case IncompatibleBlockPointer:
6138    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
6139    break;
6140  case IncompatibleObjCQualifiedId:
6141    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
6142    // it can give a more specific diagnostic.
6143    DiagKind = diag::warn_incompatible_qualified_id;
6144    break;
6145  case IncompatibleVectors:
6146    DiagKind = diag::warn_incompatible_vectors;
6147    break;
6148  case Incompatible:
6149    DiagKind = diag::err_typecheck_convert_incompatible;
6150    isInvalid = true;
6151    break;
6152  }
6153
6154  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
6155    << SrcExpr->getSourceRange();
6156  return isInvalid;
6157}
6158
6159bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
6160  llvm::APSInt ICEResult;
6161  if (E->isIntegerConstantExpr(ICEResult, Context)) {
6162    if (Result)
6163      *Result = ICEResult;
6164    return false;
6165  }
6166
6167  Expr::EvalResult EvalResult;
6168
6169  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
6170      EvalResult.HasSideEffects) {
6171    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
6172
6173    if (EvalResult.Diag) {
6174      // We only show the note if it's not the usual "invalid subexpression"
6175      // or if it's actually in a subexpression.
6176      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
6177          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
6178        Diag(EvalResult.DiagLoc, EvalResult.Diag);
6179    }
6180
6181    return true;
6182  }
6183
6184  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
6185    E->getSourceRange();
6186
6187  if (EvalResult.Diag &&
6188      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
6189    Diag(EvalResult.DiagLoc, EvalResult.Diag);
6190
6191  if (Result)
6192    *Result = EvalResult.Val.getInt();
6193  return false;
6194}
6195
6196Sema::ExpressionEvaluationContext
6197Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
6198  // Introduce a new set of potentially referenced declarations to the stack.
6199  if (NewContext == PotentiallyPotentiallyEvaluated)
6200    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
6201
6202  std::swap(ExprEvalContext, NewContext);
6203  return NewContext;
6204}
6205
6206void
6207Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
6208                                     ExpressionEvaluationContext NewContext) {
6209  ExprEvalContext = NewContext;
6210
6211  if (OldContext == PotentiallyPotentiallyEvaluated) {
6212    // Mark any remaining declarations in the current position of the stack
6213    // as "referenced". If they were not meant to be referenced, semantic
6214    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
6215    PotentiallyReferencedDecls RemainingDecls;
6216    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
6217    PotentiallyReferencedDeclStack.pop_back();
6218
6219    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
6220                                           IEnd = RemainingDecls.end();
6221         I != IEnd; ++I)
6222      MarkDeclarationReferenced(I->first, I->second);
6223  }
6224}
6225
6226/// \brief Note that the given declaration was referenced in the source code.
6227///
6228/// This routine should be invoke whenever a given declaration is referenced
6229/// in the source code, and where that reference occurred. If this declaration
6230/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
6231/// C99 6.9p3), then the declaration will be marked as used.
6232///
6233/// \param Loc the location where the declaration was referenced.
6234///
6235/// \param D the declaration that has been referenced by the source code.
6236void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
6237  assert(D && "No declaration?");
6238
6239  if (D->isUsed())
6240    return;
6241
6242  // Mark a parameter or variable declaration "used", regardless of whether we're in a
6243  // template or not. The reason for this is that unevaluated expressions
6244  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
6245  // -Wunused-parameters)
6246  if (isa<ParmVarDecl>(D) ||
6247      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
6248    D->setUsed(true);
6249
6250  // Do not mark anything as "used" within a dependent context; wait for
6251  // an instantiation.
6252  if (CurContext->isDependentContext())
6253    return;
6254
6255  switch (ExprEvalContext) {
6256    case Unevaluated:
6257      // We are in an expression that is not potentially evaluated; do nothing.
6258      return;
6259
6260    case PotentiallyEvaluated:
6261      // We are in a potentially-evaluated expression, so this declaration is
6262      // "used"; handle this below.
6263      break;
6264
6265    case PotentiallyPotentiallyEvaluated:
6266      // We are in an expression that may be potentially evaluated; queue this
6267      // declaration reference until we know whether the expression is
6268      // potentially evaluated.
6269      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
6270      return;
6271  }
6272
6273  // Note that this declaration has been used.
6274  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
6275    unsigned TypeQuals;
6276    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
6277        if (!Constructor->isUsed())
6278          DefineImplicitDefaultConstructor(Loc, Constructor);
6279    } else if (Constructor->isImplicit() &&
6280               Constructor->isCopyConstructor(Context, TypeQuals)) {
6281      if (!Constructor->isUsed())
6282        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
6283    }
6284  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
6285    if (Destructor->isImplicit() && !Destructor->isUsed())
6286      DefineImplicitDestructor(Loc, Destructor);
6287
6288  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
6289    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
6290        MethodDecl->getOverloadedOperator() == OO_Equal) {
6291      if (!MethodDecl->isUsed())
6292        DefineImplicitOverloadedAssign(Loc, MethodDecl);
6293    }
6294  }
6295  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
6296    // Implicit instantiation of function templates and member functions of
6297    // class templates.
6298    if (!Function->getBody() &&
6299        Function->getTemplateSpecializationKind()
6300                                                == TSK_ImplicitInstantiation) {
6301      bool AlreadyInstantiated = false;
6302      if (FunctionTemplateSpecializationInfo *SpecInfo
6303                                = Function->getTemplateSpecializationInfo()) {
6304        if (SpecInfo->getPointOfInstantiation().isInvalid())
6305          SpecInfo->setPointOfInstantiation(Loc);
6306        else
6307          AlreadyInstantiated = true;
6308      } else if (MemberSpecializationInfo *MSInfo
6309                                  = Function->getMemberSpecializationInfo()) {
6310        if (MSInfo->getPointOfInstantiation().isInvalid())
6311          MSInfo->setPointOfInstantiation(Loc);
6312        else
6313          AlreadyInstantiated = true;
6314      }
6315
6316      if (!AlreadyInstantiated)
6317        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
6318    }
6319
6320    // FIXME: keep track of references to static functions
6321    Function->setUsed(true);
6322    return;
6323  }
6324
6325  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
6326    // Implicit instantiation of static data members of class templates.
6327    if (Var->isStaticDataMember() &&
6328        Var->getInstantiatedFromStaticDataMember()) {
6329      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
6330      assert(MSInfo && "Missing member specialization information?");
6331      if (MSInfo->getPointOfInstantiation().isInvalid() &&
6332          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
6333        MSInfo->setPointOfInstantiation(Loc);
6334        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6335      }
6336    }
6337
6338    // FIXME: keep track of references to static data?
6339
6340    D->setUsed(true);
6341    return;
6342  }
6343}
6344
6345bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
6346                               CallExpr *CE, FunctionDecl *FD) {
6347  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
6348    return false;
6349
6350  PartialDiagnostic Note =
6351    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
6352    << FD->getDeclName() : PDiag();
6353  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
6354
6355  if (RequireCompleteType(Loc, ReturnType,
6356                          FD ?
6357                          PDiag(diag::err_call_function_incomplete_return)
6358                            << CE->getSourceRange() << FD->getDeclName() :
6359                          PDiag(diag::err_call_incomplete_return)
6360                            << CE->getSourceRange(),
6361                          std::make_pair(NoteLoc, Note)))
6362    return true;
6363
6364  return false;
6365}
6366
6367// Diagnose the common s/=/==/ typo.  Note that adding parentheses
6368// will prevent this condition from triggering, which is what we want.
6369void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
6370  SourceLocation Loc;
6371
6372  if (isa<BinaryOperator>(E)) {
6373    BinaryOperator *Op = cast<BinaryOperator>(E);
6374    if (Op->getOpcode() != BinaryOperator::Assign)
6375      return;
6376
6377    Loc = Op->getOperatorLoc();
6378  } else if (isa<CXXOperatorCallExpr>(E)) {
6379    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
6380    if (Op->getOperator() != OO_Equal)
6381      return;
6382
6383    Loc = Op->getOperatorLoc();
6384  } else {
6385    // Not an assignment.
6386    return;
6387  }
6388
6389  SourceLocation Open = E->getSourceRange().getBegin();
6390  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
6391
6392  Diag(Loc, diag::warn_condition_is_assignment)
6393    << E->getSourceRange()
6394    << CodeModificationHint::CreateInsertion(Open, "(")
6395    << CodeModificationHint::CreateInsertion(Close, ")");
6396}
6397
6398bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
6399  DiagnoseAssignmentAsCondition(E);
6400
6401  if (!E->isTypeDependent()) {
6402    DefaultFunctionArrayConversion(E);
6403
6404    QualType T = E->getType();
6405
6406    if (getLangOptions().CPlusPlus) {
6407      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
6408        return true;
6409    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
6410      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
6411        << T << E->getSourceRange();
6412      return true;
6413    }
6414  }
6415
6416  return false;
6417}
6418