SemaExpr.cpp revision 4355a39424035ba0bcdfa3f89bda6eff5ec6de3b
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Designator.h"
27#include "clang/Parse/Scope.h"
28using namespace clang;
29
30
31/// \brief Determine whether the use of this declaration is valid, and
32/// emit any corresponding diagnostics.
33///
34/// This routine diagnoses various problems with referencing
35/// declarations that can occur when using a declaration. For example,
36/// it might warn if a deprecated or unavailable declaration is being
37/// used, or produce an error (and return true) if a C++0x deleted
38/// function is being used.
39///
40/// \returns true if there was an error (this declaration cannot be
41/// referenced), false otherwise.
42bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
43  // See if the decl is deprecated.
44  if (D->getAttr<DeprecatedAttr>()) {
45    // Implementing deprecated stuff requires referencing deprecated
46    // stuff. Don't warn if we are implementing a deprecated
47    // construct.
48    bool isSilenced = false;
49
50    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
51      // If this reference happens *in* a deprecated function or method, don't
52      // warn.
53      isSilenced = ND->getAttr<DeprecatedAttr>();
54
55      // If this is an Objective-C method implementation, check to see if the
56      // method was deprecated on the declaration, not the definition.
57      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
58        // The semantic decl context of a ObjCMethodDecl is the
59        // ObjCImplementationDecl.
60        if (ObjCImplementationDecl *Impl
61              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
62
63          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
64                                                    MD->isInstanceMethod());
65          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
66        }
67      }
68    }
69
70    if (!isSilenced)
71      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
72  }
73
74  // See if this is a deleted function.
75  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
76    if (FD->isDeleted()) {
77      Diag(Loc, diag::err_deleted_function_use);
78      Diag(D->getLocation(), diag::note_unavailable_here) << true;
79      return true;
80    }
81  }
82
83  // See if the decl is unavailable
84  if (D->getAttr<UnavailableAttr>()) {
85    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
86    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
87  }
88
89  return false;
90}
91
92/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
93/// (and other functions in future), which have been declared with sentinel
94/// attribute. It warns if call does not have the sentinel argument.
95///
96void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
97                                 Expr **Args, unsigned NumArgs)
98{
99  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
100  if (!attr)
101    return;
102  int sentinelPos = attr->getSentinel();
103  int nullPos = attr->getNullPos();
104
105  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
106  // base class. Then we won't be needing two versions of the same code.
107  unsigned int i = 0;
108  bool warnNotEnoughArgs = false;
109  int isMethod = 0;
110  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
111    // skip over named parameters.
112    ObjCMethodDecl::param_iterator P, E = MD->param_end();
113    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
114      if (nullPos)
115        --nullPos;
116      else
117        ++i;
118    }
119    warnNotEnoughArgs = (P != E || i >= NumArgs);
120    isMethod = 1;
121  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
132    // block or function pointer call.
133    QualType Ty = V->getType();
134    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
135      const FunctionType *FT = Ty->isFunctionPointerType()
136      ? Ty->getAs<PointerType>()->getPointeeType()->getAsFunctionType()
137      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAsFunctionType();
138      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
139        unsigned NumArgsInProto = Proto->getNumArgs();
140        unsigned k;
141        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
142          if (nullPos)
143            --nullPos;
144          else
145            ++i;
146        }
147        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
148      }
149      if (Ty->isBlockPointerType())
150        isMethod = 2;
151    } else
152      return;
153  } else
154    return;
155
156  if (warnNotEnoughArgs) {
157    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
158    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
159    return;
160  }
161  int sentinel = i;
162  while (sentinelPos > 0 && i < NumArgs-1) {
163    --sentinelPos;
164    ++i;
165  }
166  if (sentinelPos > 0) {
167    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
168    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
169    return;
170  }
171  while (i < NumArgs-1) {
172    ++i;
173    ++sentinel;
174  }
175  Expr *sentinelExpr = Args[sentinel];
176  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
177                       !sentinelExpr->isNullPointerConstant(Context))) {
178    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
179    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
180  }
181  return;
182}
183
184SourceRange Sema::getExprRange(ExprTy *E) const {
185  Expr *Ex = (Expr *)E;
186  return Ex? Ex->getSourceRange() : SourceRange();
187}
188
189//===----------------------------------------------------------------------===//
190//  Standard Promotions and Conversions
191//===----------------------------------------------------------------------===//
192
193/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
194void Sema::DefaultFunctionArrayConversion(Expr *&E) {
195  QualType Ty = E->getType();
196  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
197
198  if (Ty->isFunctionType())
199    ImpCastExprToType(E, Context.getPointerType(Ty));
200  else if (Ty->isArrayType()) {
201    // In C90 mode, arrays only promote to pointers if the array expression is
202    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
203    // type 'array of type' is converted to an expression that has type 'pointer
204    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
205    // that has type 'array of type' ...".  The relevant change is "an lvalue"
206    // (C90) to "an expression" (C99).
207    //
208    // C++ 4.2p1:
209    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
210    // T" can be converted to an rvalue of type "pointer to T".
211    //
212    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
213        E->isLvalue(Context) == Expr::LV_Valid)
214      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
215                        CastExpr::CK_ArrayToPointerDecay);
216  }
217}
218
219/// UsualUnaryConversions - Performs various conversions that are common to most
220/// operators (C99 6.3). The conversions of array and function types are
221/// sometimes surpressed. For example, the array->pointer conversion doesn't
222/// apply if the array is an argument to the sizeof or address (&) operators.
223/// In these instances, this routine should *not* be called.
224Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
225  QualType Ty = Expr->getType();
226  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
227
228  // C99 6.3.1.1p2:
229  //
230  //   The following may be used in an expression wherever an int or
231  //   unsigned int may be used:
232  //     - an object or expression with an integer type whose integer
233  //       conversion rank is less than or equal to the rank of int
234  //       and unsigned int.
235  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
236  //
237  //   If an int can represent all values of the original type, the
238  //   value is converted to an int; otherwise, it is converted to an
239  //   unsigned int. These are called the integer promotions. All
240  //   other types are unchanged by the integer promotions.
241  QualType PTy = Context.isPromotableBitField(Expr);
242  if (!PTy.isNull()) {
243    ImpCastExprToType(Expr, PTy);
244    return Expr;
245  }
246  if (Ty->isPromotableIntegerType()) {
247    QualType PT = Context.getPromotedIntegerType(Ty);
248    ImpCastExprToType(Expr, PT);
249    return Expr;
250  }
251
252  DefaultFunctionArrayConversion(Expr);
253  return Expr;
254}
255
256/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
257/// do not have a prototype. Arguments that have type float are promoted to
258/// double. All other argument types are converted by UsualUnaryConversions().
259void Sema::DefaultArgumentPromotion(Expr *&Expr) {
260  QualType Ty = Expr->getType();
261  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
262
263  // If this is a 'float' (CVR qualified or typedef) promote to double.
264  if (const BuiltinType *BT = Ty->getAsBuiltinType())
265    if (BT->getKind() == BuiltinType::Float)
266      return ImpCastExprToType(Expr, Context.DoubleTy);
267
268  UsualUnaryConversions(Expr);
269}
270
271/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
272/// will warn if the resulting type is not a POD type, and rejects ObjC
273/// interfaces passed by value.  This returns true if the argument type is
274/// completely illegal.
275bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
276  DefaultArgumentPromotion(Expr);
277
278  if (Expr->getType()->isObjCInterfaceType()) {
279    Diag(Expr->getLocStart(),
280         diag::err_cannot_pass_objc_interface_to_vararg)
281      << Expr->getType() << CT;
282    return true;
283  }
284
285  if (!Expr->getType()->isPODType())
286    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
287      << Expr->getType() << CT;
288
289  return false;
290}
291
292
293/// UsualArithmeticConversions - Performs various conversions that are common to
294/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
295/// routine returns the first non-arithmetic type found. The client is
296/// responsible for emitting appropriate error diagnostics.
297/// FIXME: verify the conversion rules for "complex int" are consistent with
298/// GCC.
299QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
300                                          bool isCompAssign) {
301  if (!isCompAssign)
302    UsualUnaryConversions(lhsExpr);
303
304  UsualUnaryConversions(rhsExpr);
305
306  // For conversion purposes, we ignore any qualifiers.
307  // For example, "const float" and "float" are equivalent.
308  QualType lhs =
309    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
310  QualType rhs =
311    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
312
313  // If both types are identical, no conversion is needed.
314  if (lhs == rhs)
315    return lhs;
316
317  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
318  // The caller can deal with this (e.g. pointer + int).
319  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
320    return lhs;
321
322  // Perform bitfield promotions.
323  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
324  if (!LHSBitfieldPromoteTy.isNull())
325    lhs = LHSBitfieldPromoteTy;
326  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
327  if (!RHSBitfieldPromoteTy.isNull())
328    rhs = RHSBitfieldPromoteTy;
329
330  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
331  if (!isCompAssign)
332    ImpCastExprToType(lhsExpr, destType);
333  ImpCastExprToType(rhsExpr, destType);
334  return destType;
335}
336
337//===----------------------------------------------------------------------===//
338//  Semantic Analysis for various Expression Types
339//===----------------------------------------------------------------------===//
340
341
342/// ActOnStringLiteral - The specified tokens were lexed as pasted string
343/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
344/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
345/// multiple tokens.  However, the common case is that StringToks points to one
346/// string.
347///
348Action::OwningExprResult
349Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
350  assert(NumStringToks && "Must have at least one string!");
351
352  StringLiteralParser Literal(StringToks, NumStringToks, PP);
353  if (Literal.hadError)
354    return ExprError();
355
356  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
357  for (unsigned i = 0; i != NumStringToks; ++i)
358    StringTokLocs.push_back(StringToks[i].getLocation());
359
360  QualType StrTy = Context.CharTy;
361  if (Literal.AnyWide) StrTy = Context.getWCharType();
362  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
363
364  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
365  if (getLangOptions().CPlusPlus)
366    StrTy.addConst();
367
368  // Get an array type for the string, according to C99 6.4.5.  This includes
369  // the nul terminator character as well as the string length for pascal
370  // strings.
371  StrTy = Context.getConstantArrayType(StrTy,
372                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
373                                       ArrayType::Normal, 0);
374
375  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
376  return Owned(StringLiteral::Create(Context, Literal.GetString(),
377                                     Literal.GetStringLength(),
378                                     Literal.AnyWide, StrTy,
379                                     &StringTokLocs[0],
380                                     StringTokLocs.size()));
381}
382
383/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
384/// CurBlock to VD should cause it to be snapshotted (as we do for auto
385/// variables defined outside the block) or false if this is not needed (e.g.
386/// for values inside the block or for globals).
387///
388/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
389/// up-to-date.
390///
391static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
392                                              ValueDecl *VD) {
393  // If the value is defined inside the block, we couldn't snapshot it even if
394  // we wanted to.
395  if (CurBlock->TheDecl == VD->getDeclContext())
396    return false;
397
398  // If this is an enum constant or function, it is constant, don't snapshot.
399  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
400    return false;
401
402  // If this is a reference to an extern, static, or global variable, no need to
403  // snapshot it.
404  // FIXME: What about 'const' variables in C++?
405  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
406    if (!Var->hasLocalStorage())
407      return false;
408
409  // Blocks that have these can't be constant.
410  CurBlock->hasBlockDeclRefExprs = true;
411
412  // If we have nested blocks, the decl may be declared in an outer block (in
413  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
414  // be defined outside all of the current blocks (in which case the blocks do
415  // all get the bit).  Walk the nesting chain.
416  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
417       NextBlock = NextBlock->PrevBlockInfo) {
418    // If we found the defining block for the variable, don't mark the block as
419    // having a reference outside it.
420    if (NextBlock->TheDecl == VD->getDeclContext())
421      break;
422
423    // Otherwise, the DeclRef from the inner block causes the outer one to need
424    // a snapshot as well.
425    NextBlock->hasBlockDeclRefExprs = true;
426  }
427
428  return true;
429}
430
431
432
433/// ActOnIdentifierExpr - The parser read an identifier in expression context,
434/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
435/// identifier is used in a function call context.
436/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
437/// class or namespace that the identifier must be a member of.
438Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
439                                                 IdentifierInfo &II,
440                                                 bool HasTrailingLParen,
441                                                 const CXXScopeSpec *SS,
442                                                 bool isAddressOfOperand) {
443  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
444                                  isAddressOfOperand);
445}
446
447/// BuildDeclRefExpr - Build either a DeclRefExpr or a
448/// QualifiedDeclRefExpr based on whether or not SS is a
449/// nested-name-specifier.
450Sema::OwningExprResult
451Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
452                       bool TypeDependent, bool ValueDependent,
453                       const CXXScopeSpec *SS) {
454  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
455    Diag(Loc,
456         diag::err_auto_variable_cannot_appear_in_own_initializer)
457      << D->getDeclName();
458    return ExprError();
459  }
460
461  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
462    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
463      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
464        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
465          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
466            << D->getIdentifier() << FD->getDeclName();
467          Diag(D->getLocation(), diag::note_local_variable_declared_here)
468            << D->getIdentifier();
469          return ExprError();
470        }
471      }
472    }
473  }
474
475  MarkDeclarationReferenced(Loc, D);
476
477  Expr *E;
478  if (SS && !SS->isEmpty()) {
479    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
480                                          ValueDependent, SS->getRange(),
481                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
482  } else
483    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
484
485  return Owned(E);
486}
487
488/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
489/// variable corresponding to the anonymous union or struct whose type
490/// is Record.
491static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
492                                             RecordDecl *Record) {
493  assert(Record->isAnonymousStructOrUnion() &&
494         "Record must be an anonymous struct or union!");
495
496  // FIXME: Once Decls are directly linked together, this will be an O(1)
497  // operation rather than a slow walk through DeclContext's vector (which
498  // itself will be eliminated). DeclGroups might make this even better.
499  DeclContext *Ctx = Record->getDeclContext();
500  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
501                               DEnd = Ctx->decls_end();
502       D != DEnd; ++D) {
503    if (*D == Record) {
504      // The object for the anonymous struct/union directly
505      // follows its type in the list of declarations.
506      ++D;
507      assert(D != DEnd && "Missing object for anonymous record");
508      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
509      return *D;
510    }
511  }
512
513  assert(false && "Missing object for anonymous record");
514  return 0;
515}
516
517/// \brief Given a field that represents a member of an anonymous
518/// struct/union, build the path from that field's context to the
519/// actual member.
520///
521/// Construct the sequence of field member references we'll have to
522/// perform to get to the field in the anonymous union/struct. The
523/// list of members is built from the field outward, so traverse it
524/// backwards to go from an object in the current context to the field
525/// we found.
526///
527/// \returns The variable from which the field access should begin,
528/// for an anonymous struct/union that is not a member of another
529/// class. Otherwise, returns NULL.
530VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
531                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
532  assert(Field->getDeclContext()->isRecord() &&
533         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
534         && "Field must be stored inside an anonymous struct or union");
535
536  Path.push_back(Field);
537  VarDecl *BaseObject = 0;
538  DeclContext *Ctx = Field->getDeclContext();
539  do {
540    RecordDecl *Record = cast<RecordDecl>(Ctx);
541    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
542    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
543      Path.push_back(AnonField);
544    else {
545      BaseObject = cast<VarDecl>(AnonObject);
546      break;
547    }
548    Ctx = Ctx->getParent();
549  } while (Ctx->isRecord() &&
550           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
551
552  return BaseObject;
553}
554
555Sema::OwningExprResult
556Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
557                                               FieldDecl *Field,
558                                               Expr *BaseObjectExpr,
559                                               SourceLocation OpLoc) {
560  llvm::SmallVector<FieldDecl *, 4> AnonFields;
561  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
562                                                            AnonFields);
563
564  // Build the expression that refers to the base object, from
565  // which we will build a sequence of member references to each
566  // of the anonymous union objects and, eventually, the field we
567  // found via name lookup.
568  bool BaseObjectIsPointer = false;
569  unsigned ExtraQuals = 0;
570  if (BaseObject) {
571    // BaseObject is an anonymous struct/union variable (and is,
572    // therefore, not part of another non-anonymous record).
573    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
574    MarkDeclarationReferenced(Loc, BaseObject);
575    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
576                                               SourceLocation());
577    ExtraQuals
578      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
579  } else if (BaseObjectExpr) {
580    // The caller provided the base object expression. Determine
581    // whether its a pointer and whether it adds any qualifiers to the
582    // anonymous struct/union fields we're looking into.
583    QualType ObjectType = BaseObjectExpr->getType();
584    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
585      BaseObjectIsPointer = true;
586      ObjectType = ObjectPtr->getPointeeType();
587    }
588    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
589  } else {
590    // We've found a member of an anonymous struct/union that is
591    // inside a non-anonymous struct/union, so in a well-formed
592    // program our base object expression is "this".
593    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
594      if (!MD->isStatic()) {
595        QualType AnonFieldType
596          = Context.getTagDeclType(
597                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
598        QualType ThisType = Context.getTagDeclType(MD->getParent());
599        if ((Context.getCanonicalType(AnonFieldType)
600               == Context.getCanonicalType(ThisType)) ||
601            IsDerivedFrom(ThisType, AnonFieldType)) {
602          // Our base object expression is "this".
603          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
604                                                     MD->getThisType(Context));
605          BaseObjectIsPointer = true;
606        }
607      } else {
608        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
609          << Field->getDeclName());
610      }
611      ExtraQuals = MD->getTypeQualifiers();
612    }
613
614    if (!BaseObjectExpr)
615      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
616        << Field->getDeclName());
617  }
618
619  // Build the implicit member references to the field of the
620  // anonymous struct/union.
621  Expr *Result = BaseObjectExpr;
622  unsigned BaseAddrSpace = BaseObjectExpr->getType().getAddressSpace();
623  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
624         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
625       FI != FIEnd; ++FI) {
626    QualType MemberType = (*FI)->getType();
627    if (!(*FI)->isMutable()) {
628      unsigned combinedQualifiers
629        = MemberType.getCVRQualifiers() | ExtraQuals;
630      MemberType = MemberType.getQualifiedType(combinedQualifiers);
631    }
632    if (BaseAddrSpace != MemberType.getAddressSpace())
633      MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
634    MarkDeclarationReferenced(Loc, *FI);
635    // FIXME: Might this end up being a qualified name?
636    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
637                                      OpLoc, MemberType);
638    BaseObjectIsPointer = false;
639    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
640  }
641
642  return Owned(Result);
643}
644
645/// ActOnDeclarationNameExpr - The parser has read some kind of name
646/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
647/// performs lookup on that name and returns an expression that refers
648/// to that name. This routine isn't directly called from the parser,
649/// because the parser doesn't know about DeclarationName. Rather,
650/// this routine is called by ActOnIdentifierExpr,
651/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
652/// which form the DeclarationName from the corresponding syntactic
653/// forms.
654///
655/// HasTrailingLParen indicates whether this identifier is used in a
656/// function call context.  LookupCtx is only used for a C++
657/// qualified-id (foo::bar) to indicate the class or namespace that
658/// the identifier must be a member of.
659///
660/// isAddressOfOperand means that this expression is the direct operand
661/// of an address-of operator. This matters because this is the only
662/// situation where a qualified name referencing a non-static member may
663/// appear outside a member function of this class.
664Sema::OwningExprResult
665Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
666                               DeclarationName Name, bool HasTrailingLParen,
667                               const CXXScopeSpec *SS,
668                               bool isAddressOfOperand) {
669  // Could be enum-constant, value decl, instance variable, etc.
670  if (SS && SS->isInvalid())
671    return ExprError();
672
673  // C++ [temp.dep.expr]p3:
674  //   An id-expression is type-dependent if it contains:
675  //     -- a nested-name-specifier that contains a class-name that
676  //        names a dependent type.
677  // FIXME: Member of the current instantiation.
678  if (SS && isDependentScopeSpecifier(*SS)) {
679    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
680                                                     Loc, SS->getRange(),
681                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
682                                                     isAddressOfOperand));
683  }
684
685  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
686                                         false, true, Loc);
687
688  if (Lookup.isAmbiguous()) {
689    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
690                            SS && SS->isSet() ? SS->getRange()
691                                              : SourceRange());
692    return ExprError();
693  }
694
695  NamedDecl *D = Lookup.getAsDecl();
696
697  // If this reference is in an Objective-C method, then ivar lookup happens as
698  // well.
699  IdentifierInfo *II = Name.getAsIdentifierInfo();
700  if (II && getCurMethodDecl()) {
701    // There are two cases to handle here.  1) scoped lookup could have failed,
702    // in which case we should look for an ivar.  2) scoped lookup could have
703    // found a decl, but that decl is outside the current instance method (i.e.
704    // a global variable).  In these two cases, we do a lookup for an ivar with
705    // this name, if the lookup sucedes, we replace it our current decl.
706    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
707      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
708      ObjCInterfaceDecl *ClassDeclared;
709      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
710        // Check if referencing a field with __attribute__((deprecated)).
711        if (DiagnoseUseOfDecl(IV, Loc))
712          return ExprError();
713
714        // If we're referencing an invalid decl, just return this as a silent
715        // error node.  The error diagnostic was already emitted on the decl.
716        if (IV->isInvalidDecl())
717          return ExprError();
718
719        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
720        // If a class method attemps to use a free standing ivar, this is
721        // an error.
722        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
723           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
724                           << IV->getDeclName());
725        // If a class method uses a global variable, even if an ivar with
726        // same name exists, use the global.
727        if (!IsClsMethod) {
728          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
729              ClassDeclared != IFace)
730           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
731          // FIXME: This should use a new expr for a direct reference, don't
732          // turn this into Self->ivar, just return a BareIVarExpr or something.
733          IdentifierInfo &II = Context.Idents.get("self");
734          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
735                                                          II, false);
736          MarkDeclarationReferenced(Loc, IV);
737          return Owned(new (Context)
738                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
739                                       SelfExpr.takeAs<Expr>(), true, true));
740        }
741      }
742    } else if (getCurMethodDecl()->isInstanceMethod()) {
743      // We should warn if a local variable hides an ivar.
744      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
745      ObjCInterfaceDecl *ClassDeclared;
746      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
747        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
748            IFace == ClassDeclared)
749          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
750      }
751    }
752    // Needed to implement property "super.method" notation.
753    if (D == 0 && II->isStr("super")) {
754      QualType T;
755
756      if (getCurMethodDecl()->isInstanceMethod())
757        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
758                                      getCurMethodDecl()->getClassInterface()));
759      else
760        T = Context.getObjCClassType();
761      return Owned(new (Context) ObjCSuperExpr(Loc, T));
762    }
763  }
764
765  // Determine whether this name might be a candidate for
766  // argument-dependent lookup.
767  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
768             HasTrailingLParen;
769
770  if (ADL && D == 0) {
771    // We've seen something of the form
772    //
773    //   identifier(
774    //
775    // and we did not find any entity by the name
776    // "identifier". However, this identifier is still subject to
777    // argument-dependent lookup, so keep track of the name.
778    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
779                                                          Context.OverloadTy,
780                                                          Loc));
781  }
782
783  if (D == 0) {
784    // Otherwise, this could be an implicitly declared function reference (legal
785    // in C90, extension in C99).
786    if (HasTrailingLParen && II &&
787        !getLangOptions().CPlusPlus) // Not in C++.
788      D = ImplicitlyDefineFunction(Loc, *II, S);
789    else {
790      // If this name wasn't predeclared and if this is not a function call,
791      // diagnose the problem.
792      if (SS && !SS->isEmpty()) {
793        DiagnoseMissingMember(Loc, Name,
794                              (NestedNameSpecifier *)SS->getScopeRep(),
795                              SS->getRange());
796        return ExprError();
797      } else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
798               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
799        return ExprError(Diag(Loc, diag::err_undeclared_use)
800          << Name.getAsString());
801      else
802        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
803    }
804  }
805
806  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
807    // Warn about constructs like:
808    //   if (void *X = foo()) { ... } else { X }.
809    // In the else block, the pointer is always false.
810
811    // FIXME: In a template instantiation, we don't have scope
812    // information to check this property.
813    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
814      Scope *CheckS = S;
815      while (CheckS) {
816        if (CheckS->isWithinElse() &&
817            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
818          if (Var->getType()->isBooleanType())
819            ExprError(Diag(Loc, diag::warn_value_always_false)
820                      << Var->getDeclName());
821          else
822            ExprError(Diag(Loc, diag::warn_value_always_zero)
823                      << Var->getDeclName());
824          break;
825        }
826
827        // Move up one more control parent to check again.
828        CheckS = CheckS->getControlParent();
829        if (CheckS)
830          CheckS = CheckS->getParent();
831      }
832    }
833  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
834    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
835      // C99 DR 316 says that, if a function type comes from a
836      // function definition (without a prototype), that type is only
837      // used for checking compatibility. Therefore, when referencing
838      // the function, we pretend that we don't have the full function
839      // type.
840      if (DiagnoseUseOfDecl(Func, Loc))
841        return ExprError();
842
843      QualType T = Func->getType();
844      QualType NoProtoType = T;
845      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
846        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
847      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
848    }
849  }
850
851  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
852}
853/// \brief Cast member's object to its own class if necessary.
854bool
855Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
856  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
857    if (CXXRecordDecl *RD =
858        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
859      QualType DestType =
860        Context.getCanonicalType(Context.getTypeDeclType(RD));
861      if (DestType->isDependentType() || From->getType()->isDependentType())
862        return false;
863      QualType FromRecordType = From->getType();
864      QualType DestRecordType = DestType;
865      if (FromRecordType->getAs<PointerType>()) {
866        DestType = Context.getPointerType(DestType);
867        FromRecordType = FromRecordType->getPointeeType();
868      }
869      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
870          CheckDerivedToBaseConversion(FromRecordType,
871                                       DestRecordType,
872                                       From->getSourceRange().getBegin(),
873                                       From->getSourceRange()))
874        return true;
875      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
876                        /*isLvalue=*/true);
877    }
878  return false;
879}
880
881/// \brief Build a MemberExpr or CXXQualifiedMemberExpr, as appropriate.
882static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
883                                   const CXXScopeSpec *SS, NamedDecl *Member,
884                                   SourceLocation Loc, QualType Ty) {
885  if (SS && SS->isSet())
886    return new (C) CXXQualifiedMemberExpr(Base, isArrow,
887                                          (NestedNameSpecifier *)SS->getScopeRep(),
888                                          SS->getRange(),
889                                          Member, Loc, Ty);
890
891  return new (C) MemberExpr(Base, isArrow, Member, Loc, Ty);
892}
893
894/// \brief Complete semantic analysis for a reference to the given declaration.
895Sema::OwningExprResult
896Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
897                               bool HasTrailingLParen,
898                               const CXXScopeSpec *SS,
899                               bool isAddressOfOperand) {
900  assert(D && "Cannot refer to a NULL declaration");
901  DeclarationName Name = D->getDeclName();
902
903  // If this is an expression of the form &Class::member, don't build an
904  // implicit member ref, because we want a pointer to the member in general,
905  // not any specific instance's member.
906  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
907    DeclContext *DC = computeDeclContext(*SS);
908    if (D && isa<CXXRecordDecl>(DC)) {
909      QualType DType;
910      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
911        DType = FD->getType().getNonReferenceType();
912      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
913        DType = Method->getType();
914      } else if (isa<OverloadedFunctionDecl>(D)) {
915        DType = Context.OverloadTy;
916      }
917      // Could be an inner type. That's diagnosed below, so ignore it here.
918      if (!DType.isNull()) {
919        // The pointer is type- and value-dependent if it points into something
920        // dependent.
921        bool Dependent = DC->isDependentContext();
922        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
923      }
924    }
925  }
926
927  // We may have found a field within an anonymous union or struct
928  // (C++ [class.union]).
929  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
930    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
931      return BuildAnonymousStructUnionMemberReference(Loc, FD);
932
933  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
934    if (!MD->isStatic()) {
935      // C++ [class.mfct.nonstatic]p2:
936      //   [...] if name lookup (3.4.1) resolves the name in the
937      //   id-expression to a nonstatic nontype member of class X or of
938      //   a base class of X, the id-expression is transformed into a
939      //   class member access expression (5.2.5) using (*this) (9.3.2)
940      //   as the postfix-expression to the left of the '.' operator.
941      DeclContext *Ctx = 0;
942      QualType MemberType;
943      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
944        Ctx = FD->getDeclContext();
945        MemberType = FD->getType();
946
947        if (const ReferenceType *RefType = MemberType->getAs<ReferenceType>())
948          MemberType = RefType->getPointeeType();
949        else if (!FD->isMutable()) {
950          unsigned combinedQualifiers
951            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
952          MemberType = MemberType.getQualifiedType(combinedQualifiers);
953        }
954      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
955        if (!Method->isStatic()) {
956          Ctx = Method->getParent();
957          MemberType = Method->getType();
958        }
959      } else if (FunctionTemplateDecl *FunTmpl
960                   = dyn_cast<FunctionTemplateDecl>(D)) {
961        if (CXXMethodDecl *Method
962              = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())) {
963          if (!Method->isStatic()) {
964            Ctx = Method->getParent();
965            MemberType = Context.OverloadTy;
966          }
967        }
968      } else if (OverloadedFunctionDecl *Ovl
969                   = dyn_cast<OverloadedFunctionDecl>(D)) {
970        // FIXME: We need an abstraction for iterating over one or more function
971        // templates or functions. This code is far too repetitive!
972        for (OverloadedFunctionDecl::function_iterator
973               Func = Ovl->function_begin(),
974               FuncEnd = Ovl->function_end();
975             Func != FuncEnd; ++Func) {
976          CXXMethodDecl *DMethod = 0;
977          if (FunctionTemplateDecl *FunTmpl
978                = dyn_cast<FunctionTemplateDecl>(*Func))
979            DMethod = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
980          else
981            DMethod = dyn_cast<CXXMethodDecl>(*Func);
982
983          if (DMethod && !DMethod->isStatic()) {
984            Ctx = DMethod->getDeclContext();
985            MemberType = Context.OverloadTy;
986            break;
987          }
988        }
989      }
990
991      if (Ctx && Ctx->isRecord()) {
992        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
993        QualType ThisType = Context.getTagDeclType(MD->getParent());
994        if ((Context.getCanonicalType(CtxType)
995               == Context.getCanonicalType(ThisType)) ||
996            IsDerivedFrom(ThisType, CtxType)) {
997          // Build the implicit member access expression.
998          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
999                                                 MD->getThisType(Context));
1000          MarkDeclarationReferenced(Loc, D);
1001          if (PerformObjectMemberConversion(This, D))
1002            return ExprError();
1003          if (DiagnoseUseOfDecl(D, Loc))
1004            return ExprError();
1005          return Owned(BuildMemberExpr(Context, This, true, SS, D,
1006                                       Loc, MemberType));
1007        }
1008      }
1009    }
1010  }
1011
1012  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1013    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1014      if (MD->isStatic())
1015        // "invalid use of member 'x' in static member function"
1016        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1017          << FD->getDeclName());
1018    }
1019
1020    // Any other ways we could have found the field in a well-formed
1021    // program would have been turned into implicit member expressions
1022    // above.
1023    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1024      << FD->getDeclName());
1025  }
1026
1027  if (isa<TypedefDecl>(D))
1028    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1029  if (isa<ObjCInterfaceDecl>(D))
1030    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1031  if (isa<NamespaceDecl>(D))
1032    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1033
1034  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1035  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1036    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1037                           false, false, SS);
1038  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1039    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1040                            false, false, SS);
1041  else if (UnresolvedUsingDecl *UD = dyn_cast<UnresolvedUsingDecl>(D))
1042    return BuildDeclRefExpr(UD, Context.DependentTy, Loc,
1043                            /*TypeDependent=*/true,
1044                            /*ValueDependent=*/true, SS);
1045
1046  ValueDecl *VD = cast<ValueDecl>(D);
1047
1048  // Check whether this declaration can be used. Note that we suppress
1049  // this check when we're going to perform argument-dependent lookup
1050  // on this function name, because this might not be the function
1051  // that overload resolution actually selects.
1052  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1053             HasTrailingLParen;
1054  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1055    return ExprError();
1056
1057  // Only create DeclRefExpr's for valid Decl's.
1058  if (VD->isInvalidDecl())
1059    return ExprError();
1060
1061  // If the identifier reference is inside a block, and it refers to a value
1062  // that is outside the block, create a BlockDeclRefExpr instead of a
1063  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1064  // the block is formed.
1065  //
1066  // We do not do this for things like enum constants, global variables, etc,
1067  // as they do not get snapshotted.
1068  //
1069  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1070    MarkDeclarationReferenced(Loc, VD);
1071    QualType ExprTy = VD->getType().getNonReferenceType();
1072    // The BlocksAttr indicates the variable is bound by-reference.
1073    if (VD->getAttr<BlocksAttr>())
1074      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1075    // This is to record that a 'const' was actually synthesize and added.
1076    bool constAdded = !ExprTy.isConstQualified();
1077    // Variable will be bound by-copy, make it const within the closure.
1078
1079    ExprTy.addConst();
1080    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1081                                                constAdded));
1082  }
1083  // If this reference is not in a block or if the referenced variable is
1084  // within the block, create a normal DeclRefExpr.
1085
1086  bool TypeDependent = false;
1087  bool ValueDependent = false;
1088  if (getLangOptions().CPlusPlus) {
1089    // C++ [temp.dep.expr]p3:
1090    //   An id-expression is type-dependent if it contains:
1091    //     - an identifier that was declared with a dependent type,
1092    if (VD->getType()->isDependentType())
1093      TypeDependent = true;
1094    //     - FIXME: a template-id that is dependent,
1095    //     - a conversion-function-id that specifies a dependent type,
1096    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1097             Name.getCXXNameType()->isDependentType())
1098      TypeDependent = true;
1099    //     - a nested-name-specifier that contains a class-name that
1100    //       names a dependent type.
1101    else if (SS && !SS->isEmpty()) {
1102      for (DeclContext *DC = computeDeclContext(*SS);
1103           DC; DC = DC->getParent()) {
1104        // FIXME: could stop early at namespace scope.
1105        if (DC->isRecord()) {
1106          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1107          if (Context.getTypeDeclType(Record)->isDependentType()) {
1108            TypeDependent = true;
1109            break;
1110          }
1111        }
1112      }
1113    }
1114
1115    // C++ [temp.dep.constexpr]p2:
1116    //
1117    //   An identifier is value-dependent if it is:
1118    //     - a name declared with a dependent type,
1119    if (TypeDependent)
1120      ValueDependent = true;
1121    //     - the name of a non-type template parameter,
1122    else if (isa<NonTypeTemplateParmDecl>(VD))
1123      ValueDependent = true;
1124    //    - a constant with integral or enumeration type and is
1125    //      initialized with an expression that is value-dependent
1126    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1127      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1128          Dcl->getInit()) {
1129        ValueDependent = Dcl->getInit()->isValueDependent();
1130      }
1131    }
1132  }
1133
1134  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1135                          TypeDependent, ValueDependent, SS);
1136}
1137
1138Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1139                                                 tok::TokenKind Kind) {
1140  PredefinedExpr::IdentType IT;
1141
1142  switch (Kind) {
1143  default: assert(0 && "Unknown simple primary expr!");
1144  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1145  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1146  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1147  }
1148
1149  // Pre-defined identifiers are of type char[x], where x is the length of the
1150  // string.
1151  unsigned Length;
1152  if (FunctionDecl *FD = getCurFunctionDecl())
1153    Length = FD->getIdentifier()->getLength();
1154  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1155    Length = MD->getSynthesizedMethodSize();
1156  else {
1157    Diag(Loc, diag::ext_predef_outside_function);
1158    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1159    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1160  }
1161
1162
1163  llvm::APInt LengthI(32, Length + 1);
1164  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1165  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1166  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1167}
1168
1169Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1170  llvm::SmallString<16> CharBuffer;
1171  CharBuffer.resize(Tok.getLength());
1172  const char *ThisTokBegin = &CharBuffer[0];
1173  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1174
1175  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1176                            Tok.getLocation(), PP);
1177  if (Literal.hadError())
1178    return ExprError();
1179
1180  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1181
1182  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1183                                              Literal.isWide(),
1184                                              type, Tok.getLocation()));
1185}
1186
1187Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1188  // Fast path for a single digit (which is quite common).  A single digit
1189  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1190  if (Tok.getLength() == 1) {
1191    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1192    unsigned IntSize = Context.Target.getIntWidth();
1193    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1194                    Context.IntTy, Tok.getLocation()));
1195  }
1196
1197  llvm::SmallString<512> IntegerBuffer;
1198  // Add padding so that NumericLiteralParser can overread by one character.
1199  IntegerBuffer.resize(Tok.getLength()+1);
1200  const char *ThisTokBegin = &IntegerBuffer[0];
1201
1202  // Get the spelling of the token, which eliminates trigraphs, etc.
1203  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1204
1205  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1206                               Tok.getLocation(), PP);
1207  if (Literal.hadError)
1208    return ExprError();
1209
1210  Expr *Res;
1211
1212  if (Literal.isFloatingLiteral()) {
1213    QualType Ty;
1214    if (Literal.isFloat)
1215      Ty = Context.FloatTy;
1216    else if (!Literal.isLong)
1217      Ty = Context.DoubleTy;
1218    else
1219      Ty = Context.LongDoubleTy;
1220
1221    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1222
1223    // isExact will be set by GetFloatValue().
1224    bool isExact = false;
1225    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1226    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1227
1228  } else if (!Literal.isIntegerLiteral()) {
1229    return ExprError();
1230  } else {
1231    QualType Ty;
1232
1233    // long long is a C99 feature.
1234    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1235        Literal.isLongLong)
1236      Diag(Tok.getLocation(), diag::ext_longlong);
1237
1238    // Get the value in the widest-possible width.
1239    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1240
1241    if (Literal.GetIntegerValue(ResultVal)) {
1242      // If this value didn't fit into uintmax_t, warn and force to ull.
1243      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1244      Ty = Context.UnsignedLongLongTy;
1245      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1246             "long long is not intmax_t?");
1247    } else {
1248      // If this value fits into a ULL, try to figure out what else it fits into
1249      // according to the rules of C99 6.4.4.1p5.
1250
1251      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1252      // be an unsigned int.
1253      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1254
1255      // Check from smallest to largest, picking the smallest type we can.
1256      unsigned Width = 0;
1257      if (!Literal.isLong && !Literal.isLongLong) {
1258        // Are int/unsigned possibilities?
1259        unsigned IntSize = Context.Target.getIntWidth();
1260
1261        // Does it fit in a unsigned int?
1262        if (ResultVal.isIntN(IntSize)) {
1263          // Does it fit in a signed int?
1264          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1265            Ty = Context.IntTy;
1266          else if (AllowUnsigned)
1267            Ty = Context.UnsignedIntTy;
1268          Width = IntSize;
1269        }
1270      }
1271
1272      // Are long/unsigned long possibilities?
1273      if (Ty.isNull() && !Literal.isLongLong) {
1274        unsigned LongSize = Context.Target.getLongWidth();
1275
1276        // Does it fit in a unsigned long?
1277        if (ResultVal.isIntN(LongSize)) {
1278          // Does it fit in a signed long?
1279          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1280            Ty = Context.LongTy;
1281          else if (AllowUnsigned)
1282            Ty = Context.UnsignedLongTy;
1283          Width = LongSize;
1284        }
1285      }
1286
1287      // Finally, check long long if needed.
1288      if (Ty.isNull()) {
1289        unsigned LongLongSize = Context.Target.getLongLongWidth();
1290
1291        // Does it fit in a unsigned long long?
1292        if (ResultVal.isIntN(LongLongSize)) {
1293          // Does it fit in a signed long long?
1294          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1295            Ty = Context.LongLongTy;
1296          else if (AllowUnsigned)
1297            Ty = Context.UnsignedLongLongTy;
1298          Width = LongLongSize;
1299        }
1300      }
1301
1302      // If we still couldn't decide a type, we probably have something that
1303      // does not fit in a signed long long, but has no U suffix.
1304      if (Ty.isNull()) {
1305        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1306        Ty = Context.UnsignedLongLongTy;
1307        Width = Context.Target.getLongLongWidth();
1308      }
1309
1310      if (ResultVal.getBitWidth() != Width)
1311        ResultVal.trunc(Width);
1312    }
1313    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1314  }
1315
1316  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1317  if (Literal.isImaginary)
1318    Res = new (Context) ImaginaryLiteral(Res,
1319                                        Context.getComplexType(Res->getType()));
1320
1321  return Owned(Res);
1322}
1323
1324Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1325                                              SourceLocation R, ExprArg Val) {
1326  Expr *E = Val.takeAs<Expr>();
1327  assert((E != 0) && "ActOnParenExpr() missing expr");
1328  return Owned(new (Context) ParenExpr(L, R, E));
1329}
1330
1331/// The UsualUnaryConversions() function is *not* called by this routine.
1332/// See C99 6.3.2.1p[2-4] for more details.
1333bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1334                                     SourceLocation OpLoc,
1335                                     const SourceRange &ExprRange,
1336                                     bool isSizeof) {
1337  if (exprType->isDependentType())
1338    return false;
1339
1340  // C99 6.5.3.4p1:
1341  if (isa<FunctionType>(exprType)) {
1342    // alignof(function) is allowed as an extension.
1343    if (isSizeof)
1344      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1345    return false;
1346  }
1347
1348  // Allow sizeof(void)/alignof(void) as an extension.
1349  if (exprType->isVoidType()) {
1350    Diag(OpLoc, diag::ext_sizeof_void_type)
1351      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1352    return false;
1353  }
1354
1355  if (RequireCompleteType(OpLoc, exprType,
1356                          isSizeof ? diag::err_sizeof_incomplete_type :
1357                          PDiag(diag::err_alignof_incomplete_type)
1358                            << ExprRange))
1359    return true;
1360
1361  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1362  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1363    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1364      << exprType << isSizeof << ExprRange;
1365    return true;
1366  }
1367
1368  return false;
1369}
1370
1371bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1372                            const SourceRange &ExprRange) {
1373  E = E->IgnoreParens();
1374
1375  // alignof decl is always ok.
1376  if (isa<DeclRefExpr>(E))
1377    return false;
1378
1379  // Cannot know anything else if the expression is dependent.
1380  if (E->isTypeDependent())
1381    return false;
1382
1383  if (E->getBitField()) {
1384    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1385    return true;
1386  }
1387
1388  // Alignment of a field access is always okay, so long as it isn't a
1389  // bit-field.
1390  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1391    if (isa<FieldDecl>(ME->getMemberDecl()))
1392      return false;
1393
1394  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1395}
1396
1397/// \brief Build a sizeof or alignof expression given a type operand.
1398Action::OwningExprResult
1399Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1400                              bool isSizeOf, SourceRange R) {
1401  if (T.isNull())
1402    return ExprError();
1403
1404  if (!T->isDependentType() &&
1405      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1406    return ExprError();
1407
1408  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1409  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1410                                               Context.getSizeType(), OpLoc,
1411                                               R.getEnd()));
1412}
1413
1414/// \brief Build a sizeof or alignof expression given an expression
1415/// operand.
1416Action::OwningExprResult
1417Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1418                              bool isSizeOf, SourceRange R) {
1419  // Verify that the operand is valid.
1420  bool isInvalid = false;
1421  if (E->isTypeDependent()) {
1422    // Delay type-checking for type-dependent expressions.
1423  } else if (!isSizeOf) {
1424    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1425  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1426    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1427    isInvalid = true;
1428  } else {
1429    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1430  }
1431
1432  if (isInvalid)
1433    return ExprError();
1434
1435  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1436  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1437                                               Context.getSizeType(), OpLoc,
1438                                               R.getEnd()));
1439}
1440
1441/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1442/// the same for @c alignof and @c __alignof
1443/// Note that the ArgRange is invalid if isType is false.
1444Action::OwningExprResult
1445Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1446                             void *TyOrEx, const SourceRange &ArgRange) {
1447  // If error parsing type, ignore.
1448  if (TyOrEx == 0) return ExprError();
1449
1450  if (isType) {
1451    // FIXME: Preserve type source info.
1452    QualType ArgTy = GetTypeFromParser(TyOrEx);
1453    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1454  }
1455
1456  // Get the end location.
1457  Expr *ArgEx = (Expr *)TyOrEx;
1458  Action::OwningExprResult Result
1459    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1460
1461  if (Result.isInvalid())
1462    DeleteExpr(ArgEx);
1463
1464  return move(Result);
1465}
1466
1467QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1468  if (V->isTypeDependent())
1469    return Context.DependentTy;
1470
1471  // These operators return the element type of a complex type.
1472  if (const ComplexType *CT = V->getType()->getAsComplexType())
1473    return CT->getElementType();
1474
1475  // Otherwise they pass through real integer and floating point types here.
1476  if (V->getType()->isArithmeticType())
1477    return V->getType();
1478
1479  // Reject anything else.
1480  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1481    << (isReal ? "__real" : "__imag");
1482  return QualType();
1483}
1484
1485
1486
1487Action::OwningExprResult
1488Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1489                          tok::TokenKind Kind, ExprArg Input) {
1490  // Since this might be a postfix expression, get rid of ParenListExprs.
1491  Input = MaybeConvertParenListExprToParenExpr(S, move(Input));
1492  Expr *Arg = (Expr *)Input.get();
1493
1494  UnaryOperator::Opcode Opc;
1495  switch (Kind) {
1496  default: assert(0 && "Unknown unary op!");
1497  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1498  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1499  }
1500
1501  if (getLangOptions().CPlusPlus &&
1502      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1503    // Which overloaded operator?
1504    OverloadedOperatorKind OverOp =
1505      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1506
1507    // C++ [over.inc]p1:
1508    //
1509    //     [...] If the function is a member function with one
1510    //     parameter (which shall be of type int) or a non-member
1511    //     function with two parameters (the second of which shall be
1512    //     of type int), it defines the postfix increment operator ++
1513    //     for objects of that type. When the postfix increment is
1514    //     called as a result of using the ++ operator, the int
1515    //     argument will have value zero.
1516    Expr *Args[2] = {
1517      Arg,
1518      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1519                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1520    };
1521
1522    // Build the candidate set for overloading
1523    OverloadCandidateSet CandidateSet;
1524    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1525
1526    // Perform overload resolution.
1527    OverloadCandidateSet::iterator Best;
1528    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1529    case OR_Success: {
1530      // We found a built-in operator or an overloaded operator.
1531      FunctionDecl *FnDecl = Best->Function;
1532
1533      if (FnDecl) {
1534        // We matched an overloaded operator. Build a call to that
1535        // operator.
1536
1537        // Convert the arguments.
1538        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1539          if (PerformObjectArgumentInitialization(Arg, Method))
1540            return ExprError();
1541        } else {
1542          // Convert the arguments.
1543          if (PerformCopyInitialization(Arg,
1544                                        FnDecl->getParamDecl(0)->getType(),
1545                                        "passing"))
1546            return ExprError();
1547        }
1548
1549        // Determine the result type
1550        QualType ResultTy
1551          = FnDecl->getType()->getAsFunctionType()->getResultType();
1552        ResultTy = ResultTy.getNonReferenceType();
1553
1554        // Build the actual expression node.
1555        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1556                                                 SourceLocation());
1557        UsualUnaryConversions(FnExpr);
1558
1559        Input.release();
1560        Args[0] = Arg;
1561        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1562                                                       Args, 2, ResultTy,
1563                                                       OpLoc));
1564      } else {
1565        // We matched a built-in operator. Convert the arguments, then
1566        // break out so that we will build the appropriate built-in
1567        // operator node.
1568        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1569                                      "passing"))
1570          return ExprError();
1571
1572        break;
1573      }
1574    }
1575
1576    case OR_No_Viable_Function:
1577      // No viable function; fall through to handling this as a
1578      // built-in operator, which will produce an error message for us.
1579      break;
1580
1581    case OR_Ambiguous:
1582      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1583          << UnaryOperator::getOpcodeStr(Opc)
1584          << Arg->getSourceRange();
1585      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1586      return ExprError();
1587
1588    case OR_Deleted:
1589      Diag(OpLoc, diag::err_ovl_deleted_oper)
1590        << Best->Function->isDeleted()
1591        << UnaryOperator::getOpcodeStr(Opc)
1592        << Arg->getSourceRange();
1593      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1594      return ExprError();
1595    }
1596
1597    // Either we found no viable overloaded operator or we matched a
1598    // built-in operator. In either case, fall through to trying to
1599    // build a built-in operation.
1600  }
1601
1602  Input.release();
1603  Input = Arg;
1604  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1605}
1606
1607Action::OwningExprResult
1608Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1609                              ExprArg Idx, SourceLocation RLoc) {
1610  // Since this might be a postfix expression, get rid of ParenListExprs.
1611  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1612
1613  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1614       *RHSExp = static_cast<Expr*>(Idx.get());
1615
1616  if (getLangOptions().CPlusPlus &&
1617      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1618    Base.release();
1619    Idx.release();
1620    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1621                                                  Context.DependentTy, RLoc));
1622  }
1623
1624  if (getLangOptions().CPlusPlus &&
1625      (LHSExp->getType()->isRecordType() ||
1626       LHSExp->getType()->isEnumeralType() ||
1627       RHSExp->getType()->isRecordType() ||
1628       RHSExp->getType()->isEnumeralType())) {
1629    // Add the appropriate overloaded operators (C++ [over.match.oper])
1630    // to the candidate set.
1631    OverloadCandidateSet CandidateSet;
1632    Expr *Args[2] = { LHSExp, RHSExp };
1633    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1634                          SourceRange(LLoc, RLoc));
1635
1636    // Perform overload resolution.
1637    OverloadCandidateSet::iterator Best;
1638    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1639    case OR_Success: {
1640      // We found a built-in operator or an overloaded operator.
1641      FunctionDecl *FnDecl = Best->Function;
1642
1643      if (FnDecl) {
1644        // We matched an overloaded operator. Build a call to that
1645        // operator.
1646
1647        // Convert the arguments.
1648        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1649          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1650              PerformCopyInitialization(RHSExp,
1651                                        FnDecl->getParamDecl(0)->getType(),
1652                                        "passing"))
1653            return ExprError();
1654        } else {
1655          // Convert the arguments.
1656          if (PerformCopyInitialization(LHSExp,
1657                                        FnDecl->getParamDecl(0)->getType(),
1658                                        "passing") ||
1659              PerformCopyInitialization(RHSExp,
1660                                        FnDecl->getParamDecl(1)->getType(),
1661                                        "passing"))
1662            return ExprError();
1663        }
1664
1665        // Determine the result type
1666        QualType ResultTy
1667          = FnDecl->getType()->getAsFunctionType()->getResultType();
1668        ResultTy = ResultTy.getNonReferenceType();
1669
1670        // Build the actual expression node.
1671        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1672                                                 SourceLocation());
1673        UsualUnaryConversions(FnExpr);
1674
1675        Base.release();
1676        Idx.release();
1677        Args[0] = LHSExp;
1678        Args[1] = RHSExp;
1679        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1680                                                       FnExpr, Args, 2,
1681                                                       ResultTy, LLoc));
1682      } else {
1683        // We matched a built-in operator. Convert the arguments, then
1684        // break out so that we will build the appropriate built-in
1685        // operator node.
1686        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1687                                      "passing") ||
1688            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1689                                      "passing"))
1690          return ExprError();
1691
1692        break;
1693      }
1694    }
1695
1696    case OR_No_Viable_Function:
1697      // No viable function; fall through to handling this as a
1698      // built-in operator, which will produce an error message for us.
1699      break;
1700
1701    case OR_Ambiguous:
1702      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1703          << "[]"
1704          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1705      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1706      return ExprError();
1707
1708    case OR_Deleted:
1709      Diag(LLoc, diag::err_ovl_deleted_oper)
1710        << Best->Function->isDeleted()
1711        << "[]"
1712        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1713      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1714      return ExprError();
1715    }
1716
1717    // Either we found no viable overloaded operator or we matched a
1718    // built-in operator. In either case, fall through to trying to
1719    // build a built-in operation.
1720  }
1721
1722  // Perform default conversions.
1723  DefaultFunctionArrayConversion(LHSExp);
1724  DefaultFunctionArrayConversion(RHSExp);
1725
1726  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1727
1728  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1729  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1730  // in the subscript position. As a result, we need to derive the array base
1731  // and index from the expression types.
1732  Expr *BaseExpr, *IndexExpr;
1733  QualType ResultType;
1734  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1735    BaseExpr = LHSExp;
1736    IndexExpr = RHSExp;
1737    ResultType = Context.DependentTy;
1738  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
1739    BaseExpr = LHSExp;
1740    IndexExpr = RHSExp;
1741    ResultType = PTy->getPointeeType();
1742  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
1743     // Handle the uncommon case of "123[Ptr]".
1744    BaseExpr = RHSExp;
1745    IndexExpr = LHSExp;
1746    ResultType = PTy->getPointeeType();
1747  } else if (const ObjCObjectPointerType *PTy =
1748               LHSTy->getAsObjCObjectPointerType()) {
1749    BaseExpr = LHSExp;
1750    IndexExpr = RHSExp;
1751    ResultType = PTy->getPointeeType();
1752  } else if (const ObjCObjectPointerType *PTy =
1753               RHSTy->getAsObjCObjectPointerType()) {
1754     // Handle the uncommon case of "123[Ptr]".
1755    BaseExpr = RHSExp;
1756    IndexExpr = LHSExp;
1757    ResultType = PTy->getPointeeType();
1758  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1759    BaseExpr = LHSExp;    // vectors: V[123]
1760    IndexExpr = RHSExp;
1761
1762    // FIXME: need to deal with const...
1763    ResultType = VTy->getElementType();
1764  } else if (LHSTy->isArrayType()) {
1765    // If we see an array that wasn't promoted by
1766    // DefaultFunctionArrayConversion, it must be an array that
1767    // wasn't promoted because of the C90 rule that doesn't
1768    // allow promoting non-lvalue arrays.  Warn, then
1769    // force the promotion here.
1770    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1771        LHSExp->getSourceRange();
1772    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1773    LHSTy = LHSExp->getType();
1774
1775    BaseExpr = LHSExp;
1776    IndexExpr = RHSExp;
1777    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
1778  } else if (RHSTy->isArrayType()) {
1779    // Same as previous, except for 123[f().a] case
1780    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1781        RHSExp->getSourceRange();
1782    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1783    RHSTy = RHSExp->getType();
1784
1785    BaseExpr = RHSExp;
1786    IndexExpr = LHSExp;
1787    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
1788  } else {
1789    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1790       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1791  }
1792  // C99 6.5.2.1p1
1793  if (!(IndexExpr->getType()->isIntegerType() &&
1794        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
1795    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1796                     << IndexExpr->getSourceRange());
1797
1798  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1799  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1800  // type. Note that Functions are not objects, and that (in C99 parlance)
1801  // incomplete types are not object types.
1802  if (ResultType->isFunctionType()) {
1803    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1804      << ResultType << BaseExpr->getSourceRange();
1805    return ExprError();
1806  }
1807
1808  if (!ResultType->isDependentType() &&
1809      RequireCompleteType(LLoc, ResultType,
1810                          PDiag(diag::err_subscript_incomplete_type)
1811                            << BaseExpr->getSourceRange()))
1812    return ExprError();
1813
1814  // Diagnose bad cases where we step over interface counts.
1815  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1816    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1817      << ResultType << BaseExpr->getSourceRange();
1818    return ExprError();
1819  }
1820
1821  Base.release();
1822  Idx.release();
1823  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1824                                                ResultType, RLoc));
1825}
1826
1827QualType Sema::
1828CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1829                        const IdentifierInfo *CompName,
1830                        SourceLocation CompLoc) {
1831  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1832
1833  // The vector accessor can't exceed the number of elements.
1834  const char *compStr = CompName->getName();
1835
1836  // This flag determines whether or not the component is one of the four
1837  // special names that indicate a subset of exactly half the elements are
1838  // to be selected.
1839  bool HalvingSwizzle = false;
1840
1841  // This flag determines whether or not CompName has an 's' char prefix,
1842  // indicating that it is a string of hex values to be used as vector indices.
1843  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1844
1845  // Check that we've found one of the special components, or that the component
1846  // names must come from the same set.
1847  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1848      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1849    HalvingSwizzle = true;
1850  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1851    do
1852      compStr++;
1853    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1854  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1855    do
1856      compStr++;
1857    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1858  }
1859
1860  if (!HalvingSwizzle && *compStr) {
1861    // We didn't get to the end of the string. This means the component names
1862    // didn't come from the same set *or* we encountered an illegal name.
1863    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1864      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1865    return QualType();
1866  }
1867
1868  // Ensure no component accessor exceeds the width of the vector type it
1869  // operates on.
1870  if (!HalvingSwizzle) {
1871    compStr = CompName->getName();
1872
1873    if (HexSwizzle)
1874      compStr++;
1875
1876    while (*compStr) {
1877      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1878        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1879          << baseType << SourceRange(CompLoc);
1880        return QualType();
1881      }
1882    }
1883  }
1884
1885  // If this is a halving swizzle, verify that the base type has an even
1886  // number of elements.
1887  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1888    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1889      << baseType << SourceRange(CompLoc);
1890    return QualType();
1891  }
1892
1893  // The component accessor looks fine - now we need to compute the actual type.
1894  // The vector type is implied by the component accessor. For example,
1895  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1896  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1897  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1898  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1899                                     : CompName->getLength();
1900  if (HexSwizzle)
1901    CompSize--;
1902
1903  if (CompSize == 1)
1904    return vecType->getElementType();
1905
1906  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1907  // Now look up the TypeDefDecl from the vector type. Without this,
1908  // diagostics look bad. We want extended vector types to appear built-in.
1909  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1910    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1911      return Context.getTypedefType(ExtVectorDecls[i]);
1912  }
1913  return VT; // should never get here (a typedef type should always be found).
1914}
1915
1916static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1917                                                IdentifierInfo *Member,
1918                                                const Selector &Sel,
1919                                                ASTContext &Context) {
1920
1921  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
1922    return PD;
1923  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
1924    return OMD;
1925
1926  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1927       E = PDecl->protocol_end(); I != E; ++I) {
1928    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1929                                                     Context))
1930      return D;
1931  }
1932  return 0;
1933}
1934
1935static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1936                                IdentifierInfo *Member,
1937                                const Selector &Sel,
1938                                ASTContext &Context) {
1939  // Check protocols on qualified interfaces.
1940  Decl *GDecl = 0;
1941  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1942       E = QIdTy->qual_end(); I != E; ++I) {
1943    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
1944      GDecl = PD;
1945      break;
1946    }
1947    // Also must look for a getter name which uses property syntax.
1948    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1949      GDecl = OMD;
1950      break;
1951    }
1952  }
1953  if (!GDecl) {
1954    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1955         E = QIdTy->qual_end(); I != E; ++I) {
1956      // Search in the protocol-qualifier list of current protocol.
1957      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1958      if (GDecl)
1959        return GDecl;
1960    }
1961  }
1962  return GDecl;
1963}
1964
1965/// FindMethodInNestedImplementations - Look up a method in current and
1966/// all base class implementations.
1967///
1968ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
1969                                              const ObjCInterfaceDecl *IFace,
1970                                              const Selector &Sel) {
1971  ObjCMethodDecl *Method = 0;
1972  if (ObjCImplementationDecl *ImpDecl = IFace->getImplementation())
1973    Method = ImpDecl->getInstanceMethod(Sel);
1974
1975  if (!Method && IFace->getSuperClass())
1976    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
1977  return Method;
1978}
1979
1980Action::OwningExprResult
1981Sema::BuildMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1982                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1983                               DeclarationName MemberName,
1984                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS) {
1985  if (SS && SS->isInvalid())
1986    return ExprError();
1987
1988  // Since this might be a postfix expression, get rid of ParenListExprs.
1989  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
1990
1991  Expr *BaseExpr = Base.takeAs<Expr>();
1992  assert(BaseExpr && "no record expression");
1993
1994  // Perform default conversions.
1995  DefaultFunctionArrayConversion(BaseExpr);
1996
1997  QualType BaseType = BaseExpr->getType();
1998  // If this is an Objective-C pseudo-builtin and a definition is provided then
1999  // use that.
2000  if (BaseType->isObjCIdType()) {
2001    // We have an 'id' type. Rather than fall through, we check if this
2002    // is a reference to 'isa'.
2003    if (BaseType != Context.ObjCIdRedefinitionType) {
2004      BaseType = Context.ObjCIdRedefinitionType;
2005      ImpCastExprToType(BaseExpr, BaseType);
2006    }
2007  } else if (BaseType->isObjCClassType() &&
2008      BaseType != Context.ObjCClassRedefinitionType) {
2009    BaseType = Context.ObjCClassRedefinitionType;
2010    ImpCastExprToType(BaseExpr, BaseType);
2011  }
2012  assert(!BaseType.isNull() && "no type for member expression");
2013
2014  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2015  // must have pointer type, and the accessed type is the pointee.
2016  if (OpKind == tok::arrow) {
2017    if (BaseType->isDependentType())
2018      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2019                                                         BaseExpr, true,
2020                                                         OpLoc,
2021                                                         MemberName,
2022                                                         MemberLoc));
2023    else if (const PointerType *PT = BaseType->getAs<PointerType>())
2024      BaseType = PT->getPointeeType();
2025    else if (BaseType->isObjCObjectPointerType())
2026      ;
2027    else
2028      return ExprError(Diag(MemberLoc,
2029                            diag::err_typecheck_member_reference_arrow)
2030        << BaseType << BaseExpr->getSourceRange());
2031  } else {
2032    if (BaseType->isDependentType()) {
2033      // Require that the base type isn't a pointer type
2034      // (so we'll report an error for)
2035      // T* t;
2036      // t.f;
2037      //
2038      // In Obj-C++, however, the above expression is valid, since it could be
2039      // accessing the 'f' property if T is an Obj-C interface. The extra check
2040      // allows this, while still reporting an error if T is a struct pointer.
2041      const PointerType *PT = BaseType->getAs<PointerType>();
2042
2043      if (!PT || (getLangOptions().ObjC1 &&
2044                  !PT->getPointeeType()->isRecordType()))
2045        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2046                                                           BaseExpr, false,
2047                                                           OpLoc,
2048                                                           MemberName,
2049                                                           MemberLoc));
2050    }
2051  }
2052
2053  // Handle field access to simple records.  This also handles access to fields
2054  // of the ObjC 'id' struct.
2055  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2056    RecordDecl *RDecl = RTy->getDecl();
2057    if (RequireCompleteType(OpLoc, BaseType,
2058                            PDiag(diag::err_typecheck_incomplete_tag)
2059                              << BaseExpr->getSourceRange()))
2060      return ExprError();
2061
2062    DeclContext *DC = RDecl;
2063    if (SS && SS->isSet()) {
2064      // If the member name was a qualified-id, look into the
2065      // nested-name-specifier.
2066      DC = computeDeclContext(*SS, false);
2067
2068      // FIXME: If DC is not computable, we should build a
2069      // CXXUnresolvedMemberExpr.
2070      assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2071    }
2072
2073    // The record definition is complete, now make sure the member is valid.
2074    LookupResult Result
2075      = LookupQualifiedName(DC, MemberName, LookupMemberName, false);
2076
2077    if (SS && SS->isSet()) {
2078      QualType BaseTypeCanon
2079        = Context.getCanonicalType(BaseType).getUnqualifiedType();
2080      QualType MemberTypeCanon
2081        = Context.getCanonicalType(
2082            Context.getTypeDeclType(
2083                     dyn_cast<TypeDecl>(Result.getAsDecl()->getDeclContext())));
2084
2085      if (BaseTypeCanon != MemberTypeCanon &&
2086          !IsDerivedFrom(BaseTypeCanon, MemberTypeCanon))
2087        return ExprError(Diag(SS->getBeginLoc(),
2088                              diag::err_not_direct_base_or_virtual)
2089                         << MemberTypeCanon << BaseTypeCanon);
2090    }
2091
2092    if (!Result)
2093      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member_deprecated)
2094               << MemberName << BaseExpr->getSourceRange());
2095    if (Result.isAmbiguous()) {
2096      DiagnoseAmbiguousLookup(Result, MemberName, MemberLoc,
2097                              BaseExpr->getSourceRange());
2098      return ExprError();
2099    }
2100
2101    NamedDecl *MemberDecl = Result;
2102
2103    // If the decl being referenced had an error, return an error for this
2104    // sub-expr without emitting another error, in order to avoid cascading
2105    // error cases.
2106    if (MemberDecl->isInvalidDecl())
2107      return ExprError();
2108
2109    // Check the use of this field
2110    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2111      return ExprError();
2112
2113    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2114      // We may have found a field within an anonymous union or struct
2115      // (C++ [class.union]).
2116      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2117        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2118                                                        BaseExpr, OpLoc);
2119
2120      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2121      QualType MemberType = FD->getType();
2122      if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2123        MemberType = Ref->getPointeeType();
2124      else {
2125        unsigned BaseAddrSpace = BaseType.getAddressSpace();
2126        unsigned combinedQualifiers =
2127          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2128        if (FD->isMutable())
2129          combinedQualifiers &= ~QualType::Const;
2130        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2131        if (BaseAddrSpace != MemberType.getAddressSpace())
2132           MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
2133      }
2134
2135      MarkDeclarationReferenced(MemberLoc, FD);
2136      if (PerformObjectMemberConversion(BaseExpr, FD))
2137        return ExprError();
2138      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2139                                   FD, MemberLoc, MemberType));
2140    }
2141
2142    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2143      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2144      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2145                                   Var, MemberLoc,
2146                                   Var->getType().getNonReferenceType()));
2147    }
2148    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2149      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2150      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2151                                   MemberFn, MemberLoc,
2152                                   MemberFn->getType()));
2153    }
2154    if (FunctionTemplateDecl *FunTmpl
2155          = dyn_cast<FunctionTemplateDecl>(MemberDecl)) {
2156      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2157      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2158                                   FunTmpl, MemberLoc,
2159                                   Context.OverloadTy));
2160    }
2161    if (OverloadedFunctionDecl *Ovl
2162          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2163      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2164                                   Ovl, MemberLoc, Context.OverloadTy));
2165    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2166      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2167      return Owned(BuildMemberExpr(Context, BaseExpr, OpKind == tok::arrow, SS,
2168                                   Enum, MemberLoc, Enum->getType()));
2169    }
2170    if (isa<TypeDecl>(MemberDecl))
2171      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2172        << MemberName << int(OpKind == tok::arrow));
2173
2174    // We found a declaration kind that we didn't expect. This is a
2175    // generic error message that tells the user that she can't refer
2176    // to this member with '.' or '->'.
2177    return ExprError(Diag(MemberLoc,
2178                          diag::err_typecheck_member_reference_unknown)
2179      << MemberName << int(OpKind == tok::arrow));
2180  }
2181
2182  // Handle properties on ObjC 'Class' types.
2183  if (OpKind == tok::period && BaseType->isObjCClassType()) {
2184    // Also must look for a getter name which uses property syntax.
2185    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2186    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2187    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2188      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2189      ObjCMethodDecl *Getter;
2190      // FIXME: need to also look locally in the implementation.
2191      if ((Getter = IFace->lookupClassMethod(Sel))) {
2192        // Check the use of this method.
2193        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2194          return ExprError();
2195      }
2196      // If we found a getter then this may be a valid dot-reference, we
2197      // will look for the matching setter, in case it is needed.
2198      Selector SetterSel =
2199        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2200                                           PP.getSelectorTable(), Member);
2201      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2202      if (!Setter) {
2203        // If this reference is in an @implementation, also check for 'private'
2204        // methods.
2205        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2206      }
2207      // Look through local category implementations associated with the class.
2208      if (!Setter)
2209        Setter = IFace->getCategoryClassMethod(SetterSel);
2210
2211      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2212        return ExprError();
2213
2214      if (Getter || Setter) {
2215        QualType PType;
2216
2217        if (Getter)
2218          PType = Getter->getResultType();
2219        else
2220          // Get the expression type from Setter's incoming parameter.
2221          PType = (*(Setter->param_end() -1))->getType();
2222        // FIXME: we must check that the setter has property type.
2223        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2224                                        Setter, MemberLoc, BaseExpr));
2225      }
2226      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2227        << MemberName << BaseType);
2228    }
2229  }
2230  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2231  // (*Obj).ivar.
2232  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2233      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2234    const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
2235    const ObjCInterfaceType *IFaceT =
2236      OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
2237    if (IFaceT) {
2238      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2239
2240      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2241      ObjCInterfaceDecl *ClassDeclared;
2242      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2243
2244      if (IV) {
2245        // If the decl being referenced had an error, return an error for this
2246        // sub-expr without emitting another error, in order to avoid cascading
2247        // error cases.
2248        if (IV->isInvalidDecl())
2249          return ExprError();
2250
2251        // Check whether we can reference this field.
2252        if (DiagnoseUseOfDecl(IV, MemberLoc))
2253          return ExprError();
2254        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2255            IV->getAccessControl() != ObjCIvarDecl::Package) {
2256          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2257          if (ObjCMethodDecl *MD = getCurMethodDecl())
2258            ClassOfMethodDecl =  MD->getClassInterface();
2259          else if (ObjCImpDecl && getCurFunctionDecl()) {
2260            // Case of a c-function declared inside an objc implementation.
2261            // FIXME: For a c-style function nested inside an objc implementation
2262            // class, there is no implementation context available, so we pass
2263            // down the context as argument to this routine. Ideally, this context
2264            // need be passed down in the AST node and somehow calculated from the
2265            // AST for a function decl.
2266            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2267            if (ObjCImplementationDecl *IMPD =
2268                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2269              ClassOfMethodDecl = IMPD->getClassInterface();
2270            else if (ObjCCategoryImplDecl* CatImplClass =
2271                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2272              ClassOfMethodDecl = CatImplClass->getClassInterface();
2273          }
2274
2275          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2276            if (ClassDeclared != IDecl ||
2277                ClassOfMethodDecl != ClassDeclared)
2278              Diag(MemberLoc, diag::error_private_ivar_access)
2279                << IV->getDeclName();
2280          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2281            // @protected
2282            Diag(MemberLoc, diag::error_protected_ivar_access)
2283              << IV->getDeclName();
2284        }
2285
2286        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2287                                                   MemberLoc, BaseExpr,
2288                                                   OpKind == tok::arrow));
2289      }
2290      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2291                         << IDecl->getDeclName() << MemberName
2292                         << BaseExpr->getSourceRange());
2293    }
2294  }
2295  // Handle properties on 'id' and qualified "id".
2296  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2297                                BaseType->isObjCQualifiedIdType())) {
2298    const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
2299    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2300
2301    // Check protocols on qualified interfaces.
2302    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2303    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2304      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2305        // Check the use of this declaration
2306        if (DiagnoseUseOfDecl(PD, MemberLoc))
2307          return ExprError();
2308
2309        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2310                                                       MemberLoc, BaseExpr));
2311      }
2312      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2313        // Check the use of this method.
2314        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2315          return ExprError();
2316
2317        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2318                                                   OMD->getResultType(),
2319                                                   OMD, OpLoc, MemberLoc,
2320                                                   NULL, 0));
2321      }
2322    }
2323
2324    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2325                       << MemberName << BaseType);
2326  }
2327  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2328  // pointer to a (potentially qualified) interface type.
2329  const ObjCObjectPointerType *OPT;
2330  if (OpKind == tok::period &&
2331      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2332    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2333    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2334    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2335
2336    // Search for a declared property first.
2337    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
2338      // Check whether we can reference this property.
2339      if (DiagnoseUseOfDecl(PD, MemberLoc))
2340        return ExprError();
2341      QualType ResTy = PD->getType();
2342      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2343      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2344      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2345        ResTy = Getter->getResultType();
2346      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2347                                                     MemberLoc, BaseExpr));
2348    }
2349    // Check protocols on qualified interfaces.
2350    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2351         E = OPT->qual_end(); I != E; ++I)
2352      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2353        // Check whether we can reference this property.
2354        if (DiagnoseUseOfDecl(PD, MemberLoc))
2355          return ExprError();
2356
2357        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2358                                                       MemberLoc, BaseExpr));
2359      }
2360    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2361         E = OPT->qual_end(); I != E; ++I)
2362      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2363        // Check whether we can reference this property.
2364        if (DiagnoseUseOfDecl(PD, MemberLoc))
2365          return ExprError();
2366
2367        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2368                                                       MemberLoc, BaseExpr));
2369      }
2370    // If that failed, look for an "implicit" property by seeing if the nullary
2371    // selector is implemented.
2372
2373    // FIXME: The logic for looking up nullary and unary selectors should be
2374    // shared with the code in ActOnInstanceMessage.
2375
2376    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2377    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2378
2379    // If this reference is in an @implementation, check for 'private' methods.
2380    if (!Getter)
2381      Getter = FindMethodInNestedImplementations(IFace, Sel);
2382
2383    // Look through local category implementations associated with the class.
2384    if (!Getter)
2385      Getter = IFace->getCategoryInstanceMethod(Sel);
2386    if (Getter) {
2387      // Check if we can reference this property.
2388      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2389        return ExprError();
2390    }
2391    // If we found a getter then this may be a valid dot-reference, we
2392    // will look for the matching setter, in case it is needed.
2393    Selector SetterSel =
2394      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2395                                         PP.getSelectorTable(), Member);
2396    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2397    if (!Setter) {
2398      // If this reference is in an @implementation, also check for 'private'
2399      // methods.
2400      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2401    }
2402    // Look through local category implementations associated with the class.
2403    if (!Setter)
2404      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2405
2406    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2407      return ExprError();
2408
2409    if (Getter || Setter) {
2410      QualType PType;
2411
2412      if (Getter)
2413        PType = Getter->getResultType();
2414      else
2415        // Get the expression type from Setter's incoming parameter.
2416        PType = (*(Setter->param_end() -1))->getType();
2417      // FIXME: we must check that the setter has property type.
2418      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
2419                                      Setter, MemberLoc, BaseExpr));
2420    }
2421    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2422      << MemberName << BaseType);
2423  }
2424
2425  // Handle the following exceptional case (*Obj).isa.
2426  if (OpKind == tok::period &&
2427      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2428      MemberName.getAsIdentifierInfo()->isStr("isa"))
2429    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2430                                           Context.getObjCIdType()));
2431
2432  // Handle 'field access' to vectors, such as 'V.xx'.
2433  if (BaseType->isExtVectorType()) {
2434    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2435    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2436    if (ret.isNull())
2437      return ExprError();
2438    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
2439                                                    MemberLoc));
2440  }
2441
2442  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2443    << BaseType << BaseExpr->getSourceRange();
2444
2445  // If the user is trying to apply -> or . to a function or function
2446  // pointer, it's probably because they forgot parentheses to call
2447  // the function. Suggest the addition of those parentheses.
2448  if (BaseType == Context.OverloadTy ||
2449      BaseType->isFunctionType() ||
2450      (BaseType->isPointerType() &&
2451       BaseType->getAs<PointerType>()->isFunctionType())) {
2452    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2453    Diag(Loc, diag::note_member_reference_needs_call)
2454      << CodeModificationHint::CreateInsertion(Loc, "()");
2455  }
2456
2457  return ExprError();
2458}
2459
2460Action::OwningExprResult
2461Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2462                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2463                               IdentifierInfo &Member,
2464                               DeclPtrTy ObjCImpDecl, const CXXScopeSpec *SS) {
2465  return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, MemberLoc,
2466                                  DeclarationName(&Member), ObjCImpDecl, SS);
2467}
2468
2469Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
2470                                                    FunctionDecl *FD,
2471                                                    ParmVarDecl *Param) {
2472  if (Param->hasUnparsedDefaultArg()) {
2473    Diag (CallLoc,
2474          diag::err_use_of_default_argument_to_function_declared_later) <<
2475      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
2476    Diag(UnparsedDefaultArgLocs[Param],
2477          diag::note_default_argument_declared_here);
2478  } else {
2479    if (Param->hasUninstantiatedDefaultArg()) {
2480      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
2481
2482      // Instantiate the expression.
2483      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
2484
2485      // FIXME: We should really make a new InstantiatingTemplate ctor
2486      // that has a better message - right now we're just piggy-backing
2487      // off the "default template argument" error message.
2488      InstantiatingTemplate Inst(*this, CallLoc, FD->getPrimaryTemplate(),
2489                                 ArgList.getInnermost().getFlatArgumentList(),
2490                                 ArgList.getInnermost().flat_size());
2491
2492      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
2493      if (Result.isInvalid())
2494        return ExprError();
2495
2496      if (SetParamDefaultArgument(Param, move(Result),
2497                                  /*FIXME:EqualLoc*/
2498                                  UninstExpr->getSourceRange().getBegin()))
2499        return ExprError();
2500    }
2501
2502    Expr *DefaultExpr = Param->getDefaultArg();
2503
2504    // If the default expression creates temporaries, we need to
2505    // push them to the current stack of expression temporaries so they'll
2506    // be properly destroyed.
2507    if (CXXExprWithTemporaries *E
2508          = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2509      assert(!E->shouldDestroyTemporaries() &&
2510             "Can't destroy temporaries in a default argument expr!");
2511      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2512        ExprTemporaries.push_back(E->getTemporary(I));
2513    }
2514  }
2515
2516  // We already type-checked the argument, so we know it works.
2517  return Owned(CXXDefaultArgExpr::Create(Context, Param));
2518}
2519
2520/// ConvertArgumentsForCall - Converts the arguments specified in
2521/// Args/NumArgs to the parameter types of the function FDecl with
2522/// function prototype Proto. Call is the call expression itself, and
2523/// Fn is the function expression. For a C++ member function, this
2524/// routine does not attempt to convert the object argument. Returns
2525/// true if the call is ill-formed.
2526bool
2527Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2528                              FunctionDecl *FDecl,
2529                              const FunctionProtoType *Proto,
2530                              Expr **Args, unsigned NumArgs,
2531                              SourceLocation RParenLoc) {
2532  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2533  // assignment, to the types of the corresponding parameter, ...
2534  unsigned NumArgsInProto = Proto->getNumArgs();
2535  unsigned NumArgsToCheck = NumArgs;
2536  bool Invalid = false;
2537
2538  // If too few arguments are available (and we don't have default
2539  // arguments for the remaining parameters), don't make the call.
2540  if (NumArgs < NumArgsInProto) {
2541    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2542      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2543        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2544    // Use default arguments for missing arguments
2545    NumArgsToCheck = NumArgsInProto;
2546    Call->setNumArgs(Context, NumArgsInProto);
2547  }
2548
2549  // If too many are passed and not variadic, error on the extras and drop
2550  // them.
2551  if (NumArgs > NumArgsInProto) {
2552    if (!Proto->isVariadic()) {
2553      Diag(Args[NumArgsInProto]->getLocStart(),
2554           diag::err_typecheck_call_too_many_args)
2555        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2556        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2557                       Args[NumArgs-1]->getLocEnd());
2558      // This deletes the extra arguments.
2559      Call->setNumArgs(Context, NumArgsInProto);
2560      Invalid = true;
2561    }
2562    NumArgsToCheck = NumArgsInProto;
2563  }
2564
2565  // Continue to check argument types (even if we have too few/many args).
2566  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2567    QualType ProtoArgType = Proto->getArgType(i);
2568
2569    Expr *Arg;
2570    if (i < NumArgs) {
2571      Arg = Args[i];
2572
2573      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2574                              ProtoArgType,
2575                              PDiag(diag::err_call_incomplete_argument)
2576                                << Arg->getSourceRange()))
2577        return true;
2578
2579      // Pass the argument.
2580      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2581        return true;
2582    } else {
2583      ParmVarDecl *Param = FDecl->getParamDecl(i);
2584
2585      OwningExprResult ArgExpr =
2586        BuildCXXDefaultArgExpr(Call->getSourceRange().getBegin(),
2587                               FDecl, Param);
2588      if (ArgExpr.isInvalid())
2589        return true;
2590
2591      Arg = ArgExpr.takeAs<Expr>();
2592    }
2593
2594    Call->setArg(i, Arg);
2595  }
2596
2597  // If this is a variadic call, handle args passed through "...".
2598  if (Proto->isVariadic()) {
2599    VariadicCallType CallType = VariadicFunction;
2600    if (Fn->getType()->isBlockPointerType())
2601      CallType = VariadicBlock; // Block
2602    else if (isa<MemberExpr>(Fn))
2603      CallType = VariadicMethod;
2604
2605    // Promote the arguments (C99 6.5.2.2p7).
2606    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2607      Expr *Arg = Args[i];
2608      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2609      Call->setArg(i, Arg);
2610    }
2611  }
2612
2613  return Invalid;
2614}
2615
2616/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2617/// This provides the location of the left/right parens and a list of comma
2618/// locations.
2619Action::OwningExprResult
2620Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2621                    MultiExprArg args,
2622                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2623  unsigned NumArgs = args.size();
2624
2625  // Since this might be a postfix expression, get rid of ParenListExprs.
2626  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
2627
2628  Expr *Fn = fn.takeAs<Expr>();
2629  Expr **Args = reinterpret_cast<Expr**>(args.release());
2630  assert(Fn && "no function call expression");
2631  FunctionDecl *FDecl = NULL;
2632  NamedDecl *NDecl = NULL;
2633  DeclarationName UnqualifiedName;
2634
2635  if (getLangOptions().CPlusPlus) {
2636    // Determine whether this is a dependent call inside a C++ template,
2637    // in which case we won't do any semantic analysis now.
2638    // FIXME: Will need to cache the results of name lookup (including ADL) in
2639    // Fn.
2640    bool Dependent = false;
2641    if (Fn->isTypeDependent())
2642      Dependent = true;
2643    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2644      Dependent = true;
2645
2646    if (Dependent)
2647      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2648                                          Context.DependentTy, RParenLoc));
2649
2650    // Determine whether this is a call to an object (C++ [over.call.object]).
2651    if (Fn->getType()->isRecordType())
2652      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2653                                                CommaLocs, RParenLoc));
2654
2655    // Determine whether this is a call to a member function.
2656    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2657      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2658      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2659          isa<CXXMethodDecl>(MemDecl) ||
2660          (isa<FunctionTemplateDecl>(MemDecl) &&
2661           isa<CXXMethodDecl>(
2662                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2663        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2664                                               CommaLocs, RParenLoc));
2665    }
2666  }
2667
2668  // If we're directly calling a function, get the appropriate declaration.
2669  // Also, in C++, keep track of whether we should perform argument-dependent
2670  // lookup and whether there were any explicitly-specified template arguments.
2671  Expr *FnExpr = Fn;
2672  bool ADL = true;
2673  bool HasExplicitTemplateArgs = 0;
2674  const TemplateArgument *ExplicitTemplateArgs = 0;
2675  unsigned NumExplicitTemplateArgs = 0;
2676  while (true) {
2677    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2678      FnExpr = IcExpr->getSubExpr();
2679    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2680      // Parentheses around a function disable ADL
2681      // (C++0x [basic.lookup.argdep]p1).
2682      ADL = false;
2683      FnExpr = PExpr->getSubExpr();
2684    } else if (isa<UnaryOperator>(FnExpr) &&
2685               cast<UnaryOperator>(FnExpr)->getOpcode()
2686                 == UnaryOperator::AddrOf) {
2687      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2688    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2689      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2690      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2691      NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2692      break;
2693    } else if (UnresolvedFunctionNameExpr *DepName
2694                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2695      UnqualifiedName = DepName->getName();
2696      break;
2697    } else if (TemplateIdRefExpr *TemplateIdRef
2698                 = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2699      NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2700      if (!NDecl)
2701        NDecl = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2702      HasExplicitTemplateArgs = true;
2703      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2704      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2705
2706      // C++ [temp.arg.explicit]p6:
2707      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2708      //   applies even when the function name is not visible within the
2709      //   scope of the call. This is because the call still has the syntactic
2710      //   form of a function call (3.4.1). But when a function template with
2711      //   explicit template arguments is used, the call does not have the
2712      //   correct syntactic form unless there is a function template with
2713      //   that name visible at the point of the call. If no such name is
2714      //   visible, the call is not syntactically well-formed and
2715      //   argument-dependent lookup does not apply. If some such name is
2716      //   visible, argument dependent lookup applies and additional function
2717      //   templates may be found in other namespaces.
2718      //
2719      // The summary of this paragraph is that, if we get to this point and the
2720      // template-id was not a qualified name, then argument-dependent lookup
2721      // is still possible.
2722      if (TemplateIdRef->getQualifier())
2723        ADL = false;
2724      break;
2725    } else {
2726      // Any kind of name that does not refer to a declaration (or
2727      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2728      ADL = false;
2729      break;
2730    }
2731  }
2732
2733  OverloadedFunctionDecl *Ovl = 0;
2734  FunctionTemplateDecl *FunctionTemplate = 0;
2735  if (NDecl) {
2736    FDecl = dyn_cast<FunctionDecl>(NDecl);
2737    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2738      FDecl = FunctionTemplate->getTemplatedDecl();
2739    else
2740      FDecl = dyn_cast<FunctionDecl>(NDecl);
2741    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2742  }
2743
2744  if (Ovl || FunctionTemplate ||
2745      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2746    // We don't perform ADL for implicit declarations of builtins.
2747    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2748      ADL = false;
2749
2750    // We don't perform ADL in C.
2751    if (!getLangOptions().CPlusPlus)
2752      ADL = false;
2753
2754    if (Ovl || FunctionTemplate || ADL) {
2755      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2756                                      HasExplicitTemplateArgs,
2757                                      ExplicitTemplateArgs,
2758                                      NumExplicitTemplateArgs,
2759                                      LParenLoc, Args, NumArgs, CommaLocs,
2760                                      RParenLoc, ADL);
2761      if (!FDecl)
2762        return ExprError();
2763
2764      // Update Fn to refer to the actual function selected.
2765      Expr *NewFn = 0;
2766      if (QualifiedDeclRefExpr *QDRExpr
2767            = dyn_cast<QualifiedDeclRefExpr>(FnExpr))
2768        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2769                                                   QDRExpr->getLocation(),
2770                                                   false, false,
2771                                                 QDRExpr->getQualifierRange(),
2772                                                   QDRExpr->getQualifier());
2773      else
2774        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2775                                          Fn->getSourceRange().getBegin());
2776      Fn->Destroy(Context);
2777      Fn = NewFn;
2778    }
2779  }
2780
2781  // Promote the function operand.
2782  UsualUnaryConversions(Fn);
2783
2784  // Make the call expr early, before semantic checks.  This guarantees cleanup
2785  // of arguments and function on error.
2786  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2787                                                               Args, NumArgs,
2788                                                               Context.BoolTy,
2789                                                               RParenLoc));
2790
2791  const FunctionType *FuncT;
2792  if (!Fn->getType()->isBlockPointerType()) {
2793    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2794    // have type pointer to function".
2795    const PointerType *PT = Fn->getType()->getAs<PointerType>();
2796    if (PT == 0)
2797      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2798        << Fn->getType() << Fn->getSourceRange());
2799    FuncT = PT->getPointeeType()->getAsFunctionType();
2800  } else { // This is a block call.
2801    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
2802                getAsFunctionType();
2803  }
2804  if (FuncT == 0)
2805    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2806      << Fn->getType() << Fn->getSourceRange());
2807
2808  // Check for a valid return type
2809  if (!FuncT->getResultType()->isVoidType() &&
2810      RequireCompleteType(Fn->getSourceRange().getBegin(),
2811                          FuncT->getResultType(),
2812                          PDiag(diag::err_call_incomplete_return)
2813                            << TheCall->getSourceRange()))
2814    return ExprError();
2815
2816  // We know the result type of the call, set it.
2817  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2818
2819  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2820    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2821                                RParenLoc))
2822      return ExprError();
2823  } else {
2824    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2825
2826    if (FDecl) {
2827      // Check if we have too few/too many template arguments, based
2828      // on our knowledge of the function definition.
2829      const FunctionDecl *Def = 0;
2830      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2831        const FunctionProtoType *Proto =
2832            Def->getType()->getAsFunctionProtoType();
2833        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2834          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2835            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2836        }
2837      }
2838    }
2839
2840    // Promote the arguments (C99 6.5.2.2p6).
2841    for (unsigned i = 0; i != NumArgs; i++) {
2842      Expr *Arg = Args[i];
2843      DefaultArgumentPromotion(Arg);
2844      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2845                              Arg->getType(),
2846                              PDiag(diag::err_call_incomplete_argument)
2847                                << Arg->getSourceRange()))
2848        return ExprError();
2849      TheCall->setArg(i, Arg);
2850    }
2851  }
2852
2853  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2854    if (!Method->isStatic())
2855      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2856        << Fn->getSourceRange());
2857
2858  // Check for sentinels
2859  if (NDecl)
2860    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2861
2862  // Do special checking on direct calls to functions.
2863  if (FDecl) {
2864    if (CheckFunctionCall(FDecl, TheCall.get()))
2865      return ExprError();
2866
2867    if (unsigned BuiltinID = FDecl->getBuiltinID(Context))
2868      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
2869  } else if (NDecl) {
2870    if (CheckBlockCall(NDecl, TheCall.get()))
2871      return ExprError();
2872  }
2873
2874  return MaybeBindToTemporary(TheCall.take());
2875}
2876
2877Action::OwningExprResult
2878Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2879                           SourceLocation RParenLoc, ExprArg InitExpr) {
2880  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2881  //FIXME: Preserve type source info.
2882  QualType literalType = GetTypeFromParser(Ty);
2883  // FIXME: put back this assert when initializers are worked out.
2884  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2885  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2886
2887  if (literalType->isArrayType()) {
2888    if (literalType->isVariableArrayType())
2889      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2890        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2891  } else if (!literalType->isDependentType() &&
2892             RequireCompleteType(LParenLoc, literalType,
2893                      PDiag(diag::err_typecheck_decl_incomplete_type)
2894                        << SourceRange(LParenLoc,
2895                                       literalExpr->getSourceRange().getEnd())))
2896    return ExprError();
2897
2898  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2899                            DeclarationName(), /*FIXME:DirectInit=*/false))
2900    return ExprError();
2901
2902  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2903  if (isFileScope) { // 6.5.2.5p3
2904    if (CheckForConstantInitializer(literalExpr, literalType))
2905      return ExprError();
2906  }
2907  InitExpr.release();
2908  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2909                                                 literalExpr, isFileScope));
2910}
2911
2912Action::OwningExprResult
2913Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2914                    SourceLocation RBraceLoc) {
2915  unsigned NumInit = initlist.size();
2916  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2917
2918  // Semantic analysis for initializers is done by ActOnDeclarator() and
2919  // CheckInitializer() - it requires knowledge of the object being intialized.
2920
2921  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2922                                               RBraceLoc);
2923  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2924  return Owned(E);
2925}
2926
2927/// CheckCastTypes - Check type constraints for casting between types.
2928bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
2929                          CastExpr::CastKind& Kind,
2930                          CXXMethodDecl *& ConversionDecl,
2931                          bool FunctionalStyle) {
2932  if (getLangOptions().CPlusPlus)
2933    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
2934                              ConversionDecl);
2935
2936  DefaultFunctionArrayConversion(castExpr);
2937
2938  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2939  // type needs to be scalar.
2940  if (castType->isVoidType()) {
2941    // Cast to void allows any expr type.
2942  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2943    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2944        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2945        (castType->isStructureType() || castType->isUnionType())) {
2946      // GCC struct/union extension: allow cast to self.
2947      // FIXME: Check that the cast destination type is complete.
2948      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2949        << castType << castExpr->getSourceRange();
2950      Kind = CastExpr::CK_NoOp;
2951    } else if (castType->isUnionType()) {
2952      // GCC cast to union extension
2953      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
2954      RecordDecl::field_iterator Field, FieldEnd;
2955      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2956           Field != FieldEnd; ++Field) {
2957        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2958            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2959          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2960            << castExpr->getSourceRange();
2961          break;
2962        }
2963      }
2964      if (Field == FieldEnd)
2965        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2966          << castExpr->getType() << castExpr->getSourceRange();
2967      Kind = CastExpr::CK_ToUnion;
2968    } else {
2969      // Reject any other conversions to non-scalar types.
2970      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2971        << castType << castExpr->getSourceRange();
2972    }
2973  } else if (!castExpr->getType()->isScalarType() &&
2974             !castExpr->getType()->isVectorType()) {
2975    return Diag(castExpr->getLocStart(),
2976                diag::err_typecheck_expect_scalar_operand)
2977      << castExpr->getType() << castExpr->getSourceRange();
2978  } else if (castType->isExtVectorType()) {
2979    if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
2980      return true;
2981  } else if (castType->isVectorType()) {
2982    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2983      return true;
2984  } else if (castExpr->getType()->isVectorType()) {
2985    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2986      return true;
2987  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2988    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2989  } else if (!castType->isArithmeticType()) {
2990    QualType castExprType = castExpr->getType();
2991    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2992      return Diag(castExpr->getLocStart(),
2993                  diag::err_cast_pointer_from_non_pointer_int)
2994        << castExprType << castExpr->getSourceRange();
2995  } else if (!castExpr->getType()->isArithmeticType()) {
2996    if (!castType->isIntegralType() && castType->isArithmeticType())
2997      return Diag(castExpr->getLocStart(),
2998                  diag::err_cast_pointer_to_non_pointer_int)
2999        << castType << castExpr->getSourceRange();
3000  }
3001  if (isa<ObjCSelectorExpr>(castExpr))
3002    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3003  return false;
3004}
3005
3006bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
3007  assert(VectorTy->isVectorType() && "Not a vector type!");
3008
3009  if (Ty->isVectorType() || Ty->isIntegerType()) {
3010    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3011      return Diag(R.getBegin(),
3012                  Ty->isVectorType() ?
3013                  diag::err_invalid_conversion_between_vectors :
3014                  diag::err_invalid_conversion_between_vector_and_integer)
3015        << VectorTy << Ty << R;
3016  } else
3017    return Diag(R.getBegin(),
3018                diag::err_invalid_conversion_between_vector_and_scalar)
3019      << VectorTy << Ty << R;
3020
3021  return false;
3022}
3023
3024bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
3025  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3026
3027  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3028  // an ExtVectorType.
3029  if (SrcTy->isVectorType()) {
3030    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3031      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3032        << DestTy << SrcTy << R;
3033    return false;
3034  }
3035
3036  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3037  // conversion will take place first from scalar to elt type, and then
3038  // splat from elt type to vector.
3039  if (SrcTy->isPointerType())
3040    return Diag(R.getBegin(),
3041                diag::err_invalid_conversion_between_vector_and_scalar)
3042      << DestTy << SrcTy << R;
3043  return false;
3044}
3045
3046Action::OwningExprResult
3047Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3048                    SourceLocation RParenLoc, ExprArg Op) {
3049  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3050
3051  assert((Ty != 0) && (Op.get() != 0) &&
3052         "ActOnCastExpr(): missing type or expr");
3053
3054  Expr *castExpr = (Expr *)Op.get();
3055  //FIXME: Preserve type source info.
3056  QualType castType = GetTypeFromParser(Ty);
3057
3058  // If the Expr being casted is a ParenListExpr, handle it specially.
3059  if (isa<ParenListExpr>(castExpr))
3060    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),castType);
3061  CXXMethodDecl *ConversionDecl = 0;
3062  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr,
3063                     Kind, ConversionDecl))
3064    return ExprError();
3065  if (ConversionDecl) {
3066    // encounterred a c-style cast requiring a conversion function.
3067    if (CXXConversionDecl *CD = dyn_cast<CXXConversionDecl>(ConversionDecl)) {
3068      castExpr =
3069        new (Context) CXXFunctionalCastExpr(castType.getNonReferenceType(),
3070                                            castType, LParenLoc,
3071                                            CastExpr::CK_UserDefinedConversion,
3072                                            castExpr, CD,
3073                                            RParenLoc);
3074      Kind = CastExpr::CK_UserDefinedConversion;
3075    }
3076    // FIXME. AST for when dealing with conversion functions (FunctionDecl).
3077  }
3078
3079  Op.release();
3080  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3081                                            Kind, castExpr, castType,
3082                                            LParenLoc, RParenLoc));
3083}
3084
3085/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3086/// of comma binary operators.
3087Action::OwningExprResult
3088Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3089  Expr *expr = EA.takeAs<Expr>();
3090  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3091  if (!E)
3092    return Owned(expr);
3093
3094  OwningExprResult Result(*this, E->getExpr(0));
3095
3096  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3097    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3098                        Owned(E->getExpr(i)));
3099
3100  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3101}
3102
3103Action::OwningExprResult
3104Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3105                               SourceLocation RParenLoc, ExprArg Op,
3106                               QualType Ty) {
3107  ParenListExpr *PE = (ParenListExpr *)Op.get();
3108
3109  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3110  // then handle it as such.
3111  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3112    if (PE->getNumExprs() == 0) {
3113      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3114      return ExprError();
3115    }
3116
3117    llvm::SmallVector<Expr *, 8> initExprs;
3118    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
3119      initExprs.push_back(PE->getExpr(i));
3120
3121    // FIXME: This means that pretty-printing the final AST will produce curly
3122    // braces instead of the original commas.
3123    Op.release();
3124    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
3125                                                 initExprs.size(), RParenLoc);
3126    E->setType(Ty);
3127    return ActOnCompoundLiteral(LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,
3128                                Owned(E));
3129  } else {
3130    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
3131    // sequence of BinOp comma operators.
3132    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
3133    return ActOnCastExpr(S, LParenLoc, Ty.getAsOpaquePtr(), RParenLoc,move(Op));
3134  }
3135}
3136
3137Action::OwningExprResult Sema::ActOnParenListExpr(SourceLocation L,
3138                                                  SourceLocation R,
3139                                                  MultiExprArg Val) {
3140  unsigned nexprs = Val.size();
3141  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
3142  assert((exprs != 0) && "ActOnParenListExpr() missing expr list");
3143  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
3144  return Owned(expr);
3145}
3146
3147/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3148/// In that case, lhs = cond.
3149/// C99 6.5.15
3150QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3151                                        SourceLocation QuestionLoc) {
3152  // C++ is sufficiently different to merit its own checker.
3153  if (getLangOptions().CPlusPlus)
3154    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3155
3156  UsualUnaryConversions(Cond);
3157  UsualUnaryConversions(LHS);
3158  UsualUnaryConversions(RHS);
3159  QualType CondTy = Cond->getType();
3160  QualType LHSTy = LHS->getType();
3161  QualType RHSTy = RHS->getType();
3162
3163  // first, check the condition.
3164  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3165    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3166      << CondTy;
3167    return QualType();
3168  }
3169
3170  // Now check the two expressions.
3171  if (LHSTy->isVectorType() || RHSTy->isVectorType())
3172    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3173
3174  // If both operands have arithmetic type, do the usual arithmetic conversions
3175  // to find a common type: C99 6.5.15p3,5.
3176  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3177    UsualArithmeticConversions(LHS, RHS);
3178    return LHS->getType();
3179  }
3180
3181  // If both operands are the same structure or union type, the result is that
3182  // type.
3183  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
3184    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
3185      if (LHSRT->getDecl() == RHSRT->getDecl())
3186        // "If both the operands have structure or union type, the result has
3187        // that type."  This implies that CV qualifiers are dropped.
3188        return LHSTy.getUnqualifiedType();
3189    // FIXME: Type of conditional expression must be complete in C mode.
3190  }
3191
3192  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3193  // The following || allows only one side to be void (a GCC-ism).
3194  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3195    if (!LHSTy->isVoidType())
3196      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3197        << RHS->getSourceRange();
3198    if (!RHSTy->isVoidType())
3199      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3200        << LHS->getSourceRange();
3201    ImpCastExprToType(LHS, Context.VoidTy);
3202    ImpCastExprToType(RHS, Context.VoidTy);
3203    return Context.VoidTy;
3204  }
3205  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3206  // the type of the other operand."
3207  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3208      RHS->isNullPointerConstant(Context)) {
3209    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
3210    return LHSTy;
3211  }
3212  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3213      LHS->isNullPointerConstant(Context)) {
3214    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
3215    return RHSTy;
3216  }
3217  // Handle things like Class and struct objc_class*.  Here we case the result
3218  // to the pseudo-builtin, because that will be implicitly cast back to the
3219  // redefinition type if an attempt is made to access its fields.
3220  if (LHSTy->isObjCClassType() &&
3221      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3222    ImpCastExprToType(RHS, LHSTy);
3223    return LHSTy;
3224  }
3225  if (RHSTy->isObjCClassType() &&
3226      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
3227    ImpCastExprToType(LHS, RHSTy);
3228    return RHSTy;
3229  }
3230  // And the same for struct objc_object* / id
3231  if (LHSTy->isObjCIdType() &&
3232      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3233    ImpCastExprToType(RHS, LHSTy);
3234    return LHSTy;
3235  }
3236  if (RHSTy->isObjCIdType() &&
3237      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
3238    ImpCastExprToType(LHS, RHSTy);
3239    return RHSTy;
3240  }
3241  // Handle block pointer types.
3242  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3243    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3244      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3245        QualType destType = Context.getPointerType(Context.VoidTy);
3246        ImpCastExprToType(LHS, destType);
3247        ImpCastExprToType(RHS, destType);
3248        return destType;
3249      }
3250      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3251            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3252      return QualType();
3253    }
3254    // We have 2 block pointer types.
3255    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3256      // Two identical block pointer types are always compatible.
3257      return LHSTy;
3258    }
3259    // The block pointer types aren't identical, continue checking.
3260    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
3261    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
3262
3263    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3264                                    rhptee.getUnqualifiedType())) {
3265      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3266        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3267      // In this situation, we assume void* type. No especially good
3268      // reason, but this is what gcc does, and we do have to pick
3269      // to get a consistent AST.
3270      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3271      ImpCastExprToType(LHS, incompatTy);
3272      ImpCastExprToType(RHS, incompatTy);
3273      return incompatTy;
3274    }
3275    // The block pointer types are compatible.
3276    ImpCastExprToType(LHS, LHSTy);
3277    ImpCastExprToType(RHS, LHSTy);
3278    return LHSTy;
3279  }
3280  // Check constraints for Objective-C object pointers types.
3281  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3282
3283    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3284      // Two identical object pointer types are always compatible.
3285      return LHSTy;
3286    }
3287    const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
3288    const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
3289    QualType compositeType = LHSTy;
3290
3291    // If both operands are interfaces and either operand can be
3292    // assigned to the other, use that type as the composite
3293    // type. This allows
3294    //   xxx ? (A*) a : (B*) b
3295    // where B is a subclass of A.
3296    //
3297    // Additionally, as for assignment, if either type is 'id'
3298    // allow silent coercion. Finally, if the types are
3299    // incompatible then make sure to use 'id' as the composite
3300    // type so the result is acceptable for sending messages to.
3301
3302    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3303    // It could return the composite type.
3304    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3305      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
3306    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3307      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
3308    } else if ((LHSTy->isObjCQualifiedIdType() ||
3309                RHSTy->isObjCQualifiedIdType()) &&
3310                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3311      // Need to handle "id<xx>" explicitly.
3312      // GCC allows qualified id and any Objective-C type to devolve to
3313      // id. Currently localizing to here until clear this should be
3314      // part of ObjCQualifiedIdTypesAreCompatible.
3315      compositeType = Context.getObjCIdType();
3316    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3317      compositeType = Context.getObjCIdType();
3318    } else {
3319      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3320        << LHSTy << RHSTy
3321        << LHS->getSourceRange() << RHS->getSourceRange();
3322      QualType incompatTy = Context.getObjCIdType();
3323      ImpCastExprToType(LHS, incompatTy);
3324      ImpCastExprToType(RHS, incompatTy);
3325      return incompatTy;
3326    }
3327    // The object pointer types are compatible.
3328    ImpCastExprToType(LHS, compositeType);
3329    ImpCastExprToType(RHS, compositeType);
3330    return compositeType;
3331  }
3332  // Check Objective-C object pointer types and 'void *'
3333  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3334    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3335    QualType rhptee = RHSTy->getAsObjCObjectPointerType()->getPointeeType();
3336    QualType destPointee = lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3337    QualType destType = Context.getPointerType(destPointee);
3338    ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3339    ImpCastExprToType(RHS, destType); // promote to void*
3340    return destType;
3341  }
3342  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3343    QualType lhptee = LHSTy->getAsObjCObjectPointerType()->getPointeeType();
3344    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3345    QualType destPointee = rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3346    QualType destType = Context.getPointerType(destPointee);
3347    ImpCastExprToType(RHS, destType); // add qualifiers if necessary
3348    ImpCastExprToType(LHS, destType); // promote to void*
3349    return destType;
3350  }
3351  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3352  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3353    // get the "pointed to" types
3354    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
3355    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
3356
3357    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3358    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3359      // Figure out necessary qualifiers (C99 6.5.15p6)
3360      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3361      QualType destType = Context.getPointerType(destPointee);
3362      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3363      ImpCastExprToType(RHS, destType); // promote to void*
3364      return destType;
3365    }
3366    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3367      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3368      QualType destType = Context.getPointerType(destPointee);
3369      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3370      ImpCastExprToType(RHS, destType); // promote to void*
3371      return destType;
3372    }
3373
3374    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3375      // Two identical pointer types are always compatible.
3376      return LHSTy;
3377    }
3378    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3379                                    rhptee.getUnqualifiedType())) {
3380      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3381        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3382      // In this situation, we assume void* type. No especially good
3383      // reason, but this is what gcc does, and we do have to pick
3384      // to get a consistent AST.
3385      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3386      ImpCastExprToType(LHS, incompatTy);
3387      ImpCastExprToType(RHS, incompatTy);
3388      return incompatTy;
3389    }
3390    // The pointer types are compatible.
3391    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3392    // differently qualified versions of compatible types, the result type is
3393    // a pointer to an appropriately qualified version of the *composite*
3394    // type.
3395    // FIXME: Need to calculate the composite type.
3396    // FIXME: Need to add qualifiers
3397    ImpCastExprToType(LHS, LHSTy);
3398    ImpCastExprToType(RHS, LHSTy);
3399    return LHSTy;
3400  }
3401
3402  // GCC compatibility: soften pointer/integer mismatch.
3403  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3404    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3405      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3406    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3407    return RHSTy;
3408  }
3409  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3410    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3411      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3412    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3413    return LHSTy;
3414  }
3415
3416  // Otherwise, the operands are not compatible.
3417  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3418    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3419  return QualType();
3420}
3421
3422/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3423/// in the case of a the GNU conditional expr extension.
3424Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3425                                                  SourceLocation ColonLoc,
3426                                                  ExprArg Cond, ExprArg LHS,
3427                                                  ExprArg RHS) {
3428  Expr *CondExpr = (Expr *) Cond.get();
3429  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3430
3431  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3432  // was the condition.
3433  bool isLHSNull = LHSExpr == 0;
3434  if (isLHSNull)
3435    LHSExpr = CondExpr;
3436
3437  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3438                                             RHSExpr, QuestionLoc);
3439  if (result.isNull())
3440    return ExprError();
3441
3442  Cond.release();
3443  LHS.release();
3444  RHS.release();
3445  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
3446                                                 isLHSNull ? 0 : LHSExpr,
3447                                                 ColonLoc, RHSExpr, result));
3448}
3449
3450// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3451// being closely modeled after the C99 spec:-). The odd characteristic of this
3452// routine is it effectively iqnores the qualifiers on the top level pointee.
3453// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3454// FIXME: add a couple examples in this comment.
3455Sema::AssignConvertType
3456Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3457  QualType lhptee, rhptee;
3458
3459  if ((lhsType->isObjCClassType() &&
3460       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3461     (rhsType->isObjCClassType() &&
3462       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3463      return Compatible;
3464  }
3465
3466  // get the "pointed to" type (ignoring qualifiers at the top level)
3467  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
3468  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
3469
3470  // make sure we operate on the canonical type
3471  lhptee = Context.getCanonicalType(lhptee);
3472  rhptee = Context.getCanonicalType(rhptee);
3473
3474  AssignConvertType ConvTy = Compatible;
3475
3476  // C99 6.5.16.1p1: This following citation is common to constraints
3477  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3478  // qualifiers of the type *pointed to* by the right;
3479  // FIXME: Handle ExtQualType
3480  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3481    ConvTy = CompatiblePointerDiscardsQualifiers;
3482
3483  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3484  // incomplete type and the other is a pointer to a qualified or unqualified
3485  // version of void...
3486  if (lhptee->isVoidType()) {
3487    if (rhptee->isIncompleteOrObjectType())
3488      return ConvTy;
3489
3490    // As an extension, we allow cast to/from void* to function pointer.
3491    assert(rhptee->isFunctionType());
3492    return FunctionVoidPointer;
3493  }
3494
3495  if (rhptee->isVoidType()) {
3496    if (lhptee->isIncompleteOrObjectType())
3497      return ConvTy;
3498
3499    // As an extension, we allow cast to/from void* to function pointer.
3500    assert(lhptee->isFunctionType());
3501    return FunctionVoidPointer;
3502  }
3503  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3504  // unqualified versions of compatible types, ...
3505  lhptee = lhptee.getUnqualifiedType();
3506  rhptee = rhptee.getUnqualifiedType();
3507  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3508    // Check if the pointee types are compatible ignoring the sign.
3509    // We explicitly check for char so that we catch "char" vs
3510    // "unsigned char" on systems where "char" is unsigned.
3511    if (lhptee->isCharType()) {
3512      lhptee = Context.UnsignedCharTy;
3513    } else if (lhptee->isSignedIntegerType()) {
3514      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3515    }
3516    if (rhptee->isCharType()) {
3517      rhptee = Context.UnsignedCharTy;
3518    } else if (rhptee->isSignedIntegerType()) {
3519      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3520    }
3521    if (lhptee == rhptee) {
3522      // Types are compatible ignoring the sign. Qualifier incompatibility
3523      // takes priority over sign incompatibility because the sign
3524      // warning can be disabled.
3525      if (ConvTy != Compatible)
3526        return ConvTy;
3527      return IncompatiblePointerSign;
3528    }
3529    // General pointer incompatibility takes priority over qualifiers.
3530    return IncompatiblePointer;
3531  }
3532  return ConvTy;
3533}
3534
3535/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3536/// block pointer types are compatible or whether a block and normal pointer
3537/// are compatible. It is more restrict than comparing two function pointer
3538// types.
3539Sema::AssignConvertType
3540Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3541                                          QualType rhsType) {
3542  QualType lhptee, rhptee;
3543
3544  // get the "pointed to" type (ignoring qualifiers at the top level)
3545  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
3546  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
3547
3548  // make sure we operate on the canonical type
3549  lhptee = Context.getCanonicalType(lhptee);
3550  rhptee = Context.getCanonicalType(rhptee);
3551
3552  AssignConvertType ConvTy = Compatible;
3553
3554  // For blocks we enforce that qualifiers are identical.
3555  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3556    ConvTy = CompatiblePointerDiscardsQualifiers;
3557
3558  if (!Context.typesAreCompatible(lhptee, rhptee))
3559    return IncompatibleBlockPointer;
3560  return ConvTy;
3561}
3562
3563/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3564/// has code to accommodate several GCC extensions when type checking
3565/// pointers. Here are some objectionable examples that GCC considers warnings:
3566///
3567///  int a, *pint;
3568///  short *pshort;
3569///  struct foo *pfoo;
3570///
3571///  pint = pshort; // warning: assignment from incompatible pointer type
3572///  a = pint; // warning: assignment makes integer from pointer without a cast
3573///  pint = a; // warning: assignment makes pointer from integer without a cast
3574///  pint = pfoo; // warning: assignment from incompatible pointer type
3575///
3576/// As a result, the code for dealing with pointers is more complex than the
3577/// C99 spec dictates.
3578///
3579Sema::AssignConvertType
3580Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3581  // Get canonical types.  We're not formatting these types, just comparing
3582  // them.
3583  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3584  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3585
3586  if (lhsType == rhsType)
3587    return Compatible; // Common case: fast path an exact match.
3588
3589  if ((lhsType->isObjCClassType() &&
3590       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
3591     (rhsType->isObjCClassType() &&
3592       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
3593      return Compatible;
3594  }
3595
3596  // If the left-hand side is a reference type, then we are in a
3597  // (rare!) case where we've allowed the use of references in C,
3598  // e.g., as a parameter type in a built-in function. In this case,
3599  // just make sure that the type referenced is compatible with the
3600  // right-hand side type. The caller is responsible for adjusting
3601  // lhsType so that the resulting expression does not have reference
3602  // type.
3603  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
3604    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3605      return Compatible;
3606    return Incompatible;
3607  }
3608  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3609  // to the same ExtVector type.
3610  if (lhsType->isExtVectorType()) {
3611    if (rhsType->isExtVectorType())
3612      return lhsType == rhsType ? Compatible : Incompatible;
3613    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3614      return Compatible;
3615  }
3616
3617  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3618    // If we are allowing lax vector conversions, and LHS and RHS are both
3619    // vectors, the total size only needs to be the same. This is a bitcast;
3620    // no bits are changed but the result type is different.
3621    if (getLangOptions().LaxVectorConversions &&
3622        lhsType->isVectorType() && rhsType->isVectorType()) {
3623      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3624        return IncompatibleVectors;
3625    }
3626    return Incompatible;
3627  }
3628
3629  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3630    return Compatible;
3631
3632  if (isa<PointerType>(lhsType)) {
3633    if (rhsType->isIntegerType())
3634      return IntToPointer;
3635
3636    if (isa<PointerType>(rhsType))
3637      return CheckPointerTypesForAssignment(lhsType, rhsType);
3638
3639    // In general, C pointers are not compatible with ObjC object pointers.
3640    if (isa<ObjCObjectPointerType>(rhsType)) {
3641      if (lhsType->isVoidPointerType()) // an exception to the rule.
3642        return Compatible;
3643      return IncompatiblePointer;
3644    }
3645    if (rhsType->getAs<BlockPointerType>()) {
3646      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3647        return Compatible;
3648
3649      // Treat block pointers as objects.
3650      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3651        return Compatible;
3652    }
3653    return Incompatible;
3654  }
3655
3656  if (isa<BlockPointerType>(lhsType)) {
3657    if (rhsType->isIntegerType())
3658      return IntToBlockPointer;
3659
3660    // Treat block pointers as objects.
3661    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3662      return Compatible;
3663
3664    if (rhsType->isBlockPointerType())
3665      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3666
3667    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3668      if (RHSPT->getPointeeType()->isVoidType())
3669        return Compatible;
3670    }
3671    return Incompatible;
3672  }
3673
3674  if (isa<ObjCObjectPointerType>(lhsType)) {
3675    if (rhsType->isIntegerType())
3676      return IntToPointer;
3677
3678    // In general, C pointers are not compatible with ObjC object pointers.
3679    if (isa<PointerType>(rhsType)) {
3680      if (rhsType->isVoidPointerType()) // an exception to the rule.
3681        return Compatible;
3682      return IncompatiblePointer;
3683    }
3684    if (rhsType->isObjCObjectPointerType()) {
3685      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3686        return Compatible;
3687      if (Context.typesAreCompatible(lhsType, rhsType))
3688        return Compatible;
3689      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3690        return IncompatibleObjCQualifiedId;
3691      return IncompatiblePointer;
3692    }
3693    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
3694      if (RHSPT->getPointeeType()->isVoidType())
3695        return Compatible;
3696    }
3697    // Treat block pointers as objects.
3698    if (rhsType->isBlockPointerType())
3699      return Compatible;
3700    return Incompatible;
3701  }
3702  if (isa<PointerType>(rhsType)) {
3703    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3704    if (lhsType == Context.BoolTy)
3705      return Compatible;
3706
3707    if (lhsType->isIntegerType())
3708      return PointerToInt;
3709
3710    if (isa<PointerType>(lhsType))
3711      return CheckPointerTypesForAssignment(lhsType, rhsType);
3712
3713    if (isa<BlockPointerType>(lhsType) &&
3714        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3715      return Compatible;
3716    return Incompatible;
3717  }
3718  if (isa<ObjCObjectPointerType>(rhsType)) {
3719    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3720    if (lhsType == Context.BoolTy)
3721      return Compatible;
3722
3723    if (lhsType->isIntegerType())
3724      return PointerToInt;
3725
3726    // In general, C pointers are not compatible with ObjC object pointers.
3727    if (isa<PointerType>(lhsType)) {
3728      if (lhsType->isVoidPointerType()) // an exception to the rule.
3729        return Compatible;
3730      return IncompatiblePointer;
3731    }
3732    if (isa<BlockPointerType>(lhsType) &&
3733        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
3734      return Compatible;
3735    return Incompatible;
3736  }
3737
3738  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3739    if (Context.typesAreCompatible(lhsType, rhsType))
3740      return Compatible;
3741  }
3742  return Incompatible;
3743}
3744
3745/// \brief Constructs a transparent union from an expression that is
3746/// used to initialize the transparent union.
3747static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3748                                      QualType UnionType, FieldDecl *Field) {
3749  // Build an initializer list that designates the appropriate member
3750  // of the transparent union.
3751  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3752                                                   &E, 1,
3753                                                   SourceLocation());
3754  Initializer->setType(UnionType);
3755  Initializer->setInitializedFieldInUnion(Field);
3756
3757  // Build a compound literal constructing a value of the transparent
3758  // union type from this initializer list.
3759  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3760                                  false);
3761}
3762
3763Sema::AssignConvertType
3764Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3765  QualType FromType = rExpr->getType();
3766
3767  // If the ArgType is a Union type, we want to handle a potential
3768  // transparent_union GCC extension.
3769  const RecordType *UT = ArgType->getAsUnionType();
3770  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3771    return Incompatible;
3772
3773  // The field to initialize within the transparent union.
3774  RecordDecl *UD = UT->getDecl();
3775  FieldDecl *InitField = 0;
3776  // It's compatible if the expression matches any of the fields.
3777  for (RecordDecl::field_iterator it = UD->field_begin(),
3778         itend = UD->field_end();
3779       it != itend; ++it) {
3780    if (it->getType()->isPointerType()) {
3781      // If the transparent union contains a pointer type, we allow:
3782      // 1) void pointer
3783      // 2) null pointer constant
3784      if (FromType->isPointerType())
3785        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
3786          ImpCastExprToType(rExpr, it->getType());
3787          InitField = *it;
3788          break;
3789        }
3790
3791      if (rExpr->isNullPointerConstant(Context)) {
3792        ImpCastExprToType(rExpr, it->getType());
3793        InitField = *it;
3794        break;
3795      }
3796    }
3797
3798    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3799          == Compatible) {
3800      InitField = *it;
3801      break;
3802    }
3803  }
3804
3805  if (!InitField)
3806    return Incompatible;
3807
3808  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3809  return Compatible;
3810}
3811
3812Sema::AssignConvertType
3813Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3814  if (getLangOptions().CPlusPlus) {
3815    if (!lhsType->isRecordType()) {
3816      // C++ 5.17p3: If the left operand is not of class type, the
3817      // expression is implicitly converted (C++ 4) to the
3818      // cv-unqualified type of the left operand.
3819      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3820                                    "assigning"))
3821        return Incompatible;
3822      return Compatible;
3823    }
3824
3825    // FIXME: Currently, we fall through and treat C++ classes like C
3826    // structures.
3827  }
3828
3829  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3830  // a null pointer constant.
3831  if ((lhsType->isPointerType() ||
3832       lhsType->isObjCObjectPointerType() ||
3833       lhsType->isBlockPointerType())
3834      && rExpr->isNullPointerConstant(Context)) {
3835    ImpCastExprToType(rExpr, lhsType);
3836    return Compatible;
3837  }
3838
3839  // This check seems unnatural, however it is necessary to ensure the proper
3840  // conversion of functions/arrays. If the conversion were done for all
3841  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3842  // expressions that surpress this implicit conversion (&, sizeof).
3843  //
3844  // Suppress this for references: C++ 8.5.3p5.
3845  if (!lhsType->isReferenceType())
3846    DefaultFunctionArrayConversion(rExpr);
3847
3848  Sema::AssignConvertType result =
3849    CheckAssignmentConstraints(lhsType, rExpr->getType());
3850
3851  // C99 6.5.16.1p2: The value of the right operand is converted to the
3852  // type of the assignment expression.
3853  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3854  // so that we can use references in built-in functions even in C.
3855  // The getNonReferenceType() call makes sure that the resulting expression
3856  // does not have reference type.
3857  if (result != Incompatible && rExpr->getType() != lhsType)
3858    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3859  return result;
3860}
3861
3862QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3863  Diag(Loc, diag::err_typecheck_invalid_operands)
3864    << lex->getType() << rex->getType()
3865    << lex->getSourceRange() << rex->getSourceRange();
3866  return QualType();
3867}
3868
3869inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3870                                                              Expr *&rex) {
3871  // For conversion purposes, we ignore any qualifiers.
3872  // For example, "const float" and "float" are equivalent.
3873  QualType lhsType =
3874    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3875  QualType rhsType =
3876    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3877
3878  // If the vector types are identical, return.
3879  if (lhsType == rhsType)
3880    return lhsType;
3881
3882  // Handle the case of a vector & extvector type of the same size and element
3883  // type.  It would be nice if we only had one vector type someday.
3884  if (getLangOptions().LaxVectorConversions) {
3885    // FIXME: Should we warn here?
3886    if (const VectorType *LV = lhsType->getAsVectorType()) {
3887      if (const VectorType *RV = rhsType->getAsVectorType())
3888        if (LV->getElementType() == RV->getElementType() &&
3889            LV->getNumElements() == RV->getNumElements()) {
3890          return lhsType->isExtVectorType() ? lhsType : rhsType;
3891        }
3892    }
3893  }
3894
3895  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
3896  // swap back (so that we don't reverse the inputs to a subtract, for instance.
3897  bool swapped = false;
3898  if (rhsType->isExtVectorType()) {
3899    swapped = true;
3900    std::swap(rex, lex);
3901    std::swap(rhsType, lhsType);
3902  }
3903
3904  // Handle the case of an ext vector and scalar.
3905  if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
3906    QualType EltTy = LV->getElementType();
3907    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
3908      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
3909        ImpCastExprToType(rex, lhsType);
3910        if (swapped) std::swap(rex, lex);
3911        return lhsType;
3912      }
3913    }
3914    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
3915        rhsType->isRealFloatingType()) {
3916      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
3917        ImpCastExprToType(rex, lhsType);
3918        if (swapped) std::swap(rex, lex);
3919        return lhsType;
3920      }
3921    }
3922  }
3923
3924  // Vectors of different size or scalar and non-ext-vector are errors.
3925  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3926    << lex->getType() << rex->getType()
3927    << lex->getSourceRange() << rex->getSourceRange();
3928  return QualType();
3929}
3930
3931inline QualType Sema::CheckMultiplyDivideOperands(
3932  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3933{
3934  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3935    return CheckVectorOperands(Loc, lex, rex);
3936
3937  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3938
3939  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3940    return compType;
3941  return InvalidOperands(Loc, lex, rex);
3942}
3943
3944inline QualType Sema::CheckRemainderOperands(
3945  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3946{
3947  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3948    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3949      return CheckVectorOperands(Loc, lex, rex);
3950    return InvalidOperands(Loc, lex, rex);
3951  }
3952
3953  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3954
3955  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3956    return compType;
3957  return InvalidOperands(Loc, lex, rex);
3958}
3959
3960inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3961  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3962{
3963  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3964    QualType compType = CheckVectorOperands(Loc, lex, rex);
3965    if (CompLHSTy) *CompLHSTy = compType;
3966    return compType;
3967  }
3968
3969  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3970
3971  // handle the common case first (both operands are arithmetic).
3972  if (lex->getType()->isArithmeticType() &&
3973      rex->getType()->isArithmeticType()) {
3974    if (CompLHSTy) *CompLHSTy = compType;
3975    return compType;
3976  }
3977
3978  // Put any potential pointer into PExp
3979  Expr* PExp = lex, *IExp = rex;
3980  if (IExp->getType()->isAnyPointerType())
3981    std::swap(PExp, IExp);
3982
3983  if (PExp->getType()->isAnyPointerType()) {
3984
3985    if (IExp->getType()->isIntegerType()) {
3986      QualType PointeeTy = PExp->getType()->getPointeeType();
3987
3988      // Check for arithmetic on pointers to incomplete types.
3989      if (PointeeTy->isVoidType()) {
3990        if (getLangOptions().CPlusPlus) {
3991          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3992            << lex->getSourceRange() << rex->getSourceRange();
3993          return QualType();
3994        }
3995
3996        // GNU extension: arithmetic on pointer to void
3997        Diag(Loc, diag::ext_gnu_void_ptr)
3998          << lex->getSourceRange() << rex->getSourceRange();
3999      } else if (PointeeTy->isFunctionType()) {
4000        if (getLangOptions().CPlusPlus) {
4001          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4002            << lex->getType() << lex->getSourceRange();
4003          return QualType();
4004        }
4005
4006        // GNU extension: arithmetic on pointer to function
4007        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4008          << lex->getType() << lex->getSourceRange();
4009      } else {
4010        // Check if we require a complete type.
4011        if (((PExp->getType()->isPointerType() &&
4012              !PExp->getType()->isDependentType()) ||
4013              PExp->getType()->isObjCObjectPointerType()) &&
4014             RequireCompleteType(Loc, PointeeTy,
4015                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4016                             << PExp->getSourceRange()
4017                             << PExp->getType()))
4018          return QualType();
4019      }
4020      // Diagnose bad cases where we step over interface counts.
4021      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4022        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4023          << PointeeTy << PExp->getSourceRange();
4024        return QualType();
4025      }
4026
4027      if (CompLHSTy) {
4028        QualType LHSTy = Context.isPromotableBitField(lex);
4029        if (LHSTy.isNull()) {
4030          LHSTy = lex->getType();
4031          if (LHSTy->isPromotableIntegerType())
4032            LHSTy = Context.getPromotedIntegerType(LHSTy);
4033        }
4034        *CompLHSTy = LHSTy;
4035      }
4036      return PExp->getType();
4037    }
4038  }
4039
4040  return InvalidOperands(Loc, lex, rex);
4041}
4042
4043// C99 6.5.6
4044QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
4045                                        SourceLocation Loc, QualType* CompLHSTy) {
4046  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4047    QualType compType = CheckVectorOperands(Loc, lex, rex);
4048    if (CompLHSTy) *CompLHSTy = compType;
4049    return compType;
4050  }
4051
4052  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4053
4054  // Enforce type constraints: C99 6.5.6p3.
4055
4056  // Handle the common case first (both operands are arithmetic).
4057  if (lex->getType()->isArithmeticType()
4058      && rex->getType()->isArithmeticType()) {
4059    if (CompLHSTy) *CompLHSTy = compType;
4060    return compType;
4061  }
4062
4063  // Either ptr - int   or   ptr - ptr.
4064  if (lex->getType()->isAnyPointerType()) {
4065    QualType lpointee = lex->getType()->getPointeeType();
4066
4067    // The LHS must be an completely-defined object type.
4068
4069    bool ComplainAboutVoid = false;
4070    Expr *ComplainAboutFunc = 0;
4071    if (lpointee->isVoidType()) {
4072      if (getLangOptions().CPlusPlus) {
4073        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4074          << lex->getSourceRange() << rex->getSourceRange();
4075        return QualType();
4076      }
4077
4078      // GNU C extension: arithmetic on pointer to void
4079      ComplainAboutVoid = true;
4080    } else if (lpointee->isFunctionType()) {
4081      if (getLangOptions().CPlusPlus) {
4082        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4083          << lex->getType() << lex->getSourceRange();
4084        return QualType();
4085      }
4086
4087      // GNU C extension: arithmetic on pointer to function
4088      ComplainAboutFunc = lex;
4089    } else if (!lpointee->isDependentType() &&
4090               RequireCompleteType(Loc, lpointee,
4091                                   PDiag(diag::err_typecheck_sub_ptr_object)
4092                                     << lex->getSourceRange()
4093                                     << lex->getType()))
4094      return QualType();
4095
4096    // Diagnose bad cases where we step over interface counts.
4097    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4098      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
4099        << lpointee << lex->getSourceRange();
4100      return QualType();
4101    }
4102
4103    // The result type of a pointer-int computation is the pointer type.
4104    if (rex->getType()->isIntegerType()) {
4105      if (ComplainAboutVoid)
4106        Diag(Loc, diag::ext_gnu_void_ptr)
4107          << lex->getSourceRange() << rex->getSourceRange();
4108      if (ComplainAboutFunc)
4109        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4110          << ComplainAboutFunc->getType()
4111          << ComplainAboutFunc->getSourceRange();
4112
4113      if (CompLHSTy) *CompLHSTy = lex->getType();
4114      return lex->getType();
4115    }
4116
4117    // Handle pointer-pointer subtractions.
4118    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
4119      QualType rpointee = RHSPTy->getPointeeType();
4120
4121      // RHS must be a completely-type object type.
4122      // Handle the GNU void* extension.
4123      if (rpointee->isVoidType()) {
4124        if (getLangOptions().CPlusPlus) {
4125          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4126            << lex->getSourceRange() << rex->getSourceRange();
4127          return QualType();
4128        }
4129
4130        ComplainAboutVoid = true;
4131      } else if (rpointee->isFunctionType()) {
4132        if (getLangOptions().CPlusPlus) {
4133          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4134            << rex->getType() << rex->getSourceRange();
4135          return QualType();
4136        }
4137
4138        // GNU extension: arithmetic on pointer to function
4139        if (!ComplainAboutFunc)
4140          ComplainAboutFunc = rex;
4141      } else if (!rpointee->isDependentType() &&
4142                 RequireCompleteType(Loc, rpointee,
4143                                     PDiag(diag::err_typecheck_sub_ptr_object)
4144                                       << rex->getSourceRange()
4145                                       << rex->getType()))
4146        return QualType();
4147
4148      if (getLangOptions().CPlusPlus) {
4149        // Pointee types must be the same: C++ [expr.add]
4150        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4151          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4152            << lex->getType() << rex->getType()
4153            << lex->getSourceRange() << rex->getSourceRange();
4154          return QualType();
4155        }
4156      } else {
4157        // Pointee types must be compatible C99 6.5.6p3
4158        if (!Context.typesAreCompatible(
4159                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4160                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4161          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4162            << lex->getType() << rex->getType()
4163            << lex->getSourceRange() << rex->getSourceRange();
4164          return QualType();
4165        }
4166      }
4167
4168      if (ComplainAboutVoid)
4169        Diag(Loc, diag::ext_gnu_void_ptr)
4170          << lex->getSourceRange() << rex->getSourceRange();
4171      if (ComplainAboutFunc)
4172        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4173          << ComplainAboutFunc->getType()
4174          << ComplainAboutFunc->getSourceRange();
4175
4176      if (CompLHSTy) *CompLHSTy = lex->getType();
4177      return Context.getPointerDiffType();
4178    }
4179  }
4180
4181  return InvalidOperands(Loc, lex, rex);
4182}
4183
4184// C99 6.5.7
4185QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4186                                  bool isCompAssign) {
4187  // C99 6.5.7p2: Each of the operands shall have integer type.
4188  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4189    return InvalidOperands(Loc, lex, rex);
4190
4191  // Shifts don't perform usual arithmetic conversions, they just do integer
4192  // promotions on each operand. C99 6.5.7p3
4193  QualType LHSTy = Context.isPromotableBitField(lex);
4194  if (LHSTy.isNull()) {
4195    LHSTy = lex->getType();
4196    if (LHSTy->isPromotableIntegerType())
4197      LHSTy = Context.getPromotedIntegerType(LHSTy);
4198  }
4199  if (!isCompAssign)
4200    ImpCastExprToType(lex, LHSTy);
4201
4202  UsualUnaryConversions(rex);
4203
4204  // Sanity-check shift operands
4205  llvm::APSInt Right;
4206  // Check right/shifter operand
4207  if (rex->isIntegerConstantExpr(Right, Context)) {
4208    if (Right.isNegative())
4209      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
4210    else {
4211      llvm::APInt LeftBits(Right.getBitWidth(),
4212                          Context.getTypeSize(lex->getType()));
4213      if (Right.uge(LeftBits))
4214        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
4215    }
4216  }
4217
4218  // "The type of the result is that of the promoted left operand."
4219  return LHSTy;
4220}
4221
4222// C99 6.5.8, C++ [expr.rel]
4223QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4224                                    unsigned OpaqueOpc, bool isRelational) {
4225  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4226
4227  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4228    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4229
4230  // C99 6.5.8p3 / C99 6.5.9p4
4231  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4232    UsualArithmeticConversions(lex, rex);
4233  else {
4234    UsualUnaryConversions(lex);
4235    UsualUnaryConversions(rex);
4236  }
4237  QualType lType = lex->getType();
4238  QualType rType = rex->getType();
4239
4240  if (!lType->isFloatingType()
4241      && !(lType->isBlockPointerType() && isRelational)) {
4242    // For non-floating point types, check for self-comparisons of the form
4243    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4244    // often indicate logic errors in the program.
4245    // NOTE: Don't warn about comparisons of enum constants. These can arise
4246    //  from macro expansions, and are usually quite deliberate.
4247    Expr *LHSStripped = lex->IgnoreParens();
4248    Expr *RHSStripped = rex->IgnoreParens();
4249    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4250      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4251        if (DRL->getDecl() == DRR->getDecl() &&
4252            !isa<EnumConstantDecl>(DRL->getDecl()))
4253          Diag(Loc, diag::warn_selfcomparison);
4254
4255    if (isa<CastExpr>(LHSStripped))
4256      LHSStripped = LHSStripped->IgnoreParenCasts();
4257    if (isa<CastExpr>(RHSStripped))
4258      RHSStripped = RHSStripped->IgnoreParenCasts();
4259
4260    // Warn about comparisons against a string constant (unless the other
4261    // operand is null), the user probably wants strcmp.
4262    Expr *literalString = 0;
4263    Expr *literalStringStripped = 0;
4264    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4265        !RHSStripped->isNullPointerConstant(Context)) {
4266      literalString = lex;
4267      literalStringStripped = LHSStripped;
4268    } else if ((isa<StringLiteral>(RHSStripped) ||
4269                isa<ObjCEncodeExpr>(RHSStripped)) &&
4270               !LHSStripped->isNullPointerConstant(Context)) {
4271      literalString = rex;
4272      literalStringStripped = RHSStripped;
4273    }
4274
4275    if (literalString) {
4276      std::string resultComparison;
4277      switch (Opc) {
4278      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4279      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4280      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4281      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4282      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4283      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4284      default: assert(false && "Invalid comparison operator");
4285      }
4286      Diag(Loc, diag::warn_stringcompare)
4287        << isa<ObjCEncodeExpr>(literalStringStripped)
4288        << literalString->getSourceRange()
4289        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4290        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4291                                                 "strcmp(")
4292        << CodeModificationHint::CreateInsertion(
4293                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4294                                       resultComparison);
4295    }
4296  }
4297
4298  // The result of comparisons is 'bool' in C++, 'int' in C.
4299  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4300
4301  if (isRelational) {
4302    if (lType->isRealType() && rType->isRealType())
4303      return ResultTy;
4304  } else {
4305    // Check for comparisons of floating point operands using != and ==.
4306    if (lType->isFloatingType()) {
4307      assert(rType->isFloatingType());
4308      CheckFloatComparison(Loc,lex,rex);
4309    }
4310
4311    if (lType->isArithmeticType() && rType->isArithmeticType())
4312      return ResultTy;
4313  }
4314
4315  bool LHSIsNull = lex->isNullPointerConstant(Context);
4316  bool RHSIsNull = rex->isNullPointerConstant(Context);
4317
4318  // All of the following pointer related warnings are GCC extensions, except
4319  // when handling null pointer constants. One day, we can consider making them
4320  // errors (when -pedantic-errors is enabled).
4321  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4322    QualType LCanPointeeTy =
4323      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
4324    QualType RCanPointeeTy =
4325      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
4326
4327    if (getLangOptions().CPlusPlus) {
4328      if (LCanPointeeTy == RCanPointeeTy)
4329        return ResultTy;
4330
4331      // C++ [expr.rel]p2:
4332      //   [...] Pointer conversions (4.10) and qualification
4333      //   conversions (4.4) are performed on pointer operands (or on
4334      //   a pointer operand and a null pointer constant) to bring
4335      //   them to their composite pointer type. [...]
4336      //
4337      // C++ [expr.eq]p1 uses the same notion for (in)equality
4338      // comparisons of pointers.
4339      QualType T = FindCompositePointerType(lex, rex);
4340      if (T.isNull()) {
4341        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4342          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4343        return QualType();
4344      }
4345
4346      ImpCastExprToType(lex, T);
4347      ImpCastExprToType(rex, T);
4348      return ResultTy;
4349    }
4350    // C99 6.5.9p2 and C99 6.5.8p2
4351    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4352                                   RCanPointeeTy.getUnqualifiedType())) {
4353      // Valid unless a relational comparison of function pointers
4354      if (isRelational && LCanPointeeTy->isFunctionType()) {
4355        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4356          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4357      }
4358    } else if (!isRelational &&
4359               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
4360      // Valid unless comparison between non-null pointer and function pointer
4361      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
4362          && !LHSIsNull && !RHSIsNull) {
4363        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
4364          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4365      }
4366    } else {
4367      // Invalid
4368      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4369        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4370    }
4371    if (LCanPointeeTy != RCanPointeeTy)
4372      ImpCastExprToType(rex, lType); // promote the pointer to pointer
4373    return ResultTy;
4374  }
4375
4376  if (getLangOptions().CPlusPlus) {
4377    // Comparison of pointers with null pointer constants and equality
4378    // comparisons of member pointers to null pointer constants.
4379    if (RHSIsNull &&
4380        (lType->isPointerType() ||
4381         (!isRelational && lType->isMemberPointerType()))) {
4382      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
4383      return ResultTy;
4384    }
4385    if (LHSIsNull &&
4386        (rType->isPointerType() ||
4387         (!isRelational && rType->isMemberPointerType()))) {
4388      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
4389      return ResultTy;
4390    }
4391
4392    // Comparison of member pointers.
4393    if (!isRelational &&
4394        lType->isMemberPointerType() && rType->isMemberPointerType()) {
4395      // C++ [expr.eq]p2:
4396      //   In addition, pointers to members can be compared, or a pointer to
4397      //   member and a null pointer constant. Pointer to member conversions
4398      //   (4.11) and qualification conversions (4.4) are performed to bring
4399      //   them to a common type. If one operand is a null pointer constant,
4400      //   the common type is the type of the other operand. Otherwise, the
4401      //   common type is a pointer to member type similar (4.4) to the type
4402      //   of one of the operands, with a cv-qualification signature (4.4)
4403      //   that is the union of the cv-qualification signatures of the operand
4404      //   types.
4405      QualType T = FindCompositePointerType(lex, rex);
4406      if (T.isNull()) {
4407        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4408        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4409        return QualType();
4410      }
4411
4412      ImpCastExprToType(lex, T);
4413      ImpCastExprToType(rex, T);
4414      return ResultTy;
4415    }
4416
4417    // Comparison of nullptr_t with itself.
4418    if (lType->isNullPtrType() && rType->isNullPtrType())
4419      return ResultTy;
4420  }
4421
4422  // Handle block pointer types.
4423  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4424    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
4425    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
4426
4427    if (!LHSIsNull && !RHSIsNull &&
4428        !Context.typesAreCompatible(lpointee, rpointee)) {
4429      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4430        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4431    }
4432    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4433    return ResultTy;
4434  }
4435  // Allow block pointers to be compared with null pointer constants.
4436  if (!isRelational
4437      && ((lType->isBlockPointerType() && rType->isPointerType())
4438          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4439    if (!LHSIsNull && !RHSIsNull) {
4440      if (!((rType->isPointerType() && rType->getAs<PointerType>()
4441             ->getPointeeType()->isVoidType())
4442            || (lType->isPointerType() && lType->getAs<PointerType>()
4443                ->getPointeeType()->isVoidType())))
4444        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4445          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4446    }
4447    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4448    return ResultTy;
4449  }
4450
4451  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4452    if (lType->isPointerType() || rType->isPointerType()) {
4453      const PointerType *LPT = lType->getAs<PointerType>();
4454      const PointerType *RPT = rType->getAs<PointerType>();
4455      bool LPtrToVoid = LPT ?
4456        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4457      bool RPtrToVoid = RPT ?
4458        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4459
4460      if (!LPtrToVoid && !RPtrToVoid &&
4461          !Context.typesAreCompatible(lType, rType)) {
4462        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4463          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4464      }
4465      ImpCastExprToType(rex, lType);
4466      return ResultTy;
4467    }
4468    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4469      if (!Context.areComparableObjCPointerTypes(lType, rType))
4470        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4471          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4472      ImpCastExprToType(rex, lType);
4473      return ResultTy;
4474    }
4475  }
4476  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4477    unsigned DiagID = 0;
4478    if (RHSIsNull) {
4479      if (isRelational)
4480        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4481    } else if (isRelational)
4482      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4483    else
4484      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4485
4486    if (DiagID) {
4487      Diag(Loc, DiagID)
4488        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4489    }
4490    ImpCastExprToType(rex, lType); // promote the integer to pointer
4491    return ResultTy;
4492  }
4493  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4494    unsigned DiagID = 0;
4495    if (LHSIsNull) {
4496      if (isRelational)
4497        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
4498    } else if (isRelational)
4499      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
4500    else
4501      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
4502
4503    if (DiagID) {
4504      Diag(Loc, DiagID)
4505        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4506    }
4507    ImpCastExprToType(lex, rType); // promote the integer to pointer
4508    return ResultTy;
4509  }
4510  // Handle block pointers.
4511  if (!isRelational && RHSIsNull
4512      && lType->isBlockPointerType() && rType->isIntegerType()) {
4513    ImpCastExprToType(rex, lType); // promote the integer to pointer
4514    return ResultTy;
4515  }
4516  if (!isRelational && LHSIsNull
4517      && lType->isIntegerType() && rType->isBlockPointerType()) {
4518    ImpCastExprToType(lex, rType); // promote the integer to pointer
4519    return ResultTy;
4520  }
4521  return InvalidOperands(Loc, lex, rex);
4522}
4523
4524/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4525/// operates on extended vector types.  Instead of producing an IntTy result,
4526/// like a scalar comparison, a vector comparison produces a vector of integer
4527/// types.
4528QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4529                                          SourceLocation Loc,
4530                                          bool isRelational) {
4531  // Check to make sure we're operating on vectors of the same type and width,
4532  // Allowing one side to be a scalar of element type.
4533  QualType vType = CheckVectorOperands(Loc, lex, rex);
4534  if (vType.isNull())
4535    return vType;
4536
4537  QualType lType = lex->getType();
4538  QualType rType = rex->getType();
4539
4540  // For non-floating point types, check for self-comparisons of the form
4541  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4542  // often indicate logic errors in the program.
4543  if (!lType->isFloatingType()) {
4544    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4545      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4546        if (DRL->getDecl() == DRR->getDecl())
4547          Diag(Loc, diag::warn_selfcomparison);
4548  }
4549
4550  // Check for comparisons of floating point operands using != and ==.
4551  if (!isRelational && lType->isFloatingType()) {
4552    assert (rType->isFloatingType());
4553    CheckFloatComparison(Loc,lex,rex);
4554  }
4555
4556  // Return the type for the comparison, which is the same as vector type for
4557  // integer vectors, or an integer type of identical size and number of
4558  // elements for floating point vectors.
4559  if (lType->isIntegerType())
4560    return lType;
4561
4562  const VectorType *VTy = lType->getAsVectorType();
4563  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4564  if (TypeSize == Context.getTypeSize(Context.IntTy))
4565    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4566  if (TypeSize == Context.getTypeSize(Context.LongTy))
4567    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4568
4569  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4570         "Unhandled vector element size in vector compare");
4571  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4572}
4573
4574inline QualType Sema::CheckBitwiseOperands(
4575  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4576{
4577  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4578    return CheckVectorOperands(Loc, lex, rex);
4579
4580  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4581
4582  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4583    return compType;
4584  return InvalidOperands(Loc, lex, rex);
4585}
4586
4587inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4588  Expr *&lex, Expr *&rex, SourceLocation Loc)
4589{
4590  UsualUnaryConversions(lex);
4591  UsualUnaryConversions(rex);
4592
4593  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4594    return Context.IntTy;
4595  return InvalidOperands(Loc, lex, rex);
4596}
4597
4598/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4599/// is a read-only property; return true if so. A readonly property expression
4600/// depends on various declarations and thus must be treated specially.
4601///
4602static bool IsReadonlyProperty(Expr *E, Sema &S)
4603{
4604  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4605    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4606    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4607      QualType BaseType = PropExpr->getBase()->getType();
4608      if (const ObjCObjectPointerType *OPT =
4609            BaseType->getAsObjCInterfacePointerType())
4610        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4611          if (S.isPropertyReadonly(PDecl, IFace))
4612            return true;
4613    }
4614  }
4615  return false;
4616}
4617
4618/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4619/// emit an error and return true.  If so, return false.
4620static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4621  SourceLocation OrigLoc = Loc;
4622  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4623                                                              &Loc);
4624  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4625    IsLV = Expr::MLV_ReadonlyProperty;
4626  if (IsLV == Expr::MLV_Valid)
4627    return false;
4628
4629  unsigned Diag = 0;
4630  bool NeedType = false;
4631  switch (IsLV) { // C99 6.5.16p2
4632  default: assert(0 && "Unknown result from isModifiableLvalue!");
4633  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4634  case Expr::MLV_ArrayType:
4635    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4636    NeedType = true;
4637    break;
4638  case Expr::MLV_NotObjectType:
4639    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4640    NeedType = true;
4641    break;
4642  case Expr::MLV_LValueCast:
4643    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4644    break;
4645  case Expr::MLV_InvalidExpression:
4646    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4647    break;
4648  case Expr::MLV_IncompleteType:
4649  case Expr::MLV_IncompleteVoidType:
4650    return S.RequireCompleteType(Loc, E->getType(),
4651                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
4652                  << E->getSourceRange());
4653  case Expr::MLV_DuplicateVectorComponents:
4654    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4655    break;
4656  case Expr::MLV_NotBlockQualified:
4657    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4658    break;
4659  case Expr::MLV_ReadonlyProperty:
4660    Diag = diag::error_readonly_property_assignment;
4661    break;
4662  case Expr::MLV_NoSetterProperty:
4663    Diag = diag::error_nosetter_property_assignment;
4664    break;
4665  }
4666
4667  SourceRange Assign;
4668  if (Loc != OrigLoc)
4669    Assign = SourceRange(OrigLoc, OrigLoc);
4670  if (NeedType)
4671    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4672  else
4673    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4674  return true;
4675}
4676
4677
4678
4679// C99 6.5.16.1
4680QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4681                                       SourceLocation Loc,
4682                                       QualType CompoundType) {
4683  // Verify that LHS is a modifiable lvalue, and emit error if not.
4684  if (CheckForModifiableLvalue(LHS, Loc, *this))
4685    return QualType();
4686
4687  QualType LHSType = LHS->getType();
4688  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4689
4690  AssignConvertType ConvTy;
4691  if (CompoundType.isNull()) {
4692    // Simple assignment "x = y".
4693    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4694    // Special case of NSObject attributes on c-style pointer types.
4695    if (ConvTy == IncompatiblePointer &&
4696        ((Context.isObjCNSObjectType(LHSType) &&
4697          RHSType->isObjCObjectPointerType()) ||
4698         (Context.isObjCNSObjectType(RHSType) &&
4699          LHSType->isObjCObjectPointerType())))
4700      ConvTy = Compatible;
4701
4702    // If the RHS is a unary plus or minus, check to see if they = and + are
4703    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4704    // instead of "x += 4".
4705    Expr *RHSCheck = RHS;
4706    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4707      RHSCheck = ICE->getSubExpr();
4708    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4709      if ((UO->getOpcode() == UnaryOperator::Plus ||
4710           UO->getOpcode() == UnaryOperator::Minus) &&
4711          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4712          // Only if the two operators are exactly adjacent.
4713          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4714          // And there is a space or other character before the subexpr of the
4715          // unary +/-.  We don't want to warn on "x=-1".
4716          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4717          UO->getSubExpr()->getLocStart().isFileID()) {
4718        Diag(Loc, diag::warn_not_compound_assign)
4719          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4720          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4721      }
4722    }
4723  } else {
4724    // Compound assignment "x += y"
4725    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4726  }
4727
4728  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4729                               RHS, "assigning"))
4730    return QualType();
4731
4732  // C99 6.5.16p3: The type of an assignment expression is the type of the
4733  // left operand unless the left operand has qualified type, in which case
4734  // it is the unqualified version of the type of the left operand.
4735  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4736  // is converted to the type of the assignment expression (above).
4737  // C++ 5.17p1: the type of the assignment expression is that of its left
4738  // operand.
4739  return LHSType.getUnqualifiedType();
4740}
4741
4742// C99 6.5.17
4743QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4744  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4745  DefaultFunctionArrayConversion(RHS);
4746
4747  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4748  // incomplete in C++).
4749
4750  return RHS->getType();
4751}
4752
4753/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4754/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4755QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4756                                              bool isInc) {
4757  if (Op->isTypeDependent())
4758    return Context.DependentTy;
4759
4760  QualType ResType = Op->getType();
4761  assert(!ResType.isNull() && "no type for increment/decrement expression");
4762
4763  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4764    // Decrement of bool is not allowed.
4765    if (!isInc) {
4766      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4767      return QualType();
4768    }
4769    // Increment of bool sets it to true, but is deprecated.
4770    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4771  } else if (ResType->isRealType()) {
4772    // OK!
4773  } else if (ResType->isAnyPointerType()) {
4774    QualType PointeeTy = ResType->getPointeeType();
4775
4776    // C99 6.5.2.4p2, 6.5.6p2
4777    if (PointeeTy->isVoidType()) {
4778      if (getLangOptions().CPlusPlus) {
4779        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4780          << Op->getSourceRange();
4781        return QualType();
4782      }
4783
4784      // Pointer to void is a GNU extension in C.
4785      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4786    } else if (PointeeTy->isFunctionType()) {
4787      if (getLangOptions().CPlusPlus) {
4788        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4789          << Op->getType() << Op->getSourceRange();
4790        return QualType();
4791      }
4792
4793      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4794        << ResType << Op->getSourceRange();
4795    } else if (RequireCompleteType(OpLoc, PointeeTy,
4796                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4797                             << Op->getSourceRange()
4798                             << ResType))
4799      return QualType();
4800    // Diagnose bad cases where we step over interface counts.
4801    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4802      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
4803        << PointeeTy << Op->getSourceRange();
4804      return QualType();
4805    }
4806  } else if (ResType->isComplexType()) {
4807    // C99 does not support ++/-- on complex types, we allow as an extension.
4808    Diag(OpLoc, diag::ext_integer_increment_complex)
4809      << ResType << Op->getSourceRange();
4810  } else {
4811    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4812      << ResType << Op->getSourceRange();
4813    return QualType();
4814  }
4815  // At this point, we know we have a real, complex or pointer type.
4816  // Now make sure the operand is a modifiable lvalue.
4817  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4818    return QualType();
4819  return ResType;
4820}
4821
4822/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4823/// This routine allows us to typecheck complex/recursive expressions
4824/// where the declaration is needed for type checking. We only need to
4825/// handle cases when the expression references a function designator
4826/// or is an lvalue. Here are some examples:
4827///  - &(x) => x
4828///  - &*****f => f for f a function designator.
4829///  - &s.xx => s
4830///  - &s.zz[1].yy -> s, if zz is an array
4831///  - *(x + 1) -> x, if x is an array
4832///  - &"123"[2] -> 0
4833///  - & __real__ x -> x
4834static NamedDecl *getPrimaryDecl(Expr *E) {
4835  switch (E->getStmtClass()) {
4836  case Stmt::DeclRefExprClass:
4837  case Stmt::QualifiedDeclRefExprClass:
4838    return cast<DeclRefExpr>(E)->getDecl();
4839  case Stmt::MemberExprClass:
4840  case Stmt::CXXQualifiedMemberExprClass:
4841    // If this is an arrow operator, the address is an offset from
4842    // the base's value, so the object the base refers to is
4843    // irrelevant.
4844    if (cast<MemberExpr>(E)->isArrow())
4845      return 0;
4846    // Otherwise, the expression refers to a part of the base
4847    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4848  case Stmt::ArraySubscriptExprClass: {
4849    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4850    // promotion of register arrays earlier.
4851    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4852    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4853      if (ICE->getSubExpr()->getType()->isArrayType())
4854        return getPrimaryDecl(ICE->getSubExpr());
4855    }
4856    return 0;
4857  }
4858  case Stmt::UnaryOperatorClass: {
4859    UnaryOperator *UO = cast<UnaryOperator>(E);
4860
4861    switch(UO->getOpcode()) {
4862    case UnaryOperator::Real:
4863    case UnaryOperator::Imag:
4864    case UnaryOperator::Extension:
4865      return getPrimaryDecl(UO->getSubExpr());
4866    default:
4867      return 0;
4868    }
4869  }
4870  case Stmt::ParenExprClass:
4871    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4872  case Stmt::ImplicitCastExprClass:
4873    // If the result of an implicit cast is an l-value, we care about
4874    // the sub-expression; otherwise, the result here doesn't matter.
4875    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4876  default:
4877    return 0;
4878  }
4879}
4880
4881/// CheckAddressOfOperand - The operand of & must be either a function
4882/// designator or an lvalue designating an object. If it is an lvalue, the
4883/// object cannot be declared with storage class register or be a bit field.
4884/// Note: The usual conversions are *not* applied to the operand of the &
4885/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4886/// In C++, the operand might be an overloaded function name, in which case
4887/// we allow the '&' but retain the overloaded-function type.
4888QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4889  // Make sure to ignore parentheses in subsequent checks
4890  op = op->IgnoreParens();
4891
4892  if (op->isTypeDependent())
4893    return Context.DependentTy;
4894
4895  if (getLangOptions().C99) {
4896    // Implement C99-only parts of addressof rules.
4897    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4898      if (uOp->getOpcode() == UnaryOperator::Deref)
4899        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4900        // (assuming the deref expression is valid).
4901        return uOp->getSubExpr()->getType();
4902    }
4903    // Technically, there should be a check for array subscript
4904    // expressions here, but the result of one is always an lvalue anyway.
4905  }
4906  NamedDecl *dcl = getPrimaryDecl(op);
4907  Expr::isLvalueResult lval = op->isLvalue(Context);
4908
4909  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4910    // C99 6.5.3.2p1
4911    // The operand must be either an l-value or a function designator
4912    if (!op->getType()->isFunctionType()) {
4913      // FIXME: emit more specific diag...
4914      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4915        << op->getSourceRange();
4916      return QualType();
4917    }
4918  } else if (op->getBitField()) { // C99 6.5.3.2p1
4919    // The operand cannot be a bit-field
4920    Diag(OpLoc, diag::err_typecheck_address_of)
4921      << "bit-field" << op->getSourceRange();
4922        return QualType();
4923  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4924           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4925    // The operand cannot be an element of a vector
4926    Diag(OpLoc, diag::err_typecheck_address_of)
4927      << "vector element" << op->getSourceRange();
4928    return QualType();
4929  } else if (isa<ObjCPropertyRefExpr>(op)) {
4930    // cannot take address of a property expression.
4931    Diag(OpLoc, diag::err_typecheck_address_of)
4932      << "property expression" << op->getSourceRange();
4933    return QualType();
4934  } else if (dcl) { // C99 6.5.3.2p1
4935    // We have an lvalue with a decl. Make sure the decl is not declared
4936    // with the register storage-class specifier.
4937    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4938      if (vd->getStorageClass() == VarDecl::Register) {
4939        Diag(OpLoc, diag::err_typecheck_address_of)
4940          << "register variable" << op->getSourceRange();
4941        return QualType();
4942      }
4943    } else if (isa<OverloadedFunctionDecl>(dcl) ||
4944               isa<FunctionTemplateDecl>(dcl)) {
4945      return Context.OverloadTy;
4946    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
4947      // Okay: we can take the address of a field.
4948      // Could be a pointer to member, though, if there is an explicit
4949      // scope qualifier for the class.
4950      if (isa<QualifiedDeclRefExpr>(op)) {
4951        DeclContext *Ctx = dcl->getDeclContext();
4952        if (Ctx && Ctx->isRecord()) {
4953          if (FD->getType()->isReferenceType()) {
4954            Diag(OpLoc,
4955                 diag::err_cannot_form_pointer_to_member_of_reference_type)
4956              << FD->getDeclName() << FD->getType();
4957            return QualType();
4958          }
4959
4960          return Context.getMemberPointerType(op->getType(),
4961                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4962        }
4963      }
4964    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4965      // Okay: we can take the address of a function.
4966      // As above.
4967      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4968        return Context.getMemberPointerType(op->getType(),
4969              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4970    } else if (!isa<FunctionDecl>(dcl))
4971      assert(0 && "Unknown/unexpected decl type");
4972  }
4973
4974  if (lval == Expr::LV_IncompleteVoidType) {
4975    // Taking the address of a void variable is technically illegal, but we
4976    // allow it in cases which are otherwise valid.
4977    // Example: "extern void x; void* y = &x;".
4978    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4979  }
4980
4981  // If the operand has type "type", the result has type "pointer to type".
4982  return Context.getPointerType(op->getType());
4983}
4984
4985QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4986  if (Op->isTypeDependent())
4987    return Context.DependentTy;
4988
4989  UsualUnaryConversions(Op);
4990  QualType Ty = Op->getType();
4991
4992  // Note that per both C89 and C99, this is always legal, even if ptype is an
4993  // incomplete type or void.  It would be possible to warn about dereferencing
4994  // a void pointer, but it's completely well-defined, and such a warning is
4995  // unlikely to catch any mistakes.
4996  if (const PointerType *PT = Ty->getAs<PointerType>())
4997    return PT->getPointeeType();
4998
4999  if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
5000    return OPT->getPointeeType();
5001
5002  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
5003    << Ty << Op->getSourceRange();
5004  return QualType();
5005}
5006
5007static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
5008  tok::TokenKind Kind) {
5009  BinaryOperator::Opcode Opc;
5010  switch (Kind) {
5011  default: assert(0 && "Unknown binop!");
5012  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
5013  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
5014  case tok::star:                 Opc = BinaryOperator::Mul; break;
5015  case tok::slash:                Opc = BinaryOperator::Div; break;
5016  case tok::percent:              Opc = BinaryOperator::Rem; break;
5017  case tok::plus:                 Opc = BinaryOperator::Add; break;
5018  case tok::minus:                Opc = BinaryOperator::Sub; break;
5019  case tok::lessless:             Opc = BinaryOperator::Shl; break;
5020  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
5021  case tok::lessequal:            Opc = BinaryOperator::LE; break;
5022  case tok::less:                 Opc = BinaryOperator::LT; break;
5023  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
5024  case tok::greater:              Opc = BinaryOperator::GT; break;
5025  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
5026  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
5027  case tok::amp:                  Opc = BinaryOperator::And; break;
5028  case tok::caret:                Opc = BinaryOperator::Xor; break;
5029  case tok::pipe:                 Opc = BinaryOperator::Or; break;
5030  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
5031  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
5032  case tok::equal:                Opc = BinaryOperator::Assign; break;
5033  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
5034  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
5035  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
5036  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
5037  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
5038  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
5039  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
5040  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
5041  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
5042  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
5043  case tok::comma:                Opc = BinaryOperator::Comma; break;
5044  }
5045  return Opc;
5046}
5047
5048static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
5049  tok::TokenKind Kind) {
5050  UnaryOperator::Opcode Opc;
5051  switch (Kind) {
5052  default: assert(0 && "Unknown unary op!");
5053  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
5054  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
5055  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
5056  case tok::star:         Opc = UnaryOperator::Deref; break;
5057  case tok::plus:         Opc = UnaryOperator::Plus; break;
5058  case tok::minus:        Opc = UnaryOperator::Minus; break;
5059  case tok::tilde:        Opc = UnaryOperator::Not; break;
5060  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
5061  case tok::kw___real:    Opc = UnaryOperator::Real; break;
5062  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
5063  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
5064  }
5065  return Opc;
5066}
5067
5068/// CreateBuiltinBinOp - Creates a new built-in binary operation with
5069/// operator @p Opc at location @c TokLoc. This routine only supports
5070/// built-in operations; ActOnBinOp handles overloaded operators.
5071Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
5072                                                  unsigned Op,
5073                                                  Expr *lhs, Expr *rhs) {
5074  QualType ResultTy;     // Result type of the binary operator.
5075  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
5076  // The following two variables are used for compound assignment operators
5077  QualType CompLHSTy;    // Type of LHS after promotions for computation
5078  QualType CompResultTy; // Type of computation result
5079
5080  switch (Opc) {
5081  case BinaryOperator::Assign:
5082    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
5083    break;
5084  case BinaryOperator::PtrMemD:
5085  case BinaryOperator::PtrMemI:
5086    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
5087                                            Opc == BinaryOperator::PtrMemI);
5088    break;
5089  case BinaryOperator::Mul:
5090  case BinaryOperator::Div:
5091    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
5092    break;
5093  case BinaryOperator::Rem:
5094    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
5095    break;
5096  case BinaryOperator::Add:
5097    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
5098    break;
5099  case BinaryOperator::Sub:
5100    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
5101    break;
5102  case BinaryOperator::Shl:
5103  case BinaryOperator::Shr:
5104    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
5105    break;
5106  case BinaryOperator::LE:
5107  case BinaryOperator::LT:
5108  case BinaryOperator::GE:
5109  case BinaryOperator::GT:
5110    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
5111    break;
5112  case BinaryOperator::EQ:
5113  case BinaryOperator::NE:
5114    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
5115    break;
5116  case BinaryOperator::And:
5117  case BinaryOperator::Xor:
5118  case BinaryOperator::Or:
5119    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
5120    break;
5121  case BinaryOperator::LAnd:
5122  case BinaryOperator::LOr:
5123    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
5124    break;
5125  case BinaryOperator::MulAssign:
5126  case BinaryOperator::DivAssign:
5127    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
5128    CompLHSTy = CompResultTy;
5129    if (!CompResultTy.isNull())
5130      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5131    break;
5132  case BinaryOperator::RemAssign:
5133    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
5134    CompLHSTy = CompResultTy;
5135    if (!CompResultTy.isNull())
5136      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5137    break;
5138  case BinaryOperator::AddAssign:
5139    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5140    if (!CompResultTy.isNull())
5141      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5142    break;
5143  case BinaryOperator::SubAssign:
5144    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
5145    if (!CompResultTy.isNull())
5146      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5147    break;
5148  case BinaryOperator::ShlAssign:
5149  case BinaryOperator::ShrAssign:
5150    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
5151    CompLHSTy = CompResultTy;
5152    if (!CompResultTy.isNull())
5153      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5154    break;
5155  case BinaryOperator::AndAssign:
5156  case BinaryOperator::XorAssign:
5157  case BinaryOperator::OrAssign:
5158    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
5159    CompLHSTy = CompResultTy;
5160    if (!CompResultTy.isNull())
5161      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
5162    break;
5163  case BinaryOperator::Comma:
5164    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
5165    break;
5166  }
5167  if (ResultTy.isNull())
5168    return ExprError();
5169  if (CompResultTy.isNull())
5170    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5171  else
5172    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5173                                                      CompLHSTy, CompResultTy,
5174                                                      OpLoc));
5175}
5176
5177// Binary Operators.  'Tok' is the token for the operator.
5178Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5179                                          tok::TokenKind Kind,
5180                                          ExprArg LHS, ExprArg RHS) {
5181  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5182  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5183
5184  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5185  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5186
5187  if (getLangOptions().CPlusPlus &&
5188      (lhs->getType()->isOverloadableType() ||
5189       rhs->getType()->isOverloadableType())) {
5190    // Find all of the overloaded operators visible from this
5191    // point. We perform both an operator-name lookup from the local
5192    // scope and an argument-dependent lookup based on the types of
5193    // the arguments.
5194    FunctionSet Functions;
5195    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5196    if (OverOp != OO_None) {
5197      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5198                                   Functions);
5199      Expr *Args[2] = { lhs, rhs };
5200      DeclarationName OpName
5201        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5202      ArgumentDependentLookup(OpName, Args, 2, Functions);
5203    }
5204
5205    // Build the (potentially-overloaded, potentially-dependent)
5206    // binary operation.
5207    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5208  }
5209
5210  // Build a built-in binary operation.
5211  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5212}
5213
5214Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5215                                                    unsigned OpcIn,
5216                                                    ExprArg InputArg) {
5217  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5218
5219  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5220  Expr *Input = (Expr *)InputArg.get();
5221  QualType resultType;
5222  switch (Opc) {
5223  case UnaryOperator::OffsetOf:
5224    assert(false && "Invalid unary operator");
5225    break;
5226
5227  case UnaryOperator::PreInc:
5228  case UnaryOperator::PreDec:
5229  case UnaryOperator::PostInc:
5230  case UnaryOperator::PostDec:
5231    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5232                                                Opc == UnaryOperator::PreInc ||
5233                                                Opc == UnaryOperator::PostInc);
5234    break;
5235  case UnaryOperator::AddrOf:
5236    resultType = CheckAddressOfOperand(Input, OpLoc);
5237    break;
5238  case UnaryOperator::Deref:
5239    DefaultFunctionArrayConversion(Input);
5240    resultType = CheckIndirectionOperand(Input, OpLoc);
5241    break;
5242  case UnaryOperator::Plus:
5243  case UnaryOperator::Minus:
5244    UsualUnaryConversions(Input);
5245    resultType = Input->getType();
5246    if (resultType->isDependentType())
5247      break;
5248    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5249      break;
5250    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5251             resultType->isEnumeralType())
5252      break;
5253    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5254             Opc == UnaryOperator::Plus &&
5255             resultType->isPointerType())
5256      break;
5257
5258    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5259      << resultType << Input->getSourceRange());
5260  case UnaryOperator::Not: // bitwise complement
5261    UsualUnaryConversions(Input);
5262    resultType = Input->getType();
5263    if (resultType->isDependentType())
5264      break;
5265    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5266    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5267      // C99 does not support '~' for complex conjugation.
5268      Diag(OpLoc, diag::ext_integer_complement_complex)
5269        << resultType << Input->getSourceRange();
5270    else if (!resultType->isIntegerType())
5271      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5272        << resultType << Input->getSourceRange());
5273    break;
5274  case UnaryOperator::LNot: // logical negation
5275    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5276    DefaultFunctionArrayConversion(Input);
5277    resultType = Input->getType();
5278    if (resultType->isDependentType())
5279      break;
5280    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5281      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5282        << resultType << Input->getSourceRange());
5283    // LNot always has type int. C99 6.5.3.3p5.
5284    // In C++, it's bool. C++ 5.3.1p8
5285    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5286    break;
5287  case UnaryOperator::Real:
5288  case UnaryOperator::Imag:
5289    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5290    break;
5291  case UnaryOperator::Extension:
5292    resultType = Input->getType();
5293    break;
5294  }
5295  if (resultType.isNull())
5296    return ExprError();
5297
5298  InputArg.release();
5299  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5300}
5301
5302// Unary Operators.  'Tok' is the token for the operator.
5303Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5304                                            tok::TokenKind Op, ExprArg input) {
5305  Expr *Input = (Expr*)input.get();
5306  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5307
5308  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5309    // Find all of the overloaded operators visible from this
5310    // point. We perform both an operator-name lookup from the local
5311    // scope and an argument-dependent lookup based on the types of
5312    // the arguments.
5313    FunctionSet Functions;
5314    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5315    if (OverOp != OO_None) {
5316      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5317                                   Functions);
5318      DeclarationName OpName
5319        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5320      ArgumentDependentLookup(OpName, &Input, 1, Functions);
5321    }
5322
5323    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5324  }
5325
5326  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5327}
5328
5329/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5330Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5331                                            SourceLocation LabLoc,
5332                                            IdentifierInfo *LabelII) {
5333  // Look up the record for this label identifier.
5334  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5335
5336  // If we haven't seen this label yet, create a forward reference. It
5337  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5338  if (LabelDecl == 0)
5339    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5340
5341  // Create the AST node.  The address of a label always has type 'void*'.
5342  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5343                                       Context.getPointerType(Context.VoidTy)));
5344}
5345
5346Sema::OwningExprResult
5347Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5348                    SourceLocation RPLoc) { // "({..})"
5349  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5350  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5351  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5352
5353  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5354  if (isFileScope)
5355    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5356
5357  // FIXME: there are a variety of strange constraints to enforce here, for
5358  // example, it is not possible to goto into a stmt expression apparently.
5359  // More semantic analysis is needed.
5360
5361  // If there are sub stmts in the compound stmt, take the type of the last one
5362  // as the type of the stmtexpr.
5363  QualType Ty = Context.VoidTy;
5364
5365  if (!Compound->body_empty()) {
5366    Stmt *LastStmt = Compound->body_back();
5367    // If LastStmt is a label, skip down through into the body.
5368    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5369      LastStmt = Label->getSubStmt();
5370
5371    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5372      Ty = LastExpr->getType();
5373  }
5374
5375  // FIXME: Check that expression type is complete/non-abstract; statement
5376  // expressions are not lvalues.
5377
5378  substmt.release();
5379  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5380}
5381
5382Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5383                                                  SourceLocation BuiltinLoc,
5384                                                  SourceLocation TypeLoc,
5385                                                  TypeTy *argty,
5386                                                  OffsetOfComponent *CompPtr,
5387                                                  unsigned NumComponents,
5388                                                  SourceLocation RPLoc) {
5389  // FIXME: This function leaks all expressions in the offset components on
5390  // error.
5391  // FIXME: Preserve type source info.
5392  QualType ArgTy = GetTypeFromParser(argty);
5393  assert(!ArgTy.isNull() && "Missing type argument!");
5394
5395  bool Dependent = ArgTy->isDependentType();
5396
5397  // We must have at least one component that refers to the type, and the first
5398  // one is known to be a field designator.  Verify that the ArgTy represents
5399  // a struct/union/class.
5400  if (!Dependent && !ArgTy->isRecordType())
5401    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5402
5403  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5404  // with an incomplete type would be illegal.
5405
5406  // Otherwise, create a null pointer as the base, and iteratively process
5407  // the offsetof designators.
5408  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5409  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5410  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5411                                    ArgTy, SourceLocation());
5412
5413  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5414  // GCC extension, diagnose them.
5415  // FIXME: This diagnostic isn't actually visible because the location is in
5416  // a system header!
5417  if (NumComponents != 1)
5418    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5419      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5420
5421  if (!Dependent) {
5422    bool DidWarnAboutNonPOD = false;
5423
5424    // FIXME: Dependent case loses a lot of information here. And probably
5425    // leaks like a sieve.
5426    for (unsigned i = 0; i != NumComponents; ++i) {
5427      const OffsetOfComponent &OC = CompPtr[i];
5428      if (OC.isBrackets) {
5429        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5430        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5431        if (!AT) {
5432          Res->Destroy(Context);
5433          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5434            << Res->getType());
5435        }
5436
5437        // FIXME: C++: Verify that operator[] isn't overloaded.
5438
5439        // Promote the array so it looks more like a normal array subscript
5440        // expression.
5441        DefaultFunctionArrayConversion(Res);
5442
5443        // C99 6.5.2.1p1
5444        Expr *Idx = static_cast<Expr*>(OC.U.E);
5445        // FIXME: Leaks Res
5446        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5447          return ExprError(Diag(Idx->getLocStart(),
5448                                diag::err_typecheck_subscript_not_integer)
5449            << Idx->getSourceRange());
5450
5451        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5452                                               OC.LocEnd);
5453        continue;
5454      }
5455
5456      const RecordType *RC = Res->getType()->getAs<RecordType>();
5457      if (!RC) {
5458        Res->Destroy(Context);
5459        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5460          << Res->getType());
5461      }
5462
5463      // Get the decl corresponding to this.
5464      RecordDecl *RD = RC->getDecl();
5465      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5466        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5467          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5468            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5469            << Res->getType());
5470          DidWarnAboutNonPOD = true;
5471        }
5472      }
5473
5474      FieldDecl *MemberDecl
5475        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5476                                                          LookupMemberName)
5477                                        .getAsDecl());
5478      // FIXME: Leaks Res
5479      if (!MemberDecl)
5480        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member_deprecated)
5481         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5482
5483      // FIXME: C++: Verify that MemberDecl isn't a static field.
5484      // FIXME: Verify that MemberDecl isn't a bitfield.
5485      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5486        Res = BuildAnonymousStructUnionMemberReference(
5487            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5488      } else {
5489        // MemberDecl->getType() doesn't get the right qualifiers, but it
5490        // doesn't matter here.
5491        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5492                MemberDecl->getType().getNonReferenceType());
5493      }
5494    }
5495  }
5496
5497  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5498                                           Context.getSizeType(), BuiltinLoc));
5499}
5500
5501
5502Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5503                                                      TypeTy *arg1,TypeTy *arg2,
5504                                                      SourceLocation RPLoc) {
5505  // FIXME: Preserve type source info.
5506  QualType argT1 = GetTypeFromParser(arg1);
5507  QualType argT2 = GetTypeFromParser(arg2);
5508
5509  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5510
5511  if (getLangOptions().CPlusPlus) {
5512    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5513      << SourceRange(BuiltinLoc, RPLoc);
5514    return ExprError();
5515  }
5516
5517  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5518                                                 argT1, argT2, RPLoc));
5519}
5520
5521Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5522                                             ExprArg cond,
5523                                             ExprArg expr1, ExprArg expr2,
5524                                             SourceLocation RPLoc) {
5525  Expr *CondExpr = static_cast<Expr*>(cond.get());
5526  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5527  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5528
5529  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5530
5531  QualType resType;
5532  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5533    resType = Context.DependentTy;
5534  } else {
5535    // The conditional expression is required to be a constant expression.
5536    llvm::APSInt condEval(32);
5537    SourceLocation ExpLoc;
5538    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5539      return ExprError(Diag(ExpLoc,
5540                       diag::err_typecheck_choose_expr_requires_constant)
5541        << CondExpr->getSourceRange());
5542
5543    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5544    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5545  }
5546
5547  cond.release(); expr1.release(); expr2.release();
5548  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5549                                        resType, RPLoc));
5550}
5551
5552//===----------------------------------------------------------------------===//
5553// Clang Extensions.
5554//===----------------------------------------------------------------------===//
5555
5556/// ActOnBlockStart - This callback is invoked when a block literal is started.
5557void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5558  // Analyze block parameters.
5559  BlockSemaInfo *BSI = new BlockSemaInfo();
5560
5561  // Add BSI to CurBlock.
5562  BSI->PrevBlockInfo = CurBlock;
5563  CurBlock = BSI;
5564
5565  BSI->ReturnType = QualType();
5566  BSI->TheScope = BlockScope;
5567  BSI->hasBlockDeclRefExprs = false;
5568  BSI->hasPrototype = false;
5569  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5570  CurFunctionNeedsScopeChecking = false;
5571
5572  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5573  PushDeclContext(BlockScope, BSI->TheDecl);
5574}
5575
5576void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5577  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5578
5579  if (ParamInfo.getNumTypeObjects() == 0
5580      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5581    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5582    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5583
5584    if (T->isArrayType()) {
5585      Diag(ParamInfo.getSourceRange().getBegin(),
5586           diag::err_block_returns_array);
5587      return;
5588    }
5589
5590    // The parameter list is optional, if there was none, assume ().
5591    if (!T->isFunctionType())
5592      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5593
5594    CurBlock->hasPrototype = true;
5595    CurBlock->isVariadic = false;
5596    // Check for a valid sentinel attribute on this block.
5597    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5598      Diag(ParamInfo.getAttributes()->getLoc(),
5599           diag::warn_attribute_sentinel_not_variadic) << 1;
5600      // FIXME: remove the attribute.
5601    }
5602    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5603
5604    // Do not allow returning a objc interface by-value.
5605    if (RetTy->isObjCInterfaceType()) {
5606      Diag(ParamInfo.getSourceRange().getBegin(),
5607           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5608      return;
5609    }
5610    return;
5611  }
5612
5613  // Analyze arguments to block.
5614  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5615         "Not a function declarator!");
5616  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5617
5618  CurBlock->hasPrototype = FTI.hasPrototype;
5619  CurBlock->isVariadic = true;
5620
5621  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5622  // no arguments, not a function that takes a single void argument.
5623  if (FTI.hasPrototype &&
5624      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5625     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5626        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5627    // empty arg list, don't push any params.
5628    CurBlock->isVariadic = false;
5629  } else if (FTI.hasPrototype) {
5630    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5631      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5632    CurBlock->isVariadic = FTI.isVariadic;
5633  }
5634  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5635                               CurBlock->Params.size());
5636  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5637  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5638  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5639       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5640    // If this has an identifier, add it to the scope stack.
5641    if ((*AI)->getIdentifier())
5642      PushOnScopeChains(*AI, CurBlock->TheScope);
5643
5644  // Check for a valid sentinel attribute on this block.
5645  if (!CurBlock->isVariadic &&
5646      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5647    Diag(ParamInfo.getAttributes()->getLoc(),
5648         diag::warn_attribute_sentinel_not_variadic) << 1;
5649    // FIXME: remove the attribute.
5650  }
5651
5652  // Analyze the return type.
5653  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5654  QualType RetTy = T->getAsFunctionType()->getResultType();
5655
5656  // Do not allow returning a objc interface by-value.
5657  if (RetTy->isObjCInterfaceType()) {
5658    Diag(ParamInfo.getSourceRange().getBegin(),
5659         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5660  } else if (!RetTy->isDependentType())
5661    CurBlock->ReturnType = RetTy;
5662}
5663
5664/// ActOnBlockError - If there is an error parsing a block, this callback
5665/// is invoked to pop the information about the block from the action impl.
5666void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5667  // Ensure that CurBlock is deleted.
5668  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5669
5670  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5671
5672  // Pop off CurBlock, handle nested blocks.
5673  PopDeclContext();
5674  CurBlock = CurBlock->PrevBlockInfo;
5675  // FIXME: Delete the ParmVarDecl objects as well???
5676}
5677
5678/// ActOnBlockStmtExpr - This is called when the body of a block statement
5679/// literal was successfully completed.  ^(int x){...}
5680Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5681                                                StmtArg body, Scope *CurScope) {
5682  // If blocks are disabled, emit an error.
5683  if (!LangOpts.Blocks)
5684    Diag(CaretLoc, diag::err_blocks_disable);
5685
5686  // Ensure that CurBlock is deleted.
5687  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5688
5689  PopDeclContext();
5690
5691  // Pop off CurBlock, handle nested blocks.
5692  CurBlock = CurBlock->PrevBlockInfo;
5693
5694  QualType RetTy = Context.VoidTy;
5695  if (!BSI->ReturnType.isNull())
5696    RetTy = BSI->ReturnType;
5697
5698  llvm::SmallVector<QualType, 8> ArgTypes;
5699  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5700    ArgTypes.push_back(BSI->Params[i]->getType());
5701
5702  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
5703  QualType BlockTy;
5704  if (!BSI->hasPrototype)
5705    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
5706                                      NoReturn);
5707  else
5708    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5709                                      BSI->isVariadic, 0, false, false, 0, 0,
5710                                      NoReturn);
5711
5712  // FIXME: Check that return/parameter types are complete/non-abstract
5713  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5714  BlockTy = Context.getBlockPointerType(BlockTy);
5715
5716  // If needed, diagnose invalid gotos and switches in the block.
5717  if (CurFunctionNeedsScopeChecking)
5718    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5719  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5720
5721  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5722  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
5723  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5724                                       BSI->hasBlockDeclRefExprs));
5725}
5726
5727Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5728                                        ExprArg expr, TypeTy *type,
5729                                        SourceLocation RPLoc) {
5730  QualType T = GetTypeFromParser(type);
5731  Expr *E = static_cast<Expr*>(expr.get());
5732  Expr *OrigExpr = E;
5733
5734  InitBuiltinVaListType();
5735
5736  // Get the va_list type
5737  QualType VaListType = Context.getBuiltinVaListType();
5738  if (VaListType->isArrayType()) {
5739    // Deal with implicit array decay; for example, on x86-64,
5740    // va_list is an array, but it's supposed to decay to
5741    // a pointer for va_arg.
5742    VaListType = Context.getArrayDecayedType(VaListType);
5743    // Make sure the input expression also decays appropriately.
5744    UsualUnaryConversions(E);
5745  } else {
5746    // Otherwise, the va_list argument must be an l-value because
5747    // it is modified by va_arg.
5748    if (!E->isTypeDependent() &&
5749        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5750      return ExprError();
5751  }
5752
5753  if (!E->isTypeDependent() &&
5754      !Context.hasSameType(VaListType, E->getType())) {
5755    return ExprError(Diag(E->getLocStart(),
5756                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5757      << OrigExpr->getType() << E->getSourceRange());
5758  }
5759
5760  // FIXME: Check that type is complete/non-abstract
5761  // FIXME: Warn if a non-POD type is passed in.
5762
5763  expr.release();
5764  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5765                                       RPLoc));
5766}
5767
5768Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5769  // The type of __null will be int or long, depending on the size of
5770  // pointers on the target.
5771  QualType Ty;
5772  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5773    Ty = Context.IntTy;
5774  else
5775    Ty = Context.LongTy;
5776
5777  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5778}
5779
5780bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5781                                    SourceLocation Loc,
5782                                    QualType DstType, QualType SrcType,
5783                                    Expr *SrcExpr, const char *Flavor) {
5784  // Decode the result (notice that AST's are still created for extensions).
5785  bool isInvalid = false;
5786  unsigned DiagKind;
5787  switch (ConvTy) {
5788  default: assert(0 && "Unknown conversion type");
5789  case Compatible: return false;
5790  case PointerToInt:
5791    DiagKind = diag::ext_typecheck_convert_pointer_int;
5792    break;
5793  case IntToPointer:
5794    DiagKind = diag::ext_typecheck_convert_int_pointer;
5795    break;
5796  case IncompatiblePointer:
5797    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5798    break;
5799  case IncompatiblePointerSign:
5800    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5801    break;
5802  case FunctionVoidPointer:
5803    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5804    break;
5805  case CompatiblePointerDiscardsQualifiers:
5806    // If the qualifiers lost were because we were applying the
5807    // (deprecated) C++ conversion from a string literal to a char*
5808    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5809    // Ideally, this check would be performed in
5810    // CheckPointerTypesForAssignment. However, that would require a
5811    // bit of refactoring (so that the second argument is an
5812    // expression, rather than a type), which should be done as part
5813    // of a larger effort to fix CheckPointerTypesForAssignment for
5814    // C++ semantics.
5815    if (getLangOptions().CPlusPlus &&
5816        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5817      return false;
5818    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5819    break;
5820  case IntToBlockPointer:
5821    DiagKind = diag::err_int_to_block_pointer;
5822    break;
5823  case IncompatibleBlockPointer:
5824    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5825    break;
5826  case IncompatibleObjCQualifiedId:
5827    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5828    // it can give a more specific diagnostic.
5829    DiagKind = diag::warn_incompatible_qualified_id;
5830    break;
5831  case IncompatibleVectors:
5832    DiagKind = diag::warn_incompatible_vectors;
5833    break;
5834  case Incompatible:
5835    DiagKind = diag::err_typecheck_convert_incompatible;
5836    isInvalid = true;
5837    break;
5838  }
5839
5840  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5841    << SrcExpr->getSourceRange();
5842  return isInvalid;
5843}
5844
5845bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5846  llvm::APSInt ICEResult;
5847  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5848    if (Result)
5849      *Result = ICEResult;
5850    return false;
5851  }
5852
5853  Expr::EvalResult EvalResult;
5854
5855  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5856      EvalResult.HasSideEffects) {
5857    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5858
5859    if (EvalResult.Diag) {
5860      // We only show the note if it's not the usual "invalid subexpression"
5861      // or if it's actually in a subexpression.
5862      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5863          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5864        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5865    }
5866
5867    return true;
5868  }
5869
5870  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5871    E->getSourceRange();
5872
5873  if (EvalResult.Diag &&
5874      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5875    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5876
5877  if (Result)
5878    *Result = EvalResult.Val.getInt();
5879  return false;
5880}
5881
5882Sema::ExpressionEvaluationContext
5883Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5884  // Introduce a new set of potentially referenced declarations to the stack.
5885  if (NewContext == PotentiallyPotentiallyEvaluated)
5886    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5887
5888  std::swap(ExprEvalContext, NewContext);
5889  return NewContext;
5890}
5891
5892void
5893Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5894                                     ExpressionEvaluationContext NewContext) {
5895  ExprEvalContext = NewContext;
5896
5897  if (OldContext == PotentiallyPotentiallyEvaluated) {
5898    // Mark any remaining declarations in the current position of the stack
5899    // as "referenced". If they were not meant to be referenced, semantic
5900    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5901    PotentiallyReferencedDecls RemainingDecls;
5902    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5903    PotentiallyReferencedDeclStack.pop_back();
5904
5905    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5906                                           IEnd = RemainingDecls.end();
5907         I != IEnd; ++I)
5908      MarkDeclarationReferenced(I->first, I->second);
5909  }
5910}
5911
5912/// \brief Note that the given declaration was referenced in the source code.
5913///
5914/// This routine should be invoke whenever a given declaration is referenced
5915/// in the source code, and where that reference occurred. If this declaration
5916/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5917/// C99 6.9p3), then the declaration will be marked as used.
5918///
5919/// \param Loc the location where the declaration was referenced.
5920///
5921/// \param D the declaration that has been referenced by the source code.
5922void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5923  assert(D && "No declaration?");
5924
5925  if (D->isUsed())
5926    return;
5927
5928  // Mark a parameter declaration "used", regardless of whether we're in a
5929  // template or not.
5930  if (isa<ParmVarDecl>(D))
5931    D->setUsed(true);
5932
5933  // Do not mark anything as "used" within a dependent context; wait for
5934  // an instantiation.
5935  if (CurContext->isDependentContext())
5936    return;
5937
5938  switch (ExprEvalContext) {
5939    case Unevaluated:
5940      // We are in an expression that is not potentially evaluated; do nothing.
5941      return;
5942
5943    case PotentiallyEvaluated:
5944      // We are in a potentially-evaluated expression, so this declaration is
5945      // "used"; handle this below.
5946      break;
5947
5948    case PotentiallyPotentiallyEvaluated:
5949      // We are in an expression that may be potentially evaluated; queue this
5950      // declaration reference until we know whether the expression is
5951      // potentially evaluated.
5952      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5953      return;
5954  }
5955
5956  // Note that this declaration has been used.
5957  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5958    unsigned TypeQuals;
5959    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5960        if (!Constructor->isUsed())
5961          DefineImplicitDefaultConstructor(Loc, Constructor);
5962    } else if (Constructor->isImplicit() &&
5963               Constructor->isCopyConstructor(Context, TypeQuals)) {
5964      if (!Constructor->isUsed())
5965        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5966    }
5967  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
5968    if (Destructor->isImplicit() && !Destructor->isUsed())
5969      DefineImplicitDestructor(Loc, Destructor);
5970
5971  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
5972    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
5973        MethodDecl->getOverloadedOperator() == OO_Equal) {
5974      if (!MethodDecl->isUsed())
5975        DefineImplicitOverloadedAssign(Loc, MethodDecl);
5976    }
5977  }
5978  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5979    // Implicit instantiation of function templates and member functions of
5980    // class templates.
5981    if (!Function->getBody()) {
5982      // FIXME: distinguish between implicit instantiations of function
5983      // templates and explicit specializations (the latter don't get
5984      // instantiated, naturally).
5985      if (Function->getInstantiatedFromMemberFunction() ||
5986          Function->getPrimaryTemplate())
5987        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
5988    }
5989
5990
5991    // FIXME: keep track of references to static functions
5992    Function->setUsed(true);
5993    return;
5994  }
5995
5996  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5997    // Implicit instantiation of static data members of class templates.
5998    // FIXME: distinguish between implicit instantiations (which we need to
5999    // actually instantiate) and explicit specializations.
6000    if (Var->isStaticDataMember() &&
6001        Var->getInstantiatedFromStaticDataMember())
6002      PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
6003
6004    // FIXME: keep track of references to static data?
6005
6006    D->setUsed(true);
6007    return;
6008}
6009}
6010
6011