SemaExpr.cpp revision 45b1e22a0aeb450188be75c8ea07ea70a757ce20
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>()) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
92/// (and other functions in future), which have been declared with sentinel
93/// attribute. It warns if call does not have the sentinel argument.
94///
95void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
96                                 Expr **Args, unsigned NumArgs)
97{
98  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
99  if (!attr)
100    return;
101  int sentinelPos = attr->getSentinel();
102  int nullPos = attr->getNullPos();
103
104  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
105  // base class. Then we won't be needing two versions of the same code.
106  unsigned int i = 0;
107  bool warnNotEnoughArgs = false;
108  int isMethod = 0;
109  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = MD->param_end();
112    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119    isMethod = 1;
120  }
121  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  }
132  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
133    // block or function pointer call.
134    QualType Ty = V->getType();
135    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
136      const FunctionType *FT = Ty->isFunctionPointerType()
137      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
138      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
139      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
140        unsigned NumArgsInProto = Proto->getNumArgs();
141        unsigned k;
142        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
143          if (nullPos)
144            --nullPos;
145          else
146            ++i;
147        }
148        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
149      }
150      if (Ty->isBlockPointerType())
151        isMethod = 2;
152    }
153    else
154      return;
155  }
156  else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context))) {
181    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
182    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
183  }
184  return;
185}
186
187SourceRange Sema::getExprRange(ExprTy *E) const {
188  Expr *Ex = (Expr *)E;
189  return Ex? Ex->getSourceRange() : SourceRange();
190}
191
192//===----------------------------------------------------------------------===//
193//  Standard Promotions and Conversions
194//===----------------------------------------------------------------------===//
195
196/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
197void Sema::DefaultFunctionArrayConversion(Expr *&E) {
198  QualType Ty = E->getType();
199  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
200
201  if (Ty->isFunctionType())
202    ImpCastExprToType(E, Context.getPointerType(Ty));
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
218  }
219}
220
221/// \brief Whether this is a promotable bitfield reference according
222/// to C99 6.3.1.1p2, bullet 2.
223///
224/// \returns the type this bit-field will promote to, or NULL if no
225/// promotion occurs.
226static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
227  FieldDecl *Field = E->getBitField();
228  if (!Field)
229    return QualType();
230
231  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
232  if (!BT)
233    return QualType();
234
235  if (BT->getKind() != BuiltinType::Bool &&
236      BT->getKind() != BuiltinType::Int &&
237      BT->getKind() != BuiltinType::UInt)
238    return QualType();
239
240  llvm::APSInt BitWidthAP;
241  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
242    return QualType();
243
244  uint64_t BitWidth = BitWidthAP.getZExtValue();
245  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
246  if (BitWidth < IntSize ||
247      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
248    return Context.IntTy;
249
250  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
251    return Context.UnsignedIntTy;
252
253  return QualType();
254}
255
256/// UsualUnaryConversions - Performs various conversions that are common to most
257/// operators (C99 6.3). The conversions of array and function types are
258/// sometimes surpressed. For example, the array->pointer conversion doesn't
259/// apply if the array is an argument to the sizeof or address (&) operators.
260/// In these instances, this routine should *not* be called.
261Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
262  QualType Ty = Expr->getType();
263  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
264
265  // C99 6.3.1.1p2:
266  //
267  //   The following may be used in an expression wherever an int or
268  //   unsigned int may be used:
269  //     - an object or expression with an integer type whose integer
270  //       conversion rank is less than or equal to the rank of int
271  //       and unsigned int.
272  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
273  //
274  //   If an int can represent all values of the original type, the
275  //   value is converted to an int; otherwise, it is converted to an
276  //   unsigned int. These are called the integer promotions. All
277  //   other types are unchanged by the integer promotions.
278  if (Ty->isPromotableIntegerType()) {
279    ImpCastExprToType(Expr, Context.IntTy);
280    return Expr;
281  } else {
282    QualType T = isPromotableBitField(Expr, Context);
283    if (!T.isNull()) {
284      ImpCastExprToType(Expr, T);
285      return Expr;
286    }
287  }
288
289  DefaultFunctionArrayConversion(Expr);
290  return Expr;
291}
292
293/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
294/// do not have a prototype. Arguments that have type float are promoted to
295/// double. All other argument types are converted by UsualUnaryConversions().
296void Sema::DefaultArgumentPromotion(Expr *&Expr) {
297  QualType Ty = Expr->getType();
298  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
299
300  // If this is a 'float' (CVR qualified or typedef) promote to double.
301  if (const BuiltinType *BT = Ty->getAsBuiltinType())
302    if (BT->getKind() == BuiltinType::Float)
303      return ImpCastExprToType(Expr, Context.DoubleTy);
304
305  UsualUnaryConversions(Expr);
306}
307
308/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
309/// will warn if the resulting type is not a POD type, and rejects ObjC
310/// interfaces passed by value.  This returns true if the argument type is
311/// completely illegal.
312bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
313  DefaultArgumentPromotion(Expr);
314
315  if (Expr->getType()->isObjCInterfaceType()) {
316    Diag(Expr->getLocStart(),
317         diag::err_cannot_pass_objc_interface_to_vararg)
318      << Expr->getType() << CT;
319    return true;
320  }
321
322  if (!Expr->getType()->isPODType())
323    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
324      << Expr->getType() << CT;
325
326  return false;
327}
328
329
330/// UsualArithmeticConversions - Performs various conversions that are common to
331/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
332/// routine returns the first non-arithmetic type found. The client is
333/// responsible for emitting appropriate error diagnostics.
334/// FIXME: verify the conversion rules for "complex int" are consistent with
335/// GCC.
336QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
337                                          bool isCompAssign) {
338  if (!isCompAssign)
339    UsualUnaryConversions(lhsExpr);
340
341  UsualUnaryConversions(rhsExpr);
342
343  // For conversion purposes, we ignore any qualifiers.
344  // For example, "const float" and "float" are equivalent.
345  QualType lhs =
346    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
347  QualType rhs =
348    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
349
350  // If both types are identical, no conversion is needed.
351  if (lhs == rhs)
352    return lhs;
353
354  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
355  // The caller can deal with this (e.g. pointer + int).
356  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
357    return lhs;
358
359  // Perform bitfield promotions.
360  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
361  if (!LHSBitfieldPromoteTy.isNull())
362    lhs = LHSBitfieldPromoteTy;
363  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
364  if (!RHSBitfieldPromoteTy.isNull())
365    rhs = RHSBitfieldPromoteTy;
366
367  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
368  if (!isCompAssign)
369    ImpCastExprToType(lhsExpr, destType);
370  ImpCastExprToType(rhsExpr, destType);
371  return destType;
372}
373
374QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
375  // Perform the usual unary conversions. We do this early so that
376  // integral promotions to "int" can allow us to exit early, in the
377  // lhs == rhs check. Also, for conversion purposes, we ignore any
378  // qualifiers.  For example, "const float" and "float" are
379  // equivalent.
380  if (lhs->isPromotableIntegerType())
381    lhs = Context.IntTy;
382  else
383    lhs = lhs.getUnqualifiedType();
384  if (rhs->isPromotableIntegerType())
385    rhs = Context.IntTy;
386  else
387    rhs = rhs.getUnqualifiedType();
388
389  // If both types are identical, no conversion is needed.
390  if (lhs == rhs)
391    return lhs;
392
393  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
394  // The caller can deal with this (e.g. pointer + int).
395  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
396    return lhs;
397
398  // At this point, we have two different arithmetic types.
399
400  // Handle complex types first (C99 6.3.1.8p1).
401  if (lhs->isComplexType() || rhs->isComplexType()) {
402    // if we have an integer operand, the result is the complex type.
403    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
404      // convert the rhs to the lhs complex type.
405      return lhs;
406    }
407    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
408      // convert the lhs to the rhs complex type.
409      return rhs;
410    }
411    // This handles complex/complex, complex/float, or float/complex.
412    // When both operands are complex, the shorter operand is converted to the
413    // type of the longer, and that is the type of the result. This corresponds
414    // to what is done when combining two real floating-point operands.
415    // The fun begins when size promotion occur across type domains.
416    // From H&S 6.3.4: When one operand is complex and the other is a real
417    // floating-point type, the less precise type is converted, within it's
418    // real or complex domain, to the precision of the other type. For example,
419    // when combining a "long double" with a "double _Complex", the
420    // "double _Complex" is promoted to "long double _Complex".
421    int result = Context.getFloatingTypeOrder(lhs, rhs);
422
423    if (result > 0) { // The left side is bigger, convert rhs.
424      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
425    } else if (result < 0) { // The right side is bigger, convert lhs.
426      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
427    }
428    // At this point, lhs and rhs have the same rank/size. Now, make sure the
429    // domains match. This is a requirement for our implementation, C99
430    // does not require this promotion.
431    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
432      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
433        return rhs;
434      } else { // handle "_Complex double, double".
435        return lhs;
436      }
437    }
438    return lhs; // The domain/size match exactly.
439  }
440  // Now handle "real" floating types (i.e. float, double, long double).
441  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
442    // if we have an integer operand, the result is the real floating type.
443    if (rhs->isIntegerType()) {
444      // convert rhs to the lhs floating point type.
445      return lhs;
446    }
447    if (rhs->isComplexIntegerType()) {
448      // convert rhs to the complex floating point type.
449      return Context.getComplexType(lhs);
450    }
451    if (lhs->isIntegerType()) {
452      // convert lhs to the rhs floating point type.
453      return rhs;
454    }
455    if (lhs->isComplexIntegerType()) {
456      // convert lhs to the complex floating point type.
457      return Context.getComplexType(rhs);
458    }
459    // We have two real floating types, float/complex combos were handled above.
460    // Convert the smaller operand to the bigger result.
461    int result = Context.getFloatingTypeOrder(lhs, rhs);
462    if (result > 0) // convert the rhs
463      return lhs;
464    assert(result < 0 && "illegal float comparison");
465    return rhs;   // convert the lhs
466  }
467  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
468    // Handle GCC complex int extension.
469    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
470    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
471
472    if (lhsComplexInt && rhsComplexInt) {
473      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
474                                      rhsComplexInt->getElementType()) >= 0)
475        return lhs; // convert the rhs
476      return rhs;
477    } else if (lhsComplexInt && rhs->isIntegerType()) {
478      // convert the rhs to the lhs complex type.
479      return lhs;
480    } else if (rhsComplexInt && lhs->isIntegerType()) {
481      // convert the lhs to the rhs complex type.
482      return rhs;
483    }
484  }
485  // Finally, we have two differing integer types.
486  // The rules for this case are in C99 6.3.1.8
487  int compare = Context.getIntegerTypeOrder(lhs, rhs);
488  bool lhsSigned = lhs->isSignedIntegerType(),
489       rhsSigned = rhs->isSignedIntegerType();
490  QualType destType;
491  if (lhsSigned == rhsSigned) {
492    // Same signedness; use the higher-ranked type
493    destType = compare >= 0 ? lhs : rhs;
494  } else if (compare != (lhsSigned ? 1 : -1)) {
495    // The unsigned type has greater than or equal rank to the
496    // signed type, so use the unsigned type
497    destType = lhsSigned ? rhs : lhs;
498  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
499    // The two types are different widths; if we are here, that
500    // means the signed type is larger than the unsigned type, so
501    // use the signed type.
502    destType = lhsSigned ? lhs : rhs;
503  } else {
504    // The signed type is higher-ranked than the unsigned type,
505    // but isn't actually any bigger (like unsigned int and long
506    // on most 32-bit systems).  Use the unsigned type corresponding
507    // to the signed type.
508    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
509  }
510  return destType;
511}
512
513//===----------------------------------------------------------------------===//
514//  Semantic Analysis for various Expression Types
515//===----------------------------------------------------------------------===//
516
517
518/// ActOnStringLiteral - The specified tokens were lexed as pasted string
519/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
520/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
521/// multiple tokens.  However, the common case is that StringToks points to one
522/// string.
523///
524Action::OwningExprResult
525Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
526  assert(NumStringToks && "Must have at least one string!");
527
528  StringLiteralParser Literal(StringToks, NumStringToks, PP);
529  if (Literal.hadError)
530    return ExprError();
531
532  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
533  for (unsigned i = 0; i != NumStringToks; ++i)
534    StringTokLocs.push_back(StringToks[i].getLocation());
535
536  QualType StrTy = Context.CharTy;
537  if (Literal.AnyWide) StrTy = Context.getWCharType();
538  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
539
540  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
541  if (getLangOptions().CPlusPlus)
542    StrTy.addConst();
543
544  // Get an array type for the string, according to C99 6.4.5.  This includes
545  // the nul terminator character as well as the string length for pascal
546  // strings.
547  StrTy = Context.getConstantArrayType(StrTy,
548                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
549                                       ArrayType::Normal, 0);
550
551  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
552  return Owned(StringLiteral::Create(Context, Literal.GetString(),
553                                     Literal.GetStringLength(),
554                                     Literal.AnyWide, StrTy,
555                                     &StringTokLocs[0],
556                                     StringTokLocs.size()));
557}
558
559/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
560/// CurBlock to VD should cause it to be snapshotted (as we do for auto
561/// variables defined outside the block) or false if this is not needed (e.g.
562/// for values inside the block or for globals).
563///
564/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
565/// up-to-date.
566///
567static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
568                                              ValueDecl *VD) {
569  // If the value is defined inside the block, we couldn't snapshot it even if
570  // we wanted to.
571  if (CurBlock->TheDecl == VD->getDeclContext())
572    return false;
573
574  // If this is an enum constant or function, it is constant, don't snapshot.
575  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
576    return false;
577
578  // If this is a reference to an extern, static, or global variable, no need to
579  // snapshot it.
580  // FIXME: What about 'const' variables in C++?
581  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
582    if (!Var->hasLocalStorage())
583      return false;
584
585  // Blocks that have these can't be constant.
586  CurBlock->hasBlockDeclRefExprs = true;
587
588  // If we have nested blocks, the decl may be declared in an outer block (in
589  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
590  // be defined outside all of the current blocks (in which case the blocks do
591  // all get the bit).  Walk the nesting chain.
592  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
593       NextBlock = NextBlock->PrevBlockInfo) {
594    // If we found the defining block for the variable, don't mark the block as
595    // having a reference outside it.
596    if (NextBlock->TheDecl == VD->getDeclContext())
597      break;
598
599    // Otherwise, the DeclRef from the inner block causes the outer one to need
600    // a snapshot as well.
601    NextBlock->hasBlockDeclRefExprs = true;
602  }
603
604  return true;
605}
606
607
608
609/// ActOnIdentifierExpr - The parser read an identifier in expression context,
610/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
611/// identifier is used in a function call context.
612/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
613/// class or namespace that the identifier must be a member of.
614Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
615                                                 IdentifierInfo &II,
616                                                 bool HasTrailingLParen,
617                                                 const CXXScopeSpec *SS,
618                                                 bool isAddressOfOperand) {
619  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
620                                  isAddressOfOperand);
621}
622
623/// BuildDeclRefExpr - Build either a DeclRefExpr or a
624/// QualifiedDeclRefExpr based on whether or not SS is a
625/// nested-name-specifier.
626DeclRefExpr *
627Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
628                       bool TypeDependent, bool ValueDependent,
629                       const CXXScopeSpec *SS) {
630  if (SS && !SS->isEmpty()) {
631    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
632                                              ValueDependent, SS->getRange(),
633                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
634  } else
635    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
636}
637
638/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
639/// variable corresponding to the anonymous union or struct whose type
640/// is Record.
641static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
642                                             RecordDecl *Record) {
643  assert(Record->isAnonymousStructOrUnion() &&
644         "Record must be an anonymous struct or union!");
645
646  // FIXME: Once Decls are directly linked together, this will be an O(1)
647  // operation rather than a slow walk through DeclContext's vector (which
648  // itself will be eliminated). DeclGroups might make this even better.
649  DeclContext *Ctx = Record->getDeclContext();
650  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
651                               DEnd = Ctx->decls_end(Context);
652       D != DEnd; ++D) {
653    if (*D == Record) {
654      // The object for the anonymous struct/union directly
655      // follows its type in the list of declarations.
656      ++D;
657      assert(D != DEnd && "Missing object for anonymous record");
658      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
659      return *D;
660    }
661  }
662
663  assert(false && "Missing object for anonymous record");
664  return 0;
665}
666
667/// \brief Given a field that represents a member of an anonymous
668/// struct/union, build the path from that field's context to the
669/// actual member.
670///
671/// Construct the sequence of field member references we'll have to
672/// perform to get to the field in the anonymous union/struct. The
673/// list of members is built from the field outward, so traverse it
674/// backwards to go from an object in the current context to the field
675/// we found.
676///
677/// \returns The variable from which the field access should begin,
678/// for an anonymous struct/union that is not a member of another
679/// class. Otherwise, returns NULL.
680VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
681                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
682  assert(Field->getDeclContext()->isRecord() &&
683         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
684         && "Field must be stored inside an anonymous struct or union");
685
686  Path.push_back(Field);
687  VarDecl *BaseObject = 0;
688  DeclContext *Ctx = Field->getDeclContext();
689  do {
690    RecordDecl *Record = cast<RecordDecl>(Ctx);
691    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
692    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
693      Path.push_back(AnonField);
694    else {
695      BaseObject = cast<VarDecl>(AnonObject);
696      break;
697    }
698    Ctx = Ctx->getParent();
699  } while (Ctx->isRecord() &&
700           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
701
702  return BaseObject;
703}
704
705Sema::OwningExprResult
706Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
707                                               FieldDecl *Field,
708                                               Expr *BaseObjectExpr,
709                                               SourceLocation OpLoc) {
710  llvm::SmallVector<FieldDecl *, 4> AnonFields;
711  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
712                                                            AnonFields);
713
714  // Build the expression that refers to the base object, from
715  // which we will build a sequence of member references to each
716  // of the anonymous union objects and, eventually, the field we
717  // found via name lookup.
718  bool BaseObjectIsPointer = false;
719  unsigned ExtraQuals = 0;
720  if (BaseObject) {
721    // BaseObject is an anonymous struct/union variable (and is,
722    // therefore, not part of another non-anonymous record).
723    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
724    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
725                                               SourceLocation());
726    ExtraQuals
727      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
728  } else if (BaseObjectExpr) {
729    // The caller provided the base object expression. Determine
730    // whether its a pointer and whether it adds any qualifiers to the
731    // anonymous struct/union fields we're looking into.
732    QualType ObjectType = BaseObjectExpr->getType();
733    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
734      BaseObjectIsPointer = true;
735      ObjectType = ObjectPtr->getPointeeType();
736    }
737    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
738  } else {
739    // We've found a member of an anonymous struct/union that is
740    // inside a non-anonymous struct/union, so in a well-formed
741    // program our base object expression is "this".
742    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
743      if (!MD->isStatic()) {
744        QualType AnonFieldType
745          = Context.getTagDeclType(
746                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
747        QualType ThisType = Context.getTagDeclType(MD->getParent());
748        if ((Context.getCanonicalType(AnonFieldType)
749               == Context.getCanonicalType(ThisType)) ||
750            IsDerivedFrom(ThisType, AnonFieldType)) {
751          // Our base object expression is "this".
752          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
753                                                     MD->getThisType(Context));
754          BaseObjectIsPointer = true;
755        }
756      } else {
757        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
758          << Field->getDeclName());
759      }
760      ExtraQuals = MD->getTypeQualifiers();
761    }
762
763    if (!BaseObjectExpr)
764      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
765        << Field->getDeclName());
766  }
767
768  // Build the implicit member references to the field of the
769  // anonymous struct/union.
770  Expr *Result = BaseObjectExpr;
771  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
772         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
773       FI != FIEnd; ++FI) {
774    QualType MemberType = (*FI)->getType();
775    if (!(*FI)->isMutable()) {
776      unsigned combinedQualifiers
777        = MemberType.getCVRQualifiers() | ExtraQuals;
778      MemberType = MemberType.getQualifiedType(combinedQualifiers);
779    }
780    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
781                                      OpLoc, MemberType);
782    BaseObjectIsPointer = false;
783    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
784  }
785
786  return Owned(Result);
787}
788
789/// ActOnDeclarationNameExpr - The parser has read some kind of name
790/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
791/// performs lookup on that name and returns an expression that refers
792/// to that name. This routine isn't directly called from the parser,
793/// because the parser doesn't know about DeclarationName. Rather,
794/// this routine is called by ActOnIdentifierExpr,
795/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
796/// which form the DeclarationName from the corresponding syntactic
797/// forms.
798///
799/// HasTrailingLParen indicates whether this identifier is used in a
800/// function call context.  LookupCtx is only used for a C++
801/// qualified-id (foo::bar) to indicate the class or namespace that
802/// the identifier must be a member of.
803///
804/// isAddressOfOperand means that this expression is the direct operand
805/// of an address-of operator. This matters because this is the only
806/// situation where a qualified name referencing a non-static member may
807/// appear outside a member function of this class.
808Sema::OwningExprResult
809Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
810                               DeclarationName Name, bool HasTrailingLParen,
811                               const CXXScopeSpec *SS,
812                               bool isAddressOfOperand) {
813  // Could be enum-constant, value decl, instance variable, etc.
814  if (SS && SS->isInvalid())
815    return ExprError();
816
817  // C++ [temp.dep.expr]p3:
818  //   An id-expression is type-dependent if it contains:
819  //     -- a nested-name-specifier that contains a class-name that
820  //        names a dependent type.
821  // FIXME: Member of the current instantiation.
822  if (SS && isDependentScopeSpecifier(*SS)) {
823    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
824                                                     Loc, SS->getRange(),
825                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
826  }
827
828  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
829                                         false, true, Loc);
830
831  if (Lookup.isAmbiguous()) {
832    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
833                            SS && SS->isSet() ? SS->getRange()
834                                              : SourceRange());
835    return ExprError();
836  }
837
838  NamedDecl *D = Lookup.getAsDecl();
839
840  // If this reference is in an Objective-C method, then ivar lookup happens as
841  // well.
842  IdentifierInfo *II = Name.getAsIdentifierInfo();
843  if (II && getCurMethodDecl()) {
844    // There are two cases to handle here.  1) scoped lookup could have failed,
845    // in which case we should look for an ivar.  2) scoped lookup could have
846    // found a decl, but that decl is outside the current instance method (i.e.
847    // a global variable).  In these two cases, we do a lookup for an ivar with
848    // this name, if the lookup sucedes, we replace it our current decl.
849    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
850      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
851      ObjCInterfaceDecl *ClassDeclared;
852      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
853                                                           ClassDeclared)) {
854        // Check if referencing a field with __attribute__((deprecated)).
855        if (DiagnoseUseOfDecl(IV, Loc))
856          return ExprError();
857
858        // If we're referencing an invalid decl, just return this as a silent
859        // error node.  The error diagnostic was already emitted on the decl.
860        if (IV->isInvalidDecl())
861          return ExprError();
862
863        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
864        // If a class method attemps to use a free standing ivar, this is
865        // an error.
866        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
867           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
868                           << IV->getDeclName());
869        // If a class method uses a global variable, even if an ivar with
870        // same name exists, use the global.
871        if (!IsClsMethod) {
872          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
873              ClassDeclared != IFace)
874           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
875          // FIXME: This should use a new expr for a direct reference, don't
876          // turn this into Self->ivar, just return a BareIVarExpr or something.
877          IdentifierInfo &II = Context.Idents.get("self");
878          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
879          return Owned(new (Context)
880                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
881                                       SelfExpr.takeAs<Expr>(), true, true));
882        }
883      }
884    }
885    else if (getCurMethodDecl()->isInstanceMethod()) {
886      // We should warn if a local variable hides an ivar.
887      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
888      ObjCInterfaceDecl *ClassDeclared;
889      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
890                                                           ClassDeclared)) {
891        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
892            IFace == ClassDeclared)
893          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
894      }
895    }
896    // Needed to implement property "super.method" notation.
897    if (D == 0 && II->isStr("super")) {
898      QualType T;
899
900      if (getCurMethodDecl()->isInstanceMethod())
901        T = Context.getPointerType(Context.getObjCInterfaceType(
902                                   getCurMethodDecl()->getClassInterface()));
903      else
904        T = Context.getObjCClassType();
905      return Owned(new (Context) ObjCSuperExpr(Loc, T));
906    }
907  }
908
909  // Determine whether this name might be a candidate for
910  // argument-dependent lookup.
911  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
912             HasTrailingLParen;
913
914  if (ADL && D == 0) {
915    // We've seen something of the form
916    //
917    //   identifier(
918    //
919    // and we did not find any entity by the name
920    // "identifier". However, this identifier is still subject to
921    // argument-dependent lookup, so keep track of the name.
922    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
923                                                          Context.OverloadTy,
924                                                          Loc));
925  }
926
927  if (D == 0) {
928    // Otherwise, this could be an implicitly declared function reference (legal
929    // in C90, extension in C99).
930    if (HasTrailingLParen && II &&
931        !getLangOptions().CPlusPlus) // Not in C++.
932      D = ImplicitlyDefineFunction(Loc, *II, S);
933    else {
934      // If this name wasn't predeclared and if this is not a function call,
935      // diagnose the problem.
936      if (SS && !SS->isEmpty())
937        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
938          << Name << SS->getRange());
939      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
940               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
941        return ExprError(Diag(Loc, diag::err_undeclared_use)
942          << Name.getAsString());
943      else
944        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
945    }
946  }
947
948  // If this is an expression of the form &Class::member, don't build an
949  // implicit member ref, because we want a pointer to the member in general,
950  // not any specific instance's member.
951  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
952    DeclContext *DC = computeDeclContext(*SS);
953    if (D && isa<CXXRecordDecl>(DC)) {
954      QualType DType;
955      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
956        DType = FD->getType().getNonReferenceType();
957      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
958        DType = Method->getType();
959      } else if (isa<OverloadedFunctionDecl>(D)) {
960        DType = Context.OverloadTy;
961      }
962      // Could be an inner type. That's diagnosed below, so ignore it here.
963      if (!DType.isNull()) {
964        // The pointer is type- and value-dependent if it points into something
965        // dependent.
966        bool Dependent = DC->isDependentContext();
967        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
968      }
969    }
970  }
971
972  // We may have found a field within an anonymous union or struct
973  // (C++ [class.union]).
974  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
975    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
976      return BuildAnonymousStructUnionMemberReference(Loc, FD);
977
978  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
979    if (!MD->isStatic()) {
980      // C++ [class.mfct.nonstatic]p2:
981      //   [...] if name lookup (3.4.1) resolves the name in the
982      //   id-expression to a nonstatic nontype member of class X or of
983      //   a base class of X, the id-expression is transformed into a
984      //   class member access expression (5.2.5) using (*this) (9.3.2)
985      //   as the postfix-expression to the left of the '.' operator.
986      DeclContext *Ctx = 0;
987      QualType MemberType;
988      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
989        Ctx = FD->getDeclContext();
990        MemberType = FD->getType();
991
992        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
993          MemberType = RefType->getPointeeType();
994        else if (!FD->isMutable()) {
995          unsigned combinedQualifiers
996            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
997          MemberType = MemberType.getQualifiedType(combinedQualifiers);
998        }
999      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1000        if (!Method->isStatic()) {
1001          Ctx = Method->getParent();
1002          MemberType = Method->getType();
1003        }
1004      } else if (OverloadedFunctionDecl *Ovl
1005                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1006        for (OverloadedFunctionDecl::function_iterator
1007               Func = Ovl->function_begin(),
1008               FuncEnd = Ovl->function_end();
1009             Func != FuncEnd; ++Func) {
1010          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1011            if (!DMethod->isStatic()) {
1012              Ctx = Ovl->getDeclContext();
1013              MemberType = Context.OverloadTy;
1014              break;
1015            }
1016        }
1017      }
1018
1019      if (Ctx && Ctx->isRecord()) {
1020        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1021        QualType ThisType = Context.getTagDeclType(MD->getParent());
1022        if ((Context.getCanonicalType(CtxType)
1023               == Context.getCanonicalType(ThisType)) ||
1024            IsDerivedFrom(ThisType, CtxType)) {
1025          // Build the implicit member access expression.
1026          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1027                                                 MD->getThisType(Context));
1028          return Owned(new (Context) MemberExpr(This, true, D,
1029                                                Loc, MemberType));
1030        }
1031      }
1032    }
1033  }
1034
1035  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1036    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1037      if (MD->isStatic())
1038        // "invalid use of member 'x' in static member function"
1039        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1040          << FD->getDeclName());
1041    }
1042
1043    // Any other ways we could have found the field in a well-formed
1044    // program would have been turned into implicit member expressions
1045    // above.
1046    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1047      << FD->getDeclName());
1048  }
1049
1050  if (isa<TypedefDecl>(D))
1051    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1052  if (isa<ObjCInterfaceDecl>(D))
1053    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1054  if (isa<NamespaceDecl>(D))
1055    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1056
1057  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1058  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1059    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1060                                  false, false, SS));
1061  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1062    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1063                                  false, false, SS));
1064  ValueDecl *VD = cast<ValueDecl>(D);
1065
1066  // Check whether this declaration can be used. Note that we suppress
1067  // this check when we're going to perform argument-dependent lookup
1068  // on this function name, because this might not be the function
1069  // that overload resolution actually selects.
1070  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1071    return ExprError();
1072
1073  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
1074    // Warn about constructs like:
1075    //   if (void *X = foo()) { ... } else { X }.
1076    // In the else block, the pointer is always false.
1077
1078    // FIXME: In a template instantiation, we don't have scope
1079    // information to check this property.
1080    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1081      Scope *CheckS = S;
1082      while (CheckS) {
1083        if (CheckS->isWithinElse() &&
1084            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1085          if (Var->getType()->isBooleanType())
1086            ExprError(Diag(Loc, diag::warn_value_always_false)
1087              << Var->getDeclName());
1088          else
1089            ExprError(Diag(Loc, diag::warn_value_always_zero)
1090              << Var->getDeclName());
1091          break;
1092        }
1093
1094        // Move up one more control parent to check again.
1095        CheckS = CheckS->getControlParent();
1096        if (CheckS)
1097          CheckS = CheckS->getParent();
1098      }
1099    }
1100  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
1101    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1102      // C99 DR 316 says that, if a function type comes from a
1103      // function definition (without a prototype), that type is only
1104      // used for checking compatibility. Therefore, when referencing
1105      // the function, we pretend that we don't have the full function
1106      // type.
1107      QualType T = Func->getType();
1108      QualType NoProtoType = T;
1109      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1110        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1111      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
1112    }
1113  }
1114
1115  // Only create DeclRefExpr's for valid Decl's.
1116  if (VD->isInvalidDecl())
1117    return ExprError();
1118
1119  // If the identifier reference is inside a block, and it refers to a value
1120  // that is outside the block, create a BlockDeclRefExpr instead of a
1121  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1122  // the block is formed.
1123  //
1124  // We do not do this for things like enum constants, global variables, etc,
1125  // as they do not get snapshotted.
1126  //
1127  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1128    QualType ExprTy = VD->getType().getNonReferenceType();
1129    // The BlocksAttr indicates the variable is bound by-reference.
1130    if (VD->getAttr<BlocksAttr>())
1131      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1132
1133    // Variable will be bound by-copy, make it const within the closure.
1134    ExprTy.addConst();
1135    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
1136  }
1137  // If this reference is not in a block or if the referenced variable is
1138  // within the block, create a normal DeclRefExpr.
1139
1140  bool TypeDependent = false;
1141  bool ValueDependent = false;
1142  if (getLangOptions().CPlusPlus) {
1143    // C++ [temp.dep.expr]p3:
1144    //   An id-expression is type-dependent if it contains:
1145    //     - an identifier that was declared with a dependent type,
1146    if (VD->getType()->isDependentType())
1147      TypeDependent = true;
1148    //     - FIXME: a template-id that is dependent,
1149    //     - a conversion-function-id that specifies a dependent type,
1150    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1151             Name.getCXXNameType()->isDependentType())
1152      TypeDependent = true;
1153    //     - a nested-name-specifier that contains a class-name that
1154    //       names a dependent type.
1155    else if (SS && !SS->isEmpty()) {
1156      for (DeclContext *DC = computeDeclContext(*SS);
1157           DC; DC = DC->getParent()) {
1158        // FIXME: could stop early at namespace scope.
1159        if (DC->isRecord()) {
1160          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1161          if (Context.getTypeDeclType(Record)->isDependentType()) {
1162            TypeDependent = true;
1163            break;
1164          }
1165        }
1166      }
1167    }
1168
1169    // C++ [temp.dep.constexpr]p2:
1170    //
1171    //   An identifier is value-dependent if it is:
1172    //     - a name declared with a dependent type,
1173    if (TypeDependent)
1174      ValueDependent = true;
1175    //     - the name of a non-type template parameter,
1176    else if (isa<NonTypeTemplateParmDecl>(VD))
1177      ValueDependent = true;
1178    //    - a constant with integral or enumeration type and is
1179    //      initialized with an expression that is value-dependent
1180    //      (FIXME!).
1181  }
1182
1183  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1184                                TypeDependent, ValueDependent, SS));
1185}
1186
1187Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1188                                                 tok::TokenKind Kind) {
1189  PredefinedExpr::IdentType IT;
1190
1191  switch (Kind) {
1192  default: assert(0 && "Unknown simple primary expr!");
1193  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1194  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1195  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1196  }
1197
1198  // Pre-defined identifiers are of type char[x], where x is the length of the
1199  // string.
1200  unsigned Length;
1201  if (FunctionDecl *FD = getCurFunctionDecl())
1202    Length = FD->getIdentifier()->getLength();
1203  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1204    Length = MD->getSynthesizedMethodSize();
1205  else {
1206    Diag(Loc, diag::ext_predef_outside_function);
1207    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1208    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1209  }
1210
1211
1212  llvm::APInt LengthI(32, Length + 1);
1213  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1214  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1215  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1216}
1217
1218Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1219  llvm::SmallString<16> CharBuffer;
1220  CharBuffer.resize(Tok.getLength());
1221  const char *ThisTokBegin = &CharBuffer[0];
1222  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1223
1224  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1225                            Tok.getLocation(), PP);
1226  if (Literal.hadError())
1227    return ExprError();
1228
1229  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1230
1231  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1232                                              Literal.isWide(),
1233                                              type, Tok.getLocation()));
1234}
1235
1236Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1237  // Fast path for a single digit (which is quite common).  A single digit
1238  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1239  if (Tok.getLength() == 1) {
1240    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1241    unsigned IntSize = Context.Target.getIntWidth();
1242    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1243                    Context.IntTy, Tok.getLocation()));
1244  }
1245
1246  llvm::SmallString<512> IntegerBuffer;
1247  // Add padding so that NumericLiteralParser can overread by one character.
1248  IntegerBuffer.resize(Tok.getLength()+1);
1249  const char *ThisTokBegin = &IntegerBuffer[0];
1250
1251  // Get the spelling of the token, which eliminates trigraphs, etc.
1252  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1253
1254  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1255                               Tok.getLocation(), PP);
1256  if (Literal.hadError)
1257    return ExprError();
1258
1259  Expr *Res;
1260
1261  if (Literal.isFloatingLiteral()) {
1262    QualType Ty;
1263    if (Literal.isFloat)
1264      Ty = Context.FloatTy;
1265    else if (!Literal.isLong)
1266      Ty = Context.DoubleTy;
1267    else
1268      Ty = Context.LongDoubleTy;
1269
1270    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1271
1272    // isExact will be set by GetFloatValue().
1273    bool isExact = false;
1274    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1275                                        &isExact, Ty, Tok.getLocation());
1276
1277  } else if (!Literal.isIntegerLiteral()) {
1278    return ExprError();
1279  } else {
1280    QualType Ty;
1281
1282    // long long is a C99 feature.
1283    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1284        Literal.isLongLong)
1285      Diag(Tok.getLocation(), diag::ext_longlong);
1286
1287    // Get the value in the widest-possible width.
1288    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1289
1290    if (Literal.GetIntegerValue(ResultVal)) {
1291      // If this value didn't fit into uintmax_t, warn and force to ull.
1292      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1293      Ty = Context.UnsignedLongLongTy;
1294      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1295             "long long is not intmax_t?");
1296    } else {
1297      // If this value fits into a ULL, try to figure out what else it fits into
1298      // according to the rules of C99 6.4.4.1p5.
1299
1300      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1301      // be an unsigned int.
1302      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1303
1304      // Check from smallest to largest, picking the smallest type we can.
1305      unsigned Width = 0;
1306      if (!Literal.isLong && !Literal.isLongLong) {
1307        // Are int/unsigned possibilities?
1308        unsigned IntSize = Context.Target.getIntWidth();
1309
1310        // Does it fit in a unsigned int?
1311        if (ResultVal.isIntN(IntSize)) {
1312          // Does it fit in a signed int?
1313          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1314            Ty = Context.IntTy;
1315          else if (AllowUnsigned)
1316            Ty = Context.UnsignedIntTy;
1317          Width = IntSize;
1318        }
1319      }
1320
1321      // Are long/unsigned long possibilities?
1322      if (Ty.isNull() && !Literal.isLongLong) {
1323        unsigned LongSize = Context.Target.getLongWidth();
1324
1325        // Does it fit in a unsigned long?
1326        if (ResultVal.isIntN(LongSize)) {
1327          // Does it fit in a signed long?
1328          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1329            Ty = Context.LongTy;
1330          else if (AllowUnsigned)
1331            Ty = Context.UnsignedLongTy;
1332          Width = LongSize;
1333        }
1334      }
1335
1336      // Finally, check long long if needed.
1337      if (Ty.isNull()) {
1338        unsigned LongLongSize = Context.Target.getLongLongWidth();
1339
1340        // Does it fit in a unsigned long long?
1341        if (ResultVal.isIntN(LongLongSize)) {
1342          // Does it fit in a signed long long?
1343          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1344            Ty = Context.LongLongTy;
1345          else if (AllowUnsigned)
1346            Ty = Context.UnsignedLongLongTy;
1347          Width = LongLongSize;
1348        }
1349      }
1350
1351      // If we still couldn't decide a type, we probably have something that
1352      // does not fit in a signed long long, but has no U suffix.
1353      if (Ty.isNull()) {
1354        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1355        Ty = Context.UnsignedLongLongTy;
1356        Width = Context.Target.getLongLongWidth();
1357      }
1358
1359      if (ResultVal.getBitWidth() != Width)
1360        ResultVal.trunc(Width);
1361    }
1362    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1363  }
1364
1365  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1366  if (Literal.isImaginary)
1367    Res = new (Context) ImaginaryLiteral(Res,
1368                                        Context.getComplexType(Res->getType()));
1369
1370  return Owned(Res);
1371}
1372
1373Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1374                                              SourceLocation R, ExprArg Val) {
1375  Expr *E = Val.takeAs<Expr>();
1376  assert((E != 0) && "ActOnParenExpr() missing expr");
1377  return Owned(new (Context) ParenExpr(L, R, E));
1378}
1379
1380/// The UsualUnaryConversions() function is *not* called by this routine.
1381/// See C99 6.3.2.1p[2-4] for more details.
1382bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1383                                     SourceLocation OpLoc,
1384                                     const SourceRange &ExprRange,
1385                                     bool isSizeof) {
1386  if (exprType->isDependentType())
1387    return false;
1388
1389  // C99 6.5.3.4p1:
1390  if (isa<FunctionType>(exprType)) {
1391    // alignof(function) is allowed as an extension.
1392    if (isSizeof)
1393      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1394    return false;
1395  }
1396
1397  // Allow sizeof(void)/alignof(void) as an extension.
1398  if (exprType->isVoidType()) {
1399    Diag(OpLoc, diag::ext_sizeof_void_type)
1400      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1401    return false;
1402  }
1403
1404  if (RequireCompleteType(OpLoc, exprType,
1405                          isSizeof ? diag::err_sizeof_incomplete_type :
1406                          diag::err_alignof_incomplete_type,
1407                          ExprRange))
1408    return true;
1409
1410  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1411  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1412    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1413      << exprType << isSizeof << ExprRange;
1414    return true;
1415  }
1416
1417  return false;
1418}
1419
1420bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1421                            const SourceRange &ExprRange) {
1422  E = E->IgnoreParens();
1423
1424  // alignof decl is always ok.
1425  if (isa<DeclRefExpr>(E))
1426    return false;
1427
1428  // Cannot know anything else if the expression is dependent.
1429  if (E->isTypeDependent())
1430    return false;
1431
1432  if (E->getBitField()) {
1433    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1434    return true;
1435  }
1436
1437  // Alignment of a field access is always okay, so long as it isn't a
1438  // bit-field.
1439  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1440    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1441      return false;
1442
1443  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1444}
1445
1446/// \brief Build a sizeof or alignof expression given a type operand.
1447Action::OwningExprResult
1448Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1449                              bool isSizeOf, SourceRange R) {
1450  if (T.isNull())
1451    return ExprError();
1452
1453  if (!T->isDependentType() &&
1454      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1455    return ExprError();
1456
1457  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1458  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1459                                               Context.getSizeType(), OpLoc,
1460                                               R.getEnd()));
1461}
1462
1463/// \brief Build a sizeof or alignof expression given an expression
1464/// operand.
1465Action::OwningExprResult
1466Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1467                              bool isSizeOf, SourceRange R) {
1468  // Verify that the operand is valid.
1469  bool isInvalid = false;
1470  if (E->isTypeDependent()) {
1471    // Delay type-checking for type-dependent expressions.
1472  } else if (!isSizeOf) {
1473    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1474  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1475    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1476    isInvalid = true;
1477  } else {
1478    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1479  }
1480
1481  if (isInvalid)
1482    return ExprError();
1483
1484  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1485  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1486                                               Context.getSizeType(), OpLoc,
1487                                               R.getEnd()));
1488}
1489
1490/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1491/// the same for @c alignof and @c __alignof
1492/// Note that the ArgRange is invalid if isType is false.
1493Action::OwningExprResult
1494Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1495                             void *TyOrEx, const SourceRange &ArgRange) {
1496  // If error parsing type, ignore.
1497  if (TyOrEx == 0) return ExprError();
1498
1499  if (isType) {
1500    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1501    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1502  }
1503
1504  // Get the end location.
1505  Expr *ArgEx = (Expr *)TyOrEx;
1506  Action::OwningExprResult Result
1507    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1508
1509  if (Result.isInvalid())
1510    DeleteExpr(ArgEx);
1511
1512  return move(Result);
1513}
1514
1515QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1516  if (V->isTypeDependent())
1517    return Context.DependentTy;
1518
1519  // These operators return the element type of a complex type.
1520  if (const ComplexType *CT = V->getType()->getAsComplexType())
1521    return CT->getElementType();
1522
1523  // Otherwise they pass through real integer and floating point types here.
1524  if (V->getType()->isArithmeticType())
1525    return V->getType();
1526
1527  // Reject anything else.
1528  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1529    << (isReal ? "__real" : "__imag");
1530  return QualType();
1531}
1532
1533
1534
1535Action::OwningExprResult
1536Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1537                          tok::TokenKind Kind, ExprArg Input) {
1538  Expr *Arg = (Expr *)Input.get();
1539
1540  UnaryOperator::Opcode Opc;
1541  switch (Kind) {
1542  default: assert(0 && "Unknown unary op!");
1543  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1544  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1545  }
1546
1547  if (getLangOptions().CPlusPlus &&
1548      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1549    // Which overloaded operator?
1550    OverloadedOperatorKind OverOp =
1551      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1552
1553    // C++ [over.inc]p1:
1554    //
1555    //     [...] If the function is a member function with one
1556    //     parameter (which shall be of type int) or a non-member
1557    //     function with two parameters (the second of which shall be
1558    //     of type int), it defines the postfix increment operator ++
1559    //     for objects of that type. When the postfix increment is
1560    //     called as a result of using the ++ operator, the int
1561    //     argument will have value zero.
1562    Expr *Args[2] = {
1563      Arg,
1564      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1565                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1566    };
1567
1568    // Build the candidate set for overloading
1569    OverloadCandidateSet CandidateSet;
1570    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1571
1572    // Perform overload resolution.
1573    OverloadCandidateSet::iterator Best;
1574    switch (BestViableFunction(CandidateSet, Best)) {
1575    case OR_Success: {
1576      // We found a built-in operator or an overloaded operator.
1577      FunctionDecl *FnDecl = Best->Function;
1578
1579      if (FnDecl) {
1580        // We matched an overloaded operator. Build a call to that
1581        // operator.
1582
1583        // Convert the arguments.
1584        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1585          if (PerformObjectArgumentInitialization(Arg, Method))
1586            return ExprError();
1587        } else {
1588          // Convert the arguments.
1589          if (PerformCopyInitialization(Arg,
1590                                        FnDecl->getParamDecl(0)->getType(),
1591                                        "passing"))
1592            return ExprError();
1593        }
1594
1595        // Determine the result type
1596        QualType ResultTy
1597          = FnDecl->getType()->getAsFunctionType()->getResultType();
1598        ResultTy = ResultTy.getNonReferenceType();
1599
1600        // Build the actual expression node.
1601        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1602                                                 SourceLocation());
1603        UsualUnaryConversions(FnExpr);
1604
1605        Input.release();
1606        Args[0] = Arg;
1607        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1608                                                       Args, 2, ResultTy,
1609                                                       OpLoc));
1610      } else {
1611        // We matched a built-in operator. Convert the arguments, then
1612        // break out so that we will build the appropriate built-in
1613        // operator node.
1614        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1615                                      "passing"))
1616          return ExprError();
1617
1618        break;
1619      }
1620    }
1621
1622    case OR_No_Viable_Function:
1623      // No viable function; fall through to handling this as a
1624      // built-in operator, which will produce an error message for us.
1625      break;
1626
1627    case OR_Ambiguous:
1628      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1629          << UnaryOperator::getOpcodeStr(Opc)
1630          << Arg->getSourceRange();
1631      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1632      return ExprError();
1633
1634    case OR_Deleted:
1635      Diag(OpLoc, diag::err_ovl_deleted_oper)
1636        << Best->Function->isDeleted()
1637        << UnaryOperator::getOpcodeStr(Opc)
1638        << Arg->getSourceRange();
1639      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1640      return ExprError();
1641    }
1642
1643    // Either we found no viable overloaded operator or we matched a
1644    // built-in operator. In either case, fall through to trying to
1645    // build a built-in operation.
1646  }
1647
1648  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1649                                                 Opc == UnaryOperator::PostInc);
1650  if (result.isNull())
1651    return ExprError();
1652  Input.release();
1653  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1654}
1655
1656Action::OwningExprResult
1657Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1658                              ExprArg Idx, SourceLocation RLoc) {
1659  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1660       *RHSExp = static_cast<Expr*>(Idx.get());
1661
1662  if (getLangOptions().CPlusPlus &&
1663      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1664    Base.release();
1665    Idx.release();
1666    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1667                                                  Context.DependentTy, RLoc));
1668  }
1669
1670  if (getLangOptions().CPlusPlus &&
1671      (LHSExp->getType()->isRecordType() ||
1672       LHSExp->getType()->isEnumeralType() ||
1673       RHSExp->getType()->isRecordType() ||
1674       RHSExp->getType()->isEnumeralType())) {
1675    // Add the appropriate overloaded operators (C++ [over.match.oper])
1676    // to the candidate set.
1677    OverloadCandidateSet CandidateSet;
1678    Expr *Args[2] = { LHSExp, RHSExp };
1679    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1680                          SourceRange(LLoc, RLoc));
1681
1682    // Perform overload resolution.
1683    OverloadCandidateSet::iterator Best;
1684    switch (BestViableFunction(CandidateSet, Best)) {
1685    case OR_Success: {
1686      // We found a built-in operator or an overloaded operator.
1687      FunctionDecl *FnDecl = Best->Function;
1688
1689      if (FnDecl) {
1690        // We matched an overloaded operator. Build a call to that
1691        // operator.
1692
1693        // Convert the arguments.
1694        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1695          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1696              PerformCopyInitialization(RHSExp,
1697                                        FnDecl->getParamDecl(0)->getType(),
1698                                        "passing"))
1699            return ExprError();
1700        } else {
1701          // Convert the arguments.
1702          if (PerformCopyInitialization(LHSExp,
1703                                        FnDecl->getParamDecl(0)->getType(),
1704                                        "passing") ||
1705              PerformCopyInitialization(RHSExp,
1706                                        FnDecl->getParamDecl(1)->getType(),
1707                                        "passing"))
1708            return ExprError();
1709        }
1710
1711        // Determine the result type
1712        QualType ResultTy
1713          = FnDecl->getType()->getAsFunctionType()->getResultType();
1714        ResultTy = ResultTy.getNonReferenceType();
1715
1716        // Build the actual expression node.
1717        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1718                                                 SourceLocation());
1719        UsualUnaryConversions(FnExpr);
1720
1721        Base.release();
1722        Idx.release();
1723        Args[0] = LHSExp;
1724        Args[1] = RHSExp;
1725        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1726                                                       FnExpr, Args, 2,
1727                                                       ResultTy, LLoc));
1728      } else {
1729        // We matched a built-in operator. Convert the arguments, then
1730        // break out so that we will build the appropriate built-in
1731        // operator node.
1732        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1733                                      "passing") ||
1734            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1735                                      "passing"))
1736          return ExprError();
1737
1738        break;
1739      }
1740    }
1741
1742    case OR_No_Viable_Function:
1743      // No viable function; fall through to handling this as a
1744      // built-in operator, which will produce an error message for us.
1745      break;
1746
1747    case OR_Ambiguous:
1748      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1749          << "[]"
1750          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1751      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1752      return ExprError();
1753
1754    case OR_Deleted:
1755      Diag(LLoc, diag::err_ovl_deleted_oper)
1756        << Best->Function->isDeleted()
1757        << "[]"
1758        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1759      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1760      return ExprError();
1761    }
1762
1763    // Either we found no viable overloaded operator or we matched a
1764    // built-in operator. In either case, fall through to trying to
1765    // build a built-in operation.
1766  }
1767
1768  // Perform default conversions.
1769  DefaultFunctionArrayConversion(LHSExp);
1770  DefaultFunctionArrayConversion(RHSExp);
1771
1772  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1773
1774  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1775  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1776  // in the subscript position. As a result, we need to derive the array base
1777  // and index from the expression types.
1778  Expr *BaseExpr, *IndexExpr;
1779  QualType ResultType;
1780  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1781    BaseExpr = LHSExp;
1782    IndexExpr = RHSExp;
1783    ResultType = Context.DependentTy;
1784  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1785    BaseExpr = LHSExp;
1786    IndexExpr = RHSExp;
1787    ResultType = PTy->getPointeeType();
1788  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1789     // Handle the uncommon case of "123[Ptr]".
1790    BaseExpr = RHSExp;
1791    IndexExpr = LHSExp;
1792    ResultType = PTy->getPointeeType();
1793  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1794    BaseExpr = LHSExp;    // vectors: V[123]
1795    IndexExpr = RHSExp;
1796
1797    // FIXME: need to deal with const...
1798    ResultType = VTy->getElementType();
1799  } else if (LHSTy->isArrayType()) {
1800    // If we see an array that wasn't promoted by
1801    // DefaultFunctionArrayConversion, it must be an array that
1802    // wasn't promoted because of the C90 rule that doesn't
1803    // allow promoting non-lvalue arrays.  Warn, then
1804    // force the promotion here.
1805    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1806        LHSExp->getSourceRange();
1807    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1808    LHSTy = LHSExp->getType();
1809
1810    BaseExpr = LHSExp;
1811    IndexExpr = RHSExp;
1812    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1813  } else if (RHSTy->isArrayType()) {
1814    // Same as previous, except for 123[f().a] case
1815    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1816        RHSExp->getSourceRange();
1817    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1818    RHSTy = RHSExp->getType();
1819
1820    BaseExpr = RHSExp;
1821    IndexExpr = LHSExp;
1822    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1823  } else {
1824    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1825       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1826  }
1827  // C99 6.5.2.1p1
1828  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1829    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1830                     << IndexExpr->getSourceRange());
1831
1832  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1833  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1834  // type. Note that Functions are not objects, and that (in C99 parlance)
1835  // incomplete types are not object types.
1836  if (ResultType->isFunctionType()) {
1837    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1838      << ResultType << BaseExpr->getSourceRange();
1839    return ExprError();
1840  }
1841
1842  if (!ResultType->isDependentType() &&
1843      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1844                          BaseExpr->getSourceRange()))
1845    return ExprError();
1846
1847  // Diagnose bad cases where we step over interface counts.
1848  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1849    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1850      << ResultType << BaseExpr->getSourceRange();
1851    return ExprError();
1852  }
1853
1854  Base.release();
1855  Idx.release();
1856  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1857                                                ResultType, RLoc));
1858}
1859
1860QualType Sema::
1861CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1862                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1863  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1864
1865  // The vector accessor can't exceed the number of elements.
1866  const char *compStr = CompName.getName();
1867
1868  // This flag determines whether or not the component is one of the four
1869  // special names that indicate a subset of exactly half the elements are
1870  // to be selected.
1871  bool HalvingSwizzle = false;
1872
1873  // This flag determines whether or not CompName has an 's' char prefix,
1874  // indicating that it is a string of hex values to be used as vector indices.
1875  bool HexSwizzle = *compStr == 's';
1876
1877  // Check that we've found one of the special components, or that the component
1878  // names must come from the same set.
1879  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1880      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1881    HalvingSwizzle = true;
1882  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1883    do
1884      compStr++;
1885    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1886  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1887    do
1888      compStr++;
1889    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1890  }
1891
1892  if (!HalvingSwizzle && *compStr) {
1893    // We didn't get to the end of the string. This means the component names
1894    // didn't come from the same set *or* we encountered an illegal name.
1895    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1896      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1897    return QualType();
1898  }
1899
1900  // Ensure no component accessor exceeds the width of the vector type it
1901  // operates on.
1902  if (!HalvingSwizzle) {
1903    compStr = CompName.getName();
1904
1905    if (HexSwizzle)
1906      compStr++;
1907
1908    while (*compStr) {
1909      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1910        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1911          << baseType << SourceRange(CompLoc);
1912        return QualType();
1913      }
1914    }
1915  }
1916
1917  // If this is a halving swizzle, verify that the base type has an even
1918  // number of elements.
1919  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1920    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1921      << baseType << SourceRange(CompLoc);
1922    return QualType();
1923  }
1924
1925  // The component accessor looks fine - now we need to compute the actual type.
1926  // The vector type is implied by the component accessor. For example,
1927  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1928  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1929  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1930  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1931                                     : CompName.getLength();
1932  if (HexSwizzle)
1933    CompSize--;
1934
1935  if (CompSize == 1)
1936    return vecType->getElementType();
1937
1938  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1939  // Now look up the TypeDefDecl from the vector type. Without this,
1940  // diagostics look bad. We want extended vector types to appear built-in.
1941  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1942    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1943      return Context.getTypedefType(ExtVectorDecls[i]);
1944  }
1945  return VT; // should never get here (a typedef type should always be found).
1946}
1947
1948static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1949                                                IdentifierInfo &Member,
1950                                                const Selector &Sel,
1951                                                ASTContext &Context) {
1952
1953  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1954    return PD;
1955  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1956    return OMD;
1957
1958  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1959       E = PDecl->protocol_end(); I != E; ++I) {
1960    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1961                                                     Context))
1962      return D;
1963  }
1964  return 0;
1965}
1966
1967static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
1968                                IdentifierInfo &Member,
1969                                const Selector &Sel,
1970                                ASTContext &Context) {
1971  // Check protocols on qualified interfaces.
1972  Decl *GDecl = 0;
1973  for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1974       E = QIdTy->qual_end(); I != E; ++I) {
1975    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
1976      GDecl = PD;
1977      break;
1978    }
1979    // Also must look for a getter name which uses property syntax.
1980    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
1981      GDecl = OMD;
1982      break;
1983    }
1984  }
1985  if (!GDecl) {
1986    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1987         E = QIdTy->qual_end(); I != E; ++I) {
1988      // Search in the protocol-qualifier list of current protocol.
1989      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
1990      if (GDecl)
1991        return GDecl;
1992    }
1993  }
1994  return GDecl;
1995}
1996
1997/// FindMethodInNestedImplementations - Look up a method in current and
1998/// all base class implementations.
1999///
2000ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2001                                              const ObjCInterfaceDecl *IFace,
2002                                              const Selector &Sel) {
2003  ObjCMethodDecl *Method = 0;
2004  if (ObjCImplementationDecl *ImpDecl
2005        = LookupObjCImplementation(IFace->getIdentifier()))
2006    Method = ImpDecl->getInstanceMethod(Context, Sel);
2007
2008  if (!Method && IFace->getSuperClass())
2009    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2010  return Method;
2011}
2012
2013Action::OwningExprResult
2014Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2015                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2016                               IdentifierInfo &Member,
2017                               DeclPtrTy ObjCImpDecl) {
2018  Expr *BaseExpr = Base.takeAs<Expr>();
2019  assert(BaseExpr && "no record expression");
2020
2021  // Perform default conversions.
2022  DefaultFunctionArrayConversion(BaseExpr);
2023
2024  QualType BaseType = BaseExpr->getType();
2025  assert(!BaseType.isNull() && "no type for member expression");
2026
2027  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2028  // must have pointer type, and the accessed type is the pointee.
2029  if (OpKind == tok::arrow) {
2030    if (BaseType->isDependentType())
2031      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2032                                                         BaseExpr, true,
2033                                                         OpLoc,
2034                                                     DeclarationName(&Member),
2035                                                         MemberLoc));
2036    else if (const PointerType *PT = BaseType->getAsPointerType())
2037      BaseType = PT->getPointeeType();
2038    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2039      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2040                                            MemberLoc, Member));
2041    else
2042      return ExprError(Diag(MemberLoc,
2043                            diag::err_typecheck_member_reference_arrow)
2044        << BaseType << BaseExpr->getSourceRange());
2045  } else {
2046    if (BaseType->isDependentType()) {
2047      // Require that the base type isn't a pointer type
2048      // (so we'll report an error for)
2049      // T* t;
2050      // t.f;
2051      //
2052      // In Obj-C++, however, the above expression is valid, since it could be
2053      // accessing the 'f' property if T is an Obj-C interface. The extra check
2054      // allows this, while still reporting an error if T is a struct pointer.
2055      const PointerType *PT = BaseType->getAsPointerType();
2056
2057      if (!PT || (getLangOptions().ObjC1 &&
2058                  !PT->getPointeeType()->isRecordType()))
2059        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2060                                                           BaseExpr, false,
2061                                                           OpLoc,
2062                                                     DeclarationName(&Member),
2063                                                           MemberLoc));
2064    }
2065  }
2066
2067  // Handle field access to simple records.  This also handles access to fields
2068  // of the ObjC 'id' struct.
2069  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2070    RecordDecl *RDecl = RTy->getDecl();
2071    if (RequireCompleteType(OpLoc, BaseType,
2072                               diag::err_typecheck_incomplete_tag,
2073                               BaseExpr->getSourceRange()))
2074      return ExprError();
2075
2076    // The record definition is complete, now make sure the member is valid.
2077    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2078    LookupResult Result
2079      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2080                            LookupMemberName, false);
2081
2082    if (!Result)
2083      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2084               << &Member << BaseExpr->getSourceRange());
2085    if (Result.isAmbiguous()) {
2086      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2087                              MemberLoc, BaseExpr->getSourceRange());
2088      return ExprError();
2089    }
2090
2091    NamedDecl *MemberDecl = Result;
2092
2093    // If the decl being referenced had an error, return an error for this
2094    // sub-expr without emitting another error, in order to avoid cascading
2095    // error cases.
2096    if (MemberDecl->isInvalidDecl())
2097      return ExprError();
2098
2099    // Check the use of this field
2100    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2101      return ExprError();
2102
2103    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2104      // We may have found a field within an anonymous union or struct
2105      // (C++ [class.union]).
2106      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2107        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2108                                                        BaseExpr, OpLoc);
2109
2110      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2111      // FIXME: Handle address space modifiers
2112      QualType MemberType = FD->getType();
2113      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2114        MemberType = Ref->getPointeeType();
2115      else {
2116        unsigned combinedQualifiers =
2117          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2118        if (FD->isMutable())
2119          combinedQualifiers &= ~QualType::Const;
2120        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2121      }
2122
2123      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2124                                            MemberLoc, MemberType));
2125    }
2126
2127    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
2128      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2129                                            Var, MemberLoc,
2130                                         Var->getType().getNonReferenceType()));
2131    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
2132      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2133                                            MemberFn, MemberLoc,
2134                                            MemberFn->getType()));
2135    if (OverloadedFunctionDecl *Ovl
2136          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2137      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2138                                            MemberLoc, Context.OverloadTy));
2139    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
2140      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2141                                            Enum, MemberLoc, Enum->getType()));
2142    if (isa<TypeDecl>(MemberDecl))
2143      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2144        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2145
2146    // We found a declaration kind that we didn't expect. This is a
2147    // generic error message that tells the user that she can't refer
2148    // to this member with '.' or '->'.
2149    return ExprError(Diag(MemberLoc,
2150                          diag::err_typecheck_member_reference_unknown)
2151      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2152  }
2153
2154  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2155  // (*Obj).ivar.
2156  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2157    ObjCInterfaceDecl *ClassDeclared;
2158    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
2159                                                                   &Member,
2160                                                             ClassDeclared)) {
2161      // If the decl being referenced had an error, return an error for this
2162      // sub-expr without emitting another error, in order to avoid cascading
2163      // error cases.
2164      if (IV->isInvalidDecl())
2165        return ExprError();
2166
2167      // Check whether we can reference this field.
2168      if (DiagnoseUseOfDecl(IV, MemberLoc))
2169        return ExprError();
2170      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2171          IV->getAccessControl() != ObjCIvarDecl::Package) {
2172        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2173        if (ObjCMethodDecl *MD = getCurMethodDecl())
2174          ClassOfMethodDecl =  MD->getClassInterface();
2175        else if (ObjCImpDecl && getCurFunctionDecl()) {
2176          // Case of a c-function declared inside an objc implementation.
2177          // FIXME: For a c-style function nested inside an objc implementation
2178          // class, there is no implementation context available, so we pass
2179          // down the context as argument to this routine. Ideally, this context
2180          // need be passed down in the AST node and somehow calculated from the
2181          // AST for a function decl.
2182          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2183          if (ObjCImplementationDecl *IMPD =
2184              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2185            ClassOfMethodDecl = IMPD->getClassInterface();
2186          else if (ObjCCategoryImplDecl* CatImplClass =
2187                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2188            ClassOfMethodDecl = CatImplClass->getClassInterface();
2189        }
2190
2191        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2192          if (ClassDeclared != IFTy->getDecl() ||
2193              ClassOfMethodDecl != ClassDeclared)
2194            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2195        }
2196        // @protected
2197        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2198          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2199      }
2200
2201      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2202                                                 MemberLoc, BaseExpr,
2203                                                 OpKind == tok::arrow));
2204    }
2205    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2206                       << IFTy->getDecl()->getDeclName() << &Member
2207                       << BaseExpr->getSourceRange());
2208  }
2209
2210  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2211  // pointer to a (potentially qualified) interface type.
2212  const PointerType *PTy;
2213  const ObjCInterfaceType *IFTy;
2214  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2215      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2216    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2217
2218    // Search for a declared property first.
2219    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2220                                                              &Member)) {
2221      // Check whether we can reference this property.
2222      if (DiagnoseUseOfDecl(PD, MemberLoc))
2223        return ExprError();
2224      QualType ResTy = PD->getType();
2225      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2226      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2227      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2228        ResTy = Getter->getResultType();
2229      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2230                                                     MemberLoc, BaseExpr));
2231    }
2232
2233    // Check protocols on qualified interfaces.
2234    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2235         E = IFTy->qual_end(); I != E; ++I)
2236      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2237                                                               &Member)) {
2238        // Check whether we can reference this property.
2239        if (DiagnoseUseOfDecl(PD, MemberLoc))
2240          return ExprError();
2241
2242        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2243                                                       MemberLoc, BaseExpr));
2244      }
2245
2246    // If that failed, look for an "implicit" property by seeing if the nullary
2247    // selector is implemented.
2248
2249    // FIXME: The logic for looking up nullary and unary selectors should be
2250    // shared with the code in ActOnInstanceMessage.
2251
2252    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2253    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2254
2255    // If this reference is in an @implementation, check for 'private' methods.
2256    if (!Getter)
2257      Getter = FindMethodInNestedImplementations(IFace, Sel);
2258
2259    // Look through local category implementations associated with the class.
2260    if (!Getter) {
2261      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2262        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2263          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2264      }
2265    }
2266    if (Getter) {
2267      // Check if we can reference this property.
2268      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2269        return ExprError();
2270    }
2271    // If we found a getter then this may be a valid dot-reference, we
2272    // will look for the matching setter, in case it is needed.
2273    Selector SetterSel =
2274      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2275                                         PP.getSelectorTable(), &Member);
2276    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2277    if (!Setter) {
2278      // If this reference is in an @implementation, also check for 'private'
2279      // methods.
2280      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2281    }
2282    // Look through local category implementations associated with the class.
2283    if (!Setter) {
2284      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2285        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2286          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2287      }
2288    }
2289
2290    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2291      return ExprError();
2292
2293    if (Getter || Setter) {
2294      QualType PType;
2295
2296      if (Getter)
2297        PType = Getter->getResultType();
2298      else {
2299        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2300             E = Setter->param_end(); PI != E; ++PI)
2301          PType = (*PI)->getType();
2302      }
2303      // FIXME: we must check that the setter has property type.
2304      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2305                                      Setter, MemberLoc, BaseExpr));
2306    }
2307    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2308      << &Member << BaseType);
2309  }
2310  // Handle properties on qualified "id" protocols.
2311  const ObjCQualifiedIdType *QIdTy;
2312  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2313    // Check protocols on qualified interfaces.
2314    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2315    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2316      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2317        // Check the use of this declaration
2318        if (DiagnoseUseOfDecl(PD, MemberLoc))
2319          return ExprError();
2320
2321        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2322                                                       MemberLoc, BaseExpr));
2323      }
2324      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2325        // Check the use of this method.
2326        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2327          return ExprError();
2328
2329        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2330                                                   OMD->getResultType(),
2331                                                   OMD, OpLoc, MemberLoc,
2332                                                   NULL, 0));
2333      }
2334    }
2335
2336    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2337                       << &Member << BaseType);
2338  }
2339  // Handle properties on ObjC 'Class' types.
2340  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2341    // Also must look for a getter name which uses property syntax.
2342    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2343    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2344      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2345      ObjCMethodDecl *Getter;
2346      // FIXME: need to also look locally in the implementation.
2347      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2348        // Check the use of this method.
2349        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2350          return ExprError();
2351      }
2352      // If we found a getter then this may be a valid dot-reference, we
2353      // will look for the matching setter, in case it is needed.
2354      Selector SetterSel =
2355        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2356                                           PP.getSelectorTable(), &Member);
2357      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2358      if (!Setter) {
2359        // If this reference is in an @implementation, also check for 'private'
2360        // methods.
2361        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2362      }
2363      // Look through local category implementations associated with the class.
2364      if (!Setter) {
2365        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2366          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2367            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2368        }
2369      }
2370
2371      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2372        return ExprError();
2373
2374      if (Getter || Setter) {
2375        QualType PType;
2376
2377        if (Getter)
2378          PType = Getter->getResultType();
2379        else {
2380          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2381               E = Setter->param_end(); PI != E; ++PI)
2382            PType = (*PI)->getType();
2383        }
2384        // FIXME: we must check that the setter has property type.
2385        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2386                                        Setter, MemberLoc, BaseExpr));
2387      }
2388      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2389        << &Member << BaseType);
2390    }
2391  }
2392
2393  // Handle 'field access' to vectors, such as 'V.xx'.
2394  if (BaseType->isExtVectorType()) {
2395    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2396    if (ret.isNull())
2397      return ExprError();
2398    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2399                                                    MemberLoc));
2400  }
2401
2402  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2403    << BaseType << BaseExpr->getSourceRange();
2404
2405  // If the user is trying to apply -> or . to a function or function
2406  // pointer, it's probably because they forgot parentheses to call
2407  // the function. Suggest the addition of those parentheses.
2408  if (BaseType == Context.OverloadTy ||
2409      BaseType->isFunctionType() ||
2410      (BaseType->isPointerType() &&
2411       BaseType->getAsPointerType()->isFunctionType())) {
2412    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2413    Diag(Loc, diag::note_member_reference_needs_call)
2414      << CodeModificationHint::CreateInsertion(Loc, "()");
2415  }
2416
2417  return ExprError();
2418}
2419
2420/// ConvertArgumentsForCall - Converts the arguments specified in
2421/// Args/NumArgs to the parameter types of the function FDecl with
2422/// function prototype Proto. Call is the call expression itself, and
2423/// Fn is the function expression. For a C++ member function, this
2424/// routine does not attempt to convert the object argument. Returns
2425/// true if the call is ill-formed.
2426bool
2427Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2428                              FunctionDecl *FDecl,
2429                              const FunctionProtoType *Proto,
2430                              Expr **Args, unsigned NumArgs,
2431                              SourceLocation RParenLoc) {
2432  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2433  // assignment, to the types of the corresponding parameter, ...
2434  unsigned NumArgsInProto = Proto->getNumArgs();
2435  unsigned NumArgsToCheck = NumArgs;
2436  bool Invalid = false;
2437
2438  // If too few arguments are available (and we don't have default
2439  // arguments for the remaining parameters), don't make the call.
2440  if (NumArgs < NumArgsInProto) {
2441    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2442      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2443        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2444    // Use default arguments for missing arguments
2445    NumArgsToCheck = NumArgsInProto;
2446    Call->setNumArgs(Context, NumArgsInProto);
2447  }
2448
2449  // If too many are passed and not variadic, error on the extras and drop
2450  // them.
2451  if (NumArgs > NumArgsInProto) {
2452    if (!Proto->isVariadic()) {
2453      Diag(Args[NumArgsInProto]->getLocStart(),
2454           diag::err_typecheck_call_too_many_args)
2455        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2456        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2457                       Args[NumArgs-1]->getLocEnd());
2458      // This deletes the extra arguments.
2459      Call->setNumArgs(Context, NumArgsInProto);
2460      Invalid = true;
2461    }
2462    NumArgsToCheck = NumArgsInProto;
2463  }
2464
2465  // Continue to check argument types (even if we have too few/many args).
2466  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2467    QualType ProtoArgType = Proto->getArgType(i);
2468
2469    Expr *Arg;
2470    if (i < NumArgs) {
2471      Arg = Args[i];
2472
2473      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2474                              ProtoArgType,
2475                              diag::err_call_incomplete_argument,
2476                              Arg->getSourceRange()))
2477        return true;
2478
2479      // Pass the argument.
2480      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2481        return true;
2482    } else
2483      // We already type-checked the argument, so we know it works.
2484      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2485    QualType ArgType = Arg->getType();
2486
2487    Call->setArg(i, Arg);
2488  }
2489
2490  // If this is a variadic call, handle args passed through "...".
2491  if (Proto->isVariadic()) {
2492    VariadicCallType CallType = VariadicFunction;
2493    if (Fn->getType()->isBlockPointerType())
2494      CallType = VariadicBlock; // Block
2495    else if (isa<MemberExpr>(Fn))
2496      CallType = VariadicMethod;
2497
2498    // Promote the arguments (C99 6.5.2.2p7).
2499    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2500      Expr *Arg = Args[i];
2501      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2502      Call->setArg(i, Arg);
2503    }
2504  }
2505
2506  return Invalid;
2507}
2508
2509/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2510/// This provides the location of the left/right parens and a list of comma
2511/// locations.
2512Action::OwningExprResult
2513Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2514                    MultiExprArg args,
2515                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2516  unsigned NumArgs = args.size();
2517  Expr *Fn = fn.takeAs<Expr>();
2518  Expr **Args = reinterpret_cast<Expr**>(args.release());
2519  assert(Fn && "no function call expression");
2520  FunctionDecl *FDecl = NULL;
2521  NamedDecl *NDecl = NULL;
2522  DeclarationName UnqualifiedName;
2523
2524  if (getLangOptions().CPlusPlus) {
2525    // Determine whether this is a dependent call inside a C++ template,
2526    // in which case we won't do any semantic analysis now.
2527    // FIXME: Will need to cache the results of name lookup (including ADL) in
2528    // Fn.
2529    bool Dependent = false;
2530    if (Fn->isTypeDependent())
2531      Dependent = true;
2532    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2533      Dependent = true;
2534
2535    if (Dependent)
2536      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2537                                          Context.DependentTy, RParenLoc));
2538
2539    // Determine whether this is a call to an object (C++ [over.call.object]).
2540    if (Fn->getType()->isRecordType())
2541      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2542                                                CommaLocs, RParenLoc));
2543
2544    // Determine whether this is a call to a member function.
2545    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2546      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2547          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2548        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2549                                               CommaLocs, RParenLoc));
2550  }
2551
2552  // If we're directly calling a function, get the appropriate declaration.
2553  DeclRefExpr *DRExpr = NULL;
2554  Expr *FnExpr = Fn;
2555  bool ADL = true;
2556  while (true) {
2557    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2558      FnExpr = IcExpr->getSubExpr();
2559    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2560      // Parentheses around a function disable ADL
2561      // (C++0x [basic.lookup.argdep]p1).
2562      ADL = false;
2563      FnExpr = PExpr->getSubExpr();
2564    } else if (isa<UnaryOperator>(FnExpr) &&
2565               cast<UnaryOperator>(FnExpr)->getOpcode()
2566                 == UnaryOperator::AddrOf) {
2567      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2568    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2569      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2570      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2571      break;
2572    } else if (UnresolvedFunctionNameExpr *DepName
2573                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2574      UnqualifiedName = DepName->getName();
2575      break;
2576    } else {
2577      // Any kind of name that does not refer to a declaration (or
2578      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2579      ADL = false;
2580      break;
2581    }
2582  }
2583
2584  OverloadedFunctionDecl *Ovl = 0;
2585  if (DRExpr) {
2586    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2587    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2588    NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2589  }
2590
2591  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2592    // We don't perform ADL for implicit declarations of builtins.
2593    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2594      ADL = false;
2595
2596    // We don't perform ADL in C.
2597    if (!getLangOptions().CPlusPlus)
2598      ADL = false;
2599
2600    if (Ovl || ADL) {
2601      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2602                                      UnqualifiedName, LParenLoc, Args,
2603                                      NumArgs, CommaLocs, RParenLoc, ADL);
2604      if (!FDecl)
2605        return ExprError();
2606
2607      // Update Fn to refer to the actual function selected.
2608      Expr *NewFn = 0;
2609      if (QualifiedDeclRefExpr *QDRExpr
2610            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2611        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2612                                                   QDRExpr->getLocation(),
2613                                                   false, false,
2614                                                 QDRExpr->getQualifierRange(),
2615                                                   QDRExpr->getQualifier());
2616      else
2617        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2618                                          Fn->getSourceRange().getBegin());
2619      Fn->Destroy(Context);
2620      Fn = NewFn;
2621    }
2622  }
2623
2624  // Promote the function operand.
2625  UsualUnaryConversions(Fn);
2626
2627  // Make the call expr early, before semantic checks.  This guarantees cleanup
2628  // of arguments and function on error.
2629  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2630                                                               Args, NumArgs,
2631                                                               Context.BoolTy,
2632                                                               RParenLoc));
2633
2634  const FunctionType *FuncT;
2635  if (!Fn->getType()->isBlockPointerType()) {
2636    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2637    // have type pointer to function".
2638    const PointerType *PT = Fn->getType()->getAsPointerType();
2639    if (PT == 0)
2640      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2641        << Fn->getType() << Fn->getSourceRange());
2642    FuncT = PT->getPointeeType()->getAsFunctionType();
2643  } else { // This is a block call.
2644    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2645                getAsFunctionType();
2646  }
2647  if (FuncT == 0)
2648    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2649      << Fn->getType() << Fn->getSourceRange());
2650
2651  // Check for a valid return type
2652  if (!FuncT->getResultType()->isVoidType() &&
2653      RequireCompleteType(Fn->getSourceRange().getBegin(),
2654                          FuncT->getResultType(),
2655                          diag::err_call_incomplete_return,
2656                          TheCall->getSourceRange()))
2657    return ExprError();
2658
2659  // We know the result type of the call, set it.
2660  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2661
2662  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2663    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2664                                RParenLoc))
2665      return ExprError();
2666  } else {
2667    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2668
2669    if (FDecl) {
2670      // Check if we have too few/too many template arguments, based
2671      // on our knowledge of the function definition.
2672      const FunctionDecl *Def = 0;
2673      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) {
2674        const FunctionProtoType *Proto =
2675            Def->getType()->getAsFunctionProtoType();
2676        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2677          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2678            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2679        }
2680      }
2681    }
2682
2683    // Promote the arguments (C99 6.5.2.2p6).
2684    for (unsigned i = 0; i != NumArgs; i++) {
2685      Expr *Arg = Args[i];
2686      DefaultArgumentPromotion(Arg);
2687      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2688                              Arg->getType(),
2689                              diag::err_call_incomplete_argument,
2690                              Arg->getSourceRange()))
2691        return ExprError();
2692      TheCall->setArg(i, Arg);
2693    }
2694  }
2695
2696  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2697    if (!Method->isStatic())
2698      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2699        << Fn->getSourceRange());
2700
2701  // Check for sentinels
2702  if (NDecl)
2703    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2704  // Do special checking on direct calls to functions.
2705  if (FDecl)
2706    return CheckFunctionCall(FDecl, TheCall.take());
2707  if (NDecl)
2708    return CheckBlockCall(NDecl, TheCall.take());
2709
2710  return Owned(TheCall.take());
2711}
2712
2713Action::OwningExprResult
2714Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2715                           SourceLocation RParenLoc, ExprArg InitExpr) {
2716  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2717  QualType literalType = QualType::getFromOpaquePtr(Ty);
2718  // FIXME: put back this assert when initializers are worked out.
2719  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2720  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2721
2722  if (literalType->isArrayType()) {
2723    if (literalType->isVariableArrayType())
2724      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2725        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2726  } else if (!literalType->isDependentType() &&
2727             RequireCompleteType(LParenLoc, literalType,
2728                                 diag::err_typecheck_decl_incomplete_type,
2729                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2730    return ExprError();
2731
2732  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2733                            DeclarationName(), /*FIXME:DirectInit=*/false))
2734    return ExprError();
2735
2736  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2737  if (isFileScope) { // 6.5.2.5p3
2738    if (CheckForConstantInitializer(literalExpr, literalType))
2739      return ExprError();
2740  }
2741  InitExpr.release();
2742  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2743                                                 literalExpr, isFileScope));
2744}
2745
2746Action::OwningExprResult
2747Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2748                    SourceLocation RBraceLoc) {
2749  unsigned NumInit = initlist.size();
2750  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2751
2752  // Semantic analysis for initializers is done by ActOnDeclarator() and
2753  // CheckInitializer() - it requires knowledge of the object being intialized.
2754
2755  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2756                                               RBraceLoc);
2757  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2758  return Owned(E);
2759}
2760
2761/// CheckCastTypes - Check type constraints for casting between types.
2762bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2763  UsualUnaryConversions(castExpr);
2764
2765  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2766  // type needs to be scalar.
2767  if (castType->isVoidType()) {
2768    // Cast to void allows any expr type.
2769  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2770    // We can't check any more until template instantiation time.
2771  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2772    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2773        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2774        (castType->isStructureType() || castType->isUnionType())) {
2775      // GCC struct/union extension: allow cast to self.
2776      // FIXME: Check that the cast destination type is complete.
2777      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2778        << castType << castExpr->getSourceRange();
2779    } else if (castType->isUnionType()) {
2780      // GCC cast to union extension
2781      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2782      RecordDecl::field_iterator Field, FieldEnd;
2783      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2784           Field != FieldEnd; ++Field) {
2785        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2786            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2787          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2788            << castExpr->getSourceRange();
2789          break;
2790        }
2791      }
2792      if (Field == FieldEnd)
2793        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2794          << castExpr->getType() << castExpr->getSourceRange();
2795    } else {
2796      // Reject any other conversions to non-scalar types.
2797      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2798        << castType << castExpr->getSourceRange();
2799    }
2800  } else if (!castExpr->getType()->isScalarType() &&
2801             !castExpr->getType()->isVectorType()) {
2802    return Diag(castExpr->getLocStart(),
2803                diag::err_typecheck_expect_scalar_operand)
2804      << castExpr->getType() << castExpr->getSourceRange();
2805  } else if (castExpr->getType()->isVectorType()) {
2806    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2807      return true;
2808  } else if (castType->isVectorType()) {
2809    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2810      return true;
2811  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2812    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2813  } else if (!castType->isArithmeticType()) {
2814    QualType castExprType = castExpr->getType();
2815    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2816      return Diag(castExpr->getLocStart(),
2817                  diag::err_cast_pointer_from_non_pointer_int)
2818        << castExprType << castExpr->getSourceRange();
2819  } else if (!castExpr->getType()->isArithmeticType()) {
2820    if (!castType->isIntegralType() && castType->isArithmeticType())
2821      return Diag(castExpr->getLocStart(),
2822                  diag::err_cast_pointer_to_non_pointer_int)
2823        << castType << castExpr->getSourceRange();
2824  }
2825  if (isa<ObjCSelectorExpr>(castExpr))
2826    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
2827  return false;
2828}
2829
2830bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2831  assert(VectorTy->isVectorType() && "Not a vector type!");
2832
2833  if (Ty->isVectorType() || Ty->isIntegerType()) {
2834    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2835      return Diag(R.getBegin(),
2836                  Ty->isVectorType() ?
2837                  diag::err_invalid_conversion_between_vectors :
2838                  diag::err_invalid_conversion_between_vector_and_integer)
2839        << VectorTy << Ty << R;
2840  } else
2841    return Diag(R.getBegin(),
2842                diag::err_invalid_conversion_between_vector_and_scalar)
2843      << VectorTy << Ty << R;
2844
2845  return false;
2846}
2847
2848Action::OwningExprResult
2849Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2850                    SourceLocation RParenLoc, ExprArg Op) {
2851  assert((Ty != 0) && (Op.get() != 0) &&
2852         "ActOnCastExpr(): missing type or expr");
2853
2854  Expr *castExpr = Op.takeAs<Expr>();
2855  QualType castType = QualType::getFromOpaquePtr(Ty);
2856
2857  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2858    return ExprError();
2859  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2860                                            LParenLoc, RParenLoc));
2861}
2862
2863/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2864/// In that case, lhs = cond.
2865/// C99 6.5.15
2866QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2867                                        SourceLocation QuestionLoc) {
2868  // C++ is sufficiently different to merit its own checker.
2869  if (getLangOptions().CPlusPlus)
2870    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2871
2872  UsualUnaryConversions(Cond);
2873  UsualUnaryConversions(LHS);
2874  UsualUnaryConversions(RHS);
2875  QualType CondTy = Cond->getType();
2876  QualType LHSTy = LHS->getType();
2877  QualType RHSTy = RHS->getType();
2878
2879  // first, check the condition.
2880  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2881    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2882      << CondTy;
2883    return QualType();
2884  }
2885
2886  // Now check the two expressions.
2887
2888  // If both operands have arithmetic type, do the usual arithmetic conversions
2889  // to find a common type: C99 6.5.15p3,5.
2890  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2891    UsualArithmeticConversions(LHS, RHS);
2892    return LHS->getType();
2893  }
2894
2895  // If both operands are the same structure or union type, the result is that
2896  // type.
2897  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2898    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2899      if (LHSRT->getDecl() == RHSRT->getDecl())
2900        // "If both the operands have structure or union type, the result has
2901        // that type."  This implies that CV qualifiers are dropped.
2902        return LHSTy.getUnqualifiedType();
2903    // FIXME: Type of conditional expression must be complete in C mode.
2904  }
2905
2906  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2907  // The following || allows only one side to be void (a GCC-ism).
2908  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2909    if (!LHSTy->isVoidType())
2910      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2911        << RHS->getSourceRange();
2912    if (!RHSTy->isVoidType())
2913      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2914        << LHS->getSourceRange();
2915    ImpCastExprToType(LHS, Context.VoidTy);
2916    ImpCastExprToType(RHS, Context.VoidTy);
2917    return Context.VoidTy;
2918  }
2919  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2920  // the type of the other operand."
2921  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2922       Context.isObjCObjectPointerType(LHSTy)) &&
2923      RHS->isNullPointerConstant(Context)) {
2924    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2925    return LHSTy;
2926  }
2927  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2928       Context.isObjCObjectPointerType(RHSTy)) &&
2929      LHS->isNullPointerConstant(Context)) {
2930    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2931    return RHSTy;
2932  }
2933
2934  const PointerType *LHSPT = LHSTy->getAsPointerType();
2935  const PointerType *RHSPT = RHSTy->getAsPointerType();
2936  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
2937  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
2938
2939  // Handle the case where both operands are pointers before we handle null
2940  // pointer constants in case both operands are null pointer constants.
2941  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
2942    // get the "pointed to" types
2943    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
2944                       : LHSBPT->getPointeeType());
2945      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
2946                         : RHSBPT->getPointeeType());
2947
2948    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2949    if (lhptee->isVoidType()
2950        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
2951      // Figure out necessary qualifiers (C99 6.5.15p6)
2952      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2953      QualType destType = Context.getPointerType(destPointee);
2954      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2955      ImpCastExprToType(RHS, destType); // promote to void*
2956      return destType;
2957    }
2958    if (rhptee->isVoidType()
2959        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
2960      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2961      QualType destType = Context.getPointerType(destPointee);
2962      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2963      ImpCastExprToType(RHS, destType); // promote to void*
2964      return destType;
2965    }
2966
2967    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
2968    if (sameKind
2969        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
2970      // Two identical pointer types are always compatible.
2971      return LHSTy;
2972    }
2973
2974    QualType compositeType = LHSTy;
2975
2976    // If either type is an Objective-C object type then check
2977    // compatibility according to Objective-C.
2978    if (Context.isObjCObjectPointerType(LHSTy) ||
2979        Context.isObjCObjectPointerType(RHSTy)) {
2980      // If both operands are interfaces and either operand can be
2981      // assigned to the other, use that type as the composite
2982      // type. This allows
2983      //   xxx ? (A*) a : (B*) b
2984      // where B is a subclass of A.
2985      //
2986      // Additionally, as for assignment, if either type is 'id'
2987      // allow silent coercion. Finally, if the types are
2988      // incompatible then make sure to use 'id' as the composite
2989      // type so the result is acceptable for sending messages to.
2990
2991      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2992      // It could return the composite type.
2993      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2994      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2995      if (LHSIface && RHSIface &&
2996          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2997        compositeType = LHSTy;
2998      } else if (LHSIface && RHSIface &&
2999                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
3000        compositeType = RHSTy;
3001      } else if (Context.isObjCIdStructType(lhptee) ||
3002                 Context.isObjCIdStructType(rhptee)) {
3003        compositeType = Context.getObjCIdType();
3004      } else if (LHSBPT || RHSBPT) {
3005        if (!sameKind
3006            || !Context.typesAreBlockCompatible(lhptee.getUnqualifiedType(),
3007                                                rhptee.getUnqualifiedType()))
3008          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3009            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3010        return QualType();
3011      } else {
3012        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3013          << LHSTy << RHSTy
3014          << LHS->getSourceRange() << RHS->getSourceRange();
3015        QualType incompatTy = Context.getObjCIdType();
3016        ImpCastExprToType(LHS, incompatTy);
3017        ImpCastExprToType(RHS, incompatTy);
3018        return incompatTy;
3019      }
3020    } else if (!sameKind
3021               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3022                                              rhptee.getUnqualifiedType())) {
3023      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3024        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3025      // In this situation, we assume void* type. No especially good
3026      // reason, but this is what gcc does, and we do have to pick
3027      // to get a consistent AST.
3028      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3029      ImpCastExprToType(LHS, incompatTy);
3030      ImpCastExprToType(RHS, incompatTy);
3031      return incompatTy;
3032    }
3033    // The pointer types are compatible.
3034    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3035    // differently qualified versions of compatible types, the result type is
3036    // a pointer to an appropriately qualified version of the *composite*
3037    // type.
3038    // FIXME: Need to calculate the composite type.
3039    // FIXME: Need to add qualifiers
3040    ImpCastExprToType(LHS, compositeType);
3041    ImpCastExprToType(RHS, compositeType);
3042    return compositeType;
3043  }
3044
3045  // GCC compatibility: soften pointer/integer mismatch.
3046  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3047    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3048      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3049    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3050    return RHSTy;
3051  }
3052  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3053    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3054      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3055    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3056    return LHSTy;
3057  }
3058
3059  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3060  // evaluates to "struct objc_object *" (and is handled above when comparing
3061  // id with statically typed objects).
3062  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3063    // GCC allows qualified id and any Objective-C type to devolve to
3064    // id. Currently localizing to here until clear this should be
3065    // part of ObjCQualifiedIdTypesAreCompatible.
3066    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3067        (LHSTy->isObjCQualifiedIdType() &&
3068         Context.isObjCObjectPointerType(RHSTy)) ||
3069        (RHSTy->isObjCQualifiedIdType() &&
3070         Context.isObjCObjectPointerType(LHSTy))) {
3071      // FIXME: This is not the correct composite type. This only happens to
3072      // work because id can more or less be used anywhere, however this may
3073      // change the type of method sends.
3074
3075      // FIXME: gcc adds some type-checking of the arguments and emits
3076      // (confusing) incompatible comparison warnings in some
3077      // cases. Investigate.
3078      QualType compositeType = Context.getObjCIdType();
3079      ImpCastExprToType(LHS, compositeType);
3080      ImpCastExprToType(RHS, compositeType);
3081      return compositeType;
3082    }
3083  }
3084
3085  // Otherwise, the operands are not compatible.
3086  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3087    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3088  return QualType();
3089}
3090
3091/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3092/// in the case of a the GNU conditional expr extension.
3093Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3094                                                  SourceLocation ColonLoc,
3095                                                  ExprArg Cond, ExprArg LHS,
3096                                                  ExprArg RHS) {
3097  Expr *CondExpr = (Expr *) Cond.get();
3098  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3099
3100  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3101  // was the condition.
3102  bool isLHSNull = LHSExpr == 0;
3103  if (isLHSNull)
3104    LHSExpr = CondExpr;
3105
3106  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3107                                             RHSExpr, QuestionLoc);
3108  if (result.isNull())
3109    return ExprError();
3110
3111  Cond.release();
3112  LHS.release();
3113  RHS.release();
3114  return Owned(new (Context) ConditionalOperator(CondExpr,
3115                                                 isLHSNull ? 0 : LHSExpr,
3116                                                 RHSExpr, result));
3117}
3118
3119
3120// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3121// being closely modeled after the C99 spec:-). The odd characteristic of this
3122// routine is it effectively iqnores the qualifiers on the top level pointee.
3123// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3124// FIXME: add a couple examples in this comment.
3125Sema::AssignConvertType
3126Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3127  QualType lhptee, rhptee;
3128
3129  // get the "pointed to" type (ignoring qualifiers at the top level)
3130  lhptee = lhsType->getAsPointerType()->getPointeeType();
3131  rhptee = rhsType->getAsPointerType()->getPointeeType();
3132
3133  // make sure we operate on the canonical type
3134  lhptee = Context.getCanonicalType(lhptee);
3135  rhptee = Context.getCanonicalType(rhptee);
3136
3137  AssignConvertType ConvTy = Compatible;
3138
3139  // C99 6.5.16.1p1: This following citation is common to constraints
3140  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3141  // qualifiers of the type *pointed to* by the right;
3142  // FIXME: Handle ExtQualType
3143  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3144    ConvTy = CompatiblePointerDiscardsQualifiers;
3145
3146  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3147  // incomplete type and the other is a pointer to a qualified or unqualified
3148  // version of void...
3149  if (lhptee->isVoidType()) {
3150    if (rhptee->isIncompleteOrObjectType())
3151      return ConvTy;
3152
3153    // As an extension, we allow cast to/from void* to function pointer.
3154    assert(rhptee->isFunctionType());
3155    return FunctionVoidPointer;
3156  }
3157
3158  if (rhptee->isVoidType()) {
3159    if (lhptee->isIncompleteOrObjectType())
3160      return ConvTy;
3161
3162    // As an extension, we allow cast to/from void* to function pointer.
3163    assert(lhptee->isFunctionType());
3164    return FunctionVoidPointer;
3165  }
3166  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3167  // unqualified versions of compatible types, ...
3168  lhptee = lhptee.getUnqualifiedType();
3169  rhptee = rhptee.getUnqualifiedType();
3170  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3171    // Check if the pointee types are compatible ignoring the sign.
3172    // We explicitly check for char so that we catch "char" vs
3173    // "unsigned char" on systems where "char" is unsigned.
3174    if (lhptee->isCharType()) {
3175      lhptee = Context.UnsignedCharTy;
3176    } else if (lhptee->isSignedIntegerType()) {
3177      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3178    }
3179    if (rhptee->isCharType()) {
3180      rhptee = Context.UnsignedCharTy;
3181    } else if (rhptee->isSignedIntegerType()) {
3182      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3183    }
3184    if (lhptee == rhptee) {
3185      // Types are compatible ignoring the sign. Qualifier incompatibility
3186      // takes priority over sign incompatibility because the sign
3187      // warning can be disabled.
3188      if (ConvTy != Compatible)
3189        return ConvTy;
3190      return IncompatiblePointerSign;
3191    }
3192    // General pointer incompatibility takes priority over qualifiers.
3193    return IncompatiblePointer;
3194  }
3195  return ConvTy;
3196}
3197
3198/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3199/// block pointer types are compatible or whether a block and normal pointer
3200/// are compatible. It is more restrict than comparing two function pointer
3201// types.
3202Sema::AssignConvertType
3203Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3204                                          QualType rhsType) {
3205  QualType lhptee, rhptee;
3206
3207  // get the "pointed to" type (ignoring qualifiers at the top level)
3208  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3209  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3210
3211  // make sure we operate on the canonical type
3212  lhptee = Context.getCanonicalType(lhptee);
3213  rhptee = Context.getCanonicalType(rhptee);
3214
3215  AssignConvertType ConvTy = Compatible;
3216
3217  // For blocks we enforce that qualifiers are identical.
3218  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3219    ConvTy = CompatiblePointerDiscardsQualifiers;
3220
3221  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
3222    return IncompatibleBlockPointer;
3223  return ConvTy;
3224}
3225
3226/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3227/// has code to accommodate several GCC extensions when type checking
3228/// pointers. Here are some objectionable examples that GCC considers warnings:
3229///
3230///  int a, *pint;
3231///  short *pshort;
3232///  struct foo *pfoo;
3233///
3234///  pint = pshort; // warning: assignment from incompatible pointer type
3235///  a = pint; // warning: assignment makes integer from pointer without a cast
3236///  pint = a; // warning: assignment makes pointer from integer without a cast
3237///  pint = pfoo; // warning: assignment from incompatible pointer type
3238///
3239/// As a result, the code for dealing with pointers is more complex than the
3240/// C99 spec dictates.
3241///
3242Sema::AssignConvertType
3243Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3244  // Get canonical types.  We're not formatting these types, just comparing
3245  // them.
3246  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3247  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3248
3249  if (lhsType == rhsType)
3250    return Compatible; // Common case: fast path an exact match.
3251
3252  // If the left-hand side is a reference type, then we are in a
3253  // (rare!) case where we've allowed the use of references in C,
3254  // e.g., as a parameter type in a built-in function. In this case,
3255  // just make sure that the type referenced is compatible with the
3256  // right-hand side type. The caller is responsible for adjusting
3257  // lhsType so that the resulting expression does not have reference
3258  // type.
3259  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3260    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3261      return Compatible;
3262    return Incompatible;
3263  }
3264
3265  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3266    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3267      return Compatible;
3268    // Relax integer conversions like we do for pointers below.
3269    if (rhsType->isIntegerType())
3270      return IntToPointer;
3271    if (lhsType->isIntegerType())
3272      return PointerToInt;
3273    return IncompatibleObjCQualifiedId;
3274  }
3275
3276  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3277    // For ExtVector, allow vector splats; float -> <n x float>
3278    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3279      if (LV->getElementType() == rhsType)
3280        return Compatible;
3281
3282    // If we are allowing lax vector conversions, and LHS and RHS are both
3283    // vectors, the total size only needs to be the same. This is a bitcast;
3284    // no bits are changed but the result type is different.
3285    if (getLangOptions().LaxVectorConversions &&
3286        lhsType->isVectorType() && rhsType->isVectorType()) {
3287      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3288        return IncompatibleVectors;
3289    }
3290    return Incompatible;
3291  }
3292
3293  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3294    return Compatible;
3295
3296  if (isa<PointerType>(lhsType)) {
3297    if (rhsType->isIntegerType())
3298      return IntToPointer;
3299
3300    if (isa<PointerType>(rhsType))
3301      return CheckPointerTypesForAssignment(lhsType, rhsType);
3302
3303    if (rhsType->getAsBlockPointerType()) {
3304      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3305        return Compatible;
3306
3307      // Treat block pointers as objects.
3308      if (getLangOptions().ObjC1 &&
3309          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3310        return Compatible;
3311    }
3312    return Incompatible;
3313  }
3314
3315  if (isa<BlockPointerType>(lhsType)) {
3316    if (rhsType->isIntegerType())
3317      return IntToBlockPointer;
3318
3319    // Treat block pointers as objects.
3320    if (getLangOptions().ObjC1 &&
3321        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3322      return Compatible;
3323
3324    if (rhsType->isBlockPointerType())
3325      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3326
3327    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3328      if (RHSPT->getPointeeType()->isVoidType())
3329        return Compatible;
3330    }
3331    return Incompatible;
3332  }
3333
3334  if (isa<PointerType>(rhsType)) {
3335    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3336    if (lhsType == Context.BoolTy)
3337      return Compatible;
3338
3339    if (lhsType->isIntegerType())
3340      return PointerToInt;
3341
3342    if (isa<PointerType>(lhsType))
3343      return CheckPointerTypesForAssignment(lhsType, rhsType);
3344
3345    if (isa<BlockPointerType>(lhsType) &&
3346        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3347      return Compatible;
3348    return Incompatible;
3349  }
3350
3351  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3352    if (Context.typesAreCompatible(lhsType, rhsType))
3353      return Compatible;
3354  }
3355  return Incompatible;
3356}
3357
3358/// \brief Constructs a transparent union from an expression that is
3359/// used to initialize the transparent union.
3360static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3361                                      QualType UnionType, FieldDecl *Field) {
3362  // Build an initializer list that designates the appropriate member
3363  // of the transparent union.
3364  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3365                                                   &E, 1,
3366                                                   SourceLocation());
3367  Initializer->setType(UnionType);
3368  Initializer->setInitializedFieldInUnion(Field);
3369
3370  // Build a compound literal constructing a value of the transparent
3371  // union type from this initializer list.
3372  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3373                                  false);
3374}
3375
3376Sema::AssignConvertType
3377Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3378  QualType FromType = rExpr->getType();
3379
3380  // If the ArgType is a Union type, we want to handle a potential
3381  // transparent_union GCC extension.
3382  const RecordType *UT = ArgType->getAsUnionType();
3383  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3384    return Incompatible;
3385
3386  // The field to initialize within the transparent union.
3387  RecordDecl *UD = UT->getDecl();
3388  FieldDecl *InitField = 0;
3389  // It's compatible if the expression matches any of the fields.
3390  for (RecordDecl::field_iterator it = UD->field_begin(Context),
3391         itend = UD->field_end(Context);
3392       it != itend; ++it) {
3393    if (it->getType()->isPointerType()) {
3394      // If the transparent union contains a pointer type, we allow:
3395      // 1) void pointer
3396      // 2) null pointer constant
3397      if (FromType->isPointerType())
3398        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3399          ImpCastExprToType(rExpr, it->getType());
3400          InitField = *it;
3401          break;
3402        }
3403
3404      if (rExpr->isNullPointerConstant(Context)) {
3405        ImpCastExprToType(rExpr, it->getType());
3406        InitField = *it;
3407        break;
3408      }
3409    }
3410
3411    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3412          == Compatible) {
3413      InitField = *it;
3414      break;
3415    }
3416  }
3417
3418  if (!InitField)
3419    return Incompatible;
3420
3421  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3422  return Compatible;
3423}
3424
3425Sema::AssignConvertType
3426Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3427  if (getLangOptions().CPlusPlus) {
3428    if (!lhsType->isRecordType()) {
3429      // C++ 5.17p3: If the left operand is not of class type, the
3430      // expression is implicitly converted (C++ 4) to the
3431      // cv-unqualified type of the left operand.
3432      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3433                                    "assigning"))
3434        return Incompatible;
3435      return Compatible;
3436    }
3437
3438    // FIXME: Currently, we fall through and treat C++ classes like C
3439    // structures.
3440  }
3441
3442  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3443  // a null pointer constant.
3444  if ((lhsType->isPointerType() ||
3445       lhsType->isObjCQualifiedIdType() ||
3446       lhsType->isBlockPointerType())
3447      && rExpr->isNullPointerConstant(Context)) {
3448    ImpCastExprToType(rExpr, lhsType);
3449    return Compatible;
3450  }
3451
3452  // This check seems unnatural, however it is necessary to ensure the proper
3453  // conversion of functions/arrays. If the conversion were done for all
3454  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3455  // expressions that surpress this implicit conversion (&, sizeof).
3456  //
3457  // Suppress this for references: C++ 8.5.3p5.
3458  if (!lhsType->isReferenceType())
3459    DefaultFunctionArrayConversion(rExpr);
3460
3461  Sema::AssignConvertType result =
3462    CheckAssignmentConstraints(lhsType, rExpr->getType());
3463
3464  // C99 6.5.16.1p2: The value of the right operand is converted to the
3465  // type of the assignment expression.
3466  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3467  // so that we can use references in built-in functions even in C.
3468  // The getNonReferenceType() call makes sure that the resulting expression
3469  // does not have reference type.
3470  if (result != Incompatible && rExpr->getType() != lhsType)
3471    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3472  return result;
3473}
3474
3475QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3476  Diag(Loc, diag::err_typecheck_invalid_operands)
3477    << lex->getType() << rex->getType()
3478    << lex->getSourceRange() << rex->getSourceRange();
3479  return QualType();
3480}
3481
3482inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3483                                                              Expr *&rex) {
3484  // For conversion purposes, we ignore any qualifiers.
3485  // For example, "const float" and "float" are equivalent.
3486  QualType lhsType =
3487    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3488  QualType rhsType =
3489    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3490
3491  // If the vector types are identical, return.
3492  if (lhsType == rhsType)
3493    return lhsType;
3494
3495  // Handle the case of a vector & extvector type of the same size and element
3496  // type.  It would be nice if we only had one vector type someday.
3497  if (getLangOptions().LaxVectorConversions) {
3498    // FIXME: Should we warn here?
3499    if (const VectorType *LV = lhsType->getAsVectorType()) {
3500      if (const VectorType *RV = rhsType->getAsVectorType())
3501        if (LV->getElementType() == RV->getElementType() &&
3502            LV->getNumElements() == RV->getNumElements()) {
3503          return lhsType->isExtVectorType() ? lhsType : rhsType;
3504        }
3505    }
3506  }
3507
3508  // If the lhs is an extended vector and the rhs is a scalar of the same type
3509  // or a literal, promote the rhs to the vector type.
3510  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3511    QualType eltType = V->getElementType();
3512
3513    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3514        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3515        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3516      ImpCastExprToType(rex, lhsType);
3517      return lhsType;
3518    }
3519  }
3520
3521  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3522  // promote the lhs to the vector type.
3523  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3524    QualType eltType = V->getElementType();
3525
3526    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3527        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3528        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3529      ImpCastExprToType(lex, rhsType);
3530      return rhsType;
3531    }
3532  }
3533
3534  // You cannot convert between vector values of different size.
3535  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3536    << lex->getType() << rex->getType()
3537    << lex->getSourceRange() << rex->getSourceRange();
3538  return QualType();
3539}
3540
3541inline QualType Sema::CheckMultiplyDivideOperands(
3542  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3543{
3544  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3545    return CheckVectorOperands(Loc, lex, rex);
3546
3547  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3548
3549  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3550    return compType;
3551  return InvalidOperands(Loc, lex, rex);
3552}
3553
3554inline QualType Sema::CheckRemainderOperands(
3555  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3556{
3557  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3558    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3559      return CheckVectorOperands(Loc, lex, rex);
3560    return InvalidOperands(Loc, lex, rex);
3561  }
3562
3563  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3564
3565  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3566    return compType;
3567  return InvalidOperands(Loc, lex, rex);
3568}
3569
3570inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3571  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3572{
3573  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3574    QualType compType = CheckVectorOperands(Loc, lex, rex);
3575    if (CompLHSTy) *CompLHSTy = compType;
3576    return compType;
3577  }
3578
3579  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3580
3581  // handle the common case first (both operands are arithmetic).
3582  if (lex->getType()->isArithmeticType() &&
3583      rex->getType()->isArithmeticType()) {
3584    if (CompLHSTy) *CompLHSTy = compType;
3585    return compType;
3586  }
3587
3588  // Put any potential pointer into PExp
3589  Expr* PExp = lex, *IExp = rex;
3590  if (IExp->getType()->isPointerType())
3591    std::swap(PExp, IExp);
3592
3593  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3594    if (IExp->getType()->isIntegerType()) {
3595      QualType PointeeTy = PTy->getPointeeType();
3596      // Check for arithmetic on pointers to incomplete types.
3597      if (PointeeTy->isVoidType()) {
3598        if (getLangOptions().CPlusPlus) {
3599          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3600            << lex->getSourceRange() << rex->getSourceRange();
3601          return QualType();
3602        }
3603
3604        // GNU extension: arithmetic on pointer to void
3605        Diag(Loc, diag::ext_gnu_void_ptr)
3606          << lex->getSourceRange() << rex->getSourceRange();
3607      } else if (PointeeTy->isFunctionType()) {
3608        if (getLangOptions().CPlusPlus) {
3609          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3610            << lex->getType() << lex->getSourceRange();
3611          return QualType();
3612        }
3613
3614        // GNU extension: arithmetic on pointer to function
3615        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3616          << lex->getType() << lex->getSourceRange();
3617      } else if (!PTy->isDependentType() &&
3618                 RequireCompleteType(Loc, PointeeTy,
3619                                diag::err_typecheck_arithmetic_incomplete_type,
3620                                     PExp->getSourceRange(), SourceRange(),
3621                                     PExp->getType()))
3622        return QualType();
3623
3624      // Diagnose bad cases where we step over interface counts.
3625      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3626        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3627          << PointeeTy << PExp->getSourceRange();
3628        return QualType();
3629      }
3630
3631      if (CompLHSTy) {
3632        QualType LHSTy = lex->getType();
3633        if (LHSTy->isPromotableIntegerType())
3634          LHSTy = Context.IntTy;
3635        else {
3636          QualType T = isPromotableBitField(lex, Context);
3637          if (!T.isNull())
3638            LHSTy = T;
3639        }
3640
3641        *CompLHSTy = LHSTy;
3642      }
3643      return PExp->getType();
3644    }
3645  }
3646
3647  return InvalidOperands(Loc, lex, rex);
3648}
3649
3650// C99 6.5.6
3651QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3652                                        SourceLocation Loc, QualType* CompLHSTy) {
3653  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3654    QualType compType = CheckVectorOperands(Loc, lex, rex);
3655    if (CompLHSTy) *CompLHSTy = compType;
3656    return compType;
3657  }
3658
3659  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3660
3661  // Enforce type constraints: C99 6.5.6p3.
3662
3663  // Handle the common case first (both operands are arithmetic).
3664  if (lex->getType()->isArithmeticType()
3665      && rex->getType()->isArithmeticType()) {
3666    if (CompLHSTy) *CompLHSTy = compType;
3667    return compType;
3668  }
3669
3670  // Either ptr - int   or   ptr - ptr.
3671  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3672    QualType lpointee = LHSPTy->getPointeeType();
3673
3674    // The LHS must be an completely-defined object type.
3675
3676    bool ComplainAboutVoid = false;
3677    Expr *ComplainAboutFunc = 0;
3678    if (lpointee->isVoidType()) {
3679      if (getLangOptions().CPlusPlus) {
3680        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3681          << lex->getSourceRange() << rex->getSourceRange();
3682        return QualType();
3683      }
3684
3685      // GNU C extension: arithmetic on pointer to void
3686      ComplainAboutVoid = true;
3687    } else if (lpointee->isFunctionType()) {
3688      if (getLangOptions().CPlusPlus) {
3689        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3690          << lex->getType() << lex->getSourceRange();
3691        return QualType();
3692      }
3693
3694      // GNU C extension: arithmetic on pointer to function
3695      ComplainAboutFunc = lex;
3696    } else if (!lpointee->isDependentType() &&
3697               RequireCompleteType(Loc, lpointee,
3698                                   diag::err_typecheck_sub_ptr_object,
3699                                   lex->getSourceRange(),
3700                                   SourceRange(),
3701                                   lex->getType()))
3702      return QualType();
3703
3704    // Diagnose bad cases where we step over interface counts.
3705    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3706      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3707        << lpointee << lex->getSourceRange();
3708      return QualType();
3709    }
3710
3711    // The result type of a pointer-int computation is the pointer type.
3712    if (rex->getType()->isIntegerType()) {
3713      if (ComplainAboutVoid)
3714        Diag(Loc, diag::ext_gnu_void_ptr)
3715          << lex->getSourceRange() << rex->getSourceRange();
3716      if (ComplainAboutFunc)
3717        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3718          << ComplainAboutFunc->getType()
3719          << ComplainAboutFunc->getSourceRange();
3720
3721      if (CompLHSTy) *CompLHSTy = lex->getType();
3722      return lex->getType();
3723    }
3724
3725    // Handle pointer-pointer subtractions.
3726    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3727      QualType rpointee = RHSPTy->getPointeeType();
3728
3729      // RHS must be a completely-type object type.
3730      // Handle the GNU void* extension.
3731      if (rpointee->isVoidType()) {
3732        if (getLangOptions().CPlusPlus) {
3733          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3734            << lex->getSourceRange() << rex->getSourceRange();
3735          return QualType();
3736        }
3737
3738        ComplainAboutVoid = true;
3739      } else if (rpointee->isFunctionType()) {
3740        if (getLangOptions().CPlusPlus) {
3741          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3742            << rex->getType() << rex->getSourceRange();
3743          return QualType();
3744        }
3745
3746        // GNU extension: arithmetic on pointer to function
3747        if (!ComplainAboutFunc)
3748          ComplainAboutFunc = rex;
3749      } else if (!rpointee->isDependentType() &&
3750                 RequireCompleteType(Loc, rpointee,
3751                                     diag::err_typecheck_sub_ptr_object,
3752                                     rex->getSourceRange(),
3753                                     SourceRange(),
3754                                     rex->getType()))
3755        return QualType();
3756
3757      if (getLangOptions().CPlusPlus) {
3758        // Pointee types must be the same: C++ [expr.add]
3759        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3760          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3761            << lex->getType() << rex->getType()
3762            << lex->getSourceRange() << rex->getSourceRange();
3763          return QualType();
3764        }
3765      } else {
3766        // Pointee types must be compatible C99 6.5.6p3
3767        if (!Context.typesAreCompatible(
3768                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3769                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3770          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3771            << lex->getType() << rex->getType()
3772            << lex->getSourceRange() << rex->getSourceRange();
3773          return QualType();
3774        }
3775      }
3776
3777      if (ComplainAboutVoid)
3778        Diag(Loc, diag::ext_gnu_void_ptr)
3779          << lex->getSourceRange() << rex->getSourceRange();
3780      if (ComplainAboutFunc)
3781        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3782          << ComplainAboutFunc->getType()
3783          << ComplainAboutFunc->getSourceRange();
3784
3785      if (CompLHSTy) *CompLHSTy = lex->getType();
3786      return Context.getPointerDiffType();
3787    }
3788  }
3789
3790  return InvalidOperands(Loc, lex, rex);
3791}
3792
3793// C99 6.5.7
3794QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3795                                  bool isCompAssign) {
3796  // C99 6.5.7p2: Each of the operands shall have integer type.
3797  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3798    return InvalidOperands(Loc, lex, rex);
3799
3800  // Shifts don't perform usual arithmetic conversions, they just do integer
3801  // promotions on each operand. C99 6.5.7p3
3802  QualType LHSTy;
3803  if (lex->getType()->isPromotableIntegerType())
3804    LHSTy = Context.IntTy;
3805  else {
3806    LHSTy = isPromotableBitField(lex, Context);
3807    if (LHSTy.isNull())
3808      LHSTy = lex->getType();
3809  }
3810  if (!isCompAssign)
3811    ImpCastExprToType(lex, LHSTy);
3812
3813  UsualUnaryConversions(rex);
3814
3815  // "The type of the result is that of the promoted left operand."
3816  return LHSTy;
3817}
3818
3819// C99 6.5.8, C++ [expr.rel]
3820QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3821                                    unsigned OpaqueOpc, bool isRelational) {
3822  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3823
3824  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3825    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3826
3827  // C99 6.5.8p3 / C99 6.5.9p4
3828  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3829    UsualArithmeticConversions(lex, rex);
3830  else {
3831    UsualUnaryConversions(lex);
3832    UsualUnaryConversions(rex);
3833  }
3834  QualType lType = lex->getType();
3835  QualType rType = rex->getType();
3836
3837  if (!lType->isFloatingType()
3838      && !(lType->isBlockPointerType() && isRelational)) {
3839    // For non-floating point types, check for self-comparisons of the form
3840    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3841    // often indicate logic errors in the program.
3842    // NOTE: Don't warn about comparisons of enum constants. These can arise
3843    //  from macro expansions, and are usually quite deliberate.
3844    Expr *LHSStripped = lex->IgnoreParens();
3845    Expr *RHSStripped = rex->IgnoreParens();
3846    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3847      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3848        if (DRL->getDecl() == DRR->getDecl() &&
3849            !isa<EnumConstantDecl>(DRL->getDecl()))
3850          Diag(Loc, diag::warn_selfcomparison);
3851
3852    if (isa<CastExpr>(LHSStripped))
3853      LHSStripped = LHSStripped->IgnoreParenCasts();
3854    if (isa<CastExpr>(RHSStripped))
3855      RHSStripped = RHSStripped->IgnoreParenCasts();
3856
3857    // Warn about comparisons against a string constant (unless the other
3858    // operand is null), the user probably wants strcmp.
3859    Expr *literalString = 0;
3860    Expr *literalStringStripped = 0;
3861    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3862        !RHSStripped->isNullPointerConstant(Context)) {
3863      literalString = lex;
3864      literalStringStripped = LHSStripped;
3865    }
3866    else if ((isa<StringLiteral>(RHSStripped) ||
3867              isa<ObjCEncodeExpr>(RHSStripped)) &&
3868             !LHSStripped->isNullPointerConstant(Context)) {
3869      literalString = rex;
3870      literalStringStripped = RHSStripped;
3871    }
3872
3873    if (literalString) {
3874      std::string resultComparison;
3875      switch (Opc) {
3876      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3877      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3878      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3879      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3880      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3881      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3882      default: assert(false && "Invalid comparison operator");
3883      }
3884      Diag(Loc, diag::warn_stringcompare)
3885        << isa<ObjCEncodeExpr>(literalStringStripped)
3886        << literalString->getSourceRange()
3887        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3888        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3889                                                 "strcmp(")
3890        << CodeModificationHint::CreateInsertion(
3891                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3892                                       resultComparison);
3893    }
3894  }
3895
3896  // The result of comparisons is 'bool' in C++, 'int' in C.
3897  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3898
3899  if (isRelational) {
3900    if (lType->isRealType() && rType->isRealType())
3901      return ResultTy;
3902  } else {
3903    // Check for comparisons of floating point operands using != and ==.
3904    if (lType->isFloatingType()) {
3905      assert(rType->isFloatingType());
3906      CheckFloatComparison(Loc,lex,rex);
3907    }
3908
3909    if (lType->isArithmeticType() && rType->isArithmeticType())
3910      return ResultTy;
3911  }
3912
3913  bool LHSIsNull = lex->isNullPointerConstant(Context);
3914  bool RHSIsNull = rex->isNullPointerConstant(Context);
3915
3916  // All of the following pointer related warnings are GCC extensions, except
3917  // when handling null pointer constants. One day, we can consider making them
3918  // errors (when -pedantic-errors is enabled).
3919  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3920    QualType LCanPointeeTy =
3921      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3922    QualType RCanPointeeTy =
3923      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3924
3925    // Simple check: if the pointee types are identical, we're done.
3926    if (LCanPointeeTy == RCanPointeeTy)
3927      return ResultTy;
3928
3929    if (getLangOptions().CPlusPlus) {
3930      // C++ [expr.rel]p2:
3931      //   [...] Pointer conversions (4.10) and qualification
3932      //   conversions (4.4) are performed on pointer operands (or on
3933      //   a pointer operand and a null pointer constant) to bring
3934      //   them to their composite pointer type. [...]
3935      //
3936      // C++ [expr.eq]p2 uses the same notion for (in)equality
3937      // comparisons of pointers.
3938      QualType T = FindCompositePointerType(lex, rex);
3939      if (T.isNull()) {
3940        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
3941          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3942        return QualType();
3943      }
3944
3945      ImpCastExprToType(lex, T);
3946      ImpCastExprToType(rex, T);
3947      return ResultTy;
3948    }
3949
3950    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3951        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3952        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3953                                    RCanPointeeTy.getUnqualifiedType()) &&
3954        !Context.areComparableObjCPointerTypes(lType, rType)) {
3955      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3956        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3957    }
3958    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3959    return ResultTy;
3960  }
3961  // C++ allows comparison of pointers with null pointer constants.
3962  if (getLangOptions().CPlusPlus) {
3963    if (lType->isPointerType() && RHSIsNull) {
3964      ImpCastExprToType(rex, lType);
3965      return ResultTy;
3966    }
3967    if (rType->isPointerType() && LHSIsNull) {
3968      ImpCastExprToType(lex, rType);
3969      return ResultTy;
3970    }
3971    // And comparison of nullptr_t with itself.
3972    if (lType->isNullPtrType() && rType->isNullPtrType())
3973      return ResultTy;
3974  }
3975  // Handle block pointer types.
3976  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
3977    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
3978    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
3979
3980    if (!LHSIsNull && !RHSIsNull &&
3981        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
3982      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3983        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3984    }
3985    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3986    return ResultTy;
3987  }
3988  // Allow block pointers to be compared with null pointer constants.
3989  if (!isRelational
3990      && ((lType->isBlockPointerType() && rType->isPointerType())
3991          || (lType->isPointerType() && rType->isBlockPointerType()))) {
3992    if (!LHSIsNull && !RHSIsNull) {
3993      if (!((rType->isPointerType() && rType->getAsPointerType()
3994             ->getPointeeType()->isVoidType())
3995            || (lType->isPointerType() && lType->getAsPointerType()
3996                ->getPointeeType()->isVoidType())))
3997        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3998          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3999    }
4000    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4001    return ResultTy;
4002  }
4003
4004  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
4005    if (lType->isPointerType() || rType->isPointerType()) {
4006      const PointerType *LPT = lType->getAsPointerType();
4007      const PointerType *RPT = rType->getAsPointerType();
4008      bool LPtrToVoid = LPT ?
4009        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4010      bool RPtrToVoid = RPT ?
4011        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4012
4013      if (!LPtrToVoid && !RPtrToVoid &&
4014          !Context.typesAreCompatible(lType, rType)) {
4015        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4016          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4017        ImpCastExprToType(rex, lType);
4018        return ResultTy;
4019      }
4020      ImpCastExprToType(rex, lType);
4021      return ResultTy;
4022    }
4023    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4024      ImpCastExprToType(rex, lType);
4025      return ResultTy;
4026    } else {
4027      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4028        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4029          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4030        ImpCastExprToType(rex, lType);
4031        return ResultTy;
4032      }
4033    }
4034  }
4035  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4036       rType->isIntegerType()) {
4037    if (!RHSIsNull)
4038      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4039        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4040    ImpCastExprToType(rex, lType); // promote the integer to pointer
4041    return ResultTy;
4042  }
4043  if (lType->isIntegerType() &&
4044      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4045    if (!LHSIsNull)
4046      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4047        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4048    ImpCastExprToType(lex, rType); // promote the integer to pointer
4049    return ResultTy;
4050  }
4051  // Handle block pointers.
4052  if (!isRelational && RHSIsNull
4053      && lType->isBlockPointerType() && rType->isIntegerType()) {
4054    ImpCastExprToType(rex, lType); // promote the integer to pointer
4055    return ResultTy;
4056  }
4057  if (!isRelational && LHSIsNull
4058      && lType->isIntegerType() && rType->isBlockPointerType()) {
4059    ImpCastExprToType(lex, rType); // promote the integer to pointer
4060    return ResultTy;
4061  }
4062  return InvalidOperands(Loc, lex, rex);
4063}
4064
4065/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4066/// operates on extended vector types.  Instead of producing an IntTy result,
4067/// like a scalar comparison, a vector comparison produces a vector of integer
4068/// types.
4069QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4070                                          SourceLocation Loc,
4071                                          bool isRelational) {
4072  // Check to make sure we're operating on vectors of the same type and width,
4073  // Allowing one side to be a scalar of element type.
4074  QualType vType = CheckVectorOperands(Loc, lex, rex);
4075  if (vType.isNull())
4076    return vType;
4077
4078  QualType lType = lex->getType();
4079  QualType rType = rex->getType();
4080
4081  // For non-floating point types, check for self-comparisons of the form
4082  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4083  // often indicate logic errors in the program.
4084  if (!lType->isFloatingType()) {
4085    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4086      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4087        if (DRL->getDecl() == DRR->getDecl())
4088          Diag(Loc, diag::warn_selfcomparison);
4089  }
4090
4091  // Check for comparisons of floating point operands using != and ==.
4092  if (!isRelational && lType->isFloatingType()) {
4093    assert (rType->isFloatingType());
4094    CheckFloatComparison(Loc,lex,rex);
4095  }
4096
4097  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4098  // just reject all vector comparisons for now.
4099  if (1) {
4100    Diag(Loc, diag::err_typecheck_vector_comparison)
4101      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4102    return QualType();
4103  }
4104
4105  // Return the type for the comparison, which is the same as vector type for
4106  // integer vectors, or an integer type of identical size and number of
4107  // elements for floating point vectors.
4108  if (lType->isIntegerType())
4109    return lType;
4110
4111  const VectorType *VTy = lType->getAsVectorType();
4112  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4113  if (TypeSize == Context.getTypeSize(Context.IntTy))
4114    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4115  if (TypeSize == Context.getTypeSize(Context.LongTy))
4116    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4117
4118  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4119         "Unhandled vector element size in vector compare");
4120  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4121}
4122
4123inline QualType Sema::CheckBitwiseOperands(
4124  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4125{
4126  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4127    return CheckVectorOperands(Loc, lex, rex);
4128
4129  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4130
4131  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4132    return compType;
4133  return InvalidOperands(Loc, lex, rex);
4134}
4135
4136inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4137  Expr *&lex, Expr *&rex, SourceLocation Loc)
4138{
4139  UsualUnaryConversions(lex);
4140  UsualUnaryConversions(rex);
4141
4142  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4143    return Context.IntTy;
4144  return InvalidOperands(Loc, lex, rex);
4145}
4146
4147/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4148/// is a read-only property; return true if so. A readonly property expression
4149/// depends on various declarations and thus must be treated specially.
4150///
4151static bool IsReadonlyProperty(Expr *E, Sema &S)
4152{
4153  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4154    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4155    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4156      QualType BaseType = PropExpr->getBase()->getType();
4157      if (const PointerType *PTy = BaseType->getAsPointerType())
4158        if (const ObjCInterfaceType *IFTy =
4159            PTy->getPointeeType()->getAsObjCInterfaceType())
4160          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4161            if (S.isPropertyReadonly(PDecl, IFace))
4162              return true;
4163    }
4164  }
4165  return false;
4166}
4167
4168/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4169/// emit an error and return true.  If so, return false.
4170static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4171  SourceLocation OrigLoc = Loc;
4172  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4173                                                              &Loc);
4174  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4175    IsLV = Expr::MLV_ReadonlyProperty;
4176  if (IsLV == Expr::MLV_Valid)
4177    return false;
4178
4179  unsigned Diag = 0;
4180  bool NeedType = false;
4181  switch (IsLV) { // C99 6.5.16p2
4182  default: assert(0 && "Unknown result from isModifiableLvalue!");
4183  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4184  case Expr::MLV_ArrayType:
4185    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4186    NeedType = true;
4187    break;
4188  case Expr::MLV_NotObjectType:
4189    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4190    NeedType = true;
4191    break;
4192  case Expr::MLV_LValueCast:
4193    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4194    break;
4195  case Expr::MLV_InvalidExpression:
4196    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4197    break;
4198  case Expr::MLV_IncompleteType:
4199  case Expr::MLV_IncompleteVoidType:
4200    return S.RequireCompleteType(Loc, E->getType(),
4201                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4202                                    E->getSourceRange());
4203  case Expr::MLV_DuplicateVectorComponents:
4204    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4205    break;
4206  case Expr::MLV_NotBlockQualified:
4207    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4208    break;
4209  case Expr::MLV_ReadonlyProperty:
4210    Diag = diag::error_readonly_property_assignment;
4211    break;
4212  case Expr::MLV_NoSetterProperty:
4213    Diag = diag::error_nosetter_property_assignment;
4214    break;
4215  }
4216
4217  SourceRange Assign;
4218  if (Loc != OrigLoc)
4219    Assign = SourceRange(OrigLoc, OrigLoc);
4220  if (NeedType)
4221    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4222  else
4223    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4224  return true;
4225}
4226
4227
4228
4229// C99 6.5.16.1
4230QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4231                                       SourceLocation Loc,
4232                                       QualType CompoundType) {
4233  // Verify that LHS is a modifiable lvalue, and emit error if not.
4234  if (CheckForModifiableLvalue(LHS, Loc, *this))
4235    return QualType();
4236
4237  QualType LHSType = LHS->getType();
4238  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4239
4240  AssignConvertType ConvTy;
4241  if (CompoundType.isNull()) {
4242    // Simple assignment "x = y".
4243    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4244    // Special case of NSObject attributes on c-style pointer types.
4245    if (ConvTy == IncompatiblePointer &&
4246        ((Context.isObjCNSObjectType(LHSType) &&
4247          Context.isObjCObjectPointerType(RHSType)) ||
4248         (Context.isObjCNSObjectType(RHSType) &&
4249          Context.isObjCObjectPointerType(LHSType))))
4250      ConvTy = Compatible;
4251
4252    // If the RHS is a unary plus or minus, check to see if they = and + are
4253    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4254    // instead of "x += 4".
4255    Expr *RHSCheck = RHS;
4256    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4257      RHSCheck = ICE->getSubExpr();
4258    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4259      if ((UO->getOpcode() == UnaryOperator::Plus ||
4260           UO->getOpcode() == UnaryOperator::Minus) &&
4261          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4262          // Only if the two operators are exactly adjacent.
4263          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4264          // And there is a space or other character before the subexpr of the
4265          // unary +/-.  We don't want to warn on "x=-1".
4266          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4267          UO->getSubExpr()->getLocStart().isFileID()) {
4268        Diag(Loc, diag::warn_not_compound_assign)
4269          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4270          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4271      }
4272    }
4273  } else {
4274    // Compound assignment "x += y"
4275    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4276  }
4277
4278  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4279                               RHS, "assigning"))
4280    return QualType();
4281
4282  // C99 6.5.16p3: The type of an assignment expression is the type of the
4283  // left operand unless the left operand has qualified type, in which case
4284  // it is the unqualified version of the type of the left operand.
4285  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4286  // is converted to the type of the assignment expression (above).
4287  // C++ 5.17p1: the type of the assignment expression is that of its left
4288  // operand.
4289  return LHSType.getUnqualifiedType();
4290}
4291
4292// C99 6.5.17
4293QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4294  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4295  DefaultFunctionArrayConversion(RHS);
4296
4297  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4298  // incomplete in C++).
4299
4300  return RHS->getType();
4301}
4302
4303/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4304/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4305QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4306                                              bool isInc) {
4307  if (Op->isTypeDependent())
4308    return Context.DependentTy;
4309
4310  QualType ResType = Op->getType();
4311  assert(!ResType.isNull() && "no type for increment/decrement expression");
4312
4313  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4314    // Decrement of bool is not allowed.
4315    if (!isInc) {
4316      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4317      return QualType();
4318    }
4319    // Increment of bool sets it to true, but is deprecated.
4320    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4321  } else if (ResType->isRealType()) {
4322    // OK!
4323  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4324    // C99 6.5.2.4p2, 6.5.6p2
4325    if (PT->getPointeeType()->isVoidType()) {
4326      if (getLangOptions().CPlusPlus) {
4327        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4328          << Op->getSourceRange();
4329        return QualType();
4330      }
4331
4332      // Pointer to void is a GNU extension in C.
4333      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4334    } else if (PT->getPointeeType()->isFunctionType()) {
4335      if (getLangOptions().CPlusPlus) {
4336        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4337          << Op->getType() << Op->getSourceRange();
4338        return QualType();
4339      }
4340
4341      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4342        << ResType << Op->getSourceRange();
4343    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4344                               diag::err_typecheck_arithmetic_incomplete_type,
4345                                   Op->getSourceRange(), SourceRange(),
4346                                   ResType))
4347      return QualType();
4348  } else if (ResType->isComplexType()) {
4349    // C99 does not support ++/-- on complex types, we allow as an extension.
4350    Diag(OpLoc, diag::ext_integer_increment_complex)
4351      << ResType << Op->getSourceRange();
4352  } else {
4353    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4354      << ResType << Op->getSourceRange();
4355    return QualType();
4356  }
4357  // At this point, we know we have a real, complex or pointer type.
4358  // Now make sure the operand is a modifiable lvalue.
4359  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4360    return QualType();
4361  return ResType;
4362}
4363
4364/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4365/// This routine allows us to typecheck complex/recursive expressions
4366/// where the declaration is needed for type checking. We only need to
4367/// handle cases when the expression references a function designator
4368/// or is an lvalue. Here are some examples:
4369///  - &(x) => x
4370///  - &*****f => f for f a function designator.
4371///  - &s.xx => s
4372///  - &s.zz[1].yy -> s, if zz is an array
4373///  - *(x + 1) -> x, if x is an array
4374///  - &"123"[2] -> 0
4375///  - & __real__ x -> x
4376static NamedDecl *getPrimaryDecl(Expr *E) {
4377  switch (E->getStmtClass()) {
4378  case Stmt::DeclRefExprClass:
4379  case Stmt::QualifiedDeclRefExprClass:
4380    return cast<DeclRefExpr>(E)->getDecl();
4381  case Stmt::MemberExprClass:
4382    // If this is an arrow operator, the address is an offset from
4383    // the base's value, so the object the base refers to is
4384    // irrelevant.
4385    if (cast<MemberExpr>(E)->isArrow())
4386      return 0;
4387    // Otherwise, the expression refers to a part of the base
4388    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4389  case Stmt::ArraySubscriptExprClass: {
4390    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4391    // promotion of register arrays earlier.
4392    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4393    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4394      if (ICE->getSubExpr()->getType()->isArrayType())
4395        return getPrimaryDecl(ICE->getSubExpr());
4396    }
4397    return 0;
4398  }
4399  case Stmt::UnaryOperatorClass: {
4400    UnaryOperator *UO = cast<UnaryOperator>(E);
4401
4402    switch(UO->getOpcode()) {
4403    case UnaryOperator::Real:
4404    case UnaryOperator::Imag:
4405    case UnaryOperator::Extension:
4406      return getPrimaryDecl(UO->getSubExpr());
4407    default:
4408      return 0;
4409    }
4410  }
4411  case Stmt::ParenExprClass:
4412    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4413  case Stmt::ImplicitCastExprClass:
4414    // If the result of an implicit cast is an l-value, we care about
4415    // the sub-expression; otherwise, the result here doesn't matter.
4416    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4417  default:
4418    return 0;
4419  }
4420}
4421
4422/// CheckAddressOfOperand - The operand of & must be either a function
4423/// designator or an lvalue designating an object. If it is an lvalue, the
4424/// object cannot be declared with storage class register or be a bit field.
4425/// Note: The usual conversions are *not* applied to the operand of the &
4426/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4427/// In C++, the operand might be an overloaded function name, in which case
4428/// we allow the '&' but retain the overloaded-function type.
4429QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4430  // Make sure to ignore parentheses in subsequent checks
4431  op = op->IgnoreParens();
4432
4433  if (op->isTypeDependent())
4434    return Context.DependentTy;
4435
4436  if (getLangOptions().C99) {
4437    // Implement C99-only parts of addressof rules.
4438    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4439      if (uOp->getOpcode() == UnaryOperator::Deref)
4440        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4441        // (assuming the deref expression is valid).
4442        return uOp->getSubExpr()->getType();
4443    }
4444    // Technically, there should be a check for array subscript
4445    // expressions here, but the result of one is always an lvalue anyway.
4446  }
4447  NamedDecl *dcl = getPrimaryDecl(op);
4448  Expr::isLvalueResult lval = op->isLvalue(Context);
4449
4450  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4451    // C99 6.5.3.2p1
4452    // The operand must be either an l-value or a function designator
4453    if (!op->getType()->isFunctionType()) {
4454      // FIXME: emit more specific diag...
4455      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4456        << op->getSourceRange();
4457      return QualType();
4458    }
4459  } else if (op->getBitField()) { // C99 6.5.3.2p1
4460    // The operand cannot be a bit-field
4461    Diag(OpLoc, diag::err_typecheck_address_of)
4462      << "bit-field" << op->getSourceRange();
4463        return QualType();
4464  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4465           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4466    // The operand cannot be an element of a vector
4467    Diag(OpLoc, diag::err_typecheck_address_of)
4468      << "vector element" << op->getSourceRange();
4469    return QualType();
4470  } else if (dcl) { // C99 6.5.3.2p1
4471    // We have an lvalue with a decl. Make sure the decl is not declared
4472    // with the register storage-class specifier.
4473    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4474      if (vd->getStorageClass() == VarDecl::Register) {
4475        Diag(OpLoc, diag::err_typecheck_address_of)
4476          << "register variable" << op->getSourceRange();
4477        return QualType();
4478      }
4479    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4480      return Context.OverloadTy;
4481    } else if (isa<FieldDecl>(dcl)) {
4482      // Okay: we can take the address of a field.
4483      // Could be a pointer to member, though, if there is an explicit
4484      // scope qualifier for the class.
4485      if (isa<QualifiedDeclRefExpr>(op)) {
4486        DeclContext *Ctx = dcl->getDeclContext();
4487        if (Ctx && Ctx->isRecord())
4488          return Context.getMemberPointerType(op->getType(),
4489                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4490      }
4491    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4492      // Okay: we can take the address of a function.
4493      // As above.
4494      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4495        return Context.getMemberPointerType(op->getType(),
4496              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4497    } else if (!isa<FunctionDecl>(dcl))
4498      assert(0 && "Unknown/unexpected decl type");
4499  }
4500
4501  if (lval == Expr::LV_IncompleteVoidType) {
4502    // Taking the address of a void variable is technically illegal, but we
4503    // allow it in cases which are otherwise valid.
4504    // Example: "extern void x; void* y = &x;".
4505    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4506  }
4507
4508  // If the operand has type "type", the result has type "pointer to type".
4509  return Context.getPointerType(op->getType());
4510}
4511
4512QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4513  if (Op->isTypeDependent())
4514    return Context.DependentTy;
4515
4516  UsualUnaryConversions(Op);
4517  QualType Ty = Op->getType();
4518
4519  // Note that per both C89 and C99, this is always legal, even if ptype is an
4520  // incomplete type or void.  It would be possible to warn about dereferencing
4521  // a void pointer, but it's completely well-defined, and such a warning is
4522  // unlikely to catch any mistakes.
4523  if (const PointerType *PT = Ty->getAsPointerType())
4524    return PT->getPointeeType();
4525
4526  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4527    << Ty << Op->getSourceRange();
4528  return QualType();
4529}
4530
4531static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4532  tok::TokenKind Kind) {
4533  BinaryOperator::Opcode Opc;
4534  switch (Kind) {
4535  default: assert(0 && "Unknown binop!");
4536  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4537  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4538  case tok::star:                 Opc = BinaryOperator::Mul; break;
4539  case tok::slash:                Opc = BinaryOperator::Div; break;
4540  case tok::percent:              Opc = BinaryOperator::Rem; break;
4541  case tok::plus:                 Opc = BinaryOperator::Add; break;
4542  case tok::minus:                Opc = BinaryOperator::Sub; break;
4543  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4544  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4545  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4546  case tok::less:                 Opc = BinaryOperator::LT; break;
4547  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4548  case tok::greater:              Opc = BinaryOperator::GT; break;
4549  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4550  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4551  case tok::amp:                  Opc = BinaryOperator::And; break;
4552  case tok::caret:                Opc = BinaryOperator::Xor; break;
4553  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4554  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4555  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4556  case tok::equal:                Opc = BinaryOperator::Assign; break;
4557  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4558  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4559  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4560  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4561  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4562  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4563  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4564  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4565  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4566  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4567  case tok::comma:                Opc = BinaryOperator::Comma; break;
4568  }
4569  return Opc;
4570}
4571
4572static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4573  tok::TokenKind Kind) {
4574  UnaryOperator::Opcode Opc;
4575  switch (Kind) {
4576  default: assert(0 && "Unknown unary op!");
4577  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4578  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4579  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4580  case tok::star:         Opc = UnaryOperator::Deref; break;
4581  case tok::plus:         Opc = UnaryOperator::Plus; break;
4582  case tok::minus:        Opc = UnaryOperator::Minus; break;
4583  case tok::tilde:        Opc = UnaryOperator::Not; break;
4584  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4585  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4586  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4587  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4588  }
4589  return Opc;
4590}
4591
4592/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4593/// operator @p Opc at location @c TokLoc. This routine only supports
4594/// built-in operations; ActOnBinOp handles overloaded operators.
4595Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4596                                                  unsigned Op,
4597                                                  Expr *lhs, Expr *rhs) {
4598  QualType ResultTy;     // Result type of the binary operator.
4599  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4600  // The following two variables are used for compound assignment operators
4601  QualType CompLHSTy;    // Type of LHS after promotions for computation
4602  QualType CompResultTy; // Type of computation result
4603
4604  switch (Opc) {
4605  case BinaryOperator::Assign:
4606    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4607    break;
4608  case BinaryOperator::PtrMemD:
4609  case BinaryOperator::PtrMemI:
4610    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4611                                            Opc == BinaryOperator::PtrMemI);
4612    break;
4613  case BinaryOperator::Mul:
4614  case BinaryOperator::Div:
4615    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4616    break;
4617  case BinaryOperator::Rem:
4618    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4619    break;
4620  case BinaryOperator::Add:
4621    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4622    break;
4623  case BinaryOperator::Sub:
4624    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4625    break;
4626  case BinaryOperator::Shl:
4627  case BinaryOperator::Shr:
4628    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4629    break;
4630  case BinaryOperator::LE:
4631  case BinaryOperator::LT:
4632  case BinaryOperator::GE:
4633  case BinaryOperator::GT:
4634    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4635    break;
4636  case BinaryOperator::EQ:
4637  case BinaryOperator::NE:
4638    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4639    break;
4640  case BinaryOperator::And:
4641  case BinaryOperator::Xor:
4642  case BinaryOperator::Or:
4643    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4644    break;
4645  case BinaryOperator::LAnd:
4646  case BinaryOperator::LOr:
4647    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4648    break;
4649  case BinaryOperator::MulAssign:
4650  case BinaryOperator::DivAssign:
4651    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4652    CompLHSTy = CompResultTy;
4653    if (!CompResultTy.isNull())
4654      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4655    break;
4656  case BinaryOperator::RemAssign:
4657    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4658    CompLHSTy = CompResultTy;
4659    if (!CompResultTy.isNull())
4660      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4661    break;
4662  case BinaryOperator::AddAssign:
4663    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4664    if (!CompResultTy.isNull())
4665      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4666    break;
4667  case BinaryOperator::SubAssign:
4668    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4669    if (!CompResultTy.isNull())
4670      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4671    break;
4672  case BinaryOperator::ShlAssign:
4673  case BinaryOperator::ShrAssign:
4674    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4675    CompLHSTy = CompResultTy;
4676    if (!CompResultTy.isNull())
4677      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4678    break;
4679  case BinaryOperator::AndAssign:
4680  case BinaryOperator::XorAssign:
4681  case BinaryOperator::OrAssign:
4682    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4683    CompLHSTy = CompResultTy;
4684    if (!CompResultTy.isNull())
4685      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4686    break;
4687  case BinaryOperator::Comma:
4688    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4689    break;
4690  }
4691  if (ResultTy.isNull())
4692    return ExprError();
4693  if (CompResultTy.isNull())
4694    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4695  else
4696    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4697                                                      CompLHSTy, CompResultTy,
4698                                                      OpLoc));
4699}
4700
4701// Binary Operators.  'Tok' is the token for the operator.
4702Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4703                                          tok::TokenKind Kind,
4704                                          ExprArg LHS, ExprArg RHS) {
4705  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4706  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4707
4708  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4709  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4710
4711  if (getLangOptions().CPlusPlus &&
4712      (lhs->getType()->isOverloadableType() ||
4713       rhs->getType()->isOverloadableType())) {
4714    // Find all of the overloaded operators visible from this
4715    // point. We perform both an operator-name lookup from the local
4716    // scope and an argument-dependent lookup based on the types of
4717    // the arguments.
4718    FunctionSet Functions;
4719    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4720    if (OverOp != OO_None) {
4721      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4722                                   Functions);
4723      Expr *Args[2] = { lhs, rhs };
4724      DeclarationName OpName
4725        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4726      ArgumentDependentLookup(OpName, Args, 2, Functions);
4727    }
4728
4729    // Build the (potentially-overloaded, potentially-dependent)
4730    // binary operation.
4731    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4732  }
4733
4734  // Build a built-in binary operation.
4735  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4736}
4737
4738Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4739                                                    unsigned OpcIn,
4740                                                    ExprArg InputArg) {
4741  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4742
4743  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4744  Expr *Input = (Expr *)InputArg.get();
4745  QualType resultType;
4746  switch (Opc) {
4747  case UnaryOperator::PostInc:
4748  case UnaryOperator::PostDec:
4749  case UnaryOperator::OffsetOf:
4750    assert(false && "Invalid unary operator");
4751    break;
4752
4753  case UnaryOperator::PreInc:
4754  case UnaryOperator::PreDec:
4755    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4756                                                Opc == UnaryOperator::PreInc);
4757    break;
4758  case UnaryOperator::AddrOf:
4759    resultType = CheckAddressOfOperand(Input, OpLoc);
4760    break;
4761  case UnaryOperator::Deref:
4762    DefaultFunctionArrayConversion(Input);
4763    resultType = CheckIndirectionOperand(Input, OpLoc);
4764    break;
4765  case UnaryOperator::Plus:
4766  case UnaryOperator::Minus:
4767    UsualUnaryConversions(Input);
4768    resultType = Input->getType();
4769    if (resultType->isDependentType())
4770      break;
4771    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4772      break;
4773    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4774             resultType->isEnumeralType())
4775      break;
4776    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4777             Opc == UnaryOperator::Plus &&
4778             resultType->isPointerType())
4779      break;
4780
4781    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4782      << resultType << Input->getSourceRange());
4783  case UnaryOperator::Not: // bitwise complement
4784    UsualUnaryConversions(Input);
4785    resultType = Input->getType();
4786    if (resultType->isDependentType())
4787      break;
4788    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4789    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4790      // C99 does not support '~' for complex conjugation.
4791      Diag(OpLoc, diag::ext_integer_complement_complex)
4792        << resultType << Input->getSourceRange();
4793    else if (!resultType->isIntegerType())
4794      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4795        << resultType << Input->getSourceRange());
4796    break;
4797  case UnaryOperator::LNot: // logical negation
4798    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4799    DefaultFunctionArrayConversion(Input);
4800    resultType = Input->getType();
4801    if (resultType->isDependentType())
4802      break;
4803    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4804      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4805        << resultType << Input->getSourceRange());
4806    // LNot always has type int. C99 6.5.3.3p5.
4807    // In C++, it's bool. C++ 5.3.1p8
4808    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4809    break;
4810  case UnaryOperator::Real:
4811  case UnaryOperator::Imag:
4812    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4813    break;
4814  case UnaryOperator::Extension:
4815    resultType = Input->getType();
4816    break;
4817  }
4818  if (resultType.isNull())
4819    return ExprError();
4820
4821  InputArg.release();
4822  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4823}
4824
4825// Unary Operators.  'Tok' is the token for the operator.
4826Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4827                                            tok::TokenKind Op, ExprArg input) {
4828  Expr *Input = (Expr*)input.get();
4829  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4830
4831  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4832    // Find all of the overloaded operators visible from this
4833    // point. We perform both an operator-name lookup from the local
4834    // scope and an argument-dependent lookup based on the types of
4835    // the arguments.
4836    FunctionSet Functions;
4837    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4838    if (OverOp != OO_None) {
4839      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4840                                   Functions);
4841      DeclarationName OpName
4842        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4843      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4844    }
4845
4846    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4847  }
4848
4849  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4850}
4851
4852/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4853Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4854                                            SourceLocation LabLoc,
4855                                            IdentifierInfo *LabelII) {
4856  // Look up the record for this label identifier.
4857  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4858
4859  // If we haven't seen this label yet, create a forward reference. It
4860  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4861  if (LabelDecl == 0)
4862    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4863
4864  // Create the AST node.  The address of a label always has type 'void*'.
4865  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4866                                       Context.getPointerType(Context.VoidTy)));
4867}
4868
4869Sema::OwningExprResult
4870Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4871                    SourceLocation RPLoc) { // "({..})"
4872  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4873  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4874  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4875
4876  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4877  if (isFileScope)
4878    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4879
4880  // FIXME: there are a variety of strange constraints to enforce here, for
4881  // example, it is not possible to goto into a stmt expression apparently.
4882  // More semantic analysis is needed.
4883
4884  // If there are sub stmts in the compound stmt, take the type of the last one
4885  // as the type of the stmtexpr.
4886  QualType Ty = Context.VoidTy;
4887
4888  if (!Compound->body_empty()) {
4889    Stmt *LastStmt = Compound->body_back();
4890    // If LastStmt is a label, skip down through into the body.
4891    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4892      LastStmt = Label->getSubStmt();
4893
4894    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4895      Ty = LastExpr->getType();
4896  }
4897
4898  // FIXME: Check that expression type is complete/non-abstract; statement
4899  // expressions are not lvalues.
4900
4901  substmt.release();
4902  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4903}
4904
4905Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4906                                                  SourceLocation BuiltinLoc,
4907                                                  SourceLocation TypeLoc,
4908                                                  TypeTy *argty,
4909                                                  OffsetOfComponent *CompPtr,
4910                                                  unsigned NumComponents,
4911                                                  SourceLocation RPLoc) {
4912  // FIXME: This function leaks all expressions in the offset components on
4913  // error.
4914  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4915  assert(!ArgTy.isNull() && "Missing type argument!");
4916
4917  bool Dependent = ArgTy->isDependentType();
4918
4919  // We must have at least one component that refers to the type, and the first
4920  // one is known to be a field designator.  Verify that the ArgTy represents
4921  // a struct/union/class.
4922  if (!Dependent && !ArgTy->isRecordType())
4923    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4924
4925  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4926  // with an incomplete type would be illegal.
4927
4928  // Otherwise, create a null pointer as the base, and iteratively process
4929  // the offsetof designators.
4930  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4931  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4932  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4933                                    ArgTy, SourceLocation());
4934
4935  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4936  // GCC extension, diagnose them.
4937  // FIXME: This diagnostic isn't actually visible because the location is in
4938  // a system header!
4939  if (NumComponents != 1)
4940    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4941      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4942
4943  if (!Dependent) {
4944    bool DidWarnAboutNonPOD = false;
4945
4946    // FIXME: Dependent case loses a lot of information here. And probably
4947    // leaks like a sieve.
4948    for (unsigned i = 0; i != NumComponents; ++i) {
4949      const OffsetOfComponent &OC = CompPtr[i];
4950      if (OC.isBrackets) {
4951        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4952        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4953        if (!AT) {
4954          Res->Destroy(Context);
4955          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4956            << Res->getType());
4957        }
4958
4959        // FIXME: C++: Verify that operator[] isn't overloaded.
4960
4961        // Promote the array so it looks more like a normal array subscript
4962        // expression.
4963        DefaultFunctionArrayConversion(Res);
4964
4965        // C99 6.5.2.1p1
4966        Expr *Idx = static_cast<Expr*>(OC.U.E);
4967        // FIXME: Leaks Res
4968        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
4969          return ExprError(Diag(Idx->getLocStart(),
4970                                diag::err_typecheck_subscript_not_integer)
4971            << Idx->getSourceRange());
4972
4973        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4974                                               OC.LocEnd);
4975        continue;
4976      }
4977
4978      const RecordType *RC = Res->getType()->getAsRecordType();
4979      if (!RC) {
4980        Res->Destroy(Context);
4981        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
4982          << Res->getType());
4983      }
4984
4985      // Get the decl corresponding to this.
4986      RecordDecl *RD = RC->getDecl();
4987      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4988        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
4989          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
4990            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
4991            << Res->getType());
4992          DidWarnAboutNonPOD = true;
4993        }
4994      }
4995
4996      FieldDecl *MemberDecl
4997        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4998                                                          LookupMemberName)
4999                                        .getAsDecl());
5000      // FIXME: Leaks Res
5001      if (!MemberDecl)
5002        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5003         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5004
5005      // FIXME: C++: Verify that MemberDecl isn't a static field.
5006      // FIXME: Verify that MemberDecl isn't a bitfield.
5007      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5008        Res = BuildAnonymousStructUnionMemberReference(
5009            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5010      } else {
5011        // MemberDecl->getType() doesn't get the right qualifiers, but it
5012        // doesn't matter here.
5013        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5014                MemberDecl->getType().getNonReferenceType());
5015      }
5016    }
5017  }
5018
5019  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5020                                           Context.getSizeType(), BuiltinLoc));
5021}
5022
5023
5024Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5025                                                      TypeTy *arg1,TypeTy *arg2,
5026                                                      SourceLocation RPLoc) {
5027  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5028  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5029
5030  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5031
5032  if (getLangOptions().CPlusPlus) {
5033    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5034      << SourceRange(BuiltinLoc, RPLoc);
5035    return ExprError();
5036  }
5037
5038  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5039                                                 argT1, argT2, RPLoc));
5040}
5041
5042Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5043                                             ExprArg cond,
5044                                             ExprArg expr1, ExprArg expr2,
5045                                             SourceLocation RPLoc) {
5046  Expr *CondExpr = static_cast<Expr*>(cond.get());
5047  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5048  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5049
5050  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5051
5052  QualType resType;
5053  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5054    resType = Context.DependentTy;
5055  } else {
5056    // The conditional expression is required to be a constant expression.
5057    llvm::APSInt condEval(32);
5058    SourceLocation ExpLoc;
5059    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5060      return ExprError(Diag(ExpLoc,
5061                       diag::err_typecheck_choose_expr_requires_constant)
5062        << CondExpr->getSourceRange());
5063
5064    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5065    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5066  }
5067
5068  cond.release(); expr1.release(); expr2.release();
5069  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5070                                        resType, RPLoc));
5071}
5072
5073//===----------------------------------------------------------------------===//
5074// Clang Extensions.
5075//===----------------------------------------------------------------------===//
5076
5077/// ActOnBlockStart - This callback is invoked when a block literal is started.
5078void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5079  // Analyze block parameters.
5080  BlockSemaInfo *BSI = new BlockSemaInfo();
5081
5082  // Add BSI to CurBlock.
5083  BSI->PrevBlockInfo = CurBlock;
5084  CurBlock = BSI;
5085
5086  BSI->ReturnType = 0;
5087  BSI->TheScope = BlockScope;
5088  BSI->hasBlockDeclRefExprs = false;
5089  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5090  CurFunctionNeedsScopeChecking = false;
5091
5092  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5093  PushDeclContext(BlockScope, BSI->TheDecl);
5094}
5095
5096void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5097  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5098
5099  if (ParamInfo.getNumTypeObjects() == 0
5100      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5101    ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
5102    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5103
5104    if (T->isArrayType()) {
5105      Diag(ParamInfo.getSourceRange().getBegin(),
5106           diag::err_block_returns_array);
5107      return;
5108    }
5109
5110    // The parameter list is optional, if there was none, assume ().
5111    if (!T->isFunctionType())
5112      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5113
5114    CurBlock->hasPrototype = true;
5115    CurBlock->isVariadic = false;
5116    // Check for a valid sentinel attribute on this block.
5117    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5118      Diag(ParamInfo.getAttributes()->getLoc(),
5119           diag::warn_attribute_sentinel_not_variadic) << 1;
5120      // FIXME: remove the attribute.
5121    }
5122    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5123
5124    // Do not allow returning a objc interface by-value.
5125    if (RetTy->isObjCInterfaceType()) {
5126      Diag(ParamInfo.getSourceRange().getBegin(),
5127           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5128      return;
5129    }
5130    return;
5131  }
5132
5133  // Analyze arguments to block.
5134  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5135         "Not a function declarator!");
5136  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5137
5138  CurBlock->hasPrototype = FTI.hasPrototype;
5139  CurBlock->isVariadic = true;
5140
5141  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5142  // no arguments, not a function that takes a single void argument.
5143  if (FTI.hasPrototype &&
5144      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5145     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5146        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5147    // empty arg list, don't push any params.
5148    CurBlock->isVariadic = false;
5149  } else if (FTI.hasPrototype) {
5150    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5151      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5152    CurBlock->isVariadic = FTI.isVariadic;
5153  }
5154  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5155                               CurBlock->Params.size());
5156  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5157  ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
5158  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5159       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5160    // If this has an identifier, add it to the scope stack.
5161    if ((*AI)->getIdentifier())
5162      PushOnScopeChains(*AI, CurBlock->TheScope);
5163
5164  // Check for a valid sentinel attribute on this block.
5165  if (!CurBlock->isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5166    Diag(ParamInfo.getAttributes()->getLoc(),
5167         diag::warn_attribute_sentinel_not_variadic) << 1;
5168    // FIXME: remove the attribute.
5169  }
5170
5171  // Analyze the return type.
5172  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5173  QualType RetTy = T->getAsFunctionType()->getResultType();
5174
5175  // Do not allow returning a objc interface by-value.
5176  if (RetTy->isObjCInterfaceType()) {
5177    Diag(ParamInfo.getSourceRange().getBegin(),
5178         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5179  } else if (!RetTy->isDependentType())
5180    CurBlock->ReturnType = RetTy.getTypePtr();
5181}
5182
5183/// ActOnBlockError - If there is an error parsing a block, this callback
5184/// is invoked to pop the information about the block from the action impl.
5185void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5186  // Ensure that CurBlock is deleted.
5187  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5188
5189  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5190
5191  // Pop off CurBlock, handle nested blocks.
5192  PopDeclContext();
5193  CurBlock = CurBlock->PrevBlockInfo;
5194  // FIXME: Delete the ParmVarDecl objects as well???
5195}
5196
5197/// ActOnBlockStmtExpr - This is called when the body of a block statement
5198/// literal was successfully completed.  ^(int x){...}
5199Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5200                                                StmtArg body, Scope *CurScope) {
5201  // If blocks are disabled, emit an error.
5202  if (!LangOpts.Blocks)
5203    Diag(CaretLoc, diag::err_blocks_disable);
5204
5205  // Ensure that CurBlock is deleted.
5206  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5207
5208  PopDeclContext();
5209
5210  // Pop off CurBlock, handle nested blocks.
5211  CurBlock = CurBlock->PrevBlockInfo;
5212
5213  QualType RetTy = Context.VoidTy;
5214  if (BSI->ReturnType)
5215    RetTy = QualType(BSI->ReturnType, 0);
5216
5217  llvm::SmallVector<QualType, 8> ArgTypes;
5218  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5219    ArgTypes.push_back(BSI->Params[i]->getType());
5220
5221  QualType BlockTy;
5222  if (!BSI->hasPrototype)
5223    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
5224  else
5225    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5226                                      BSI->isVariadic, 0);
5227
5228  // FIXME: Check that return/parameter types are complete/non-abstract
5229
5230  BlockTy = Context.getBlockPointerType(BlockTy);
5231
5232  // If needed, diagnose invalid gotos and switches in the block.
5233  if (CurFunctionNeedsScopeChecking)
5234    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5235  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5236
5237  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5238  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5239                                       BSI->hasBlockDeclRefExprs));
5240}
5241
5242Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5243                                        ExprArg expr, TypeTy *type,
5244                                        SourceLocation RPLoc) {
5245  QualType T = QualType::getFromOpaquePtr(type);
5246  Expr *E = static_cast<Expr*>(expr.get());
5247  Expr *OrigExpr = E;
5248
5249  InitBuiltinVaListType();
5250
5251  // Get the va_list type
5252  QualType VaListType = Context.getBuiltinVaListType();
5253  if (VaListType->isArrayType()) {
5254    // Deal with implicit array decay; for example, on x86-64,
5255    // va_list is an array, but it's supposed to decay to
5256    // a pointer for va_arg.
5257    VaListType = Context.getArrayDecayedType(VaListType);
5258    // Make sure the input expression also decays appropriately.
5259    UsualUnaryConversions(E);
5260  } else {
5261    // Otherwise, the va_list argument must be an l-value because
5262    // it is modified by va_arg.
5263    if (!E->isTypeDependent() &&
5264        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5265      return ExprError();
5266  }
5267
5268  if (!E->isTypeDependent() &&
5269      !Context.hasSameType(VaListType, E->getType())) {
5270    return ExprError(Diag(E->getLocStart(),
5271                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5272      << OrigExpr->getType() << E->getSourceRange());
5273  }
5274
5275  // FIXME: Check that type is complete/non-abstract
5276  // FIXME: Warn if a non-POD type is passed in.
5277
5278  expr.release();
5279  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5280                                       RPLoc));
5281}
5282
5283Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5284  // The type of __null will be int or long, depending on the size of
5285  // pointers on the target.
5286  QualType Ty;
5287  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5288    Ty = Context.IntTy;
5289  else
5290    Ty = Context.LongTy;
5291
5292  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5293}
5294
5295bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5296                                    SourceLocation Loc,
5297                                    QualType DstType, QualType SrcType,
5298                                    Expr *SrcExpr, const char *Flavor) {
5299  // Decode the result (notice that AST's are still created for extensions).
5300  bool isInvalid = false;
5301  unsigned DiagKind;
5302  switch (ConvTy) {
5303  default: assert(0 && "Unknown conversion type");
5304  case Compatible: return false;
5305  case PointerToInt:
5306    DiagKind = diag::ext_typecheck_convert_pointer_int;
5307    break;
5308  case IntToPointer:
5309    DiagKind = diag::ext_typecheck_convert_int_pointer;
5310    break;
5311  case IncompatiblePointer:
5312    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5313    break;
5314  case IncompatiblePointerSign:
5315    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5316    break;
5317  case FunctionVoidPointer:
5318    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5319    break;
5320  case CompatiblePointerDiscardsQualifiers:
5321    // If the qualifiers lost were because we were applying the
5322    // (deprecated) C++ conversion from a string literal to a char*
5323    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5324    // Ideally, this check would be performed in
5325    // CheckPointerTypesForAssignment. However, that would require a
5326    // bit of refactoring (so that the second argument is an
5327    // expression, rather than a type), which should be done as part
5328    // of a larger effort to fix CheckPointerTypesForAssignment for
5329    // C++ semantics.
5330    if (getLangOptions().CPlusPlus &&
5331        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5332      return false;
5333    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5334    break;
5335  case IntToBlockPointer:
5336    DiagKind = diag::err_int_to_block_pointer;
5337    break;
5338  case IncompatibleBlockPointer:
5339    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5340    break;
5341  case IncompatibleObjCQualifiedId:
5342    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5343    // it can give a more specific diagnostic.
5344    DiagKind = diag::warn_incompatible_qualified_id;
5345    break;
5346  case IncompatibleVectors:
5347    DiagKind = diag::warn_incompatible_vectors;
5348    break;
5349  case Incompatible:
5350    DiagKind = diag::err_typecheck_convert_incompatible;
5351    isInvalid = true;
5352    break;
5353  }
5354
5355  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5356    << SrcExpr->getSourceRange();
5357  return isInvalid;
5358}
5359
5360bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5361  llvm::APSInt ICEResult;
5362  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5363    if (Result)
5364      *Result = ICEResult;
5365    return false;
5366  }
5367
5368  Expr::EvalResult EvalResult;
5369
5370  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5371      EvalResult.HasSideEffects) {
5372    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5373
5374    if (EvalResult.Diag) {
5375      // We only show the note if it's not the usual "invalid subexpression"
5376      // or if it's actually in a subexpression.
5377      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5378          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5379        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5380    }
5381
5382    return true;
5383  }
5384
5385  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5386    E->getSourceRange();
5387
5388  if (EvalResult.Diag &&
5389      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5390    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5391
5392  if (Result)
5393    *Result = EvalResult.Val.getInt();
5394  return false;
5395}
5396