SemaExpr.cpp revision 566782aea6d9805c4f703f8101f2dc452cf7286a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (rhs->isComplexIntegerType()) {
197      // convert rhs to the complex floating point type.
198      return Context.getComplexType(lhs);
199    }
200    if (lhs->isIntegerType()) {
201      // convert lhs to the rhs floating point type.
202      return rhs;
203    }
204    if (lhs->isComplexIntegerType()) {
205      // convert lhs to the complex floating point type.
206      return Context.getComplexType(rhs);
207    }
208    // We have two real floating types, float/complex combos were handled above.
209    // Convert the smaller operand to the bigger result.
210    int result = Context.getFloatingTypeOrder(lhs, rhs);
211
212    if (result > 0) { // convert the rhs
213      return lhs;
214    }
215    if (result < 0) { // convert the lhs
216      return rhs;
217    }
218    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
219  }
220  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
221    // Handle GCC complex int extension.
222    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
223    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
224
225    if (lhsComplexInt && rhsComplexInt) {
226      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
227                                      rhsComplexInt->getElementType()) >= 0) {
228        // convert the rhs
229        return lhs;
230      }
231      return rhs;
232    } else if (lhsComplexInt && rhs->isIntegerType()) {
233      // convert the rhs to the lhs complex type.
234      return lhs;
235    } else if (rhsComplexInt && lhs->isIntegerType()) {
236      // convert the lhs to the rhs complex type.
237      return rhs;
238    }
239  }
240  // Finally, we have two differing integer types.
241  // The rules for this case are in C99 6.3.1.8
242  int compare = Context.getIntegerTypeOrder(lhs, rhs);
243  bool lhsSigned = lhs->isSignedIntegerType(),
244       rhsSigned = rhs->isSignedIntegerType();
245  QualType destType;
246  if (lhsSigned == rhsSigned) {
247    // Same signedness; use the higher-ranked type
248    destType = compare >= 0 ? lhs : rhs;
249  } else if (compare != (lhsSigned ? 1 : -1)) {
250    // The unsigned type has greater than or equal rank to the
251    // signed type, so use the unsigned type
252    destType = lhsSigned ? rhs : lhs;
253  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
254    // The two types are different widths; if we are here, that
255    // means the signed type is larger than the unsigned type, so
256    // use the signed type.
257    destType = lhsSigned ? lhs : rhs;
258  } else {
259    // The signed type is higher-ranked than the unsigned type,
260    // but isn't actually any bigger (like unsigned int and long
261    // on most 32-bit systems).  Use the unsigned type corresponding
262    // to the signed type.
263    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
264  }
265  return destType;
266}
267
268//===----------------------------------------------------------------------===//
269//  Semantic Analysis for various Expression Types
270//===----------------------------------------------------------------------===//
271
272
273/// ActOnStringLiteral - The specified tokens were lexed as pasted string
274/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
275/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
276/// multiple tokens.  However, the common case is that StringToks points to one
277/// string.
278///
279Action::ExprResult
280Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
281  assert(NumStringToks && "Must have at least one string!");
282
283  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
284  if (Literal.hadError)
285    return ExprResult(true);
286
287  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
288  for (unsigned i = 0; i != NumStringToks; ++i)
289    StringTokLocs.push_back(StringToks[i].getLocation());
290
291  // Verify that pascal strings aren't too large.
292  if (Literal.Pascal && Literal.GetStringLength() > 256)
293    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
294      << SourceRange(StringToks[0].getLocation(),
295                     StringToks[NumStringToks-1].getLocation());
296
297  QualType StrTy = Context.CharTy;
298  if (Literal.AnyWide) StrTy = Context.getWCharType();
299  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
300
301  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
302  if (getLangOptions().CPlusPlus)
303    StrTy.addConst();
304
305  // Get an array type for the string, according to C99 6.4.5.  This includes
306  // the nul terminator character as well as the string length for pascal
307  // strings.
308  StrTy = Context.getConstantArrayType(StrTy,
309                                   llvm::APInt(32, Literal.GetStringLength()+1),
310                                       ArrayType::Normal, 0);
311
312  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
313  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
314                           Literal.AnyWide, StrTy,
315                           StringToks[0].getLocation(),
316                           StringToks[NumStringToks-1].getLocation());
317}
318
319/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
320/// CurBlock to VD should cause it to be snapshotted (as we do for auto
321/// variables defined outside the block) or false if this is not needed (e.g.
322/// for values inside the block or for globals).
323///
324/// FIXME: This will create BlockDeclRefExprs for global variables,
325/// function references, etc which is suboptimal :) and breaks
326/// things like "integer constant expression" tests.
327static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
328                                              ValueDecl *VD) {
329  // If the value is defined inside the block, we couldn't snapshot it even if
330  // we wanted to.
331  if (CurBlock->TheDecl == VD->getDeclContext())
332    return false;
333
334  // If this is an enum constant or function, it is constant, don't snapshot.
335  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
336    return false;
337
338  // If this is a reference to an extern, static, or global variable, no need to
339  // snapshot it.
340  // FIXME: What about 'const' variables in C++?
341  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
342    return Var->hasLocalStorage();
343
344  return true;
345}
346
347
348
349/// ActOnIdentifierExpr - The parser read an identifier in expression context,
350/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
351/// identifier is used in a function call context.
352/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
353/// class or namespace that the identifier must be a member of.
354Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
355                                           IdentifierInfo &II,
356                                           bool HasTrailingLParen,
357                                           const CXXScopeSpec *SS) {
358  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
359}
360
361/// BuildDeclRefExpr - Build either a DeclRefExpr or a
362/// QualifiedDeclRefExpr based on whether or not SS is a
363/// nested-name-specifier.
364DeclRefExpr *Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
365                                    bool TypeDependent, bool ValueDependent,
366                                    const CXXScopeSpec *SS) {
367  if (SS && !SS->isEmpty())
368    return new QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent,
369                                    SS->getRange().getBegin());
370  else
371    return new DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
372}
373
374/// ActOnDeclarationNameExpr - The parser has read some kind of name
375/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
376/// performs lookup on that name and returns an expression that refers
377/// to that name. This routine isn't directly called from the parser,
378/// because the parser doesn't know about DeclarationName. Rather,
379/// this routine is called by ActOnIdentifierExpr,
380/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
381/// which form the DeclarationName from the corresponding syntactic
382/// forms.
383///
384/// HasTrailingLParen indicates whether this identifier is used in a
385/// function call context.  LookupCtx is only used for a C++
386/// qualified-id (foo::bar) to indicate the class or namespace that
387/// the identifier must be a member of.
388///
389/// If ForceResolution is true, then we will attempt to resolve the
390/// name even if it looks like a dependent name. This option is off by
391/// default.
392Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
393                                                DeclarationName Name,
394                                                bool HasTrailingLParen,
395                                                const CXXScopeSpec *SS,
396                                                bool ForceResolution) {
397  if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
398      HasTrailingLParen && !SS && !ForceResolution) {
399    // We've seen something of the form
400    //   identifier(
401    // and we are in a template, so it is likely that 's' is a
402    // dependent name. However, we won't know until we've parsed all
403    // of the call arguments. So, build a CXXDependentNameExpr node
404    // to represent this name. Then, if it turns out that none of the
405    // arguments are type-dependent, we'll force the resolution of the
406    // dependent name at that point.
407    return new CXXDependentNameExpr(Name.getAsIdentifierInfo(),
408                                    Context.DependentTy, Loc);
409  }
410
411  // Could be enum-constant, value decl, instance variable, etc.
412  Decl *D;
413  if (SS && !SS->isEmpty()) {
414    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
415    if (DC == 0)
416      return true;
417    D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
418  } else
419    D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
420
421  // If this reference is in an Objective-C method, then ivar lookup happens as
422  // well.
423  IdentifierInfo *II = Name.getAsIdentifierInfo();
424  if (II && getCurMethodDecl()) {
425    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
426    // There are two cases to handle here.  1) scoped lookup could have failed,
427    // in which case we should look for an ivar.  2) scoped lookup could have
428    // found a decl, but that decl is outside the current method (i.e. a global
429    // variable).  In these two cases, we do a lookup for an ivar with this
430    // name, if the lookup suceeds, we replace it our current decl.
431    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
432      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
433      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
434        // FIXME: This should use a new expr for a direct reference, don't turn
435        // this into Self->ivar, just return a BareIVarExpr or something.
436        IdentifierInfo &II = Context.Idents.get("self");
437        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
438        ObjCIvarRefExpr *MRef=  new ObjCIvarRefExpr(IV, IV->getType(), Loc,
439                                  static_cast<Expr*>(SelfExpr.Val), true, true);
440        Context.setFieldDecl(IFace, IV, MRef);
441        return MRef;
442      }
443    }
444    // Needed to implement property "super.method" notation.
445    if (SD == 0 && II->isStr("super")) {
446      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
447                     getCurMethodDecl()->getClassInterface()));
448      return new ObjCSuperExpr(Loc, T);
449    }
450  }
451  if (D == 0) {
452    // Otherwise, this could be an implicitly declared function reference (legal
453    // in C90, extension in C99).
454    if (HasTrailingLParen && II &&
455        !getLangOptions().CPlusPlus) // Not in C++.
456      D = ImplicitlyDefineFunction(Loc, *II, S);
457    else {
458      // If this name wasn't predeclared and if this is not a function call,
459      // diagnose the problem.
460      if (SS && !SS->isEmpty())
461        return Diag(Loc, diag::err_typecheck_no_member)
462          << Name << SS->getRange();
463      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
464               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
465        return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
466      else
467        return Diag(Loc, diag::err_undeclared_var_use) << Name;
468    }
469  }
470
471  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
472    if (!MD->isStatic()) {
473      // C++ [class.mfct.nonstatic]p2:
474      //   [...] if name lookup (3.4.1) resolves the name in the
475      //   id-expression to a nonstatic nontype member of class X or of
476      //   a base class of X, the id-expression is transformed into a
477      //   class member access expression (5.2.5) using (*this) (9.3.2)
478      //   as the postfix-expression to the left of the '.' operator.
479      DeclContext *Ctx = 0;
480      QualType MemberType;
481      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
482        Ctx = FD->getDeclContext();
483        MemberType = FD->getType();
484
485        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
486          MemberType = RefType->getPointeeType();
487        else if (!FD->isMutable()) {
488          unsigned combinedQualifiers
489            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
490          MemberType = MemberType.getQualifiedType(combinedQualifiers);
491        }
492      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
493        if (!Method->isStatic()) {
494          Ctx = Method->getParent();
495          MemberType = Method->getType();
496        }
497      } else if (OverloadedFunctionDecl *Ovl
498                   = dyn_cast<OverloadedFunctionDecl>(D)) {
499        for (OverloadedFunctionDecl::function_iterator
500               Func = Ovl->function_begin(),
501               FuncEnd = Ovl->function_end();
502             Func != FuncEnd; ++Func) {
503          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
504            if (!DMethod->isStatic()) {
505              Ctx = Ovl->getDeclContext();
506              MemberType = Context.OverloadTy;
507              break;
508            }
509        }
510      }
511
512      if (Ctx && Ctx->isCXXRecord()) {
513        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
514        QualType ThisType = Context.getTagDeclType(MD->getParent());
515        if ((Context.getCanonicalType(CtxType)
516               == Context.getCanonicalType(ThisType)) ||
517            IsDerivedFrom(ThisType, CtxType)) {
518          // Build the implicit member access expression.
519          Expr *This = new CXXThisExpr(SourceLocation(),
520                                       MD->getThisType(Context));
521          return new MemberExpr(This, true, cast<NamedDecl>(D),
522                                SourceLocation(), MemberType);
523        }
524      }
525    }
526  }
527
528  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
529    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
530      if (MD->isStatic())
531        // "invalid use of member 'x' in static member function"
532        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
533          << FD->getDeclName();
534    }
535
536    // Any other ways we could have found the field in a well-formed
537    // program would have been turned into implicit member expressions
538    // above.
539    return Diag(Loc, diag::err_invalid_non_static_member_use)
540      << FD->getDeclName();
541  }
542
543  if (isa<TypedefDecl>(D))
544    return Diag(Loc, diag::err_unexpected_typedef) << Name;
545  if (isa<ObjCInterfaceDecl>(D))
546    return Diag(Loc, diag::err_unexpected_interface) << Name;
547  if (isa<NamespaceDecl>(D))
548    return Diag(Loc, diag::err_unexpected_namespace) << Name;
549
550  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
551  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
552    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc, false, false, SS);
553
554  ValueDecl *VD = cast<ValueDecl>(D);
555
556  // check if referencing an identifier with __attribute__((deprecated)).
557  if (VD->getAttr<DeprecatedAttr>())
558    Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
559
560  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
561    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
562      Scope *CheckS = S;
563      while (CheckS) {
564        if (CheckS->isWithinElse() &&
565            CheckS->getControlParent()->isDeclScope(Var)) {
566          if (Var->getType()->isBooleanType())
567            Diag(Loc, diag::warn_value_always_false) << Var->getDeclName();
568          else
569            Diag(Loc, diag::warn_value_always_zero) << Var->getDeclName();
570          break;
571        }
572
573        // Move up one more control parent to check again.
574        CheckS = CheckS->getControlParent();
575        if (CheckS)
576          CheckS = CheckS->getParent();
577      }
578    }
579  }
580
581  // Only create DeclRefExpr's for valid Decl's.
582  if (VD->isInvalidDecl())
583    return true;
584
585  // If the identifier reference is inside a block, and it refers to a value
586  // that is outside the block, create a BlockDeclRefExpr instead of a
587  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
588  // the block is formed.
589  //
590  // We do not do this for things like enum constants, global variables, etc,
591  // as they do not get snapshotted.
592  //
593  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
594    // The BlocksAttr indicates the variable is bound by-reference.
595    if (VD->getAttr<BlocksAttr>())
596      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
597                                  Loc, true);
598
599    // Variable will be bound by-copy, make it const within the closure.
600    VD->getType().addConst();
601    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
602                                Loc, false);
603  }
604  // If this reference is not in a block or if the referenced variable is
605  // within the block, create a normal DeclRefExpr.
606
607  bool TypeDependent = false;
608  bool ValueDependent = false;
609  if (getLangOptions().CPlusPlus) {
610    // C++ [temp.dep.expr]p3:
611    //   An id-expression is type-dependent if it contains:
612    //     - an identifier that was declared with a dependent type,
613    if (VD->getType()->isDependentType())
614      TypeDependent = true;
615    //     - FIXME: a template-id that is dependent,
616    //     - a conversion-function-id that specifies a dependent type,
617    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
618             Name.getCXXNameType()->isDependentType())
619      TypeDependent = true;
620    //     - a nested-name-specifier that contains a class-name that
621    //       names a dependent type.
622    else if (SS && !SS->isEmpty()) {
623      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
624           DC; DC = DC->getParent()) {
625        // FIXME: could stop early at namespace scope.
626        if (DC->isCXXRecord()) {
627          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
628          if (Context.getTypeDeclType(Record)->isDependentType()) {
629            TypeDependent = true;
630            break;
631          }
632        }
633      }
634    }
635
636    // C++ [temp.dep.constexpr]p2:
637    //
638    //   An identifier is value-dependent if it is:
639    //     - a name declared with a dependent type,
640    if (TypeDependent)
641      ValueDependent = true;
642    //     - the name of a non-type template parameter,
643    else if (isa<NonTypeTemplateParmDecl>(VD))
644      ValueDependent = true;
645    //    - a constant with integral or enumeration type and is
646    //      initialized with an expression that is value-dependent
647    //      (FIXME!).
648  }
649
650  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
651                          TypeDependent, ValueDependent, SS);
652}
653
654Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
655                                           tok::TokenKind Kind) {
656  PredefinedExpr::IdentType IT;
657
658  switch (Kind) {
659  default: assert(0 && "Unknown simple primary expr!");
660  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
661  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
662  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
663  }
664
665  // Pre-defined identifiers are of type char[x], where x is the length of the
666  // string.
667  unsigned Length;
668  if (FunctionDecl *FD = getCurFunctionDecl())
669    Length = FD->getIdentifier()->getLength();
670  else if (ObjCMethodDecl *MD = getCurMethodDecl())
671    Length = MD->getSynthesizedMethodSize();
672  else {
673    Diag(Loc, diag::ext_predef_outside_function);
674    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
675    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
676  }
677
678
679  llvm::APInt LengthI(32, Length + 1);
680  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
681  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
682  return new PredefinedExpr(Loc, ResTy, IT);
683}
684
685Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
686  llvm::SmallString<16> CharBuffer;
687  CharBuffer.resize(Tok.getLength());
688  const char *ThisTokBegin = &CharBuffer[0];
689  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
690
691  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
692                            Tok.getLocation(), PP);
693  if (Literal.hadError())
694    return ExprResult(true);
695
696  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
697
698  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
699                              Tok.getLocation());
700}
701
702Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
703  // fast path for a single digit (which is quite common). A single digit
704  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
705  if (Tok.getLength() == 1) {
706    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
707
708    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
709    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
710                                         Context.IntTy,
711                                         Tok.getLocation()));
712  }
713  llvm::SmallString<512> IntegerBuffer;
714  // Add padding so that NumericLiteralParser can overread by one character.
715  IntegerBuffer.resize(Tok.getLength()+1);
716  const char *ThisTokBegin = &IntegerBuffer[0];
717
718  // Get the spelling of the token, which eliminates trigraphs, etc.
719  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
720
721  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
722                               Tok.getLocation(), PP);
723  if (Literal.hadError)
724    return ExprResult(true);
725
726  Expr *Res;
727
728  if (Literal.isFloatingLiteral()) {
729    QualType Ty;
730    if (Literal.isFloat)
731      Ty = Context.FloatTy;
732    else if (!Literal.isLong)
733      Ty = Context.DoubleTy;
734    else
735      Ty = Context.LongDoubleTy;
736
737    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
738
739    // isExact will be set by GetFloatValue().
740    bool isExact = false;
741    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
742                              Ty, Tok.getLocation());
743
744  } else if (!Literal.isIntegerLiteral()) {
745    return ExprResult(true);
746  } else {
747    QualType Ty;
748
749    // long long is a C99 feature.
750    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
751        Literal.isLongLong)
752      Diag(Tok.getLocation(), diag::ext_longlong);
753
754    // Get the value in the widest-possible width.
755    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
756
757    if (Literal.GetIntegerValue(ResultVal)) {
758      // If this value didn't fit into uintmax_t, warn and force to ull.
759      Diag(Tok.getLocation(), diag::warn_integer_too_large);
760      Ty = Context.UnsignedLongLongTy;
761      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
762             "long long is not intmax_t?");
763    } else {
764      // If this value fits into a ULL, try to figure out what else it fits into
765      // according to the rules of C99 6.4.4.1p5.
766
767      // Octal, Hexadecimal, and integers with a U suffix are allowed to
768      // be an unsigned int.
769      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
770
771      // Check from smallest to largest, picking the smallest type we can.
772      unsigned Width = 0;
773      if (!Literal.isLong && !Literal.isLongLong) {
774        // Are int/unsigned possibilities?
775        unsigned IntSize = Context.Target.getIntWidth();
776
777        // Does it fit in a unsigned int?
778        if (ResultVal.isIntN(IntSize)) {
779          // Does it fit in a signed int?
780          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
781            Ty = Context.IntTy;
782          else if (AllowUnsigned)
783            Ty = Context.UnsignedIntTy;
784          Width = IntSize;
785        }
786      }
787
788      // Are long/unsigned long possibilities?
789      if (Ty.isNull() && !Literal.isLongLong) {
790        unsigned LongSize = Context.Target.getLongWidth();
791
792        // Does it fit in a unsigned long?
793        if (ResultVal.isIntN(LongSize)) {
794          // Does it fit in a signed long?
795          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
796            Ty = Context.LongTy;
797          else if (AllowUnsigned)
798            Ty = Context.UnsignedLongTy;
799          Width = LongSize;
800        }
801      }
802
803      // Finally, check long long if needed.
804      if (Ty.isNull()) {
805        unsigned LongLongSize = Context.Target.getLongLongWidth();
806
807        // Does it fit in a unsigned long long?
808        if (ResultVal.isIntN(LongLongSize)) {
809          // Does it fit in a signed long long?
810          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
811            Ty = Context.LongLongTy;
812          else if (AllowUnsigned)
813            Ty = Context.UnsignedLongLongTy;
814          Width = LongLongSize;
815        }
816      }
817
818      // If we still couldn't decide a type, we probably have something that
819      // does not fit in a signed long long, but has no U suffix.
820      if (Ty.isNull()) {
821        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
822        Ty = Context.UnsignedLongLongTy;
823        Width = Context.Target.getLongLongWidth();
824      }
825
826      if (ResultVal.getBitWidth() != Width)
827        ResultVal.trunc(Width);
828    }
829
830    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
831  }
832
833  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
834  if (Literal.isImaginary)
835    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
836
837  return Res;
838}
839
840Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
841                                        ExprTy *Val) {
842  Expr *E = (Expr *)Val;
843  assert((E != 0) && "ActOnParenExpr() missing expr");
844  return new ParenExpr(L, R, E);
845}
846
847/// The UsualUnaryConversions() function is *not* called by this routine.
848/// See C99 6.3.2.1p[2-4] for more details.
849bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
850                                     SourceLocation OpLoc,
851                                     const SourceRange &ExprRange,
852                                     bool isSizeof) {
853  // C99 6.5.3.4p1:
854  if (isa<FunctionType>(exprType) && isSizeof)
855    // alignof(function) is allowed.
856    Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
857  else if (exprType->isVoidType())
858    Diag(OpLoc, diag::ext_sizeof_void_type)
859      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
860  else if (exprType->isIncompleteType())
861    return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
862                                  diag::err_alignof_incomplete_type)
863      << exprType << ExprRange;
864
865  return false;
866}
867
868/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
869/// the same for @c alignof and @c __alignof
870/// Note that the ArgRange is invalid if isType is false.
871Action::ExprResult
872Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
873                             void *TyOrEx, const SourceRange &ArgRange) {
874  // If error parsing type, ignore.
875  if (TyOrEx == 0) return true;
876
877  QualType ArgTy;
878  SourceRange Range;
879  if (isType) {
880    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
881    Range = ArgRange;
882  } else {
883    // Get the end location.
884    Expr *ArgEx = (Expr *)TyOrEx;
885    Range = ArgEx->getSourceRange();
886    ArgTy = ArgEx->getType();
887  }
888
889  // Verify that the operand is valid.
890  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
891    return true;
892
893  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
894  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
895                               OpLoc, Range.getEnd());
896}
897
898QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
899  DefaultFunctionArrayConversion(V);
900
901  // These operators return the element type of a complex type.
902  if (const ComplexType *CT = V->getType()->getAsComplexType())
903    return CT->getElementType();
904
905  // Otherwise they pass through real integer and floating point types here.
906  if (V->getType()->isArithmeticType())
907    return V->getType();
908
909  // Reject anything else.
910  Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
911  return QualType();
912}
913
914
915
916Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
917                                             tok::TokenKind Kind,
918                                             ExprTy *Input) {
919  Expr *Arg = (Expr *)Input;
920
921  UnaryOperator::Opcode Opc;
922  switch (Kind) {
923  default: assert(0 && "Unknown unary op!");
924  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
925  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
926  }
927
928  if (getLangOptions().CPlusPlus &&
929      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
930    // Which overloaded operator?
931    OverloadedOperatorKind OverOp =
932      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
933
934    // C++ [over.inc]p1:
935    //
936    //     [...] If the function is a member function with one
937    //     parameter (which shall be of type int) or a non-member
938    //     function with two parameters (the second of which shall be
939    //     of type int), it defines the postfix increment operator ++
940    //     for objects of that type. When the postfix increment is
941    //     called as a result of using the ++ operator, the int
942    //     argument will have value zero.
943    Expr *Args[2] = {
944      Arg,
945      new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
946                                     /*isSigned=*/true),
947                         Context.IntTy, SourceLocation())
948    };
949
950    // Build the candidate set for overloading
951    OverloadCandidateSet CandidateSet;
952    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
953
954    // Perform overload resolution.
955    OverloadCandidateSet::iterator Best;
956    switch (BestViableFunction(CandidateSet, Best)) {
957    case OR_Success: {
958      // We found a built-in operator or an overloaded operator.
959      FunctionDecl *FnDecl = Best->Function;
960
961      if (FnDecl) {
962        // We matched an overloaded operator. Build a call to that
963        // operator.
964
965        // Convert the arguments.
966        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
967          if (PerformObjectArgumentInitialization(Arg, Method))
968            return true;
969        } else {
970          // Convert the arguments.
971          if (PerformCopyInitialization(Arg,
972                                        FnDecl->getParamDecl(0)->getType(),
973                                        "passing"))
974            return true;
975        }
976
977        // Determine the result type
978        QualType ResultTy
979          = FnDecl->getType()->getAsFunctionType()->getResultType();
980        ResultTy = ResultTy.getNonReferenceType();
981
982        // Build the actual expression node.
983        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
984                                       SourceLocation());
985        UsualUnaryConversions(FnExpr);
986
987        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
988      } else {
989        // We matched a built-in operator. Convert the arguments, then
990        // break out so that we will build the appropriate built-in
991        // operator node.
992        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
993                                      "passing"))
994          return true;
995
996        break;
997      }
998    }
999
1000    case OR_No_Viable_Function:
1001      // No viable function; fall through to handling this as a
1002      // built-in operator, which will produce an error message for us.
1003      break;
1004
1005    case OR_Ambiguous:
1006      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1007          << UnaryOperator::getOpcodeStr(Opc)
1008          << Arg->getSourceRange();
1009      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1010      return true;
1011    }
1012
1013    // Either we found no viable overloaded operator or we matched a
1014    // built-in operator. In either case, fall through to trying to
1015    // build a built-in operation.
1016  }
1017
1018  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1019                                                 Opc == UnaryOperator::PostInc);
1020  if (result.isNull())
1021    return true;
1022  return new UnaryOperator(Arg, Opc, result, OpLoc);
1023}
1024
1025Action::ExprResult Sema::
1026ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
1027                        ExprTy *Idx, SourceLocation RLoc) {
1028  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
1029
1030  if (getLangOptions().CPlusPlus &&
1031      (LHSExp->getType()->isRecordType() ||
1032       LHSExp->getType()->isEnumeralType() ||
1033       RHSExp->getType()->isRecordType() ||
1034       RHSExp->getType()->isEnumeralType())) {
1035    // Add the appropriate overloaded operators (C++ [over.match.oper])
1036    // to the candidate set.
1037    OverloadCandidateSet CandidateSet;
1038    Expr *Args[2] = { LHSExp, RHSExp };
1039    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
1040
1041    // Perform overload resolution.
1042    OverloadCandidateSet::iterator Best;
1043    switch (BestViableFunction(CandidateSet, Best)) {
1044    case OR_Success: {
1045      // We found a built-in operator or an overloaded operator.
1046      FunctionDecl *FnDecl = Best->Function;
1047
1048      if (FnDecl) {
1049        // We matched an overloaded operator. Build a call to that
1050        // operator.
1051
1052        // Convert the arguments.
1053        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1054          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1055              PerformCopyInitialization(RHSExp,
1056                                        FnDecl->getParamDecl(0)->getType(),
1057                                        "passing"))
1058            return true;
1059        } else {
1060          // Convert the arguments.
1061          if (PerformCopyInitialization(LHSExp,
1062                                        FnDecl->getParamDecl(0)->getType(),
1063                                        "passing") ||
1064              PerformCopyInitialization(RHSExp,
1065                                        FnDecl->getParamDecl(1)->getType(),
1066                                        "passing"))
1067            return true;
1068        }
1069
1070        // Determine the result type
1071        QualType ResultTy
1072          = FnDecl->getType()->getAsFunctionType()->getResultType();
1073        ResultTy = ResultTy.getNonReferenceType();
1074
1075        // Build the actual expression node.
1076        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
1077                                       SourceLocation());
1078        UsualUnaryConversions(FnExpr);
1079
1080        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
1081      } else {
1082        // We matched a built-in operator. Convert the arguments, then
1083        // break out so that we will build the appropriate built-in
1084        // operator node.
1085        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1086                                      "passing") ||
1087            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1088                                      "passing"))
1089          return true;
1090
1091        break;
1092      }
1093    }
1094
1095    case OR_No_Viable_Function:
1096      // No viable function; fall through to handling this as a
1097      // built-in operator, which will produce an error message for us.
1098      break;
1099
1100    case OR_Ambiguous:
1101      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1102          << "[]"
1103          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1104      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1105      return true;
1106    }
1107
1108    // Either we found no viable overloaded operator or we matched a
1109    // built-in operator. In either case, fall through to trying to
1110    // build a built-in operation.
1111  }
1112
1113  // Perform default conversions.
1114  DefaultFunctionArrayConversion(LHSExp);
1115  DefaultFunctionArrayConversion(RHSExp);
1116
1117  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1118
1119  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1120  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1121  // in the subscript position. As a result, we need to derive the array base
1122  // and index from the expression types.
1123  Expr *BaseExpr, *IndexExpr;
1124  QualType ResultType;
1125  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1126    BaseExpr = LHSExp;
1127    IndexExpr = RHSExp;
1128    // FIXME: need to deal with const...
1129    ResultType = PTy->getPointeeType();
1130  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1131     // Handle the uncommon case of "123[Ptr]".
1132    BaseExpr = RHSExp;
1133    IndexExpr = LHSExp;
1134    // FIXME: need to deal with const...
1135    ResultType = PTy->getPointeeType();
1136  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1137    BaseExpr = LHSExp;    // vectors: V[123]
1138    IndexExpr = RHSExp;
1139
1140    // Component access limited to variables (reject vec4.rg[1]).
1141    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1142        !isa<ExtVectorElementExpr>(BaseExpr))
1143      return Diag(LLoc, diag::err_ext_vector_component_access)
1144        << SourceRange(LLoc, RLoc);
1145    // FIXME: need to deal with const...
1146    ResultType = VTy->getElementType();
1147  } else {
1148    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
1149      << RHSExp->getSourceRange();
1150  }
1151  // C99 6.5.2.1p1
1152  if (!IndexExpr->getType()->isIntegerType())
1153    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
1154      << IndexExpr->getSourceRange();
1155
1156  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1157  // the following check catches trying to index a pointer to a function (e.g.
1158  // void (*)(int)) and pointers to incomplete types.  Functions are not
1159  // objects in C99.
1160  if (!ResultType->isObjectType())
1161    return Diag(BaseExpr->getLocStart(),
1162                diag::err_typecheck_subscript_not_object)
1163      << BaseExpr->getType() << BaseExpr->getSourceRange();
1164
1165  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
1166}
1167
1168QualType Sema::
1169CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1170                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1171  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1172
1173  // This flag determines whether or not the component is to be treated as a
1174  // special name, or a regular GLSL-style component access.
1175  bool SpecialComponent = false;
1176
1177  // The vector accessor can't exceed the number of elements.
1178  const char *compStr = CompName.getName();
1179  if (strlen(compStr) > vecType->getNumElements()) {
1180    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1181      << baseType << SourceRange(CompLoc);
1182    return QualType();
1183  }
1184
1185  // Check that we've found one of the special components, or that the component
1186  // names must come from the same set.
1187  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1188      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
1189    SpecialComponent = true;
1190  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1191    do
1192      compStr++;
1193    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1194  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
1195    do
1196      compStr++;
1197    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
1198  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
1199    do
1200      compStr++;
1201    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
1202  }
1203
1204  if (!SpecialComponent && *compStr) {
1205    // We didn't get to the end of the string. This means the component names
1206    // didn't come from the same set *or* we encountered an illegal name.
1207    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1208      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1209    return QualType();
1210  }
1211  // Each component accessor can't exceed the vector type.
1212  compStr = CompName.getName();
1213  while (*compStr) {
1214    if (vecType->isAccessorWithinNumElements(*compStr))
1215      compStr++;
1216    else
1217      break;
1218  }
1219  if (!SpecialComponent && *compStr) {
1220    // We didn't get to the end of the string. This means a component accessor
1221    // exceeds the number of elements in the vector.
1222    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1223      << baseType << SourceRange(CompLoc);
1224    return QualType();
1225  }
1226
1227  // If we have a special component name, verify that the current vector length
1228  // is an even number, since all special component names return exactly half
1229  // the elements.
1230  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
1231    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1232      << baseType << SourceRange(CompLoc);
1233    return QualType();
1234  }
1235
1236  // The component accessor looks fine - now we need to compute the actual type.
1237  // The vector type is implied by the component accessor. For example,
1238  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1239  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1240  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
1241                                       : CompName.getLength();
1242  if (CompSize == 1)
1243    return vecType->getElementType();
1244
1245  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1246  // Now look up the TypeDefDecl from the vector type. Without this,
1247  // diagostics look bad. We want extended vector types to appear built-in.
1248  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1249    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1250      return Context.getTypedefType(ExtVectorDecls[i]);
1251  }
1252  return VT; // should never get here (a typedef type should always be found).
1253}
1254
1255/// constructSetterName - Return the setter name for the given
1256/// identifier, i.e. "set" + Name where the initial character of Name
1257/// has been capitalized.
1258// FIXME: Merge with same routine in Parser. But where should this
1259// live?
1260static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1261                                           const IdentifierInfo *Name) {
1262  llvm::SmallString<100> SelectorName;
1263  SelectorName = "set";
1264  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1265  SelectorName[3] = toupper(SelectorName[3]);
1266  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1267}
1268
1269Action::ExprResult Sema::
1270ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
1271                         tok::TokenKind OpKind, SourceLocation MemberLoc,
1272                         IdentifierInfo &Member) {
1273  Expr *BaseExpr = static_cast<Expr *>(Base);
1274  assert(BaseExpr && "no record expression");
1275
1276  // Perform default conversions.
1277  DefaultFunctionArrayConversion(BaseExpr);
1278
1279  QualType BaseType = BaseExpr->getType();
1280  assert(!BaseType.isNull() && "no type for member expression");
1281
1282  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1283  // must have pointer type, and the accessed type is the pointee.
1284  if (OpKind == tok::arrow) {
1285    if (const PointerType *PT = BaseType->getAsPointerType())
1286      BaseType = PT->getPointeeType();
1287    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1288      return BuildOverloadedArrowExpr(S, BaseExpr, OpLoc, MemberLoc, Member);
1289    else
1290      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1291        << BaseType << BaseExpr->getSourceRange();
1292  }
1293
1294  // Handle field access to simple records.  This also handles access to fields
1295  // of the ObjC 'id' struct.
1296  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1297    RecordDecl *RDecl = RTy->getDecl();
1298    if (RTy->isIncompleteType())
1299      return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
1300               << RDecl->getDeclName() << BaseExpr->getSourceRange();
1301    // The record definition is complete, now make sure the member is valid.
1302    // FIXME: Qualified name lookup for C++ is a bit more complicated
1303    // than this.
1304    Decl *MemberDecl = LookupDecl(DeclarationName(&Member), Decl::IDNS_Ordinary,
1305                                  S, RDecl, false, false);
1306    if (!MemberDecl)
1307      return Diag(MemberLoc, diag::err_typecheck_no_member)
1308               << &Member << BaseExpr->getSourceRange();
1309
1310    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1311      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1312      // FIXME: Handle address space modifiers
1313      QualType MemberType = FD->getType();
1314      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1315        MemberType = Ref->getPointeeType();
1316      else {
1317        unsigned combinedQualifiers =
1318          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1319        if (FD->isMutable())
1320          combinedQualifiers &= ~QualType::Const;
1321        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1322      }
1323
1324      return new MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1325                            MemberLoc, MemberType);
1326    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1327      return new MemberExpr(BaseExpr, OpKind == tok::arrow, Var, MemberLoc,
1328                            Var->getType().getNonReferenceType());
1329    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1330      return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn, MemberLoc,
1331                            MemberFn->getType());
1332    else if (OverloadedFunctionDecl *Ovl
1333             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1334      return new MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, MemberLoc,
1335                            Context.OverloadTy);
1336    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1337      return new MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, MemberLoc,
1338                            Enum->getType());
1339    else if (isa<TypeDecl>(MemberDecl))
1340      return Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1341        << DeclarationName(&Member) << int(OpKind == tok::arrow);
1342
1343    // We found a declaration kind that we didn't expect. This is a
1344    // generic error message that tells the user that she can't refer
1345    // to this member with '.' or '->'.
1346    return Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1347      << DeclarationName(&Member) << int(OpKind == tok::arrow);
1348  }
1349
1350  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1351  // (*Obj).ivar.
1352  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1353    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1354      ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
1355                                                 BaseExpr,
1356                                                 OpKind == tok::arrow);
1357      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1358      return MRef;
1359    }
1360    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1361             << IFTy->getDecl()->getDeclName() << &Member
1362             << BaseExpr->getSourceRange();
1363  }
1364
1365  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1366  // pointer to a (potentially qualified) interface type.
1367  const PointerType *PTy;
1368  const ObjCInterfaceType *IFTy;
1369  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1370      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1371    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1372
1373    // Search for a declared property first.
1374    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1375      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1376
1377    // Check protocols on qualified interfaces.
1378    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1379         E = IFTy->qual_end(); I != E; ++I)
1380      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1381        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1382
1383    // If that failed, look for an "implicit" property by seeing if the nullary
1384    // selector is implemented.
1385
1386    // FIXME: The logic for looking up nullary and unary selectors should be
1387    // shared with the code in ActOnInstanceMessage.
1388
1389    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1390    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1391
1392    // If this reference is in an @implementation, check for 'private' methods.
1393    if (!Getter)
1394      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1395        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1396          if (ObjCImplementationDecl *ImpDecl =
1397              ObjCImplementations[ClassDecl->getIdentifier()])
1398            Getter = ImpDecl->getInstanceMethod(Sel);
1399
1400    // Look through local category implementations associated with the class.
1401    if (!Getter) {
1402      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1403        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1404          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1405      }
1406    }
1407    if (Getter) {
1408      // If we found a getter then this may be a valid dot-reference, we
1409      // will look for the matching setter, in case it is needed.
1410      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1411                                                       &Member);
1412      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1413      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1414      if (!Setter) {
1415        // If this reference is in an @implementation, also check for 'private'
1416        // methods.
1417        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1418          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1419            if (ObjCImplementationDecl *ImpDecl =
1420                  ObjCImplementations[ClassDecl->getIdentifier()])
1421              Setter = ImpDecl->getInstanceMethod(SetterSel);
1422      }
1423      // Look through local category implementations associated with the class.
1424      if (!Setter) {
1425        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1426          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1427            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1428        }
1429      }
1430
1431      // FIXME: we must check that the setter has property type.
1432      return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
1433                                MemberLoc, BaseExpr);
1434    }
1435
1436    return Diag(MemberLoc, diag::err_property_not_found) <<
1437      &Member << BaseType;
1438  }
1439  // Handle properties on qualified "id" protocols.
1440  const ObjCQualifiedIdType *QIdTy;
1441  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1442    // Check protocols on qualified interfaces.
1443    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1444         E = QIdTy->qual_end(); I != E; ++I) {
1445      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1446        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1447      // Also must look for a getter name which uses property syntax.
1448      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1449      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1450        return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
1451                                   OpLoc, MemberLoc, NULL, 0);
1452      }
1453    }
1454
1455    return Diag(MemberLoc, diag::err_property_not_found) <<
1456      &Member << BaseType;
1457  }
1458  // Handle 'field access' to vectors, such as 'V.xx'.
1459  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1460    // Component access limited to variables (reject vec4.rg.g).
1461    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1462        !isa<ExtVectorElementExpr>(BaseExpr))
1463      return Diag(MemberLoc, diag::err_ext_vector_component_access)
1464               << BaseExpr->getSourceRange();
1465    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1466    if (ret.isNull())
1467      return true;
1468    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1469  }
1470
1471  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1472          << BaseType << BaseExpr->getSourceRange();
1473}
1474
1475/// ConvertArgumentsForCall - Converts the arguments specified in
1476/// Args/NumArgs to the parameter types of the function FDecl with
1477/// function prototype Proto. Call is the call expression itself, and
1478/// Fn is the function expression. For a C++ member function, this
1479/// routine does not attempt to convert the object argument. Returns
1480/// true if the call is ill-formed.
1481bool
1482Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1483                              FunctionDecl *FDecl,
1484                              const FunctionTypeProto *Proto,
1485                              Expr **Args, unsigned NumArgs,
1486                              SourceLocation RParenLoc) {
1487  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1488  // assignment, to the types of the corresponding parameter, ...
1489  unsigned NumArgsInProto = Proto->getNumArgs();
1490  unsigned NumArgsToCheck = NumArgs;
1491
1492  // If too few arguments are available (and we don't have default
1493  // arguments for the remaining parameters), don't make the call.
1494  if (NumArgs < NumArgsInProto) {
1495    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1496      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1497        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1498    // Use default arguments for missing arguments
1499    NumArgsToCheck = NumArgsInProto;
1500    Call->setNumArgs(NumArgsInProto);
1501  }
1502
1503  // If too many are passed and not variadic, error on the extras and drop
1504  // them.
1505  if (NumArgs > NumArgsInProto) {
1506    if (!Proto->isVariadic()) {
1507      Diag(Args[NumArgsInProto]->getLocStart(),
1508           diag::err_typecheck_call_too_many_args)
1509        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1510        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1511                       Args[NumArgs-1]->getLocEnd());
1512      // This deletes the extra arguments.
1513      Call->setNumArgs(NumArgsInProto);
1514    }
1515    NumArgsToCheck = NumArgsInProto;
1516  }
1517
1518  // Continue to check argument types (even if we have too few/many args).
1519  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1520    QualType ProtoArgType = Proto->getArgType(i);
1521
1522    Expr *Arg;
1523    if (i < NumArgs) {
1524      Arg = Args[i];
1525
1526      // Pass the argument.
1527      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1528        return true;
1529    } else
1530      // We already type-checked the argument, so we know it works.
1531      Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1532    QualType ArgType = Arg->getType();
1533
1534    Call->setArg(i, Arg);
1535  }
1536
1537  // If this is a variadic call, handle args passed through "...".
1538  if (Proto->isVariadic()) {
1539    // Promote the arguments (C99 6.5.2.2p7).
1540    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1541      Expr *Arg = Args[i];
1542      DefaultArgumentPromotion(Arg);
1543      Call->setArg(i, Arg);
1544    }
1545  }
1546
1547  return false;
1548}
1549
1550/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1551/// This provides the location of the left/right parens and a list of comma
1552/// locations.
1553Action::ExprResult
1554Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
1555                    ExprTy **args, unsigned NumArgs,
1556                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1557  Expr *Fn = static_cast<Expr *>(fn);
1558  Expr **Args = reinterpret_cast<Expr**>(args);
1559  assert(Fn && "no function call expression");
1560  FunctionDecl *FDecl = NULL;
1561  OverloadedFunctionDecl *Ovl = NULL;
1562
1563  // Determine whether this is a dependent call inside a C++ template,
1564  // in which case we won't do any semantic analysis now.
1565  bool Dependent = false;
1566  if (Fn->isTypeDependent()) {
1567    if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
1568      if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1569        Dependent = true;
1570      else {
1571        // Resolve the CXXDependentNameExpr to an actual identifier;
1572        // it wasn't really a dependent name after all.
1573        ExprResult Resolved
1574          = ActOnDeclarationNameExpr(S, FnName->getLocation(), FnName->getName(),
1575                                     /*HasTrailingLParen=*/true,
1576                                     /*SS=*/0,
1577                                     /*ForceResolution=*/true);
1578        if (Resolved.isInvalid)
1579          return true;
1580        else {
1581          delete Fn;
1582          Fn = (Expr *)Resolved.Val;
1583        }
1584      }
1585    } else
1586      Dependent = true;
1587  } else
1588    Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
1589
1590  // FIXME: Will need to cache the results of name lookup (including
1591  // ADL) in Fn.
1592  if (Dependent)
1593    return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
1594
1595  // Determine whether this is a call to an object (C++ [over.call.object]).
1596  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1597    return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
1598                                        CommaLocs, RParenLoc);
1599
1600  // Determine whether this is a call to a member function.
1601  if (getLangOptions().CPlusPlus) {
1602    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
1603      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
1604          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
1605        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
1606                                         CommaLocs, RParenLoc);
1607  }
1608
1609  // If we're directly calling a function or a set of overloaded
1610  // functions, get the appropriate declaration.
1611  DeclRefExpr *DRExpr = NULL;
1612  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1613    DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1614  else
1615    DRExpr = dyn_cast<DeclRefExpr>(Fn);
1616
1617  if (DRExpr) {
1618    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1619    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1620  }
1621
1622  if (Ovl) {
1623    FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
1624                                    RParenLoc);
1625    if (!FDecl)
1626      return true;
1627
1628    // Update Fn to refer to the actual function selected.
1629    Expr *NewFn = 0;
1630    if (QualifiedDeclRefExpr *QDRExpr = dyn_cast<QualifiedDeclRefExpr>(DRExpr))
1631      NewFn = new QualifiedDeclRefExpr(FDecl, FDecl->getType(),
1632                                       QDRExpr->getLocation(), false, false,
1633                                       QDRExpr->getSourceRange().getBegin());
1634    else
1635      NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1636                              Fn->getSourceRange().getBegin());
1637    Fn->Destroy(Context);
1638    Fn = NewFn;
1639  }
1640
1641  // Promote the function operand.
1642  UsualUnaryConversions(Fn);
1643
1644  // Make the call expr early, before semantic checks.  This guarantees cleanup
1645  // of arguments and function on error.
1646  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1647                                                 Context.BoolTy, RParenLoc));
1648
1649  const FunctionType *FuncT;
1650  if (!Fn->getType()->isBlockPointerType()) {
1651    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1652    // have type pointer to function".
1653    const PointerType *PT = Fn->getType()->getAsPointerType();
1654    if (PT == 0)
1655      return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1656        << Fn->getType() << Fn->getSourceRange();
1657    FuncT = PT->getPointeeType()->getAsFunctionType();
1658  } else { // This is a block call.
1659    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1660                getAsFunctionType();
1661  }
1662  if (FuncT == 0)
1663    return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1664      << Fn->getType() << Fn->getSourceRange();
1665
1666  // We know the result type of the call, set it.
1667  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1668
1669  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1670    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
1671                                RParenLoc))
1672      return true;
1673  } else {
1674    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1675
1676    // Promote the arguments (C99 6.5.2.2p6).
1677    for (unsigned i = 0; i != NumArgs; i++) {
1678      Expr *Arg = Args[i];
1679      DefaultArgumentPromotion(Arg);
1680      TheCall->setArg(i, Arg);
1681    }
1682  }
1683
1684  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
1685    if (!Method->isStatic())
1686      return Diag(LParenLoc, diag::err_member_call_without_object)
1687        << Fn->getSourceRange();
1688
1689  // Do special checking on direct calls to functions.
1690  if (FDecl)
1691    return CheckFunctionCall(FDecl, TheCall.take());
1692
1693  return TheCall.take();
1694}
1695
1696Action::ExprResult Sema::
1697ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1698                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1699  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1700  QualType literalType = QualType::getFromOpaquePtr(Ty);
1701  // FIXME: put back this assert when initializers are worked out.
1702  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1703  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1704
1705  if (literalType->isArrayType()) {
1706    if (literalType->isVariableArrayType())
1707      return Diag(LParenLoc, diag::err_variable_object_no_init)
1708        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1709  } else if (literalType->isIncompleteType()) {
1710    return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
1711      << literalType
1712      << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1713  }
1714
1715  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1716                            DeclarationName()))
1717    return true;
1718
1719  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
1720  if (isFileScope) { // 6.5.2.5p3
1721    if (CheckForConstantInitializer(literalExpr, literalType))
1722      return true;
1723  }
1724  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1725                                 isFileScope);
1726}
1727
1728Action::ExprResult Sema::
1729ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1730              InitListDesignations &Designators,
1731              SourceLocation RBraceLoc) {
1732  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1733
1734  // Semantic analysis for initializers is done by ActOnDeclarator() and
1735  // CheckInitializer() - it requires knowledge of the object being intialized.
1736
1737  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1738                                     Designators.hasAnyDesignators());
1739  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1740  return E;
1741}
1742
1743/// CheckCastTypes - Check type constraints for casting between types.
1744bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1745  UsualUnaryConversions(castExpr);
1746
1747  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1748  // type needs to be scalar.
1749  if (castType->isVoidType()) {
1750    // Cast to void allows any expr type.
1751  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
1752    // We can't check any more until template instantiation time.
1753  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1754    // GCC struct/union extension: allow cast to self.
1755    if (Context.getCanonicalType(castType) !=
1756        Context.getCanonicalType(castExpr->getType()) ||
1757        (!castType->isStructureType() && !castType->isUnionType())) {
1758      // Reject any other conversions to non-scalar types.
1759      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
1760        << castType << castExpr->getSourceRange();
1761    }
1762
1763    // accept this, but emit an ext-warn.
1764    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
1765      << castType << castExpr->getSourceRange();
1766  } else if (!castExpr->getType()->isScalarType() &&
1767             !castExpr->getType()->isVectorType()) {
1768    return Diag(castExpr->getLocStart(),
1769                diag::err_typecheck_expect_scalar_operand)
1770      << castExpr->getType() << castExpr->getSourceRange();
1771  } else if (castExpr->getType()->isVectorType()) {
1772    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1773      return true;
1774  } else if (castType->isVectorType()) {
1775    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1776      return true;
1777  }
1778  return false;
1779}
1780
1781bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1782  assert(VectorTy->isVectorType() && "Not a vector type!");
1783
1784  if (Ty->isVectorType() || Ty->isIntegerType()) {
1785    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1786      return Diag(R.getBegin(),
1787                  Ty->isVectorType() ?
1788                  diag::err_invalid_conversion_between_vectors :
1789                  diag::err_invalid_conversion_between_vector_and_integer)
1790        << VectorTy << Ty << R;
1791  } else
1792    return Diag(R.getBegin(),
1793                diag::err_invalid_conversion_between_vector_and_scalar)
1794      << VectorTy << Ty << R;
1795
1796  return false;
1797}
1798
1799Action::ExprResult Sema::
1800ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1801              SourceLocation RParenLoc, ExprTy *Op) {
1802  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1803
1804  Expr *castExpr = static_cast<Expr*>(Op);
1805  QualType castType = QualType::getFromOpaquePtr(Ty);
1806
1807  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1808    return true;
1809  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
1810}
1811
1812/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1813/// In that case, lex = cond.
1814inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1815  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1816  UsualUnaryConversions(cond);
1817  UsualUnaryConversions(lex);
1818  UsualUnaryConversions(rex);
1819  QualType condT = cond->getType();
1820  QualType lexT = lex->getType();
1821  QualType rexT = rex->getType();
1822
1823  // first, check the condition.
1824  if (!cond->isTypeDependent()) {
1825    if (!condT->isScalarType()) { // C99 6.5.15p2
1826      Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
1827      return QualType();
1828    }
1829  }
1830
1831  // Now check the two expressions.
1832  if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
1833    return Context.DependentTy;
1834
1835  // If both operands have arithmetic type, do the usual arithmetic conversions
1836  // to find a common type: C99 6.5.15p3,5.
1837  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1838    UsualArithmeticConversions(lex, rex);
1839    return lex->getType();
1840  }
1841
1842  // If both operands are the same structure or union type, the result is that
1843  // type.
1844  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1845    if (const RecordType *RHSRT = rexT->getAsRecordType())
1846      if (LHSRT->getDecl() == RHSRT->getDecl())
1847        // "If both the operands have structure or union type, the result has
1848        // that type."  This implies that CV qualifiers are dropped.
1849        return lexT.getUnqualifiedType();
1850  }
1851
1852  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1853  // The following || allows only one side to be void (a GCC-ism).
1854  if (lexT->isVoidType() || rexT->isVoidType()) {
1855    if (!lexT->isVoidType())
1856      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
1857        << rex->getSourceRange();
1858    if (!rexT->isVoidType())
1859      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
1860        << lex->getSourceRange();
1861    ImpCastExprToType(lex, Context.VoidTy);
1862    ImpCastExprToType(rex, Context.VoidTy);
1863    return Context.VoidTy;
1864  }
1865  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1866  // the type of the other operand."
1867  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1868       Context.isObjCObjectPointerType(lexT)) &&
1869      rex->isNullPointerConstant(Context)) {
1870    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1871    return lexT;
1872  }
1873  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1874       Context.isObjCObjectPointerType(rexT)) &&
1875      lex->isNullPointerConstant(Context)) {
1876    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1877    return rexT;
1878  }
1879  // Handle the case where both operands are pointers before we handle null
1880  // pointer constants in case both operands are null pointer constants.
1881  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1882    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1883      // get the "pointed to" types
1884      QualType lhptee = LHSPT->getPointeeType();
1885      QualType rhptee = RHSPT->getPointeeType();
1886
1887      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1888      if (lhptee->isVoidType() &&
1889          rhptee->isIncompleteOrObjectType()) {
1890        // Figure out necessary qualifiers (C99 6.5.15p6)
1891        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1892        QualType destType = Context.getPointerType(destPointee);
1893        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1894        ImpCastExprToType(rex, destType); // promote to void*
1895        return destType;
1896      }
1897      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1898        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1899        QualType destType = Context.getPointerType(destPointee);
1900        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1901        ImpCastExprToType(rex, destType); // promote to void*
1902        return destType;
1903      }
1904
1905      QualType compositeType = lexT;
1906
1907      // If either type is an Objective-C object type then check
1908      // compatibility according to Objective-C.
1909      if (Context.isObjCObjectPointerType(lexT) ||
1910          Context.isObjCObjectPointerType(rexT)) {
1911        // If both operands are interfaces and either operand can be
1912        // assigned to the other, use that type as the composite
1913        // type. This allows
1914        //   xxx ? (A*) a : (B*) b
1915        // where B is a subclass of A.
1916        //
1917        // Additionally, as for assignment, if either type is 'id'
1918        // allow silent coercion. Finally, if the types are
1919        // incompatible then make sure to use 'id' as the composite
1920        // type so the result is acceptable for sending messages to.
1921
1922        // FIXME: This code should not be localized to here. Also this
1923        // should use a compatible check instead of abusing the
1924        // canAssignObjCInterfaces code.
1925        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1926        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1927        if (LHSIface && RHSIface &&
1928            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1929          compositeType = lexT;
1930        } else if (LHSIface && RHSIface &&
1931                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
1932          compositeType = rexT;
1933        } else if (Context.isObjCIdType(lhptee) ||
1934                   Context.isObjCIdType(rhptee)) {
1935          // FIXME: This code looks wrong, because isObjCIdType checks
1936          // the struct but getObjCIdType returns the pointer to
1937          // struct. This is horrible and should be fixed.
1938          compositeType = Context.getObjCIdType();
1939        } else {
1940          QualType incompatTy = Context.getObjCIdType();
1941          ImpCastExprToType(lex, incompatTy);
1942          ImpCastExprToType(rex, incompatTy);
1943          return incompatTy;
1944        }
1945      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1946                                             rhptee.getUnqualifiedType())) {
1947        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
1948          << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
1949        // In this situation, we assume void* type. No especially good
1950        // reason, but this is what gcc does, and we do have to pick
1951        // to get a consistent AST.
1952        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1953        ImpCastExprToType(lex, incompatTy);
1954        ImpCastExprToType(rex, incompatTy);
1955        return incompatTy;
1956      }
1957      // The pointer types are compatible.
1958      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1959      // differently qualified versions of compatible types, the result type is
1960      // a pointer to an appropriately qualified version of the *composite*
1961      // type.
1962      // FIXME: Need to calculate the composite type.
1963      // FIXME: Need to add qualifiers
1964      ImpCastExprToType(lex, compositeType);
1965      ImpCastExprToType(rex, compositeType);
1966      return compositeType;
1967    }
1968  }
1969  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1970  // evaluates to "struct objc_object *" (and is handled above when comparing
1971  // id with statically typed objects).
1972  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1973    // GCC allows qualified id and any Objective-C type to devolve to
1974    // id. Currently localizing to here until clear this should be
1975    // part of ObjCQualifiedIdTypesAreCompatible.
1976    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1977        (lexT->isObjCQualifiedIdType() &&
1978         Context.isObjCObjectPointerType(rexT)) ||
1979        (rexT->isObjCQualifiedIdType() &&
1980         Context.isObjCObjectPointerType(lexT))) {
1981      // FIXME: This is not the correct composite type. This only
1982      // happens to work because id can more or less be used anywhere,
1983      // however this may change the type of method sends.
1984      // FIXME: gcc adds some type-checking of the arguments and emits
1985      // (confusing) incompatible comparison warnings in some
1986      // cases. Investigate.
1987      QualType compositeType = Context.getObjCIdType();
1988      ImpCastExprToType(lex, compositeType);
1989      ImpCastExprToType(rex, compositeType);
1990      return compositeType;
1991    }
1992  }
1993
1994  // Selection between block pointer types is ok as long as they are the same.
1995  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1996      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1997    return lexT;
1998
1999  // Otherwise, the operands are not compatible.
2000  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
2001    << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2002  return QualType();
2003}
2004
2005/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2006/// in the case of a the GNU conditional expr extension.
2007Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2008                                            SourceLocation ColonLoc,
2009                                            ExprTy *Cond, ExprTy *LHS,
2010                                            ExprTy *RHS) {
2011  Expr *CondExpr = (Expr *) Cond;
2012  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
2013
2014  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2015  // was the condition.
2016  bool isLHSNull = LHSExpr == 0;
2017  if (isLHSNull)
2018    LHSExpr = CondExpr;
2019
2020  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2021                                             RHSExpr, QuestionLoc);
2022  if (result.isNull())
2023    return true;
2024  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
2025                                 RHSExpr, result);
2026}
2027
2028
2029// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2030// being closely modeled after the C99 spec:-). The odd characteristic of this
2031// routine is it effectively iqnores the qualifiers on the top level pointee.
2032// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2033// FIXME: add a couple examples in this comment.
2034Sema::AssignConvertType
2035Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2036  QualType lhptee, rhptee;
2037
2038  // get the "pointed to" type (ignoring qualifiers at the top level)
2039  lhptee = lhsType->getAsPointerType()->getPointeeType();
2040  rhptee = rhsType->getAsPointerType()->getPointeeType();
2041
2042  // make sure we operate on the canonical type
2043  lhptee = Context.getCanonicalType(lhptee);
2044  rhptee = Context.getCanonicalType(rhptee);
2045
2046  AssignConvertType ConvTy = Compatible;
2047
2048  // C99 6.5.16.1p1: This following citation is common to constraints
2049  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2050  // qualifiers of the type *pointed to* by the right;
2051  // FIXME: Handle ASQualType
2052  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2053    ConvTy = CompatiblePointerDiscardsQualifiers;
2054
2055  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2056  // incomplete type and the other is a pointer to a qualified or unqualified
2057  // version of void...
2058  if (lhptee->isVoidType()) {
2059    if (rhptee->isIncompleteOrObjectType())
2060      return ConvTy;
2061
2062    // As an extension, we allow cast to/from void* to function pointer.
2063    assert(rhptee->isFunctionType());
2064    return FunctionVoidPointer;
2065  }
2066
2067  if (rhptee->isVoidType()) {
2068    if (lhptee->isIncompleteOrObjectType())
2069      return ConvTy;
2070
2071    // As an extension, we allow cast to/from void* to function pointer.
2072    assert(lhptee->isFunctionType());
2073    return FunctionVoidPointer;
2074  }
2075
2076  // Check for ObjC interfaces
2077  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2078  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2079  if (LHSIface && RHSIface &&
2080      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
2081    return ConvTy;
2082
2083  // ID acts sort of like void* for ObjC interfaces
2084  if (LHSIface && Context.isObjCIdType(rhptee))
2085    return ConvTy;
2086  if (RHSIface && Context.isObjCIdType(lhptee))
2087    return ConvTy;
2088
2089  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2090  // unqualified versions of compatible types, ...
2091  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2092                                  rhptee.getUnqualifiedType()))
2093    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2094  return ConvTy;
2095}
2096
2097/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2098/// block pointer types are compatible or whether a block and normal pointer
2099/// are compatible. It is more restrict than comparing two function pointer
2100// types.
2101Sema::AssignConvertType
2102Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2103                                          QualType rhsType) {
2104  QualType lhptee, rhptee;
2105
2106  // get the "pointed to" type (ignoring qualifiers at the top level)
2107  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2108  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2109
2110  // make sure we operate on the canonical type
2111  lhptee = Context.getCanonicalType(lhptee);
2112  rhptee = Context.getCanonicalType(rhptee);
2113
2114  AssignConvertType ConvTy = Compatible;
2115
2116  // For blocks we enforce that qualifiers are identical.
2117  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2118    ConvTy = CompatiblePointerDiscardsQualifiers;
2119
2120  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2121    return IncompatibleBlockPointer;
2122  return ConvTy;
2123}
2124
2125/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2126/// has code to accommodate several GCC extensions when type checking
2127/// pointers. Here are some objectionable examples that GCC considers warnings:
2128///
2129///  int a, *pint;
2130///  short *pshort;
2131///  struct foo *pfoo;
2132///
2133///  pint = pshort; // warning: assignment from incompatible pointer type
2134///  a = pint; // warning: assignment makes integer from pointer without a cast
2135///  pint = a; // warning: assignment makes pointer from integer without a cast
2136///  pint = pfoo; // warning: assignment from incompatible pointer type
2137///
2138/// As a result, the code for dealing with pointers is more complex than the
2139/// C99 spec dictates.
2140///
2141Sema::AssignConvertType
2142Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2143  // Get canonical types.  We're not formatting these types, just comparing
2144  // them.
2145  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2146  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2147
2148  if (lhsType == rhsType)
2149    return Compatible; // Common case: fast path an exact match.
2150
2151  // If the left-hand side is a reference type, then we are in a
2152  // (rare!) case where we've allowed the use of references in C,
2153  // e.g., as a parameter type in a built-in function. In this case,
2154  // just make sure that the type referenced is compatible with the
2155  // right-hand side type. The caller is responsible for adjusting
2156  // lhsType so that the resulting expression does not have reference
2157  // type.
2158  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2159    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2160      return Compatible;
2161    return Incompatible;
2162  }
2163
2164  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2165    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2166      return Compatible;
2167    // Relax integer conversions like we do for pointers below.
2168    if (rhsType->isIntegerType())
2169      return IntToPointer;
2170    if (lhsType->isIntegerType())
2171      return PointerToInt;
2172    return IncompatibleObjCQualifiedId;
2173  }
2174
2175  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2176    // For ExtVector, allow vector splats; float -> <n x float>
2177    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2178      if (LV->getElementType() == rhsType)
2179        return Compatible;
2180
2181    // If we are allowing lax vector conversions, and LHS and RHS are both
2182    // vectors, the total size only needs to be the same. This is a bitcast;
2183    // no bits are changed but the result type is different.
2184    if (getLangOptions().LaxVectorConversions &&
2185        lhsType->isVectorType() && rhsType->isVectorType()) {
2186      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2187        return Compatible;
2188    }
2189    return Incompatible;
2190  }
2191
2192  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2193    return Compatible;
2194
2195  if (isa<PointerType>(lhsType)) {
2196    if (rhsType->isIntegerType())
2197      return IntToPointer;
2198
2199    if (isa<PointerType>(rhsType))
2200      return CheckPointerTypesForAssignment(lhsType, rhsType);
2201
2202    if (rhsType->getAsBlockPointerType()) {
2203      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2204        return Compatible;
2205
2206      // Treat block pointers as objects.
2207      if (getLangOptions().ObjC1 &&
2208          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2209        return Compatible;
2210    }
2211    return Incompatible;
2212  }
2213
2214  if (isa<BlockPointerType>(lhsType)) {
2215    if (rhsType->isIntegerType())
2216      return IntToPointer;
2217
2218    // Treat block pointers as objects.
2219    if (getLangOptions().ObjC1 &&
2220        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2221      return Compatible;
2222
2223    if (rhsType->isBlockPointerType())
2224      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2225
2226    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2227      if (RHSPT->getPointeeType()->isVoidType())
2228        return Compatible;
2229    }
2230    return Incompatible;
2231  }
2232
2233  if (isa<PointerType>(rhsType)) {
2234    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2235    if (lhsType == Context.BoolTy)
2236      return Compatible;
2237
2238    if (lhsType->isIntegerType())
2239      return PointerToInt;
2240
2241    if (isa<PointerType>(lhsType))
2242      return CheckPointerTypesForAssignment(lhsType, rhsType);
2243
2244    if (isa<BlockPointerType>(lhsType) &&
2245        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2246      return Compatible;
2247    return Incompatible;
2248  }
2249
2250  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2251    if (Context.typesAreCompatible(lhsType, rhsType))
2252      return Compatible;
2253  }
2254  return Incompatible;
2255}
2256
2257Sema::AssignConvertType
2258Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2259  if (getLangOptions().CPlusPlus) {
2260    if (!lhsType->isRecordType()) {
2261      // C++ 5.17p3: If the left operand is not of class type, the
2262      // expression is implicitly converted (C++ 4) to the
2263      // cv-unqualified type of the left operand.
2264      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2265                                    "assigning"))
2266        return Incompatible;
2267      else
2268        return Compatible;
2269    }
2270
2271    // FIXME: Currently, we fall through and treat C++ classes like C
2272    // structures.
2273  }
2274
2275  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2276  // a null pointer constant.
2277  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2278       lhsType->isBlockPointerType())
2279      && rExpr->isNullPointerConstant(Context)) {
2280    ImpCastExprToType(rExpr, lhsType);
2281    return Compatible;
2282  }
2283
2284  // We don't allow conversion of non-null-pointer constants to integers.
2285  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2286    return IntToBlockPointer;
2287
2288  // This check seems unnatural, however it is necessary to ensure the proper
2289  // conversion of functions/arrays. If the conversion were done for all
2290  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2291  // expressions that surpress this implicit conversion (&, sizeof).
2292  //
2293  // Suppress this for references: C++ 8.5.3p5.
2294  if (!lhsType->isReferenceType())
2295    DefaultFunctionArrayConversion(rExpr);
2296
2297  Sema::AssignConvertType result =
2298    CheckAssignmentConstraints(lhsType, rExpr->getType());
2299
2300  // C99 6.5.16.1p2: The value of the right operand is converted to the
2301  // type of the assignment expression.
2302  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2303  // so that we can use references in built-in functions even in C.
2304  // The getNonReferenceType() call makes sure that the resulting expression
2305  // does not have reference type.
2306  if (rExpr->getType() != lhsType)
2307    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2308  return result;
2309}
2310
2311Sema::AssignConvertType
2312Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2313  return CheckAssignmentConstraints(lhsType, rhsType);
2314}
2315
2316QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2317  Diag(Loc, diag::err_typecheck_invalid_operands)
2318    << lex->getType() << rex->getType()
2319    << lex->getSourceRange() << rex->getSourceRange();
2320  return QualType();
2321}
2322
2323inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2324                                                              Expr *&rex) {
2325  // For conversion purposes, we ignore any qualifiers.
2326  // For example, "const float" and "float" are equivalent.
2327  QualType lhsType =
2328    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2329  QualType rhsType =
2330    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2331
2332  // If the vector types are identical, return.
2333  if (lhsType == rhsType)
2334    return lhsType;
2335
2336  // Handle the case of a vector & extvector type of the same size and element
2337  // type.  It would be nice if we only had one vector type someday.
2338  if (getLangOptions().LaxVectorConversions)
2339    if (const VectorType *LV = lhsType->getAsVectorType())
2340      if (const VectorType *RV = rhsType->getAsVectorType())
2341        if (LV->getElementType() == RV->getElementType() &&
2342            LV->getNumElements() == RV->getNumElements())
2343          return lhsType->isExtVectorType() ? lhsType : rhsType;
2344
2345  // If the lhs is an extended vector and the rhs is a scalar of the same type
2346  // or a literal, promote the rhs to the vector type.
2347  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2348    QualType eltType = V->getElementType();
2349
2350    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2351        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2352        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2353      ImpCastExprToType(rex, lhsType);
2354      return lhsType;
2355    }
2356  }
2357
2358  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2359  // promote the lhs to the vector type.
2360  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2361    QualType eltType = V->getElementType();
2362
2363    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2364        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2365        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2366      ImpCastExprToType(lex, rhsType);
2367      return rhsType;
2368    }
2369  }
2370
2371  // You cannot convert between vector values of different size.
2372  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2373    << lex->getType() << rex->getType()
2374    << lex->getSourceRange() << rex->getSourceRange();
2375  return QualType();
2376}
2377
2378inline QualType Sema::CheckMultiplyDivideOperands(
2379  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2380{
2381  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2382    return CheckVectorOperands(Loc, lex, rex);
2383
2384  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2385
2386  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2387    return compType;
2388  return InvalidOperands(Loc, lex, rex);
2389}
2390
2391inline QualType Sema::CheckRemainderOperands(
2392  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2393{
2394  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2395    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2396      return CheckVectorOperands(Loc, lex, rex);
2397    return InvalidOperands(Loc, lex, rex);
2398  }
2399
2400  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2401
2402  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2403    return compType;
2404  return InvalidOperands(Loc, lex, rex);
2405}
2406
2407inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2408  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2409{
2410  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2411    return CheckVectorOperands(Loc, lex, rex);
2412
2413  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2414
2415  // handle the common case first (both operands are arithmetic).
2416  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2417    return compType;
2418
2419  // Put any potential pointer into PExp
2420  Expr* PExp = lex, *IExp = rex;
2421  if (IExp->getType()->isPointerType())
2422    std::swap(PExp, IExp);
2423
2424  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2425    if (IExp->getType()->isIntegerType()) {
2426      // Check for arithmetic on pointers to incomplete types
2427      if (!PTy->getPointeeType()->isObjectType()) {
2428        if (PTy->getPointeeType()->isVoidType()) {
2429          Diag(Loc, diag::ext_gnu_void_ptr)
2430            << lex->getSourceRange() << rex->getSourceRange();
2431        } else {
2432          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
2433            << lex->getType() << lex->getSourceRange();
2434          return QualType();
2435        }
2436      }
2437      return PExp->getType();
2438    }
2439  }
2440
2441  return InvalidOperands(Loc, lex, rex);
2442}
2443
2444// C99 6.5.6
2445QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2446                                        SourceLocation Loc, bool isCompAssign) {
2447  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2448    return CheckVectorOperands(Loc, lex, rex);
2449
2450  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2451
2452  // Enforce type constraints: C99 6.5.6p3.
2453
2454  // Handle the common case first (both operands are arithmetic).
2455  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2456    return compType;
2457
2458  // Either ptr - int   or   ptr - ptr.
2459  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2460    QualType lpointee = LHSPTy->getPointeeType();
2461
2462    // The LHS must be an object type, not incomplete, function, etc.
2463    if (!lpointee->isObjectType()) {
2464      // Handle the GNU void* extension.
2465      if (lpointee->isVoidType()) {
2466        Diag(Loc, diag::ext_gnu_void_ptr)
2467          << lex->getSourceRange() << rex->getSourceRange();
2468      } else {
2469        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2470          << lex->getType() << lex->getSourceRange();
2471        return QualType();
2472      }
2473    }
2474
2475    // The result type of a pointer-int computation is the pointer type.
2476    if (rex->getType()->isIntegerType())
2477      return lex->getType();
2478
2479    // Handle pointer-pointer subtractions.
2480    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2481      QualType rpointee = RHSPTy->getPointeeType();
2482
2483      // RHS must be an object type, unless void (GNU).
2484      if (!rpointee->isObjectType()) {
2485        // Handle the GNU void* extension.
2486        if (rpointee->isVoidType()) {
2487          if (!lpointee->isVoidType())
2488            Diag(Loc, diag::ext_gnu_void_ptr)
2489              << lex->getSourceRange() << rex->getSourceRange();
2490        } else {
2491          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2492            << rex->getType() << rex->getSourceRange();
2493          return QualType();
2494        }
2495      }
2496
2497      // Pointee types must be compatible.
2498      if (!Context.typesAreCompatible(
2499              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2500              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2501        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2502          << lex->getType() << rex->getType()
2503          << lex->getSourceRange() << rex->getSourceRange();
2504        return QualType();
2505      }
2506
2507      return Context.getPointerDiffType();
2508    }
2509  }
2510
2511  return InvalidOperands(Loc, lex, rex);
2512}
2513
2514// C99 6.5.7
2515QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2516                                  bool isCompAssign) {
2517  // C99 6.5.7p2: Each of the operands shall have integer type.
2518  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2519    return InvalidOperands(Loc, lex, rex);
2520
2521  // Shifts don't perform usual arithmetic conversions, they just do integer
2522  // promotions on each operand. C99 6.5.7p3
2523  if (!isCompAssign)
2524    UsualUnaryConversions(lex);
2525  UsualUnaryConversions(rex);
2526
2527  // "The type of the result is that of the promoted left operand."
2528  return lex->getType();
2529}
2530
2531static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2532                                        ASTContext& Context) {
2533  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2534  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2535  // ID acts sort of like void* for ObjC interfaces
2536  if (LHSIface && Context.isObjCIdType(RHS))
2537    return true;
2538  if (RHSIface && Context.isObjCIdType(LHS))
2539    return true;
2540  if (!LHSIface || !RHSIface)
2541    return false;
2542  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2543         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2544}
2545
2546// C99 6.5.8
2547QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2548                                    bool isRelational) {
2549  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2550    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2551
2552  // C99 6.5.8p3 / C99 6.5.9p4
2553  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2554    UsualArithmeticConversions(lex, rex);
2555  else {
2556    UsualUnaryConversions(lex);
2557    UsualUnaryConversions(rex);
2558  }
2559  QualType lType = lex->getType();
2560  QualType rType = rex->getType();
2561
2562  // For non-floating point types, check for self-comparisons of the form
2563  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2564  // often indicate logic errors in the program.
2565  if (!lType->isFloatingType()) {
2566    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2567      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2568        if (DRL->getDecl() == DRR->getDecl())
2569          Diag(Loc, diag::warn_selfcomparison);
2570  }
2571
2572  // The result of comparisons is 'bool' in C++, 'int' in C.
2573  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2574
2575  if (isRelational) {
2576    if (lType->isRealType() && rType->isRealType())
2577      return ResultTy;
2578  } else {
2579    // Check for comparisons of floating point operands using != and ==.
2580    if (lType->isFloatingType()) {
2581      assert (rType->isFloatingType());
2582      CheckFloatComparison(Loc,lex,rex);
2583    }
2584
2585    if (lType->isArithmeticType() && rType->isArithmeticType())
2586      return ResultTy;
2587  }
2588
2589  bool LHSIsNull = lex->isNullPointerConstant(Context);
2590  bool RHSIsNull = rex->isNullPointerConstant(Context);
2591
2592  // All of the following pointer related warnings are GCC extensions, except
2593  // when handling null pointer constants. One day, we can consider making them
2594  // errors (when -pedantic-errors is enabled).
2595  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2596    QualType LCanPointeeTy =
2597      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2598    QualType RCanPointeeTy =
2599      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2600
2601    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2602        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2603        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2604                                    RCanPointeeTy.getUnqualifiedType()) &&
2605        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2606      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2607        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2608    }
2609    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2610    return ResultTy;
2611  }
2612  // Handle block pointer types.
2613  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2614    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2615    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2616
2617    if (!LHSIsNull && !RHSIsNull &&
2618        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2619      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2620        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2621    }
2622    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2623    return ResultTy;
2624  }
2625  // Allow block pointers to be compared with null pointer constants.
2626  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2627      (lType->isPointerType() && rType->isBlockPointerType())) {
2628    if (!LHSIsNull && !RHSIsNull) {
2629      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2630        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2631    }
2632    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2633    return ResultTy;
2634  }
2635
2636  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2637    if (lType->isPointerType() || rType->isPointerType()) {
2638      const PointerType *LPT = lType->getAsPointerType();
2639      const PointerType *RPT = rType->getAsPointerType();
2640      bool LPtrToVoid = LPT ?
2641        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2642      bool RPtrToVoid = RPT ?
2643        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2644
2645      if (!LPtrToVoid && !RPtrToVoid &&
2646          !Context.typesAreCompatible(lType, rType)) {
2647        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2648          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2649        ImpCastExprToType(rex, lType);
2650        return ResultTy;
2651      }
2652      ImpCastExprToType(rex, lType);
2653      return ResultTy;
2654    }
2655    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2656      ImpCastExprToType(rex, lType);
2657      return ResultTy;
2658    } else {
2659      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2660        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2661          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2662        ImpCastExprToType(rex, lType);
2663        return ResultTy;
2664      }
2665    }
2666  }
2667  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2668       rType->isIntegerType()) {
2669    if (!RHSIsNull)
2670      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2671        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2672    ImpCastExprToType(rex, lType); // promote the integer to pointer
2673    return ResultTy;
2674  }
2675  if (lType->isIntegerType() &&
2676      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2677    if (!LHSIsNull)
2678      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2679        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2680    ImpCastExprToType(lex, rType); // promote the integer to pointer
2681    return ResultTy;
2682  }
2683  // Handle block pointers.
2684  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2685    if (!RHSIsNull)
2686      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2687        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2688    ImpCastExprToType(rex, lType); // promote the integer to pointer
2689    return ResultTy;
2690  }
2691  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2692    if (!LHSIsNull)
2693      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2694        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2695    ImpCastExprToType(lex, rType); // promote the integer to pointer
2696    return ResultTy;
2697  }
2698  return InvalidOperands(Loc, lex, rex);
2699}
2700
2701/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2702/// operates on extended vector types.  Instead of producing an IntTy result,
2703/// like a scalar comparison, a vector comparison produces a vector of integer
2704/// types.
2705QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2706                                          SourceLocation Loc,
2707                                          bool isRelational) {
2708  // Check to make sure we're operating on vectors of the same type and width,
2709  // Allowing one side to be a scalar of element type.
2710  QualType vType = CheckVectorOperands(Loc, lex, rex);
2711  if (vType.isNull())
2712    return vType;
2713
2714  QualType lType = lex->getType();
2715  QualType rType = rex->getType();
2716
2717  // For non-floating point types, check for self-comparisons of the form
2718  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2719  // often indicate logic errors in the program.
2720  if (!lType->isFloatingType()) {
2721    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2722      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2723        if (DRL->getDecl() == DRR->getDecl())
2724          Diag(Loc, diag::warn_selfcomparison);
2725  }
2726
2727  // Check for comparisons of floating point operands using != and ==.
2728  if (!isRelational && lType->isFloatingType()) {
2729    assert (rType->isFloatingType());
2730    CheckFloatComparison(Loc,lex,rex);
2731  }
2732
2733  // Return the type for the comparison, which is the same as vector type for
2734  // integer vectors, or an integer type of identical size and number of
2735  // elements for floating point vectors.
2736  if (lType->isIntegerType())
2737    return lType;
2738
2739  const VectorType *VTy = lType->getAsVectorType();
2740
2741  // FIXME: need to deal with non-32b int / non-64b long long
2742  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2743  if (TypeSize == 32) {
2744    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2745  }
2746  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2747  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2748}
2749
2750inline QualType Sema::CheckBitwiseOperands(
2751  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2752{
2753  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2754    return CheckVectorOperands(Loc, lex, rex);
2755
2756  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2757
2758  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2759    return compType;
2760  return InvalidOperands(Loc, lex, rex);
2761}
2762
2763inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2764  Expr *&lex, Expr *&rex, SourceLocation Loc)
2765{
2766  UsualUnaryConversions(lex);
2767  UsualUnaryConversions(rex);
2768
2769  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2770    return Context.IntTy;
2771  return InvalidOperands(Loc, lex, rex);
2772}
2773
2774/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2775/// emit an error and return true.  If so, return false.
2776static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2777  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2778  if (IsLV == Expr::MLV_Valid)
2779    return false;
2780
2781  unsigned Diag = 0;
2782  bool NeedType = false;
2783  switch (IsLV) { // C99 6.5.16p2
2784  default: assert(0 && "Unknown result from isModifiableLvalue!");
2785  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
2786  case Expr::MLV_ArrayType:
2787    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
2788    NeedType = true;
2789    break;
2790  case Expr::MLV_NotObjectType:
2791    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
2792    NeedType = true;
2793    break;
2794  case Expr::MLV_LValueCast:
2795    Diag = diag::err_typecheck_lvalue_casts_not_supported;
2796    break;
2797  case Expr::MLV_InvalidExpression:
2798    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
2799    break;
2800  case Expr::MLV_IncompleteType:
2801  case Expr::MLV_IncompleteVoidType:
2802    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
2803    NeedType = true;
2804    break;
2805  case Expr::MLV_DuplicateVectorComponents:
2806    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
2807    break;
2808  case Expr::MLV_NotBlockQualified:
2809    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
2810    break;
2811  case Expr::MLV_ReadonlyProperty:
2812    Diag = diag::error_readonly_property_assignment;
2813    break;
2814  case Expr::MLV_NoSetterProperty:
2815    Diag = diag::error_nosetter_property_assignment;
2816    break;
2817  }
2818
2819  if (NeedType)
2820    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
2821  else
2822    S.Diag(Loc, Diag) << E->getSourceRange();
2823  return true;
2824}
2825
2826
2827
2828// C99 6.5.16.1
2829QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
2830                                       SourceLocation Loc,
2831                                       QualType CompoundType) {
2832  // Verify that LHS is a modifiable lvalue, and emit error if not.
2833  if (CheckForModifiableLvalue(LHS, Loc, *this))
2834    return QualType();
2835
2836  QualType LHSType = LHS->getType();
2837  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
2838
2839  AssignConvertType ConvTy;
2840  if (CompoundType.isNull()) {
2841    // Simple assignment "x = y".
2842    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
2843
2844    // If the RHS is a unary plus or minus, check to see if they = and + are
2845    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2846    // instead of "x += 4".
2847    Expr *RHSCheck = RHS;
2848    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2849      RHSCheck = ICE->getSubExpr();
2850    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2851      if ((UO->getOpcode() == UnaryOperator::Plus ||
2852           UO->getOpcode() == UnaryOperator::Minus) &&
2853          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2854          // Only if the two operators are exactly adjacent.
2855          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2856        Diag(Loc, diag::warn_not_compound_assign)
2857          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
2858          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
2859    }
2860  } else {
2861    // Compound assignment "x += y"
2862    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
2863  }
2864
2865  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
2866                               RHS, "assigning"))
2867    return QualType();
2868
2869  // C99 6.5.16p3: The type of an assignment expression is the type of the
2870  // left operand unless the left operand has qualified type, in which case
2871  // it is the unqualified version of the type of the left operand.
2872  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2873  // is converted to the type of the assignment expression (above).
2874  // C++ 5.17p1: the type of the assignment expression is that of its left
2875  // oprdu.
2876  return LHSType.getUnqualifiedType();
2877}
2878
2879// C99 6.5.17
2880QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
2881  // FIXME: what is required for LHS?
2882
2883  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2884  DefaultFunctionArrayConversion(RHS);
2885  return RHS->getType();
2886}
2887
2888/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2889/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2890QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
2891                                              bool isInc) {
2892  QualType ResType = Op->getType();
2893  assert(!ResType.isNull() && "no type for increment/decrement expression");
2894
2895  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
2896    // Decrement of bool is not allowed.
2897    if (!isInc) {
2898      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
2899      return QualType();
2900    }
2901    // Increment of bool sets it to true, but is deprecated.
2902    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
2903  } else if (ResType->isRealType()) {
2904    // OK!
2905  } else if (const PointerType *PT = ResType->getAsPointerType()) {
2906    // C99 6.5.2.4p2, 6.5.6p2
2907    if (PT->getPointeeType()->isObjectType()) {
2908      // Pointer to object is ok!
2909    } else if (PT->getPointeeType()->isVoidType()) {
2910      // Pointer to void is extension.
2911      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
2912    } else {
2913      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
2914        << ResType << Op->getSourceRange();
2915      return QualType();
2916    }
2917  } else if (ResType->isComplexType()) {
2918    // C99 does not support ++/-- on complex types, we allow as an extension.
2919    Diag(OpLoc, diag::ext_integer_increment_complex)
2920      << ResType << Op->getSourceRange();
2921  } else {
2922    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
2923      << ResType << Op->getSourceRange();
2924    return QualType();
2925  }
2926  // At this point, we know we have a real, complex or pointer type.
2927  // Now make sure the operand is a modifiable lvalue.
2928  if (CheckForModifiableLvalue(Op, OpLoc, *this))
2929    return QualType();
2930  return ResType;
2931}
2932
2933/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2934/// This routine allows us to typecheck complex/recursive expressions
2935/// where the declaration is needed for type checking. We only need to
2936/// handle cases when the expression references a function designator
2937/// or is an lvalue. Here are some examples:
2938///  - &(x) => x
2939///  - &*****f => f for f a function designator.
2940///  - &s.xx => s
2941///  - &s.zz[1].yy -> s, if zz is an array
2942///  - *(x + 1) -> x, if x is an array
2943///  - &"123"[2] -> 0
2944///  - & __real__ x -> x
2945static NamedDecl *getPrimaryDecl(Expr *E) {
2946  switch (E->getStmtClass()) {
2947  case Stmt::DeclRefExprClass:
2948  case Stmt::QualifiedDeclRefExprClass:
2949    return cast<DeclRefExpr>(E)->getDecl();
2950  case Stmt::MemberExprClass:
2951    // Fields cannot be declared with a 'register' storage class.
2952    // &X->f is always ok, even if X is declared register.
2953    if (cast<MemberExpr>(E)->isArrow())
2954      return 0;
2955    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2956  case Stmt::ArraySubscriptExprClass: {
2957    // &X[4] and &4[X] refers to X if X is not a pointer.
2958
2959    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2960    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2961    if (!VD || VD->getType()->isPointerType())
2962      return 0;
2963    else
2964      return VD;
2965  }
2966  case Stmt::UnaryOperatorClass: {
2967    UnaryOperator *UO = cast<UnaryOperator>(E);
2968
2969    switch(UO->getOpcode()) {
2970    case UnaryOperator::Deref: {
2971      // *(X + 1) refers to X if X is not a pointer.
2972      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2973        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2974        if (!VD || VD->getType()->isPointerType())
2975          return 0;
2976        return VD;
2977      }
2978      return 0;
2979    }
2980    case UnaryOperator::Real:
2981    case UnaryOperator::Imag:
2982    case UnaryOperator::Extension:
2983      return getPrimaryDecl(UO->getSubExpr());
2984    default:
2985      return 0;
2986    }
2987  }
2988  case Stmt::BinaryOperatorClass: {
2989    BinaryOperator *BO = cast<BinaryOperator>(E);
2990
2991    // Handle cases involving pointer arithmetic. The result of an
2992    // Assign or AddAssign is not an lvalue so they can be ignored.
2993
2994    // (x + n) or (n + x) => x
2995    if (BO->getOpcode() == BinaryOperator::Add) {
2996      if (BO->getLHS()->getType()->isPointerType()) {
2997        return getPrimaryDecl(BO->getLHS());
2998      } else if (BO->getRHS()->getType()->isPointerType()) {
2999        return getPrimaryDecl(BO->getRHS());
3000      }
3001    }
3002
3003    return 0;
3004  }
3005  case Stmt::ParenExprClass:
3006    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3007  case Stmt::ImplicitCastExprClass:
3008    // &X[4] when X is an array, has an implicit cast from array to pointer.
3009    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3010  default:
3011    return 0;
3012  }
3013}
3014
3015/// CheckAddressOfOperand - The operand of & must be either a function
3016/// designator or an lvalue designating an object. If it is an lvalue, the
3017/// object cannot be declared with storage class register or be a bit field.
3018/// Note: The usual conversions are *not* applied to the operand of the &
3019/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3020/// In C++, the operand might be an overloaded function name, in which case
3021/// we allow the '&' but retain the overloaded-function type.
3022QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3023  if (op->isTypeDependent())
3024    return Context.DependentTy;
3025
3026  if (getLangOptions().C99) {
3027    // Implement C99-only parts of addressof rules.
3028    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3029      if (uOp->getOpcode() == UnaryOperator::Deref)
3030        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3031        // (assuming the deref expression is valid).
3032        return uOp->getSubExpr()->getType();
3033    }
3034    // Technically, there should be a check for array subscript
3035    // expressions here, but the result of one is always an lvalue anyway.
3036  }
3037  NamedDecl *dcl = getPrimaryDecl(op);
3038  Expr::isLvalueResult lval = op->isLvalue(Context);
3039
3040  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3041    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3042      // FIXME: emit more specific diag...
3043      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3044        << op->getSourceRange();
3045      return QualType();
3046    }
3047  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3048    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3049      if (Field->isBitField()) {
3050        Diag(OpLoc, diag::err_typecheck_address_of)
3051          << "bit-field" << op->getSourceRange();
3052        return QualType();
3053      }
3054    }
3055  // Check for Apple extension for accessing vector components.
3056  } else if (isa<ArraySubscriptExpr>(op) &&
3057           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
3058    Diag(OpLoc, diag::err_typecheck_address_of)
3059      << "vector" << op->getSourceRange();
3060    return QualType();
3061  } else if (dcl) { // C99 6.5.3.2p1
3062    // We have an lvalue with a decl. Make sure the decl is not declared
3063    // with the register storage-class specifier.
3064    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3065      if (vd->getStorageClass() == VarDecl::Register) {
3066        Diag(OpLoc, diag::err_typecheck_address_of)
3067          << "register variable" << op->getSourceRange();
3068        return QualType();
3069      }
3070    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3071      return Context.OverloadTy;
3072    } else if (isa<FieldDecl>(dcl)) {
3073      // Okay: we can take the address of a field.
3074    } else if (isa<FunctionDecl>(dcl)) {
3075      // Okay: we can take the address of a function.
3076    }
3077    else
3078      assert(0 && "Unknown/unexpected decl type");
3079  }
3080
3081  // If the operand has type "type", the result has type "pointer to type".
3082  return Context.getPointerType(op->getType());
3083}
3084
3085QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3086  UsualUnaryConversions(Op);
3087  QualType Ty = Op->getType();
3088
3089  // Note that per both C89 and C99, this is always legal, even if ptype is an
3090  // incomplete type or void.  It would be possible to warn about dereferencing
3091  // a void pointer, but it's completely well-defined, and such a warning is
3092  // unlikely to catch any mistakes.
3093  if (const PointerType *PT = Ty->getAsPointerType())
3094    return PT->getPointeeType();
3095
3096  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3097    << Ty << Op->getSourceRange();
3098  return QualType();
3099}
3100
3101static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3102  tok::TokenKind Kind) {
3103  BinaryOperator::Opcode Opc;
3104  switch (Kind) {
3105  default: assert(0 && "Unknown binop!");
3106  case tok::star:                 Opc = BinaryOperator::Mul; break;
3107  case tok::slash:                Opc = BinaryOperator::Div; break;
3108  case tok::percent:              Opc = BinaryOperator::Rem; break;
3109  case tok::plus:                 Opc = BinaryOperator::Add; break;
3110  case tok::minus:                Opc = BinaryOperator::Sub; break;
3111  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3112  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3113  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3114  case tok::less:                 Opc = BinaryOperator::LT; break;
3115  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3116  case tok::greater:              Opc = BinaryOperator::GT; break;
3117  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3118  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3119  case tok::amp:                  Opc = BinaryOperator::And; break;
3120  case tok::caret:                Opc = BinaryOperator::Xor; break;
3121  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3122  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3123  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3124  case tok::equal:                Opc = BinaryOperator::Assign; break;
3125  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3126  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3127  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3128  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3129  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3130  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3131  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3132  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3133  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3134  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3135  case tok::comma:                Opc = BinaryOperator::Comma; break;
3136  }
3137  return Opc;
3138}
3139
3140static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3141  tok::TokenKind Kind) {
3142  UnaryOperator::Opcode Opc;
3143  switch (Kind) {
3144  default: assert(0 && "Unknown unary op!");
3145  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3146  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3147  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3148  case tok::star:         Opc = UnaryOperator::Deref; break;
3149  case tok::plus:         Opc = UnaryOperator::Plus; break;
3150  case tok::minus:        Opc = UnaryOperator::Minus; break;
3151  case tok::tilde:        Opc = UnaryOperator::Not; break;
3152  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3153  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3154  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3155  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3156  }
3157  return Opc;
3158}
3159
3160/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3161/// operator @p Opc at location @c TokLoc. This routine only supports
3162/// built-in operations; ActOnBinOp handles overloaded operators.
3163Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3164                                            unsigned Op,
3165                                            Expr *lhs, Expr *rhs) {
3166  QualType ResultTy;  // Result type of the binary operator.
3167  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3168  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3169
3170  switch (Opc) {
3171  default:
3172    assert(0 && "Unknown binary expr!");
3173  case BinaryOperator::Assign:
3174    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3175    break;
3176  case BinaryOperator::Mul:
3177  case BinaryOperator::Div:
3178    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3179    break;
3180  case BinaryOperator::Rem:
3181    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3182    break;
3183  case BinaryOperator::Add:
3184    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3185    break;
3186  case BinaryOperator::Sub:
3187    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3188    break;
3189  case BinaryOperator::Shl:
3190  case BinaryOperator::Shr:
3191    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3192    break;
3193  case BinaryOperator::LE:
3194  case BinaryOperator::LT:
3195  case BinaryOperator::GE:
3196  case BinaryOperator::GT:
3197    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3198    break;
3199  case BinaryOperator::EQ:
3200  case BinaryOperator::NE:
3201    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3202    break;
3203  case BinaryOperator::And:
3204  case BinaryOperator::Xor:
3205  case BinaryOperator::Or:
3206    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3207    break;
3208  case BinaryOperator::LAnd:
3209  case BinaryOperator::LOr:
3210    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3211    break;
3212  case BinaryOperator::MulAssign:
3213  case BinaryOperator::DivAssign:
3214    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3215    if (!CompTy.isNull())
3216      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3217    break;
3218  case BinaryOperator::RemAssign:
3219    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3220    if (!CompTy.isNull())
3221      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3222    break;
3223  case BinaryOperator::AddAssign:
3224    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3225    if (!CompTy.isNull())
3226      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3227    break;
3228  case BinaryOperator::SubAssign:
3229    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3230    if (!CompTy.isNull())
3231      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3232    break;
3233  case BinaryOperator::ShlAssign:
3234  case BinaryOperator::ShrAssign:
3235    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3236    if (!CompTy.isNull())
3237      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3238    break;
3239  case BinaryOperator::AndAssign:
3240  case BinaryOperator::XorAssign:
3241  case BinaryOperator::OrAssign:
3242    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3243    if (!CompTy.isNull())
3244      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3245    break;
3246  case BinaryOperator::Comma:
3247    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3248    break;
3249  }
3250  if (ResultTy.isNull())
3251    return true;
3252  if (CompTy.isNull())
3253    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
3254  else
3255    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
3256}
3257
3258// Binary Operators.  'Tok' is the token for the operator.
3259Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3260                                    tok::TokenKind Kind,
3261                                    ExprTy *LHS, ExprTy *RHS) {
3262  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3263  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
3264
3265  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3266  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3267
3268  // If either expression is type-dependent, just build the AST.
3269  // FIXME: We'll need to perform some caching of the result of name
3270  // lookup for operator+.
3271  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3272    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3273      return new CompoundAssignOperator(lhs, rhs, Opc, Context.DependentTy,
3274                                        Context.DependentTy, TokLoc);
3275    else
3276      return new BinaryOperator(lhs, rhs, Opc, Context.DependentTy, TokLoc);
3277  }
3278
3279  if (getLangOptions().CPlusPlus &&
3280      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3281       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3282    // If this is one of the assignment operators, we only perform
3283    // overload resolution if the left-hand side is a class or
3284    // enumeration type (C++ [expr.ass]p3).
3285    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3286        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3287      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3288    }
3289
3290    // Determine which overloaded operator we're dealing with.
3291    static const OverloadedOperatorKind OverOps[] = {
3292      OO_Star, OO_Slash, OO_Percent,
3293      OO_Plus, OO_Minus,
3294      OO_LessLess, OO_GreaterGreater,
3295      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3296      OO_EqualEqual, OO_ExclaimEqual,
3297      OO_Amp,
3298      OO_Caret,
3299      OO_Pipe,
3300      OO_AmpAmp,
3301      OO_PipePipe,
3302      OO_Equal, OO_StarEqual,
3303      OO_SlashEqual, OO_PercentEqual,
3304      OO_PlusEqual, OO_MinusEqual,
3305      OO_LessLessEqual, OO_GreaterGreaterEqual,
3306      OO_AmpEqual, OO_CaretEqual,
3307      OO_PipeEqual,
3308      OO_Comma
3309    };
3310    OverloadedOperatorKind OverOp = OverOps[Opc];
3311
3312    // Add the appropriate overloaded operators (C++ [over.match.oper])
3313    // to the candidate set.
3314    OverloadCandidateSet CandidateSet;
3315    Expr *Args[2] = { lhs, rhs };
3316    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
3317
3318    // Perform overload resolution.
3319    OverloadCandidateSet::iterator Best;
3320    switch (BestViableFunction(CandidateSet, Best)) {
3321    case OR_Success: {
3322      // We found a built-in operator or an overloaded operator.
3323      FunctionDecl *FnDecl = Best->Function;
3324
3325      if (FnDecl) {
3326        // We matched an overloaded operator. Build a call to that
3327        // operator.
3328
3329        // Convert the arguments.
3330        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3331          if (PerformObjectArgumentInitialization(lhs, Method) ||
3332              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3333                                        "passing"))
3334            return true;
3335        } else {
3336          // Convert the arguments.
3337          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3338                                        "passing") ||
3339              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3340                                        "passing"))
3341            return true;
3342        }
3343
3344        // Determine the result type
3345        QualType ResultTy
3346          = FnDecl->getType()->getAsFunctionType()->getResultType();
3347        ResultTy = ResultTy.getNonReferenceType();
3348
3349        // Build the actual expression node.
3350        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3351                                       SourceLocation());
3352        UsualUnaryConversions(FnExpr);
3353
3354        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
3355      } else {
3356        // We matched a built-in operator. Convert the arguments, then
3357        // break out so that we will build the appropriate built-in
3358        // operator node.
3359        if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
3360                                      "passing") ||
3361            PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
3362                                      "passing"))
3363          return true;
3364
3365        break;
3366      }
3367    }
3368
3369    case OR_No_Viable_Function:
3370      // No viable function; fall through to handling this as a
3371      // built-in operator, which will produce an error message for us.
3372      break;
3373
3374    case OR_Ambiguous:
3375      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3376          << BinaryOperator::getOpcodeStr(Opc)
3377          << lhs->getSourceRange() << rhs->getSourceRange();
3378      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3379      return true;
3380    }
3381
3382    // Either we found no viable overloaded operator or we matched a
3383    // built-in operator. In either case, fall through to trying to
3384    // build a built-in operation.
3385  }
3386
3387  // Build a built-in binary operation.
3388  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3389}
3390
3391// Unary Operators.  'Tok' is the token for the operator.
3392Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3393                                      tok::TokenKind Op, ExprTy *input) {
3394  Expr *Input = (Expr*)input;
3395  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3396
3397  if (getLangOptions().CPlusPlus &&
3398      (Input->getType()->isRecordType()
3399       || Input->getType()->isEnumeralType())) {
3400    // Determine which overloaded operator we're dealing with.
3401    static const OverloadedOperatorKind OverOps[] = {
3402      OO_None, OO_None,
3403      OO_PlusPlus, OO_MinusMinus,
3404      OO_Amp, OO_Star,
3405      OO_Plus, OO_Minus,
3406      OO_Tilde, OO_Exclaim,
3407      OO_None, OO_None,
3408      OO_None,
3409      OO_None
3410    };
3411    OverloadedOperatorKind OverOp = OverOps[Opc];
3412
3413    // Add the appropriate overloaded operators (C++ [over.match.oper])
3414    // to the candidate set.
3415    OverloadCandidateSet CandidateSet;
3416    if (OverOp != OO_None)
3417      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3418
3419    // Perform overload resolution.
3420    OverloadCandidateSet::iterator Best;
3421    switch (BestViableFunction(CandidateSet, Best)) {
3422    case OR_Success: {
3423      // We found a built-in operator or an overloaded operator.
3424      FunctionDecl *FnDecl = Best->Function;
3425
3426      if (FnDecl) {
3427        // We matched an overloaded operator. Build a call to that
3428        // operator.
3429
3430        // Convert the arguments.
3431        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3432          if (PerformObjectArgumentInitialization(Input, Method))
3433            return true;
3434        } else {
3435          // Convert the arguments.
3436          if (PerformCopyInitialization(Input,
3437                                        FnDecl->getParamDecl(0)->getType(),
3438                                        "passing"))
3439            return true;
3440        }
3441
3442        // Determine the result type
3443        QualType ResultTy
3444          = FnDecl->getType()->getAsFunctionType()->getResultType();
3445        ResultTy = ResultTy.getNonReferenceType();
3446
3447        // Build the actual expression node.
3448        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3449                                       SourceLocation());
3450        UsualUnaryConversions(FnExpr);
3451
3452        return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
3453      } else {
3454        // We matched a built-in operator. Convert the arguments, then
3455        // break out so that we will build the appropriate built-in
3456        // operator node.
3457        if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
3458                                      "passing"))
3459          return true;
3460
3461        break;
3462      }
3463    }
3464
3465    case OR_No_Viable_Function:
3466      // No viable function; fall through to handling this as a
3467      // built-in operator, which will produce an error message for us.
3468      break;
3469
3470    case OR_Ambiguous:
3471      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3472          << UnaryOperator::getOpcodeStr(Opc)
3473          << Input->getSourceRange();
3474      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3475      return true;
3476    }
3477
3478    // Either we found no viable overloaded operator or we matched a
3479    // built-in operator. In either case, fall through to trying to
3480    // build a built-in operation.
3481  }
3482
3483  QualType resultType;
3484  switch (Opc) {
3485  default:
3486    assert(0 && "Unimplemented unary expr!");
3487  case UnaryOperator::PreInc:
3488  case UnaryOperator::PreDec:
3489    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
3490                                                Opc == UnaryOperator::PreInc);
3491    break;
3492  case UnaryOperator::AddrOf:
3493    resultType = CheckAddressOfOperand(Input, OpLoc);
3494    break;
3495  case UnaryOperator::Deref:
3496    DefaultFunctionArrayConversion(Input);
3497    resultType = CheckIndirectionOperand(Input, OpLoc);
3498    break;
3499  case UnaryOperator::Plus:
3500  case UnaryOperator::Minus:
3501    UsualUnaryConversions(Input);
3502    resultType = Input->getType();
3503    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3504      break;
3505    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3506             resultType->isEnumeralType())
3507      break;
3508    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3509             Opc == UnaryOperator::Plus &&
3510             resultType->isPointerType())
3511      break;
3512
3513    return Diag(OpLoc, diag::err_typecheck_unary_expr)
3514      << resultType << Input->getSourceRange();
3515  case UnaryOperator::Not: // bitwise complement
3516    UsualUnaryConversions(Input);
3517    resultType = Input->getType();
3518    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3519    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3520      // C99 does not support '~' for complex conjugation.
3521      Diag(OpLoc, diag::ext_integer_complement_complex)
3522        << resultType << Input->getSourceRange();
3523    else if (!resultType->isIntegerType())
3524      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3525        << resultType << Input->getSourceRange();
3526    break;
3527  case UnaryOperator::LNot: // logical negation
3528    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3529    DefaultFunctionArrayConversion(Input);
3530    resultType = Input->getType();
3531    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3532      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3533        << resultType << Input->getSourceRange();
3534    // LNot always has type int. C99 6.5.3.3p5.
3535    resultType = Context.IntTy;
3536    break;
3537  case UnaryOperator::Real:
3538  case UnaryOperator::Imag:
3539    resultType = CheckRealImagOperand(Input, OpLoc);
3540    break;
3541  case UnaryOperator::Extension:
3542    resultType = Input->getType();
3543    break;
3544  }
3545  if (resultType.isNull())
3546    return true;
3547  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3548}
3549
3550/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3551Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3552                                      SourceLocation LabLoc,
3553                                      IdentifierInfo *LabelII) {
3554  // Look up the record for this label identifier.
3555  LabelStmt *&LabelDecl = LabelMap[LabelII];
3556
3557  // If we haven't seen this label yet, create a forward reference. It
3558  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3559  if (LabelDecl == 0)
3560    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3561
3562  // Create the AST node.  The address of a label always has type 'void*'.
3563  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3564                           Context.getPointerType(Context.VoidTy));
3565}
3566
3567Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3568                                     SourceLocation RPLoc) { // "({..})"
3569  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3570  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3571  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3572
3573  // FIXME: there are a variety of strange constraints to enforce here, for
3574  // example, it is not possible to goto into a stmt expression apparently.
3575  // More semantic analysis is needed.
3576
3577  // FIXME: the last statement in the compount stmt has its value used.  We
3578  // should not warn about it being unused.
3579
3580  // If there are sub stmts in the compound stmt, take the type of the last one
3581  // as the type of the stmtexpr.
3582  QualType Ty = Context.VoidTy;
3583
3584  if (!Compound->body_empty()) {
3585    Stmt *LastStmt = Compound->body_back();
3586    // If LastStmt is a label, skip down through into the body.
3587    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3588      LastStmt = Label->getSubStmt();
3589
3590    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3591      Ty = LastExpr->getType();
3592  }
3593
3594  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3595}
3596
3597Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
3598                                            SourceLocation BuiltinLoc,
3599                                            SourceLocation TypeLoc,
3600                                            TypeTy *argty,
3601                                            OffsetOfComponent *CompPtr,
3602                                            unsigned NumComponents,
3603                                            SourceLocation RPLoc) {
3604  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3605  assert(!ArgTy.isNull() && "Missing type argument!");
3606
3607  // We must have at least one component that refers to the type, and the first
3608  // one is known to be a field designator.  Verify that the ArgTy represents
3609  // a struct/union/class.
3610  if (!ArgTy->isRecordType())
3611    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
3612
3613  // Otherwise, create a compound literal expression as the base, and
3614  // iteratively process the offsetof designators.
3615  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3616
3617  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3618  // GCC extension, diagnose them.
3619  if (NumComponents != 1)
3620    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
3621      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
3622
3623  for (unsigned i = 0; i != NumComponents; ++i) {
3624    const OffsetOfComponent &OC = CompPtr[i];
3625    if (OC.isBrackets) {
3626      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3627      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3628      if (!AT) {
3629        delete Res;
3630        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
3631      }
3632
3633      // FIXME: C++: Verify that operator[] isn't overloaded.
3634
3635      // C99 6.5.2.1p1
3636      Expr *Idx = static_cast<Expr*>(OC.U.E);
3637      if (!Idx->getType()->isIntegerType())
3638        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
3639          << Idx->getSourceRange();
3640
3641      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3642      continue;
3643    }
3644
3645    const RecordType *RC = Res->getType()->getAsRecordType();
3646    if (!RC) {
3647      delete Res;
3648      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
3649    }
3650
3651    // Get the decl corresponding to this.
3652    RecordDecl *RD = RC->getDecl();
3653    FieldDecl *MemberDecl
3654      = dyn_cast_or_null<FieldDecl>(LookupDecl(OC.U.IdentInfo,
3655                                               Decl::IDNS_Ordinary,
3656                                               S, RD, false, false));
3657    if (!MemberDecl)
3658      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
3659       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
3660
3661    // FIXME: C++: Verify that MemberDecl isn't a static field.
3662    // FIXME: Verify that MemberDecl isn't a bitfield.
3663    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3664    // matter here.
3665    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3666                         MemberDecl->getType().getNonReferenceType());
3667  }
3668
3669  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3670                           BuiltinLoc);
3671}
3672
3673
3674Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3675                                                TypeTy *arg1, TypeTy *arg2,
3676                                                SourceLocation RPLoc) {
3677  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3678  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3679
3680  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3681
3682  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3683}
3684
3685Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3686                                       ExprTy *expr1, ExprTy *expr2,
3687                                       SourceLocation RPLoc) {
3688  Expr *CondExpr = static_cast<Expr*>(cond);
3689  Expr *LHSExpr = static_cast<Expr*>(expr1);
3690  Expr *RHSExpr = static_cast<Expr*>(expr2);
3691
3692  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3693
3694  // The conditional expression is required to be a constant expression.
3695  llvm::APSInt condEval(32);
3696  SourceLocation ExpLoc;
3697  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3698    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
3699      << CondExpr->getSourceRange();
3700
3701  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3702  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3703                                               RHSExpr->getType();
3704  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3705}
3706
3707//===----------------------------------------------------------------------===//
3708// Clang Extensions.
3709//===----------------------------------------------------------------------===//
3710
3711/// ActOnBlockStart - This callback is invoked when a block literal is started.
3712void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3713  // Analyze block parameters.
3714  BlockSemaInfo *BSI = new BlockSemaInfo();
3715
3716  // Add BSI to CurBlock.
3717  BSI->PrevBlockInfo = CurBlock;
3718  CurBlock = BSI;
3719
3720  BSI->ReturnType = 0;
3721  BSI->TheScope = BlockScope;
3722
3723  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3724  PushDeclContext(BlockScope, BSI->TheDecl);
3725}
3726
3727void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3728  // Analyze arguments to block.
3729  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3730         "Not a function declarator!");
3731  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3732
3733  CurBlock->hasPrototype = FTI.hasPrototype;
3734  CurBlock->isVariadic = true;
3735
3736  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3737  // no arguments, not a function that takes a single void argument.
3738  if (FTI.hasPrototype &&
3739      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3740      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3741        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3742    // empty arg list, don't push any params.
3743    CurBlock->isVariadic = false;
3744  } else if (FTI.hasPrototype) {
3745    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3746      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3747    CurBlock->isVariadic = FTI.isVariadic;
3748  }
3749  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3750
3751  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3752       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3753    // If this has an identifier, add it to the scope stack.
3754    if ((*AI)->getIdentifier())
3755      PushOnScopeChains(*AI, CurBlock->TheScope);
3756}
3757
3758/// ActOnBlockError - If there is an error parsing a block, this callback
3759/// is invoked to pop the information about the block from the action impl.
3760void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3761  // Ensure that CurBlock is deleted.
3762  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3763
3764  // Pop off CurBlock, handle nested blocks.
3765  CurBlock = CurBlock->PrevBlockInfo;
3766
3767  // FIXME: Delete the ParmVarDecl objects as well???
3768
3769}
3770
3771/// ActOnBlockStmtExpr - This is called when the body of a block statement
3772/// literal was successfully completed.  ^(int x){...}
3773Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3774                                          Scope *CurScope) {
3775  // Ensure that CurBlock is deleted.
3776  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3777  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3778
3779  PopDeclContext();
3780
3781  // Pop off CurBlock, handle nested blocks.
3782  CurBlock = CurBlock->PrevBlockInfo;
3783
3784  QualType RetTy = Context.VoidTy;
3785  if (BSI->ReturnType)
3786    RetTy = QualType(BSI->ReturnType, 0);
3787
3788  llvm::SmallVector<QualType, 8> ArgTypes;
3789  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3790    ArgTypes.push_back(BSI->Params[i]->getType());
3791
3792  QualType BlockTy;
3793  if (!BSI->hasPrototype)
3794    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3795  else
3796    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3797                                      BSI->isVariadic, 0);
3798
3799  BlockTy = Context.getBlockPointerType(BlockTy);
3800
3801  BSI->TheDecl->setBody(Body.take());
3802  return new BlockExpr(BSI->TheDecl, BlockTy);
3803}
3804
3805/// ExprsMatchFnType - return true if the Exprs in array Args have
3806/// QualTypes that match the QualTypes of the arguments of the FnType.
3807/// The number of arguments has already been validated to match the number of
3808/// arguments in FnType.
3809static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3810                             ASTContext &Context) {
3811  unsigned NumParams = FnType->getNumArgs();
3812  for (unsigned i = 0; i != NumParams; ++i) {
3813    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3814    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3815
3816    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3817      return false;
3818  }
3819  return true;
3820}
3821
3822Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3823                                         SourceLocation *CommaLocs,
3824                                         SourceLocation BuiltinLoc,
3825                                         SourceLocation RParenLoc) {
3826  // __builtin_overload requires at least 2 arguments
3827  if (NumArgs < 2)
3828    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3829      << SourceRange(BuiltinLoc, RParenLoc);
3830
3831  // The first argument is required to be a constant expression.  It tells us
3832  // the number of arguments to pass to each of the functions to be overloaded.
3833  Expr **Args = reinterpret_cast<Expr**>(args);
3834  Expr *NParamsExpr = Args[0];
3835  llvm::APSInt constEval(32);
3836  SourceLocation ExpLoc;
3837  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3838    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3839      << NParamsExpr->getSourceRange();
3840
3841  // Verify that the number of parameters is > 0
3842  unsigned NumParams = constEval.getZExtValue();
3843  if (NumParams == 0)
3844    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3845      << NParamsExpr->getSourceRange();
3846  // Verify that we have at least 1 + NumParams arguments to the builtin.
3847  if ((NumParams + 1) > NumArgs)
3848    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3849      << SourceRange(BuiltinLoc, RParenLoc);
3850
3851  // Figure out the return type, by matching the args to one of the functions
3852  // listed after the parameters.
3853  OverloadExpr *OE = 0;
3854  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3855    // UsualUnaryConversions will convert the function DeclRefExpr into a
3856    // pointer to function.
3857    Expr *Fn = UsualUnaryConversions(Args[i]);
3858    const FunctionTypeProto *FnType = 0;
3859    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3860      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3861
3862    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3863    // parameters, and the number of parameters must match the value passed to
3864    // the builtin.
3865    if (!FnType || (FnType->getNumArgs() != NumParams))
3866      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
3867        << Fn->getSourceRange();
3868
3869    // Scan the parameter list for the FunctionType, checking the QualType of
3870    // each parameter against the QualTypes of the arguments to the builtin.
3871    // If they match, return a new OverloadExpr.
3872    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3873      if (OE)
3874        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
3875          << OE->getFn()->getSourceRange();
3876      // Remember our match, and continue processing the remaining arguments
3877      // to catch any errors.
3878      OE = new OverloadExpr(Args, NumArgs, i,
3879                            FnType->getResultType().getNonReferenceType(),
3880                            BuiltinLoc, RParenLoc);
3881    }
3882  }
3883  // Return the newly created OverloadExpr node, if we succeded in matching
3884  // exactly one of the candidate functions.
3885  if (OE)
3886    return OE;
3887
3888  // If we didn't find a matching function Expr in the __builtin_overload list
3889  // the return an error.
3890  std::string typeNames;
3891  for (unsigned i = 0; i != NumParams; ++i) {
3892    if (i != 0) typeNames += ", ";
3893    typeNames += Args[i+1]->getType().getAsString();
3894  }
3895
3896  return Diag(BuiltinLoc, diag::err_overload_no_match)
3897    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
3898}
3899
3900Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3901                                  ExprTy *expr, TypeTy *type,
3902                                  SourceLocation RPLoc) {
3903  Expr *E = static_cast<Expr*>(expr);
3904  QualType T = QualType::getFromOpaquePtr(type);
3905
3906  InitBuiltinVaListType();
3907
3908  // Get the va_list type
3909  QualType VaListType = Context.getBuiltinVaListType();
3910  // Deal with implicit array decay; for example, on x86-64,
3911  // va_list is an array, but it's supposed to decay to
3912  // a pointer for va_arg.
3913  if (VaListType->isArrayType())
3914    VaListType = Context.getArrayDecayedType(VaListType);
3915  // Make sure the input expression also decays appropriately.
3916  UsualUnaryConversions(E);
3917
3918  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3919    return Diag(E->getLocStart(),
3920                diag::err_first_argument_to_va_arg_not_of_type_va_list)
3921      << E->getType() << E->getSourceRange();
3922
3923  // FIXME: Warn if a non-POD type is passed in.
3924
3925  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
3926}
3927
3928Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
3929  // The type of __null will be int or long, depending on the size of
3930  // pointers on the target.
3931  QualType Ty;
3932  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
3933    Ty = Context.IntTy;
3934  else
3935    Ty = Context.LongTy;
3936
3937  return new GNUNullExpr(Ty, TokenLoc);
3938}
3939
3940bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3941                                    SourceLocation Loc,
3942                                    QualType DstType, QualType SrcType,
3943                                    Expr *SrcExpr, const char *Flavor) {
3944  // Decode the result (notice that AST's are still created for extensions).
3945  bool isInvalid = false;
3946  unsigned DiagKind;
3947  switch (ConvTy) {
3948  default: assert(0 && "Unknown conversion type");
3949  case Compatible: return false;
3950  case PointerToInt:
3951    DiagKind = diag::ext_typecheck_convert_pointer_int;
3952    break;
3953  case IntToPointer:
3954    DiagKind = diag::ext_typecheck_convert_int_pointer;
3955    break;
3956  case IncompatiblePointer:
3957    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3958    break;
3959  case FunctionVoidPointer:
3960    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3961    break;
3962  case CompatiblePointerDiscardsQualifiers:
3963    // If the qualifiers lost were because we were applying the
3964    // (deprecated) C++ conversion from a string literal to a char*
3965    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3966    // Ideally, this check would be performed in
3967    // CheckPointerTypesForAssignment. However, that would require a
3968    // bit of refactoring (so that the second argument is an
3969    // expression, rather than a type), which should be done as part
3970    // of a larger effort to fix CheckPointerTypesForAssignment for
3971    // C++ semantics.
3972    if (getLangOptions().CPlusPlus &&
3973        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3974      return false;
3975    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3976    break;
3977  case IntToBlockPointer:
3978    DiagKind = diag::err_int_to_block_pointer;
3979    break;
3980  case IncompatibleBlockPointer:
3981    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3982    break;
3983  case IncompatibleObjCQualifiedId:
3984    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3985    // it can give a more specific diagnostic.
3986    DiagKind = diag::warn_incompatible_qualified_id;
3987    break;
3988  case Incompatible:
3989    DiagKind = diag::err_typecheck_convert_incompatible;
3990    isInvalid = true;
3991    break;
3992  }
3993
3994  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
3995    << SrcExpr->getSourceRange();
3996  return isInvalid;
3997}
3998
3999bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4000{
4001  Expr::EvalResult EvalResult;
4002
4003  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4004      EvalResult.HasSideEffects) {
4005    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4006
4007    if (EvalResult.Diag) {
4008      // We only show the note if it's not the usual "invalid subexpression"
4009      // or if it's actually in a subexpression.
4010      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4011          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4012        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4013    }
4014
4015    return true;
4016  }
4017
4018  if (EvalResult.Diag) {
4019    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4020      E->getSourceRange();
4021
4022    // Print the reason it's not a constant.
4023    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4024      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4025  }
4026
4027  if (Result)
4028    *Result = EvalResult.Val.getInt();
4029  return false;
4030}
4031