SemaExpr.cpp revision 58d29a41271d96509f464716f79b0ab2e815b6b1
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>(Context)) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>(Context);
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>(Context);
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>(Context)) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
92/// (and other functions in future), which have been declared with sentinel
93/// attribute. It warns if call does not have the sentinel argument.
94///
95void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
96                                 Expr **Args, unsigned NumArgs)
97{
98  const SentinelAttr *attr = D->getAttr<SentinelAttr>(Context);
99  if (!attr)
100    return;
101  int sentinelPos = attr->getSentinel();
102  int nullPos = attr->getNullPos();
103
104  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
105  // base class. Then we won't be needing two versions of the same code.
106  unsigned int i = 0;
107  bool warnNotEnoughArgs = false;
108  int isMethod = 0;
109  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = MD->param_end();
112    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119    isMethod = 1;
120  }
121  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  }
132  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
133    // block or function pointer call.
134    QualType Ty = V->getType();
135    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
136      const FunctionType *FT = Ty->isFunctionPointerType()
137      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
138      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
139      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
140        unsigned NumArgsInProto = Proto->getNumArgs();
141        unsigned k;
142        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
143          if (nullPos)
144            --nullPos;
145          else
146            ++i;
147        }
148        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
149      }
150      if (Ty->isBlockPointerType())
151        isMethod = 2;
152    }
153    else
154      return;
155  }
156  else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context))) {
181    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
182    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
183  }
184  return;
185}
186
187SourceRange Sema::getExprRange(ExprTy *E) const {
188  Expr *Ex = (Expr *)E;
189  return Ex? Ex->getSourceRange() : SourceRange();
190}
191
192//===----------------------------------------------------------------------===//
193//  Standard Promotions and Conversions
194//===----------------------------------------------------------------------===//
195
196/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
197void Sema::DefaultFunctionArrayConversion(Expr *&E) {
198  QualType Ty = E->getType();
199  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
200
201  if (Ty->isFunctionType())
202    ImpCastExprToType(E, Context.getPointerType(Ty));
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
218  }
219}
220
221/// \brief Whether this is a promotable bitfield reference according
222/// to C99 6.3.1.1p2, bullet 2.
223///
224/// \returns the type this bit-field will promote to, or NULL if no
225/// promotion occurs.
226static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
227  FieldDecl *Field = E->getBitField();
228  if (!Field)
229    return QualType();
230
231  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
232  if (!BT)
233    return QualType();
234
235  if (BT->getKind() != BuiltinType::Bool &&
236      BT->getKind() != BuiltinType::Int &&
237      BT->getKind() != BuiltinType::UInt)
238    return QualType();
239
240  llvm::APSInt BitWidthAP;
241  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
242    return QualType();
243
244  uint64_t BitWidth = BitWidthAP.getZExtValue();
245  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
246  if (BitWidth < IntSize ||
247      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
248    return Context.IntTy;
249
250  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
251    return Context.UnsignedIntTy;
252
253  return QualType();
254}
255
256/// UsualUnaryConversions - Performs various conversions that are common to most
257/// operators (C99 6.3). The conversions of array and function types are
258/// sometimes surpressed. For example, the array->pointer conversion doesn't
259/// apply if the array is an argument to the sizeof or address (&) operators.
260/// In these instances, this routine should *not* be called.
261Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
262  QualType Ty = Expr->getType();
263  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
264
265  // C99 6.3.1.1p2:
266  //
267  //   The following may be used in an expression wherever an int or
268  //   unsigned int may be used:
269  //     - an object or expression with an integer type whose integer
270  //       conversion rank is less than or equal to the rank of int
271  //       and unsigned int.
272  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
273  //
274  //   If an int can represent all values of the original type, the
275  //   value is converted to an int; otherwise, it is converted to an
276  //   unsigned int. These are called the integer promotions. All
277  //   other types are unchanged by the integer promotions.
278  if (Ty->isPromotableIntegerType()) {
279    ImpCastExprToType(Expr, Context.IntTy);
280    return Expr;
281  } else {
282    QualType T = isPromotableBitField(Expr, Context);
283    if (!T.isNull()) {
284      ImpCastExprToType(Expr, T);
285      return Expr;
286    }
287  }
288
289  DefaultFunctionArrayConversion(Expr);
290  return Expr;
291}
292
293/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
294/// do not have a prototype. Arguments that have type float are promoted to
295/// double. All other argument types are converted by UsualUnaryConversions().
296void Sema::DefaultArgumentPromotion(Expr *&Expr) {
297  QualType Ty = Expr->getType();
298  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
299
300  // If this is a 'float' (CVR qualified or typedef) promote to double.
301  if (const BuiltinType *BT = Ty->getAsBuiltinType())
302    if (BT->getKind() == BuiltinType::Float)
303      return ImpCastExprToType(Expr, Context.DoubleTy);
304
305  UsualUnaryConversions(Expr);
306}
307
308/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
309/// will warn if the resulting type is not a POD type, and rejects ObjC
310/// interfaces passed by value.  This returns true if the argument type is
311/// completely illegal.
312bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
313  DefaultArgumentPromotion(Expr);
314
315  if (Expr->getType()->isObjCInterfaceType()) {
316    Diag(Expr->getLocStart(),
317         diag::err_cannot_pass_objc_interface_to_vararg)
318      << Expr->getType() << CT;
319    return true;
320  }
321
322  if (!Expr->getType()->isPODType())
323    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
324      << Expr->getType() << CT;
325
326  return false;
327}
328
329
330/// UsualArithmeticConversions - Performs various conversions that are common to
331/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
332/// routine returns the first non-arithmetic type found. The client is
333/// responsible for emitting appropriate error diagnostics.
334/// FIXME: verify the conversion rules for "complex int" are consistent with
335/// GCC.
336QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
337                                          bool isCompAssign) {
338  if (!isCompAssign)
339    UsualUnaryConversions(lhsExpr);
340
341  UsualUnaryConversions(rhsExpr);
342
343  // For conversion purposes, we ignore any qualifiers.
344  // For example, "const float" and "float" are equivalent.
345  QualType lhs =
346    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
347  QualType rhs =
348    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
349
350  // If both types are identical, no conversion is needed.
351  if (lhs == rhs)
352    return lhs;
353
354  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
355  // The caller can deal with this (e.g. pointer + int).
356  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
357    return lhs;
358
359  // Perform bitfield promotions.
360  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
361  if (!LHSBitfieldPromoteTy.isNull())
362    lhs = LHSBitfieldPromoteTy;
363  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
364  if (!RHSBitfieldPromoteTy.isNull())
365    rhs = RHSBitfieldPromoteTy;
366
367  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
368  if (!isCompAssign)
369    ImpCastExprToType(lhsExpr, destType);
370  ImpCastExprToType(rhsExpr, destType);
371  return destType;
372}
373
374QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
375  // Perform the usual unary conversions. We do this early so that
376  // integral promotions to "int" can allow us to exit early, in the
377  // lhs == rhs check. Also, for conversion purposes, we ignore any
378  // qualifiers.  For example, "const float" and "float" are
379  // equivalent.
380  if (lhs->isPromotableIntegerType())
381    lhs = Context.IntTy;
382  else
383    lhs = lhs.getUnqualifiedType();
384  if (rhs->isPromotableIntegerType())
385    rhs = Context.IntTy;
386  else
387    rhs = rhs.getUnqualifiedType();
388
389  // If both types are identical, no conversion is needed.
390  if (lhs == rhs)
391    return lhs;
392
393  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
394  // The caller can deal with this (e.g. pointer + int).
395  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
396    return lhs;
397
398  // At this point, we have two different arithmetic types.
399
400  // Handle complex types first (C99 6.3.1.8p1).
401  if (lhs->isComplexType() || rhs->isComplexType()) {
402    // if we have an integer operand, the result is the complex type.
403    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
404      // convert the rhs to the lhs complex type.
405      return lhs;
406    }
407    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
408      // convert the lhs to the rhs complex type.
409      return rhs;
410    }
411    // This handles complex/complex, complex/float, or float/complex.
412    // When both operands are complex, the shorter operand is converted to the
413    // type of the longer, and that is the type of the result. This corresponds
414    // to what is done when combining two real floating-point operands.
415    // The fun begins when size promotion occur across type domains.
416    // From H&S 6.3.4: When one operand is complex and the other is a real
417    // floating-point type, the less precise type is converted, within it's
418    // real or complex domain, to the precision of the other type. For example,
419    // when combining a "long double" with a "double _Complex", the
420    // "double _Complex" is promoted to "long double _Complex".
421    int result = Context.getFloatingTypeOrder(lhs, rhs);
422
423    if (result > 0) { // The left side is bigger, convert rhs.
424      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
425    } else if (result < 0) { // The right side is bigger, convert lhs.
426      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
427    }
428    // At this point, lhs and rhs have the same rank/size. Now, make sure the
429    // domains match. This is a requirement for our implementation, C99
430    // does not require this promotion.
431    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
432      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
433        return rhs;
434      } else { // handle "_Complex double, double".
435        return lhs;
436      }
437    }
438    return lhs; // The domain/size match exactly.
439  }
440  // Now handle "real" floating types (i.e. float, double, long double).
441  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
442    // if we have an integer operand, the result is the real floating type.
443    if (rhs->isIntegerType()) {
444      // convert rhs to the lhs floating point type.
445      return lhs;
446    }
447    if (rhs->isComplexIntegerType()) {
448      // convert rhs to the complex floating point type.
449      return Context.getComplexType(lhs);
450    }
451    if (lhs->isIntegerType()) {
452      // convert lhs to the rhs floating point type.
453      return rhs;
454    }
455    if (lhs->isComplexIntegerType()) {
456      // convert lhs to the complex floating point type.
457      return Context.getComplexType(rhs);
458    }
459    // We have two real floating types, float/complex combos were handled above.
460    // Convert the smaller operand to the bigger result.
461    int result = Context.getFloatingTypeOrder(lhs, rhs);
462    if (result > 0) // convert the rhs
463      return lhs;
464    assert(result < 0 && "illegal float comparison");
465    return rhs;   // convert the lhs
466  }
467  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
468    // Handle GCC complex int extension.
469    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
470    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
471
472    if (lhsComplexInt && rhsComplexInt) {
473      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
474                                      rhsComplexInt->getElementType()) >= 0)
475        return lhs; // convert the rhs
476      return rhs;
477    } else if (lhsComplexInt && rhs->isIntegerType()) {
478      // convert the rhs to the lhs complex type.
479      return lhs;
480    } else if (rhsComplexInt && lhs->isIntegerType()) {
481      // convert the lhs to the rhs complex type.
482      return rhs;
483    }
484  }
485  // Finally, we have two differing integer types.
486  // The rules for this case are in C99 6.3.1.8
487  int compare = Context.getIntegerTypeOrder(lhs, rhs);
488  bool lhsSigned = lhs->isSignedIntegerType(),
489       rhsSigned = rhs->isSignedIntegerType();
490  QualType destType;
491  if (lhsSigned == rhsSigned) {
492    // Same signedness; use the higher-ranked type
493    destType = compare >= 0 ? lhs : rhs;
494  } else if (compare != (lhsSigned ? 1 : -1)) {
495    // The unsigned type has greater than or equal rank to the
496    // signed type, so use the unsigned type
497    destType = lhsSigned ? rhs : lhs;
498  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
499    // The two types are different widths; if we are here, that
500    // means the signed type is larger than the unsigned type, so
501    // use the signed type.
502    destType = lhsSigned ? lhs : rhs;
503  } else {
504    // The signed type is higher-ranked than the unsigned type,
505    // but isn't actually any bigger (like unsigned int and long
506    // on most 32-bit systems).  Use the unsigned type corresponding
507    // to the signed type.
508    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
509  }
510  return destType;
511}
512
513//===----------------------------------------------------------------------===//
514//  Semantic Analysis for various Expression Types
515//===----------------------------------------------------------------------===//
516
517
518/// ActOnStringLiteral - The specified tokens were lexed as pasted string
519/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
520/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
521/// multiple tokens.  However, the common case is that StringToks points to one
522/// string.
523///
524Action::OwningExprResult
525Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
526  assert(NumStringToks && "Must have at least one string!");
527
528  StringLiteralParser Literal(StringToks, NumStringToks, PP);
529  if (Literal.hadError)
530    return ExprError();
531
532  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
533  for (unsigned i = 0; i != NumStringToks; ++i)
534    StringTokLocs.push_back(StringToks[i].getLocation());
535
536  QualType StrTy = Context.CharTy;
537  if (Literal.AnyWide) StrTy = Context.getWCharType();
538  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
539
540  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
541  if (getLangOptions().CPlusPlus)
542    StrTy.addConst();
543
544  // Get an array type for the string, according to C99 6.4.5.  This includes
545  // the nul terminator character as well as the string length for pascal
546  // strings.
547  StrTy = Context.getConstantArrayType(StrTy,
548                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
549                                       ArrayType::Normal, 0);
550
551  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
552  return Owned(StringLiteral::Create(Context, Literal.GetString(),
553                                     Literal.GetStringLength(),
554                                     Literal.AnyWide, StrTy,
555                                     &StringTokLocs[0],
556                                     StringTokLocs.size()));
557}
558
559/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
560/// CurBlock to VD should cause it to be snapshotted (as we do for auto
561/// variables defined outside the block) or false if this is not needed (e.g.
562/// for values inside the block or for globals).
563///
564/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
565/// up-to-date.
566///
567static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
568                                              ValueDecl *VD) {
569  // If the value is defined inside the block, we couldn't snapshot it even if
570  // we wanted to.
571  if (CurBlock->TheDecl == VD->getDeclContext())
572    return false;
573
574  // If this is an enum constant or function, it is constant, don't snapshot.
575  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
576    return false;
577
578  // If this is a reference to an extern, static, or global variable, no need to
579  // snapshot it.
580  // FIXME: What about 'const' variables in C++?
581  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
582    if (!Var->hasLocalStorage())
583      return false;
584
585  // Blocks that have these can't be constant.
586  CurBlock->hasBlockDeclRefExprs = true;
587
588  // If we have nested blocks, the decl may be declared in an outer block (in
589  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
590  // be defined outside all of the current blocks (in which case the blocks do
591  // all get the bit).  Walk the nesting chain.
592  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
593       NextBlock = NextBlock->PrevBlockInfo) {
594    // If we found the defining block for the variable, don't mark the block as
595    // having a reference outside it.
596    if (NextBlock->TheDecl == VD->getDeclContext())
597      break;
598
599    // Otherwise, the DeclRef from the inner block causes the outer one to need
600    // a snapshot as well.
601    NextBlock->hasBlockDeclRefExprs = true;
602  }
603
604  return true;
605}
606
607
608
609/// ActOnIdentifierExpr - The parser read an identifier in expression context,
610/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
611/// identifier is used in a function call context.
612/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
613/// class or namespace that the identifier must be a member of.
614Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
615                                                 IdentifierInfo &II,
616                                                 bool HasTrailingLParen,
617                                                 const CXXScopeSpec *SS,
618                                                 bool isAddressOfOperand) {
619  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
620                                  isAddressOfOperand);
621}
622
623/// BuildDeclRefExpr - Build either a DeclRefExpr or a
624/// QualifiedDeclRefExpr based on whether or not SS is a
625/// nested-name-specifier.
626Sema::OwningExprResult
627Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
628                       bool TypeDependent, bool ValueDependent,
629                       const CXXScopeSpec *SS) {
630
631  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
632    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
633      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
634        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
635          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
636            << D->getIdentifier() << FD->getDeclName();
637          Diag(D->getLocation(), diag::note_local_variable_declared_here)
638            << D->getIdentifier();
639          return ExprError();
640        }
641      }
642    }
643  }
644
645  MarkDeclarationReferenced(Loc, D);
646
647  Expr *E;
648  if (SS && !SS->isEmpty()) {
649    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
650                                          ValueDependent, SS->getRange(),
651                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
652  } else
653    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
654
655  return Owned(E);
656}
657
658/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
659/// variable corresponding to the anonymous union or struct whose type
660/// is Record.
661static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
662                                             RecordDecl *Record) {
663  assert(Record->isAnonymousStructOrUnion() &&
664         "Record must be an anonymous struct or union!");
665
666  // FIXME: Once Decls are directly linked together, this will be an O(1)
667  // operation rather than a slow walk through DeclContext's vector (which
668  // itself will be eliminated). DeclGroups might make this even better.
669  DeclContext *Ctx = Record->getDeclContext();
670  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
671                               DEnd = Ctx->decls_end(Context);
672       D != DEnd; ++D) {
673    if (*D == Record) {
674      // The object for the anonymous struct/union directly
675      // follows its type in the list of declarations.
676      ++D;
677      assert(D != DEnd && "Missing object for anonymous record");
678      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
679      return *D;
680    }
681  }
682
683  assert(false && "Missing object for anonymous record");
684  return 0;
685}
686
687/// \brief Given a field that represents a member of an anonymous
688/// struct/union, build the path from that field's context to the
689/// actual member.
690///
691/// Construct the sequence of field member references we'll have to
692/// perform to get to the field in the anonymous union/struct. The
693/// list of members is built from the field outward, so traverse it
694/// backwards to go from an object in the current context to the field
695/// we found.
696///
697/// \returns The variable from which the field access should begin,
698/// for an anonymous struct/union that is not a member of another
699/// class. Otherwise, returns NULL.
700VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
701                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
702  assert(Field->getDeclContext()->isRecord() &&
703         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
704         && "Field must be stored inside an anonymous struct or union");
705
706  Path.push_back(Field);
707  VarDecl *BaseObject = 0;
708  DeclContext *Ctx = Field->getDeclContext();
709  do {
710    RecordDecl *Record = cast<RecordDecl>(Ctx);
711    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
712    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
713      Path.push_back(AnonField);
714    else {
715      BaseObject = cast<VarDecl>(AnonObject);
716      break;
717    }
718    Ctx = Ctx->getParent();
719  } while (Ctx->isRecord() &&
720           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
721
722  return BaseObject;
723}
724
725Sema::OwningExprResult
726Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
727                                               FieldDecl *Field,
728                                               Expr *BaseObjectExpr,
729                                               SourceLocation OpLoc) {
730  llvm::SmallVector<FieldDecl *, 4> AnonFields;
731  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
732                                                            AnonFields);
733
734  // Build the expression that refers to the base object, from
735  // which we will build a sequence of member references to each
736  // of the anonymous union objects and, eventually, the field we
737  // found via name lookup.
738  bool BaseObjectIsPointer = false;
739  unsigned ExtraQuals = 0;
740  if (BaseObject) {
741    // BaseObject is an anonymous struct/union variable (and is,
742    // therefore, not part of another non-anonymous record).
743    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
744    MarkDeclarationReferenced(Loc, BaseObject);
745    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
746                                               SourceLocation());
747    ExtraQuals
748      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
749  } else if (BaseObjectExpr) {
750    // The caller provided the base object expression. Determine
751    // whether its a pointer and whether it adds any qualifiers to the
752    // anonymous struct/union fields we're looking into.
753    QualType ObjectType = BaseObjectExpr->getType();
754    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
755      BaseObjectIsPointer = true;
756      ObjectType = ObjectPtr->getPointeeType();
757    }
758    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
759  } else {
760    // We've found a member of an anonymous struct/union that is
761    // inside a non-anonymous struct/union, so in a well-formed
762    // program our base object expression is "this".
763    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
764      if (!MD->isStatic()) {
765        QualType AnonFieldType
766          = Context.getTagDeclType(
767                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
768        QualType ThisType = Context.getTagDeclType(MD->getParent());
769        if ((Context.getCanonicalType(AnonFieldType)
770               == Context.getCanonicalType(ThisType)) ||
771            IsDerivedFrom(ThisType, AnonFieldType)) {
772          // Our base object expression is "this".
773          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
774                                                     MD->getThisType(Context));
775          BaseObjectIsPointer = true;
776        }
777      } else {
778        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
779          << Field->getDeclName());
780      }
781      ExtraQuals = MD->getTypeQualifiers();
782    }
783
784    if (!BaseObjectExpr)
785      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
786        << Field->getDeclName());
787  }
788
789  // Build the implicit member references to the field of the
790  // anonymous struct/union.
791  Expr *Result = BaseObjectExpr;
792  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
793         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
794       FI != FIEnd; ++FI) {
795    QualType MemberType = (*FI)->getType();
796    if (!(*FI)->isMutable()) {
797      unsigned combinedQualifiers
798        = MemberType.getCVRQualifiers() | ExtraQuals;
799      MemberType = MemberType.getQualifiedType(combinedQualifiers);
800    }
801    MarkDeclarationReferenced(Loc, *FI);
802    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
803                                      OpLoc, MemberType);
804    BaseObjectIsPointer = false;
805    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
806  }
807
808  return Owned(Result);
809}
810
811/// ActOnDeclarationNameExpr - The parser has read some kind of name
812/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
813/// performs lookup on that name and returns an expression that refers
814/// to that name. This routine isn't directly called from the parser,
815/// because the parser doesn't know about DeclarationName. Rather,
816/// this routine is called by ActOnIdentifierExpr,
817/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
818/// which form the DeclarationName from the corresponding syntactic
819/// forms.
820///
821/// HasTrailingLParen indicates whether this identifier is used in a
822/// function call context.  LookupCtx is only used for a C++
823/// qualified-id (foo::bar) to indicate the class or namespace that
824/// the identifier must be a member of.
825///
826/// isAddressOfOperand means that this expression is the direct operand
827/// of an address-of operator. This matters because this is the only
828/// situation where a qualified name referencing a non-static member may
829/// appear outside a member function of this class.
830Sema::OwningExprResult
831Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
832                               DeclarationName Name, bool HasTrailingLParen,
833                               const CXXScopeSpec *SS,
834                               bool isAddressOfOperand) {
835  // Could be enum-constant, value decl, instance variable, etc.
836  if (SS && SS->isInvalid())
837    return ExprError();
838
839  // C++ [temp.dep.expr]p3:
840  //   An id-expression is type-dependent if it contains:
841  //     -- a nested-name-specifier that contains a class-name that
842  //        names a dependent type.
843  // FIXME: Member of the current instantiation.
844  if (SS && isDependentScopeSpecifier(*SS)) {
845    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
846                                                     Loc, SS->getRange(),
847                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
848  }
849
850  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
851                                         false, true, Loc);
852
853  if (Lookup.isAmbiguous()) {
854    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
855                            SS && SS->isSet() ? SS->getRange()
856                                              : SourceRange());
857    return ExprError();
858  }
859
860  NamedDecl *D = Lookup.getAsDecl();
861
862  // If this reference is in an Objective-C method, then ivar lookup happens as
863  // well.
864  IdentifierInfo *II = Name.getAsIdentifierInfo();
865  if (II && getCurMethodDecl()) {
866    // There are two cases to handle here.  1) scoped lookup could have failed,
867    // in which case we should look for an ivar.  2) scoped lookup could have
868    // found a decl, but that decl is outside the current instance method (i.e.
869    // a global variable).  In these two cases, we do a lookup for an ivar with
870    // this name, if the lookup sucedes, we replace it our current decl.
871    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
872      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
873      ObjCInterfaceDecl *ClassDeclared;
874      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
875                                                           ClassDeclared)) {
876        // Check if referencing a field with __attribute__((deprecated)).
877        if (DiagnoseUseOfDecl(IV, Loc))
878          return ExprError();
879
880        // If we're referencing an invalid decl, just return this as a silent
881        // error node.  The error diagnostic was already emitted on the decl.
882        if (IV->isInvalidDecl())
883          return ExprError();
884
885        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
886        // If a class method attemps to use a free standing ivar, this is
887        // an error.
888        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
889           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
890                           << IV->getDeclName());
891        // If a class method uses a global variable, even if an ivar with
892        // same name exists, use the global.
893        if (!IsClsMethod) {
894          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
895              ClassDeclared != IFace)
896           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
897          // FIXME: This should use a new expr for a direct reference, don't
898          // turn this into Self->ivar, just return a BareIVarExpr or something.
899          IdentifierInfo &II = Context.Idents.get("self");
900          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
901          MarkDeclarationReferenced(Loc, IV);
902          return Owned(new (Context)
903                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
904                                       SelfExpr.takeAs<Expr>(), true, true));
905        }
906      }
907    }
908    else if (getCurMethodDecl()->isInstanceMethod()) {
909      // We should warn if a local variable hides an ivar.
910      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
911      ObjCInterfaceDecl *ClassDeclared;
912      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
913                                                           ClassDeclared)) {
914        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
915            IFace == ClassDeclared)
916          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
917      }
918    }
919    // Needed to implement property "super.method" notation.
920    if (D == 0 && II->isStr("super")) {
921      QualType T;
922
923      if (getCurMethodDecl()->isInstanceMethod())
924        T = Context.getPointerType(Context.getObjCInterfaceType(
925                                   getCurMethodDecl()->getClassInterface()));
926      else
927        T = Context.getObjCClassType();
928      return Owned(new (Context) ObjCSuperExpr(Loc, T));
929    }
930  }
931
932  // Determine whether this name might be a candidate for
933  // argument-dependent lookup.
934  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
935             HasTrailingLParen;
936
937  if (ADL && D == 0) {
938    // We've seen something of the form
939    //
940    //   identifier(
941    //
942    // and we did not find any entity by the name
943    // "identifier". However, this identifier is still subject to
944    // argument-dependent lookup, so keep track of the name.
945    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
946                                                          Context.OverloadTy,
947                                                          Loc));
948  }
949
950  if (D == 0) {
951    // Otherwise, this could be an implicitly declared function reference (legal
952    // in C90, extension in C99).
953    if (HasTrailingLParen && II &&
954        !getLangOptions().CPlusPlus) // Not in C++.
955      D = ImplicitlyDefineFunction(Loc, *II, S);
956    else {
957      // If this name wasn't predeclared and if this is not a function call,
958      // diagnose the problem.
959      if (SS && !SS->isEmpty())
960        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
961          << Name << SS->getRange());
962      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
963               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
964        return ExprError(Diag(Loc, diag::err_undeclared_use)
965          << Name.getAsString());
966      else
967        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
968    }
969  }
970
971  // If this is an expression of the form &Class::member, don't build an
972  // implicit member ref, because we want a pointer to the member in general,
973  // not any specific instance's member.
974  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
975    DeclContext *DC = computeDeclContext(*SS);
976    if (D && isa<CXXRecordDecl>(DC)) {
977      QualType DType;
978      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
979        DType = FD->getType().getNonReferenceType();
980      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
981        DType = Method->getType();
982      } else if (isa<OverloadedFunctionDecl>(D)) {
983        DType = Context.OverloadTy;
984      }
985      // Could be an inner type. That's diagnosed below, so ignore it here.
986      if (!DType.isNull()) {
987        // The pointer is type- and value-dependent if it points into something
988        // dependent.
989        bool Dependent = DC->isDependentContext();
990        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
991      }
992    }
993  }
994
995  // We may have found a field within an anonymous union or struct
996  // (C++ [class.union]).
997  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
998    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
999      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1000
1001  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1002    if (!MD->isStatic()) {
1003      // C++ [class.mfct.nonstatic]p2:
1004      //   [...] if name lookup (3.4.1) resolves the name in the
1005      //   id-expression to a nonstatic nontype member of class X or of
1006      //   a base class of X, the id-expression is transformed into a
1007      //   class member access expression (5.2.5) using (*this) (9.3.2)
1008      //   as the postfix-expression to the left of the '.' operator.
1009      DeclContext *Ctx = 0;
1010      QualType MemberType;
1011      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1012        Ctx = FD->getDeclContext();
1013        MemberType = FD->getType();
1014
1015        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1016          MemberType = RefType->getPointeeType();
1017        else if (!FD->isMutable()) {
1018          unsigned combinedQualifiers
1019            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1020          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1021        }
1022      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1023        if (!Method->isStatic()) {
1024          Ctx = Method->getParent();
1025          MemberType = Method->getType();
1026        }
1027      } else if (OverloadedFunctionDecl *Ovl
1028                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1029        for (OverloadedFunctionDecl::function_iterator
1030               Func = Ovl->function_begin(),
1031               FuncEnd = Ovl->function_end();
1032             Func != FuncEnd; ++Func) {
1033          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1034            if (!DMethod->isStatic()) {
1035              Ctx = Ovl->getDeclContext();
1036              MemberType = Context.OverloadTy;
1037              break;
1038            }
1039        }
1040      }
1041
1042      if (Ctx && Ctx->isRecord()) {
1043        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1044        QualType ThisType = Context.getTagDeclType(MD->getParent());
1045        if ((Context.getCanonicalType(CtxType)
1046               == Context.getCanonicalType(ThisType)) ||
1047            IsDerivedFrom(ThisType, CtxType)) {
1048          // Build the implicit member access expression.
1049          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1050                                                 MD->getThisType(Context));
1051          MarkDeclarationReferenced(Loc, D);
1052          return Owned(new (Context) MemberExpr(This, true, D,
1053                                                Loc, MemberType));
1054        }
1055      }
1056    }
1057  }
1058
1059  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1060    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1061      if (MD->isStatic())
1062        // "invalid use of member 'x' in static member function"
1063        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1064          << FD->getDeclName());
1065    }
1066
1067    // Any other ways we could have found the field in a well-formed
1068    // program would have been turned into implicit member expressions
1069    // above.
1070    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1071      << FD->getDeclName());
1072  }
1073
1074  if (isa<TypedefDecl>(D))
1075    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1076  if (isa<ObjCInterfaceDecl>(D))
1077    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1078  if (isa<NamespaceDecl>(D))
1079    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1080
1081  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1082  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1083    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1084                           false, false, SS);
1085  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1086    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1087                            false, false, SS);
1088  ValueDecl *VD = cast<ValueDecl>(D);
1089
1090  // Check whether this declaration can be used. Note that we suppress
1091  // this check when we're going to perform argument-dependent lookup
1092  // on this function name, because this might not be the function
1093  // that overload resolution actually selects.
1094  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1095    return ExprError();
1096
1097  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
1098    // Warn about constructs like:
1099    //   if (void *X = foo()) { ... } else { X }.
1100    // In the else block, the pointer is always false.
1101
1102    // FIXME: In a template instantiation, we don't have scope
1103    // information to check this property.
1104    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1105      Scope *CheckS = S;
1106      while (CheckS) {
1107        if (CheckS->isWithinElse() &&
1108            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1109          if (Var->getType()->isBooleanType())
1110            ExprError(Diag(Loc, diag::warn_value_always_false)
1111              << Var->getDeclName());
1112          else
1113            ExprError(Diag(Loc, diag::warn_value_always_zero)
1114              << Var->getDeclName());
1115          break;
1116        }
1117
1118        // Move up one more control parent to check again.
1119        CheckS = CheckS->getControlParent();
1120        if (CheckS)
1121          CheckS = CheckS->getParent();
1122      }
1123    }
1124  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
1125    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1126      // C99 DR 316 says that, if a function type comes from a
1127      // function definition (without a prototype), that type is only
1128      // used for checking compatibility. Therefore, when referencing
1129      // the function, we pretend that we don't have the full function
1130      // type.
1131      QualType T = Func->getType();
1132      QualType NoProtoType = T;
1133      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1134        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1135      return BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS);
1136    }
1137  }
1138
1139  // Only create DeclRefExpr's for valid Decl's.
1140  if (VD->isInvalidDecl())
1141    return ExprError();
1142
1143  // If the identifier reference is inside a block, and it refers to a value
1144  // that is outside the block, create a BlockDeclRefExpr instead of a
1145  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1146  // the block is formed.
1147  //
1148  // We do not do this for things like enum constants, global variables, etc,
1149  // as they do not get snapshotted.
1150  //
1151  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1152    MarkDeclarationReferenced(Loc, VD);
1153    QualType ExprTy = VD->getType().getNonReferenceType();
1154    // The BlocksAttr indicates the variable is bound by-reference.
1155    if (VD->getAttr<BlocksAttr>(Context))
1156      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1157    // This is to record that a 'const' was actually synthesize and added.
1158    bool constAdded = !ExprTy.isConstQualified();
1159    // Variable will be bound by-copy, make it const within the closure.
1160
1161    ExprTy.addConst();
1162    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1163                                                constAdded));
1164  }
1165  // If this reference is not in a block or if the referenced variable is
1166  // within the block, create a normal DeclRefExpr.
1167
1168  bool TypeDependent = false;
1169  bool ValueDependent = false;
1170  if (getLangOptions().CPlusPlus) {
1171    // C++ [temp.dep.expr]p3:
1172    //   An id-expression is type-dependent if it contains:
1173    //     - an identifier that was declared with a dependent type,
1174    if (VD->getType()->isDependentType())
1175      TypeDependent = true;
1176    //     - FIXME: a template-id that is dependent,
1177    //     - a conversion-function-id that specifies a dependent type,
1178    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1179             Name.getCXXNameType()->isDependentType())
1180      TypeDependent = true;
1181    //     - a nested-name-specifier that contains a class-name that
1182    //       names a dependent type.
1183    else if (SS && !SS->isEmpty()) {
1184      for (DeclContext *DC = computeDeclContext(*SS);
1185           DC; DC = DC->getParent()) {
1186        // FIXME: could stop early at namespace scope.
1187        if (DC->isRecord()) {
1188          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1189          if (Context.getTypeDeclType(Record)->isDependentType()) {
1190            TypeDependent = true;
1191            break;
1192          }
1193        }
1194      }
1195    }
1196
1197    // C++ [temp.dep.constexpr]p2:
1198    //
1199    //   An identifier is value-dependent if it is:
1200    //     - a name declared with a dependent type,
1201    if (TypeDependent)
1202      ValueDependent = true;
1203    //     - the name of a non-type template parameter,
1204    else if (isa<NonTypeTemplateParmDecl>(VD))
1205      ValueDependent = true;
1206    //    - a constant with integral or enumeration type and is
1207    //      initialized with an expression that is value-dependent
1208    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1209      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1210          Dcl->getInit()) {
1211        ValueDependent = Dcl->getInit()->isValueDependent();
1212      }
1213    }
1214  }
1215
1216  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1217                          TypeDependent, ValueDependent, SS);
1218}
1219
1220Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1221                                                 tok::TokenKind Kind) {
1222  PredefinedExpr::IdentType IT;
1223
1224  switch (Kind) {
1225  default: assert(0 && "Unknown simple primary expr!");
1226  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1227  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1228  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1229  }
1230
1231  // Pre-defined identifiers are of type char[x], where x is the length of the
1232  // string.
1233  unsigned Length;
1234  if (FunctionDecl *FD = getCurFunctionDecl())
1235    Length = FD->getIdentifier()->getLength();
1236  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1237    Length = MD->getSynthesizedMethodSize();
1238  else {
1239    Diag(Loc, diag::ext_predef_outside_function);
1240    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1241    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1242  }
1243
1244
1245  llvm::APInt LengthI(32, Length + 1);
1246  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1247  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1248  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1249}
1250
1251Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1252  llvm::SmallString<16> CharBuffer;
1253  CharBuffer.resize(Tok.getLength());
1254  const char *ThisTokBegin = &CharBuffer[0];
1255  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1256
1257  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1258                            Tok.getLocation(), PP);
1259  if (Literal.hadError())
1260    return ExprError();
1261
1262  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1263
1264  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1265                                              Literal.isWide(),
1266                                              type, Tok.getLocation()));
1267}
1268
1269Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1270  // Fast path for a single digit (which is quite common).  A single digit
1271  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1272  if (Tok.getLength() == 1) {
1273    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1274    unsigned IntSize = Context.Target.getIntWidth();
1275    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1276                    Context.IntTy, Tok.getLocation()));
1277  }
1278
1279  llvm::SmallString<512> IntegerBuffer;
1280  // Add padding so that NumericLiteralParser can overread by one character.
1281  IntegerBuffer.resize(Tok.getLength()+1);
1282  const char *ThisTokBegin = &IntegerBuffer[0];
1283
1284  // Get the spelling of the token, which eliminates trigraphs, etc.
1285  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1286
1287  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1288                               Tok.getLocation(), PP);
1289  if (Literal.hadError)
1290    return ExprError();
1291
1292  Expr *Res;
1293
1294  if (Literal.isFloatingLiteral()) {
1295    QualType Ty;
1296    if (Literal.isFloat)
1297      Ty = Context.FloatTy;
1298    else if (!Literal.isLong)
1299      Ty = Context.DoubleTy;
1300    else
1301      Ty = Context.LongDoubleTy;
1302
1303    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1304
1305    // isExact will be set by GetFloatValue().
1306    bool isExact = false;
1307    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1308                                        &isExact, Ty, Tok.getLocation());
1309
1310  } else if (!Literal.isIntegerLiteral()) {
1311    return ExprError();
1312  } else {
1313    QualType Ty;
1314
1315    // long long is a C99 feature.
1316    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1317        Literal.isLongLong)
1318      Diag(Tok.getLocation(), diag::ext_longlong);
1319
1320    // Get the value in the widest-possible width.
1321    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1322
1323    if (Literal.GetIntegerValue(ResultVal)) {
1324      // If this value didn't fit into uintmax_t, warn and force to ull.
1325      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1326      Ty = Context.UnsignedLongLongTy;
1327      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1328             "long long is not intmax_t?");
1329    } else {
1330      // If this value fits into a ULL, try to figure out what else it fits into
1331      // according to the rules of C99 6.4.4.1p5.
1332
1333      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1334      // be an unsigned int.
1335      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1336
1337      // Check from smallest to largest, picking the smallest type we can.
1338      unsigned Width = 0;
1339      if (!Literal.isLong && !Literal.isLongLong) {
1340        // Are int/unsigned possibilities?
1341        unsigned IntSize = Context.Target.getIntWidth();
1342
1343        // Does it fit in a unsigned int?
1344        if (ResultVal.isIntN(IntSize)) {
1345          // Does it fit in a signed int?
1346          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1347            Ty = Context.IntTy;
1348          else if (AllowUnsigned)
1349            Ty = Context.UnsignedIntTy;
1350          Width = IntSize;
1351        }
1352      }
1353
1354      // Are long/unsigned long possibilities?
1355      if (Ty.isNull() && !Literal.isLongLong) {
1356        unsigned LongSize = Context.Target.getLongWidth();
1357
1358        // Does it fit in a unsigned long?
1359        if (ResultVal.isIntN(LongSize)) {
1360          // Does it fit in a signed long?
1361          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1362            Ty = Context.LongTy;
1363          else if (AllowUnsigned)
1364            Ty = Context.UnsignedLongTy;
1365          Width = LongSize;
1366        }
1367      }
1368
1369      // Finally, check long long if needed.
1370      if (Ty.isNull()) {
1371        unsigned LongLongSize = Context.Target.getLongLongWidth();
1372
1373        // Does it fit in a unsigned long long?
1374        if (ResultVal.isIntN(LongLongSize)) {
1375          // Does it fit in a signed long long?
1376          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1377            Ty = Context.LongLongTy;
1378          else if (AllowUnsigned)
1379            Ty = Context.UnsignedLongLongTy;
1380          Width = LongLongSize;
1381        }
1382      }
1383
1384      // If we still couldn't decide a type, we probably have something that
1385      // does not fit in a signed long long, but has no U suffix.
1386      if (Ty.isNull()) {
1387        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1388        Ty = Context.UnsignedLongLongTy;
1389        Width = Context.Target.getLongLongWidth();
1390      }
1391
1392      if (ResultVal.getBitWidth() != Width)
1393        ResultVal.trunc(Width);
1394    }
1395    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1396  }
1397
1398  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1399  if (Literal.isImaginary)
1400    Res = new (Context) ImaginaryLiteral(Res,
1401                                        Context.getComplexType(Res->getType()));
1402
1403  return Owned(Res);
1404}
1405
1406Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1407                                              SourceLocation R, ExprArg Val) {
1408  Expr *E = Val.takeAs<Expr>();
1409  assert((E != 0) && "ActOnParenExpr() missing expr");
1410  return Owned(new (Context) ParenExpr(L, R, E));
1411}
1412
1413/// The UsualUnaryConversions() function is *not* called by this routine.
1414/// See C99 6.3.2.1p[2-4] for more details.
1415bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1416                                     SourceLocation OpLoc,
1417                                     const SourceRange &ExprRange,
1418                                     bool isSizeof) {
1419  if (exprType->isDependentType())
1420    return false;
1421
1422  // C99 6.5.3.4p1:
1423  if (isa<FunctionType>(exprType)) {
1424    // alignof(function) is allowed as an extension.
1425    if (isSizeof)
1426      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1427    return false;
1428  }
1429
1430  // Allow sizeof(void)/alignof(void) as an extension.
1431  if (exprType->isVoidType()) {
1432    Diag(OpLoc, diag::ext_sizeof_void_type)
1433      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1434    return false;
1435  }
1436
1437  if (RequireCompleteType(OpLoc, exprType,
1438                          isSizeof ? diag::err_sizeof_incomplete_type :
1439                          diag::err_alignof_incomplete_type,
1440                          ExprRange))
1441    return true;
1442
1443  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1444  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1445    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1446      << exprType << isSizeof << ExprRange;
1447    return true;
1448  }
1449
1450  return false;
1451}
1452
1453bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1454                            const SourceRange &ExprRange) {
1455  E = E->IgnoreParens();
1456
1457  // alignof decl is always ok.
1458  if (isa<DeclRefExpr>(E))
1459    return false;
1460
1461  // Cannot know anything else if the expression is dependent.
1462  if (E->isTypeDependent())
1463    return false;
1464
1465  if (E->getBitField()) {
1466    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1467    return true;
1468  }
1469
1470  // Alignment of a field access is always okay, so long as it isn't a
1471  // bit-field.
1472  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1473    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1474      return false;
1475
1476  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1477}
1478
1479/// \brief Build a sizeof or alignof expression given a type operand.
1480Action::OwningExprResult
1481Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1482                              bool isSizeOf, SourceRange R) {
1483  if (T.isNull())
1484    return ExprError();
1485
1486  if (!T->isDependentType() &&
1487      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1488    return ExprError();
1489
1490  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1491  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1492                                               Context.getSizeType(), OpLoc,
1493                                               R.getEnd()));
1494}
1495
1496/// \brief Build a sizeof or alignof expression given an expression
1497/// operand.
1498Action::OwningExprResult
1499Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1500                              bool isSizeOf, SourceRange R) {
1501  // Verify that the operand is valid.
1502  bool isInvalid = false;
1503  if (E->isTypeDependent()) {
1504    // Delay type-checking for type-dependent expressions.
1505  } else if (!isSizeOf) {
1506    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1507  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1508    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1509    isInvalid = true;
1510  } else {
1511    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1512  }
1513
1514  if (isInvalid)
1515    return ExprError();
1516
1517  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1518  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1519                                               Context.getSizeType(), OpLoc,
1520                                               R.getEnd()));
1521}
1522
1523/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1524/// the same for @c alignof and @c __alignof
1525/// Note that the ArgRange is invalid if isType is false.
1526Action::OwningExprResult
1527Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1528                             void *TyOrEx, const SourceRange &ArgRange) {
1529  // If error parsing type, ignore.
1530  if (TyOrEx == 0) return ExprError();
1531
1532  if (isType) {
1533    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1534    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1535  }
1536
1537  // Get the end location.
1538  Expr *ArgEx = (Expr *)TyOrEx;
1539  Action::OwningExprResult Result
1540    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1541
1542  if (Result.isInvalid())
1543    DeleteExpr(ArgEx);
1544
1545  return move(Result);
1546}
1547
1548QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1549  if (V->isTypeDependent())
1550    return Context.DependentTy;
1551
1552  // These operators return the element type of a complex type.
1553  if (const ComplexType *CT = V->getType()->getAsComplexType())
1554    return CT->getElementType();
1555
1556  // Otherwise they pass through real integer and floating point types here.
1557  if (V->getType()->isArithmeticType())
1558    return V->getType();
1559
1560  // Reject anything else.
1561  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1562    << (isReal ? "__real" : "__imag");
1563  return QualType();
1564}
1565
1566
1567
1568Action::OwningExprResult
1569Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1570                          tok::TokenKind Kind, ExprArg Input) {
1571  Expr *Arg = (Expr *)Input.get();
1572
1573  UnaryOperator::Opcode Opc;
1574  switch (Kind) {
1575  default: assert(0 && "Unknown unary op!");
1576  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1577  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1578  }
1579
1580  if (getLangOptions().CPlusPlus &&
1581      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1582    // Which overloaded operator?
1583    OverloadedOperatorKind OverOp =
1584      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1585
1586    // C++ [over.inc]p1:
1587    //
1588    //     [...] If the function is a member function with one
1589    //     parameter (which shall be of type int) or a non-member
1590    //     function with two parameters (the second of which shall be
1591    //     of type int), it defines the postfix increment operator ++
1592    //     for objects of that type. When the postfix increment is
1593    //     called as a result of using the ++ operator, the int
1594    //     argument will have value zero.
1595    Expr *Args[2] = {
1596      Arg,
1597      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1598                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1599    };
1600
1601    // Build the candidate set for overloading
1602    OverloadCandidateSet CandidateSet;
1603    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1604
1605    // Perform overload resolution.
1606    OverloadCandidateSet::iterator Best;
1607    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1608    case OR_Success: {
1609      // We found a built-in operator or an overloaded operator.
1610      FunctionDecl *FnDecl = Best->Function;
1611
1612      if (FnDecl) {
1613        // We matched an overloaded operator. Build a call to that
1614        // operator.
1615
1616        // Convert the arguments.
1617        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1618          if (PerformObjectArgumentInitialization(Arg, Method))
1619            return ExprError();
1620        } else {
1621          // Convert the arguments.
1622          if (PerformCopyInitialization(Arg,
1623                                        FnDecl->getParamDecl(0)->getType(),
1624                                        "passing"))
1625            return ExprError();
1626        }
1627
1628        // Determine the result type
1629        QualType ResultTy
1630          = FnDecl->getType()->getAsFunctionType()->getResultType();
1631        ResultTy = ResultTy.getNonReferenceType();
1632
1633        // Build the actual expression node.
1634        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1635                                                 SourceLocation());
1636        UsualUnaryConversions(FnExpr);
1637
1638        Input.release();
1639        Args[0] = Arg;
1640        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1641                                                       Args, 2, ResultTy,
1642                                                       OpLoc));
1643      } else {
1644        // We matched a built-in operator. Convert the arguments, then
1645        // break out so that we will build the appropriate built-in
1646        // operator node.
1647        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1648                                      "passing"))
1649          return ExprError();
1650
1651        break;
1652      }
1653    }
1654
1655    case OR_No_Viable_Function:
1656      // No viable function; fall through to handling this as a
1657      // built-in operator, which will produce an error message for us.
1658      break;
1659
1660    case OR_Ambiguous:
1661      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1662          << UnaryOperator::getOpcodeStr(Opc)
1663          << Arg->getSourceRange();
1664      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1665      return ExprError();
1666
1667    case OR_Deleted:
1668      Diag(OpLoc, diag::err_ovl_deleted_oper)
1669        << Best->Function->isDeleted()
1670        << UnaryOperator::getOpcodeStr(Opc)
1671        << Arg->getSourceRange();
1672      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1673      return ExprError();
1674    }
1675
1676    // Either we found no viable overloaded operator or we matched a
1677    // built-in operator. In either case, fall through to trying to
1678    // build a built-in operation.
1679  }
1680
1681  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1682                                                 Opc == UnaryOperator::PostInc);
1683  if (result.isNull())
1684    return ExprError();
1685  Input.release();
1686  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1687}
1688
1689Action::OwningExprResult
1690Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1691                              ExprArg Idx, SourceLocation RLoc) {
1692  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1693       *RHSExp = static_cast<Expr*>(Idx.get());
1694
1695  if (getLangOptions().CPlusPlus &&
1696      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1697    Base.release();
1698    Idx.release();
1699    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1700                                                  Context.DependentTy, RLoc));
1701  }
1702
1703  if (getLangOptions().CPlusPlus &&
1704      (LHSExp->getType()->isRecordType() ||
1705       LHSExp->getType()->isEnumeralType() ||
1706       RHSExp->getType()->isRecordType() ||
1707       RHSExp->getType()->isEnumeralType())) {
1708    // Add the appropriate overloaded operators (C++ [over.match.oper])
1709    // to the candidate set.
1710    OverloadCandidateSet CandidateSet;
1711    Expr *Args[2] = { LHSExp, RHSExp };
1712    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1713                          SourceRange(LLoc, RLoc));
1714
1715    // Perform overload resolution.
1716    OverloadCandidateSet::iterator Best;
1717    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1718    case OR_Success: {
1719      // We found a built-in operator or an overloaded operator.
1720      FunctionDecl *FnDecl = Best->Function;
1721
1722      if (FnDecl) {
1723        // We matched an overloaded operator. Build a call to that
1724        // operator.
1725
1726        // Convert the arguments.
1727        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1728          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1729              PerformCopyInitialization(RHSExp,
1730                                        FnDecl->getParamDecl(0)->getType(),
1731                                        "passing"))
1732            return ExprError();
1733        } else {
1734          // Convert the arguments.
1735          if (PerformCopyInitialization(LHSExp,
1736                                        FnDecl->getParamDecl(0)->getType(),
1737                                        "passing") ||
1738              PerformCopyInitialization(RHSExp,
1739                                        FnDecl->getParamDecl(1)->getType(),
1740                                        "passing"))
1741            return ExprError();
1742        }
1743
1744        // Determine the result type
1745        QualType ResultTy
1746          = FnDecl->getType()->getAsFunctionType()->getResultType();
1747        ResultTy = ResultTy.getNonReferenceType();
1748
1749        // Build the actual expression node.
1750        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1751                                                 SourceLocation());
1752        UsualUnaryConversions(FnExpr);
1753
1754        Base.release();
1755        Idx.release();
1756        Args[0] = LHSExp;
1757        Args[1] = RHSExp;
1758        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1759                                                       FnExpr, Args, 2,
1760                                                       ResultTy, LLoc));
1761      } else {
1762        // We matched a built-in operator. Convert the arguments, then
1763        // break out so that we will build the appropriate built-in
1764        // operator node.
1765        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1766                                      "passing") ||
1767            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1768                                      "passing"))
1769          return ExprError();
1770
1771        break;
1772      }
1773    }
1774
1775    case OR_No_Viable_Function:
1776      // No viable function; fall through to handling this as a
1777      // built-in operator, which will produce an error message for us.
1778      break;
1779
1780    case OR_Ambiguous:
1781      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1782          << "[]"
1783          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1784      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1785      return ExprError();
1786
1787    case OR_Deleted:
1788      Diag(LLoc, diag::err_ovl_deleted_oper)
1789        << Best->Function->isDeleted()
1790        << "[]"
1791        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1792      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1793      return ExprError();
1794    }
1795
1796    // Either we found no viable overloaded operator or we matched a
1797    // built-in operator. In either case, fall through to trying to
1798    // build a built-in operation.
1799  }
1800
1801  // Perform default conversions.
1802  DefaultFunctionArrayConversion(LHSExp);
1803  DefaultFunctionArrayConversion(RHSExp);
1804
1805  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1806
1807  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1808  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1809  // in the subscript position. As a result, we need to derive the array base
1810  // and index from the expression types.
1811  Expr *BaseExpr, *IndexExpr;
1812  QualType ResultType;
1813  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1814    BaseExpr = LHSExp;
1815    IndexExpr = RHSExp;
1816    ResultType = Context.DependentTy;
1817  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1818    BaseExpr = LHSExp;
1819    IndexExpr = RHSExp;
1820    ResultType = PTy->getPointeeType();
1821  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1822     // Handle the uncommon case of "123[Ptr]".
1823    BaseExpr = RHSExp;
1824    IndexExpr = LHSExp;
1825    ResultType = PTy->getPointeeType();
1826  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1827    BaseExpr = LHSExp;    // vectors: V[123]
1828    IndexExpr = RHSExp;
1829
1830    // FIXME: need to deal with const...
1831    ResultType = VTy->getElementType();
1832  } else if (LHSTy->isArrayType()) {
1833    // If we see an array that wasn't promoted by
1834    // DefaultFunctionArrayConversion, it must be an array that
1835    // wasn't promoted because of the C90 rule that doesn't
1836    // allow promoting non-lvalue arrays.  Warn, then
1837    // force the promotion here.
1838    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1839        LHSExp->getSourceRange();
1840    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1841    LHSTy = LHSExp->getType();
1842
1843    BaseExpr = LHSExp;
1844    IndexExpr = RHSExp;
1845    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1846  } else if (RHSTy->isArrayType()) {
1847    // Same as previous, except for 123[f().a] case
1848    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1849        RHSExp->getSourceRange();
1850    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1851    RHSTy = RHSExp->getType();
1852
1853    BaseExpr = RHSExp;
1854    IndexExpr = LHSExp;
1855    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1856  } else {
1857    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1858       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1859  }
1860  // C99 6.5.2.1p1
1861  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1862    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1863                     << IndexExpr->getSourceRange());
1864
1865  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1866  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1867  // type. Note that Functions are not objects, and that (in C99 parlance)
1868  // incomplete types are not object types.
1869  if (ResultType->isFunctionType()) {
1870    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1871      << ResultType << BaseExpr->getSourceRange();
1872    return ExprError();
1873  }
1874
1875  if (!ResultType->isDependentType() &&
1876      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1877                          BaseExpr->getSourceRange()))
1878    return ExprError();
1879
1880  // Diagnose bad cases where we step over interface counts.
1881  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1882    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1883      << ResultType << BaseExpr->getSourceRange();
1884    return ExprError();
1885  }
1886
1887  Base.release();
1888  Idx.release();
1889  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1890                                                ResultType, RLoc));
1891}
1892
1893QualType Sema::
1894CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1895                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1896  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1897
1898  // The vector accessor can't exceed the number of elements.
1899  const char *compStr = CompName.getName();
1900
1901  // This flag determines whether or not the component is one of the four
1902  // special names that indicate a subset of exactly half the elements are
1903  // to be selected.
1904  bool HalvingSwizzle = false;
1905
1906  // This flag determines whether or not CompName has an 's' char prefix,
1907  // indicating that it is a string of hex values to be used as vector indices.
1908  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1909
1910  // Check that we've found one of the special components, or that the component
1911  // names must come from the same set.
1912  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1913      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1914    HalvingSwizzle = true;
1915  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1916    do
1917      compStr++;
1918    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1919  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1920    do
1921      compStr++;
1922    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1923  }
1924
1925  if (!HalvingSwizzle && *compStr) {
1926    // We didn't get to the end of the string. This means the component names
1927    // didn't come from the same set *or* we encountered an illegal name.
1928    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1929      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1930    return QualType();
1931  }
1932
1933  // Ensure no component accessor exceeds the width of the vector type it
1934  // operates on.
1935  if (!HalvingSwizzle) {
1936    compStr = CompName.getName();
1937
1938    if (HexSwizzle)
1939      compStr++;
1940
1941    while (*compStr) {
1942      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1943        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1944          << baseType << SourceRange(CompLoc);
1945        return QualType();
1946      }
1947    }
1948  }
1949
1950  // If this is a halving swizzle, verify that the base type has an even
1951  // number of elements.
1952  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1953    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1954      << baseType << SourceRange(CompLoc);
1955    return QualType();
1956  }
1957
1958  // The component accessor looks fine - now we need to compute the actual type.
1959  // The vector type is implied by the component accessor. For example,
1960  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1961  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1962  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1963  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1964                                     : CompName.getLength();
1965  if (HexSwizzle)
1966    CompSize--;
1967
1968  if (CompSize == 1)
1969    return vecType->getElementType();
1970
1971  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1972  // Now look up the TypeDefDecl from the vector type. Without this,
1973  // diagostics look bad. We want extended vector types to appear built-in.
1974  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1975    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1976      return Context.getTypedefType(ExtVectorDecls[i]);
1977  }
1978  return VT; // should never get here (a typedef type should always be found).
1979}
1980
1981static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1982                                                IdentifierInfo &Member,
1983                                                const Selector &Sel,
1984                                                ASTContext &Context) {
1985
1986  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1987    return PD;
1988  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1989    return OMD;
1990
1991  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1992       E = PDecl->protocol_end(); I != E; ++I) {
1993    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1994                                                     Context))
1995      return D;
1996  }
1997  return 0;
1998}
1999
2000static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2001                                IdentifierInfo &Member,
2002                                const Selector &Sel,
2003                                ASTContext &Context) {
2004  // Check protocols on qualified interfaces.
2005  Decl *GDecl = 0;
2006  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2007       E = QIdTy->qual_end(); I != E; ++I) {
2008    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
2009      GDecl = PD;
2010      break;
2011    }
2012    // Also must look for a getter name which uses property syntax.
2013    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
2014      GDecl = OMD;
2015      break;
2016    }
2017  }
2018  if (!GDecl) {
2019    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2020         E = QIdTy->qual_end(); I != E; ++I) {
2021      // Search in the protocol-qualifier list of current protocol.
2022      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2023      if (GDecl)
2024        return GDecl;
2025    }
2026  }
2027  return GDecl;
2028}
2029
2030/// FindMethodInNestedImplementations - Look up a method in current and
2031/// all base class implementations.
2032///
2033ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2034                                              const ObjCInterfaceDecl *IFace,
2035                                              const Selector &Sel) {
2036  ObjCMethodDecl *Method = 0;
2037  if (ObjCImplementationDecl *ImpDecl
2038        = LookupObjCImplementation(IFace->getIdentifier()))
2039    Method = ImpDecl->getInstanceMethod(Context, Sel);
2040
2041  if (!Method && IFace->getSuperClass())
2042    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2043  return Method;
2044}
2045
2046Action::OwningExprResult
2047Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2048                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2049                               IdentifierInfo &Member,
2050                               DeclPtrTy ObjCImpDecl) {
2051  Expr *BaseExpr = Base.takeAs<Expr>();
2052  assert(BaseExpr && "no record expression");
2053
2054  // Perform default conversions.
2055  DefaultFunctionArrayConversion(BaseExpr);
2056
2057  QualType BaseType = BaseExpr->getType();
2058  assert(!BaseType.isNull() && "no type for member expression");
2059
2060  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2061  // must have pointer type, and the accessed type is the pointee.
2062  if (OpKind == tok::arrow) {
2063    if (BaseType->isDependentType())
2064      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2065                                                         BaseExpr, true,
2066                                                         OpLoc,
2067                                                     DeclarationName(&Member),
2068                                                         MemberLoc));
2069    else if (const PointerType *PT = BaseType->getAsPointerType())
2070      BaseType = PT->getPointeeType();
2071    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2072      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2073                                            MemberLoc, Member));
2074    else
2075      return ExprError(Diag(MemberLoc,
2076                            diag::err_typecheck_member_reference_arrow)
2077        << BaseType << BaseExpr->getSourceRange());
2078  } else {
2079    if (BaseType->isDependentType()) {
2080      // Require that the base type isn't a pointer type
2081      // (so we'll report an error for)
2082      // T* t;
2083      // t.f;
2084      //
2085      // In Obj-C++, however, the above expression is valid, since it could be
2086      // accessing the 'f' property if T is an Obj-C interface. The extra check
2087      // allows this, while still reporting an error if T is a struct pointer.
2088      const PointerType *PT = BaseType->getAsPointerType();
2089
2090      if (!PT || (getLangOptions().ObjC1 &&
2091                  !PT->getPointeeType()->isRecordType()))
2092        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2093                                                           BaseExpr, false,
2094                                                           OpLoc,
2095                                                     DeclarationName(&Member),
2096                                                           MemberLoc));
2097    }
2098  }
2099
2100  // Handle field access to simple records.  This also handles access to fields
2101  // of the ObjC 'id' struct.
2102  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2103    RecordDecl *RDecl = RTy->getDecl();
2104    if (RequireCompleteType(OpLoc, BaseType,
2105                               diag::err_typecheck_incomplete_tag,
2106                               BaseExpr->getSourceRange()))
2107      return ExprError();
2108
2109    // The record definition is complete, now make sure the member is valid.
2110    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2111    LookupResult Result
2112      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2113                            LookupMemberName, false);
2114
2115    if (!Result)
2116      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2117               << &Member << BaseExpr->getSourceRange());
2118    if (Result.isAmbiguous()) {
2119      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2120                              MemberLoc, BaseExpr->getSourceRange());
2121      return ExprError();
2122    }
2123
2124    NamedDecl *MemberDecl = Result;
2125
2126    // If the decl being referenced had an error, return an error for this
2127    // sub-expr without emitting another error, in order to avoid cascading
2128    // error cases.
2129    if (MemberDecl->isInvalidDecl())
2130      return ExprError();
2131
2132    // Check the use of this field
2133    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2134      return ExprError();
2135
2136    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2137      // We may have found a field within an anonymous union or struct
2138      // (C++ [class.union]).
2139      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2140        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2141                                                        BaseExpr, OpLoc);
2142
2143      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2144      // FIXME: Handle address space modifiers
2145      QualType MemberType = FD->getType();
2146      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2147        MemberType = Ref->getPointeeType();
2148      else {
2149        unsigned combinedQualifiers =
2150          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2151        if (FD->isMutable())
2152          combinedQualifiers &= ~QualType::Const;
2153        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2154      }
2155
2156      MarkDeclarationReferenced(MemberLoc, FD);
2157      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2158                                            MemberLoc, MemberType));
2159    }
2160
2161    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2162      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2163      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2164                                            Var, MemberLoc,
2165                                         Var->getType().getNonReferenceType()));
2166    }
2167    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2168      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2169      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2170                                            MemberFn, MemberLoc,
2171                                            MemberFn->getType()));
2172    }
2173    if (OverloadedFunctionDecl *Ovl
2174          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2175      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2176                                            MemberLoc, Context.OverloadTy));
2177    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2178      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2179      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2180                                            Enum, MemberLoc, Enum->getType()));
2181    }
2182    if (isa<TypeDecl>(MemberDecl))
2183      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2184        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2185
2186    // We found a declaration kind that we didn't expect. This is a
2187    // generic error message that tells the user that she can't refer
2188    // to this member with '.' or '->'.
2189    return ExprError(Diag(MemberLoc,
2190                          diag::err_typecheck_member_reference_unknown)
2191      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2192  }
2193
2194  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2195  // (*Obj).ivar.
2196  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2197    ObjCInterfaceDecl *ClassDeclared;
2198    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
2199                                                                   &Member,
2200                                                             ClassDeclared)) {
2201      // If the decl being referenced had an error, return an error for this
2202      // sub-expr without emitting another error, in order to avoid cascading
2203      // error cases.
2204      if (IV->isInvalidDecl())
2205        return ExprError();
2206
2207      // Check whether we can reference this field.
2208      if (DiagnoseUseOfDecl(IV, MemberLoc))
2209        return ExprError();
2210      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2211          IV->getAccessControl() != ObjCIvarDecl::Package) {
2212        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2213        if (ObjCMethodDecl *MD = getCurMethodDecl())
2214          ClassOfMethodDecl =  MD->getClassInterface();
2215        else if (ObjCImpDecl && getCurFunctionDecl()) {
2216          // Case of a c-function declared inside an objc implementation.
2217          // FIXME: For a c-style function nested inside an objc implementation
2218          // class, there is no implementation context available, so we pass
2219          // down the context as argument to this routine. Ideally, this context
2220          // need be passed down in the AST node and somehow calculated from the
2221          // AST for a function decl.
2222          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2223          if (ObjCImplementationDecl *IMPD =
2224              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2225            ClassOfMethodDecl = IMPD->getClassInterface();
2226          else if (ObjCCategoryImplDecl* CatImplClass =
2227                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2228            ClassOfMethodDecl = CatImplClass->getClassInterface();
2229        }
2230
2231        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2232          if (ClassDeclared != IFTy->getDecl() ||
2233              ClassOfMethodDecl != ClassDeclared)
2234            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2235        }
2236        // @protected
2237        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2238          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2239      }
2240
2241      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2242                                                 MemberLoc, BaseExpr,
2243                                                 OpKind == tok::arrow));
2244    }
2245    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2246                       << IFTy->getDecl()->getDeclName() << &Member
2247                       << BaseExpr->getSourceRange());
2248  }
2249
2250  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2251  // pointer to a (potentially qualified) interface type.
2252  const PointerType *PTy;
2253  const ObjCInterfaceType *IFTy;
2254  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2255      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2256    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2257
2258    // Search for a declared property first.
2259    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2260                                                              &Member)) {
2261      // Check whether we can reference this property.
2262      if (DiagnoseUseOfDecl(PD, MemberLoc))
2263        return ExprError();
2264      QualType ResTy = PD->getType();
2265      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2266      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2267      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2268        ResTy = Getter->getResultType();
2269      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2270                                                     MemberLoc, BaseExpr));
2271    }
2272
2273    // Check protocols on qualified interfaces.
2274    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2275         E = IFTy->qual_end(); I != E; ++I)
2276      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2277                                                               &Member)) {
2278        // Check whether we can reference this property.
2279        if (DiagnoseUseOfDecl(PD, MemberLoc))
2280          return ExprError();
2281
2282        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2283                                                       MemberLoc, BaseExpr));
2284      }
2285
2286    // If that failed, look for an "implicit" property by seeing if the nullary
2287    // selector is implemented.
2288
2289    // FIXME: The logic for looking up nullary and unary selectors should be
2290    // shared with the code in ActOnInstanceMessage.
2291
2292    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2293    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2294
2295    // If this reference is in an @implementation, check for 'private' methods.
2296    if (!Getter)
2297      Getter = FindMethodInNestedImplementations(IFace, Sel);
2298
2299    // Look through local category implementations associated with the class.
2300    if (!Getter) {
2301      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2302        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2303          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2304      }
2305    }
2306    if (Getter) {
2307      // Check if we can reference this property.
2308      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2309        return ExprError();
2310    }
2311    // If we found a getter then this may be a valid dot-reference, we
2312    // will look for the matching setter, in case it is needed.
2313    Selector SetterSel =
2314      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2315                                         PP.getSelectorTable(), &Member);
2316    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2317    if (!Setter) {
2318      // If this reference is in an @implementation, also check for 'private'
2319      // methods.
2320      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2321    }
2322    // Look through local category implementations associated with the class.
2323    if (!Setter) {
2324      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2325        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2326          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2327      }
2328    }
2329
2330    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2331      return ExprError();
2332
2333    if (Getter || Setter) {
2334      QualType PType;
2335
2336      if (Getter)
2337        PType = Getter->getResultType();
2338      else {
2339        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2340             E = Setter->param_end(); PI != E; ++PI)
2341          PType = (*PI)->getType();
2342      }
2343      // FIXME: we must check that the setter has property type.
2344      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2345                                      Setter, MemberLoc, BaseExpr));
2346    }
2347    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2348      << &Member << BaseType);
2349  }
2350  // Handle properties on qualified "id" protocols.
2351  const ObjCObjectPointerType *QIdTy;
2352  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2353    // Check protocols on qualified interfaces.
2354    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2355    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2356      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2357        // Check the use of this declaration
2358        if (DiagnoseUseOfDecl(PD, MemberLoc))
2359          return ExprError();
2360
2361        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2362                                                       MemberLoc, BaseExpr));
2363      }
2364      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2365        // Check the use of this method.
2366        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2367          return ExprError();
2368
2369        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2370                                                   OMD->getResultType(),
2371                                                   OMD, OpLoc, MemberLoc,
2372                                                   NULL, 0));
2373      }
2374    }
2375
2376    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2377                       << &Member << BaseType);
2378  }
2379  // Handle properties on ObjC 'Class' types.
2380  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2381    // Also must look for a getter name which uses property syntax.
2382    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2383    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2384      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2385      ObjCMethodDecl *Getter;
2386      // FIXME: need to also look locally in the implementation.
2387      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2388        // Check the use of this method.
2389        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2390          return ExprError();
2391      }
2392      // If we found a getter then this may be a valid dot-reference, we
2393      // will look for the matching setter, in case it is needed.
2394      Selector SetterSel =
2395        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2396                                           PP.getSelectorTable(), &Member);
2397      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2398      if (!Setter) {
2399        // If this reference is in an @implementation, also check for 'private'
2400        // methods.
2401        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2402      }
2403      // Look through local category implementations associated with the class.
2404      if (!Setter) {
2405        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2406          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2407            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2408        }
2409      }
2410
2411      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2412        return ExprError();
2413
2414      if (Getter || Setter) {
2415        QualType PType;
2416
2417        if (Getter)
2418          PType = Getter->getResultType();
2419        else {
2420          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2421               E = Setter->param_end(); PI != E; ++PI)
2422            PType = (*PI)->getType();
2423        }
2424        // FIXME: we must check that the setter has property type.
2425        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2426                                        Setter, MemberLoc, BaseExpr));
2427      }
2428      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2429        << &Member << BaseType);
2430    }
2431  }
2432
2433  // Handle 'field access' to vectors, such as 'V.xx'.
2434  if (BaseType->isExtVectorType()) {
2435    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2436    if (ret.isNull())
2437      return ExprError();
2438    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2439                                                    MemberLoc));
2440  }
2441
2442  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2443    << BaseType << BaseExpr->getSourceRange();
2444
2445  // If the user is trying to apply -> or . to a function or function
2446  // pointer, it's probably because they forgot parentheses to call
2447  // the function. Suggest the addition of those parentheses.
2448  if (BaseType == Context.OverloadTy ||
2449      BaseType->isFunctionType() ||
2450      (BaseType->isPointerType() &&
2451       BaseType->getAsPointerType()->isFunctionType())) {
2452    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2453    Diag(Loc, diag::note_member_reference_needs_call)
2454      << CodeModificationHint::CreateInsertion(Loc, "()");
2455  }
2456
2457  return ExprError();
2458}
2459
2460/// ConvertArgumentsForCall - Converts the arguments specified in
2461/// Args/NumArgs to the parameter types of the function FDecl with
2462/// function prototype Proto. Call is the call expression itself, and
2463/// Fn is the function expression. For a C++ member function, this
2464/// routine does not attempt to convert the object argument. Returns
2465/// true if the call is ill-formed.
2466bool
2467Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2468                              FunctionDecl *FDecl,
2469                              const FunctionProtoType *Proto,
2470                              Expr **Args, unsigned NumArgs,
2471                              SourceLocation RParenLoc) {
2472  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2473  // assignment, to the types of the corresponding parameter, ...
2474  unsigned NumArgsInProto = Proto->getNumArgs();
2475  unsigned NumArgsToCheck = NumArgs;
2476  bool Invalid = false;
2477
2478  // If too few arguments are available (and we don't have default
2479  // arguments for the remaining parameters), don't make the call.
2480  if (NumArgs < NumArgsInProto) {
2481    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2482      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2483        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2484    // Use default arguments for missing arguments
2485    NumArgsToCheck = NumArgsInProto;
2486    Call->setNumArgs(Context, NumArgsInProto);
2487  }
2488
2489  // If too many are passed and not variadic, error on the extras and drop
2490  // them.
2491  if (NumArgs > NumArgsInProto) {
2492    if (!Proto->isVariadic()) {
2493      Diag(Args[NumArgsInProto]->getLocStart(),
2494           diag::err_typecheck_call_too_many_args)
2495        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2496        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2497                       Args[NumArgs-1]->getLocEnd());
2498      // This deletes the extra arguments.
2499      Call->setNumArgs(Context, NumArgsInProto);
2500      Invalid = true;
2501    }
2502    NumArgsToCheck = NumArgsInProto;
2503  }
2504
2505  // Continue to check argument types (even if we have too few/many args).
2506  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2507    QualType ProtoArgType = Proto->getArgType(i);
2508
2509    Expr *Arg;
2510    if (i < NumArgs) {
2511      Arg = Args[i];
2512
2513      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2514                              ProtoArgType,
2515                              diag::err_call_incomplete_argument,
2516                              Arg->getSourceRange()))
2517        return true;
2518
2519      // Pass the argument.
2520      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2521        return true;
2522    } else {
2523      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2524        Diag (Call->getSourceRange().getBegin(),
2525              diag::err_use_of_default_argument_to_function_declared_later) <<
2526        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2527        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2528              diag::note_default_argument_declared_here);
2529      } else {
2530        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2531
2532        // If the default expression creates temporaries, we need to
2533        // push them to the current stack of expression temporaries so they'll
2534        // be properly destroyed.
2535        if (CXXExprWithTemporaries *E
2536              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2537          assert(!E->shouldDestroyTemporaries() &&
2538                 "Can't destroy temporaries in a default argument expr!");
2539          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2540            ExprTemporaries.push_back(E->getTemporary(I));
2541        }
2542      }
2543
2544      // We already type-checked the argument, so we know it works.
2545      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2546    }
2547
2548    QualType ArgType = Arg->getType();
2549
2550    Call->setArg(i, Arg);
2551  }
2552
2553  // If this is a variadic call, handle args passed through "...".
2554  if (Proto->isVariadic()) {
2555    VariadicCallType CallType = VariadicFunction;
2556    if (Fn->getType()->isBlockPointerType())
2557      CallType = VariadicBlock; // Block
2558    else if (isa<MemberExpr>(Fn))
2559      CallType = VariadicMethod;
2560
2561    // Promote the arguments (C99 6.5.2.2p7).
2562    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2563      Expr *Arg = Args[i];
2564      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2565      Call->setArg(i, Arg);
2566    }
2567  }
2568
2569  return Invalid;
2570}
2571
2572/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2573/// This provides the location of the left/right parens and a list of comma
2574/// locations.
2575Action::OwningExprResult
2576Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2577                    MultiExprArg args,
2578                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2579  unsigned NumArgs = args.size();
2580  Expr *Fn = fn.takeAs<Expr>();
2581  Expr **Args = reinterpret_cast<Expr**>(args.release());
2582  assert(Fn && "no function call expression");
2583  FunctionDecl *FDecl = NULL;
2584  NamedDecl *NDecl = NULL;
2585  DeclarationName UnqualifiedName;
2586
2587  if (getLangOptions().CPlusPlus) {
2588    // Determine whether this is a dependent call inside a C++ template,
2589    // in which case we won't do any semantic analysis now.
2590    // FIXME: Will need to cache the results of name lookup (including ADL) in
2591    // Fn.
2592    bool Dependent = false;
2593    if (Fn->isTypeDependent())
2594      Dependent = true;
2595    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2596      Dependent = true;
2597
2598    if (Dependent)
2599      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2600                                          Context.DependentTy, RParenLoc));
2601
2602    // Determine whether this is a call to an object (C++ [over.call.object]).
2603    if (Fn->getType()->isRecordType())
2604      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2605                                                CommaLocs, RParenLoc));
2606
2607    // Determine whether this is a call to a member function.
2608    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2609      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2610      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2611          isa<CXXMethodDecl>(MemDecl) ||
2612          (isa<FunctionTemplateDecl>(MemDecl) &&
2613           isa<CXXMethodDecl>(
2614                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2615        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2616                                               CommaLocs, RParenLoc));
2617    }
2618  }
2619
2620  // If we're directly calling a function, get the appropriate declaration.
2621  DeclRefExpr *DRExpr = NULL;
2622  Expr *FnExpr = Fn;
2623  bool ADL = true;
2624  while (true) {
2625    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2626      FnExpr = IcExpr->getSubExpr();
2627    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2628      // Parentheses around a function disable ADL
2629      // (C++0x [basic.lookup.argdep]p1).
2630      ADL = false;
2631      FnExpr = PExpr->getSubExpr();
2632    } else if (isa<UnaryOperator>(FnExpr) &&
2633               cast<UnaryOperator>(FnExpr)->getOpcode()
2634                 == UnaryOperator::AddrOf) {
2635      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2636    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2637      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2638      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2639      break;
2640    } else if (UnresolvedFunctionNameExpr *DepName
2641                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2642      UnqualifiedName = DepName->getName();
2643      break;
2644    } else {
2645      // Any kind of name that does not refer to a declaration (or
2646      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2647      ADL = false;
2648      break;
2649    }
2650  }
2651
2652  OverloadedFunctionDecl *Ovl = 0;
2653  FunctionTemplateDecl *FunctionTemplate = 0;
2654  if (DRExpr) {
2655    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2656    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DRExpr->getDecl())))
2657      FDecl = FunctionTemplate->getTemplatedDecl();
2658    else
2659      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2660    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2661    NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2662  }
2663
2664  if (Ovl || FunctionTemplate ||
2665      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2666    // We don't perform ADL for implicit declarations of builtins.
2667    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2668      ADL = false;
2669
2670    // We don't perform ADL in C.
2671    if (!getLangOptions().CPlusPlus)
2672      ADL = false;
2673
2674    if (Ovl || FunctionTemplate || ADL) {
2675      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2676                                      UnqualifiedName, LParenLoc, Args,
2677                                      NumArgs, CommaLocs, RParenLoc, ADL);
2678      if (!FDecl)
2679        return ExprError();
2680
2681      // Update Fn to refer to the actual function selected.
2682      Expr *NewFn = 0;
2683      if (QualifiedDeclRefExpr *QDRExpr
2684            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2685        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2686                                                   QDRExpr->getLocation(),
2687                                                   false, false,
2688                                                 QDRExpr->getQualifierRange(),
2689                                                   QDRExpr->getQualifier());
2690      else
2691        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2692                                          Fn->getSourceRange().getBegin());
2693      Fn->Destroy(Context);
2694      Fn = NewFn;
2695    }
2696  }
2697
2698  // Promote the function operand.
2699  UsualUnaryConversions(Fn);
2700
2701  // Make the call expr early, before semantic checks.  This guarantees cleanup
2702  // of arguments and function on error.
2703  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2704                                                               Args, NumArgs,
2705                                                               Context.BoolTy,
2706                                                               RParenLoc));
2707
2708  const FunctionType *FuncT;
2709  if (!Fn->getType()->isBlockPointerType()) {
2710    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2711    // have type pointer to function".
2712    const PointerType *PT = Fn->getType()->getAsPointerType();
2713    if (PT == 0)
2714      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2715        << Fn->getType() << Fn->getSourceRange());
2716    FuncT = PT->getPointeeType()->getAsFunctionType();
2717  } else { // This is a block call.
2718    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2719                getAsFunctionType();
2720  }
2721  if (FuncT == 0)
2722    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2723      << Fn->getType() << Fn->getSourceRange());
2724
2725  // Check for a valid return type
2726  if (!FuncT->getResultType()->isVoidType() &&
2727      RequireCompleteType(Fn->getSourceRange().getBegin(),
2728                          FuncT->getResultType(),
2729                          diag::err_call_incomplete_return,
2730                          TheCall->getSourceRange()))
2731    return ExprError();
2732
2733  // We know the result type of the call, set it.
2734  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2735
2736  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2737    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2738                                RParenLoc))
2739      return ExprError();
2740  } else {
2741    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2742
2743    if (FDecl) {
2744      // Check if we have too few/too many template arguments, based
2745      // on our knowledge of the function definition.
2746      const FunctionDecl *Def = 0;
2747      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) {
2748        const FunctionProtoType *Proto =
2749            Def->getType()->getAsFunctionProtoType();
2750        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2751          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2752            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2753        }
2754      }
2755    }
2756
2757    // Promote the arguments (C99 6.5.2.2p6).
2758    for (unsigned i = 0; i != NumArgs; i++) {
2759      Expr *Arg = Args[i];
2760      DefaultArgumentPromotion(Arg);
2761      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2762                              Arg->getType(),
2763                              diag::err_call_incomplete_argument,
2764                              Arg->getSourceRange()))
2765        return ExprError();
2766      TheCall->setArg(i, Arg);
2767    }
2768  }
2769
2770  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2771    if (!Method->isStatic())
2772      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2773        << Fn->getSourceRange());
2774
2775  // Check for sentinels
2776  if (NDecl)
2777    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2778  // Do special checking on direct calls to functions.
2779  if (FDecl)
2780    return CheckFunctionCall(FDecl, TheCall.take());
2781  if (NDecl)
2782    return CheckBlockCall(NDecl, TheCall.take());
2783
2784  return Owned(TheCall.take());
2785}
2786
2787Action::OwningExprResult
2788Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2789                           SourceLocation RParenLoc, ExprArg InitExpr) {
2790  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2791  QualType literalType = QualType::getFromOpaquePtr(Ty);
2792  // FIXME: put back this assert when initializers are worked out.
2793  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2794  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2795
2796  if (literalType->isArrayType()) {
2797    if (literalType->isVariableArrayType())
2798      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2799        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2800  } else if (!literalType->isDependentType() &&
2801             RequireCompleteType(LParenLoc, literalType,
2802                                 diag::err_typecheck_decl_incomplete_type,
2803                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2804    return ExprError();
2805
2806  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2807                            DeclarationName(), /*FIXME:DirectInit=*/false))
2808    return ExprError();
2809
2810  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2811  if (isFileScope) { // 6.5.2.5p3
2812    if (CheckForConstantInitializer(literalExpr, literalType))
2813      return ExprError();
2814  }
2815  InitExpr.release();
2816  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2817                                                 literalExpr, isFileScope));
2818}
2819
2820Action::OwningExprResult
2821Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2822                    SourceLocation RBraceLoc) {
2823  unsigned NumInit = initlist.size();
2824  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2825
2826  // Semantic analysis for initializers is done by ActOnDeclarator() and
2827  // CheckInitializer() - it requires knowledge of the object being intialized.
2828
2829  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2830                                               RBraceLoc);
2831  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2832  return Owned(E);
2833}
2834
2835/// CheckCastTypes - Check type constraints for casting between types.
2836bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2837  UsualUnaryConversions(castExpr);
2838
2839  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2840  // type needs to be scalar.
2841  if (castType->isVoidType()) {
2842    // Cast to void allows any expr type.
2843  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2844    // We can't check any more until template instantiation time.
2845  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2846    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2847        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2848        (castType->isStructureType() || castType->isUnionType())) {
2849      // GCC struct/union extension: allow cast to self.
2850      // FIXME: Check that the cast destination type is complete.
2851      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2852        << castType << castExpr->getSourceRange();
2853    } else if (castType->isUnionType()) {
2854      // GCC cast to union extension
2855      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2856      RecordDecl::field_iterator Field, FieldEnd;
2857      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2858           Field != FieldEnd; ++Field) {
2859        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2860            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2861          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2862            << castExpr->getSourceRange();
2863          break;
2864        }
2865      }
2866      if (Field == FieldEnd)
2867        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2868          << castExpr->getType() << castExpr->getSourceRange();
2869    } else {
2870      // Reject any other conversions to non-scalar types.
2871      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2872        << castType << castExpr->getSourceRange();
2873    }
2874  } else if (!castExpr->getType()->isScalarType() &&
2875             !castExpr->getType()->isVectorType()) {
2876    return Diag(castExpr->getLocStart(),
2877                diag::err_typecheck_expect_scalar_operand)
2878      << castExpr->getType() << castExpr->getSourceRange();
2879  } else if (castType->isExtVectorType()) {
2880    if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
2881      return true;
2882  } else if (castType->isVectorType()) {
2883    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2884      return true;
2885  } else if (castExpr->getType()->isVectorType()) {
2886    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2887      return true;
2888  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2889    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2890  } else if (!castType->isArithmeticType()) {
2891    QualType castExprType = castExpr->getType();
2892    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2893      return Diag(castExpr->getLocStart(),
2894                  diag::err_cast_pointer_from_non_pointer_int)
2895        << castExprType << castExpr->getSourceRange();
2896  } else if (!castExpr->getType()->isArithmeticType()) {
2897    if (!castType->isIntegralType() && castType->isArithmeticType())
2898      return Diag(castExpr->getLocStart(),
2899                  diag::err_cast_pointer_to_non_pointer_int)
2900        << castType << castExpr->getSourceRange();
2901  }
2902  if (isa<ObjCSelectorExpr>(castExpr))
2903    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
2904  return false;
2905}
2906
2907bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2908  assert(VectorTy->isVectorType() && "Not a vector type!");
2909
2910  if (Ty->isVectorType() || Ty->isIntegerType()) {
2911    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2912      return Diag(R.getBegin(),
2913                  Ty->isVectorType() ?
2914                  diag::err_invalid_conversion_between_vectors :
2915                  diag::err_invalid_conversion_between_vector_and_integer)
2916        << VectorTy << Ty << R;
2917  } else
2918    return Diag(R.getBegin(),
2919                diag::err_invalid_conversion_between_vector_and_scalar)
2920      << VectorTy << Ty << R;
2921
2922  return false;
2923}
2924
2925bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
2926  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
2927
2928  // If SrcTy is also an ExtVectorType, the types must be identical unless
2929  // lax vector conversions is enabled.
2930  if (SrcTy->isExtVectorType()) {
2931    if (getLangOptions().LaxVectorConversions &&
2932        Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy))
2933      return false;
2934    if (DestTy != SrcTy)
2935      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
2936      << DestTy << SrcTy << R;
2937    return false;
2938  }
2939
2940  // If SrcTy is a VectorType, then only the total size must match.
2941  if (SrcTy->isVectorType()) {
2942    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
2943      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
2944        << DestTy << SrcTy << R;
2945    return false;
2946  }
2947
2948  // All scalar -> ext vector "c-style" casts are legal; the appropriate
2949  // conversion will take place first from scalar to elt type, and then
2950  // splat from elt type to vector.
2951  return false;
2952}
2953
2954Action::OwningExprResult
2955Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2956                    SourceLocation RParenLoc, ExprArg Op) {
2957  assert((Ty != 0) && (Op.get() != 0) &&
2958         "ActOnCastExpr(): missing type or expr");
2959
2960  Expr *castExpr = Op.takeAs<Expr>();
2961  QualType castType = QualType::getFromOpaquePtr(Ty);
2962
2963  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2964    return ExprError();
2965  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2966                                            LParenLoc, RParenLoc));
2967}
2968
2969/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2970/// In that case, lhs = cond.
2971/// C99 6.5.15
2972QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2973                                        SourceLocation QuestionLoc) {
2974  // C++ is sufficiently different to merit its own checker.
2975  if (getLangOptions().CPlusPlus)
2976    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2977
2978  UsualUnaryConversions(Cond);
2979  UsualUnaryConversions(LHS);
2980  UsualUnaryConversions(RHS);
2981  QualType CondTy = Cond->getType();
2982  QualType LHSTy = LHS->getType();
2983  QualType RHSTy = RHS->getType();
2984
2985  // first, check the condition.
2986  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2987    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2988      << CondTy;
2989    return QualType();
2990  }
2991
2992  // Now check the two expressions.
2993
2994  // If both operands have arithmetic type, do the usual arithmetic conversions
2995  // to find a common type: C99 6.5.15p3,5.
2996  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2997    UsualArithmeticConversions(LHS, RHS);
2998    return LHS->getType();
2999  }
3000
3001  // If both operands are the same structure or union type, the result is that
3002  // type.
3003  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
3004    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
3005      if (LHSRT->getDecl() == RHSRT->getDecl())
3006        // "If both the operands have structure or union type, the result has
3007        // that type."  This implies that CV qualifiers are dropped.
3008        return LHSTy.getUnqualifiedType();
3009    // FIXME: Type of conditional expression must be complete in C mode.
3010  }
3011
3012  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3013  // The following || allows only one side to be void (a GCC-ism).
3014  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3015    if (!LHSTy->isVoidType())
3016      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3017        << RHS->getSourceRange();
3018    if (!RHSTy->isVoidType())
3019      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3020        << LHS->getSourceRange();
3021    ImpCastExprToType(LHS, Context.VoidTy);
3022    ImpCastExprToType(RHS, Context.VoidTy);
3023    return Context.VoidTy;
3024  }
3025  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3026  // the type of the other operand."
3027  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
3028       Context.isObjCObjectPointerType(LHSTy)) &&
3029      RHS->isNullPointerConstant(Context)) {
3030    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
3031    return LHSTy;
3032  }
3033  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
3034       Context.isObjCObjectPointerType(RHSTy)) &&
3035      LHS->isNullPointerConstant(Context)) {
3036    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
3037    return RHSTy;
3038  }
3039
3040  const PointerType *LHSPT = LHSTy->getAsPointerType();
3041  const PointerType *RHSPT = RHSTy->getAsPointerType();
3042  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
3043  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
3044
3045  // Handle the case where both operands are pointers before we handle null
3046  // pointer constants in case both operands are null pointer constants.
3047  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
3048    // get the "pointed to" types
3049    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
3050                       : LHSBPT->getPointeeType());
3051      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
3052                         : RHSBPT->getPointeeType());
3053
3054    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3055    if (lhptee->isVoidType()
3056        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
3057      // Figure out necessary qualifiers (C99 6.5.15p6)
3058      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3059      QualType destType = Context.getPointerType(destPointee);
3060      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3061      ImpCastExprToType(RHS, destType); // promote to void*
3062      return destType;
3063    }
3064    if (rhptee->isVoidType()
3065        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
3066      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3067      QualType destType = Context.getPointerType(destPointee);
3068      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3069      ImpCastExprToType(RHS, destType); // promote to void*
3070      return destType;
3071    }
3072
3073    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
3074    if (sameKind
3075        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3076      // Two identical pointer types are always compatible.
3077      return LHSTy;
3078    }
3079
3080    QualType compositeType = LHSTy;
3081
3082    // If either type is an Objective-C object type then check
3083    // compatibility according to Objective-C.
3084    if (Context.isObjCObjectPointerType(LHSTy) ||
3085        Context.isObjCObjectPointerType(RHSTy)) {
3086      // If both operands are interfaces and either operand can be
3087      // assigned to the other, use that type as the composite
3088      // type. This allows
3089      //   xxx ? (A*) a : (B*) b
3090      // where B is a subclass of A.
3091      //
3092      // Additionally, as for assignment, if either type is 'id'
3093      // allow silent coercion. Finally, if the types are
3094      // incompatible then make sure to use 'id' as the composite
3095      // type so the result is acceptable for sending messages to.
3096
3097      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3098      // It could return the composite type.
3099      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
3100      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
3101      if (LHSIface && RHSIface &&
3102          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
3103        compositeType = LHSTy;
3104      } else if (LHSIface && RHSIface &&
3105                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
3106        compositeType = RHSTy;
3107      } else if (Context.isObjCIdStructType(lhptee) ||
3108                 Context.isObjCIdStructType(rhptee)) {
3109        compositeType = Context.getObjCIdType();
3110      } else if (LHSBPT || RHSBPT) {
3111        if (!sameKind
3112            || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3113                                           rhptee.getUnqualifiedType()))
3114          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3115            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3116        return QualType();
3117      } else {
3118        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3119          << LHSTy << RHSTy
3120          << LHS->getSourceRange() << RHS->getSourceRange();
3121        QualType incompatTy = Context.getObjCIdType();
3122        ImpCastExprToType(LHS, incompatTy);
3123        ImpCastExprToType(RHS, incompatTy);
3124        return incompatTy;
3125      }
3126    } else if (!sameKind
3127               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3128                                              rhptee.getUnqualifiedType())) {
3129      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3130        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3131      // In this situation, we assume void* type. No especially good
3132      // reason, but this is what gcc does, and we do have to pick
3133      // to get a consistent AST.
3134      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3135      ImpCastExprToType(LHS, incompatTy);
3136      ImpCastExprToType(RHS, incompatTy);
3137      return incompatTy;
3138    }
3139    // The pointer types are compatible.
3140    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3141    // differently qualified versions of compatible types, the result type is
3142    // a pointer to an appropriately qualified version of the *composite*
3143    // type.
3144    // FIXME: Need to calculate the composite type.
3145    // FIXME: Need to add qualifiers
3146    ImpCastExprToType(LHS, compositeType);
3147    ImpCastExprToType(RHS, compositeType);
3148    return compositeType;
3149  }
3150
3151  // GCC compatibility: soften pointer/integer mismatch.
3152  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3153    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3154      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3155    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3156    return RHSTy;
3157  }
3158  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3159    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3160      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3161    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3162    return LHSTy;
3163  }
3164
3165  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3166  // evaluates to "struct objc_object *" (and is handled above when comparing
3167  // id with statically typed objects).
3168  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3169    // GCC allows qualified id and any Objective-C type to devolve to
3170    // id. Currently localizing to here until clear this should be
3171    // part of ObjCQualifiedIdTypesAreCompatible.
3172    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3173        (LHSTy->isObjCQualifiedIdType() &&
3174         Context.isObjCObjectPointerType(RHSTy)) ||
3175        (RHSTy->isObjCQualifiedIdType() &&
3176         Context.isObjCObjectPointerType(LHSTy))) {
3177      // FIXME: This is not the correct composite type. This only happens to
3178      // work because id can more or less be used anywhere, however this may
3179      // change the type of method sends.
3180
3181      // FIXME: gcc adds some type-checking of the arguments and emits
3182      // (confusing) incompatible comparison warnings in some
3183      // cases. Investigate.
3184      QualType compositeType = Context.getObjCIdType();
3185      ImpCastExprToType(LHS, compositeType);
3186      ImpCastExprToType(RHS, compositeType);
3187      return compositeType;
3188    }
3189  }
3190
3191  // Otherwise, the operands are not compatible.
3192  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3193    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3194  return QualType();
3195}
3196
3197/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3198/// in the case of a the GNU conditional expr extension.
3199Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3200                                                  SourceLocation ColonLoc,
3201                                                  ExprArg Cond, ExprArg LHS,
3202                                                  ExprArg RHS) {
3203  Expr *CondExpr = (Expr *) Cond.get();
3204  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3205
3206  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3207  // was the condition.
3208  bool isLHSNull = LHSExpr == 0;
3209  if (isLHSNull)
3210    LHSExpr = CondExpr;
3211
3212  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3213                                             RHSExpr, QuestionLoc);
3214  if (result.isNull())
3215    return ExprError();
3216
3217  Cond.release();
3218  LHS.release();
3219  RHS.release();
3220  return Owned(new (Context) ConditionalOperator(CondExpr,
3221                                                 isLHSNull ? 0 : LHSExpr,
3222                                                 RHSExpr, result));
3223}
3224
3225
3226// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3227// being closely modeled after the C99 spec:-). The odd characteristic of this
3228// routine is it effectively iqnores the qualifiers on the top level pointee.
3229// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3230// FIXME: add a couple examples in this comment.
3231Sema::AssignConvertType
3232Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3233  QualType lhptee, rhptee;
3234
3235  // get the "pointed to" type (ignoring qualifiers at the top level)
3236  lhptee = lhsType->getAsPointerType()->getPointeeType();
3237  rhptee = rhsType->getAsPointerType()->getPointeeType();
3238
3239  // make sure we operate on the canonical type
3240  lhptee = Context.getCanonicalType(lhptee);
3241  rhptee = Context.getCanonicalType(rhptee);
3242
3243  AssignConvertType ConvTy = Compatible;
3244
3245  // C99 6.5.16.1p1: This following citation is common to constraints
3246  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3247  // qualifiers of the type *pointed to* by the right;
3248  // FIXME: Handle ExtQualType
3249  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3250    ConvTy = CompatiblePointerDiscardsQualifiers;
3251
3252  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3253  // incomplete type and the other is a pointer to a qualified or unqualified
3254  // version of void...
3255  if (lhptee->isVoidType()) {
3256    if (rhptee->isIncompleteOrObjectType())
3257      return ConvTy;
3258
3259    // As an extension, we allow cast to/from void* to function pointer.
3260    assert(rhptee->isFunctionType());
3261    return FunctionVoidPointer;
3262  }
3263
3264  if (rhptee->isVoidType()) {
3265    if (lhptee->isIncompleteOrObjectType())
3266      return ConvTy;
3267
3268    // As an extension, we allow cast to/from void* to function pointer.
3269    assert(lhptee->isFunctionType());
3270    return FunctionVoidPointer;
3271  }
3272  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3273  // unqualified versions of compatible types, ...
3274  lhptee = lhptee.getUnqualifiedType();
3275  rhptee = rhptee.getUnqualifiedType();
3276  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3277    // Check if the pointee types are compatible ignoring the sign.
3278    // We explicitly check for char so that we catch "char" vs
3279    // "unsigned char" on systems where "char" is unsigned.
3280    if (lhptee->isCharType()) {
3281      lhptee = Context.UnsignedCharTy;
3282    } else if (lhptee->isSignedIntegerType()) {
3283      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3284    }
3285    if (rhptee->isCharType()) {
3286      rhptee = Context.UnsignedCharTy;
3287    } else if (rhptee->isSignedIntegerType()) {
3288      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3289    }
3290    if (lhptee == rhptee) {
3291      // Types are compatible ignoring the sign. Qualifier incompatibility
3292      // takes priority over sign incompatibility because the sign
3293      // warning can be disabled.
3294      if (ConvTy != Compatible)
3295        return ConvTy;
3296      return IncompatiblePointerSign;
3297    }
3298    // General pointer incompatibility takes priority over qualifiers.
3299    return IncompatiblePointer;
3300  }
3301  return ConvTy;
3302}
3303
3304/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3305/// block pointer types are compatible or whether a block and normal pointer
3306/// are compatible. It is more restrict than comparing two function pointer
3307// types.
3308Sema::AssignConvertType
3309Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3310                                          QualType rhsType) {
3311  QualType lhptee, rhptee;
3312
3313  // get the "pointed to" type (ignoring qualifiers at the top level)
3314  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3315  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3316
3317  // make sure we operate on the canonical type
3318  lhptee = Context.getCanonicalType(lhptee);
3319  rhptee = Context.getCanonicalType(rhptee);
3320
3321  AssignConvertType ConvTy = Compatible;
3322
3323  // For blocks we enforce that qualifiers are identical.
3324  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3325    ConvTy = CompatiblePointerDiscardsQualifiers;
3326
3327  if (!Context.typesAreCompatible(lhptee, rhptee))
3328    return IncompatibleBlockPointer;
3329  return ConvTy;
3330}
3331
3332/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3333/// has code to accommodate several GCC extensions when type checking
3334/// pointers. Here are some objectionable examples that GCC considers warnings:
3335///
3336///  int a, *pint;
3337///  short *pshort;
3338///  struct foo *pfoo;
3339///
3340///  pint = pshort; // warning: assignment from incompatible pointer type
3341///  a = pint; // warning: assignment makes integer from pointer without a cast
3342///  pint = a; // warning: assignment makes pointer from integer without a cast
3343///  pint = pfoo; // warning: assignment from incompatible pointer type
3344///
3345/// As a result, the code for dealing with pointers is more complex than the
3346/// C99 spec dictates.
3347///
3348Sema::AssignConvertType
3349Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3350  // Get canonical types.  We're not formatting these types, just comparing
3351  // them.
3352  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3353  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3354
3355  if (lhsType == rhsType)
3356    return Compatible; // Common case: fast path an exact match.
3357
3358  // If the left-hand side is a reference type, then we are in a
3359  // (rare!) case where we've allowed the use of references in C,
3360  // e.g., as a parameter type in a built-in function. In this case,
3361  // just make sure that the type referenced is compatible with the
3362  // right-hand side type. The caller is responsible for adjusting
3363  // lhsType so that the resulting expression does not have reference
3364  // type.
3365  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3366    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3367      return Compatible;
3368    return Incompatible;
3369  }
3370
3371  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3372    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3373      return Compatible;
3374    // Relax integer conversions like we do for pointers below.
3375    if (rhsType->isIntegerType())
3376      return IntToPointer;
3377    if (lhsType->isIntegerType())
3378      return PointerToInt;
3379    return IncompatibleObjCQualifiedId;
3380  }
3381
3382  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3383    // For ExtVector, allow vector splats; float -> <n x float>
3384    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3385      if (LV->getElementType() == rhsType)
3386        return Compatible;
3387
3388    // If we are allowing lax vector conversions, and LHS and RHS are both
3389    // vectors, the total size only needs to be the same. This is a bitcast;
3390    // no bits are changed but the result type is different.
3391    if (getLangOptions().LaxVectorConversions &&
3392        lhsType->isVectorType() && rhsType->isVectorType()) {
3393      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3394        return IncompatibleVectors;
3395    }
3396    return Incompatible;
3397  }
3398
3399  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3400    return Compatible;
3401
3402  if (isa<PointerType>(lhsType)) {
3403    if (rhsType->isIntegerType())
3404      return IntToPointer;
3405
3406    if (isa<PointerType>(rhsType))
3407      return CheckPointerTypesForAssignment(lhsType, rhsType);
3408
3409    if (rhsType->getAsBlockPointerType()) {
3410      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3411        return Compatible;
3412
3413      // Treat block pointers as objects.
3414      if (getLangOptions().ObjC1 &&
3415          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3416        return Compatible;
3417    }
3418    return Incompatible;
3419  }
3420
3421  if (isa<BlockPointerType>(lhsType)) {
3422    if (rhsType->isIntegerType())
3423      return IntToBlockPointer;
3424
3425    // Treat block pointers as objects.
3426    if (getLangOptions().ObjC1 &&
3427        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3428      return Compatible;
3429
3430    if (rhsType->isBlockPointerType())
3431      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3432
3433    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3434      if (RHSPT->getPointeeType()->isVoidType())
3435        return Compatible;
3436    }
3437    return Incompatible;
3438  }
3439
3440  if (isa<PointerType>(rhsType)) {
3441    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3442    if (lhsType == Context.BoolTy)
3443      return Compatible;
3444
3445    if (lhsType->isIntegerType())
3446      return PointerToInt;
3447
3448    if (isa<PointerType>(lhsType))
3449      return CheckPointerTypesForAssignment(lhsType, rhsType);
3450
3451    if (isa<BlockPointerType>(lhsType) &&
3452        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3453      return Compatible;
3454    return Incompatible;
3455  }
3456
3457  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3458    if (Context.typesAreCompatible(lhsType, rhsType))
3459      return Compatible;
3460  }
3461  return Incompatible;
3462}
3463
3464/// \brief Constructs a transparent union from an expression that is
3465/// used to initialize the transparent union.
3466static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3467                                      QualType UnionType, FieldDecl *Field) {
3468  // Build an initializer list that designates the appropriate member
3469  // of the transparent union.
3470  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3471                                                   &E, 1,
3472                                                   SourceLocation());
3473  Initializer->setType(UnionType);
3474  Initializer->setInitializedFieldInUnion(Field);
3475
3476  // Build a compound literal constructing a value of the transparent
3477  // union type from this initializer list.
3478  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3479                                  false);
3480}
3481
3482Sema::AssignConvertType
3483Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3484  QualType FromType = rExpr->getType();
3485
3486  // If the ArgType is a Union type, we want to handle a potential
3487  // transparent_union GCC extension.
3488  const RecordType *UT = ArgType->getAsUnionType();
3489  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>(Context))
3490    return Incompatible;
3491
3492  // The field to initialize within the transparent union.
3493  RecordDecl *UD = UT->getDecl();
3494  FieldDecl *InitField = 0;
3495  // It's compatible if the expression matches any of the fields.
3496  for (RecordDecl::field_iterator it = UD->field_begin(Context),
3497         itend = UD->field_end(Context);
3498       it != itend; ++it) {
3499    if (it->getType()->isPointerType()) {
3500      // If the transparent union contains a pointer type, we allow:
3501      // 1) void pointer
3502      // 2) null pointer constant
3503      if (FromType->isPointerType())
3504        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3505          ImpCastExprToType(rExpr, it->getType());
3506          InitField = *it;
3507          break;
3508        }
3509
3510      if (rExpr->isNullPointerConstant(Context)) {
3511        ImpCastExprToType(rExpr, it->getType());
3512        InitField = *it;
3513        break;
3514      }
3515    }
3516
3517    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3518          == Compatible) {
3519      InitField = *it;
3520      break;
3521    }
3522  }
3523
3524  if (!InitField)
3525    return Incompatible;
3526
3527  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3528  return Compatible;
3529}
3530
3531Sema::AssignConvertType
3532Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3533  if (getLangOptions().CPlusPlus) {
3534    if (!lhsType->isRecordType()) {
3535      // C++ 5.17p3: If the left operand is not of class type, the
3536      // expression is implicitly converted (C++ 4) to the
3537      // cv-unqualified type of the left operand.
3538      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3539                                    "assigning"))
3540        return Incompatible;
3541      return Compatible;
3542    }
3543
3544    // FIXME: Currently, we fall through and treat C++ classes like C
3545    // structures.
3546  }
3547
3548  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3549  // a null pointer constant.
3550  if ((lhsType->isPointerType() ||
3551       lhsType->isObjCQualifiedIdType() ||
3552       lhsType->isBlockPointerType())
3553      && rExpr->isNullPointerConstant(Context)) {
3554    ImpCastExprToType(rExpr, lhsType);
3555    return Compatible;
3556  }
3557
3558  // This check seems unnatural, however it is necessary to ensure the proper
3559  // conversion of functions/arrays. If the conversion were done for all
3560  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3561  // expressions that surpress this implicit conversion (&, sizeof).
3562  //
3563  // Suppress this for references: C++ 8.5.3p5.
3564  if (!lhsType->isReferenceType())
3565    DefaultFunctionArrayConversion(rExpr);
3566
3567  Sema::AssignConvertType result =
3568    CheckAssignmentConstraints(lhsType, rExpr->getType());
3569
3570  // C99 6.5.16.1p2: The value of the right operand is converted to the
3571  // type of the assignment expression.
3572  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3573  // so that we can use references in built-in functions even in C.
3574  // The getNonReferenceType() call makes sure that the resulting expression
3575  // does not have reference type.
3576  if (result != Incompatible && rExpr->getType() != lhsType)
3577    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3578  return result;
3579}
3580
3581QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3582  Diag(Loc, diag::err_typecheck_invalid_operands)
3583    << lex->getType() << rex->getType()
3584    << lex->getSourceRange() << rex->getSourceRange();
3585  return QualType();
3586}
3587
3588inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3589                                                              Expr *&rex) {
3590  // For conversion purposes, we ignore any qualifiers.
3591  // For example, "const float" and "float" are equivalent.
3592  QualType lhsType =
3593    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3594  QualType rhsType =
3595    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3596
3597  // If the vector types are identical, return.
3598  if (lhsType == rhsType)
3599    return lhsType;
3600
3601  // Handle the case of a vector & extvector type of the same size and element
3602  // type.  It would be nice if we only had one vector type someday.
3603  if (getLangOptions().LaxVectorConversions) {
3604    // FIXME: Should we warn here?
3605    if (const VectorType *LV = lhsType->getAsVectorType()) {
3606      if (const VectorType *RV = rhsType->getAsVectorType())
3607        if (LV->getElementType() == RV->getElementType() &&
3608            LV->getNumElements() == RV->getNumElements()) {
3609          return lhsType->isExtVectorType() ? lhsType : rhsType;
3610        }
3611    }
3612  }
3613
3614  // If the lhs is an extended vector and the rhs is a scalar of the same type
3615  // or a literal, promote the rhs to the vector type.
3616  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3617    QualType eltType = V->getElementType();
3618
3619    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3620        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3621        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3622      ImpCastExprToType(rex, lhsType);
3623      return lhsType;
3624    }
3625  }
3626
3627  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3628  // promote the lhs to the vector type.
3629  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3630    QualType eltType = V->getElementType();
3631
3632    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3633        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3634        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3635      ImpCastExprToType(lex, rhsType);
3636      return rhsType;
3637    }
3638  }
3639
3640  // You cannot convert between vector values of different size.
3641  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3642    << lex->getType() << rex->getType()
3643    << lex->getSourceRange() << rex->getSourceRange();
3644  return QualType();
3645}
3646
3647inline QualType Sema::CheckMultiplyDivideOperands(
3648  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3649{
3650  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3651    return CheckVectorOperands(Loc, lex, rex);
3652
3653  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3654
3655  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3656    return compType;
3657  return InvalidOperands(Loc, lex, rex);
3658}
3659
3660inline QualType Sema::CheckRemainderOperands(
3661  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3662{
3663  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3664    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3665      return CheckVectorOperands(Loc, lex, rex);
3666    return InvalidOperands(Loc, lex, rex);
3667  }
3668
3669  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3670
3671  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3672    return compType;
3673  return InvalidOperands(Loc, lex, rex);
3674}
3675
3676inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3677  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3678{
3679  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3680    QualType compType = CheckVectorOperands(Loc, lex, rex);
3681    if (CompLHSTy) *CompLHSTy = compType;
3682    return compType;
3683  }
3684
3685  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3686
3687  // handle the common case first (both operands are arithmetic).
3688  if (lex->getType()->isArithmeticType() &&
3689      rex->getType()->isArithmeticType()) {
3690    if (CompLHSTy) *CompLHSTy = compType;
3691    return compType;
3692  }
3693
3694  // Put any potential pointer into PExp
3695  Expr* PExp = lex, *IExp = rex;
3696  if (IExp->getType()->isPointerType())
3697    std::swap(PExp, IExp);
3698
3699  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3700    if (IExp->getType()->isIntegerType()) {
3701      QualType PointeeTy = PTy->getPointeeType();
3702      // Check for arithmetic on pointers to incomplete types.
3703      if (PointeeTy->isVoidType()) {
3704        if (getLangOptions().CPlusPlus) {
3705          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3706            << lex->getSourceRange() << rex->getSourceRange();
3707          return QualType();
3708        }
3709
3710        // GNU extension: arithmetic on pointer to void
3711        Diag(Loc, diag::ext_gnu_void_ptr)
3712          << lex->getSourceRange() << rex->getSourceRange();
3713      } else if (PointeeTy->isFunctionType()) {
3714        if (getLangOptions().CPlusPlus) {
3715          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3716            << lex->getType() << lex->getSourceRange();
3717          return QualType();
3718        }
3719
3720        // GNU extension: arithmetic on pointer to function
3721        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3722          << lex->getType() << lex->getSourceRange();
3723      } else if (!PTy->isDependentType() &&
3724                 RequireCompleteType(Loc, PointeeTy,
3725                                diag::err_typecheck_arithmetic_incomplete_type,
3726                                     PExp->getSourceRange(), SourceRange(),
3727                                     PExp->getType()))
3728        return QualType();
3729
3730      // Diagnose bad cases where we step over interface counts.
3731      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3732        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3733          << PointeeTy << PExp->getSourceRange();
3734        return QualType();
3735      }
3736
3737      if (CompLHSTy) {
3738        QualType LHSTy = lex->getType();
3739        if (LHSTy->isPromotableIntegerType())
3740          LHSTy = Context.IntTy;
3741        else {
3742          QualType T = isPromotableBitField(lex, Context);
3743          if (!T.isNull())
3744            LHSTy = T;
3745        }
3746
3747        *CompLHSTy = LHSTy;
3748      }
3749      return PExp->getType();
3750    }
3751  }
3752
3753  return InvalidOperands(Loc, lex, rex);
3754}
3755
3756// C99 6.5.6
3757QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3758                                        SourceLocation Loc, QualType* CompLHSTy) {
3759  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3760    QualType compType = CheckVectorOperands(Loc, lex, rex);
3761    if (CompLHSTy) *CompLHSTy = compType;
3762    return compType;
3763  }
3764
3765  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3766
3767  // Enforce type constraints: C99 6.5.6p3.
3768
3769  // Handle the common case first (both operands are arithmetic).
3770  if (lex->getType()->isArithmeticType()
3771      && rex->getType()->isArithmeticType()) {
3772    if (CompLHSTy) *CompLHSTy = compType;
3773    return compType;
3774  }
3775
3776  // Either ptr - int   or   ptr - ptr.
3777  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3778    QualType lpointee = LHSPTy->getPointeeType();
3779
3780    // The LHS must be an completely-defined object type.
3781
3782    bool ComplainAboutVoid = false;
3783    Expr *ComplainAboutFunc = 0;
3784    if (lpointee->isVoidType()) {
3785      if (getLangOptions().CPlusPlus) {
3786        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3787          << lex->getSourceRange() << rex->getSourceRange();
3788        return QualType();
3789      }
3790
3791      // GNU C extension: arithmetic on pointer to void
3792      ComplainAboutVoid = true;
3793    } else if (lpointee->isFunctionType()) {
3794      if (getLangOptions().CPlusPlus) {
3795        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3796          << lex->getType() << lex->getSourceRange();
3797        return QualType();
3798      }
3799
3800      // GNU C extension: arithmetic on pointer to function
3801      ComplainAboutFunc = lex;
3802    } else if (!lpointee->isDependentType() &&
3803               RequireCompleteType(Loc, lpointee,
3804                                   diag::err_typecheck_sub_ptr_object,
3805                                   lex->getSourceRange(),
3806                                   SourceRange(),
3807                                   lex->getType()))
3808      return QualType();
3809
3810    // Diagnose bad cases where we step over interface counts.
3811    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3812      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3813        << lpointee << lex->getSourceRange();
3814      return QualType();
3815    }
3816
3817    // The result type of a pointer-int computation is the pointer type.
3818    if (rex->getType()->isIntegerType()) {
3819      if (ComplainAboutVoid)
3820        Diag(Loc, diag::ext_gnu_void_ptr)
3821          << lex->getSourceRange() << rex->getSourceRange();
3822      if (ComplainAboutFunc)
3823        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3824          << ComplainAboutFunc->getType()
3825          << ComplainAboutFunc->getSourceRange();
3826
3827      if (CompLHSTy) *CompLHSTy = lex->getType();
3828      return lex->getType();
3829    }
3830
3831    // Handle pointer-pointer subtractions.
3832    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3833      QualType rpointee = RHSPTy->getPointeeType();
3834
3835      // RHS must be a completely-type object type.
3836      // Handle the GNU void* extension.
3837      if (rpointee->isVoidType()) {
3838        if (getLangOptions().CPlusPlus) {
3839          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3840            << lex->getSourceRange() << rex->getSourceRange();
3841          return QualType();
3842        }
3843
3844        ComplainAboutVoid = true;
3845      } else if (rpointee->isFunctionType()) {
3846        if (getLangOptions().CPlusPlus) {
3847          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3848            << rex->getType() << rex->getSourceRange();
3849          return QualType();
3850        }
3851
3852        // GNU extension: arithmetic on pointer to function
3853        if (!ComplainAboutFunc)
3854          ComplainAboutFunc = rex;
3855      } else if (!rpointee->isDependentType() &&
3856                 RequireCompleteType(Loc, rpointee,
3857                                     diag::err_typecheck_sub_ptr_object,
3858                                     rex->getSourceRange(),
3859                                     SourceRange(),
3860                                     rex->getType()))
3861        return QualType();
3862
3863      if (getLangOptions().CPlusPlus) {
3864        // Pointee types must be the same: C++ [expr.add]
3865        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3866          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3867            << lex->getType() << rex->getType()
3868            << lex->getSourceRange() << rex->getSourceRange();
3869          return QualType();
3870        }
3871      } else {
3872        // Pointee types must be compatible C99 6.5.6p3
3873        if (!Context.typesAreCompatible(
3874                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3875                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3876          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3877            << lex->getType() << rex->getType()
3878            << lex->getSourceRange() << rex->getSourceRange();
3879          return QualType();
3880        }
3881      }
3882
3883      if (ComplainAboutVoid)
3884        Diag(Loc, diag::ext_gnu_void_ptr)
3885          << lex->getSourceRange() << rex->getSourceRange();
3886      if (ComplainAboutFunc)
3887        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3888          << ComplainAboutFunc->getType()
3889          << ComplainAboutFunc->getSourceRange();
3890
3891      if (CompLHSTy) *CompLHSTy = lex->getType();
3892      return Context.getPointerDiffType();
3893    }
3894  }
3895
3896  return InvalidOperands(Loc, lex, rex);
3897}
3898
3899// C99 6.5.7
3900QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3901                                  bool isCompAssign) {
3902  // C99 6.5.7p2: Each of the operands shall have integer type.
3903  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3904    return InvalidOperands(Loc, lex, rex);
3905
3906  // Shifts don't perform usual arithmetic conversions, they just do integer
3907  // promotions on each operand. C99 6.5.7p3
3908  QualType LHSTy;
3909  if (lex->getType()->isPromotableIntegerType())
3910    LHSTy = Context.IntTy;
3911  else {
3912    LHSTy = isPromotableBitField(lex, Context);
3913    if (LHSTy.isNull())
3914      LHSTy = lex->getType();
3915  }
3916  if (!isCompAssign)
3917    ImpCastExprToType(lex, LHSTy);
3918
3919  UsualUnaryConversions(rex);
3920
3921  // "The type of the result is that of the promoted left operand."
3922  return LHSTy;
3923}
3924
3925// C99 6.5.8, C++ [expr.rel]
3926QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3927                                    unsigned OpaqueOpc, bool isRelational) {
3928  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3929
3930  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3931    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3932
3933  // C99 6.5.8p3 / C99 6.5.9p4
3934  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3935    UsualArithmeticConversions(lex, rex);
3936  else {
3937    UsualUnaryConversions(lex);
3938    UsualUnaryConversions(rex);
3939  }
3940  QualType lType = lex->getType();
3941  QualType rType = rex->getType();
3942
3943  if (!lType->isFloatingType()
3944      && !(lType->isBlockPointerType() && isRelational)) {
3945    // For non-floating point types, check for self-comparisons of the form
3946    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3947    // often indicate logic errors in the program.
3948    // NOTE: Don't warn about comparisons of enum constants. These can arise
3949    //  from macro expansions, and are usually quite deliberate.
3950    Expr *LHSStripped = lex->IgnoreParens();
3951    Expr *RHSStripped = rex->IgnoreParens();
3952    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3953      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3954        if (DRL->getDecl() == DRR->getDecl() &&
3955            !isa<EnumConstantDecl>(DRL->getDecl()))
3956          Diag(Loc, diag::warn_selfcomparison);
3957
3958    if (isa<CastExpr>(LHSStripped))
3959      LHSStripped = LHSStripped->IgnoreParenCasts();
3960    if (isa<CastExpr>(RHSStripped))
3961      RHSStripped = RHSStripped->IgnoreParenCasts();
3962
3963    // Warn about comparisons against a string constant (unless the other
3964    // operand is null), the user probably wants strcmp.
3965    Expr *literalString = 0;
3966    Expr *literalStringStripped = 0;
3967    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3968        !RHSStripped->isNullPointerConstant(Context)) {
3969      literalString = lex;
3970      literalStringStripped = LHSStripped;
3971    }
3972    else if ((isa<StringLiteral>(RHSStripped) ||
3973              isa<ObjCEncodeExpr>(RHSStripped)) &&
3974             !LHSStripped->isNullPointerConstant(Context)) {
3975      literalString = rex;
3976      literalStringStripped = RHSStripped;
3977    }
3978
3979    if (literalString) {
3980      std::string resultComparison;
3981      switch (Opc) {
3982      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3983      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3984      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3985      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3986      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3987      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3988      default: assert(false && "Invalid comparison operator");
3989      }
3990      Diag(Loc, diag::warn_stringcompare)
3991        << isa<ObjCEncodeExpr>(literalStringStripped)
3992        << literalString->getSourceRange()
3993        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3994        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3995                                                 "strcmp(")
3996        << CodeModificationHint::CreateInsertion(
3997                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3998                                       resultComparison);
3999    }
4000  }
4001
4002  // The result of comparisons is 'bool' in C++, 'int' in C.
4003  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4004
4005  if (isRelational) {
4006    if (lType->isRealType() && rType->isRealType())
4007      return ResultTy;
4008  } else {
4009    // Check for comparisons of floating point operands using != and ==.
4010    if (lType->isFloatingType()) {
4011      assert(rType->isFloatingType());
4012      CheckFloatComparison(Loc,lex,rex);
4013    }
4014
4015    if (lType->isArithmeticType() && rType->isArithmeticType())
4016      return ResultTy;
4017  }
4018
4019  bool LHSIsNull = lex->isNullPointerConstant(Context);
4020  bool RHSIsNull = rex->isNullPointerConstant(Context);
4021
4022  // All of the following pointer related warnings are GCC extensions, except
4023  // when handling null pointer constants. One day, we can consider making them
4024  // errors (when -pedantic-errors is enabled).
4025  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4026    QualType LCanPointeeTy =
4027      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
4028    QualType RCanPointeeTy =
4029      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
4030
4031    // Simple check: if the pointee types are identical, we're done.
4032    if (LCanPointeeTy == RCanPointeeTy)
4033      return ResultTy;
4034
4035    if (getLangOptions().CPlusPlus) {
4036      // C++ [expr.rel]p2:
4037      //   [...] Pointer conversions (4.10) and qualification
4038      //   conversions (4.4) are performed on pointer operands (or on
4039      //   a pointer operand and a null pointer constant) to bring
4040      //   them to their composite pointer type. [...]
4041      //
4042      // C++ [expr.eq]p2 uses the same notion for (in)equality
4043      // comparisons of pointers.
4044      QualType T = FindCompositePointerType(lex, rex);
4045      if (T.isNull()) {
4046        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4047          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4048        return QualType();
4049      }
4050
4051      ImpCastExprToType(lex, T);
4052      ImpCastExprToType(rex, T);
4053      return ResultTy;
4054    }
4055
4056    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
4057        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
4058        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4059                                    RCanPointeeTy.getUnqualifiedType()) &&
4060        !Context.areComparableObjCPointerTypes(lType, rType)) {
4061      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4062        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4063    }
4064    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4065    return ResultTy;
4066  }
4067  // C++ allows comparison of pointers with null pointer constants.
4068  if (getLangOptions().CPlusPlus) {
4069    if (lType->isPointerType() && RHSIsNull) {
4070      ImpCastExprToType(rex, lType);
4071      return ResultTy;
4072    }
4073    if (rType->isPointerType() && LHSIsNull) {
4074      ImpCastExprToType(lex, rType);
4075      return ResultTy;
4076    }
4077    // And comparison of nullptr_t with itself.
4078    if (lType->isNullPtrType() && rType->isNullPtrType())
4079      return ResultTy;
4080  }
4081  // Handle block pointer types.
4082  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4083    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
4084    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
4085
4086    if (!LHSIsNull && !RHSIsNull &&
4087        !Context.typesAreCompatible(lpointee, rpointee)) {
4088      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4089        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4090    }
4091    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4092    return ResultTy;
4093  }
4094  // Allow block pointers to be compared with null pointer constants.
4095  if (!isRelational
4096      && ((lType->isBlockPointerType() && rType->isPointerType())
4097          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4098    if (!LHSIsNull && !RHSIsNull) {
4099      if (!((rType->isPointerType() && rType->getAsPointerType()
4100             ->getPointeeType()->isVoidType())
4101            || (lType->isPointerType() && lType->getAsPointerType()
4102                ->getPointeeType()->isVoidType())))
4103        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4104          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4105    }
4106    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4107    return ResultTy;
4108  }
4109
4110  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
4111    if (lType->isPointerType() || rType->isPointerType()) {
4112      const PointerType *LPT = lType->getAsPointerType();
4113      const PointerType *RPT = rType->getAsPointerType();
4114      bool LPtrToVoid = LPT ?
4115        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4116      bool RPtrToVoid = RPT ?
4117        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4118
4119      if (!LPtrToVoid && !RPtrToVoid &&
4120          !Context.typesAreCompatible(lType, rType)) {
4121        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4122          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4123        ImpCastExprToType(rex, lType);
4124        return ResultTy;
4125      }
4126      ImpCastExprToType(rex, lType);
4127      return ResultTy;
4128    }
4129    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4130      ImpCastExprToType(rex, lType);
4131      return ResultTy;
4132    } else {
4133      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4134        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4135          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4136        ImpCastExprToType(rex, lType);
4137        return ResultTy;
4138      }
4139    }
4140  }
4141  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4142       rType->isIntegerType()) {
4143    if (!RHSIsNull)
4144      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4145        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4146    ImpCastExprToType(rex, lType); // promote the integer to pointer
4147    return ResultTy;
4148  }
4149  if (lType->isIntegerType() &&
4150      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4151    if (!LHSIsNull)
4152      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4153        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4154    ImpCastExprToType(lex, rType); // promote the integer to pointer
4155    return ResultTy;
4156  }
4157  // Handle block pointers.
4158  if (!isRelational && RHSIsNull
4159      && lType->isBlockPointerType() && rType->isIntegerType()) {
4160    ImpCastExprToType(rex, lType); // promote the integer to pointer
4161    return ResultTy;
4162  }
4163  if (!isRelational && LHSIsNull
4164      && lType->isIntegerType() && rType->isBlockPointerType()) {
4165    ImpCastExprToType(lex, rType); // promote the integer to pointer
4166    return ResultTy;
4167  }
4168  return InvalidOperands(Loc, lex, rex);
4169}
4170
4171/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4172/// operates on extended vector types.  Instead of producing an IntTy result,
4173/// like a scalar comparison, a vector comparison produces a vector of integer
4174/// types.
4175QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4176                                          SourceLocation Loc,
4177                                          bool isRelational) {
4178  // Check to make sure we're operating on vectors of the same type and width,
4179  // Allowing one side to be a scalar of element type.
4180  QualType vType = CheckVectorOperands(Loc, lex, rex);
4181  if (vType.isNull())
4182    return vType;
4183
4184  QualType lType = lex->getType();
4185  QualType rType = rex->getType();
4186
4187  // For non-floating point types, check for self-comparisons of the form
4188  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4189  // often indicate logic errors in the program.
4190  if (!lType->isFloatingType()) {
4191    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4192      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4193        if (DRL->getDecl() == DRR->getDecl())
4194          Diag(Loc, diag::warn_selfcomparison);
4195  }
4196
4197  // Check for comparisons of floating point operands using != and ==.
4198  if (!isRelational && lType->isFloatingType()) {
4199    assert (rType->isFloatingType());
4200    CheckFloatComparison(Loc,lex,rex);
4201  }
4202
4203  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4204  // just reject all vector comparisons for now.
4205  if (1) {
4206    Diag(Loc, diag::err_typecheck_vector_comparison)
4207      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4208    return QualType();
4209  }
4210
4211  // Return the type for the comparison, which is the same as vector type for
4212  // integer vectors, or an integer type of identical size and number of
4213  // elements for floating point vectors.
4214  if (lType->isIntegerType())
4215    return lType;
4216
4217  const VectorType *VTy = lType->getAsVectorType();
4218  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4219  if (TypeSize == Context.getTypeSize(Context.IntTy))
4220    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4221  if (TypeSize == Context.getTypeSize(Context.LongTy))
4222    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4223
4224  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4225         "Unhandled vector element size in vector compare");
4226  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4227}
4228
4229inline QualType Sema::CheckBitwiseOperands(
4230  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4231{
4232  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4233    return CheckVectorOperands(Loc, lex, rex);
4234
4235  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4236
4237  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4238    return compType;
4239  return InvalidOperands(Loc, lex, rex);
4240}
4241
4242inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4243  Expr *&lex, Expr *&rex, SourceLocation Loc)
4244{
4245  UsualUnaryConversions(lex);
4246  UsualUnaryConversions(rex);
4247
4248  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4249    return Context.IntTy;
4250  return InvalidOperands(Loc, lex, rex);
4251}
4252
4253/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4254/// is a read-only property; return true if so. A readonly property expression
4255/// depends on various declarations and thus must be treated specially.
4256///
4257static bool IsReadonlyProperty(Expr *E, Sema &S)
4258{
4259  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4260    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4261    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4262      QualType BaseType = PropExpr->getBase()->getType();
4263      if (const PointerType *PTy = BaseType->getAsPointerType())
4264        if (const ObjCInterfaceType *IFTy =
4265            PTy->getPointeeType()->getAsObjCInterfaceType())
4266          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4267            if (S.isPropertyReadonly(PDecl, IFace))
4268              return true;
4269    }
4270  }
4271  return false;
4272}
4273
4274/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4275/// emit an error and return true.  If so, return false.
4276static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4277  SourceLocation OrigLoc = Loc;
4278  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4279                                                              &Loc);
4280  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4281    IsLV = Expr::MLV_ReadonlyProperty;
4282  if (IsLV == Expr::MLV_Valid)
4283    return false;
4284
4285  unsigned Diag = 0;
4286  bool NeedType = false;
4287  switch (IsLV) { // C99 6.5.16p2
4288  default: assert(0 && "Unknown result from isModifiableLvalue!");
4289  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4290  case Expr::MLV_ArrayType:
4291    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4292    NeedType = true;
4293    break;
4294  case Expr::MLV_NotObjectType:
4295    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4296    NeedType = true;
4297    break;
4298  case Expr::MLV_LValueCast:
4299    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4300    break;
4301  case Expr::MLV_InvalidExpression:
4302    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4303    break;
4304  case Expr::MLV_IncompleteType:
4305  case Expr::MLV_IncompleteVoidType:
4306    return S.RequireCompleteType(Loc, E->getType(),
4307                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4308                                    E->getSourceRange());
4309  case Expr::MLV_DuplicateVectorComponents:
4310    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4311    break;
4312  case Expr::MLV_NotBlockQualified:
4313    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4314    break;
4315  case Expr::MLV_ReadonlyProperty:
4316    Diag = diag::error_readonly_property_assignment;
4317    break;
4318  case Expr::MLV_NoSetterProperty:
4319    Diag = diag::error_nosetter_property_assignment;
4320    break;
4321  }
4322
4323  SourceRange Assign;
4324  if (Loc != OrigLoc)
4325    Assign = SourceRange(OrigLoc, OrigLoc);
4326  if (NeedType)
4327    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4328  else
4329    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4330  return true;
4331}
4332
4333
4334
4335// C99 6.5.16.1
4336QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4337                                       SourceLocation Loc,
4338                                       QualType CompoundType) {
4339  // Verify that LHS is a modifiable lvalue, and emit error if not.
4340  if (CheckForModifiableLvalue(LHS, Loc, *this))
4341    return QualType();
4342
4343  QualType LHSType = LHS->getType();
4344  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4345
4346  AssignConvertType ConvTy;
4347  if (CompoundType.isNull()) {
4348    // Simple assignment "x = y".
4349    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4350    // Special case of NSObject attributes on c-style pointer types.
4351    if (ConvTy == IncompatiblePointer &&
4352        ((Context.isObjCNSObjectType(LHSType) &&
4353          Context.isObjCObjectPointerType(RHSType)) ||
4354         (Context.isObjCNSObjectType(RHSType) &&
4355          Context.isObjCObjectPointerType(LHSType))))
4356      ConvTy = Compatible;
4357
4358    // If the RHS is a unary plus or minus, check to see if they = and + are
4359    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4360    // instead of "x += 4".
4361    Expr *RHSCheck = RHS;
4362    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4363      RHSCheck = ICE->getSubExpr();
4364    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4365      if ((UO->getOpcode() == UnaryOperator::Plus ||
4366           UO->getOpcode() == UnaryOperator::Minus) &&
4367          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4368          // Only if the two operators are exactly adjacent.
4369          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4370          // And there is a space or other character before the subexpr of the
4371          // unary +/-.  We don't want to warn on "x=-1".
4372          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4373          UO->getSubExpr()->getLocStart().isFileID()) {
4374        Diag(Loc, diag::warn_not_compound_assign)
4375          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4376          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4377      }
4378    }
4379  } else {
4380    // Compound assignment "x += y"
4381    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4382  }
4383
4384  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4385                               RHS, "assigning"))
4386    return QualType();
4387
4388  // C99 6.5.16p3: The type of an assignment expression is the type of the
4389  // left operand unless the left operand has qualified type, in which case
4390  // it is the unqualified version of the type of the left operand.
4391  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4392  // is converted to the type of the assignment expression (above).
4393  // C++ 5.17p1: the type of the assignment expression is that of its left
4394  // operand.
4395  return LHSType.getUnqualifiedType();
4396}
4397
4398// C99 6.5.17
4399QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4400  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4401  DefaultFunctionArrayConversion(RHS);
4402
4403  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4404  // incomplete in C++).
4405
4406  return RHS->getType();
4407}
4408
4409/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4410/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4411QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4412                                              bool isInc) {
4413  if (Op->isTypeDependent())
4414    return Context.DependentTy;
4415
4416  QualType ResType = Op->getType();
4417  assert(!ResType.isNull() && "no type for increment/decrement expression");
4418
4419  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4420    // Decrement of bool is not allowed.
4421    if (!isInc) {
4422      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4423      return QualType();
4424    }
4425    // Increment of bool sets it to true, but is deprecated.
4426    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4427  } else if (ResType->isRealType()) {
4428    // OK!
4429  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4430    // C99 6.5.2.4p2, 6.5.6p2
4431    if (PT->getPointeeType()->isVoidType()) {
4432      if (getLangOptions().CPlusPlus) {
4433        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4434          << Op->getSourceRange();
4435        return QualType();
4436      }
4437
4438      // Pointer to void is a GNU extension in C.
4439      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4440    } else if (PT->getPointeeType()->isFunctionType()) {
4441      if (getLangOptions().CPlusPlus) {
4442        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4443          << Op->getType() << Op->getSourceRange();
4444        return QualType();
4445      }
4446
4447      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4448        << ResType << Op->getSourceRange();
4449    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4450                               diag::err_typecheck_arithmetic_incomplete_type,
4451                                   Op->getSourceRange(), SourceRange(),
4452                                   ResType))
4453      return QualType();
4454  } else if (ResType->isComplexType()) {
4455    // C99 does not support ++/-- on complex types, we allow as an extension.
4456    Diag(OpLoc, diag::ext_integer_increment_complex)
4457      << ResType << Op->getSourceRange();
4458  } else {
4459    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4460      << ResType << Op->getSourceRange();
4461    return QualType();
4462  }
4463  // At this point, we know we have a real, complex or pointer type.
4464  // Now make sure the operand is a modifiable lvalue.
4465  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4466    return QualType();
4467  return ResType;
4468}
4469
4470/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4471/// This routine allows us to typecheck complex/recursive expressions
4472/// where the declaration is needed for type checking. We only need to
4473/// handle cases when the expression references a function designator
4474/// or is an lvalue. Here are some examples:
4475///  - &(x) => x
4476///  - &*****f => f for f a function designator.
4477///  - &s.xx => s
4478///  - &s.zz[1].yy -> s, if zz is an array
4479///  - *(x + 1) -> x, if x is an array
4480///  - &"123"[2] -> 0
4481///  - & __real__ x -> x
4482static NamedDecl *getPrimaryDecl(Expr *E) {
4483  switch (E->getStmtClass()) {
4484  case Stmt::DeclRefExprClass:
4485  case Stmt::QualifiedDeclRefExprClass:
4486    return cast<DeclRefExpr>(E)->getDecl();
4487  case Stmt::MemberExprClass:
4488    // If this is an arrow operator, the address is an offset from
4489    // the base's value, so the object the base refers to is
4490    // irrelevant.
4491    if (cast<MemberExpr>(E)->isArrow())
4492      return 0;
4493    // Otherwise, the expression refers to a part of the base
4494    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4495  case Stmt::ArraySubscriptExprClass: {
4496    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4497    // promotion of register arrays earlier.
4498    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4499    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4500      if (ICE->getSubExpr()->getType()->isArrayType())
4501        return getPrimaryDecl(ICE->getSubExpr());
4502    }
4503    return 0;
4504  }
4505  case Stmt::UnaryOperatorClass: {
4506    UnaryOperator *UO = cast<UnaryOperator>(E);
4507
4508    switch(UO->getOpcode()) {
4509    case UnaryOperator::Real:
4510    case UnaryOperator::Imag:
4511    case UnaryOperator::Extension:
4512      return getPrimaryDecl(UO->getSubExpr());
4513    default:
4514      return 0;
4515    }
4516  }
4517  case Stmt::ParenExprClass:
4518    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4519  case Stmt::ImplicitCastExprClass:
4520    // If the result of an implicit cast is an l-value, we care about
4521    // the sub-expression; otherwise, the result here doesn't matter.
4522    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4523  default:
4524    return 0;
4525  }
4526}
4527
4528/// CheckAddressOfOperand - The operand of & must be either a function
4529/// designator or an lvalue designating an object. If it is an lvalue, the
4530/// object cannot be declared with storage class register or be a bit field.
4531/// Note: The usual conversions are *not* applied to the operand of the &
4532/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4533/// In C++, the operand might be an overloaded function name, in which case
4534/// we allow the '&' but retain the overloaded-function type.
4535QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4536  // Make sure to ignore parentheses in subsequent checks
4537  op = op->IgnoreParens();
4538
4539  if (op->isTypeDependent())
4540    return Context.DependentTy;
4541
4542  if (getLangOptions().C99) {
4543    // Implement C99-only parts of addressof rules.
4544    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4545      if (uOp->getOpcode() == UnaryOperator::Deref)
4546        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4547        // (assuming the deref expression is valid).
4548        return uOp->getSubExpr()->getType();
4549    }
4550    // Technically, there should be a check for array subscript
4551    // expressions here, but the result of one is always an lvalue anyway.
4552  }
4553  NamedDecl *dcl = getPrimaryDecl(op);
4554  Expr::isLvalueResult lval = op->isLvalue(Context);
4555
4556  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4557    // C99 6.5.3.2p1
4558    // The operand must be either an l-value or a function designator
4559    if (!op->getType()->isFunctionType()) {
4560      // FIXME: emit more specific diag...
4561      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4562        << op->getSourceRange();
4563      return QualType();
4564    }
4565  } else if (op->getBitField()) { // C99 6.5.3.2p1
4566    // The operand cannot be a bit-field
4567    Diag(OpLoc, diag::err_typecheck_address_of)
4568      << "bit-field" << op->getSourceRange();
4569        return QualType();
4570  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4571           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4572    // The operand cannot be an element of a vector
4573    Diag(OpLoc, diag::err_typecheck_address_of)
4574      << "vector element" << op->getSourceRange();
4575    return QualType();
4576  } else if (dcl) { // C99 6.5.3.2p1
4577    // We have an lvalue with a decl. Make sure the decl is not declared
4578    // with the register storage-class specifier.
4579    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4580      if (vd->getStorageClass() == VarDecl::Register) {
4581        Diag(OpLoc, diag::err_typecheck_address_of)
4582          << "register variable" << op->getSourceRange();
4583        return QualType();
4584      }
4585    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4586      return Context.OverloadTy;
4587    } else if (isa<FieldDecl>(dcl)) {
4588      // Okay: we can take the address of a field.
4589      // Could be a pointer to member, though, if there is an explicit
4590      // scope qualifier for the class.
4591      if (isa<QualifiedDeclRefExpr>(op)) {
4592        DeclContext *Ctx = dcl->getDeclContext();
4593        if (Ctx && Ctx->isRecord())
4594          return Context.getMemberPointerType(op->getType(),
4595                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4596      }
4597    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4598      // Okay: we can take the address of a function.
4599      // As above.
4600      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4601        return Context.getMemberPointerType(op->getType(),
4602              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4603    } else if (!isa<FunctionDecl>(dcl))
4604      assert(0 && "Unknown/unexpected decl type");
4605  }
4606
4607  if (lval == Expr::LV_IncompleteVoidType) {
4608    // Taking the address of a void variable is technically illegal, but we
4609    // allow it in cases which are otherwise valid.
4610    // Example: "extern void x; void* y = &x;".
4611    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4612  }
4613
4614  // If the operand has type "type", the result has type "pointer to type".
4615  return Context.getPointerType(op->getType());
4616}
4617
4618QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4619  if (Op->isTypeDependent())
4620    return Context.DependentTy;
4621
4622  UsualUnaryConversions(Op);
4623  QualType Ty = Op->getType();
4624
4625  // Note that per both C89 and C99, this is always legal, even if ptype is an
4626  // incomplete type or void.  It would be possible to warn about dereferencing
4627  // a void pointer, but it's completely well-defined, and such a warning is
4628  // unlikely to catch any mistakes.
4629  if (const PointerType *PT = Ty->getAsPointerType())
4630    return PT->getPointeeType();
4631
4632  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4633    << Ty << Op->getSourceRange();
4634  return QualType();
4635}
4636
4637static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4638  tok::TokenKind Kind) {
4639  BinaryOperator::Opcode Opc;
4640  switch (Kind) {
4641  default: assert(0 && "Unknown binop!");
4642  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4643  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4644  case tok::star:                 Opc = BinaryOperator::Mul; break;
4645  case tok::slash:                Opc = BinaryOperator::Div; break;
4646  case tok::percent:              Opc = BinaryOperator::Rem; break;
4647  case tok::plus:                 Opc = BinaryOperator::Add; break;
4648  case tok::minus:                Opc = BinaryOperator::Sub; break;
4649  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4650  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4651  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4652  case tok::less:                 Opc = BinaryOperator::LT; break;
4653  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4654  case tok::greater:              Opc = BinaryOperator::GT; break;
4655  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4656  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4657  case tok::amp:                  Opc = BinaryOperator::And; break;
4658  case tok::caret:                Opc = BinaryOperator::Xor; break;
4659  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4660  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4661  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4662  case tok::equal:                Opc = BinaryOperator::Assign; break;
4663  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4664  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4665  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4666  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4667  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4668  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4669  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4670  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4671  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4672  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4673  case tok::comma:                Opc = BinaryOperator::Comma; break;
4674  }
4675  return Opc;
4676}
4677
4678static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4679  tok::TokenKind Kind) {
4680  UnaryOperator::Opcode Opc;
4681  switch (Kind) {
4682  default: assert(0 && "Unknown unary op!");
4683  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4684  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4685  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4686  case tok::star:         Opc = UnaryOperator::Deref; break;
4687  case tok::plus:         Opc = UnaryOperator::Plus; break;
4688  case tok::minus:        Opc = UnaryOperator::Minus; break;
4689  case tok::tilde:        Opc = UnaryOperator::Not; break;
4690  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4691  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4692  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4693  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4694  }
4695  return Opc;
4696}
4697
4698/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4699/// operator @p Opc at location @c TokLoc. This routine only supports
4700/// built-in operations; ActOnBinOp handles overloaded operators.
4701Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4702                                                  unsigned Op,
4703                                                  Expr *lhs, Expr *rhs) {
4704  QualType ResultTy;     // Result type of the binary operator.
4705  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4706  // The following two variables are used for compound assignment operators
4707  QualType CompLHSTy;    // Type of LHS after promotions for computation
4708  QualType CompResultTy; // Type of computation result
4709
4710  switch (Opc) {
4711  case BinaryOperator::Assign:
4712    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4713    break;
4714  case BinaryOperator::PtrMemD:
4715  case BinaryOperator::PtrMemI:
4716    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4717                                            Opc == BinaryOperator::PtrMemI);
4718    break;
4719  case BinaryOperator::Mul:
4720  case BinaryOperator::Div:
4721    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4722    break;
4723  case BinaryOperator::Rem:
4724    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4725    break;
4726  case BinaryOperator::Add:
4727    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4728    break;
4729  case BinaryOperator::Sub:
4730    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4731    break;
4732  case BinaryOperator::Shl:
4733  case BinaryOperator::Shr:
4734    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4735    break;
4736  case BinaryOperator::LE:
4737  case BinaryOperator::LT:
4738  case BinaryOperator::GE:
4739  case BinaryOperator::GT:
4740    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4741    break;
4742  case BinaryOperator::EQ:
4743  case BinaryOperator::NE:
4744    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4745    break;
4746  case BinaryOperator::And:
4747  case BinaryOperator::Xor:
4748  case BinaryOperator::Or:
4749    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4750    break;
4751  case BinaryOperator::LAnd:
4752  case BinaryOperator::LOr:
4753    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4754    break;
4755  case BinaryOperator::MulAssign:
4756  case BinaryOperator::DivAssign:
4757    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4758    CompLHSTy = CompResultTy;
4759    if (!CompResultTy.isNull())
4760      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4761    break;
4762  case BinaryOperator::RemAssign:
4763    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4764    CompLHSTy = CompResultTy;
4765    if (!CompResultTy.isNull())
4766      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4767    break;
4768  case BinaryOperator::AddAssign:
4769    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4770    if (!CompResultTy.isNull())
4771      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4772    break;
4773  case BinaryOperator::SubAssign:
4774    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4775    if (!CompResultTy.isNull())
4776      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4777    break;
4778  case BinaryOperator::ShlAssign:
4779  case BinaryOperator::ShrAssign:
4780    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4781    CompLHSTy = CompResultTy;
4782    if (!CompResultTy.isNull())
4783      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4784    break;
4785  case BinaryOperator::AndAssign:
4786  case BinaryOperator::XorAssign:
4787  case BinaryOperator::OrAssign:
4788    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4789    CompLHSTy = CompResultTy;
4790    if (!CompResultTy.isNull())
4791      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4792    break;
4793  case BinaryOperator::Comma:
4794    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4795    break;
4796  }
4797  if (ResultTy.isNull())
4798    return ExprError();
4799  if (CompResultTy.isNull())
4800    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4801  else
4802    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4803                                                      CompLHSTy, CompResultTy,
4804                                                      OpLoc));
4805}
4806
4807// Binary Operators.  'Tok' is the token for the operator.
4808Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4809                                          tok::TokenKind Kind,
4810                                          ExprArg LHS, ExprArg RHS) {
4811  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4812  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4813
4814  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4815  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4816
4817  if (getLangOptions().CPlusPlus &&
4818      (lhs->getType()->isOverloadableType() ||
4819       rhs->getType()->isOverloadableType())) {
4820    // Find all of the overloaded operators visible from this
4821    // point. We perform both an operator-name lookup from the local
4822    // scope and an argument-dependent lookup based on the types of
4823    // the arguments.
4824    FunctionSet Functions;
4825    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4826    if (OverOp != OO_None) {
4827      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4828                                   Functions);
4829      Expr *Args[2] = { lhs, rhs };
4830      DeclarationName OpName
4831        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4832      ArgumentDependentLookup(OpName, Args, 2, Functions);
4833    }
4834
4835    // Build the (potentially-overloaded, potentially-dependent)
4836    // binary operation.
4837    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4838  }
4839
4840  // Build a built-in binary operation.
4841  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4842}
4843
4844Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4845                                                    unsigned OpcIn,
4846                                                    ExprArg InputArg) {
4847  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4848
4849  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4850  Expr *Input = (Expr *)InputArg.get();
4851  QualType resultType;
4852  switch (Opc) {
4853  case UnaryOperator::PostInc:
4854  case UnaryOperator::PostDec:
4855  case UnaryOperator::OffsetOf:
4856    assert(false && "Invalid unary operator");
4857    break;
4858
4859  case UnaryOperator::PreInc:
4860  case UnaryOperator::PreDec:
4861    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4862                                                Opc == UnaryOperator::PreInc);
4863    break;
4864  case UnaryOperator::AddrOf:
4865    resultType = CheckAddressOfOperand(Input, OpLoc);
4866    break;
4867  case UnaryOperator::Deref:
4868    DefaultFunctionArrayConversion(Input);
4869    resultType = CheckIndirectionOperand(Input, OpLoc);
4870    break;
4871  case UnaryOperator::Plus:
4872  case UnaryOperator::Minus:
4873    UsualUnaryConversions(Input);
4874    resultType = Input->getType();
4875    if (resultType->isDependentType())
4876      break;
4877    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4878      break;
4879    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4880             resultType->isEnumeralType())
4881      break;
4882    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4883             Opc == UnaryOperator::Plus &&
4884             resultType->isPointerType())
4885      break;
4886
4887    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4888      << resultType << Input->getSourceRange());
4889  case UnaryOperator::Not: // bitwise complement
4890    UsualUnaryConversions(Input);
4891    resultType = Input->getType();
4892    if (resultType->isDependentType())
4893      break;
4894    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4895    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4896      // C99 does not support '~' for complex conjugation.
4897      Diag(OpLoc, diag::ext_integer_complement_complex)
4898        << resultType << Input->getSourceRange();
4899    else if (!resultType->isIntegerType())
4900      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4901        << resultType << Input->getSourceRange());
4902    break;
4903  case UnaryOperator::LNot: // logical negation
4904    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4905    DefaultFunctionArrayConversion(Input);
4906    resultType = Input->getType();
4907    if (resultType->isDependentType())
4908      break;
4909    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4910      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4911        << resultType << Input->getSourceRange());
4912    // LNot always has type int. C99 6.5.3.3p5.
4913    // In C++, it's bool. C++ 5.3.1p8
4914    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4915    break;
4916  case UnaryOperator::Real:
4917  case UnaryOperator::Imag:
4918    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4919    break;
4920  case UnaryOperator::Extension:
4921    resultType = Input->getType();
4922    break;
4923  }
4924  if (resultType.isNull())
4925    return ExprError();
4926
4927  InputArg.release();
4928  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4929}
4930
4931// Unary Operators.  'Tok' is the token for the operator.
4932Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4933                                            tok::TokenKind Op, ExprArg input) {
4934  Expr *Input = (Expr*)input.get();
4935  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4936
4937  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4938    // Find all of the overloaded operators visible from this
4939    // point. We perform both an operator-name lookup from the local
4940    // scope and an argument-dependent lookup based on the types of
4941    // the arguments.
4942    FunctionSet Functions;
4943    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4944    if (OverOp != OO_None) {
4945      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4946                                   Functions);
4947      DeclarationName OpName
4948        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4949      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4950    }
4951
4952    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4953  }
4954
4955  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4956}
4957
4958/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4959Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4960                                            SourceLocation LabLoc,
4961                                            IdentifierInfo *LabelII) {
4962  // Look up the record for this label identifier.
4963  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4964
4965  // If we haven't seen this label yet, create a forward reference. It
4966  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4967  if (LabelDecl == 0)
4968    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4969
4970  // Create the AST node.  The address of a label always has type 'void*'.
4971  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4972                                       Context.getPointerType(Context.VoidTy)));
4973}
4974
4975Sema::OwningExprResult
4976Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4977                    SourceLocation RPLoc) { // "({..})"
4978  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4979  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4980  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4981
4982  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4983  if (isFileScope)
4984    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4985
4986  // FIXME: there are a variety of strange constraints to enforce here, for
4987  // example, it is not possible to goto into a stmt expression apparently.
4988  // More semantic analysis is needed.
4989
4990  // If there are sub stmts in the compound stmt, take the type of the last one
4991  // as the type of the stmtexpr.
4992  QualType Ty = Context.VoidTy;
4993
4994  if (!Compound->body_empty()) {
4995    Stmt *LastStmt = Compound->body_back();
4996    // If LastStmt is a label, skip down through into the body.
4997    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4998      LastStmt = Label->getSubStmt();
4999
5000    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5001      Ty = LastExpr->getType();
5002  }
5003
5004  // FIXME: Check that expression type is complete/non-abstract; statement
5005  // expressions are not lvalues.
5006
5007  substmt.release();
5008  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5009}
5010
5011Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5012                                                  SourceLocation BuiltinLoc,
5013                                                  SourceLocation TypeLoc,
5014                                                  TypeTy *argty,
5015                                                  OffsetOfComponent *CompPtr,
5016                                                  unsigned NumComponents,
5017                                                  SourceLocation RPLoc) {
5018  // FIXME: This function leaks all expressions in the offset components on
5019  // error.
5020  QualType ArgTy = QualType::getFromOpaquePtr(argty);
5021  assert(!ArgTy.isNull() && "Missing type argument!");
5022
5023  bool Dependent = ArgTy->isDependentType();
5024
5025  // We must have at least one component that refers to the type, and the first
5026  // one is known to be a field designator.  Verify that the ArgTy represents
5027  // a struct/union/class.
5028  if (!Dependent && !ArgTy->isRecordType())
5029    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5030
5031  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5032  // with an incomplete type would be illegal.
5033
5034  // Otherwise, create a null pointer as the base, and iteratively process
5035  // the offsetof designators.
5036  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5037  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5038  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5039                                    ArgTy, SourceLocation());
5040
5041  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5042  // GCC extension, diagnose them.
5043  // FIXME: This diagnostic isn't actually visible because the location is in
5044  // a system header!
5045  if (NumComponents != 1)
5046    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5047      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5048
5049  if (!Dependent) {
5050    bool DidWarnAboutNonPOD = false;
5051
5052    // FIXME: Dependent case loses a lot of information here. And probably
5053    // leaks like a sieve.
5054    for (unsigned i = 0; i != NumComponents; ++i) {
5055      const OffsetOfComponent &OC = CompPtr[i];
5056      if (OC.isBrackets) {
5057        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5058        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5059        if (!AT) {
5060          Res->Destroy(Context);
5061          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5062            << Res->getType());
5063        }
5064
5065        // FIXME: C++: Verify that operator[] isn't overloaded.
5066
5067        // Promote the array so it looks more like a normal array subscript
5068        // expression.
5069        DefaultFunctionArrayConversion(Res);
5070
5071        // C99 6.5.2.1p1
5072        Expr *Idx = static_cast<Expr*>(OC.U.E);
5073        // FIXME: Leaks Res
5074        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5075          return ExprError(Diag(Idx->getLocStart(),
5076                                diag::err_typecheck_subscript_not_integer)
5077            << Idx->getSourceRange());
5078
5079        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5080                                               OC.LocEnd);
5081        continue;
5082      }
5083
5084      const RecordType *RC = Res->getType()->getAsRecordType();
5085      if (!RC) {
5086        Res->Destroy(Context);
5087        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5088          << Res->getType());
5089      }
5090
5091      // Get the decl corresponding to this.
5092      RecordDecl *RD = RC->getDecl();
5093      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5094        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5095          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5096            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5097            << Res->getType());
5098          DidWarnAboutNonPOD = true;
5099        }
5100      }
5101
5102      FieldDecl *MemberDecl
5103        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5104                                                          LookupMemberName)
5105                                        .getAsDecl());
5106      // FIXME: Leaks Res
5107      if (!MemberDecl)
5108        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5109         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5110
5111      // FIXME: C++: Verify that MemberDecl isn't a static field.
5112      // FIXME: Verify that MemberDecl isn't a bitfield.
5113      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5114        Res = BuildAnonymousStructUnionMemberReference(
5115            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5116      } else {
5117        // MemberDecl->getType() doesn't get the right qualifiers, but it
5118        // doesn't matter here.
5119        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5120                MemberDecl->getType().getNonReferenceType());
5121      }
5122    }
5123  }
5124
5125  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5126                                           Context.getSizeType(), BuiltinLoc));
5127}
5128
5129
5130Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5131                                                      TypeTy *arg1,TypeTy *arg2,
5132                                                      SourceLocation RPLoc) {
5133  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5134  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5135
5136  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5137
5138  if (getLangOptions().CPlusPlus) {
5139    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5140      << SourceRange(BuiltinLoc, RPLoc);
5141    return ExprError();
5142  }
5143
5144  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5145                                                 argT1, argT2, RPLoc));
5146}
5147
5148Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5149                                             ExprArg cond,
5150                                             ExprArg expr1, ExprArg expr2,
5151                                             SourceLocation RPLoc) {
5152  Expr *CondExpr = static_cast<Expr*>(cond.get());
5153  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5154  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5155
5156  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5157
5158  QualType resType;
5159  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5160    resType = Context.DependentTy;
5161  } else {
5162    // The conditional expression is required to be a constant expression.
5163    llvm::APSInt condEval(32);
5164    SourceLocation ExpLoc;
5165    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5166      return ExprError(Diag(ExpLoc,
5167                       diag::err_typecheck_choose_expr_requires_constant)
5168        << CondExpr->getSourceRange());
5169
5170    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5171    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5172  }
5173
5174  cond.release(); expr1.release(); expr2.release();
5175  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5176                                        resType, RPLoc));
5177}
5178
5179//===----------------------------------------------------------------------===//
5180// Clang Extensions.
5181//===----------------------------------------------------------------------===//
5182
5183/// ActOnBlockStart - This callback is invoked when a block literal is started.
5184void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5185  // Analyze block parameters.
5186  BlockSemaInfo *BSI = new BlockSemaInfo();
5187
5188  // Add BSI to CurBlock.
5189  BSI->PrevBlockInfo = CurBlock;
5190  CurBlock = BSI;
5191
5192  BSI->ReturnType = QualType();
5193  BSI->TheScope = BlockScope;
5194  BSI->hasBlockDeclRefExprs = false;
5195  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5196  CurFunctionNeedsScopeChecking = false;
5197
5198  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5199  PushDeclContext(BlockScope, BSI->TheDecl);
5200}
5201
5202void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5203  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5204
5205  if (ParamInfo.getNumTypeObjects() == 0
5206      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5207    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5208    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5209
5210    if (T->isArrayType()) {
5211      Diag(ParamInfo.getSourceRange().getBegin(),
5212           diag::err_block_returns_array);
5213      return;
5214    }
5215
5216    // The parameter list is optional, if there was none, assume ().
5217    if (!T->isFunctionType())
5218      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5219
5220    CurBlock->hasPrototype = true;
5221    CurBlock->isVariadic = false;
5222    // Check for a valid sentinel attribute on this block.
5223    if (CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
5224      Diag(ParamInfo.getAttributes()->getLoc(),
5225           diag::warn_attribute_sentinel_not_variadic) << 1;
5226      // FIXME: remove the attribute.
5227    }
5228    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5229
5230    // Do not allow returning a objc interface by-value.
5231    if (RetTy->isObjCInterfaceType()) {
5232      Diag(ParamInfo.getSourceRange().getBegin(),
5233           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5234      return;
5235    }
5236    return;
5237  }
5238
5239  // Analyze arguments to block.
5240  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5241         "Not a function declarator!");
5242  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5243
5244  CurBlock->hasPrototype = FTI.hasPrototype;
5245  CurBlock->isVariadic = true;
5246
5247  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5248  // no arguments, not a function that takes a single void argument.
5249  if (FTI.hasPrototype &&
5250      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5251     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5252        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5253    // empty arg list, don't push any params.
5254    CurBlock->isVariadic = false;
5255  } else if (FTI.hasPrototype) {
5256    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5257      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5258    CurBlock->isVariadic = FTI.isVariadic;
5259  }
5260  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5261                               CurBlock->Params.size());
5262  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5263  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5264  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5265       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5266    // If this has an identifier, add it to the scope stack.
5267    if ((*AI)->getIdentifier())
5268      PushOnScopeChains(*AI, CurBlock->TheScope);
5269
5270  // Check for a valid sentinel attribute on this block.
5271  if (!CurBlock->isVariadic &&
5272      CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
5273    Diag(ParamInfo.getAttributes()->getLoc(),
5274         diag::warn_attribute_sentinel_not_variadic) << 1;
5275    // FIXME: remove the attribute.
5276  }
5277
5278  // Analyze the return type.
5279  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5280  QualType RetTy = T->getAsFunctionType()->getResultType();
5281
5282  // Do not allow returning a objc interface by-value.
5283  if (RetTy->isObjCInterfaceType()) {
5284    Diag(ParamInfo.getSourceRange().getBegin(),
5285         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5286  } else if (!RetTy->isDependentType())
5287    CurBlock->ReturnType = RetTy;
5288}
5289
5290/// ActOnBlockError - If there is an error parsing a block, this callback
5291/// is invoked to pop the information about the block from the action impl.
5292void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5293  // Ensure that CurBlock is deleted.
5294  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5295
5296  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5297
5298  // Pop off CurBlock, handle nested blocks.
5299  PopDeclContext();
5300  CurBlock = CurBlock->PrevBlockInfo;
5301  // FIXME: Delete the ParmVarDecl objects as well???
5302}
5303
5304/// ActOnBlockStmtExpr - This is called when the body of a block statement
5305/// literal was successfully completed.  ^(int x){...}
5306Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5307                                                StmtArg body, Scope *CurScope) {
5308  // If blocks are disabled, emit an error.
5309  if (!LangOpts.Blocks)
5310    Diag(CaretLoc, diag::err_blocks_disable);
5311
5312  // Ensure that CurBlock is deleted.
5313  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5314
5315  PopDeclContext();
5316
5317  // Pop off CurBlock, handle nested blocks.
5318  CurBlock = CurBlock->PrevBlockInfo;
5319
5320  QualType RetTy = Context.VoidTy;
5321  if (!BSI->ReturnType.isNull())
5322    RetTy = BSI->ReturnType;
5323
5324  llvm::SmallVector<QualType, 8> ArgTypes;
5325  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5326    ArgTypes.push_back(BSI->Params[i]->getType());
5327
5328  QualType BlockTy;
5329  if (!BSI->hasPrototype)
5330    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
5331  else
5332    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5333                                      BSI->isVariadic, 0);
5334
5335  // FIXME: Check that return/parameter types are complete/non-abstract
5336  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5337  BlockTy = Context.getBlockPointerType(BlockTy);
5338
5339  // If needed, diagnose invalid gotos and switches in the block.
5340  if (CurFunctionNeedsScopeChecking)
5341    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5342  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5343
5344  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5345  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5346                                       BSI->hasBlockDeclRefExprs));
5347}
5348
5349Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5350                                        ExprArg expr, TypeTy *type,
5351                                        SourceLocation RPLoc) {
5352  QualType T = QualType::getFromOpaquePtr(type);
5353  Expr *E = static_cast<Expr*>(expr.get());
5354  Expr *OrigExpr = E;
5355
5356  InitBuiltinVaListType();
5357
5358  // Get the va_list type
5359  QualType VaListType = Context.getBuiltinVaListType();
5360  if (VaListType->isArrayType()) {
5361    // Deal with implicit array decay; for example, on x86-64,
5362    // va_list is an array, but it's supposed to decay to
5363    // a pointer for va_arg.
5364    VaListType = Context.getArrayDecayedType(VaListType);
5365    // Make sure the input expression also decays appropriately.
5366    UsualUnaryConversions(E);
5367  } else {
5368    // Otherwise, the va_list argument must be an l-value because
5369    // it is modified by va_arg.
5370    if (!E->isTypeDependent() &&
5371        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5372      return ExprError();
5373  }
5374
5375  if (!E->isTypeDependent() &&
5376      !Context.hasSameType(VaListType, E->getType())) {
5377    return ExprError(Diag(E->getLocStart(),
5378                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5379      << OrigExpr->getType() << E->getSourceRange());
5380  }
5381
5382  // FIXME: Check that type is complete/non-abstract
5383  // FIXME: Warn if a non-POD type is passed in.
5384
5385  expr.release();
5386  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5387                                       RPLoc));
5388}
5389
5390Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5391  // The type of __null will be int or long, depending on the size of
5392  // pointers on the target.
5393  QualType Ty;
5394  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5395    Ty = Context.IntTy;
5396  else
5397    Ty = Context.LongTy;
5398
5399  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5400}
5401
5402bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5403                                    SourceLocation Loc,
5404                                    QualType DstType, QualType SrcType,
5405                                    Expr *SrcExpr, const char *Flavor) {
5406  // Decode the result (notice that AST's are still created for extensions).
5407  bool isInvalid = false;
5408  unsigned DiagKind;
5409  switch (ConvTy) {
5410  default: assert(0 && "Unknown conversion type");
5411  case Compatible: return false;
5412  case PointerToInt:
5413    DiagKind = diag::ext_typecheck_convert_pointer_int;
5414    break;
5415  case IntToPointer:
5416    DiagKind = diag::ext_typecheck_convert_int_pointer;
5417    break;
5418  case IncompatiblePointer:
5419    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5420    break;
5421  case IncompatiblePointerSign:
5422    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5423    break;
5424  case FunctionVoidPointer:
5425    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5426    break;
5427  case CompatiblePointerDiscardsQualifiers:
5428    // If the qualifiers lost were because we were applying the
5429    // (deprecated) C++ conversion from a string literal to a char*
5430    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5431    // Ideally, this check would be performed in
5432    // CheckPointerTypesForAssignment. However, that would require a
5433    // bit of refactoring (so that the second argument is an
5434    // expression, rather than a type), which should be done as part
5435    // of a larger effort to fix CheckPointerTypesForAssignment for
5436    // C++ semantics.
5437    if (getLangOptions().CPlusPlus &&
5438        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5439      return false;
5440    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5441    break;
5442  case IntToBlockPointer:
5443    DiagKind = diag::err_int_to_block_pointer;
5444    break;
5445  case IncompatibleBlockPointer:
5446    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5447    break;
5448  case IncompatibleObjCQualifiedId:
5449    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5450    // it can give a more specific diagnostic.
5451    DiagKind = diag::warn_incompatible_qualified_id;
5452    break;
5453  case IncompatibleVectors:
5454    DiagKind = diag::warn_incompatible_vectors;
5455    break;
5456  case Incompatible:
5457    DiagKind = diag::err_typecheck_convert_incompatible;
5458    isInvalid = true;
5459    break;
5460  }
5461
5462  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5463    << SrcExpr->getSourceRange();
5464  return isInvalid;
5465}
5466
5467bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5468  llvm::APSInt ICEResult;
5469  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5470    if (Result)
5471      *Result = ICEResult;
5472    return false;
5473  }
5474
5475  Expr::EvalResult EvalResult;
5476
5477  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5478      EvalResult.HasSideEffects) {
5479    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5480
5481    if (EvalResult.Diag) {
5482      // We only show the note if it's not the usual "invalid subexpression"
5483      // or if it's actually in a subexpression.
5484      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5485          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5486        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5487    }
5488
5489    return true;
5490  }
5491
5492  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5493    E->getSourceRange();
5494
5495  if (EvalResult.Diag &&
5496      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5497    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5498
5499  if (Result)
5500    *Result = EvalResult.Val.getInt();
5501  return false;
5502}
5503
5504Sema::ExpressionEvaluationContext
5505Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5506  // Introduce a new set of potentially referenced declarations to the stack.
5507  if (NewContext == PotentiallyPotentiallyEvaluated)
5508    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5509
5510  std::swap(ExprEvalContext, NewContext);
5511  return NewContext;
5512}
5513
5514void
5515Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5516                                     ExpressionEvaluationContext NewContext) {
5517  ExprEvalContext = NewContext;
5518
5519  if (OldContext == PotentiallyPotentiallyEvaluated) {
5520    // Mark any remaining declarations in the current position of the stack
5521    // as "referenced". If they were not meant to be referenced, semantic
5522    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5523    PotentiallyReferencedDecls RemainingDecls;
5524    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5525    PotentiallyReferencedDeclStack.pop_back();
5526
5527    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5528                                           IEnd = RemainingDecls.end();
5529         I != IEnd; ++I)
5530      MarkDeclarationReferenced(I->first, I->second);
5531  }
5532}
5533
5534/// \brief Note that the given declaration was referenced in the source code.
5535///
5536/// This routine should be invoke whenever a given declaration is referenced
5537/// in the source code, and where that reference occurred. If this declaration
5538/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5539/// C99 6.9p3), then the declaration will be marked as used.
5540///
5541/// \param Loc the location where the declaration was referenced.
5542///
5543/// \param D the declaration that has been referenced by the source code.
5544void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5545  assert(D && "No declaration?");
5546
5547  if (D->isUsed())
5548    return;
5549
5550  // Mark a parameter declaration "used", regardless of whether we're in a
5551  // template or not.
5552  if (isa<ParmVarDecl>(D))
5553    D->setUsed(true);
5554
5555  // Do not mark anything as "used" within a dependent context; wait for
5556  // an instantiation.
5557  if (CurContext->isDependentContext())
5558    return;
5559
5560  switch (ExprEvalContext) {
5561    case Unevaluated:
5562      // We are in an expression that is not potentially evaluated; do nothing.
5563      return;
5564
5565    case PotentiallyEvaluated:
5566      // We are in a potentially-evaluated expression, so this declaration is
5567      // "used"; handle this below.
5568      break;
5569
5570    case PotentiallyPotentiallyEvaluated:
5571      // We are in an expression that may be potentially evaluated; queue this
5572      // declaration reference until we know whether the expression is
5573      // potentially evaluated.
5574      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5575      return;
5576  }
5577
5578  // Note that this declaration has been used.
5579  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5580    unsigned TypeQuals;
5581    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5582        if (!Constructor->isUsed())
5583          DefineImplicitDefaultConstructor(Loc, Constructor);
5584    }
5585    else if (Constructor->isImplicit() &&
5586             Constructor->isCopyConstructor(Context, TypeQuals)) {
5587      if (!Constructor->isUsed())
5588        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5589    }
5590    // FIXME: more checking for other implicits go here.
5591    else
5592      Constructor->setUsed(true);
5593  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
5594    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
5595        MethodDecl->getOverloadedOperator() == OO_Equal) {
5596      if (!MethodDecl->isUsed())
5597        DefineImplicitOverloadedAssign(Loc, MethodDecl);
5598    }
5599  }
5600  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5601    // Implicit instantiation of function templates and member functions of
5602    // class templates.
5603    if (!Function->getBody(Context)) {
5604      // FIXME: distinguish between implicit instantiations of function
5605      // templates and explicit specializations (the latter don't get
5606      // instantiated, naturally).
5607      if (Function->getInstantiatedFromMemberFunction() ||
5608          Function->getPrimaryTemplate())
5609        PendingImplicitInstantiations.push(std::make_pair(Function, Loc));
5610    }
5611
5612
5613    // FIXME: keep track of references to static functions
5614    Function->setUsed(true);
5615    return;
5616  }
5617
5618  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5619    (void)Var;
5620    // FIXME: implicit template instantiation
5621    // FIXME: keep track of references to static data?
5622    D->setUsed(true);
5623  }
5624}
5625
5626