SemaExpr.cpp revision 5b82d61a725396ac1eae6aed4310ab275e609af3
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
197      // convert lhs to the rhs floating point type.
198      return rhs;
199    }
200    // We have two real floating types, float/complex combos were handled above.
201    // Convert the smaller operand to the bigger result.
202    int result = Context.getFloatingTypeOrder(lhs, rhs);
203
204    if (result > 0) { // convert the rhs
205      return lhs;
206    }
207    if (result < 0) { // convert the lhs
208      return rhs;
209    }
210    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
211  }
212  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
213    // Handle GCC complex int extension.
214    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
215    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
216
217    if (lhsComplexInt && rhsComplexInt) {
218      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
219                                      rhsComplexInt->getElementType()) >= 0) {
220        // convert the rhs
221        return lhs;
222      }
223      return rhs;
224    } else if (lhsComplexInt && rhs->isIntegerType()) {
225      // convert the rhs to the lhs complex type.
226      return lhs;
227    } else if (rhsComplexInt && lhs->isIntegerType()) {
228      // convert the lhs to the rhs complex type.
229      return rhs;
230    }
231  }
232  // Finally, we have two differing integer types.
233  // The rules for this case are in C99 6.3.1.8
234  int compare = Context.getIntegerTypeOrder(lhs, rhs);
235  bool lhsSigned = lhs->isSignedIntegerType(),
236       rhsSigned = rhs->isSignedIntegerType();
237  QualType destType;
238  if (lhsSigned == rhsSigned) {
239    // Same signedness; use the higher-ranked type
240    destType = compare >= 0 ? lhs : rhs;
241  } else if (compare != (lhsSigned ? 1 : -1)) {
242    // The unsigned type has greater than or equal rank to the
243    // signed type, so use the unsigned type
244    destType = lhsSigned ? rhs : lhs;
245  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
246    // The two types are different widths; if we are here, that
247    // means the signed type is larger than the unsigned type, so
248    // use the signed type.
249    destType = lhsSigned ? lhs : rhs;
250  } else {
251    // The signed type is higher-ranked than the unsigned type,
252    // but isn't actually any bigger (like unsigned int and long
253    // on most 32-bit systems).  Use the unsigned type corresponding
254    // to the signed type.
255    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
256  }
257  return destType;
258}
259
260//===----------------------------------------------------------------------===//
261//  Semantic Analysis for various Expression Types
262//===----------------------------------------------------------------------===//
263
264
265/// ActOnStringLiteral - The specified tokens were lexed as pasted string
266/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
267/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
268/// multiple tokens.  However, the common case is that StringToks points to one
269/// string.
270///
271Action::ExprResult
272Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
273  assert(NumStringToks && "Must have at least one string!");
274
275  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
276  if (Literal.hadError)
277    return ExprResult(true);
278
279  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
280  for (unsigned i = 0; i != NumStringToks; ++i)
281    StringTokLocs.push_back(StringToks[i].getLocation());
282
283  // Verify that pascal strings aren't too large.
284  if (Literal.Pascal && Literal.GetStringLength() > 256)
285    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
286      << SourceRange(StringToks[0].getLocation(),
287                     StringToks[NumStringToks-1].getLocation());
288
289  QualType StrTy = Context.CharTy;
290  if (Literal.AnyWide) StrTy = Context.getWCharType();
291  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
292
293  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
294  if (getLangOptions().CPlusPlus)
295    StrTy.addConst();
296
297  // Get an array type for the string, according to C99 6.4.5.  This includes
298  // the nul terminator character as well as the string length for pascal
299  // strings.
300  StrTy = Context.getConstantArrayType(StrTy,
301                                   llvm::APInt(32, Literal.GetStringLength()+1),
302                                       ArrayType::Normal, 0);
303
304  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
305  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
306                           Literal.AnyWide, StrTy,
307                           StringToks[0].getLocation(),
308                           StringToks[NumStringToks-1].getLocation());
309}
310
311/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
312/// CurBlock to VD should cause it to be snapshotted (as we do for auto
313/// variables defined outside the block) or false if this is not needed (e.g.
314/// for values inside the block or for globals).
315///
316/// FIXME: This will create BlockDeclRefExprs for global variables,
317/// function references, etc which is suboptimal :) and breaks
318/// things like "integer constant expression" tests.
319static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
320                                              ValueDecl *VD) {
321  // If the value is defined inside the block, we couldn't snapshot it even if
322  // we wanted to.
323  if (CurBlock->TheDecl == VD->getDeclContext())
324    return false;
325
326  // If this is an enum constant or function, it is constant, don't snapshot.
327  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
328    return false;
329
330  // If this is a reference to an extern, static, or global variable, no need to
331  // snapshot it.
332  // FIXME: What about 'const' variables in C++?
333  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
334    return Var->hasLocalStorage();
335
336  return true;
337}
338
339
340
341/// ActOnIdentifierExpr - The parser read an identifier in expression context,
342/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
343/// identifier is used in a function call context.
344/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
345/// class or namespace that the identifier must be a member of.
346Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
347                                           IdentifierInfo &II,
348                                           bool HasTrailingLParen,
349                                           const CXXScopeSpec *SS) {
350  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
351}
352
353/// ActOnDeclarationNameExpr - The parser has read some kind of name
354/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
355/// performs lookup on that name and returns an expression that refers
356/// to that name. This routine isn't directly called from the parser,
357/// because the parser doesn't know about DeclarationName. Rather,
358/// this routine is called by ActOnIdentifierExpr,
359/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
360/// which form the DeclarationName from the corresponding syntactic
361/// forms.
362///
363/// HasTrailingLParen indicates whether this identifier is used in a
364/// function call context.  LookupCtx is only used for a C++
365/// qualified-id (foo::bar) to indicate the class or namespace that
366/// the identifier must be a member of.
367///
368/// If ForceResolution is true, then we will attempt to resolve the
369/// name even if it looks like a dependent name. This option is off by
370/// default.
371Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
372                                                DeclarationName Name,
373                                                bool HasTrailingLParen,
374                                                const CXXScopeSpec *SS,
375                                                bool ForceResolution) {
376  if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
377      HasTrailingLParen && !SS && !ForceResolution) {
378    // We've seen something of the form
379    //   identifier(
380    // and we are in a template, so it is likely that 's' is a
381    // dependent name. However, we won't know until we've parsed all
382    // of the call arguments. So, build a CXXDependentNameExpr node
383    // to represent this name. Then, if it turns out that none of the
384    // arguments are type-dependent, we'll force the resolution of the
385    // dependent name at that point.
386    return new CXXDependentNameExpr(Name.getAsIdentifierInfo(),
387                                    Context.DependentTy, Loc);
388  }
389
390  // Could be enum-constant, value decl, instance variable, etc.
391  Decl *D;
392  if (SS && !SS->isEmpty()) {
393    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
394    if (DC == 0)
395      return true;
396    D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
397  } else
398    D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
399
400  // If this reference is in an Objective-C method, then ivar lookup happens as
401  // well.
402  IdentifierInfo *II = Name.getAsIdentifierInfo();
403  if (II && getCurMethodDecl()) {
404    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
405    // There are two cases to handle here.  1) scoped lookup could have failed,
406    // in which case we should look for an ivar.  2) scoped lookup could have
407    // found a decl, but that decl is outside the current method (i.e. a global
408    // variable).  In these two cases, we do a lookup for an ivar with this
409    // name, if the lookup suceeds, we replace it our current decl.
410    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
411      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
412      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
413        // FIXME: This should use a new expr for a direct reference, don't turn
414        // this into Self->ivar, just return a BareIVarExpr or something.
415        IdentifierInfo &II = Context.Idents.get("self");
416        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
417        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
418                                 static_cast<Expr*>(SelfExpr.Val), true, true);
419      }
420    }
421    // Needed to implement property "super.method" notation.
422    if (SD == 0 && II->isStr("super")) {
423      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
424                     getCurMethodDecl()->getClassInterface()));
425      return new ObjCSuperExpr(Loc, T);
426    }
427  }
428  if (D == 0) {
429    // Otherwise, this could be an implicitly declared function reference (legal
430    // in C90, extension in C99).
431    if (HasTrailingLParen && II &&
432        !getLangOptions().CPlusPlus) // Not in C++.
433      D = ImplicitlyDefineFunction(Loc, *II, S);
434    else {
435      // If this name wasn't predeclared and if this is not a function call,
436      // diagnose the problem.
437      if (SS && !SS->isEmpty())
438        return Diag(Loc, diag::err_typecheck_no_member)
439          << Name << SS->getRange();
440      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
441               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
442        return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
443      else
444        return Diag(Loc, diag::err_undeclared_var_use) << Name;
445    }
446  }
447
448  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
449    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
450      if (MD->isStatic())
451        // "invalid use of member 'x' in static member function"
452        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
453           << FD->getDeclName();
454      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
455        // "invalid use of nonstatic data member 'x'"
456        return Diag(Loc, diag::err_invalid_non_static_member_use)
457          << FD->getDeclName();
458
459      if (FD->isInvalidDecl())
460        return true;
461
462      // FIXME: Handle 'mutable'.
463      return new DeclRefExpr(FD,
464        FD->getType().getWithAdditionalQualifiers(MD->getTypeQualifiers()),Loc);
465    }
466
467    return Diag(Loc, diag::err_invalid_non_static_member_use)
468      << FD->getDeclName();
469  }
470  if (isa<TypedefDecl>(D))
471    return Diag(Loc, diag::err_unexpected_typedef) << Name;
472  if (isa<ObjCInterfaceDecl>(D))
473    return Diag(Loc, diag::err_unexpected_interface) << Name;
474  if (isa<NamespaceDecl>(D))
475    return Diag(Loc, diag::err_unexpected_namespace) << Name;
476
477  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
478  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
479    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
480
481  ValueDecl *VD = cast<ValueDecl>(D);
482
483  // check if referencing an identifier with __attribute__((deprecated)).
484  if (VD->getAttr<DeprecatedAttr>())
485    Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
486
487  // Only create DeclRefExpr's for valid Decl's.
488  if (VD->isInvalidDecl())
489    return true;
490
491  // If the identifier reference is inside a block, and it refers to a value
492  // that is outside the block, create a BlockDeclRefExpr instead of a
493  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
494  // the block is formed.
495  //
496  // We do not do this for things like enum constants, global variables, etc,
497  // as they do not get snapshotted.
498  //
499  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
500    // The BlocksAttr indicates the variable is bound by-reference.
501    if (VD->getAttr<BlocksAttr>())
502      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
503                                  Loc, true);
504
505    // Variable will be bound by-copy, make it const within the closure.
506    VD->getType().addConst();
507    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
508                                Loc, false);
509  }
510  // If this reference is not in a block or if the referenced variable is
511  // within the block, create a normal DeclRefExpr.
512
513  bool TypeDependent = false;
514  bool ValueDependent = false;
515  if (getLangOptions().CPlusPlus) {
516    // C++ [temp.dep.expr]p3:
517    //   An id-expression is type-dependent if it contains:
518    //     - an identifier that was declared with a dependent type,
519    if (VD->getType()->isDependentType())
520      TypeDependent = true;
521    //     - FIXME: a template-id that is dependent,
522    //     - a conversion-function-id that specifies a dependent type,
523    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
524             Name.getCXXNameType()->isDependentType())
525      TypeDependent = true;
526    //     - a nested-name-specifier that contains a class-name that
527    //       names a dependent type.
528    else if (SS && !SS->isEmpty()) {
529      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
530           DC; DC = DC->getParent()) {
531        // FIXME: could stop early at namespace scope.
532        if (DC->isCXXRecord()) {
533          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
534          if (Context.getTypeDeclType(Record)->isDependentType()) {
535            TypeDependent = true;
536            break;
537          }
538        }
539      }
540    }
541
542    // C++ [temp.dep.constexpr]p2:
543    //
544    //   An identifier is value-dependent if it is:
545    //     - a name declared with a dependent type,
546    if (TypeDependent)
547      ValueDependent = true;
548    //     - the name of a non-type template parameter,
549    else if (isa<NonTypeTemplateParmDecl>(VD))
550      ValueDependent = true;
551    //    - a constant with integral or enumeration type and is
552    //      initialized with an expression that is value-dependent
553    //      (FIXME!).
554  }
555
556  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
557                         TypeDependent, ValueDependent);
558}
559
560Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
561                                           tok::TokenKind Kind) {
562  PredefinedExpr::IdentType IT;
563
564  switch (Kind) {
565  default: assert(0 && "Unknown simple primary expr!");
566  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
567  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
568  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
569  }
570
571  // Verify that this is in a function context.
572  if (getCurFunctionOrMethodDecl() == 0)
573    return Diag(Loc, diag::err_predef_outside_function);
574
575  // Pre-defined identifiers are of type char[x], where x is the length of the
576  // string.
577  unsigned Length;
578  if (FunctionDecl *FD = getCurFunctionDecl())
579    Length = FD->getIdentifier()->getLength();
580  else
581    Length = getCurMethodDecl()->getSynthesizedMethodSize();
582
583  llvm::APInt LengthI(32, Length + 1);
584  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
585  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
586  return new PredefinedExpr(Loc, ResTy, IT);
587}
588
589Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
590  llvm::SmallString<16> CharBuffer;
591  CharBuffer.resize(Tok.getLength());
592  const char *ThisTokBegin = &CharBuffer[0];
593  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
594
595  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
596                            Tok.getLocation(), PP);
597  if (Literal.hadError())
598    return ExprResult(true);
599
600  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
601
602  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
603                              Tok.getLocation());
604}
605
606Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
607  // fast path for a single digit (which is quite common). A single digit
608  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
609  if (Tok.getLength() == 1) {
610    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
611
612    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
613    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
614                                         Context.IntTy,
615                                         Tok.getLocation()));
616  }
617  llvm::SmallString<512> IntegerBuffer;
618  // Add padding so that NumericLiteralParser can overread by one character.
619  IntegerBuffer.resize(Tok.getLength()+1);
620  const char *ThisTokBegin = &IntegerBuffer[0];
621
622  // Get the spelling of the token, which eliminates trigraphs, etc.
623  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
624
625  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
626                               Tok.getLocation(), PP);
627  if (Literal.hadError)
628    return ExprResult(true);
629
630  Expr *Res;
631
632  if (Literal.isFloatingLiteral()) {
633    QualType Ty;
634    if (Literal.isFloat)
635      Ty = Context.FloatTy;
636    else if (!Literal.isLong)
637      Ty = Context.DoubleTy;
638    else
639      Ty = Context.LongDoubleTy;
640
641    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
642
643    // isExact will be set by GetFloatValue().
644    bool isExact = false;
645    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
646                              Ty, Tok.getLocation());
647
648  } else if (!Literal.isIntegerLiteral()) {
649    return ExprResult(true);
650  } else {
651    QualType Ty;
652
653    // long long is a C99 feature.
654    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
655        Literal.isLongLong)
656      Diag(Tok.getLocation(), diag::ext_longlong);
657
658    // Get the value in the widest-possible width.
659    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
660
661    if (Literal.GetIntegerValue(ResultVal)) {
662      // If this value didn't fit into uintmax_t, warn and force to ull.
663      Diag(Tok.getLocation(), diag::warn_integer_too_large);
664      Ty = Context.UnsignedLongLongTy;
665      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
666             "long long is not intmax_t?");
667    } else {
668      // If this value fits into a ULL, try to figure out what else it fits into
669      // according to the rules of C99 6.4.4.1p5.
670
671      // Octal, Hexadecimal, and integers with a U suffix are allowed to
672      // be an unsigned int.
673      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
674
675      // Check from smallest to largest, picking the smallest type we can.
676      unsigned Width = 0;
677      if (!Literal.isLong && !Literal.isLongLong) {
678        // Are int/unsigned possibilities?
679        unsigned IntSize = Context.Target.getIntWidth();
680
681        // Does it fit in a unsigned int?
682        if (ResultVal.isIntN(IntSize)) {
683          // Does it fit in a signed int?
684          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
685            Ty = Context.IntTy;
686          else if (AllowUnsigned)
687            Ty = Context.UnsignedIntTy;
688          Width = IntSize;
689        }
690      }
691
692      // Are long/unsigned long possibilities?
693      if (Ty.isNull() && !Literal.isLongLong) {
694        unsigned LongSize = Context.Target.getLongWidth();
695
696        // Does it fit in a unsigned long?
697        if (ResultVal.isIntN(LongSize)) {
698          // Does it fit in a signed long?
699          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
700            Ty = Context.LongTy;
701          else if (AllowUnsigned)
702            Ty = Context.UnsignedLongTy;
703          Width = LongSize;
704        }
705      }
706
707      // Finally, check long long if needed.
708      if (Ty.isNull()) {
709        unsigned LongLongSize = Context.Target.getLongLongWidth();
710
711        // Does it fit in a unsigned long long?
712        if (ResultVal.isIntN(LongLongSize)) {
713          // Does it fit in a signed long long?
714          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
715            Ty = Context.LongLongTy;
716          else if (AllowUnsigned)
717            Ty = Context.UnsignedLongLongTy;
718          Width = LongLongSize;
719        }
720      }
721
722      // If we still couldn't decide a type, we probably have something that
723      // does not fit in a signed long long, but has no U suffix.
724      if (Ty.isNull()) {
725        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
726        Ty = Context.UnsignedLongLongTy;
727        Width = Context.Target.getLongLongWidth();
728      }
729
730      if (ResultVal.getBitWidth() != Width)
731        ResultVal.trunc(Width);
732    }
733
734    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
735  }
736
737  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
738  if (Literal.isImaginary)
739    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
740
741  return Res;
742}
743
744Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
745                                        ExprTy *Val) {
746  Expr *E = (Expr *)Val;
747  assert((E != 0) && "ActOnParenExpr() missing expr");
748  return new ParenExpr(L, R, E);
749}
750
751/// The UsualUnaryConversions() function is *not* called by this routine.
752/// See C99 6.3.2.1p[2-4] for more details.
753bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
754                                     SourceLocation OpLoc,
755                                     const SourceRange &ExprRange,
756                                     bool isSizeof) {
757  // C99 6.5.3.4p1:
758  if (isa<FunctionType>(exprType) && isSizeof)
759    // alignof(function) is allowed.
760    Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
761  else if (exprType->isVoidType())
762    Diag(OpLoc, diag::ext_sizeof_void_type)
763      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
764  else if (exprType->isIncompleteType())
765    return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
766                                  diag::err_alignof_incomplete_type)
767      << exprType << ExprRange;
768
769  return false;
770}
771
772/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
773/// the same for @c alignof and @c __alignof
774/// Note that the ArgRange is invalid if isType is false.
775Action::ExprResult
776Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
777                             void *TyOrEx, const SourceRange &ArgRange) {
778  // If error parsing type, ignore.
779  if (TyOrEx == 0) return true;
780
781  QualType ArgTy;
782  SourceRange Range;
783  if (isType) {
784    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
785    Range = ArgRange;
786  } else {
787    // Get the end location.
788    Expr *ArgEx = (Expr *)TyOrEx;
789    Range = ArgEx->getSourceRange();
790    ArgTy = ArgEx->getType();
791  }
792
793  // Verify that the operand is valid.
794  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
795    return true;
796
797  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
798  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
799                               OpLoc, Range.getEnd());
800}
801
802QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
803  DefaultFunctionArrayConversion(V);
804
805  // These operators return the element type of a complex type.
806  if (const ComplexType *CT = V->getType()->getAsComplexType())
807    return CT->getElementType();
808
809  // Otherwise they pass through real integer and floating point types here.
810  if (V->getType()->isArithmeticType())
811    return V->getType();
812
813  // Reject anything else.
814  Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
815  return QualType();
816}
817
818
819
820Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
821                                             tok::TokenKind Kind,
822                                             ExprTy *Input) {
823  Expr *Arg = (Expr *)Input;
824
825  UnaryOperator::Opcode Opc;
826  switch (Kind) {
827  default: assert(0 && "Unknown unary op!");
828  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
829  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
830  }
831
832  if (getLangOptions().CPlusPlus &&
833      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
834    // Which overloaded operator?
835    OverloadedOperatorKind OverOp =
836      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
837
838    // C++ [over.inc]p1:
839    //
840    //     [...] If the function is a member function with one
841    //     parameter (which shall be of type int) or a non-member
842    //     function with two parameters (the second of which shall be
843    //     of type int), it defines the postfix increment operator ++
844    //     for objects of that type. When the postfix increment is
845    //     called as a result of using the ++ operator, the int
846    //     argument will have value zero.
847    Expr *Args[2] = {
848      Arg,
849      new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
850                                     /*isSigned=*/true),
851                         Context.IntTy, SourceLocation())
852    };
853
854    // Build the candidate set for overloading
855    OverloadCandidateSet CandidateSet;
856    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
857
858    // Perform overload resolution.
859    OverloadCandidateSet::iterator Best;
860    switch (BestViableFunction(CandidateSet, Best)) {
861    case OR_Success: {
862      // We found a built-in operator or an overloaded operator.
863      FunctionDecl *FnDecl = Best->Function;
864
865      if (FnDecl) {
866        // We matched an overloaded operator. Build a call to that
867        // operator.
868
869        // Convert the arguments.
870        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
871          if (PerformObjectArgumentInitialization(Arg, Method))
872            return true;
873        } else {
874          // Convert the arguments.
875          if (PerformCopyInitialization(Arg,
876                                        FnDecl->getParamDecl(0)->getType(),
877                                        "passing"))
878            return true;
879        }
880
881        // Determine the result type
882        QualType ResultTy
883          = FnDecl->getType()->getAsFunctionType()->getResultType();
884        ResultTy = ResultTy.getNonReferenceType();
885
886        // Build the actual expression node.
887        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
888                                       SourceLocation());
889        UsualUnaryConversions(FnExpr);
890
891        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
892      } else {
893        // We matched a built-in operator. Convert the arguments, then
894        // break out so that we will build the appropriate built-in
895        // operator node.
896        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
897                                      "passing"))
898          return true;
899
900        break;
901      }
902    }
903
904    case OR_No_Viable_Function:
905      // No viable function; fall through to handling this as a
906      // built-in operator, which will produce an error message for us.
907      break;
908
909    case OR_Ambiguous:
910      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
911          << UnaryOperator::getOpcodeStr(Opc)
912          << Arg->getSourceRange();
913      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
914      return true;
915    }
916
917    // Either we found no viable overloaded operator or we matched a
918    // built-in operator. In either case, fall through to trying to
919    // build a built-in operation.
920  }
921
922  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc);
923  if (result.isNull())
924    return true;
925  return new UnaryOperator(Arg, Opc, result, OpLoc);
926}
927
928Action::ExprResult Sema::
929ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
930                        ExprTy *Idx, SourceLocation RLoc) {
931  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
932
933  if (getLangOptions().CPlusPlus &&
934      LHSExp->getType()->isRecordType() ||
935      LHSExp->getType()->isEnumeralType() ||
936      RHSExp->getType()->isRecordType() ||
937      RHSExp->getType()->isEnumeralType()) {
938    // Add the appropriate overloaded operators (C++ [over.match.oper])
939    // to the candidate set.
940    OverloadCandidateSet CandidateSet;
941    Expr *Args[2] = { LHSExp, RHSExp };
942    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
943
944    // Perform overload resolution.
945    OverloadCandidateSet::iterator Best;
946    switch (BestViableFunction(CandidateSet, Best)) {
947    case OR_Success: {
948      // We found a built-in operator or an overloaded operator.
949      FunctionDecl *FnDecl = Best->Function;
950
951      if (FnDecl) {
952        // We matched an overloaded operator. Build a call to that
953        // operator.
954
955        // Convert the arguments.
956        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
957          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
958              PerformCopyInitialization(RHSExp,
959                                        FnDecl->getParamDecl(0)->getType(),
960                                        "passing"))
961            return true;
962        } else {
963          // Convert the arguments.
964          if (PerformCopyInitialization(LHSExp,
965                                        FnDecl->getParamDecl(0)->getType(),
966                                        "passing") ||
967              PerformCopyInitialization(RHSExp,
968                                        FnDecl->getParamDecl(1)->getType(),
969                                        "passing"))
970            return true;
971        }
972
973        // Determine the result type
974        QualType ResultTy
975          = FnDecl->getType()->getAsFunctionType()->getResultType();
976        ResultTy = ResultTy.getNonReferenceType();
977
978        // Build the actual expression node.
979        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
980                                       SourceLocation());
981        UsualUnaryConversions(FnExpr);
982
983        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
984      } else {
985        // We matched a built-in operator. Convert the arguments, then
986        // break out so that we will build the appropriate built-in
987        // operator node.
988        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
989                                      "passing") ||
990            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
991                                      "passing"))
992          return true;
993
994        break;
995      }
996    }
997
998    case OR_No_Viable_Function:
999      // No viable function; fall through to handling this as a
1000      // built-in operator, which will produce an error message for us.
1001      break;
1002
1003    case OR_Ambiguous:
1004      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1005          << "[]"
1006          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1007      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1008      return true;
1009    }
1010
1011    // Either we found no viable overloaded operator or we matched a
1012    // built-in operator. In either case, fall through to trying to
1013    // build a built-in operation.
1014  }
1015
1016  // Perform default conversions.
1017  DefaultFunctionArrayConversion(LHSExp);
1018  DefaultFunctionArrayConversion(RHSExp);
1019
1020  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1021
1022  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1023  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1024  // in the subscript position. As a result, we need to derive the array base
1025  // and index from the expression types.
1026  Expr *BaseExpr, *IndexExpr;
1027  QualType ResultType;
1028  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1029    BaseExpr = LHSExp;
1030    IndexExpr = RHSExp;
1031    // FIXME: need to deal with const...
1032    ResultType = PTy->getPointeeType();
1033  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1034     // Handle the uncommon case of "123[Ptr]".
1035    BaseExpr = RHSExp;
1036    IndexExpr = LHSExp;
1037    // FIXME: need to deal with const...
1038    ResultType = PTy->getPointeeType();
1039  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1040    BaseExpr = LHSExp;    // vectors: V[123]
1041    IndexExpr = RHSExp;
1042
1043    // Component access limited to variables (reject vec4.rg[1]).
1044    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1045        !isa<ExtVectorElementExpr>(BaseExpr))
1046      return Diag(LLoc, diag::err_ext_vector_component_access)
1047        << SourceRange(LLoc, RLoc);
1048    // FIXME: need to deal with const...
1049    ResultType = VTy->getElementType();
1050  } else {
1051    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
1052      << RHSExp->getSourceRange();
1053  }
1054  // C99 6.5.2.1p1
1055  if (!IndexExpr->getType()->isIntegerType())
1056    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
1057      << IndexExpr->getSourceRange();
1058
1059  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1060  // the following check catches trying to index a pointer to a function (e.g.
1061  // void (*)(int)) and pointers to incomplete types.  Functions are not
1062  // objects in C99.
1063  if (!ResultType->isObjectType())
1064    return Diag(BaseExpr->getLocStart(),
1065                diag::err_typecheck_subscript_not_object)
1066      << BaseExpr->getType() << BaseExpr->getSourceRange();
1067
1068  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
1069}
1070
1071QualType Sema::
1072CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1073                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1074  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1075
1076  // This flag determines whether or not the component is to be treated as a
1077  // special name, or a regular GLSL-style component access.
1078  bool SpecialComponent = false;
1079
1080  // The vector accessor can't exceed the number of elements.
1081  const char *compStr = CompName.getName();
1082  if (strlen(compStr) > vecType->getNumElements()) {
1083    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1084      << baseType << SourceRange(CompLoc);
1085    return QualType();
1086  }
1087
1088  // Check that we've found one of the special components, or that the component
1089  // names must come from the same set.
1090  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1091      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
1092    SpecialComponent = true;
1093  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1094    do
1095      compStr++;
1096    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1097  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
1098    do
1099      compStr++;
1100    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
1101  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
1102    do
1103      compStr++;
1104    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
1105  }
1106
1107  if (!SpecialComponent && *compStr) {
1108    // We didn't get to the end of the string. This means the component names
1109    // didn't come from the same set *or* we encountered an illegal name.
1110    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1111      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1112    return QualType();
1113  }
1114  // Each component accessor can't exceed the vector type.
1115  compStr = CompName.getName();
1116  while (*compStr) {
1117    if (vecType->isAccessorWithinNumElements(*compStr))
1118      compStr++;
1119    else
1120      break;
1121  }
1122  if (!SpecialComponent && *compStr) {
1123    // We didn't get to the end of the string. This means a component accessor
1124    // exceeds the number of elements in the vector.
1125    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1126      << baseType << SourceRange(CompLoc);
1127    return QualType();
1128  }
1129
1130  // If we have a special component name, verify that the current vector length
1131  // is an even number, since all special component names return exactly half
1132  // the elements.
1133  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
1134    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1135      << baseType << SourceRange(CompLoc);
1136    return QualType();
1137  }
1138
1139  // The component accessor looks fine - now we need to compute the actual type.
1140  // The vector type is implied by the component accessor. For example,
1141  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1142  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1143  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
1144                                       : CompName.getLength();
1145  if (CompSize == 1)
1146    return vecType->getElementType();
1147
1148  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1149  // Now look up the TypeDefDecl from the vector type. Without this,
1150  // diagostics look bad. We want extended vector types to appear built-in.
1151  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1152    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1153      return Context.getTypedefType(ExtVectorDecls[i]);
1154  }
1155  return VT; // should never get here (a typedef type should always be found).
1156}
1157
1158/// constructSetterName - Return the setter name for the given
1159/// identifier, i.e. "set" + Name where the initial character of Name
1160/// has been capitalized.
1161// FIXME: Merge with same routine in Parser. But where should this
1162// live?
1163static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1164                                           const IdentifierInfo *Name) {
1165  llvm::SmallString<100> SelectorName;
1166  SelectorName = "set";
1167  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1168  SelectorName[3] = toupper(SelectorName[3]);
1169  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1170}
1171
1172Action::ExprResult Sema::
1173ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
1174                         tok::TokenKind OpKind, SourceLocation MemberLoc,
1175                         IdentifierInfo &Member) {
1176  Expr *BaseExpr = static_cast<Expr *>(Base);
1177  assert(BaseExpr && "no record expression");
1178
1179  // Perform default conversions.
1180  DefaultFunctionArrayConversion(BaseExpr);
1181
1182  QualType BaseType = BaseExpr->getType();
1183  assert(!BaseType.isNull() && "no type for member expression");
1184
1185  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1186  // must have pointer type, and the accessed type is the pointee.
1187  if (OpKind == tok::arrow) {
1188    if (const PointerType *PT = BaseType->getAsPointerType())
1189      BaseType = PT->getPointeeType();
1190    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1191      return BuildOverloadedArrowExpr(BaseExpr, OpLoc, MemberLoc, Member);
1192    else
1193      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1194        << BaseType << BaseExpr->getSourceRange();
1195  }
1196
1197  // Handle field access to simple records.  This also handles access to fields
1198  // of the ObjC 'id' struct.
1199  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1200    RecordDecl *RDecl = RTy->getDecl();
1201    if (RTy->isIncompleteType())
1202      return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
1203               << RDecl->getDeclName() << BaseExpr->getSourceRange();
1204    // The record definition is complete, now make sure the member is valid.
1205    FieldDecl *MemberDecl = RDecl->getMember(&Member);
1206    if (!MemberDecl)
1207      return Diag(MemberLoc, diag::err_typecheck_no_member)
1208               << &Member << BaseExpr->getSourceRange();
1209
1210    // Figure out the type of the member; see C99 6.5.2.3p3
1211    // FIXME: Handle address space modifiers
1212    QualType MemberType = MemberDecl->getType();
1213    unsigned combinedQualifiers =
1214        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1215    if (CXXFieldDecl *CXXMember = dyn_cast<CXXFieldDecl>(MemberDecl)) {
1216      if (CXXMember->isMutable())
1217        combinedQualifiers &= ~QualType::Const;
1218    }
1219    MemberType = MemberType.getQualifiedType(combinedQualifiers);
1220
1221    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
1222                          MemberLoc, MemberType);
1223  }
1224
1225  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1226  // (*Obj).ivar.
1227  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1228    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
1229      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
1230                                 OpKind == tok::arrow);
1231    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1232             << IFTy->getDecl()->getDeclName() << &Member
1233             << BaseExpr->getSourceRange();
1234  }
1235
1236  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1237  // pointer to a (potentially qualified) interface type.
1238  const PointerType *PTy;
1239  const ObjCInterfaceType *IFTy;
1240  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1241      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1242    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1243
1244    // Search for a declared property first.
1245    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1246      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1247
1248    // Check protocols on qualified interfaces.
1249    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1250         E = IFTy->qual_end(); I != E; ++I)
1251      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1252        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1253
1254    // If that failed, look for an "implicit" property by seeing if the nullary
1255    // selector is implemented.
1256
1257    // FIXME: The logic for looking up nullary and unary selectors should be
1258    // shared with the code in ActOnInstanceMessage.
1259
1260    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1261    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1262
1263    // If this reference is in an @implementation, check for 'private' methods.
1264    if (!Getter)
1265      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1266        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1267          if (ObjCImplementationDecl *ImpDecl =
1268              ObjCImplementations[ClassDecl->getIdentifier()])
1269            Getter = ImpDecl->getInstanceMethod(Sel);
1270
1271    // Look through local category implementations associated with the class.
1272    if (!Getter) {
1273      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1274        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1275          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1276      }
1277    }
1278    if (Getter) {
1279      // If we found a getter then this may be a valid dot-reference, we
1280      // will look for the matching setter, in case it is needed.
1281      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1282                                                       &Member);
1283      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1284      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1285      if (!Setter) {
1286        // If this reference is in an @implementation, also check for 'private'
1287        // methods.
1288        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1289          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1290            if (ObjCImplementationDecl *ImpDecl =
1291                  ObjCImplementations[ClassDecl->getIdentifier()])
1292              Setter = ImpDecl->getInstanceMethod(SetterSel);
1293      }
1294      // Look through local category implementations associated with the class.
1295      if (!Setter) {
1296        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1297          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1298            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1299        }
1300      }
1301
1302      // FIXME: we must check that the setter has property type.
1303      return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
1304                                MemberLoc, BaseExpr);
1305    }
1306  }
1307  // Handle properties on qualified "id" protocols.
1308  const ObjCQualifiedIdType *QIdTy;
1309  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1310    // Check protocols on qualified interfaces.
1311    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1312         E = QIdTy->qual_end(); I != E; ++I) {
1313      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1314        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1315      // Also must look for a getter name which uses property syntax.
1316      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1317      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1318        return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
1319                                   OpLoc, MemberLoc, NULL, 0);
1320      }
1321    }
1322  }
1323  // Handle 'field access' to vectors, such as 'V.xx'.
1324  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1325    // Component access limited to variables (reject vec4.rg.g).
1326    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1327        !isa<ExtVectorElementExpr>(BaseExpr))
1328      return Diag(MemberLoc, diag::err_ext_vector_component_access)
1329               << BaseExpr->getSourceRange();
1330    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1331    if (ret.isNull())
1332      return true;
1333    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1334  }
1335
1336  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1337          << BaseType << BaseExpr->getSourceRange();
1338}
1339
1340/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1341/// This provides the location of the left/right parens and a list of comma
1342/// locations.
1343Action::ExprResult Sema::
1344ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
1345              ExprTy **args, unsigned NumArgs,
1346              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1347  Expr *Fn = static_cast<Expr *>(fn);
1348  Expr **Args = reinterpret_cast<Expr**>(args);
1349  assert(Fn && "no function call expression");
1350  FunctionDecl *FDecl = NULL;
1351  OverloadedFunctionDecl *Ovl = NULL;
1352
1353  // Determine whether this is a dependent call inside a C++ template,
1354  // in which case we won't do any semantic analysis now.
1355  bool Dependent = false;
1356  if (Fn->isTypeDependent()) {
1357    if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
1358      if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1359        Dependent = true;
1360      else {
1361        // Resolve the CXXDependentNameExpr to an actual identifier;
1362        // it wasn't really a dependent name after all.
1363        ExprResult Resolved
1364          = ActOnDeclarationNameExpr(S, FnName->getLocation(), FnName->getName(),
1365                                     /*HasTrailingLParen=*/true,
1366                                     /*SS=*/0,
1367                                     /*ForceResolution=*/true);
1368        if (Resolved.isInvalid)
1369          return true;
1370        else {
1371          delete Fn;
1372          Fn = (Expr *)Resolved.Val;
1373        }
1374      }
1375    } else
1376      Dependent = true;
1377  } else
1378    Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
1379
1380  // FIXME: Will need to cache the results of name lookup (including
1381  // ADL) in Fn.
1382  if (Dependent)
1383    return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
1384
1385  // If we're directly calling a function or a set of overloaded
1386  // functions, get the appropriate declaration.
1387  {
1388    DeclRefExpr *DRExpr = NULL;
1389    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1390      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1391    else
1392      DRExpr = dyn_cast<DeclRefExpr>(Fn);
1393
1394    if (DRExpr) {
1395      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1396      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1397    }
1398  }
1399
1400  if (Ovl) {
1401    FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
1402                                    RParenLoc);
1403    if (!FDecl)
1404      return true;
1405
1406    // Update Fn to refer to the actual function selected.
1407    Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1408                                  Fn->getSourceRange().getBegin());
1409    Fn->Destroy(Context);
1410    Fn = NewFn;
1411  }
1412
1413  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1414    return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
1415                                        CommaLocs, RParenLoc);
1416
1417  // Promote the function operand.
1418  UsualUnaryConversions(Fn);
1419
1420  // Make the call expr early, before semantic checks.  This guarantees cleanup
1421  // of arguments and function on error.
1422  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1423                                                 Context.BoolTy, RParenLoc));
1424
1425  const FunctionType *FuncT;
1426  if (!Fn->getType()->isBlockPointerType()) {
1427    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1428    // have type pointer to function".
1429    const PointerType *PT = Fn->getType()->getAsPointerType();
1430    if (PT == 0)
1431      return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1432        << Fn->getType() << Fn->getSourceRange();
1433    FuncT = PT->getPointeeType()->getAsFunctionType();
1434  } else { // This is a block call.
1435    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1436                getAsFunctionType();
1437  }
1438  if (FuncT == 0)
1439    return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1440      << Fn->getType() << Fn->getSourceRange();
1441
1442  // We know the result type of the call, set it.
1443  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1444
1445  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1446    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1447    // assignment, to the types of the corresponding parameter, ...
1448    unsigned NumArgsInProto = Proto->getNumArgs();
1449    unsigned NumArgsToCheck = NumArgs;
1450
1451    // If too few arguments are available (and we don't have default
1452    // arguments for the remaining parameters), don't make the call.
1453    if (NumArgs < NumArgsInProto) {
1454      if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1455        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1456          << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1457      // Use default arguments for missing arguments
1458      NumArgsToCheck = NumArgsInProto;
1459      TheCall->setNumArgs(NumArgsInProto);
1460    }
1461
1462    // If too many are passed and not variadic, error on the extras and drop
1463    // them.
1464    if (NumArgs > NumArgsInProto) {
1465      if (!Proto->isVariadic()) {
1466        Diag(Args[NumArgsInProto]->getLocStart(),
1467             diag::err_typecheck_call_too_many_args)
1468          << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1469          << SourceRange(Args[NumArgsInProto]->getLocStart(),
1470                         Args[NumArgs-1]->getLocEnd());
1471        // This deletes the extra arguments.
1472        TheCall->setNumArgs(NumArgsInProto);
1473      }
1474      NumArgsToCheck = NumArgsInProto;
1475    }
1476
1477    // Continue to check argument types (even if we have too few/many args).
1478    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1479      QualType ProtoArgType = Proto->getArgType(i);
1480
1481      Expr *Arg;
1482      if (i < NumArgs)
1483        Arg = Args[i];
1484      else
1485        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1486      QualType ArgType = Arg->getType();
1487
1488      // Pass the argument.
1489      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1490        return true;
1491
1492      TheCall->setArg(i, Arg);
1493    }
1494
1495    // If this is a variadic call, handle args passed through "...".
1496    if (Proto->isVariadic()) {
1497      // Promote the arguments (C99 6.5.2.2p7).
1498      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1499        Expr *Arg = Args[i];
1500        DefaultArgumentPromotion(Arg);
1501        TheCall->setArg(i, Arg);
1502      }
1503    }
1504  } else {
1505    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1506
1507    // Promote the arguments (C99 6.5.2.2p6).
1508    for (unsigned i = 0; i != NumArgs; i++) {
1509      Expr *Arg = Args[i];
1510      DefaultArgumentPromotion(Arg);
1511      TheCall->setArg(i, Arg);
1512    }
1513  }
1514
1515  // Do special checking on direct calls to functions.
1516  if (FDecl)
1517    return CheckFunctionCall(FDecl, TheCall.take());
1518
1519  return TheCall.take();
1520}
1521
1522Action::ExprResult Sema::
1523ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1524                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1525  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1526  QualType literalType = QualType::getFromOpaquePtr(Ty);
1527  // FIXME: put back this assert when initializers are worked out.
1528  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1529  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1530
1531  if (literalType->isArrayType()) {
1532    if (literalType->isVariableArrayType())
1533      return Diag(LParenLoc, diag::err_variable_object_no_init)
1534        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1535  } else if (literalType->isIncompleteType()) {
1536    return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
1537      << literalType
1538      << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1539  }
1540
1541  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1542                            DeclarationName()))
1543    return true;
1544
1545  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
1546  if (isFileScope) { // 6.5.2.5p3
1547    if (CheckForConstantInitializer(literalExpr, literalType))
1548      return true;
1549  }
1550  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1551                                 isFileScope);
1552}
1553
1554Action::ExprResult Sema::
1555ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1556              InitListDesignations &Designators,
1557              SourceLocation RBraceLoc) {
1558  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1559
1560  // Semantic analysis for initializers is done by ActOnDeclarator() and
1561  // CheckInitializer() - it requires knowledge of the object being intialized.
1562
1563  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1564                                     Designators.hasAnyDesignators());
1565  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1566  return E;
1567}
1568
1569/// CheckCastTypes - Check type constraints for casting between types.
1570bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1571  UsualUnaryConversions(castExpr);
1572
1573  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1574  // type needs to be scalar.
1575  if (castType->isVoidType()) {
1576    // Cast to void allows any expr type.
1577  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
1578    // We can't check any more until template instantiation time.
1579  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1580    // GCC struct/union extension: allow cast to self.
1581    if (Context.getCanonicalType(castType) !=
1582        Context.getCanonicalType(castExpr->getType()) ||
1583        (!castType->isStructureType() && !castType->isUnionType())) {
1584      // Reject any other conversions to non-scalar types.
1585      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
1586        << castType << castExpr->getSourceRange();
1587    }
1588
1589    // accept this, but emit an ext-warn.
1590    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
1591      << castType << castExpr->getSourceRange();
1592  } else if (!castExpr->getType()->isScalarType() &&
1593             !castExpr->getType()->isVectorType()) {
1594    return Diag(castExpr->getLocStart(),
1595                diag::err_typecheck_expect_scalar_operand)
1596      << castExpr->getType() << castExpr->getSourceRange();
1597  } else if (castExpr->getType()->isVectorType()) {
1598    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1599      return true;
1600  } else if (castType->isVectorType()) {
1601    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1602      return true;
1603  }
1604  return false;
1605}
1606
1607bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1608  assert(VectorTy->isVectorType() && "Not a vector type!");
1609
1610  if (Ty->isVectorType() || Ty->isIntegerType()) {
1611    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1612      return Diag(R.getBegin(),
1613                  Ty->isVectorType() ?
1614                  diag::err_invalid_conversion_between_vectors :
1615                  diag::err_invalid_conversion_between_vector_and_integer)
1616        << VectorTy << Ty << R;
1617  } else
1618    return Diag(R.getBegin(),
1619                diag::err_invalid_conversion_between_vector_and_scalar)
1620      << VectorTy << Ty << R;
1621
1622  return false;
1623}
1624
1625Action::ExprResult Sema::
1626ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1627              SourceLocation RParenLoc, ExprTy *Op) {
1628  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1629
1630  Expr *castExpr = static_cast<Expr*>(Op);
1631  QualType castType = QualType::getFromOpaquePtr(Ty);
1632
1633  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1634    return true;
1635  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
1636}
1637
1638/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1639/// In that case, lex = cond.
1640inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1641  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1642  UsualUnaryConversions(cond);
1643  UsualUnaryConversions(lex);
1644  UsualUnaryConversions(rex);
1645  QualType condT = cond->getType();
1646  QualType lexT = lex->getType();
1647  QualType rexT = rex->getType();
1648
1649  // first, check the condition.
1650  if (!cond->isTypeDependent()) {
1651    if (!condT->isScalarType()) { // C99 6.5.15p2
1652      Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
1653      return QualType();
1654    }
1655  }
1656
1657  // Now check the two expressions.
1658  if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
1659    return Context.DependentTy;
1660
1661  // If both operands have arithmetic type, do the usual arithmetic conversions
1662  // to find a common type: C99 6.5.15p3,5.
1663  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1664    UsualArithmeticConversions(lex, rex);
1665    return lex->getType();
1666  }
1667
1668  // If both operands are the same structure or union type, the result is that
1669  // type.
1670  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1671    if (const RecordType *RHSRT = rexT->getAsRecordType())
1672      if (LHSRT->getDecl() == RHSRT->getDecl())
1673        // "If both the operands have structure or union type, the result has
1674        // that type."  This implies that CV qualifiers are dropped.
1675        return lexT.getUnqualifiedType();
1676  }
1677
1678  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1679  // The following || allows only one side to be void (a GCC-ism).
1680  if (lexT->isVoidType() || rexT->isVoidType()) {
1681    if (!lexT->isVoidType())
1682      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
1683        << rex->getSourceRange();
1684    if (!rexT->isVoidType())
1685      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
1686        << lex->getSourceRange();
1687    ImpCastExprToType(lex, Context.VoidTy);
1688    ImpCastExprToType(rex, Context.VoidTy);
1689    return Context.VoidTy;
1690  }
1691  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1692  // the type of the other operand."
1693  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1694       Context.isObjCObjectPointerType(lexT)) &&
1695      rex->isNullPointerConstant(Context)) {
1696    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1697    return lexT;
1698  }
1699  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1700       Context.isObjCObjectPointerType(rexT)) &&
1701      lex->isNullPointerConstant(Context)) {
1702    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1703    return rexT;
1704  }
1705  // Handle the case where both operands are pointers before we handle null
1706  // pointer constants in case both operands are null pointer constants.
1707  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1708    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1709      // get the "pointed to" types
1710      QualType lhptee = LHSPT->getPointeeType();
1711      QualType rhptee = RHSPT->getPointeeType();
1712
1713      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1714      if (lhptee->isVoidType() &&
1715          rhptee->isIncompleteOrObjectType()) {
1716        // Figure out necessary qualifiers (C99 6.5.15p6)
1717        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1718        QualType destType = Context.getPointerType(destPointee);
1719        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1720        ImpCastExprToType(rex, destType); // promote to void*
1721        return destType;
1722      }
1723      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1724        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1725        QualType destType = Context.getPointerType(destPointee);
1726        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1727        ImpCastExprToType(rex, destType); // promote to void*
1728        return destType;
1729      }
1730
1731      QualType compositeType = lexT;
1732
1733      // If either type is an Objective-C object type then check
1734      // compatibility according to Objective-C.
1735      if (Context.isObjCObjectPointerType(lexT) ||
1736          Context.isObjCObjectPointerType(rexT)) {
1737        // If both operands are interfaces and either operand can be
1738        // assigned to the other, use that type as the composite
1739        // type. This allows
1740        //   xxx ? (A*) a : (B*) b
1741        // where B is a subclass of A.
1742        //
1743        // Additionally, as for assignment, if either type is 'id'
1744        // allow silent coercion. Finally, if the types are
1745        // incompatible then make sure to use 'id' as the composite
1746        // type so the result is acceptable for sending messages to.
1747
1748        // FIXME: This code should not be localized to here. Also this
1749        // should use a compatible check instead of abusing the
1750        // canAssignObjCInterfaces code.
1751        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1752        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1753        if (LHSIface && RHSIface &&
1754            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1755          compositeType = lexT;
1756        } else if (LHSIface && RHSIface &&
1757                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
1758          compositeType = rexT;
1759        } else if (Context.isObjCIdType(lhptee) ||
1760                   Context.isObjCIdType(rhptee)) {
1761          // FIXME: This code looks wrong, because isObjCIdType checks
1762          // the struct but getObjCIdType returns the pointer to
1763          // struct. This is horrible and should be fixed.
1764          compositeType = Context.getObjCIdType();
1765        } else {
1766          QualType incompatTy = Context.getObjCIdType();
1767          ImpCastExprToType(lex, incompatTy);
1768          ImpCastExprToType(rex, incompatTy);
1769          return incompatTy;
1770        }
1771      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1772                                             rhptee.getUnqualifiedType())) {
1773        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
1774          << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
1775        // In this situation, we assume void* type. No especially good
1776        // reason, but this is what gcc does, and we do have to pick
1777        // to get a consistent AST.
1778        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1779        ImpCastExprToType(lex, incompatTy);
1780        ImpCastExprToType(rex, incompatTy);
1781        return incompatTy;
1782      }
1783      // The pointer types are compatible.
1784      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1785      // differently qualified versions of compatible types, the result type is
1786      // a pointer to an appropriately qualified version of the *composite*
1787      // type.
1788      // FIXME: Need to calculate the composite type.
1789      // FIXME: Need to add qualifiers
1790      ImpCastExprToType(lex, compositeType);
1791      ImpCastExprToType(rex, compositeType);
1792      return compositeType;
1793    }
1794  }
1795  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1796  // evaluates to "struct objc_object *" (and is handled above when comparing
1797  // id with statically typed objects).
1798  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1799    // GCC allows qualified id and any Objective-C type to devolve to
1800    // id. Currently localizing to here until clear this should be
1801    // part of ObjCQualifiedIdTypesAreCompatible.
1802    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1803        (lexT->isObjCQualifiedIdType() &&
1804         Context.isObjCObjectPointerType(rexT)) ||
1805        (rexT->isObjCQualifiedIdType() &&
1806         Context.isObjCObjectPointerType(lexT))) {
1807      // FIXME: This is not the correct composite type. This only
1808      // happens to work because id can more or less be used anywhere,
1809      // however this may change the type of method sends.
1810      // FIXME: gcc adds some type-checking of the arguments and emits
1811      // (confusing) incompatible comparison warnings in some
1812      // cases. Investigate.
1813      QualType compositeType = Context.getObjCIdType();
1814      ImpCastExprToType(lex, compositeType);
1815      ImpCastExprToType(rex, compositeType);
1816      return compositeType;
1817    }
1818  }
1819
1820  // Selection between block pointer types is ok as long as they are the same.
1821  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1822      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1823    return lexT;
1824
1825  // Otherwise, the operands are not compatible.
1826  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
1827    << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
1828  return QualType();
1829}
1830
1831/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1832/// in the case of a the GNU conditional expr extension.
1833Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1834                                            SourceLocation ColonLoc,
1835                                            ExprTy *Cond, ExprTy *LHS,
1836                                            ExprTy *RHS) {
1837  Expr *CondExpr = (Expr *) Cond;
1838  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1839
1840  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1841  // was the condition.
1842  bool isLHSNull = LHSExpr == 0;
1843  if (isLHSNull)
1844    LHSExpr = CondExpr;
1845
1846  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1847                                             RHSExpr, QuestionLoc);
1848  if (result.isNull())
1849    return true;
1850  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1851                                 RHSExpr, result);
1852}
1853
1854
1855// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1856// being closely modeled after the C99 spec:-). The odd characteristic of this
1857// routine is it effectively iqnores the qualifiers on the top level pointee.
1858// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1859// FIXME: add a couple examples in this comment.
1860Sema::AssignConvertType
1861Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1862  QualType lhptee, rhptee;
1863
1864  // get the "pointed to" type (ignoring qualifiers at the top level)
1865  lhptee = lhsType->getAsPointerType()->getPointeeType();
1866  rhptee = rhsType->getAsPointerType()->getPointeeType();
1867
1868  // make sure we operate on the canonical type
1869  lhptee = Context.getCanonicalType(lhptee);
1870  rhptee = Context.getCanonicalType(rhptee);
1871
1872  AssignConvertType ConvTy = Compatible;
1873
1874  // C99 6.5.16.1p1: This following citation is common to constraints
1875  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1876  // qualifiers of the type *pointed to* by the right;
1877  // FIXME: Handle ASQualType
1878  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
1879    ConvTy = CompatiblePointerDiscardsQualifiers;
1880
1881  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1882  // incomplete type and the other is a pointer to a qualified or unqualified
1883  // version of void...
1884  if (lhptee->isVoidType()) {
1885    if (rhptee->isIncompleteOrObjectType())
1886      return ConvTy;
1887
1888    // As an extension, we allow cast to/from void* to function pointer.
1889    assert(rhptee->isFunctionType());
1890    return FunctionVoidPointer;
1891  }
1892
1893  if (rhptee->isVoidType()) {
1894    if (lhptee->isIncompleteOrObjectType())
1895      return ConvTy;
1896
1897    // As an extension, we allow cast to/from void* to function pointer.
1898    assert(lhptee->isFunctionType());
1899    return FunctionVoidPointer;
1900  }
1901
1902  // Check for ObjC interfaces
1903  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1904  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1905  if (LHSIface && RHSIface &&
1906      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1907    return ConvTy;
1908
1909  // ID acts sort of like void* for ObjC interfaces
1910  if (LHSIface && Context.isObjCIdType(rhptee))
1911    return ConvTy;
1912  if (RHSIface && Context.isObjCIdType(lhptee))
1913    return ConvTy;
1914
1915  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1916  // unqualified versions of compatible types, ...
1917  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1918                                  rhptee.getUnqualifiedType()))
1919    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1920  return ConvTy;
1921}
1922
1923/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1924/// block pointer types are compatible or whether a block and normal pointer
1925/// are compatible. It is more restrict than comparing two function pointer
1926// types.
1927Sema::AssignConvertType
1928Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1929                                          QualType rhsType) {
1930  QualType lhptee, rhptee;
1931
1932  // get the "pointed to" type (ignoring qualifiers at the top level)
1933  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1934  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1935
1936  // make sure we operate on the canonical type
1937  lhptee = Context.getCanonicalType(lhptee);
1938  rhptee = Context.getCanonicalType(rhptee);
1939
1940  AssignConvertType ConvTy = Compatible;
1941
1942  // For blocks we enforce that qualifiers are identical.
1943  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1944    ConvTy = CompatiblePointerDiscardsQualifiers;
1945
1946  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1947    return IncompatibleBlockPointer;
1948  return ConvTy;
1949}
1950
1951/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1952/// has code to accommodate several GCC extensions when type checking
1953/// pointers. Here are some objectionable examples that GCC considers warnings:
1954///
1955///  int a, *pint;
1956///  short *pshort;
1957///  struct foo *pfoo;
1958///
1959///  pint = pshort; // warning: assignment from incompatible pointer type
1960///  a = pint; // warning: assignment makes integer from pointer without a cast
1961///  pint = a; // warning: assignment makes pointer from integer without a cast
1962///  pint = pfoo; // warning: assignment from incompatible pointer type
1963///
1964/// As a result, the code for dealing with pointers is more complex than the
1965/// C99 spec dictates.
1966///
1967Sema::AssignConvertType
1968Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1969  // Get canonical types.  We're not formatting these types, just comparing
1970  // them.
1971  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1972  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1973
1974  if (lhsType == rhsType)
1975    return Compatible; // Common case: fast path an exact match.
1976
1977  // If the left-hand side is a reference type, then we are in a
1978  // (rare!) case where we've allowed the use of references in C,
1979  // e.g., as a parameter type in a built-in function. In this case,
1980  // just make sure that the type referenced is compatible with the
1981  // right-hand side type. The caller is responsible for adjusting
1982  // lhsType so that the resulting expression does not have reference
1983  // type.
1984  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
1985    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
1986      return Compatible;
1987    return Incompatible;
1988  }
1989
1990  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1991    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1992      return Compatible;
1993    // Relax integer conversions like we do for pointers below.
1994    if (rhsType->isIntegerType())
1995      return IntToPointer;
1996    if (lhsType->isIntegerType())
1997      return PointerToInt;
1998    return IncompatibleObjCQualifiedId;
1999  }
2000
2001  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2002    // For ExtVector, allow vector splats; float -> <n x float>
2003    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2004      if (LV->getElementType() == rhsType)
2005        return Compatible;
2006
2007    // If we are allowing lax vector conversions, and LHS and RHS are both
2008    // vectors, the total size only needs to be the same. This is a bitcast;
2009    // no bits are changed but the result type is different.
2010    if (getLangOptions().LaxVectorConversions &&
2011        lhsType->isVectorType() && rhsType->isVectorType()) {
2012      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2013        return Compatible;
2014    }
2015    return Incompatible;
2016  }
2017
2018  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2019    return Compatible;
2020
2021  if (isa<PointerType>(lhsType)) {
2022    if (rhsType->isIntegerType())
2023      return IntToPointer;
2024
2025    if (isa<PointerType>(rhsType))
2026      return CheckPointerTypesForAssignment(lhsType, rhsType);
2027
2028    if (rhsType->getAsBlockPointerType()) {
2029      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2030        return Compatible;
2031
2032      // Treat block pointers as objects.
2033      if (getLangOptions().ObjC1 &&
2034          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2035        return Compatible;
2036    }
2037    return Incompatible;
2038  }
2039
2040  if (isa<BlockPointerType>(lhsType)) {
2041    if (rhsType->isIntegerType())
2042      return IntToPointer;
2043
2044    // Treat block pointers as objects.
2045    if (getLangOptions().ObjC1 &&
2046        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2047      return Compatible;
2048
2049    if (rhsType->isBlockPointerType())
2050      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2051
2052    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2053      if (RHSPT->getPointeeType()->isVoidType())
2054        return Compatible;
2055    }
2056    return Incompatible;
2057  }
2058
2059  if (isa<PointerType>(rhsType)) {
2060    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2061    if (lhsType == Context.BoolTy)
2062      return Compatible;
2063
2064    if (lhsType->isIntegerType())
2065      return PointerToInt;
2066
2067    if (isa<PointerType>(lhsType))
2068      return CheckPointerTypesForAssignment(lhsType, rhsType);
2069
2070    if (isa<BlockPointerType>(lhsType) &&
2071        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2072      return Compatible;
2073    return Incompatible;
2074  }
2075
2076  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2077    if (Context.typesAreCompatible(lhsType, rhsType))
2078      return Compatible;
2079  }
2080  return Incompatible;
2081}
2082
2083Sema::AssignConvertType
2084Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2085  if (getLangOptions().CPlusPlus) {
2086    if (!lhsType->isRecordType()) {
2087      // C++ 5.17p3: If the left operand is not of class type, the
2088      // expression is implicitly converted (C++ 4) to the
2089      // cv-unqualified type of the left operand.
2090      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType()))
2091        return Incompatible;
2092      else
2093        return Compatible;
2094    }
2095
2096    // FIXME: Currently, we fall through and treat C++ classes like C
2097    // structures.
2098  }
2099
2100  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2101  // a null pointer constant.
2102  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2103       lhsType->isBlockPointerType())
2104      && rExpr->isNullPointerConstant(Context)) {
2105    ImpCastExprToType(rExpr, lhsType);
2106    return Compatible;
2107  }
2108
2109  // We don't allow conversion of non-null-pointer constants to integers.
2110  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2111    return IntToBlockPointer;
2112
2113  // This check seems unnatural, however it is necessary to ensure the proper
2114  // conversion of functions/arrays. If the conversion were done for all
2115  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2116  // expressions that surpress this implicit conversion (&, sizeof).
2117  //
2118  // Suppress this for references: C++ 8.5.3p5.
2119  if (!lhsType->isReferenceType())
2120    DefaultFunctionArrayConversion(rExpr);
2121
2122  Sema::AssignConvertType result =
2123    CheckAssignmentConstraints(lhsType, rExpr->getType());
2124
2125  // C99 6.5.16.1p2: The value of the right operand is converted to the
2126  // type of the assignment expression.
2127  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2128  // so that we can use references in built-in functions even in C.
2129  // The getNonReferenceType() call makes sure that the resulting expression
2130  // does not have reference type.
2131  if (rExpr->getType() != lhsType)
2132    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2133  return result;
2134}
2135
2136Sema::AssignConvertType
2137Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2138  return CheckAssignmentConstraints(lhsType, rhsType);
2139}
2140
2141QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2142  Diag(Loc, diag::err_typecheck_invalid_operands)
2143    << lex->getType() << rex->getType()
2144    << lex->getSourceRange() << rex->getSourceRange();
2145  return QualType();
2146}
2147
2148inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2149                                                              Expr *&rex) {
2150  // For conversion purposes, we ignore any qualifiers.
2151  // For example, "const float" and "float" are equivalent.
2152  QualType lhsType =
2153    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2154  QualType rhsType =
2155    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2156
2157  // If the vector types are identical, return.
2158  if (lhsType == rhsType)
2159    return lhsType;
2160
2161  // Handle the case of a vector & extvector type of the same size and element
2162  // type.  It would be nice if we only had one vector type someday.
2163  if (getLangOptions().LaxVectorConversions)
2164    if (const VectorType *LV = lhsType->getAsVectorType())
2165      if (const VectorType *RV = rhsType->getAsVectorType())
2166        if (LV->getElementType() == RV->getElementType() &&
2167            LV->getNumElements() == RV->getNumElements())
2168          return lhsType->isExtVectorType() ? lhsType : rhsType;
2169
2170  // If the lhs is an extended vector and the rhs is a scalar of the same type
2171  // or a literal, promote the rhs to the vector type.
2172  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2173    QualType eltType = V->getElementType();
2174
2175    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2176        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2177        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2178      ImpCastExprToType(rex, lhsType);
2179      return lhsType;
2180    }
2181  }
2182
2183  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2184  // promote the lhs to the vector type.
2185  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2186    QualType eltType = V->getElementType();
2187
2188    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2189        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2190        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2191      ImpCastExprToType(lex, rhsType);
2192      return rhsType;
2193    }
2194  }
2195
2196  // You cannot convert between vector values of different size.
2197  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2198    << lex->getType() << rex->getType()
2199    << lex->getSourceRange() << rex->getSourceRange();
2200  return QualType();
2201}
2202
2203inline QualType Sema::CheckMultiplyDivideOperands(
2204  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2205{
2206  QualType lhsType = lex->getType(), rhsType = rex->getType();
2207
2208  if (lhsType->isVectorType() || rhsType->isVectorType())
2209    return CheckVectorOperands(Loc, lex, rex);
2210
2211  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2212
2213  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2214    return compType;
2215  return InvalidOperands(Loc, lex, rex);
2216}
2217
2218inline QualType Sema::CheckRemainderOperands(
2219  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2220{
2221  QualType lhsType = lex->getType(), rhsType = rex->getType();
2222
2223  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2224
2225  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2226    return compType;
2227  return InvalidOperands(Loc, lex, rex);
2228}
2229
2230inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2231  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2232{
2233  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2234    return CheckVectorOperands(Loc, lex, rex);
2235
2236  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2237
2238  // handle the common case first (both operands are arithmetic).
2239  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2240    return compType;
2241
2242  // Put any potential pointer into PExp
2243  Expr* PExp = lex, *IExp = rex;
2244  if (IExp->getType()->isPointerType())
2245    std::swap(PExp, IExp);
2246
2247  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2248    if (IExp->getType()->isIntegerType()) {
2249      // Check for arithmetic on pointers to incomplete types
2250      if (!PTy->getPointeeType()->isObjectType()) {
2251        if (PTy->getPointeeType()->isVoidType()) {
2252          Diag(Loc, diag::ext_gnu_void_ptr)
2253            << lex->getSourceRange() << rex->getSourceRange();
2254        } else {
2255          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
2256            << lex->getType() << lex->getSourceRange();
2257          return QualType();
2258        }
2259      }
2260      return PExp->getType();
2261    }
2262  }
2263
2264  return InvalidOperands(Loc, lex, rex);
2265}
2266
2267// C99 6.5.6
2268QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2269                                        SourceLocation Loc, bool isCompAssign) {
2270  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2271    return CheckVectorOperands(Loc, lex, rex);
2272
2273  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2274
2275  // Enforce type constraints: C99 6.5.6p3.
2276
2277  // Handle the common case first (both operands are arithmetic).
2278  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2279    return compType;
2280
2281  // Either ptr - int   or   ptr - ptr.
2282  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2283    QualType lpointee = LHSPTy->getPointeeType();
2284
2285    // The LHS must be an object type, not incomplete, function, etc.
2286    if (!lpointee->isObjectType()) {
2287      // Handle the GNU void* extension.
2288      if (lpointee->isVoidType()) {
2289        Diag(Loc, diag::ext_gnu_void_ptr)
2290          << lex->getSourceRange() << rex->getSourceRange();
2291      } else {
2292        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2293          << lex->getType() << lex->getSourceRange();
2294        return QualType();
2295      }
2296    }
2297
2298    // The result type of a pointer-int computation is the pointer type.
2299    if (rex->getType()->isIntegerType())
2300      return lex->getType();
2301
2302    // Handle pointer-pointer subtractions.
2303    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2304      QualType rpointee = RHSPTy->getPointeeType();
2305
2306      // RHS must be an object type, unless void (GNU).
2307      if (!rpointee->isObjectType()) {
2308        // Handle the GNU void* extension.
2309        if (rpointee->isVoidType()) {
2310          if (!lpointee->isVoidType())
2311            Diag(Loc, diag::ext_gnu_void_ptr)
2312              << lex->getSourceRange() << rex->getSourceRange();
2313        } else {
2314          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2315            << rex->getType() << rex->getSourceRange();
2316          return QualType();
2317        }
2318      }
2319
2320      // Pointee types must be compatible.
2321      if (!Context.typesAreCompatible(
2322              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2323              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2324        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2325          << lex->getType() << rex->getType()
2326          << lex->getSourceRange() << rex->getSourceRange();
2327        return QualType();
2328      }
2329
2330      return Context.getPointerDiffType();
2331    }
2332  }
2333
2334  return InvalidOperands(Loc, lex, rex);
2335}
2336
2337// C99 6.5.7
2338QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2339                                  bool isCompAssign) {
2340  // C99 6.5.7p2: Each of the operands shall have integer type.
2341  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2342    return InvalidOperands(Loc, lex, rex);
2343
2344  // Shifts don't perform usual arithmetic conversions, they just do integer
2345  // promotions on each operand. C99 6.5.7p3
2346  if (!isCompAssign)
2347    UsualUnaryConversions(lex);
2348  UsualUnaryConversions(rex);
2349
2350  // "The type of the result is that of the promoted left operand."
2351  return lex->getType();
2352}
2353
2354static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2355                                        ASTContext& Context) {
2356  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2357  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2358  // ID acts sort of like void* for ObjC interfaces
2359  if (LHSIface && Context.isObjCIdType(RHS))
2360    return true;
2361  if (RHSIface && Context.isObjCIdType(LHS))
2362    return true;
2363  if (!LHSIface || !RHSIface)
2364    return false;
2365  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2366         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2367}
2368
2369// C99 6.5.8
2370QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2371                                    bool isRelational) {
2372  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2373    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2374
2375  // C99 6.5.8p3 / C99 6.5.9p4
2376  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2377    UsualArithmeticConversions(lex, rex);
2378  else {
2379    UsualUnaryConversions(lex);
2380    UsualUnaryConversions(rex);
2381  }
2382  QualType lType = lex->getType();
2383  QualType rType = rex->getType();
2384
2385  // For non-floating point types, check for self-comparisons of the form
2386  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2387  // often indicate logic errors in the program.
2388  if (!lType->isFloatingType()) {
2389    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2390      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2391        if (DRL->getDecl() == DRR->getDecl())
2392          Diag(Loc, diag::warn_selfcomparison);
2393  }
2394
2395  // The result of comparisons is 'bool' in C++, 'int' in C.
2396  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2397
2398  if (isRelational) {
2399    if (lType->isRealType() && rType->isRealType())
2400      return ResultTy;
2401  } else {
2402    // Check for comparisons of floating point operands using != and ==.
2403    if (lType->isFloatingType()) {
2404      assert (rType->isFloatingType());
2405      CheckFloatComparison(Loc,lex,rex);
2406    }
2407
2408    if (lType->isArithmeticType() && rType->isArithmeticType())
2409      return ResultTy;
2410  }
2411
2412  bool LHSIsNull = lex->isNullPointerConstant(Context);
2413  bool RHSIsNull = rex->isNullPointerConstant(Context);
2414
2415  // All of the following pointer related warnings are GCC extensions, except
2416  // when handling null pointer constants. One day, we can consider making them
2417  // errors (when -pedantic-errors is enabled).
2418  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2419    QualType LCanPointeeTy =
2420      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2421    QualType RCanPointeeTy =
2422      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2423
2424    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2425        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2426        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2427                                    RCanPointeeTy.getUnqualifiedType()) &&
2428        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2429      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2430        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2431    }
2432    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2433    return ResultTy;
2434  }
2435  // Handle block pointer types.
2436  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2437    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2438    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2439
2440    if (!LHSIsNull && !RHSIsNull &&
2441        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2442      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2443        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2444    }
2445    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2446    return ResultTy;
2447  }
2448  // Allow block pointers to be compared with null pointer constants.
2449  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2450      (lType->isPointerType() && rType->isBlockPointerType())) {
2451    if (!LHSIsNull && !RHSIsNull) {
2452      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2453        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2454    }
2455    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2456    return ResultTy;
2457  }
2458
2459  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2460    if (lType->isPointerType() || rType->isPointerType()) {
2461      const PointerType *LPT = lType->getAsPointerType();
2462      const PointerType *RPT = rType->getAsPointerType();
2463      bool LPtrToVoid = LPT ?
2464        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2465      bool RPtrToVoid = RPT ?
2466        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2467
2468      if (!LPtrToVoid && !RPtrToVoid &&
2469          !Context.typesAreCompatible(lType, rType)) {
2470        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2471          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2472        ImpCastExprToType(rex, lType);
2473        return ResultTy;
2474      }
2475      ImpCastExprToType(rex, lType);
2476      return ResultTy;
2477    }
2478    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2479      ImpCastExprToType(rex, lType);
2480      return ResultTy;
2481    } else {
2482      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2483        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2484          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2485        ImpCastExprToType(rex, lType);
2486        return ResultTy;
2487      }
2488    }
2489  }
2490  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2491       rType->isIntegerType()) {
2492    if (!RHSIsNull)
2493      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2494        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2495    ImpCastExprToType(rex, lType); // promote the integer to pointer
2496    return ResultTy;
2497  }
2498  if (lType->isIntegerType() &&
2499      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2500    if (!LHSIsNull)
2501      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2502        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2503    ImpCastExprToType(lex, rType); // promote the integer to pointer
2504    return ResultTy;
2505  }
2506  // Handle block pointers.
2507  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2508    if (!RHSIsNull)
2509      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2510        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2511    ImpCastExprToType(rex, lType); // promote the integer to pointer
2512    return ResultTy;
2513  }
2514  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2515    if (!LHSIsNull)
2516      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2517        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2518    ImpCastExprToType(lex, rType); // promote the integer to pointer
2519    return ResultTy;
2520  }
2521  return InvalidOperands(Loc, lex, rex);
2522}
2523
2524/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2525/// operates on extended vector types.  Instead of producing an IntTy result,
2526/// like a scalar comparison, a vector comparison produces a vector of integer
2527/// types.
2528QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2529                                          SourceLocation Loc,
2530                                          bool isRelational) {
2531  // Check to make sure we're operating on vectors of the same type and width,
2532  // Allowing one side to be a scalar of element type.
2533  QualType vType = CheckVectorOperands(Loc, lex, rex);
2534  if (vType.isNull())
2535    return vType;
2536
2537  QualType lType = lex->getType();
2538  QualType rType = rex->getType();
2539
2540  // For non-floating point types, check for self-comparisons of the form
2541  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2542  // often indicate logic errors in the program.
2543  if (!lType->isFloatingType()) {
2544    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2545      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2546        if (DRL->getDecl() == DRR->getDecl())
2547          Diag(Loc, diag::warn_selfcomparison);
2548  }
2549
2550  // Check for comparisons of floating point operands using != and ==.
2551  if (!isRelational && lType->isFloatingType()) {
2552    assert (rType->isFloatingType());
2553    CheckFloatComparison(Loc,lex,rex);
2554  }
2555
2556  // Return the type for the comparison, which is the same as vector type for
2557  // integer vectors, or an integer type of identical size and number of
2558  // elements for floating point vectors.
2559  if (lType->isIntegerType())
2560    return lType;
2561
2562  const VectorType *VTy = lType->getAsVectorType();
2563
2564  // FIXME: need to deal with non-32b int / non-64b long long
2565  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2566  if (TypeSize == 32) {
2567    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2568  }
2569  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2570  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2571}
2572
2573inline QualType Sema::CheckBitwiseOperands(
2574  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2575{
2576  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2577    return CheckVectorOperands(Loc, lex, rex);
2578
2579  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2580
2581  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2582    return compType;
2583  return InvalidOperands(Loc, lex, rex);
2584}
2585
2586inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2587  Expr *&lex, Expr *&rex, SourceLocation Loc)
2588{
2589  UsualUnaryConversions(lex);
2590  UsualUnaryConversions(rex);
2591
2592  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2593    return Context.IntTy;
2594  return InvalidOperands(Loc, lex, rex);
2595}
2596
2597/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2598/// emit an error and return true.  If so, return false.
2599static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2600  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2601  if (IsLV == Expr::MLV_Valid)
2602    return false;
2603
2604  unsigned Diag = 0;
2605  bool NeedType = false;
2606  switch (IsLV) { // C99 6.5.16p2
2607  default: assert(0 && "Unknown result from isModifiableLvalue!");
2608  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
2609  case Expr::MLV_ArrayType:
2610    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
2611    NeedType = true;
2612    break;
2613  case Expr::MLV_NotObjectType:
2614    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
2615    NeedType = true;
2616    break;
2617  case Expr::MLV_LValueCast:
2618    Diag = diag::err_typecheck_lvalue_casts_not_supported;
2619    break;
2620  case Expr::MLV_InvalidExpression:
2621    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
2622    break;
2623  case Expr::MLV_IncompleteType:
2624  case Expr::MLV_IncompleteVoidType:
2625    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
2626    NeedType = true;
2627    break;
2628  case Expr::MLV_DuplicateVectorComponents:
2629    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
2630    break;
2631  case Expr::MLV_NotBlockQualified:
2632    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
2633    break;
2634  case Expr::MLV_ReadonlyProperty:
2635    Diag = diag::error_readonly_property_assignment;
2636    break;
2637  case Expr::MLV_NoSetterProperty:
2638    Diag = diag::error_nosetter_property_assignment;
2639    break;
2640  }
2641
2642  if (NeedType)
2643    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
2644  else
2645    S.Diag(Loc, Diag) << E->getSourceRange();
2646  return true;
2647}
2648
2649
2650
2651// C99 6.5.16.1
2652QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
2653                                       SourceLocation Loc,
2654                                       QualType CompoundType) {
2655  // Verify that LHS is a modifiable lvalue, and emit error if not.
2656  if (CheckForModifiableLvalue(LHS, Loc, *this))
2657    return QualType();
2658
2659  QualType LHSType = LHS->getType();
2660  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
2661
2662  AssignConvertType ConvTy;
2663  if (CompoundType.isNull()) {
2664    // Simple assignment "x = y".
2665    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
2666
2667    // If the RHS is a unary plus or minus, check to see if they = and + are
2668    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2669    // instead of "x += 4".
2670    Expr *RHSCheck = RHS;
2671    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2672      RHSCheck = ICE->getSubExpr();
2673    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2674      if ((UO->getOpcode() == UnaryOperator::Plus ||
2675           UO->getOpcode() == UnaryOperator::Minus) &&
2676          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2677          // Only if the two operators are exactly adjacent.
2678          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2679        Diag(Loc, diag::warn_not_compound_assign)
2680          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
2681          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
2682    }
2683  } else {
2684    // Compound assignment "x += y"
2685    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
2686  }
2687
2688  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
2689                               RHS, "assigning"))
2690    return QualType();
2691
2692  // C99 6.5.16p3: The type of an assignment expression is the type of the
2693  // left operand unless the left operand has qualified type, in which case
2694  // it is the unqualified version of the type of the left operand.
2695  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2696  // is converted to the type of the assignment expression (above).
2697  // C++ 5.17p1: the type of the assignment expression is that of its left
2698  // oprdu.
2699  return LHSType.getUnqualifiedType();
2700}
2701
2702// C99 6.5.17
2703QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
2704  // FIXME: what is required for LHS?
2705
2706  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2707  DefaultFunctionArrayConversion(RHS);
2708  return RHS->getType();
2709}
2710
2711/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2712/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2713QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc) {
2714  QualType ResType = Op->getType();
2715  assert(!ResType.isNull() && "no type for increment/decrement expression");
2716
2717  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2718  if (ResType->isRealType()) {
2719    // OK!
2720  } else if (const PointerType *PT = ResType->getAsPointerType()) {
2721    // C99 6.5.2.4p2, 6.5.6p2
2722    if (PT->getPointeeType()->isObjectType()) {
2723      // Pointer to object is ok!
2724    } else if (PT->getPointeeType()->isVoidType()) {
2725      // Pointer to void is extension.
2726      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
2727    } else {
2728      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
2729        << ResType << Op->getSourceRange();
2730      return QualType();
2731    }
2732  } else if (ResType->isComplexType()) {
2733    // C99 does not support ++/-- on complex types, we allow as an extension.
2734    Diag(OpLoc, diag::ext_integer_increment_complex)
2735      << ResType << Op->getSourceRange();
2736  } else {
2737    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
2738      << ResType << Op->getSourceRange();
2739    return QualType();
2740  }
2741  // At this point, we know we have a real, complex or pointer type.
2742  // Now make sure the operand is a modifiable lvalue.
2743  if (CheckForModifiableLvalue(Op, OpLoc, *this))
2744    return QualType();
2745  return ResType;
2746}
2747
2748/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2749/// This routine allows us to typecheck complex/recursive expressions
2750/// where the declaration is needed for type checking. We only need to
2751/// handle cases when the expression references a function designator
2752/// or is an lvalue. Here are some examples:
2753///  - &(x) => x
2754///  - &*****f => f for f a function designator.
2755///  - &s.xx => s
2756///  - &s.zz[1].yy -> s, if zz is an array
2757///  - *(x + 1) -> x, if x is an array
2758///  - &"123"[2] -> 0
2759///  - & __real__ x -> x
2760static NamedDecl *getPrimaryDecl(Expr *E) {
2761  switch (E->getStmtClass()) {
2762  case Stmt::DeclRefExprClass:
2763    return cast<DeclRefExpr>(E)->getDecl();
2764  case Stmt::MemberExprClass:
2765    // Fields cannot be declared with a 'register' storage class.
2766    // &X->f is always ok, even if X is declared register.
2767    if (cast<MemberExpr>(E)->isArrow())
2768      return 0;
2769    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2770  case Stmt::ArraySubscriptExprClass: {
2771    // &X[4] and &4[X] refers to X if X is not a pointer.
2772
2773    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2774    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2775    if (!VD || VD->getType()->isPointerType())
2776      return 0;
2777    else
2778      return VD;
2779  }
2780  case Stmt::UnaryOperatorClass: {
2781    UnaryOperator *UO = cast<UnaryOperator>(E);
2782
2783    switch(UO->getOpcode()) {
2784    case UnaryOperator::Deref: {
2785      // *(X + 1) refers to X if X is not a pointer.
2786      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2787        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2788        if (!VD || VD->getType()->isPointerType())
2789          return 0;
2790        return VD;
2791      }
2792      return 0;
2793    }
2794    case UnaryOperator::Real:
2795    case UnaryOperator::Imag:
2796    case UnaryOperator::Extension:
2797      return getPrimaryDecl(UO->getSubExpr());
2798    default:
2799      return 0;
2800    }
2801  }
2802  case Stmt::BinaryOperatorClass: {
2803    BinaryOperator *BO = cast<BinaryOperator>(E);
2804
2805    // Handle cases involving pointer arithmetic. The result of an
2806    // Assign or AddAssign is not an lvalue so they can be ignored.
2807
2808    // (x + n) or (n + x) => x
2809    if (BO->getOpcode() == BinaryOperator::Add) {
2810      if (BO->getLHS()->getType()->isPointerType()) {
2811        return getPrimaryDecl(BO->getLHS());
2812      } else if (BO->getRHS()->getType()->isPointerType()) {
2813        return getPrimaryDecl(BO->getRHS());
2814      }
2815    }
2816
2817    return 0;
2818  }
2819  case Stmt::ParenExprClass:
2820    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2821  case Stmt::ImplicitCastExprClass:
2822    // &X[4] when X is an array, has an implicit cast from array to pointer.
2823    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2824  default:
2825    return 0;
2826  }
2827}
2828
2829/// CheckAddressOfOperand - The operand of & must be either a function
2830/// designator or an lvalue designating an object. If it is an lvalue, the
2831/// object cannot be declared with storage class register or be a bit field.
2832/// Note: The usual conversions are *not* applied to the operand of the &
2833/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2834/// In C++, the operand might be an overloaded function name, in which case
2835/// we allow the '&' but retain the overloaded-function type.
2836QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2837  if (getLangOptions().C99) {
2838    // Implement C99-only parts of addressof rules.
2839    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2840      if (uOp->getOpcode() == UnaryOperator::Deref)
2841        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2842        // (assuming the deref expression is valid).
2843        return uOp->getSubExpr()->getType();
2844    }
2845    // Technically, there should be a check for array subscript
2846    // expressions here, but the result of one is always an lvalue anyway.
2847  }
2848  NamedDecl *dcl = getPrimaryDecl(op);
2849  Expr::isLvalueResult lval = op->isLvalue(Context);
2850
2851  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2852    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2853      // FIXME: emit more specific diag...
2854      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
2855        << op->getSourceRange();
2856      return QualType();
2857    }
2858  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2859    if (MemExpr->getMemberDecl()->isBitField()) {
2860      Diag(OpLoc, diag::err_typecheck_address_of)
2861        << "bit-field" << op->getSourceRange();
2862      return QualType();
2863    }
2864  // Check for Apple extension for accessing vector components.
2865  } else if (isa<ArraySubscriptExpr>(op) &&
2866           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2867    Diag(OpLoc, diag::err_typecheck_address_of)
2868      << "vector" << op->getSourceRange();
2869    return QualType();
2870  } else if (dcl) { // C99 6.5.3.2p1
2871    // We have an lvalue with a decl. Make sure the decl is not declared
2872    // with the register storage-class specifier.
2873    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2874      if (vd->getStorageClass() == VarDecl::Register) {
2875        Diag(OpLoc, diag::err_typecheck_address_of)
2876          << "register variable" << op->getSourceRange();
2877        return QualType();
2878      }
2879    } else if (isa<OverloadedFunctionDecl>(dcl)) {
2880      return Context.OverloadTy;
2881    } else if (isa<FieldDecl>(dcl)) {
2882      // Okay: we can take the address of a field.
2883    }
2884    else
2885      assert(0 && "Unknown/unexpected decl type");
2886  }
2887
2888  // If the operand has type "type", the result has type "pointer to type".
2889  return Context.getPointerType(op->getType());
2890}
2891
2892QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
2893  UsualUnaryConversions(Op);
2894  QualType Ty = Op->getType();
2895
2896  // Note that per both C89 and C99, this is always legal, even if ptype is an
2897  // incomplete type or void.  It would be possible to warn about dereferencing
2898  // a void pointer, but it's completely well-defined, and such a warning is
2899  // unlikely to catch any mistakes.
2900  if (const PointerType *PT = Ty->getAsPointerType())
2901    return PT->getPointeeType();
2902
2903  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
2904    << Ty << Op->getSourceRange();
2905  return QualType();
2906}
2907
2908static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2909  tok::TokenKind Kind) {
2910  BinaryOperator::Opcode Opc;
2911  switch (Kind) {
2912  default: assert(0 && "Unknown binop!");
2913  case tok::star:                 Opc = BinaryOperator::Mul; break;
2914  case tok::slash:                Opc = BinaryOperator::Div; break;
2915  case tok::percent:              Opc = BinaryOperator::Rem; break;
2916  case tok::plus:                 Opc = BinaryOperator::Add; break;
2917  case tok::minus:                Opc = BinaryOperator::Sub; break;
2918  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2919  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2920  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2921  case tok::less:                 Opc = BinaryOperator::LT; break;
2922  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2923  case tok::greater:              Opc = BinaryOperator::GT; break;
2924  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2925  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2926  case tok::amp:                  Opc = BinaryOperator::And; break;
2927  case tok::caret:                Opc = BinaryOperator::Xor; break;
2928  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2929  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2930  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2931  case tok::equal:                Opc = BinaryOperator::Assign; break;
2932  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2933  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2934  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2935  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2936  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2937  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2938  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2939  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2940  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2941  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2942  case tok::comma:                Opc = BinaryOperator::Comma; break;
2943  }
2944  return Opc;
2945}
2946
2947static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2948  tok::TokenKind Kind) {
2949  UnaryOperator::Opcode Opc;
2950  switch (Kind) {
2951  default: assert(0 && "Unknown unary op!");
2952  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2953  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2954  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2955  case tok::star:         Opc = UnaryOperator::Deref; break;
2956  case tok::plus:         Opc = UnaryOperator::Plus; break;
2957  case tok::minus:        Opc = UnaryOperator::Minus; break;
2958  case tok::tilde:        Opc = UnaryOperator::Not; break;
2959  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2960  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2961  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2962  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2963  }
2964  return Opc;
2965}
2966
2967/// CreateBuiltinBinOp - Creates a new built-in binary operation with
2968/// operator @p Opc at location @c TokLoc. This routine only supports
2969/// built-in operations; ActOnBinOp handles overloaded operators.
2970Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
2971                                            unsigned Op,
2972                                            Expr *lhs, Expr *rhs) {
2973  QualType ResultTy;  // Result type of the binary operator.
2974  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2975  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
2976
2977  switch (Opc) {
2978  default:
2979    assert(0 && "Unknown binary expr!");
2980  case BinaryOperator::Assign:
2981    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
2982    break;
2983  case BinaryOperator::Mul:
2984  case BinaryOperator::Div:
2985    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
2986    break;
2987  case BinaryOperator::Rem:
2988    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
2989    break;
2990  case BinaryOperator::Add:
2991    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
2992    break;
2993  case BinaryOperator::Sub:
2994    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
2995    break;
2996  case BinaryOperator::Shl:
2997  case BinaryOperator::Shr:
2998    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
2999    break;
3000  case BinaryOperator::LE:
3001  case BinaryOperator::LT:
3002  case BinaryOperator::GE:
3003  case BinaryOperator::GT:
3004    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3005    break;
3006  case BinaryOperator::EQ:
3007  case BinaryOperator::NE:
3008    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3009    break;
3010  case BinaryOperator::And:
3011  case BinaryOperator::Xor:
3012  case BinaryOperator::Or:
3013    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3014    break;
3015  case BinaryOperator::LAnd:
3016  case BinaryOperator::LOr:
3017    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3018    break;
3019  case BinaryOperator::MulAssign:
3020  case BinaryOperator::DivAssign:
3021    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3022    if (!CompTy.isNull())
3023      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3024    break;
3025  case BinaryOperator::RemAssign:
3026    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3027    if (!CompTy.isNull())
3028      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3029    break;
3030  case BinaryOperator::AddAssign:
3031    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3032    if (!CompTy.isNull())
3033      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3034    break;
3035  case BinaryOperator::SubAssign:
3036    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3037    if (!CompTy.isNull())
3038      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3039    break;
3040  case BinaryOperator::ShlAssign:
3041  case BinaryOperator::ShrAssign:
3042    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3043    if (!CompTy.isNull())
3044      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3045    break;
3046  case BinaryOperator::AndAssign:
3047  case BinaryOperator::XorAssign:
3048  case BinaryOperator::OrAssign:
3049    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3050    if (!CompTy.isNull())
3051      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3052    break;
3053  case BinaryOperator::Comma:
3054    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3055    break;
3056  }
3057  if (ResultTy.isNull())
3058    return true;
3059  if (CompTy.isNull())
3060    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
3061  else
3062    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
3063}
3064
3065// Binary Operators.  'Tok' is the token for the operator.
3066Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3067                                    tok::TokenKind Kind,
3068                                    ExprTy *LHS, ExprTy *RHS) {
3069  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3070  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
3071
3072  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3073  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3074
3075  // If either expression is type-dependent, just build the AST.
3076  // FIXME: We'll need to perform some caching of the result of name
3077  // lookup for operator+.
3078  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3079    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3080      return new CompoundAssignOperator(lhs, rhs, Opc, Context.DependentTy,
3081                                        Context.DependentTy, TokLoc);
3082    else
3083      return new BinaryOperator(lhs, rhs, Opc, Context.DependentTy, TokLoc);
3084  }
3085
3086  if (getLangOptions().CPlusPlus &&
3087      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3088       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3089    // If this is one of the assignment operators, we only perform
3090    // overload resolution if the left-hand side is a class or
3091    // enumeration type (C++ [expr.ass]p3).
3092    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3093        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3094      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3095    }
3096
3097    // Determine which overloaded operator we're dealing with.
3098    static const OverloadedOperatorKind OverOps[] = {
3099      OO_Star, OO_Slash, OO_Percent,
3100      OO_Plus, OO_Minus,
3101      OO_LessLess, OO_GreaterGreater,
3102      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3103      OO_EqualEqual, OO_ExclaimEqual,
3104      OO_Amp,
3105      OO_Caret,
3106      OO_Pipe,
3107      OO_AmpAmp,
3108      OO_PipePipe,
3109      OO_Equal, OO_StarEqual,
3110      OO_SlashEqual, OO_PercentEqual,
3111      OO_PlusEqual, OO_MinusEqual,
3112      OO_LessLessEqual, OO_GreaterGreaterEqual,
3113      OO_AmpEqual, OO_CaretEqual,
3114      OO_PipeEqual,
3115      OO_Comma
3116    };
3117    OverloadedOperatorKind OverOp = OverOps[Opc];
3118
3119    // Add the appropriate overloaded operators (C++ [over.match.oper])
3120    // to the candidate set.
3121    OverloadCandidateSet CandidateSet;
3122    Expr *Args[2] = { lhs, rhs };
3123    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
3124
3125    // Perform overload resolution.
3126    OverloadCandidateSet::iterator Best;
3127    switch (BestViableFunction(CandidateSet, Best)) {
3128    case OR_Success: {
3129      // We found a built-in operator or an overloaded operator.
3130      FunctionDecl *FnDecl = Best->Function;
3131
3132      if (FnDecl) {
3133        // We matched an overloaded operator. Build a call to that
3134        // operator.
3135
3136        // Convert the arguments.
3137        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3138          if (PerformObjectArgumentInitialization(lhs, Method) ||
3139              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3140                                        "passing"))
3141            return true;
3142        } else {
3143          // Convert the arguments.
3144          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3145                                        "passing") ||
3146              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3147                                        "passing"))
3148            return true;
3149        }
3150
3151        // Determine the result type
3152        QualType ResultTy
3153          = FnDecl->getType()->getAsFunctionType()->getResultType();
3154        ResultTy = ResultTy.getNonReferenceType();
3155
3156        // Build the actual expression node.
3157        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3158                                       SourceLocation());
3159        UsualUnaryConversions(FnExpr);
3160
3161        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
3162      } else {
3163        // We matched a built-in operator. Convert the arguments, then
3164        // break out so that we will build the appropriate built-in
3165        // operator node.
3166        if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
3167                                      "passing") ||
3168            PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
3169                                      "passing"))
3170          return true;
3171
3172        break;
3173      }
3174    }
3175
3176    case OR_No_Viable_Function:
3177      // No viable function; fall through to handling this as a
3178      // built-in operator, which will produce an error message for us.
3179      break;
3180
3181    case OR_Ambiguous:
3182      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3183          << BinaryOperator::getOpcodeStr(Opc)
3184          << lhs->getSourceRange() << rhs->getSourceRange();
3185      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3186      return true;
3187    }
3188
3189    // Either we found no viable overloaded operator or we matched a
3190    // built-in operator. In either case, fall through to trying to
3191    // build a built-in operation.
3192  }
3193
3194  // Build a built-in binary operation.
3195  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3196}
3197
3198// Unary Operators.  'Tok' is the token for the operator.
3199Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3200                                      tok::TokenKind Op, ExprTy *input) {
3201  Expr *Input = (Expr*)input;
3202  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3203
3204  if (getLangOptions().CPlusPlus &&
3205      (Input->getType()->isRecordType()
3206       || Input->getType()->isEnumeralType())) {
3207    // Determine which overloaded operator we're dealing with.
3208    static const OverloadedOperatorKind OverOps[] = {
3209      OO_None, OO_None,
3210      OO_PlusPlus, OO_MinusMinus,
3211      OO_Amp, OO_Star,
3212      OO_Plus, OO_Minus,
3213      OO_Tilde, OO_Exclaim,
3214      OO_None, OO_None,
3215      OO_None,
3216      OO_None
3217    };
3218    OverloadedOperatorKind OverOp = OverOps[Opc];
3219
3220    // Add the appropriate overloaded operators (C++ [over.match.oper])
3221    // to the candidate set.
3222    OverloadCandidateSet CandidateSet;
3223    if (OverOp != OO_None)
3224      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3225
3226    // Perform overload resolution.
3227    OverloadCandidateSet::iterator Best;
3228    switch (BestViableFunction(CandidateSet, Best)) {
3229    case OR_Success: {
3230      // We found a built-in operator or an overloaded operator.
3231      FunctionDecl *FnDecl = Best->Function;
3232
3233      if (FnDecl) {
3234        // We matched an overloaded operator. Build a call to that
3235        // operator.
3236
3237        // Convert the arguments.
3238        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3239          if (PerformObjectArgumentInitialization(Input, Method))
3240            return true;
3241        } else {
3242          // Convert the arguments.
3243          if (PerformCopyInitialization(Input,
3244                                        FnDecl->getParamDecl(0)->getType(),
3245                                        "passing"))
3246            return true;
3247        }
3248
3249        // Determine the result type
3250        QualType ResultTy
3251          = FnDecl->getType()->getAsFunctionType()->getResultType();
3252        ResultTy = ResultTy.getNonReferenceType();
3253
3254        // Build the actual expression node.
3255        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3256                                       SourceLocation());
3257        UsualUnaryConversions(FnExpr);
3258
3259        return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
3260      } else {
3261        // We matched a built-in operator. Convert the arguments, then
3262        // break out so that we will build the appropriate built-in
3263        // operator node.
3264        if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
3265                                      "passing"))
3266          return true;
3267
3268        break;
3269      }
3270    }
3271
3272    case OR_No_Viable_Function:
3273      // No viable function; fall through to handling this as a
3274      // built-in operator, which will produce an error message for us.
3275      break;
3276
3277    case OR_Ambiguous:
3278      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3279          << UnaryOperator::getOpcodeStr(Opc)
3280          << Input->getSourceRange();
3281      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3282      return true;
3283    }
3284
3285    // Either we found no viable overloaded operator or we matched a
3286    // built-in operator. In either case, fall through to trying to
3287    // build a built-in operation.
3288  }
3289
3290  QualType resultType;
3291  switch (Opc) {
3292  default:
3293    assert(0 && "Unimplemented unary expr!");
3294  case UnaryOperator::PreInc:
3295  case UnaryOperator::PreDec:
3296    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
3297    break;
3298  case UnaryOperator::AddrOf:
3299    resultType = CheckAddressOfOperand(Input, OpLoc);
3300    break;
3301  case UnaryOperator::Deref:
3302    DefaultFunctionArrayConversion(Input);
3303    resultType = CheckIndirectionOperand(Input, OpLoc);
3304    break;
3305  case UnaryOperator::Plus:
3306  case UnaryOperator::Minus:
3307    UsualUnaryConversions(Input);
3308    resultType = Input->getType();
3309    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3310      break;
3311    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3312             resultType->isEnumeralType())
3313      break;
3314    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3315             Opc == UnaryOperator::Plus &&
3316             resultType->isPointerType())
3317      break;
3318
3319    return Diag(OpLoc, diag::err_typecheck_unary_expr)
3320      << resultType << Input->getSourceRange();
3321  case UnaryOperator::Not: // bitwise complement
3322    UsualUnaryConversions(Input);
3323    resultType = Input->getType();
3324    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3325    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3326      // C99 does not support '~' for complex conjugation.
3327      Diag(OpLoc, diag::ext_integer_complement_complex)
3328        << resultType << Input->getSourceRange();
3329    else if (!resultType->isIntegerType())
3330      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3331        << resultType << Input->getSourceRange();
3332    break;
3333  case UnaryOperator::LNot: // logical negation
3334    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3335    DefaultFunctionArrayConversion(Input);
3336    resultType = Input->getType();
3337    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3338      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3339        << resultType << Input->getSourceRange();
3340    // LNot always has type int. C99 6.5.3.3p5.
3341    resultType = Context.IntTy;
3342    break;
3343  case UnaryOperator::Real:
3344  case UnaryOperator::Imag:
3345    resultType = CheckRealImagOperand(Input, OpLoc);
3346    break;
3347  case UnaryOperator::Extension:
3348    resultType = Input->getType();
3349    break;
3350  }
3351  if (resultType.isNull())
3352    return true;
3353  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3354}
3355
3356/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3357Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3358                                      SourceLocation LabLoc,
3359                                      IdentifierInfo *LabelII) {
3360  // Look up the record for this label identifier.
3361  LabelStmt *&LabelDecl = LabelMap[LabelII];
3362
3363  // If we haven't seen this label yet, create a forward reference. It
3364  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3365  if (LabelDecl == 0)
3366    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3367
3368  // Create the AST node.  The address of a label always has type 'void*'.
3369  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3370                           Context.getPointerType(Context.VoidTy));
3371}
3372
3373Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3374                                     SourceLocation RPLoc) { // "({..})"
3375  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3376  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3377  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3378
3379  // FIXME: there are a variety of strange constraints to enforce here, for
3380  // example, it is not possible to goto into a stmt expression apparently.
3381  // More semantic analysis is needed.
3382
3383  // FIXME: the last statement in the compount stmt has its value used.  We
3384  // should not warn about it being unused.
3385
3386  // If there are sub stmts in the compound stmt, take the type of the last one
3387  // as the type of the stmtexpr.
3388  QualType Ty = Context.VoidTy;
3389
3390  if (!Compound->body_empty()) {
3391    Stmt *LastStmt = Compound->body_back();
3392    // If LastStmt is a label, skip down through into the body.
3393    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3394      LastStmt = Label->getSubStmt();
3395
3396    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3397      Ty = LastExpr->getType();
3398  }
3399
3400  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3401}
3402
3403Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
3404                                            SourceLocation TypeLoc,
3405                                            TypeTy *argty,
3406                                            OffsetOfComponent *CompPtr,
3407                                            unsigned NumComponents,
3408                                            SourceLocation RPLoc) {
3409  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3410  assert(!ArgTy.isNull() && "Missing type argument!");
3411
3412  // We must have at least one component that refers to the type, and the first
3413  // one is known to be a field designator.  Verify that the ArgTy represents
3414  // a struct/union/class.
3415  if (!ArgTy->isRecordType())
3416    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
3417
3418  // Otherwise, create a compound literal expression as the base, and
3419  // iteratively process the offsetof designators.
3420  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3421
3422  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3423  // GCC extension, diagnose them.
3424  if (NumComponents != 1)
3425    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
3426      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
3427
3428  for (unsigned i = 0; i != NumComponents; ++i) {
3429    const OffsetOfComponent &OC = CompPtr[i];
3430    if (OC.isBrackets) {
3431      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3432      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3433      if (!AT) {
3434        delete Res;
3435        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
3436      }
3437
3438      // FIXME: C++: Verify that operator[] isn't overloaded.
3439
3440      // C99 6.5.2.1p1
3441      Expr *Idx = static_cast<Expr*>(OC.U.E);
3442      if (!Idx->getType()->isIntegerType())
3443        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
3444          << Idx->getSourceRange();
3445
3446      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3447      continue;
3448    }
3449
3450    const RecordType *RC = Res->getType()->getAsRecordType();
3451    if (!RC) {
3452      delete Res;
3453      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
3454    }
3455
3456    // Get the decl corresponding to this.
3457    RecordDecl *RD = RC->getDecl();
3458    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
3459    if (!MemberDecl)
3460      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
3461       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
3462
3463    // FIXME: C++: Verify that MemberDecl isn't a static field.
3464    // FIXME: Verify that MemberDecl isn't a bitfield.
3465    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3466    // matter here.
3467    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3468                         MemberDecl->getType().getNonReferenceType());
3469  }
3470
3471  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3472                           BuiltinLoc);
3473}
3474
3475
3476Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3477                                                TypeTy *arg1, TypeTy *arg2,
3478                                                SourceLocation RPLoc) {
3479  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3480  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3481
3482  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3483
3484  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3485}
3486
3487Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3488                                       ExprTy *expr1, ExprTy *expr2,
3489                                       SourceLocation RPLoc) {
3490  Expr *CondExpr = static_cast<Expr*>(cond);
3491  Expr *LHSExpr = static_cast<Expr*>(expr1);
3492  Expr *RHSExpr = static_cast<Expr*>(expr2);
3493
3494  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3495
3496  // The conditional expression is required to be a constant expression.
3497  llvm::APSInt condEval(32);
3498  SourceLocation ExpLoc;
3499  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3500    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
3501      << CondExpr->getSourceRange();
3502
3503  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3504  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3505                                               RHSExpr->getType();
3506  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3507}
3508
3509//===----------------------------------------------------------------------===//
3510// Clang Extensions.
3511//===----------------------------------------------------------------------===//
3512
3513/// ActOnBlockStart - This callback is invoked when a block literal is started.
3514void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3515  // Analyze block parameters.
3516  BlockSemaInfo *BSI = new BlockSemaInfo();
3517
3518  // Add BSI to CurBlock.
3519  BSI->PrevBlockInfo = CurBlock;
3520  CurBlock = BSI;
3521
3522  BSI->ReturnType = 0;
3523  BSI->TheScope = BlockScope;
3524
3525  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3526  PushDeclContext(BSI->TheDecl);
3527}
3528
3529void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3530  // Analyze arguments to block.
3531  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3532         "Not a function declarator!");
3533  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3534
3535  CurBlock->hasPrototype = FTI.hasPrototype;
3536  CurBlock->isVariadic = true;
3537
3538  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3539  // no arguments, not a function that takes a single void argument.
3540  if (FTI.hasPrototype &&
3541      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3542      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3543        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3544    // empty arg list, don't push any params.
3545    CurBlock->isVariadic = false;
3546  } else if (FTI.hasPrototype) {
3547    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3548      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3549    CurBlock->isVariadic = FTI.isVariadic;
3550  }
3551  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3552
3553  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3554       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3555    // If this has an identifier, add it to the scope stack.
3556    if ((*AI)->getIdentifier())
3557      PushOnScopeChains(*AI, CurBlock->TheScope);
3558}
3559
3560/// ActOnBlockError - If there is an error parsing a block, this callback
3561/// is invoked to pop the information about the block from the action impl.
3562void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3563  // Ensure that CurBlock is deleted.
3564  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3565
3566  // Pop off CurBlock, handle nested blocks.
3567  CurBlock = CurBlock->PrevBlockInfo;
3568
3569  // FIXME: Delete the ParmVarDecl objects as well???
3570
3571}
3572
3573/// ActOnBlockStmtExpr - This is called when the body of a block statement
3574/// literal was successfully completed.  ^(int x){...}
3575Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3576                                          Scope *CurScope) {
3577  // Ensure that CurBlock is deleted.
3578  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3579  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3580
3581  PopDeclContext();
3582
3583  // Pop off CurBlock, handle nested blocks.
3584  CurBlock = CurBlock->PrevBlockInfo;
3585
3586  QualType RetTy = Context.VoidTy;
3587  if (BSI->ReturnType)
3588    RetTy = QualType(BSI->ReturnType, 0);
3589
3590  llvm::SmallVector<QualType, 8> ArgTypes;
3591  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3592    ArgTypes.push_back(BSI->Params[i]->getType());
3593
3594  QualType BlockTy;
3595  if (!BSI->hasPrototype)
3596    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3597  else
3598    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3599                                      BSI->isVariadic, 0);
3600
3601  BlockTy = Context.getBlockPointerType(BlockTy);
3602
3603  BSI->TheDecl->setBody(Body.take());
3604  return new BlockExpr(BSI->TheDecl, BlockTy);
3605}
3606
3607/// ExprsMatchFnType - return true if the Exprs in array Args have
3608/// QualTypes that match the QualTypes of the arguments of the FnType.
3609/// The number of arguments has already been validated to match the number of
3610/// arguments in FnType.
3611static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3612                             ASTContext &Context) {
3613  unsigned NumParams = FnType->getNumArgs();
3614  for (unsigned i = 0; i != NumParams; ++i) {
3615    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3616    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3617
3618    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3619      return false;
3620  }
3621  return true;
3622}
3623
3624Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3625                                         SourceLocation *CommaLocs,
3626                                         SourceLocation BuiltinLoc,
3627                                         SourceLocation RParenLoc) {
3628  // __builtin_overload requires at least 2 arguments
3629  if (NumArgs < 2)
3630    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3631      << SourceRange(BuiltinLoc, RParenLoc);
3632
3633  // The first argument is required to be a constant expression.  It tells us
3634  // the number of arguments to pass to each of the functions to be overloaded.
3635  Expr **Args = reinterpret_cast<Expr**>(args);
3636  Expr *NParamsExpr = Args[0];
3637  llvm::APSInt constEval(32);
3638  SourceLocation ExpLoc;
3639  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3640    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3641      << NParamsExpr->getSourceRange();
3642
3643  // Verify that the number of parameters is > 0
3644  unsigned NumParams = constEval.getZExtValue();
3645  if (NumParams == 0)
3646    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3647      << NParamsExpr->getSourceRange();
3648  // Verify that we have at least 1 + NumParams arguments to the builtin.
3649  if ((NumParams + 1) > NumArgs)
3650    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3651      << SourceRange(BuiltinLoc, RParenLoc);
3652
3653  // Figure out the return type, by matching the args to one of the functions
3654  // listed after the parameters.
3655  OverloadExpr *OE = 0;
3656  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3657    // UsualUnaryConversions will convert the function DeclRefExpr into a
3658    // pointer to function.
3659    Expr *Fn = UsualUnaryConversions(Args[i]);
3660    const FunctionTypeProto *FnType = 0;
3661    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3662      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3663
3664    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3665    // parameters, and the number of parameters must match the value passed to
3666    // the builtin.
3667    if (!FnType || (FnType->getNumArgs() != NumParams))
3668      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
3669        << Fn->getSourceRange();
3670
3671    // Scan the parameter list for the FunctionType, checking the QualType of
3672    // each parameter against the QualTypes of the arguments to the builtin.
3673    // If they match, return a new OverloadExpr.
3674    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3675      if (OE)
3676        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
3677          << OE->getFn()->getSourceRange();
3678      // Remember our match, and continue processing the remaining arguments
3679      // to catch any errors.
3680      OE = new OverloadExpr(Args, NumArgs, i,
3681                            FnType->getResultType().getNonReferenceType(),
3682                            BuiltinLoc, RParenLoc);
3683    }
3684  }
3685  // Return the newly created OverloadExpr node, if we succeded in matching
3686  // exactly one of the candidate functions.
3687  if (OE)
3688    return OE;
3689
3690  // If we didn't find a matching function Expr in the __builtin_overload list
3691  // the return an error.
3692  std::string typeNames;
3693  for (unsigned i = 0; i != NumParams; ++i) {
3694    if (i != 0) typeNames += ", ";
3695    typeNames += Args[i+1]->getType().getAsString();
3696  }
3697
3698  return Diag(BuiltinLoc, diag::err_overload_no_match)
3699    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
3700}
3701
3702Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3703                                  ExprTy *expr, TypeTy *type,
3704                                  SourceLocation RPLoc) {
3705  Expr *E = static_cast<Expr*>(expr);
3706  QualType T = QualType::getFromOpaquePtr(type);
3707
3708  InitBuiltinVaListType();
3709
3710  // Get the va_list type
3711  QualType VaListType = Context.getBuiltinVaListType();
3712  // Deal with implicit array decay; for example, on x86-64,
3713  // va_list is an array, but it's supposed to decay to
3714  // a pointer for va_arg.
3715  if (VaListType->isArrayType())
3716    VaListType = Context.getArrayDecayedType(VaListType);
3717  // Make sure the input expression also decays appropriately.
3718  UsualUnaryConversions(E);
3719
3720  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3721    return Diag(E->getLocStart(),
3722                diag::err_first_argument_to_va_arg_not_of_type_va_list)
3723      << E->getType() << E->getSourceRange();
3724
3725  // FIXME: Warn if a non-POD type is passed in.
3726
3727  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
3728}
3729
3730Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
3731  // The type of __null will be int or long, depending on the size of
3732  // pointers on the target.
3733  QualType Ty;
3734  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
3735    Ty = Context.IntTy;
3736  else
3737    Ty = Context.LongTy;
3738
3739  return new GNUNullExpr(Ty, TokenLoc);
3740}
3741
3742bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3743                                    SourceLocation Loc,
3744                                    QualType DstType, QualType SrcType,
3745                                    Expr *SrcExpr, const char *Flavor) {
3746  // Decode the result (notice that AST's are still created for extensions).
3747  bool isInvalid = false;
3748  unsigned DiagKind;
3749  switch (ConvTy) {
3750  default: assert(0 && "Unknown conversion type");
3751  case Compatible: return false;
3752  case PointerToInt:
3753    DiagKind = diag::ext_typecheck_convert_pointer_int;
3754    break;
3755  case IntToPointer:
3756    DiagKind = diag::ext_typecheck_convert_int_pointer;
3757    break;
3758  case IncompatiblePointer:
3759    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3760    break;
3761  case FunctionVoidPointer:
3762    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3763    break;
3764  case CompatiblePointerDiscardsQualifiers:
3765    // If the qualifiers lost were because we were applying the
3766    // (deprecated) C++ conversion from a string literal to a char*
3767    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3768    // Ideally, this check would be performed in
3769    // CheckPointerTypesForAssignment. However, that would require a
3770    // bit of refactoring (so that the second argument is an
3771    // expression, rather than a type), which should be done as part
3772    // of a larger effort to fix CheckPointerTypesForAssignment for
3773    // C++ semantics.
3774    if (getLangOptions().CPlusPlus &&
3775        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3776      return false;
3777    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3778    break;
3779  case IntToBlockPointer:
3780    DiagKind = diag::err_int_to_block_pointer;
3781    break;
3782  case IncompatibleBlockPointer:
3783    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3784    break;
3785  case IncompatibleObjCQualifiedId:
3786    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3787    // it can give a more specific diagnostic.
3788    DiagKind = diag::warn_incompatible_qualified_id;
3789    break;
3790  case Incompatible:
3791    DiagKind = diag::err_typecheck_convert_incompatible;
3792    isInvalid = true;
3793    break;
3794  }
3795
3796  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
3797    << SrcExpr->getSourceRange();
3798  return isInvalid;
3799}
3800
3801bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
3802{
3803  Expr::EvalResult EvalResult;
3804
3805  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
3806      EvalResult.HasSideEffects) {
3807    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
3808
3809    if (EvalResult.Diag) {
3810      // We only show the note if it's not the usual "invalid subexpression"
3811      // or if it's actually in a subexpression.
3812      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
3813          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
3814        Diag(EvalResult.DiagLoc, EvalResult.Diag);
3815    }
3816
3817    return true;
3818  }
3819
3820  if (EvalResult.Diag) {
3821    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
3822      E->getSourceRange();
3823
3824    // Print the reason it's not a constant.
3825    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
3826      Diag(EvalResult.DiagLoc, EvalResult.Diag);
3827  }
3828
3829  if (Result)
3830    *Result = EvalResult.Val.getInt();
3831  return false;
3832}
3833