SemaExpr.cpp revision 6994e1a96ebc69f63b92df433d30f578f3d92f1d
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/LiteralSupport.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/Designator.h"
30#include "clang/Parse/Scope.h"
31#include "clang/Parse/Template.h"
32using namespace clang;
33
34
35/// \brief Determine whether the use of this declaration is valid, and
36/// emit any corresponding diagnostics.
37///
38/// This routine diagnoses various problems with referencing
39/// declarations that can occur when using a declaration. For example,
40/// it might warn if a deprecated or unavailable declaration is being
41/// used, or produce an error (and return true) if a C++0x deleted
42/// function is being used.
43///
44/// If IgnoreDeprecated is set to true, this should not want about deprecated
45/// decls.
46///
47/// \returns true if there was an error (this declaration cannot be
48/// referenced), false otherwise.
49///
50bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
51  // See if the decl is deprecated.
52  if (D->getAttr<DeprecatedAttr>()) {
53    EmitDeprecationWarning(D, Loc);
54  }
55
56  // See if the decl is unavailable
57  if (D->getAttr<UnavailableAttr>()) {
58    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
59    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
60  }
61
62  // See if this is a deleted function.
63  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64    if (FD->isDeleted()) {
65      Diag(Loc, diag::err_deleted_function_use);
66      Diag(D->getLocation(), diag::note_unavailable_here) << true;
67      return true;
68    }
69  }
70
71  return false;
72}
73
74/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
75/// (and other functions in future), which have been declared with sentinel
76/// attribute. It warns if call does not have the sentinel argument.
77///
78void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
79                                 Expr **Args, unsigned NumArgs) {
80  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
81  if (!attr)
82    return;
83  int sentinelPos = attr->getSentinel();
84  int nullPos = attr->getNullPos();
85
86  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
87  // base class. Then we won't be needing two versions of the same code.
88  unsigned int i = 0;
89  bool warnNotEnoughArgs = false;
90  int isMethod = 0;
91  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
92    // skip over named parameters.
93    ObjCMethodDecl::param_iterator P, E = MD->param_end();
94    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
95      if (nullPos)
96        --nullPos;
97      else
98        ++i;
99    }
100    warnNotEnoughArgs = (P != E || i >= NumArgs);
101    isMethod = 1;
102  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = FD->param_end();
105    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
113    // block or function pointer call.
114    QualType Ty = V->getType();
115    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
116      const FunctionType *FT = Ty->isFunctionPointerType()
117      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
118      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
119      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
120        unsigned NumArgsInProto = Proto->getNumArgs();
121        unsigned k;
122        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
123          if (nullPos)
124            --nullPos;
125          else
126            ++i;
127        }
128        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
129      }
130      if (Ty->isBlockPointerType())
131        isMethod = 2;
132    } else
133      return;
134  } else
135    return;
136
137  if (warnNotEnoughArgs) {
138    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
139    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
140    return;
141  }
142  int sentinel = i;
143  while (sentinelPos > 0 && i < NumArgs-1) {
144    --sentinelPos;
145    ++i;
146  }
147  if (sentinelPos > 0) {
148    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
149    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
150    return;
151  }
152  while (i < NumArgs-1) {
153    ++i;
154    ++sentinel;
155  }
156  Expr *sentinelExpr = Args[sentinel];
157  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
158                       (!sentinelExpr->getType()->isPointerType() ||
159                        !sentinelExpr->isNullPointerConstant(Context,
160                                            Expr::NPC_ValueDependentIsNull)))) {
161    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
162    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
163  }
164  return;
165}
166
167SourceRange Sema::getExprRange(ExprTy *E) const {
168  Expr *Ex = (Expr *)E;
169  return Ex? Ex->getSourceRange() : SourceRange();
170}
171
172//===----------------------------------------------------------------------===//
173//  Standard Promotions and Conversions
174//===----------------------------------------------------------------------===//
175
176/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
177void Sema::DefaultFunctionArrayConversion(Expr *&E) {
178  QualType Ty = E->getType();
179  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
180
181  if (Ty->isFunctionType())
182    ImpCastExprToType(E, Context.getPointerType(Ty),
183                      CastExpr::CK_FunctionToPointerDecay);
184  else if (Ty->isArrayType()) {
185    // In C90 mode, arrays only promote to pointers if the array expression is
186    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
187    // type 'array of type' is converted to an expression that has type 'pointer
188    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
189    // that has type 'array of type' ...".  The relevant change is "an lvalue"
190    // (C90) to "an expression" (C99).
191    //
192    // C++ 4.2p1:
193    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
194    // T" can be converted to an rvalue of type "pointer to T".
195    //
196    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
197        E->isLvalue(Context) == Expr::LV_Valid)
198      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
199                        CastExpr::CK_ArrayToPointerDecay);
200  }
201}
202
203/// UsualUnaryConversions - Performs various conversions that are common to most
204/// operators (C99 6.3). The conversions of array and function types are
205/// sometimes surpressed. For example, the array->pointer conversion doesn't
206/// apply if the array is an argument to the sizeof or address (&) operators.
207/// In these instances, this routine should *not* be called.
208Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
209  QualType Ty = Expr->getType();
210  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
211
212  // C99 6.3.1.1p2:
213  //
214  //   The following may be used in an expression wherever an int or
215  //   unsigned int may be used:
216  //     - an object or expression with an integer type whose integer
217  //       conversion rank is less than or equal to the rank of int
218  //       and unsigned int.
219  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
220  //
221  //   If an int can represent all values of the original type, the
222  //   value is converted to an int; otherwise, it is converted to an
223  //   unsigned int. These are called the integer promotions. All
224  //   other types are unchanged by the integer promotions.
225  QualType PTy = Context.isPromotableBitField(Expr);
226  if (!PTy.isNull()) {
227    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
228    return Expr;
229  }
230  if (Ty->isPromotableIntegerType()) {
231    QualType PT = Context.getPromotedIntegerType(Ty);
232    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
233    return Expr;
234  }
235
236  DefaultFunctionArrayConversion(Expr);
237  return Expr;
238}
239
240/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
241/// do not have a prototype. Arguments that have type float are promoted to
242/// double. All other argument types are converted by UsualUnaryConversions().
243void Sema::DefaultArgumentPromotion(Expr *&Expr) {
244  QualType Ty = Expr->getType();
245  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
246
247  // If this is a 'float' (CVR qualified or typedef) promote to double.
248  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
249    if (BT->getKind() == BuiltinType::Float)
250      return ImpCastExprToType(Expr, Context.DoubleTy,
251                               CastExpr::CK_FloatingCast);
252
253  UsualUnaryConversions(Expr);
254}
255
256/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
257/// will warn if the resulting type is not a POD type, and rejects ObjC
258/// interfaces passed by value.  This returns true if the argument type is
259/// completely illegal.
260bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
261  DefaultArgumentPromotion(Expr);
262
263  if (Expr->getType()->isObjCInterfaceType() &&
264      DiagRuntimeBehavior(Expr->getLocStart(),
265        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
266          << Expr->getType() << CT))
267    return true;
268
269  if (!Expr->getType()->isPODType() &&
270      DiagRuntimeBehavior(Expr->getLocStart(),
271                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
272                            << Expr->getType() << CT))
273    return true;
274
275  return false;
276}
277
278
279/// UsualArithmeticConversions - Performs various conversions that are common to
280/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
281/// routine returns the first non-arithmetic type found. The client is
282/// responsible for emitting appropriate error diagnostics.
283/// FIXME: verify the conversion rules for "complex int" are consistent with
284/// GCC.
285QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
286                                          bool isCompAssign) {
287  if (!isCompAssign)
288    UsualUnaryConversions(lhsExpr);
289
290  UsualUnaryConversions(rhsExpr);
291
292  // For conversion purposes, we ignore any qualifiers.
293  // For example, "const float" and "float" are equivalent.
294  QualType lhs =
295    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
296  QualType rhs =
297    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
298
299  // If both types are identical, no conversion is needed.
300  if (lhs == rhs)
301    return lhs;
302
303  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
304  // The caller can deal with this (e.g. pointer + int).
305  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
306    return lhs;
307
308  // Perform bitfield promotions.
309  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
310  if (!LHSBitfieldPromoteTy.isNull())
311    lhs = LHSBitfieldPromoteTy;
312  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
313  if (!RHSBitfieldPromoteTy.isNull())
314    rhs = RHSBitfieldPromoteTy;
315
316  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
317  if (!isCompAssign)
318    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
319  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
320  return destType;
321}
322
323//===----------------------------------------------------------------------===//
324//  Semantic Analysis for various Expression Types
325//===----------------------------------------------------------------------===//
326
327
328/// ActOnStringLiteral - The specified tokens were lexed as pasted string
329/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
330/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
331/// multiple tokens.  However, the common case is that StringToks points to one
332/// string.
333///
334Action::OwningExprResult
335Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
336  assert(NumStringToks && "Must have at least one string!");
337
338  StringLiteralParser Literal(StringToks, NumStringToks, PP);
339  if (Literal.hadError)
340    return ExprError();
341
342  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
343  for (unsigned i = 0; i != NumStringToks; ++i)
344    StringTokLocs.push_back(StringToks[i].getLocation());
345
346  QualType StrTy = Context.CharTy;
347  if (Literal.AnyWide) StrTy = Context.getWCharType();
348  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
349
350  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
351  if (getLangOptions().CPlusPlus)
352    StrTy.addConst();
353
354  // Get an array type for the string, according to C99 6.4.5.  This includes
355  // the nul terminator character as well as the string length for pascal
356  // strings.
357  StrTy = Context.getConstantArrayType(StrTy,
358                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
359                                       ArrayType::Normal, 0);
360
361  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
362  return Owned(StringLiteral::Create(Context, Literal.GetString(),
363                                     Literal.GetStringLength(),
364                                     Literal.AnyWide, StrTy,
365                                     &StringTokLocs[0],
366                                     StringTokLocs.size()));
367}
368
369/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
370/// CurBlock to VD should cause it to be snapshotted (as we do for auto
371/// variables defined outside the block) or false if this is not needed (e.g.
372/// for values inside the block or for globals).
373///
374/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
375/// up-to-date.
376///
377static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
378                                              ValueDecl *VD) {
379  // If the value is defined inside the block, we couldn't snapshot it even if
380  // we wanted to.
381  if (CurBlock->TheDecl == VD->getDeclContext())
382    return false;
383
384  // If this is an enum constant or function, it is constant, don't snapshot.
385  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
386    return false;
387
388  // If this is a reference to an extern, static, or global variable, no need to
389  // snapshot it.
390  // FIXME: What about 'const' variables in C++?
391  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
392    if (!Var->hasLocalStorage())
393      return false;
394
395  // Blocks that have these can't be constant.
396  CurBlock->hasBlockDeclRefExprs = true;
397
398  // If we have nested blocks, the decl may be declared in an outer block (in
399  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
400  // be defined outside all of the current blocks (in which case the blocks do
401  // all get the bit).  Walk the nesting chain.
402  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
403       NextBlock = NextBlock->PrevBlockInfo) {
404    // If we found the defining block for the variable, don't mark the block as
405    // having a reference outside it.
406    if (NextBlock->TheDecl == VD->getDeclContext())
407      break;
408
409    // Otherwise, the DeclRef from the inner block causes the outer one to need
410    // a snapshot as well.
411    NextBlock->hasBlockDeclRefExprs = true;
412  }
413
414  return true;
415}
416
417
418
419/// BuildDeclRefExpr - Build a DeclRefExpr.
420Sema::OwningExprResult
421Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
422                       const CXXScopeSpec *SS) {
423  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
424    Diag(Loc,
425         diag::err_auto_variable_cannot_appear_in_own_initializer)
426      << D->getDeclName();
427    return ExprError();
428  }
429
430  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
431    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
432      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
433        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
434          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
435            << D->getIdentifier() << FD->getDeclName();
436          Diag(D->getLocation(), diag::note_local_variable_declared_here)
437            << D->getIdentifier();
438          return ExprError();
439        }
440      }
441    }
442  }
443
444  MarkDeclarationReferenced(Loc, D);
445
446  return Owned(DeclRefExpr::Create(Context,
447                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
448                                   SS? SS->getRange() : SourceRange(),
449                                   D, Loc, Ty));
450}
451
452/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
453/// variable corresponding to the anonymous union or struct whose type
454/// is Record.
455static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
456                                             RecordDecl *Record) {
457  assert(Record->isAnonymousStructOrUnion() &&
458         "Record must be an anonymous struct or union!");
459
460  // FIXME: Once Decls are directly linked together, this will be an O(1)
461  // operation rather than a slow walk through DeclContext's vector (which
462  // itself will be eliminated). DeclGroups might make this even better.
463  DeclContext *Ctx = Record->getDeclContext();
464  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
465                               DEnd = Ctx->decls_end();
466       D != DEnd; ++D) {
467    if (*D == Record) {
468      // The object for the anonymous struct/union directly
469      // follows its type in the list of declarations.
470      ++D;
471      assert(D != DEnd && "Missing object for anonymous record");
472      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
473      return *D;
474    }
475  }
476
477  assert(false && "Missing object for anonymous record");
478  return 0;
479}
480
481/// \brief Given a field that represents a member of an anonymous
482/// struct/union, build the path from that field's context to the
483/// actual member.
484///
485/// Construct the sequence of field member references we'll have to
486/// perform to get to the field in the anonymous union/struct. The
487/// list of members is built from the field outward, so traverse it
488/// backwards to go from an object in the current context to the field
489/// we found.
490///
491/// \returns The variable from which the field access should begin,
492/// for an anonymous struct/union that is not a member of another
493/// class. Otherwise, returns NULL.
494VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
495                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
496  assert(Field->getDeclContext()->isRecord() &&
497         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
498         && "Field must be stored inside an anonymous struct or union");
499
500  Path.push_back(Field);
501  VarDecl *BaseObject = 0;
502  DeclContext *Ctx = Field->getDeclContext();
503  do {
504    RecordDecl *Record = cast<RecordDecl>(Ctx);
505    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
506    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
507      Path.push_back(AnonField);
508    else {
509      BaseObject = cast<VarDecl>(AnonObject);
510      break;
511    }
512    Ctx = Ctx->getParent();
513  } while (Ctx->isRecord() &&
514           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
515
516  return BaseObject;
517}
518
519Sema::OwningExprResult
520Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
521                                               FieldDecl *Field,
522                                               Expr *BaseObjectExpr,
523                                               SourceLocation OpLoc) {
524  llvm::SmallVector<FieldDecl *, 4> AnonFields;
525  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
526                                                            AnonFields);
527
528  // Build the expression that refers to the base object, from
529  // which we will build a sequence of member references to each
530  // of the anonymous union objects and, eventually, the field we
531  // found via name lookup.
532  bool BaseObjectIsPointer = false;
533  Qualifiers BaseQuals;
534  if (BaseObject) {
535    // BaseObject is an anonymous struct/union variable (and is,
536    // therefore, not part of another non-anonymous record).
537    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
538    MarkDeclarationReferenced(Loc, BaseObject);
539    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
540                                               SourceLocation());
541    BaseQuals
542      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
543  } else if (BaseObjectExpr) {
544    // The caller provided the base object expression. Determine
545    // whether its a pointer and whether it adds any qualifiers to the
546    // anonymous struct/union fields we're looking into.
547    QualType ObjectType = BaseObjectExpr->getType();
548    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
549      BaseObjectIsPointer = true;
550      ObjectType = ObjectPtr->getPointeeType();
551    }
552    BaseQuals
553      = Context.getCanonicalType(ObjectType).getQualifiers();
554  } else {
555    // We've found a member of an anonymous struct/union that is
556    // inside a non-anonymous struct/union, so in a well-formed
557    // program our base object expression is "this".
558    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
559      if (!MD->isStatic()) {
560        QualType AnonFieldType
561          = Context.getTagDeclType(
562                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
563        QualType ThisType = Context.getTagDeclType(MD->getParent());
564        if ((Context.getCanonicalType(AnonFieldType)
565               == Context.getCanonicalType(ThisType)) ||
566            IsDerivedFrom(ThisType, AnonFieldType)) {
567          // Our base object expression is "this".
568          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
569                                                     MD->getThisType(Context),
570                                                     /*isImplicit=*/true);
571          BaseObjectIsPointer = true;
572        }
573      } else {
574        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
575          << Field->getDeclName());
576      }
577      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
578    }
579
580    if (!BaseObjectExpr)
581      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
582        << Field->getDeclName());
583  }
584
585  // Build the implicit member references to the field of the
586  // anonymous struct/union.
587  Expr *Result = BaseObjectExpr;
588  Qualifiers ResultQuals = BaseQuals;
589  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
590         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
591       FI != FIEnd; ++FI) {
592    QualType MemberType = (*FI)->getType();
593    Qualifiers MemberTypeQuals =
594      Context.getCanonicalType(MemberType).getQualifiers();
595
596    // CVR attributes from the base are picked up by members,
597    // except that 'mutable' members don't pick up 'const'.
598    if ((*FI)->isMutable())
599      ResultQuals.removeConst();
600
601    // GC attributes are never picked up by members.
602    ResultQuals.removeObjCGCAttr();
603
604    // TR 18037 does not allow fields to be declared with address spaces.
605    assert(!MemberTypeQuals.hasAddressSpace());
606
607    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
608    if (NewQuals != MemberTypeQuals)
609      MemberType = Context.getQualifiedType(MemberType, NewQuals);
610
611    MarkDeclarationReferenced(Loc, *FI);
612    PerformObjectMemberConversion(Result, *FI);
613    // FIXME: Might this end up being a qualified name?
614    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
615                                      OpLoc, MemberType);
616    BaseObjectIsPointer = false;
617    ResultQuals = NewQuals;
618  }
619
620  return Owned(Result);
621}
622
623/// Decomposes the given name into a DeclarationName, its location, and
624/// possibly a list of template arguments.
625///
626/// If this produces template arguments, it is permitted to call
627/// DecomposeTemplateName.
628///
629/// This actually loses a lot of source location information for
630/// non-standard name kinds; we should consider preserving that in
631/// some way.
632static void DecomposeUnqualifiedId(Sema &SemaRef,
633                                   const UnqualifiedId &Id,
634                                   TemplateArgumentListInfo &Buffer,
635                                   DeclarationName &Name,
636                                   SourceLocation &NameLoc,
637                             const TemplateArgumentListInfo *&TemplateArgs) {
638  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
639    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
640    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
641
642    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
643                                       Id.TemplateId->getTemplateArgs(),
644                                       Id.TemplateId->NumArgs);
645    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
646    TemplateArgsPtr.release();
647
648    TemplateName TName =
649      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
650
651    Name = SemaRef.Context.getNameForTemplate(TName);
652    NameLoc = Id.TemplateId->TemplateNameLoc;
653    TemplateArgs = &Buffer;
654  } else {
655    Name = SemaRef.GetNameFromUnqualifiedId(Id);
656    NameLoc = Id.StartLocation;
657    TemplateArgs = 0;
658  }
659}
660
661/// Decompose the given template name into a list of lookup results.
662///
663/// The unqualified ID must name a non-dependent template, which can
664/// be more easily tested by checking whether DecomposeUnqualifiedId
665/// found template arguments.
666static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
667  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
668  TemplateName TName =
669    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
670
671  if (TemplateDecl *TD = TName.getAsTemplateDecl())
672    R.addDecl(TD);
673  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
674    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
675           I != E; ++I)
676      R.addDecl(*I);
677
678  R.resolveKind();
679}
680
681static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
682  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
683         E = Record->bases_end(); I != E; ++I) {
684    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
685    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
686    if (!BaseRT) return false;
687
688    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
689    if (!BaseRecord->isDefinition() ||
690        !IsFullyFormedScope(SemaRef, BaseRecord))
691      return false;
692  }
693
694  return true;
695}
696
697/// Determines whether we can lookup this id-expression now or whether
698/// we have to wait until template instantiation is complete.
699static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
700  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
701
702  // If the qualifier scope isn't computable, it's definitely dependent.
703  if (!DC) return true;
704
705  // If the qualifier scope doesn't name a record, we can always look into it.
706  if (!isa<CXXRecordDecl>(DC)) return false;
707
708  // We can't look into record types unless they're fully-formed.
709  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
710
711  return false;
712}
713
714/// Determines if the given class is provably not derived from all of
715/// the prospective base classes.
716static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
717                                     CXXRecordDecl *Record,
718                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
719  if (Bases.count(Record->getCanonicalDecl()))
720    return false;
721
722  RecordDecl *RD = Record->getDefinition(SemaRef.Context);
723  if (!RD) return false;
724  Record = cast<CXXRecordDecl>(RD);
725
726  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
727         E = Record->bases_end(); I != E; ++I) {
728    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
729    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
730    if (!BaseRT) return false;
731
732    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
733    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
734      return false;
735  }
736
737  return true;
738}
739
740/// Determines if this is an instance member of a class.
741static bool IsInstanceMember(NamedDecl *D) {
742  assert(D->isCXXClassMember() &&
743         "checking whether non-member is instance member");
744
745  if (isa<FieldDecl>(D)) return true;
746
747  if (isa<CXXMethodDecl>(D))
748    return !cast<CXXMethodDecl>(D)->isStatic();
749
750  if (isa<FunctionTemplateDecl>(D)) {
751    D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
752    return !cast<CXXMethodDecl>(D)->isStatic();
753  }
754
755  return false;
756}
757
758enum IMAKind {
759  /// The reference is definitely not an instance member access.
760  IMA_Static,
761
762  /// The reference may be an implicit instance member access.
763  IMA_Mixed,
764
765  /// The reference may be to an instance member, but it is invalid if
766  /// so, because the context is not an instance method.
767  IMA_Mixed_StaticContext,
768
769  /// The reference may be to an instance member, but it is invalid if
770  /// so, because the context is from an unrelated class.
771  IMA_Mixed_Unrelated,
772
773  /// The reference is definitely an implicit instance member access.
774  IMA_Instance,
775
776  /// The reference may be to an unresolved using declaration.
777  IMA_Unresolved,
778
779  /// The reference may be to an unresolved using declaration and the
780  /// context is not an instance method.
781  IMA_Unresolved_StaticContext,
782
783  /// The reference is to a member of an anonymous structure in a
784  /// non-class context.
785  IMA_AnonymousMember,
786
787  /// All possible referrents are instance members and the current
788  /// context is not an instance method.
789  IMA_Error_StaticContext,
790
791  /// All possible referrents are instance members of an unrelated
792  /// class.
793  IMA_Error_Unrelated
794};
795
796/// The given lookup names class member(s) and is not being used for
797/// an address-of-member expression.  Classify the type of access
798/// according to whether it's possible that this reference names an
799/// instance member.  This is best-effort; it is okay to
800/// conservatively answer "yes", in which case some errors will simply
801/// not be caught until template-instantiation.
802static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
803                                            const LookupResult &R) {
804  assert(!R.empty() && (*R.begin())->isCXXClassMember());
805
806  bool isStaticContext =
807    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
808     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
809
810  if (R.isUnresolvableResult())
811    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
812
813  // Collect all the declaring classes of instance members we find.
814  bool hasNonInstance = false;
815  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
816  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
817    NamedDecl *D = (*I)->getUnderlyingDecl();
818    if (IsInstanceMember(D)) {
819      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
820
821      // If this is a member of an anonymous record, move out to the
822      // innermost non-anonymous struct or union.  If there isn't one,
823      // that's a special case.
824      while (R->isAnonymousStructOrUnion()) {
825        R = dyn_cast<CXXRecordDecl>(R->getParent());
826        if (!R) return IMA_AnonymousMember;
827      }
828      Classes.insert(R->getCanonicalDecl());
829    }
830    else
831      hasNonInstance = true;
832  }
833
834  // If we didn't find any instance members, it can't be an implicit
835  // member reference.
836  if (Classes.empty())
837    return IMA_Static;
838
839  // If the current context is not an instance method, it can't be
840  // an implicit member reference.
841  if (isStaticContext)
842    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
843
844  // If we can prove that the current context is unrelated to all the
845  // declaring classes, it can't be an implicit member reference (in
846  // which case it's an error if any of those members are selected).
847  if (IsProvablyNotDerivedFrom(SemaRef,
848                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
849                               Classes))
850    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
851
852  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
853}
854
855/// Diagnose a reference to a field with no object available.
856static void DiagnoseInstanceReference(Sema &SemaRef,
857                                      const CXXScopeSpec &SS,
858                                      const LookupResult &R) {
859  SourceLocation Loc = R.getNameLoc();
860  SourceRange Range(Loc);
861  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
862
863  if (R.getAsSingle<FieldDecl>()) {
864    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
865      if (MD->isStatic()) {
866        // "invalid use of member 'x' in static member function"
867        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
868          << Range << R.getLookupName();
869        return;
870      }
871    }
872
873    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
874      << R.getLookupName() << Range;
875    return;
876  }
877
878  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
879}
880
881/// Diagnose an empty lookup.
882///
883/// \return false if new lookup candidates were found
884bool Sema::DiagnoseEmptyLookup(Scope *S, const CXXScopeSpec &SS,
885                               LookupResult &R) {
886  DeclarationName Name = R.getLookupName();
887
888  unsigned diagnostic = diag::err_undeclared_var_use;
889  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
890  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
891      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
892      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
893    diagnostic = diag::err_undeclared_use;
894    diagnostic_suggest = diag::err_undeclared_use_suggest;
895  }
896
897  // If the original lookup was an unqualified lookup, fake an
898  // unqualified lookup.  This is useful when (for example) the
899  // original lookup would not have found something because it was a
900  // dependent name.
901  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
902       DC; DC = DC->getParent()) {
903    if (isa<CXXRecordDecl>(DC)) {
904      LookupQualifiedName(R, DC);
905
906      if (!R.empty()) {
907        // Don't give errors about ambiguities in this lookup.
908        R.suppressDiagnostics();
909
910        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
911        bool isInstance = CurMethod &&
912                          CurMethod->isInstance() &&
913                          DC == CurMethod->getParent();
914
915        // Give a code modification hint to insert 'this->'.
916        // TODO: fixit for inserting 'Base<T>::' in the other cases.
917        // Actually quite difficult!
918        if (isInstance)
919          Diag(R.getNameLoc(), diagnostic) << Name
920            << CodeModificationHint::CreateInsertion(R.getNameLoc(),
921                                                     "this->");
922        else
923          Diag(R.getNameLoc(), diagnostic) << Name;
924
925        // Do we really want to note all of these?
926        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
927          Diag((*I)->getLocation(), diag::note_dependent_var_use);
928
929        // Tell the callee to try to recover.
930        return false;
931      }
932    }
933  }
934
935  // We didn't find anything, so try to correct for a typo.
936  if (S && CorrectTypo(R, S, &SS)) {
937    if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
938      if (SS.isEmpty())
939        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
940          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
941                                              R.getLookupName().getAsString());
942      else
943        Diag(R.getNameLoc(), diag::err_no_member_suggest)
944          << Name << computeDeclContext(SS, false) << R.getLookupName()
945          << SS.getRange()
946          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
947                                              R.getLookupName().getAsString());
948      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
949        Diag(ND->getLocation(), diag::note_previous_decl)
950          << ND->getDeclName();
951
952      // Tell the callee to try to recover.
953      return false;
954    }
955
956    if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
957      // FIXME: If we ended up with a typo for a type name or
958      // Objective-C class name, we're in trouble because the parser
959      // is in the wrong place to recover. Suggest the typo
960      // correction, but don't make it a fix-it since we're not going
961      // to recover well anyway.
962      if (SS.isEmpty())
963        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
964      else
965        Diag(R.getNameLoc(), diag::err_no_member_suggest)
966          << Name << computeDeclContext(SS, false) << R.getLookupName()
967          << SS.getRange();
968
969      // Don't try to recover; it won't work.
970      return true;
971    }
972
973    R.clear();
974  }
975
976  // Emit a special diagnostic for failed member lookups.
977  // FIXME: computing the declaration context might fail here (?)
978  if (!SS.isEmpty()) {
979    Diag(R.getNameLoc(), diag::err_no_member)
980      << Name << computeDeclContext(SS, false)
981      << SS.getRange();
982    return true;
983  }
984
985  // Give up, we can't recover.
986  Diag(R.getNameLoc(), diagnostic) << Name;
987  return true;
988}
989
990Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
991                                               const CXXScopeSpec &SS,
992                                               UnqualifiedId &Id,
993                                               bool HasTrailingLParen,
994                                               bool isAddressOfOperand) {
995  assert(!(isAddressOfOperand && HasTrailingLParen) &&
996         "cannot be direct & operand and have a trailing lparen");
997
998  if (SS.isInvalid())
999    return ExprError();
1000
1001  TemplateArgumentListInfo TemplateArgsBuffer;
1002
1003  // Decompose the UnqualifiedId into the following data.
1004  DeclarationName Name;
1005  SourceLocation NameLoc;
1006  const TemplateArgumentListInfo *TemplateArgs;
1007  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1008                         Name, NameLoc, TemplateArgs);
1009
1010  IdentifierInfo *II = Name.getAsIdentifierInfo();
1011
1012  // C++ [temp.dep.expr]p3:
1013  //   An id-expression is type-dependent if it contains:
1014  //     -- an identifier that was declared with a dependent type,
1015  //        (note: handled after lookup)
1016  //     -- a template-id that is dependent,
1017  //        (note: handled in BuildTemplateIdExpr)
1018  //     -- a conversion-function-id that specifies a dependent type,
1019  //     -- a nested-name-specifier that contains a class-name that
1020  //        names a dependent type.
1021  // Determine whether this is a member of an unknown specialization;
1022  // we need to handle these differently.
1023  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1024       Name.getCXXNameType()->isDependentType()) ||
1025      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1026    return ActOnDependentIdExpression(SS, Name, NameLoc,
1027                                      isAddressOfOperand,
1028                                      TemplateArgs);
1029  }
1030
1031  // Perform the required lookup.
1032  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1033  if (TemplateArgs) {
1034    // Just re-use the lookup done by isTemplateName.
1035    DecomposeTemplateName(R, Id);
1036  } else {
1037    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1038    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1039
1040    // If this reference is in an Objective-C method, then we need to do
1041    // some special Objective-C lookup, too.
1042    if (IvarLookupFollowUp) {
1043      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1044      if (E.isInvalid())
1045        return ExprError();
1046
1047      Expr *Ex = E.takeAs<Expr>();
1048      if (Ex) return Owned(Ex);
1049    }
1050  }
1051
1052  if (R.isAmbiguous())
1053    return ExprError();
1054
1055  // Determine whether this name might be a candidate for
1056  // argument-dependent lookup.
1057  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1058
1059  if (R.empty() && !ADL) {
1060    // Otherwise, this could be an implicitly declared function reference (legal
1061    // in C90, extension in C99, forbidden in C++).
1062    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1063      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1064      if (D) R.addDecl(D);
1065    }
1066
1067    // If this name wasn't predeclared and if this is not a function
1068    // call, diagnose the problem.
1069    if (R.empty()) {
1070      if (DiagnoseEmptyLookup(S, SS, R))
1071        return ExprError();
1072
1073      assert(!R.empty() &&
1074             "DiagnoseEmptyLookup returned false but added no results");
1075
1076      // If we found an Objective-C instance variable, let
1077      // LookupInObjCMethod build the appropriate expression to
1078      // reference the ivar.
1079      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1080        R.clear();
1081        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1082        assert(E.isInvalid() || E.get());
1083        return move(E);
1084      }
1085    }
1086  }
1087
1088  // This is guaranteed from this point on.
1089  assert(!R.empty() || ADL);
1090
1091  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1092    // Warn about constructs like:
1093    //   if (void *X = foo()) { ... } else { X }.
1094    // In the else block, the pointer is always false.
1095
1096    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1097      Scope *CheckS = S;
1098      while (CheckS && CheckS->getControlParent()) {
1099        if (CheckS->isWithinElse() &&
1100            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1101          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1102            << Var->getDeclName()
1103            << (Var->getType()->isPointerType()? 2 :
1104                Var->getType()->isBooleanType()? 1 : 0));
1105          break;
1106        }
1107
1108        // Move to the parent of this scope.
1109        CheckS = CheckS->getParent();
1110      }
1111    }
1112  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1113    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1114      // C99 DR 316 says that, if a function type comes from a
1115      // function definition (without a prototype), that type is only
1116      // used for checking compatibility. Therefore, when referencing
1117      // the function, we pretend that we don't have the full function
1118      // type.
1119      if (DiagnoseUseOfDecl(Func, NameLoc))
1120        return ExprError();
1121
1122      QualType T = Func->getType();
1123      QualType NoProtoType = T;
1124      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1125        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1126      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1127    }
1128  }
1129
1130  // Check whether this might be a C++ implicit instance member access.
1131  // C++ [expr.prim.general]p6:
1132  //   Within the definition of a non-static member function, an
1133  //   identifier that names a non-static member is transformed to a
1134  //   class member access expression.
1135  // But note that &SomeClass::foo is grammatically distinct, even
1136  // though we don't parse it that way.
1137  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1138    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1139    if (!isAbstractMemberPointer)
1140      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1141  }
1142
1143  if (TemplateArgs)
1144    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1145
1146  return BuildDeclarationNameExpr(SS, R, ADL);
1147}
1148
1149/// Builds an expression which might be an implicit member expression.
1150Sema::OwningExprResult
1151Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1152                                      LookupResult &R,
1153                                const TemplateArgumentListInfo *TemplateArgs) {
1154  switch (ClassifyImplicitMemberAccess(*this, R)) {
1155  case IMA_Instance:
1156    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1157
1158  case IMA_AnonymousMember:
1159    assert(R.isSingleResult());
1160    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1161                                                    R.getAsSingle<FieldDecl>());
1162
1163  case IMA_Mixed:
1164  case IMA_Mixed_Unrelated:
1165  case IMA_Unresolved:
1166    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1167
1168  case IMA_Static:
1169  case IMA_Mixed_StaticContext:
1170  case IMA_Unresolved_StaticContext:
1171    if (TemplateArgs)
1172      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1173    return BuildDeclarationNameExpr(SS, R, false);
1174
1175  case IMA_Error_StaticContext:
1176  case IMA_Error_Unrelated:
1177    DiagnoseInstanceReference(*this, SS, R);
1178    return ExprError();
1179  }
1180
1181  llvm_unreachable("unexpected instance member access kind");
1182  return ExprError();
1183}
1184
1185/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1186/// declaration name, generally during template instantiation.
1187/// There's a large number of things which don't need to be done along
1188/// this path.
1189Sema::OwningExprResult
1190Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
1191                                        DeclarationName Name,
1192                                        SourceLocation NameLoc) {
1193  DeclContext *DC;
1194  if (!(DC = computeDeclContext(SS, false)) ||
1195      DC->isDependentContext() ||
1196      RequireCompleteDeclContext(SS))
1197    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1198
1199  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1200  LookupQualifiedName(R, DC);
1201
1202  if (R.isAmbiguous())
1203    return ExprError();
1204
1205  if (R.empty()) {
1206    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1207    return ExprError();
1208  }
1209
1210  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1211}
1212
1213/// LookupInObjCMethod - The parser has read a name in, and Sema has
1214/// detected that we're currently inside an ObjC method.  Perform some
1215/// additional lookup.
1216///
1217/// Ideally, most of this would be done by lookup, but there's
1218/// actually quite a lot of extra work involved.
1219///
1220/// Returns a null sentinel to indicate trivial success.
1221Sema::OwningExprResult
1222Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1223                         IdentifierInfo *II,
1224                         bool AllowBuiltinCreation) {
1225  SourceLocation Loc = Lookup.getNameLoc();
1226
1227  // There are two cases to handle here.  1) scoped lookup could have failed,
1228  // in which case we should look for an ivar.  2) scoped lookup could have
1229  // found a decl, but that decl is outside the current instance method (i.e.
1230  // a global variable).  In these two cases, we do a lookup for an ivar with
1231  // this name, if the lookup sucedes, we replace it our current decl.
1232
1233  // If we're in a class method, we don't normally want to look for
1234  // ivars.  But if we don't find anything else, and there's an
1235  // ivar, that's an error.
1236  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
1237
1238  bool LookForIvars;
1239  if (Lookup.empty())
1240    LookForIvars = true;
1241  else if (IsClassMethod)
1242    LookForIvars = false;
1243  else
1244    LookForIvars = (Lookup.isSingleResult() &&
1245                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1246
1247  if (LookForIvars) {
1248    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1249    ObjCInterfaceDecl *ClassDeclared;
1250    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1251      // Diagnose using an ivar in a class method.
1252      if (IsClassMethod)
1253        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1254                         << IV->getDeclName());
1255
1256      // If we're referencing an invalid decl, just return this as a silent
1257      // error node.  The error diagnostic was already emitted on the decl.
1258      if (IV->isInvalidDecl())
1259        return ExprError();
1260
1261      // Check if referencing a field with __attribute__((deprecated)).
1262      if (DiagnoseUseOfDecl(IV, Loc))
1263        return ExprError();
1264
1265      // Diagnose the use of an ivar outside of the declaring class.
1266      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1267          ClassDeclared != IFace)
1268        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1269
1270      // FIXME: This should use a new expr for a direct reference, don't
1271      // turn this into Self->ivar, just return a BareIVarExpr or something.
1272      IdentifierInfo &II = Context.Idents.get("self");
1273      UnqualifiedId SelfName;
1274      SelfName.setIdentifier(&II, SourceLocation());
1275      CXXScopeSpec SelfScopeSpec;
1276      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1277                                                    SelfName, false, false);
1278      MarkDeclarationReferenced(Loc, IV);
1279      return Owned(new (Context)
1280                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1281                                   SelfExpr.takeAs<Expr>(), true, true));
1282    }
1283  } else if (getCurMethodDecl()->isInstanceMethod()) {
1284    // We should warn if a local variable hides an ivar.
1285    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1286    ObjCInterfaceDecl *ClassDeclared;
1287    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1288      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1289          IFace == ClassDeclared)
1290        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1291    }
1292  }
1293
1294  // Needed to implement property "super.method" notation.
1295  if (Lookup.empty() && II->isStr("super")) {
1296    QualType T;
1297
1298    if (getCurMethodDecl()->isInstanceMethod())
1299      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
1300                                    getCurMethodDecl()->getClassInterface()));
1301    else
1302      T = Context.getObjCClassType();
1303    return Owned(new (Context) ObjCSuperExpr(Loc, T));
1304  }
1305  if (Lookup.empty() && II && AllowBuiltinCreation) {
1306    // FIXME. Consolidate this with similar code in LookupName.
1307    if (unsigned BuiltinID = II->getBuiltinID()) {
1308      if (!(getLangOptions().CPlusPlus &&
1309            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1310        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1311                                           S, Lookup.isForRedeclaration(),
1312                                           Lookup.getNameLoc());
1313        if (D) Lookup.addDecl(D);
1314      }
1315    }
1316  }
1317  // Sentinel value saying that we didn't do anything special.
1318  return Owned((Expr*) 0);
1319}
1320
1321/// \brief Cast member's object to its own class if necessary.
1322bool
1323Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
1324  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
1325    if (CXXRecordDecl *RD =
1326        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
1327      QualType DestType =
1328        Context.getCanonicalType(Context.getTypeDeclType(RD));
1329      if (DestType->isDependentType() || From->getType()->isDependentType())
1330        return false;
1331      QualType FromRecordType = From->getType();
1332      QualType DestRecordType = DestType;
1333      if (FromRecordType->getAs<PointerType>()) {
1334        DestType = Context.getPointerType(DestType);
1335        FromRecordType = FromRecordType->getPointeeType();
1336      }
1337      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
1338          CheckDerivedToBaseConversion(FromRecordType,
1339                                       DestRecordType,
1340                                       From->getSourceRange().getBegin(),
1341                                       From->getSourceRange()))
1342        return true;
1343      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
1344                        /*isLvalue=*/true);
1345    }
1346  return false;
1347}
1348
1349/// \brief Build a MemberExpr AST node.
1350static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1351                                   const CXXScopeSpec &SS, ValueDecl *Member,
1352                                   SourceLocation Loc, QualType Ty,
1353                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1354  NestedNameSpecifier *Qualifier = 0;
1355  SourceRange QualifierRange;
1356  if (SS.isSet()) {
1357    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1358    QualifierRange = SS.getRange();
1359  }
1360
1361  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1362                            Member, Loc, TemplateArgs, Ty);
1363}
1364
1365/// Builds an implicit member access expression.  The current context
1366/// is known to be an instance method, and the given unqualified lookup
1367/// set is known to contain only instance members, at least one of which
1368/// is from an appropriate type.
1369Sema::OwningExprResult
1370Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1371                              LookupResult &R,
1372                              const TemplateArgumentListInfo *TemplateArgs,
1373                              bool IsKnownInstance) {
1374  assert(!R.empty() && !R.isAmbiguous());
1375
1376  SourceLocation Loc = R.getNameLoc();
1377
1378  // We may have found a field within an anonymous union or struct
1379  // (C++ [class.union]).
1380  // FIXME: This needs to happen post-isImplicitMemberReference?
1381  // FIXME: template-ids inside anonymous structs?
1382  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1383    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1384      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1385
1386  // If this is known to be an instance access, go ahead and build a
1387  // 'this' expression now.
1388  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
1389  Expr *This = 0; // null signifies implicit access
1390  if (IsKnownInstance) {
1391    SourceLocation Loc = R.getNameLoc();
1392    if (SS.getRange().isValid())
1393      Loc = SS.getRange().getBegin();
1394    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1395  }
1396
1397  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1398                                  /*OpLoc*/ SourceLocation(),
1399                                  /*IsArrow*/ true,
1400                                  SS,
1401                                  /*FirstQualifierInScope*/ 0,
1402                                  R, TemplateArgs);
1403}
1404
1405bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1406                                      const LookupResult &R,
1407                                      bool HasTrailingLParen) {
1408  // Only when used directly as the postfix-expression of a call.
1409  if (!HasTrailingLParen)
1410    return false;
1411
1412  // Never if a scope specifier was provided.
1413  if (SS.isSet())
1414    return false;
1415
1416  // Only in C++ or ObjC++.
1417  if (!getLangOptions().CPlusPlus)
1418    return false;
1419
1420  // Turn off ADL when we find certain kinds of declarations during
1421  // normal lookup:
1422  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1423    NamedDecl *D = *I;
1424
1425    // C++0x [basic.lookup.argdep]p3:
1426    //     -- a declaration of a class member
1427    // Since using decls preserve this property, we check this on the
1428    // original decl.
1429    if (D->isCXXClassMember())
1430      return false;
1431
1432    // C++0x [basic.lookup.argdep]p3:
1433    //     -- a block-scope function declaration that is not a
1434    //        using-declaration
1435    // NOTE: we also trigger this for function templates (in fact, we
1436    // don't check the decl type at all, since all other decl types
1437    // turn off ADL anyway).
1438    if (isa<UsingShadowDecl>(D))
1439      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1440    else if (D->getDeclContext()->isFunctionOrMethod())
1441      return false;
1442
1443    // C++0x [basic.lookup.argdep]p3:
1444    //     -- a declaration that is neither a function or a function
1445    //        template
1446    // And also for builtin functions.
1447    if (isa<FunctionDecl>(D)) {
1448      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1449
1450      // But also builtin functions.
1451      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1452        return false;
1453    } else if (!isa<FunctionTemplateDecl>(D))
1454      return false;
1455  }
1456
1457  return true;
1458}
1459
1460
1461/// Diagnoses obvious problems with the use of the given declaration
1462/// as an expression.  This is only actually called for lookups that
1463/// were not overloaded, and it doesn't promise that the declaration
1464/// will in fact be used.
1465static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1466  if (isa<TypedefDecl>(D)) {
1467    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1468    return true;
1469  }
1470
1471  if (isa<ObjCInterfaceDecl>(D)) {
1472    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1473    return true;
1474  }
1475
1476  if (isa<NamespaceDecl>(D)) {
1477    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1478    return true;
1479  }
1480
1481  return false;
1482}
1483
1484Sema::OwningExprResult
1485Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1486                               LookupResult &R,
1487                               bool NeedsADL) {
1488  // If this is a single, fully-resolved result and we don't need ADL,
1489  // just build an ordinary singleton decl ref.
1490  if (!NeedsADL && R.isSingleResult())
1491    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1492
1493  // We only need to check the declaration if there's exactly one
1494  // result, because in the overloaded case the results can only be
1495  // functions and function templates.
1496  if (R.isSingleResult() &&
1497      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1498    return ExprError();
1499
1500  // Otherwise, just build an unresolved lookup expression.  Suppress
1501  // any lookup-related diagnostics; we'll hash these out later, when
1502  // we've picked a target.
1503  R.suppressDiagnostics();
1504
1505  bool Dependent
1506    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1507  UnresolvedLookupExpr *ULE
1508    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1509                                   (NestedNameSpecifier*) SS.getScopeRep(),
1510                                   SS.getRange(),
1511                                   R.getLookupName(), R.getNameLoc(),
1512                                   NeedsADL, R.isOverloadedResult());
1513  ULE->addDecls(R.begin(), R.end());
1514
1515  return Owned(ULE);
1516}
1517
1518
1519/// \brief Complete semantic analysis for a reference to the given declaration.
1520Sema::OwningExprResult
1521Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1522                               SourceLocation Loc, NamedDecl *D) {
1523  assert(D && "Cannot refer to a NULL declaration");
1524  assert(!isa<FunctionTemplateDecl>(D) &&
1525         "Cannot refer unambiguously to a function template");
1526
1527  if (CheckDeclInExpr(*this, Loc, D))
1528    return ExprError();
1529
1530  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1531    // Specifically diagnose references to class templates that are missing
1532    // a template argument list.
1533    Diag(Loc, diag::err_template_decl_ref)
1534      << Template << SS.getRange();
1535    Diag(Template->getLocation(), diag::note_template_decl_here);
1536    return ExprError();
1537  }
1538
1539  // Make sure that we're referring to a value.
1540  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1541  if (!VD) {
1542    Diag(Loc, diag::err_ref_non_value)
1543      << D << SS.getRange();
1544    Diag(D->getLocation(), diag::note_declared_at);
1545    return ExprError();
1546  }
1547
1548  // Check whether this declaration can be used. Note that we suppress
1549  // this check when we're going to perform argument-dependent lookup
1550  // on this function name, because this might not be the function
1551  // that overload resolution actually selects.
1552  if (DiagnoseUseOfDecl(VD, Loc))
1553    return ExprError();
1554
1555  // Only create DeclRefExpr's for valid Decl's.
1556  if (VD->isInvalidDecl())
1557    return ExprError();
1558
1559  // If the identifier reference is inside a block, and it refers to a value
1560  // that is outside the block, create a BlockDeclRefExpr instead of a
1561  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1562  // the block is formed.
1563  //
1564  // We do not do this for things like enum constants, global variables, etc,
1565  // as they do not get snapshotted.
1566  //
1567  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1568    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1569      Diag(Loc, diag::err_ref_vm_type);
1570      Diag(D->getLocation(), diag::note_declared_at);
1571      return ExprError();
1572    }
1573
1574    if (VD->getType()->isArrayType()) {
1575      Diag(Loc, diag::err_ref_array_type);
1576      Diag(D->getLocation(), diag::note_declared_at);
1577      return ExprError();
1578    }
1579
1580    MarkDeclarationReferenced(Loc, VD);
1581    QualType ExprTy = VD->getType().getNonReferenceType();
1582    // The BlocksAttr indicates the variable is bound by-reference.
1583    if (VD->getAttr<BlocksAttr>())
1584      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1585    // This is to record that a 'const' was actually synthesize and added.
1586    bool constAdded = !ExprTy.isConstQualified();
1587    // Variable will be bound by-copy, make it const within the closure.
1588
1589    ExprTy.addConst();
1590    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1591                                                constAdded));
1592  }
1593  // If this reference is not in a block or if the referenced variable is
1594  // within the block, create a normal DeclRefExpr.
1595
1596  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1597}
1598
1599Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1600                                                 tok::TokenKind Kind) {
1601  PredefinedExpr::IdentType IT;
1602
1603  switch (Kind) {
1604  default: assert(0 && "Unknown simple primary expr!");
1605  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1606  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1607  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1608  }
1609
1610  // Pre-defined identifiers are of type char[x], where x is the length of the
1611  // string.
1612
1613  Decl *currentDecl = getCurFunctionOrMethodDecl();
1614  if (!currentDecl) {
1615    Diag(Loc, diag::ext_predef_outside_function);
1616    currentDecl = Context.getTranslationUnitDecl();
1617  }
1618
1619  QualType ResTy;
1620  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1621    ResTy = Context.DependentTy;
1622  } else {
1623    unsigned Length =
1624      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1625
1626    llvm::APInt LengthI(32, Length + 1);
1627    ResTy = Context.CharTy.withConst();
1628    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1629  }
1630  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1631}
1632
1633Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1634  llvm::SmallString<16> CharBuffer;
1635  CharBuffer.resize(Tok.getLength());
1636  const char *ThisTokBegin = &CharBuffer[0];
1637  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1638
1639  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1640                            Tok.getLocation(), PP);
1641  if (Literal.hadError())
1642    return ExprError();
1643
1644  QualType Ty;
1645  if (!getLangOptions().CPlusPlus)
1646    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1647  else if (Literal.isWide())
1648    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1649  else
1650    Ty = Context.CharTy;  // 'x' -> char in C++
1651
1652  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1653                                              Literal.isWide(),
1654                                              Ty, Tok.getLocation()));
1655}
1656
1657Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1658  // Fast path for a single digit (which is quite common).  A single digit
1659  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1660  if (Tok.getLength() == 1) {
1661    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1662    unsigned IntSize = Context.Target.getIntWidth();
1663    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1664                    Context.IntTy, Tok.getLocation()));
1665  }
1666
1667  llvm::SmallString<512> IntegerBuffer;
1668  // Add padding so that NumericLiteralParser can overread by one character.
1669  IntegerBuffer.resize(Tok.getLength()+1);
1670  const char *ThisTokBegin = &IntegerBuffer[0];
1671
1672  // Get the spelling of the token, which eliminates trigraphs, etc.
1673  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1674
1675  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1676                               Tok.getLocation(), PP);
1677  if (Literal.hadError)
1678    return ExprError();
1679
1680  Expr *Res;
1681
1682  if (Literal.isFloatingLiteral()) {
1683    QualType Ty;
1684    if (Literal.isFloat)
1685      Ty = Context.FloatTy;
1686    else if (!Literal.isLong)
1687      Ty = Context.DoubleTy;
1688    else
1689      Ty = Context.LongDoubleTy;
1690
1691    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1692
1693    using llvm::APFloat;
1694    APFloat Val(Format);
1695
1696    APFloat::opStatus result = Literal.GetFloatValue(Val);
1697
1698    // Overflow is always an error, but underflow is only an error if
1699    // we underflowed to zero (APFloat reports denormals as underflow).
1700    if ((result & APFloat::opOverflow) ||
1701        ((result & APFloat::opUnderflow) && Val.isZero())) {
1702      unsigned diagnostic;
1703      llvm::SmallVector<char, 20> buffer;
1704      if (result & APFloat::opOverflow) {
1705        diagnostic = diag::err_float_overflow;
1706        APFloat::getLargest(Format).toString(buffer);
1707      } else {
1708        diagnostic = diag::err_float_underflow;
1709        APFloat::getSmallest(Format).toString(buffer);
1710      }
1711
1712      Diag(Tok.getLocation(), diagnostic)
1713        << Ty
1714        << llvm::StringRef(buffer.data(), buffer.size());
1715    }
1716
1717    bool isExact = (result == APFloat::opOK);
1718    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1719
1720  } else if (!Literal.isIntegerLiteral()) {
1721    return ExprError();
1722  } else {
1723    QualType Ty;
1724
1725    // long long is a C99 feature.
1726    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1727        Literal.isLongLong)
1728      Diag(Tok.getLocation(), diag::ext_longlong);
1729
1730    // Get the value in the widest-possible width.
1731    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1732
1733    if (Literal.GetIntegerValue(ResultVal)) {
1734      // If this value didn't fit into uintmax_t, warn and force to ull.
1735      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1736      Ty = Context.UnsignedLongLongTy;
1737      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1738             "long long is not intmax_t?");
1739    } else {
1740      // If this value fits into a ULL, try to figure out what else it fits into
1741      // according to the rules of C99 6.4.4.1p5.
1742
1743      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1744      // be an unsigned int.
1745      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1746
1747      // Check from smallest to largest, picking the smallest type we can.
1748      unsigned Width = 0;
1749      if (!Literal.isLong && !Literal.isLongLong) {
1750        // Are int/unsigned possibilities?
1751        unsigned IntSize = Context.Target.getIntWidth();
1752
1753        // Does it fit in a unsigned int?
1754        if (ResultVal.isIntN(IntSize)) {
1755          // Does it fit in a signed int?
1756          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1757            Ty = Context.IntTy;
1758          else if (AllowUnsigned)
1759            Ty = Context.UnsignedIntTy;
1760          Width = IntSize;
1761        }
1762      }
1763
1764      // Are long/unsigned long possibilities?
1765      if (Ty.isNull() && !Literal.isLongLong) {
1766        unsigned LongSize = Context.Target.getLongWidth();
1767
1768        // Does it fit in a unsigned long?
1769        if (ResultVal.isIntN(LongSize)) {
1770          // Does it fit in a signed long?
1771          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1772            Ty = Context.LongTy;
1773          else if (AllowUnsigned)
1774            Ty = Context.UnsignedLongTy;
1775          Width = LongSize;
1776        }
1777      }
1778
1779      // Finally, check long long if needed.
1780      if (Ty.isNull()) {
1781        unsigned LongLongSize = Context.Target.getLongLongWidth();
1782
1783        // Does it fit in a unsigned long long?
1784        if (ResultVal.isIntN(LongLongSize)) {
1785          // Does it fit in a signed long long?
1786          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1787            Ty = Context.LongLongTy;
1788          else if (AllowUnsigned)
1789            Ty = Context.UnsignedLongLongTy;
1790          Width = LongLongSize;
1791        }
1792      }
1793
1794      // If we still couldn't decide a type, we probably have something that
1795      // does not fit in a signed long long, but has no U suffix.
1796      if (Ty.isNull()) {
1797        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1798        Ty = Context.UnsignedLongLongTy;
1799        Width = Context.Target.getLongLongWidth();
1800      }
1801
1802      if (ResultVal.getBitWidth() != Width)
1803        ResultVal.trunc(Width);
1804    }
1805    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1806  }
1807
1808  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1809  if (Literal.isImaginary)
1810    Res = new (Context) ImaginaryLiteral(Res,
1811                                        Context.getComplexType(Res->getType()));
1812
1813  return Owned(Res);
1814}
1815
1816Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1817                                              SourceLocation R, ExprArg Val) {
1818  Expr *E = Val.takeAs<Expr>();
1819  assert((E != 0) && "ActOnParenExpr() missing expr");
1820  return Owned(new (Context) ParenExpr(L, R, E));
1821}
1822
1823/// The UsualUnaryConversions() function is *not* called by this routine.
1824/// See C99 6.3.2.1p[2-4] for more details.
1825bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1826                                     SourceLocation OpLoc,
1827                                     const SourceRange &ExprRange,
1828                                     bool isSizeof) {
1829  if (exprType->isDependentType())
1830    return false;
1831
1832  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1833  //   the result is the size of the referenced type."
1834  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1835  //   result shall be the alignment of the referenced type."
1836  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1837    exprType = Ref->getPointeeType();
1838
1839  // C99 6.5.3.4p1:
1840  if (exprType->isFunctionType()) {
1841    // alignof(function) is allowed as an extension.
1842    if (isSizeof)
1843      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1844    return false;
1845  }
1846
1847  // Allow sizeof(void)/alignof(void) as an extension.
1848  if (exprType->isVoidType()) {
1849    Diag(OpLoc, diag::ext_sizeof_void_type)
1850      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1851    return false;
1852  }
1853
1854  if (RequireCompleteType(OpLoc, exprType,
1855                          PDiag(diag::err_sizeof_alignof_incomplete_type)
1856                          << int(!isSizeof) << ExprRange))
1857    return true;
1858
1859  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1860  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1861    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1862      << exprType << isSizeof << ExprRange;
1863    return true;
1864  }
1865
1866  return false;
1867}
1868
1869bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1870                            const SourceRange &ExprRange) {
1871  E = E->IgnoreParens();
1872
1873  // alignof decl is always ok.
1874  if (isa<DeclRefExpr>(E))
1875    return false;
1876
1877  // Cannot know anything else if the expression is dependent.
1878  if (E->isTypeDependent())
1879    return false;
1880
1881  if (E->getBitField()) {
1882    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1883    return true;
1884  }
1885
1886  // Alignment of a field access is always okay, so long as it isn't a
1887  // bit-field.
1888  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1889    if (isa<FieldDecl>(ME->getMemberDecl()))
1890      return false;
1891
1892  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1893}
1894
1895/// \brief Build a sizeof or alignof expression given a type operand.
1896Action::OwningExprResult
1897Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
1898                              SourceLocation OpLoc,
1899                              bool isSizeOf, SourceRange R) {
1900  if (!TInfo)
1901    return ExprError();
1902
1903  QualType T = TInfo->getType();
1904
1905  if (!T->isDependentType() &&
1906      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1907    return ExprError();
1908
1909  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1910  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
1911                                               Context.getSizeType(), OpLoc,
1912                                               R.getEnd()));
1913}
1914
1915/// \brief Build a sizeof or alignof expression given an expression
1916/// operand.
1917Action::OwningExprResult
1918Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1919                              bool isSizeOf, SourceRange R) {
1920  // Verify that the operand is valid.
1921  bool isInvalid = false;
1922  if (E->isTypeDependent()) {
1923    // Delay type-checking for type-dependent expressions.
1924  } else if (!isSizeOf) {
1925    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1926  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1927    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1928    isInvalid = true;
1929  } else {
1930    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1931  }
1932
1933  if (isInvalid)
1934    return ExprError();
1935
1936  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1937  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1938                                               Context.getSizeType(), OpLoc,
1939                                               R.getEnd()));
1940}
1941
1942/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1943/// the same for @c alignof and @c __alignof
1944/// Note that the ArgRange is invalid if isType is false.
1945Action::OwningExprResult
1946Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1947                             void *TyOrEx, const SourceRange &ArgRange) {
1948  // If error parsing type, ignore.
1949  if (TyOrEx == 0) return ExprError();
1950
1951  if (isType) {
1952    TypeSourceInfo *TInfo;
1953    (void) GetTypeFromParser(TyOrEx, &TInfo);
1954    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
1955  }
1956
1957  Expr *ArgEx = (Expr *)TyOrEx;
1958  Action::OwningExprResult Result
1959    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1960
1961  if (Result.isInvalid())
1962    DeleteExpr(ArgEx);
1963
1964  return move(Result);
1965}
1966
1967QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1968  if (V->isTypeDependent())
1969    return Context.DependentTy;
1970
1971  // These operators return the element type of a complex type.
1972  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1973    return CT->getElementType();
1974
1975  // Otherwise they pass through real integer and floating point types here.
1976  if (V->getType()->isArithmeticType())
1977    return V->getType();
1978
1979  // Reject anything else.
1980  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1981    << (isReal ? "__real" : "__imag");
1982  return QualType();
1983}
1984
1985
1986
1987Action::OwningExprResult
1988Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1989                          tok::TokenKind Kind, ExprArg Input) {
1990  UnaryOperator::Opcode Opc;
1991  switch (Kind) {
1992  default: assert(0 && "Unknown unary op!");
1993  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1994  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1995  }
1996
1997  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
1998}
1999
2000Action::OwningExprResult
2001Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2002                              ExprArg Idx, SourceLocation RLoc) {
2003  // Since this might be a postfix expression, get rid of ParenListExprs.
2004  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2005
2006  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2007       *RHSExp = static_cast<Expr*>(Idx.get());
2008
2009  if (getLangOptions().CPlusPlus &&
2010      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2011    Base.release();
2012    Idx.release();
2013    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2014                                                  Context.DependentTy, RLoc));
2015  }
2016
2017  if (getLangOptions().CPlusPlus &&
2018      (LHSExp->getType()->isRecordType() ||
2019       LHSExp->getType()->isEnumeralType() ||
2020       RHSExp->getType()->isRecordType() ||
2021       RHSExp->getType()->isEnumeralType())) {
2022    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2023  }
2024
2025  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2026}
2027
2028
2029Action::OwningExprResult
2030Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2031                                     ExprArg Idx, SourceLocation RLoc) {
2032  Expr *LHSExp = static_cast<Expr*>(Base.get());
2033  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2034
2035  // Perform default conversions.
2036  DefaultFunctionArrayConversion(LHSExp);
2037  DefaultFunctionArrayConversion(RHSExp);
2038
2039  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2040
2041  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2042  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2043  // in the subscript position. As a result, we need to derive the array base
2044  // and index from the expression types.
2045  Expr *BaseExpr, *IndexExpr;
2046  QualType ResultType;
2047  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2048    BaseExpr = LHSExp;
2049    IndexExpr = RHSExp;
2050    ResultType = Context.DependentTy;
2051  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2052    BaseExpr = LHSExp;
2053    IndexExpr = RHSExp;
2054    ResultType = PTy->getPointeeType();
2055  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2056     // Handle the uncommon case of "123[Ptr]".
2057    BaseExpr = RHSExp;
2058    IndexExpr = LHSExp;
2059    ResultType = PTy->getPointeeType();
2060  } else if (const ObjCObjectPointerType *PTy =
2061               LHSTy->getAs<ObjCObjectPointerType>()) {
2062    BaseExpr = LHSExp;
2063    IndexExpr = RHSExp;
2064    ResultType = PTy->getPointeeType();
2065  } else if (const ObjCObjectPointerType *PTy =
2066               RHSTy->getAs<ObjCObjectPointerType>()) {
2067     // Handle the uncommon case of "123[Ptr]".
2068    BaseExpr = RHSExp;
2069    IndexExpr = LHSExp;
2070    ResultType = PTy->getPointeeType();
2071  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2072    BaseExpr = LHSExp;    // vectors: V[123]
2073    IndexExpr = RHSExp;
2074
2075    // FIXME: need to deal with const...
2076    ResultType = VTy->getElementType();
2077  } else if (LHSTy->isArrayType()) {
2078    // If we see an array that wasn't promoted by
2079    // DefaultFunctionArrayConversion, it must be an array that
2080    // wasn't promoted because of the C90 rule that doesn't
2081    // allow promoting non-lvalue arrays.  Warn, then
2082    // force the promotion here.
2083    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2084        LHSExp->getSourceRange();
2085    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2086                      CastExpr::CK_ArrayToPointerDecay);
2087    LHSTy = LHSExp->getType();
2088
2089    BaseExpr = LHSExp;
2090    IndexExpr = RHSExp;
2091    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2092  } else if (RHSTy->isArrayType()) {
2093    // Same as previous, except for 123[f().a] case
2094    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2095        RHSExp->getSourceRange();
2096    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2097                      CastExpr::CK_ArrayToPointerDecay);
2098    RHSTy = RHSExp->getType();
2099
2100    BaseExpr = RHSExp;
2101    IndexExpr = LHSExp;
2102    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2103  } else {
2104    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2105       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2106  }
2107  // C99 6.5.2.1p1
2108  if (!(IndexExpr->getType()->isIntegerType() &&
2109        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2110    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2111                     << IndexExpr->getSourceRange());
2112
2113  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2114       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2115         && !IndexExpr->isTypeDependent())
2116    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2117
2118  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2119  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2120  // type. Note that Functions are not objects, and that (in C99 parlance)
2121  // incomplete types are not object types.
2122  if (ResultType->isFunctionType()) {
2123    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2124      << ResultType << BaseExpr->getSourceRange();
2125    return ExprError();
2126  }
2127
2128  if (!ResultType->isDependentType() &&
2129      RequireCompleteType(LLoc, ResultType,
2130                          PDiag(diag::err_subscript_incomplete_type)
2131                            << BaseExpr->getSourceRange()))
2132    return ExprError();
2133
2134  // Diagnose bad cases where we step over interface counts.
2135  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
2136    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2137      << ResultType << BaseExpr->getSourceRange();
2138    return ExprError();
2139  }
2140
2141  Base.release();
2142  Idx.release();
2143  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2144                                                ResultType, RLoc));
2145}
2146
2147QualType Sema::
2148CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2149                        const IdentifierInfo *CompName,
2150                        SourceLocation CompLoc) {
2151  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2152  // see FIXME there.
2153  //
2154  // FIXME: This logic can be greatly simplified by splitting it along
2155  // halving/not halving and reworking the component checking.
2156  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2157
2158  // The vector accessor can't exceed the number of elements.
2159  const char *compStr = CompName->getNameStart();
2160
2161  // This flag determines whether or not the component is one of the four
2162  // special names that indicate a subset of exactly half the elements are
2163  // to be selected.
2164  bool HalvingSwizzle = false;
2165
2166  // This flag determines whether or not CompName has an 's' char prefix,
2167  // indicating that it is a string of hex values to be used as vector indices.
2168  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2169
2170  // Check that we've found one of the special components, or that the component
2171  // names must come from the same set.
2172  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2173      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2174    HalvingSwizzle = true;
2175  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2176    do
2177      compStr++;
2178    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2179  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2180    do
2181      compStr++;
2182    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2183  }
2184
2185  if (!HalvingSwizzle && *compStr) {
2186    // We didn't get to the end of the string. This means the component names
2187    // didn't come from the same set *or* we encountered an illegal name.
2188    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2189      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2190    return QualType();
2191  }
2192
2193  // Ensure no component accessor exceeds the width of the vector type it
2194  // operates on.
2195  if (!HalvingSwizzle) {
2196    compStr = CompName->getNameStart();
2197
2198    if (HexSwizzle)
2199      compStr++;
2200
2201    while (*compStr) {
2202      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2203        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2204          << baseType << SourceRange(CompLoc);
2205        return QualType();
2206      }
2207    }
2208  }
2209
2210  // The component accessor looks fine - now we need to compute the actual type.
2211  // The vector type is implied by the component accessor. For example,
2212  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2213  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2214  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2215  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2216                                     : CompName->getLength();
2217  if (HexSwizzle)
2218    CompSize--;
2219
2220  if (CompSize == 1)
2221    return vecType->getElementType();
2222
2223  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2224  // Now look up the TypeDefDecl from the vector type. Without this,
2225  // diagostics look bad. We want extended vector types to appear built-in.
2226  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2227    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2228      return Context.getTypedefType(ExtVectorDecls[i]);
2229  }
2230  return VT; // should never get here (a typedef type should always be found).
2231}
2232
2233static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2234                                                IdentifierInfo *Member,
2235                                                const Selector &Sel,
2236                                                ASTContext &Context) {
2237
2238  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2239    return PD;
2240  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2241    return OMD;
2242
2243  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2244       E = PDecl->protocol_end(); I != E; ++I) {
2245    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2246                                                     Context))
2247      return D;
2248  }
2249  return 0;
2250}
2251
2252static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2253                                IdentifierInfo *Member,
2254                                const Selector &Sel,
2255                                ASTContext &Context) {
2256  // Check protocols on qualified interfaces.
2257  Decl *GDecl = 0;
2258  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2259       E = QIdTy->qual_end(); I != E; ++I) {
2260    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2261      GDecl = PD;
2262      break;
2263    }
2264    // Also must look for a getter name which uses property syntax.
2265    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2266      GDecl = OMD;
2267      break;
2268    }
2269  }
2270  if (!GDecl) {
2271    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2272         E = QIdTy->qual_end(); I != E; ++I) {
2273      // Search in the protocol-qualifier list of current protocol.
2274      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2275      if (GDecl)
2276        return GDecl;
2277    }
2278  }
2279  return GDecl;
2280}
2281
2282Sema::OwningExprResult
2283Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2284                               bool IsArrow, SourceLocation OpLoc,
2285                               const CXXScopeSpec &SS,
2286                               NamedDecl *FirstQualifierInScope,
2287                               DeclarationName Name, SourceLocation NameLoc,
2288                               const TemplateArgumentListInfo *TemplateArgs) {
2289  Expr *BaseExpr = Base.takeAs<Expr>();
2290
2291  // Even in dependent contexts, try to diagnose base expressions with
2292  // obviously wrong types, e.g.:
2293  //
2294  // T* t;
2295  // t.f;
2296  //
2297  // In Obj-C++, however, the above expression is valid, since it could be
2298  // accessing the 'f' property if T is an Obj-C interface. The extra check
2299  // allows this, while still reporting an error if T is a struct pointer.
2300  if (!IsArrow) {
2301    const PointerType *PT = BaseType->getAs<PointerType>();
2302    if (PT && (!getLangOptions().ObjC1 ||
2303               PT->getPointeeType()->isRecordType())) {
2304      assert(BaseExpr && "cannot happen with implicit member accesses");
2305      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2306        << BaseType << BaseExpr->getSourceRange();
2307      return ExprError();
2308    }
2309  }
2310
2311  assert(BaseType->isDependentType() || Name.isDependentName());
2312
2313  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2314  // must have pointer type, and the accessed type is the pointee.
2315  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2316                                                   IsArrow, OpLoc,
2317                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2318                                                   SS.getRange(),
2319                                                   FirstQualifierInScope,
2320                                                   Name, NameLoc,
2321                                                   TemplateArgs));
2322}
2323
2324/// We know that the given qualified member reference points only to
2325/// declarations which do not belong to the static type of the base
2326/// expression.  Diagnose the problem.
2327static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2328                                             Expr *BaseExpr,
2329                                             QualType BaseType,
2330                                             const CXXScopeSpec &SS,
2331                                             const LookupResult &R) {
2332  // If this is an implicit member access, use a different set of
2333  // diagnostics.
2334  if (!BaseExpr)
2335    return DiagnoseInstanceReference(SemaRef, SS, R);
2336
2337  // FIXME: this is an exceedingly lame diagnostic for some of the more
2338  // complicated cases here.
2339  DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
2340  SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
2341    << SS.getRange() << DC << BaseType;
2342}
2343
2344// Check whether the declarations we found through a nested-name
2345// specifier in a member expression are actually members of the base
2346// type.  The restriction here is:
2347//
2348//   C++ [expr.ref]p2:
2349//     ... In these cases, the id-expression shall name a
2350//     member of the class or of one of its base classes.
2351//
2352// So it's perfectly legitimate for the nested-name specifier to name
2353// an unrelated class, and for us to find an overload set including
2354// decls from classes which are not superclasses, as long as the decl
2355// we actually pick through overload resolution is from a superclass.
2356bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2357                                         QualType BaseType,
2358                                         const CXXScopeSpec &SS,
2359                                         const LookupResult &R) {
2360  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2361  if (!BaseRT) {
2362    // We can't check this yet because the base type is still
2363    // dependent.
2364    assert(BaseType->isDependentType());
2365    return false;
2366  }
2367  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2368
2369  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2370    // If this is an implicit member reference and we find a
2371    // non-instance member, it's not an error.
2372    if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
2373      return false;
2374
2375    // Note that we use the DC of the decl, not the underlying decl.
2376    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2377    while (RecordD->isAnonymousStructOrUnion())
2378      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2379
2380    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2381    MemberRecord.insert(RecordD->getCanonicalDecl());
2382
2383    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2384      return false;
2385  }
2386
2387  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2388  return true;
2389}
2390
2391static bool
2392LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2393                         SourceRange BaseRange, const RecordType *RTy,
2394                         SourceLocation OpLoc, const CXXScopeSpec &SS) {
2395  RecordDecl *RDecl = RTy->getDecl();
2396  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2397                                  PDiag(diag::err_typecheck_incomplete_tag)
2398                                    << BaseRange))
2399    return true;
2400
2401  DeclContext *DC = RDecl;
2402  if (SS.isSet()) {
2403    // If the member name was a qualified-id, look into the
2404    // nested-name-specifier.
2405    DC = SemaRef.computeDeclContext(SS, false);
2406
2407    if (SemaRef.RequireCompleteDeclContext(SS)) {
2408      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2409        << SS.getRange() << DC;
2410      return true;
2411    }
2412
2413    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2414
2415    if (!isa<TypeDecl>(DC)) {
2416      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2417        << DC << SS.getRange();
2418      return true;
2419    }
2420  }
2421
2422  // The record definition is complete, now look up the member.
2423  SemaRef.LookupQualifiedName(R, DC);
2424
2425  if (!R.empty())
2426    return false;
2427
2428  // We didn't find anything with the given name, so try to correct
2429  // for typos.
2430  DeclarationName Name = R.getLookupName();
2431  if (SemaRef.CorrectTypo(R, 0, &SS, DC) &&
2432      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2433    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2434      << Name << DC << R.getLookupName() << SS.getRange()
2435      << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2436                                         R.getLookupName().getAsString());
2437    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2438      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2439        << ND->getDeclName();
2440    return false;
2441  } else {
2442    R.clear();
2443  }
2444
2445  return false;
2446}
2447
2448Sema::OwningExprResult
2449Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2450                               SourceLocation OpLoc, bool IsArrow,
2451                               const CXXScopeSpec &SS,
2452                               NamedDecl *FirstQualifierInScope,
2453                               DeclarationName Name, SourceLocation NameLoc,
2454                               const TemplateArgumentListInfo *TemplateArgs) {
2455  Expr *Base = BaseArg.takeAs<Expr>();
2456
2457  if (BaseType->isDependentType() ||
2458      (SS.isSet() && isDependentScopeSpecifier(SS)))
2459    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2460                                    IsArrow, OpLoc,
2461                                    SS, FirstQualifierInScope,
2462                                    Name, NameLoc,
2463                                    TemplateArgs);
2464
2465  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2466
2467  // Implicit member accesses.
2468  if (!Base) {
2469    QualType RecordTy = BaseType;
2470    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2471    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2472                                 RecordTy->getAs<RecordType>(),
2473                                 OpLoc, SS))
2474      return ExprError();
2475
2476  // Explicit member accesses.
2477  } else {
2478    OwningExprResult Result =
2479      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2480                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2481
2482    if (Result.isInvalid()) {
2483      Owned(Base);
2484      return ExprError();
2485    }
2486
2487    if (Result.get())
2488      return move(Result);
2489  }
2490
2491  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2492                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2493                                  R, TemplateArgs);
2494}
2495
2496Sema::OwningExprResult
2497Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2498                               SourceLocation OpLoc, bool IsArrow,
2499                               const CXXScopeSpec &SS,
2500                               NamedDecl *FirstQualifierInScope,
2501                               LookupResult &R,
2502                         const TemplateArgumentListInfo *TemplateArgs) {
2503  Expr *BaseExpr = Base.takeAs<Expr>();
2504  QualType BaseType = BaseExprType;
2505  if (IsArrow) {
2506    assert(BaseType->isPointerType());
2507    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2508  }
2509
2510  NestedNameSpecifier *Qualifier =
2511    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2512  DeclarationName MemberName = R.getLookupName();
2513  SourceLocation MemberLoc = R.getNameLoc();
2514
2515  if (R.isAmbiguous())
2516    return ExprError();
2517
2518  if (R.empty()) {
2519    // Rederive where we looked up.
2520    DeclContext *DC = (SS.isSet()
2521                       ? computeDeclContext(SS, false)
2522                       : BaseType->getAs<RecordType>()->getDecl());
2523
2524    Diag(R.getNameLoc(), diag::err_no_member)
2525      << MemberName << DC
2526      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2527    return ExprError();
2528  }
2529
2530  // Diagnose lookups that find only declarations from a non-base
2531  // type.  This is possible for either qualified lookups (which may
2532  // have been qualified with an unrelated type) or implicit member
2533  // expressions (which were found with unqualified lookup and thus
2534  // may have come from an enclosing scope).  Note that it's okay for
2535  // lookup to find declarations from a non-base type as long as those
2536  // aren't the ones picked by overload resolution.
2537  if ((SS.isSet() || !BaseExpr ||
2538       (isa<CXXThisExpr>(BaseExpr) &&
2539        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2540      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2541    return ExprError();
2542
2543  // Construct an unresolved result if we in fact got an unresolved
2544  // result.
2545  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2546    bool Dependent =
2547      BaseExprType->isDependentType() ||
2548      R.isUnresolvableResult() ||
2549      UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2550
2551    // Suppress any lookup-related diagnostics; we'll do these when we
2552    // pick a member.
2553    R.suppressDiagnostics();
2554
2555    UnresolvedMemberExpr *MemExpr
2556      = UnresolvedMemberExpr::Create(Context, Dependent,
2557                                     R.isUnresolvableResult(),
2558                                     BaseExpr, BaseExprType,
2559                                     IsArrow, OpLoc,
2560                                     Qualifier, SS.getRange(),
2561                                     MemberName, MemberLoc,
2562                                     TemplateArgs);
2563    MemExpr->addDecls(R.begin(), R.end());
2564
2565    return Owned(MemExpr);
2566  }
2567
2568  assert(R.isSingleResult());
2569  NamedDecl *MemberDecl = R.getFoundDecl();
2570
2571  // FIXME: diagnose the presence of template arguments now.
2572
2573  // If the decl being referenced had an error, return an error for this
2574  // sub-expr without emitting another error, in order to avoid cascading
2575  // error cases.
2576  if (MemberDecl->isInvalidDecl())
2577    return ExprError();
2578
2579  // Handle the implicit-member-access case.
2580  if (!BaseExpr) {
2581    // If this is not an instance member, convert to a non-member access.
2582    if (!IsInstanceMember(MemberDecl))
2583      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2584
2585    SourceLocation Loc = R.getNameLoc();
2586    if (SS.getRange().isValid())
2587      Loc = SS.getRange().getBegin();
2588    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2589  }
2590
2591  bool ShouldCheckUse = true;
2592  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2593    // Don't diagnose the use of a virtual member function unless it's
2594    // explicitly qualified.
2595    if (MD->isVirtual() && !SS.isSet())
2596      ShouldCheckUse = false;
2597  }
2598
2599  // Check the use of this member.
2600  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2601    Owned(BaseExpr);
2602    return ExprError();
2603  }
2604
2605  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2606    // We may have found a field within an anonymous union or struct
2607    // (C++ [class.union]).
2608    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2609        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2610      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2611                                                      BaseExpr, OpLoc);
2612
2613    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2614    QualType MemberType = FD->getType();
2615    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2616      MemberType = Ref->getPointeeType();
2617    else {
2618      Qualifiers BaseQuals = BaseType.getQualifiers();
2619      BaseQuals.removeObjCGCAttr();
2620      if (FD->isMutable()) BaseQuals.removeConst();
2621
2622      Qualifiers MemberQuals
2623        = Context.getCanonicalType(MemberType).getQualifiers();
2624
2625      Qualifiers Combined = BaseQuals + MemberQuals;
2626      if (Combined != MemberQuals)
2627        MemberType = Context.getQualifiedType(MemberType, Combined);
2628    }
2629
2630    MarkDeclarationReferenced(MemberLoc, FD);
2631    if (PerformObjectMemberConversion(BaseExpr, FD))
2632      return ExprError();
2633    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2634                                 FD, MemberLoc, MemberType));
2635  }
2636
2637  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2638    MarkDeclarationReferenced(MemberLoc, Var);
2639    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2640                                 Var, MemberLoc,
2641                                 Var->getType().getNonReferenceType()));
2642  }
2643
2644  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2645    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2646    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2647                                 MemberFn, MemberLoc,
2648                                 MemberFn->getType()));
2649  }
2650
2651  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2652    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2653    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2654                                 Enum, MemberLoc, Enum->getType()));
2655  }
2656
2657  Owned(BaseExpr);
2658
2659  if (isa<TypeDecl>(MemberDecl))
2660    return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2661                     << MemberName << int(IsArrow));
2662
2663  // We found a declaration kind that we didn't expect. This is a
2664  // generic error message that tells the user that she can't refer
2665  // to this member with '.' or '->'.
2666  return ExprError(Diag(MemberLoc,
2667                        diag::err_typecheck_member_reference_unknown)
2668      << MemberName << int(IsArrow));
2669}
2670
2671/// Look up the given member of the given non-type-dependent
2672/// expression.  This can return in one of two ways:
2673///  * If it returns a sentinel null-but-valid result, the caller will
2674///    assume that lookup was performed and the results written into
2675///    the provided structure.  It will take over from there.
2676///  * Otherwise, the returned expression will be produced in place of
2677///    an ordinary member expression.
2678///
2679/// The ObjCImpDecl bit is a gross hack that will need to be properly
2680/// fixed for ObjC++.
2681Sema::OwningExprResult
2682Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2683                       bool &IsArrow, SourceLocation OpLoc,
2684                       const CXXScopeSpec &SS,
2685                       DeclPtrTy ObjCImpDecl) {
2686  assert(BaseExpr && "no base expression");
2687
2688  // Perform default conversions.
2689  DefaultFunctionArrayConversion(BaseExpr);
2690
2691  QualType BaseType = BaseExpr->getType();
2692  assert(!BaseType->isDependentType());
2693
2694  DeclarationName MemberName = R.getLookupName();
2695  SourceLocation MemberLoc = R.getNameLoc();
2696
2697  // If the user is trying to apply -> or . to a function pointer
2698  // type, it's probably because they forgot parentheses to call that
2699  // function. Suggest the addition of those parentheses, build the
2700  // call, and continue on.
2701  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2702    if (const FunctionProtoType *Fun
2703          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2704      QualType ResultTy = Fun->getResultType();
2705      if (Fun->getNumArgs() == 0 &&
2706          ((!IsArrow && ResultTy->isRecordType()) ||
2707           (IsArrow && ResultTy->isPointerType() &&
2708            ResultTy->getAs<PointerType>()->getPointeeType()
2709                                                          ->isRecordType()))) {
2710        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2711        Diag(Loc, diag::err_member_reference_needs_call)
2712          << QualType(Fun, 0)
2713          << CodeModificationHint::CreateInsertion(Loc, "()");
2714
2715        OwningExprResult NewBase
2716          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2717                          MultiExprArg(*this, 0, 0), 0, Loc);
2718        if (NewBase.isInvalid())
2719          return ExprError();
2720
2721        BaseExpr = NewBase.takeAs<Expr>();
2722        DefaultFunctionArrayConversion(BaseExpr);
2723        BaseType = BaseExpr->getType();
2724      }
2725    }
2726  }
2727
2728  // If this is an Objective-C pseudo-builtin and a definition is provided then
2729  // use that.
2730  if (BaseType->isObjCIdType()) {
2731    if (IsArrow) {
2732      // Handle the following exceptional case PObj->isa.
2733      if (const ObjCObjectPointerType *OPT =
2734          BaseType->getAs<ObjCObjectPointerType>()) {
2735        if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2736            MemberName.getAsIdentifierInfo()->isStr("isa"))
2737          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2738                                                 Context.getObjCClassType()));
2739      }
2740    }
2741    // We have an 'id' type. Rather than fall through, we check if this
2742    // is a reference to 'isa'.
2743    if (BaseType != Context.ObjCIdRedefinitionType) {
2744      BaseType = Context.ObjCIdRedefinitionType;
2745      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2746    }
2747  }
2748
2749  // If this is an Objective-C pseudo-builtin and a definition is provided then
2750  // use that.
2751  if (Context.isObjCSelType(BaseType)) {
2752    // We have an 'SEL' type. Rather than fall through, we check if this
2753    // is a reference to 'sel_id'.
2754    if (BaseType != Context.ObjCSelRedefinitionType) {
2755      BaseType = Context.ObjCSelRedefinitionType;
2756      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2757    }
2758  }
2759
2760  assert(!BaseType.isNull() && "no type for member expression");
2761
2762  // Handle properties on ObjC 'Class' types.
2763  if (!IsArrow && BaseType->isObjCClassType()) {
2764    // Also must look for a getter name which uses property syntax.
2765    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2766    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2767    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2768      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2769      ObjCMethodDecl *Getter;
2770      // FIXME: need to also look locally in the implementation.
2771      if ((Getter = IFace->lookupClassMethod(Sel))) {
2772        // Check the use of this method.
2773        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2774          return ExprError();
2775      }
2776      // If we found a getter then this may be a valid dot-reference, we
2777      // will look for the matching setter, in case it is needed.
2778      Selector SetterSel =
2779      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2780                                         PP.getSelectorTable(), Member);
2781      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2782      if (!Setter) {
2783        // If this reference is in an @implementation, also check for 'private'
2784        // methods.
2785        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2786      }
2787      // Look through local category implementations associated with the class.
2788      if (!Setter)
2789        Setter = IFace->getCategoryClassMethod(SetterSel);
2790
2791      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2792        return ExprError();
2793
2794      if (Getter || Setter) {
2795        QualType PType;
2796
2797        if (Getter)
2798          PType = Getter->getResultType();
2799        else
2800          // Get the expression type from Setter's incoming parameter.
2801          PType = (*(Setter->param_end() -1))->getType();
2802        // FIXME: we must check that the setter has property type.
2803        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2804                                                  PType,
2805                                                  Setter, MemberLoc, BaseExpr));
2806      }
2807      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2808                       << MemberName << BaseType);
2809    }
2810  }
2811
2812  if (BaseType->isObjCClassType() &&
2813      BaseType != Context.ObjCClassRedefinitionType) {
2814    BaseType = Context.ObjCClassRedefinitionType;
2815    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2816  }
2817
2818  if (IsArrow) {
2819    if (const PointerType *PT = BaseType->getAs<PointerType>())
2820      BaseType = PT->getPointeeType();
2821    else if (BaseType->isObjCObjectPointerType())
2822      ;
2823    else if (BaseType->isRecordType()) {
2824      // Recover from arrow accesses to records, e.g.:
2825      //   struct MyRecord foo;
2826      //   foo->bar
2827      // This is actually well-formed in C++ if MyRecord has an
2828      // overloaded operator->, but that should have been dealt with
2829      // by now.
2830      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2831        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2832        << CodeModificationHint::CreateReplacement(OpLoc, ".");
2833      IsArrow = false;
2834    } else {
2835      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
2836        << BaseType << BaseExpr->getSourceRange();
2837      return ExprError();
2838    }
2839  } else {
2840    // Recover from dot accesses to pointers, e.g.:
2841    //   type *foo;
2842    //   foo.bar
2843    // This is actually well-formed in two cases:
2844    //   - 'type' is an Objective C type
2845    //   - 'bar' is a pseudo-destructor name which happens to refer to
2846    //     the appropriate pointer type
2847    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
2848      const PointerType *PT = BaseType->getAs<PointerType>();
2849      if (PT && PT->getPointeeType()->isRecordType()) {
2850        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2851          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2852          << CodeModificationHint::CreateReplacement(OpLoc, "->");
2853        BaseType = PT->getPointeeType();
2854        IsArrow = true;
2855      }
2856    }
2857  }
2858
2859  // Handle field access to simple records.  This also handles access
2860  // to fields of the ObjC 'id' struct.
2861  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2862    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
2863                                 RTy, OpLoc, SS))
2864      return ExprError();
2865    return Owned((Expr*) 0);
2866  }
2867
2868  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2869  // into a record type was handled above, any destructor we see here is a
2870  // pseudo-destructor.
2871  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2872    // C++ [expr.pseudo]p2:
2873    //   The left hand side of the dot operator shall be of scalar type. The
2874    //   left hand side of the arrow operator shall be of pointer to scalar
2875    //   type.
2876    if (!BaseType->isScalarType())
2877      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2878                     << BaseType << BaseExpr->getSourceRange());
2879
2880    //   [...] The type designated by the pseudo-destructor-name shall be the
2881    //   same as the object type.
2882    if (!MemberName.getCXXNameType()->isDependentType() &&
2883        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2884      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2885                     << BaseType << MemberName.getCXXNameType()
2886                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2887
2888    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2889    //   the form
2890    //
2891    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2892    //
2893    //   shall designate the same scalar type.
2894    //
2895    // FIXME: DPG can't see any way to trigger this particular clause, so it
2896    // isn't checked here.
2897
2898    // FIXME: We've lost the precise spelling of the type by going through
2899    // DeclarationName. Can we do better?
2900    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2901                                                       IsArrow, OpLoc,
2902                               (NestedNameSpecifier *) SS.getScopeRep(),
2903                                                       SS.getRange(),
2904                                                   MemberName.getCXXNameType(),
2905                                                       MemberLoc));
2906  }
2907
2908  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2909  // (*Obj).ivar.
2910  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
2911      (!IsArrow && BaseType->isObjCInterfaceType())) {
2912    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2913    const ObjCInterfaceType *IFaceT =
2914      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2915    if (IFaceT) {
2916      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2917
2918      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2919      ObjCInterfaceDecl *ClassDeclared;
2920      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2921
2922      if (!IV) {
2923        // Attempt to correct for typos in ivar names.
2924        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
2925                         LookupMemberName);
2926        if (CorrectTypo(Res, 0, 0, IDecl) &&
2927            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
2928          Diag(R.getNameLoc(),
2929               diag::err_typecheck_member_reference_ivar_suggest)
2930            << IDecl->getDeclName() << MemberName << IV->getDeclName()
2931            << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2932                                                       IV->getNameAsString());
2933          Diag(IV->getLocation(), diag::note_previous_decl)
2934            << IV->getDeclName();
2935        }
2936      }
2937
2938      if (IV) {
2939        // If the decl being referenced had an error, return an error for this
2940        // sub-expr without emitting another error, in order to avoid cascading
2941        // error cases.
2942        if (IV->isInvalidDecl())
2943          return ExprError();
2944
2945        // Check whether we can reference this field.
2946        if (DiagnoseUseOfDecl(IV, MemberLoc))
2947          return ExprError();
2948        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2949            IV->getAccessControl() != ObjCIvarDecl::Package) {
2950          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2951          if (ObjCMethodDecl *MD = getCurMethodDecl())
2952            ClassOfMethodDecl =  MD->getClassInterface();
2953          else if (ObjCImpDecl && getCurFunctionDecl()) {
2954            // Case of a c-function declared inside an objc implementation.
2955            // FIXME: For a c-style function nested inside an objc implementation
2956            // class, there is no implementation context available, so we pass
2957            // down the context as argument to this routine. Ideally, this context
2958            // need be passed down in the AST node and somehow calculated from the
2959            // AST for a function decl.
2960            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2961            if (ObjCImplementationDecl *IMPD =
2962                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2963              ClassOfMethodDecl = IMPD->getClassInterface();
2964            else if (ObjCCategoryImplDecl* CatImplClass =
2965                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2966              ClassOfMethodDecl = CatImplClass->getClassInterface();
2967          }
2968
2969          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2970            if (ClassDeclared != IDecl ||
2971                ClassOfMethodDecl != ClassDeclared)
2972              Diag(MemberLoc, diag::error_private_ivar_access)
2973                << IV->getDeclName();
2974          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2975            // @protected
2976            Diag(MemberLoc, diag::error_protected_ivar_access)
2977              << IV->getDeclName();
2978        }
2979
2980        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2981                                                   MemberLoc, BaseExpr,
2982                                                   IsArrow));
2983      }
2984      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2985                         << IDecl->getDeclName() << MemberName
2986                         << BaseExpr->getSourceRange());
2987    }
2988  }
2989  // Handle properties on 'id' and qualified "id".
2990  if (!IsArrow && (BaseType->isObjCIdType() ||
2991                   BaseType->isObjCQualifiedIdType())) {
2992    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
2993    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2994
2995    // Check protocols on qualified interfaces.
2996    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2997    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2998      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2999        // Check the use of this declaration
3000        if (DiagnoseUseOfDecl(PD, MemberLoc))
3001          return ExprError();
3002
3003        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3004                                                       MemberLoc, BaseExpr));
3005      }
3006      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3007        // Check the use of this method.
3008        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3009          return ExprError();
3010
3011        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
3012                                                   OMD->getResultType(),
3013                                                   OMD, OpLoc, MemberLoc,
3014                                                   NULL, 0));
3015      }
3016    }
3017
3018    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3019                       << MemberName << BaseType);
3020  }
3021  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3022  // pointer to a (potentially qualified) interface type.
3023  const ObjCObjectPointerType *OPT;
3024  if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
3025    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
3026    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
3027    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3028
3029    // Search for a declared property first.
3030    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
3031      // Check whether we can reference this property.
3032      if (DiagnoseUseOfDecl(PD, MemberLoc))
3033        return ExprError();
3034      QualType ResTy = PD->getType();
3035      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3036      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3037      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
3038        ResTy = Getter->getResultType();
3039      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
3040                                                     MemberLoc, BaseExpr));
3041    }
3042    // Check protocols on qualified interfaces.
3043    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3044         E = OPT->qual_end(); I != E; ++I)
3045      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3046        // Check whether we can reference this property.
3047        if (DiagnoseUseOfDecl(PD, MemberLoc))
3048          return ExprError();
3049
3050        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3051                                                       MemberLoc, BaseExpr));
3052      }
3053    // If that failed, look for an "implicit" property by seeing if the nullary
3054    // selector is implemented.
3055
3056    // FIXME: The logic for looking up nullary and unary selectors should be
3057    // shared with the code in ActOnInstanceMessage.
3058
3059    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3060    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3061
3062    // If this reference is in an @implementation, check for 'private' methods.
3063    if (!Getter)
3064      Getter = IFace->lookupPrivateInstanceMethod(Sel);
3065
3066    // Look through local category implementations associated with the class.
3067    if (!Getter)
3068      Getter = IFace->getCategoryInstanceMethod(Sel);
3069    if (Getter) {
3070      // Check if we can reference this property.
3071      if (DiagnoseUseOfDecl(Getter, MemberLoc))
3072        return ExprError();
3073    }
3074    // If we found a getter then this may be a valid dot-reference, we
3075    // will look for the matching setter, in case it is needed.
3076    Selector SetterSel =
3077      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3078                                         PP.getSelectorTable(), Member);
3079    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
3080    if (!Setter) {
3081      // If this reference is in an @implementation, also check for 'private'
3082      // methods.
3083      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3084    }
3085    // Look through local category implementations associated with the class.
3086    if (!Setter)
3087      Setter = IFace->getCategoryInstanceMethod(SetterSel);
3088
3089    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3090      return ExprError();
3091
3092    if (Getter) {
3093      QualType PType;
3094      PType = Getter->getResultType();
3095      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
3096                                      Setter, MemberLoc, BaseExpr));
3097    }
3098
3099    // Attempt to correct for typos in property names.
3100    LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3101                     LookupOrdinaryName);
3102    if (CorrectTypo(Res, 0, 0, IFace, false, OPT) &&
3103        Res.getAsSingle<ObjCPropertyDecl>()) {
3104      Diag(R.getNameLoc(), diag::err_property_not_found_suggest)
3105        << MemberName << BaseType << Res.getLookupName()
3106        << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3107                                           Res.getLookupName().getAsString());
3108      ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
3109      Diag(Property->getLocation(), diag::note_previous_decl)
3110        << Property->getDeclName();
3111
3112      return LookupMemberExpr(Res, BaseExpr, IsArrow, OpLoc, SS,
3113                              ObjCImpDecl);
3114    }
3115
3116    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3117      << MemberName << BaseType);
3118  }
3119
3120  // Handle the following exceptional case (*Obj).isa.
3121  if (!IsArrow &&
3122      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
3123      MemberName.getAsIdentifierInfo()->isStr("isa"))
3124    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3125                                           Context.getObjCClassType()));
3126
3127  // Handle 'field access' to vectors, such as 'V.xx'.
3128  if (BaseType->isExtVectorType()) {
3129    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3130    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3131    if (ret.isNull())
3132      return ExprError();
3133    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3134                                                    MemberLoc));
3135  }
3136
3137  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3138    << BaseType << BaseExpr->getSourceRange();
3139
3140  return ExprError();
3141}
3142
3143static Sema::OwningExprResult DiagnoseDtorReference(Sema &SemaRef,
3144                                                    SourceLocation NameLoc,
3145                                                    Sema::ExprArg MemExpr) {
3146  Expr *E = (Expr *) MemExpr.get();
3147  SourceLocation ExpectedLParenLoc = SemaRef.PP.getLocForEndOfToken(NameLoc);
3148  SemaRef.Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
3149    << isa<CXXPseudoDestructorExpr>(E)
3150    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
3151
3152  return SemaRef.ActOnCallExpr(/*Scope*/ 0,
3153                               move(MemExpr),
3154                               /*LPLoc*/ ExpectedLParenLoc,
3155                               Sema::MultiExprArg(SemaRef, 0, 0),
3156                               /*CommaLocs*/ 0,
3157                               /*RPLoc*/ ExpectedLParenLoc);
3158}
3159
3160/// The main callback when the parser finds something like
3161///   expression . [nested-name-specifier] identifier
3162///   expression -> [nested-name-specifier] identifier
3163/// where 'identifier' encompasses a fairly broad spectrum of
3164/// possibilities, including destructor and operator references.
3165///
3166/// \param OpKind either tok::arrow or tok::period
3167/// \param HasTrailingLParen whether the next token is '(', which
3168///   is used to diagnose mis-uses of special members that can
3169///   only be called
3170/// \param ObjCImpDecl the current ObjC @implementation decl;
3171///   this is an ugly hack around the fact that ObjC @implementations
3172///   aren't properly put in the context chain
3173Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3174                                                   SourceLocation OpLoc,
3175                                                   tok::TokenKind OpKind,
3176                                                   const CXXScopeSpec &SS,
3177                                                   UnqualifiedId &Id,
3178                                                   DeclPtrTy ObjCImpDecl,
3179                                                   bool HasTrailingLParen) {
3180  if (SS.isSet() && SS.isInvalid())
3181    return ExprError();
3182
3183  TemplateArgumentListInfo TemplateArgsBuffer;
3184
3185  // Decompose the name into its component parts.
3186  DeclarationName Name;
3187  SourceLocation NameLoc;
3188  const TemplateArgumentListInfo *TemplateArgs;
3189  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3190                         Name, NameLoc, TemplateArgs);
3191
3192  bool IsArrow = (OpKind == tok::arrow);
3193
3194  NamedDecl *FirstQualifierInScope
3195    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3196                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3197
3198  // This is a postfix expression, so get rid of ParenListExprs.
3199  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3200
3201  Expr *Base = BaseArg.takeAs<Expr>();
3202  OwningExprResult Result(*this);
3203  if (Base->getType()->isDependentType() || Name.isDependentName()) {
3204    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3205                                      IsArrow, OpLoc,
3206                                      SS, FirstQualifierInScope,
3207                                      Name, NameLoc,
3208                                      TemplateArgs);
3209  } else {
3210    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3211    if (TemplateArgs) {
3212      // Re-use the lookup done for the template name.
3213      DecomposeTemplateName(R, Id);
3214    } else {
3215      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3216                                SS, ObjCImpDecl);
3217
3218      if (Result.isInvalid()) {
3219        Owned(Base);
3220        return ExprError();
3221      }
3222
3223      if (Result.get()) {
3224        // The only way a reference to a destructor can be used is to
3225        // immediately call it, which falls into this case.  If the
3226        // next token is not a '(', produce a diagnostic and build the
3227        // call now.
3228        if (!HasTrailingLParen &&
3229            Id.getKind() == UnqualifiedId::IK_DestructorName)
3230          return DiagnoseDtorReference(*this, NameLoc, move(Result));
3231
3232        return move(Result);
3233      }
3234    }
3235
3236    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3237                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3238                                      R, TemplateArgs);
3239  }
3240
3241  return move(Result);
3242}
3243
3244Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3245                                                    FunctionDecl *FD,
3246                                                    ParmVarDecl *Param) {
3247  if (Param->hasUnparsedDefaultArg()) {
3248    Diag (CallLoc,
3249          diag::err_use_of_default_argument_to_function_declared_later) <<
3250      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3251    Diag(UnparsedDefaultArgLocs[Param],
3252          diag::note_default_argument_declared_here);
3253  } else {
3254    if (Param->hasUninstantiatedDefaultArg()) {
3255      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3256
3257      // Instantiate the expression.
3258      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
3259
3260      InstantiatingTemplate Inst(*this, CallLoc, Param,
3261                                 ArgList.getInnermost().getFlatArgumentList(),
3262                                 ArgList.getInnermost().flat_size());
3263
3264      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3265      if (Result.isInvalid())
3266        return ExprError();
3267
3268      // Check the expression as an initializer for the parameter.
3269      InitializedEntity Entity
3270        = InitializedEntity::InitializeParameter(Param);
3271      InitializationKind Kind
3272        = InitializationKind::CreateCopy(Param->getLocation(),
3273               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3274      Expr *ResultE = Result.takeAs<Expr>();
3275
3276      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3277      Result = InitSeq.Perform(*this, Entity, Kind,
3278                               MultiExprArg(*this, (void**)&ResultE, 1));
3279      if (Result.isInvalid())
3280        return ExprError();
3281
3282      // Build the default argument expression.
3283      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3284                                             Result.takeAs<Expr>()));
3285    }
3286
3287    // If the default expression creates temporaries, we need to
3288    // push them to the current stack of expression temporaries so they'll
3289    // be properly destroyed.
3290    // FIXME: We should really be rebuilding the default argument with new
3291    // bound temporaries; see the comment in PR5810.
3292    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3293      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3294  }
3295
3296  // We already type-checked the argument, so we know it works.
3297  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3298}
3299
3300/// ConvertArgumentsForCall - Converts the arguments specified in
3301/// Args/NumArgs to the parameter types of the function FDecl with
3302/// function prototype Proto. Call is the call expression itself, and
3303/// Fn is the function expression. For a C++ member function, this
3304/// routine does not attempt to convert the object argument. Returns
3305/// true if the call is ill-formed.
3306bool
3307Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3308                              FunctionDecl *FDecl,
3309                              const FunctionProtoType *Proto,
3310                              Expr **Args, unsigned NumArgs,
3311                              SourceLocation RParenLoc) {
3312  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3313  // assignment, to the types of the corresponding parameter, ...
3314  unsigned NumArgsInProto = Proto->getNumArgs();
3315  bool Invalid = false;
3316
3317  // If too few arguments are available (and we don't have default
3318  // arguments for the remaining parameters), don't make the call.
3319  if (NumArgs < NumArgsInProto) {
3320    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3321      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3322        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
3323    Call->setNumArgs(Context, NumArgsInProto);
3324  }
3325
3326  // If too many are passed and not variadic, error on the extras and drop
3327  // them.
3328  if (NumArgs > NumArgsInProto) {
3329    if (!Proto->isVariadic()) {
3330      Diag(Args[NumArgsInProto]->getLocStart(),
3331           diag::err_typecheck_call_too_many_args)
3332        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
3333        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3334                       Args[NumArgs-1]->getLocEnd());
3335      // This deletes the extra arguments.
3336      Call->setNumArgs(Context, NumArgsInProto);
3337      return true;
3338    }
3339  }
3340  llvm::SmallVector<Expr *, 8> AllArgs;
3341  VariadicCallType CallType =
3342    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3343  if (Fn->getType()->isBlockPointerType())
3344    CallType = VariadicBlock; // Block
3345  else if (isa<MemberExpr>(Fn))
3346    CallType = VariadicMethod;
3347  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3348                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3349  if (Invalid)
3350    return true;
3351  unsigned TotalNumArgs = AllArgs.size();
3352  for (unsigned i = 0; i < TotalNumArgs; ++i)
3353    Call->setArg(i, AllArgs[i]);
3354
3355  return false;
3356}
3357
3358bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3359                                  FunctionDecl *FDecl,
3360                                  const FunctionProtoType *Proto,
3361                                  unsigned FirstProtoArg,
3362                                  Expr **Args, unsigned NumArgs,
3363                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3364                                  VariadicCallType CallType) {
3365  unsigned NumArgsInProto = Proto->getNumArgs();
3366  unsigned NumArgsToCheck = NumArgs;
3367  bool Invalid = false;
3368  if (NumArgs != NumArgsInProto)
3369    // Use default arguments for missing arguments
3370    NumArgsToCheck = NumArgsInProto;
3371  unsigned ArgIx = 0;
3372  // Continue to check argument types (even if we have too few/many args).
3373  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3374    QualType ProtoArgType = Proto->getArgType(i);
3375
3376    Expr *Arg;
3377    if (ArgIx < NumArgs) {
3378      Arg = Args[ArgIx++];
3379
3380      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3381                              ProtoArgType,
3382                              PDiag(diag::err_call_incomplete_argument)
3383                              << Arg->getSourceRange()))
3384        return true;
3385
3386      // Pass the argument
3387      ParmVarDecl *Param = 0;
3388      if (FDecl && i < FDecl->getNumParams())
3389        Param = FDecl->getParamDecl(i);
3390
3391
3392      InitializedEntity Entity =
3393        Param? InitializedEntity::InitializeParameter(Param)
3394             : InitializedEntity::InitializeParameter(ProtoArgType);
3395      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3396                                                        SourceLocation(),
3397                                                        Owned(Arg));
3398      if (ArgE.isInvalid())
3399        return true;
3400
3401      Arg = ArgE.takeAs<Expr>();
3402    } else {
3403      ParmVarDecl *Param = FDecl->getParamDecl(i);
3404
3405      OwningExprResult ArgExpr =
3406        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3407      if (ArgExpr.isInvalid())
3408        return true;
3409
3410      Arg = ArgExpr.takeAs<Expr>();
3411    }
3412    AllArgs.push_back(Arg);
3413  }
3414
3415  // If this is a variadic call, handle args passed through "...".
3416  if (CallType != VariadicDoesNotApply) {
3417    // Promote the arguments (C99 6.5.2.2p7).
3418    for (unsigned i = ArgIx; i < NumArgs; i++) {
3419      Expr *Arg = Args[i];
3420      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
3421      AllArgs.push_back(Arg);
3422    }
3423  }
3424  return Invalid;
3425}
3426
3427/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3428/// This provides the location of the left/right parens and a list of comma
3429/// locations.
3430Action::OwningExprResult
3431Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3432                    MultiExprArg args,
3433                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3434  unsigned NumArgs = args.size();
3435
3436  // Since this might be a postfix expression, get rid of ParenListExprs.
3437  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3438
3439  Expr *Fn = fn.takeAs<Expr>();
3440  Expr **Args = reinterpret_cast<Expr**>(args.release());
3441  assert(Fn && "no function call expression");
3442
3443  if (getLangOptions().CPlusPlus) {
3444    // If this is a pseudo-destructor expression, build the call immediately.
3445    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3446      if (NumArgs > 0) {
3447        // Pseudo-destructor calls should not have any arguments.
3448        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3449          << CodeModificationHint::CreateRemoval(
3450                                    SourceRange(Args[0]->getLocStart(),
3451                                                Args[NumArgs-1]->getLocEnd()));
3452
3453        for (unsigned I = 0; I != NumArgs; ++I)
3454          Args[I]->Destroy(Context);
3455
3456        NumArgs = 0;
3457      }
3458
3459      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3460                                          RParenLoc));
3461    }
3462
3463    // Determine whether this is a dependent call inside a C++ template,
3464    // in which case we won't do any semantic analysis now.
3465    // FIXME: Will need to cache the results of name lookup (including ADL) in
3466    // Fn.
3467    bool Dependent = false;
3468    if (Fn->isTypeDependent())
3469      Dependent = true;
3470    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3471      Dependent = true;
3472
3473    if (Dependent)
3474      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3475                                          Context.DependentTy, RParenLoc));
3476
3477    // Determine whether this is a call to an object (C++ [over.call.object]).
3478    if (Fn->getType()->isRecordType())
3479      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3480                                                CommaLocs, RParenLoc));
3481
3482    Expr *NakedFn = Fn->IgnoreParens();
3483
3484    // Determine whether this is a call to an unresolved member function.
3485    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3486      // If lookup was unresolved but not dependent (i.e. didn't find
3487      // an unresolved using declaration), it has to be an overloaded
3488      // function set, which means it must contain either multiple
3489      // declarations (all methods or method templates) or a single
3490      // method template.
3491      assert((MemE->getNumDecls() > 1) ||
3492             isa<FunctionTemplateDecl>(*MemE->decls_begin()));
3493      (void)MemE;
3494
3495      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3496                                       CommaLocs, RParenLoc);
3497    }
3498
3499    // Determine whether this is a call to a member function.
3500    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3501      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3502      if (isa<CXXMethodDecl>(MemDecl))
3503        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3504                                         CommaLocs, RParenLoc);
3505    }
3506
3507    // Determine whether this is a call to a pointer-to-member function.
3508    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3509      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3510          BO->getOpcode() == BinaryOperator::PtrMemI) {
3511        if (const FunctionProtoType *FPT =
3512              dyn_cast<FunctionProtoType>(BO->getType())) {
3513          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3514
3515          ExprOwningPtr<CXXMemberCallExpr>
3516            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3517                                                          NumArgs, ResultTy,
3518                                                          RParenLoc));
3519
3520          if (CheckCallReturnType(FPT->getResultType(),
3521                                  BO->getRHS()->getSourceRange().getBegin(),
3522                                  TheCall.get(), 0))
3523            return ExprError();
3524
3525          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3526                                      RParenLoc))
3527            return ExprError();
3528
3529          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3530        }
3531        return ExprError(Diag(Fn->getLocStart(),
3532                              diag::err_typecheck_call_not_function)
3533                              << Fn->getType() << Fn->getSourceRange());
3534      }
3535    }
3536  }
3537
3538  // If we're directly calling a function, get the appropriate declaration.
3539  // Also, in C++, keep track of whether we should perform argument-dependent
3540  // lookup and whether there were any explicitly-specified template arguments.
3541
3542  Expr *NakedFn = Fn->IgnoreParens();
3543  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3544    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3545    return BuildOverloadedCallExpr(Fn, ULE, LParenLoc, Args, NumArgs,
3546                                   CommaLocs, RParenLoc);
3547  }
3548
3549  NamedDecl *NDecl = 0;
3550  if (isa<DeclRefExpr>(NakedFn))
3551    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3552
3553  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3554}
3555
3556/// BuildResolvedCallExpr - Build a call to a resolved expression,
3557/// i.e. an expression not of \p OverloadTy.  The expression should
3558/// unary-convert to an expression of function-pointer or
3559/// block-pointer type.
3560///
3561/// \param NDecl the declaration being called, if available
3562Sema::OwningExprResult
3563Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3564                            SourceLocation LParenLoc,
3565                            Expr **Args, unsigned NumArgs,
3566                            SourceLocation RParenLoc) {
3567  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3568
3569  // Promote the function operand.
3570  UsualUnaryConversions(Fn);
3571
3572  // Make the call expr early, before semantic checks.  This guarantees cleanup
3573  // of arguments and function on error.
3574  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3575                                                               Args, NumArgs,
3576                                                               Context.BoolTy,
3577                                                               RParenLoc));
3578
3579  const FunctionType *FuncT;
3580  if (!Fn->getType()->isBlockPointerType()) {
3581    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3582    // have type pointer to function".
3583    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3584    if (PT == 0)
3585      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3586        << Fn->getType() << Fn->getSourceRange());
3587    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3588  } else { // This is a block call.
3589    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3590                getAs<FunctionType>();
3591  }
3592  if (FuncT == 0)
3593    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3594      << Fn->getType() << Fn->getSourceRange());
3595
3596  // Check for a valid return type
3597  if (CheckCallReturnType(FuncT->getResultType(),
3598                          Fn->getSourceRange().getBegin(), TheCall.get(),
3599                          FDecl))
3600    return ExprError();
3601
3602  // We know the result type of the call, set it.
3603  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3604
3605  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3606    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3607                                RParenLoc))
3608      return ExprError();
3609  } else {
3610    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3611
3612    if (FDecl) {
3613      // Check if we have too few/too many template arguments, based
3614      // on our knowledge of the function definition.
3615      const FunctionDecl *Def = 0;
3616      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3617        const FunctionProtoType *Proto =
3618            Def->getType()->getAs<FunctionProtoType>();
3619        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3620          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3621            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3622        }
3623      }
3624    }
3625
3626    // Promote the arguments (C99 6.5.2.2p6).
3627    for (unsigned i = 0; i != NumArgs; i++) {
3628      Expr *Arg = Args[i];
3629      DefaultArgumentPromotion(Arg);
3630      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3631                              Arg->getType(),
3632                              PDiag(diag::err_call_incomplete_argument)
3633                                << Arg->getSourceRange()))
3634        return ExprError();
3635      TheCall->setArg(i, Arg);
3636    }
3637  }
3638
3639  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3640    if (!Method->isStatic())
3641      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3642        << Fn->getSourceRange());
3643
3644  // Check for sentinels
3645  if (NDecl)
3646    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3647
3648  // Do special checking on direct calls to functions.
3649  if (FDecl) {
3650    if (CheckFunctionCall(FDecl, TheCall.get()))
3651      return ExprError();
3652
3653    if (unsigned BuiltinID = FDecl->getBuiltinID())
3654      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3655  } else if (NDecl) {
3656    if (CheckBlockCall(NDecl, TheCall.get()))
3657      return ExprError();
3658  }
3659
3660  return MaybeBindToTemporary(TheCall.take());
3661}
3662
3663Action::OwningExprResult
3664Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3665                           SourceLocation RParenLoc, ExprArg InitExpr) {
3666  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3667  // FIXME: put back this assert when initializers are worked out.
3668  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3669
3670  TypeSourceInfo *TInfo;
3671  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3672  if (!TInfo)
3673    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3674
3675  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3676}
3677
3678Action::OwningExprResult
3679Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3680                               SourceLocation RParenLoc, ExprArg InitExpr) {
3681  QualType literalType = TInfo->getType();
3682  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3683
3684  if (literalType->isArrayType()) {
3685    if (literalType->isVariableArrayType())
3686      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3687        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3688  } else if (!literalType->isDependentType() &&
3689             RequireCompleteType(LParenLoc, literalType,
3690                      PDiag(diag::err_typecheck_decl_incomplete_type)
3691                        << SourceRange(LParenLoc,
3692                                       literalExpr->getSourceRange().getEnd())))
3693    return ExprError();
3694
3695  InitializedEntity Entity
3696    = InitializedEntity::InitializeTemporary(literalType);
3697  InitializationKind Kind
3698    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3699                                     /*IsCStyleCast=*/true);
3700  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3701  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3702                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3703                                            &literalType);
3704  if (Result.isInvalid())
3705    return ExprError();
3706  InitExpr.release();
3707  literalExpr = static_cast<Expr*>(Result.get());
3708
3709  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3710  if (isFileScope) { // 6.5.2.5p3
3711    if (CheckForConstantInitializer(literalExpr, literalType))
3712      return ExprError();
3713  }
3714
3715  Result.release();
3716
3717  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3718                                                 literalExpr, isFileScope));
3719}
3720
3721Action::OwningExprResult
3722Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3723                    SourceLocation RBraceLoc) {
3724  unsigned NumInit = initlist.size();
3725  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3726
3727  // Semantic analysis for initializers is done by ActOnDeclarator() and
3728  // CheckInitializer() - it requires knowledge of the object being intialized.
3729
3730  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3731                                               RBraceLoc);
3732  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3733  return Owned(E);
3734}
3735
3736static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3737                                            QualType SrcTy, QualType DestTy) {
3738  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3739    return CastExpr::CK_NoOp;
3740
3741  if (SrcTy->hasPointerRepresentation()) {
3742    if (DestTy->hasPointerRepresentation())
3743      return DestTy->isObjCObjectPointerType() ?
3744                CastExpr::CK_AnyPointerToObjCPointerCast :
3745                CastExpr::CK_BitCast;
3746    if (DestTy->isIntegerType())
3747      return CastExpr::CK_PointerToIntegral;
3748  }
3749
3750  if (SrcTy->isIntegerType()) {
3751    if (DestTy->isIntegerType())
3752      return CastExpr::CK_IntegralCast;
3753    if (DestTy->hasPointerRepresentation())
3754      return CastExpr::CK_IntegralToPointer;
3755    if (DestTy->isRealFloatingType())
3756      return CastExpr::CK_IntegralToFloating;
3757  }
3758
3759  if (SrcTy->isRealFloatingType()) {
3760    if (DestTy->isRealFloatingType())
3761      return CastExpr::CK_FloatingCast;
3762    if (DestTy->isIntegerType())
3763      return CastExpr::CK_FloatingToIntegral;
3764  }
3765
3766  // FIXME: Assert here.
3767  // assert(false && "Unhandled cast combination!");
3768  return CastExpr::CK_Unknown;
3769}
3770
3771/// CheckCastTypes - Check type constraints for casting between types.
3772bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3773                          CastExpr::CastKind& Kind,
3774                          CXXMethodDecl *& ConversionDecl,
3775                          bool FunctionalStyle) {
3776  if (getLangOptions().CPlusPlus)
3777    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3778                              ConversionDecl);
3779
3780  DefaultFunctionArrayConversion(castExpr);
3781
3782  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3783  // type needs to be scalar.
3784  if (castType->isVoidType()) {
3785    // Cast to void allows any expr type.
3786    Kind = CastExpr::CK_ToVoid;
3787    return false;
3788  }
3789
3790  if (!castType->isScalarType() && !castType->isVectorType()) {
3791    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3792        (castType->isStructureType() || castType->isUnionType())) {
3793      // GCC struct/union extension: allow cast to self.
3794      // FIXME: Check that the cast destination type is complete.
3795      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3796        << castType << castExpr->getSourceRange();
3797      Kind = CastExpr::CK_NoOp;
3798      return false;
3799    }
3800
3801    if (castType->isUnionType()) {
3802      // GCC cast to union extension
3803      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3804      RecordDecl::field_iterator Field, FieldEnd;
3805      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3806           Field != FieldEnd; ++Field) {
3807        if (Context.hasSameUnqualifiedType(Field->getType(),
3808                                           castExpr->getType())) {
3809          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3810            << castExpr->getSourceRange();
3811          break;
3812        }
3813      }
3814      if (Field == FieldEnd)
3815        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3816          << castExpr->getType() << castExpr->getSourceRange();
3817      Kind = CastExpr::CK_ToUnion;
3818      return false;
3819    }
3820
3821    // Reject any other conversions to non-scalar types.
3822    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3823      << castType << castExpr->getSourceRange();
3824  }
3825
3826  if (!castExpr->getType()->isScalarType() &&
3827      !castExpr->getType()->isVectorType()) {
3828    return Diag(castExpr->getLocStart(),
3829                diag::err_typecheck_expect_scalar_operand)
3830      << castExpr->getType() << castExpr->getSourceRange();
3831  }
3832
3833  if (castType->isExtVectorType())
3834    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3835
3836  if (castType->isVectorType())
3837    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3838  if (castExpr->getType()->isVectorType())
3839    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3840
3841  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3842    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3843
3844  if (isa<ObjCSelectorExpr>(castExpr))
3845    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3846
3847  if (!castType->isArithmeticType()) {
3848    QualType castExprType = castExpr->getType();
3849    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3850      return Diag(castExpr->getLocStart(),
3851                  diag::err_cast_pointer_from_non_pointer_int)
3852        << castExprType << castExpr->getSourceRange();
3853  } else if (!castExpr->getType()->isArithmeticType()) {
3854    if (!castType->isIntegralType() && castType->isArithmeticType())
3855      return Diag(castExpr->getLocStart(),
3856                  diag::err_cast_pointer_to_non_pointer_int)
3857        << castType << castExpr->getSourceRange();
3858  }
3859
3860  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3861  return false;
3862}
3863
3864bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3865                           CastExpr::CastKind &Kind) {
3866  assert(VectorTy->isVectorType() && "Not a vector type!");
3867
3868  if (Ty->isVectorType() || Ty->isIntegerType()) {
3869    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3870      return Diag(R.getBegin(),
3871                  Ty->isVectorType() ?
3872                  diag::err_invalid_conversion_between_vectors :
3873                  diag::err_invalid_conversion_between_vector_and_integer)
3874        << VectorTy << Ty << R;
3875  } else
3876    return Diag(R.getBegin(),
3877                diag::err_invalid_conversion_between_vector_and_scalar)
3878      << VectorTy << Ty << R;
3879
3880  Kind = CastExpr::CK_BitCast;
3881  return false;
3882}
3883
3884bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3885                              CastExpr::CastKind &Kind) {
3886  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3887
3888  QualType SrcTy = CastExpr->getType();
3889
3890  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3891  // an ExtVectorType.
3892  if (SrcTy->isVectorType()) {
3893    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3894      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3895        << DestTy << SrcTy << R;
3896    Kind = CastExpr::CK_BitCast;
3897    return false;
3898  }
3899
3900  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3901  // conversion will take place first from scalar to elt type, and then
3902  // splat from elt type to vector.
3903  if (SrcTy->isPointerType())
3904    return Diag(R.getBegin(),
3905                diag::err_invalid_conversion_between_vector_and_scalar)
3906      << DestTy << SrcTy << R;
3907
3908  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3909  ImpCastExprToType(CastExpr, DestElemTy,
3910                    getScalarCastKind(Context, SrcTy, DestElemTy));
3911
3912  Kind = CastExpr::CK_VectorSplat;
3913  return false;
3914}
3915
3916Action::OwningExprResult
3917Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3918                    SourceLocation RParenLoc, ExprArg Op) {
3919  assert((Ty != 0) && (Op.get() != 0) &&
3920         "ActOnCastExpr(): missing type or expr");
3921
3922  TypeSourceInfo *castTInfo;
3923  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3924  if (!castTInfo)
3925    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3926
3927  // If the Expr being casted is a ParenListExpr, handle it specially.
3928  Expr *castExpr = (Expr *)Op.get();
3929  if (isa<ParenListExpr>(castExpr))
3930    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3931                                    castTInfo);
3932
3933  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3934}
3935
3936Action::OwningExprResult
3937Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
3938                          SourceLocation RParenLoc, ExprArg Op) {
3939  Expr *castExpr = static_cast<Expr*>(Op.get());
3940
3941  CXXMethodDecl *Method = 0;
3942  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3943  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
3944                     Kind, Method))
3945    return ExprError();
3946
3947  if (Method) {
3948    // FIXME: preserve type source info here
3949    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, Ty->getType(),
3950                                                    Kind, Method, move(Op));
3951
3952    if (CastArg.isInvalid())
3953      return ExprError();
3954
3955    castExpr = CastArg.takeAs<Expr>();
3956  } else {
3957    Op.release();
3958  }
3959
3960  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
3961                                            Kind, castExpr, Ty,
3962                                            LParenLoc, RParenLoc));
3963}
3964
3965/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3966/// of comma binary operators.
3967Action::OwningExprResult
3968Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3969  Expr *expr = EA.takeAs<Expr>();
3970  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3971  if (!E)
3972    return Owned(expr);
3973
3974  OwningExprResult Result(*this, E->getExpr(0));
3975
3976  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
3977    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
3978                        Owned(E->getExpr(i)));
3979
3980  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
3981}
3982
3983Action::OwningExprResult
3984Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
3985                               SourceLocation RParenLoc, ExprArg Op,
3986                               TypeSourceInfo *TInfo) {
3987  ParenListExpr *PE = (ParenListExpr *)Op.get();
3988  QualType Ty = TInfo->getType();
3989
3990  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
3991  // then handle it as such.
3992  if (getLangOptions().AltiVec && Ty->isVectorType()) {
3993    if (PE->getNumExprs() == 0) {
3994      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
3995      return ExprError();
3996    }
3997
3998    llvm::SmallVector<Expr *, 8> initExprs;
3999    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4000      initExprs.push_back(PE->getExpr(i));
4001
4002    // FIXME: This means that pretty-printing the final AST will produce curly
4003    // braces instead of the original commas.
4004    Op.release();
4005    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
4006                                                 initExprs.size(), RParenLoc);
4007    E->setType(Ty);
4008    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4009  } else {
4010    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4011    // sequence of BinOp comma operators.
4012    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4013    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4014  }
4015}
4016
4017Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4018                                                  SourceLocation R,
4019                                                  MultiExprArg Val,
4020                                                  TypeTy *TypeOfCast) {
4021  unsigned nexprs = Val.size();
4022  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4023  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4024  Expr *expr;
4025  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4026    expr = new (Context) ParenExpr(L, R, exprs[0]);
4027  else
4028    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4029  return Owned(expr);
4030}
4031
4032/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4033/// In that case, lhs = cond.
4034/// C99 6.5.15
4035QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4036                                        SourceLocation QuestionLoc) {
4037  // C++ is sufficiently different to merit its own checker.
4038  if (getLangOptions().CPlusPlus)
4039    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4040
4041  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
4042
4043  UsualUnaryConversions(Cond);
4044  UsualUnaryConversions(LHS);
4045  UsualUnaryConversions(RHS);
4046  QualType CondTy = Cond->getType();
4047  QualType LHSTy = LHS->getType();
4048  QualType RHSTy = RHS->getType();
4049
4050  // first, check the condition.
4051  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4052    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4053      << CondTy;
4054    return QualType();
4055  }
4056
4057  // Now check the two expressions.
4058  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4059    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4060
4061  // If both operands have arithmetic type, do the usual arithmetic conversions
4062  // to find a common type: C99 6.5.15p3,5.
4063  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4064    UsualArithmeticConversions(LHS, RHS);
4065    return LHS->getType();
4066  }
4067
4068  // If both operands are the same structure or union type, the result is that
4069  // type.
4070  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4071    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4072      if (LHSRT->getDecl() == RHSRT->getDecl())
4073        // "If both the operands have structure or union type, the result has
4074        // that type."  This implies that CV qualifiers are dropped.
4075        return LHSTy.getUnqualifiedType();
4076    // FIXME: Type of conditional expression must be complete in C mode.
4077  }
4078
4079  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4080  // The following || allows only one side to be void (a GCC-ism).
4081  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4082    if (!LHSTy->isVoidType())
4083      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4084        << RHS->getSourceRange();
4085    if (!RHSTy->isVoidType())
4086      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4087        << LHS->getSourceRange();
4088    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4089    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4090    return Context.VoidTy;
4091  }
4092  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4093  // the type of the other operand."
4094  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4095      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4096    // promote the null to a pointer.
4097    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4098    return LHSTy;
4099  }
4100  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4101      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4102    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4103    return RHSTy;
4104  }
4105
4106  // All objective-c pointer type analysis is done here.
4107  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4108                                                        QuestionLoc);
4109  if (!compositeType.isNull())
4110    return compositeType;
4111
4112
4113  // Handle block pointer types.
4114  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4115    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4116      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4117        QualType destType = Context.getPointerType(Context.VoidTy);
4118        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4119        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4120        return destType;
4121      }
4122      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4123      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4124      return QualType();
4125    }
4126    // We have 2 block pointer types.
4127    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4128      // Two identical block pointer types are always compatible.
4129      return LHSTy;
4130    }
4131    // The block pointer types aren't identical, continue checking.
4132    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4133    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4134
4135    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4136                                    rhptee.getUnqualifiedType())) {
4137      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4138      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4139      // In this situation, we assume void* type. No especially good
4140      // reason, but this is what gcc does, and we do have to pick
4141      // to get a consistent AST.
4142      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4143      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4144      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4145      return incompatTy;
4146    }
4147    // The block pointer types are compatible.
4148    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4149    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4150    return LHSTy;
4151  }
4152
4153  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4154  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4155    // get the "pointed to" types
4156    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4157    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4158
4159    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4160    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4161      // Figure out necessary qualifiers (C99 6.5.15p6)
4162      QualType destPointee
4163        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4164      QualType destType = Context.getPointerType(destPointee);
4165      // Add qualifiers if necessary.
4166      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4167      // Promote to void*.
4168      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4169      return destType;
4170    }
4171    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4172      QualType destPointee
4173        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4174      QualType destType = Context.getPointerType(destPointee);
4175      // Add qualifiers if necessary.
4176      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4177      // Promote to void*.
4178      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4179      return destType;
4180    }
4181
4182    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4183      // Two identical pointer types are always compatible.
4184      return LHSTy;
4185    }
4186    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4187                                    rhptee.getUnqualifiedType())) {
4188      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4189        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4190      // In this situation, we assume void* type. No especially good
4191      // reason, but this is what gcc does, and we do have to pick
4192      // to get a consistent AST.
4193      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4194      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4195      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4196      return incompatTy;
4197    }
4198    // The pointer types are compatible.
4199    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4200    // differently qualified versions of compatible types, the result type is
4201    // a pointer to an appropriately qualified version of the *composite*
4202    // type.
4203    // FIXME: Need to calculate the composite type.
4204    // FIXME: Need to add qualifiers
4205    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4206    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4207    return LHSTy;
4208  }
4209
4210  // GCC compatibility: soften pointer/integer mismatch.
4211  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4212    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4213      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4214    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4215    return RHSTy;
4216  }
4217  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4218    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4219      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4220    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4221    return LHSTy;
4222  }
4223
4224  // Otherwise, the operands are not compatible.
4225  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4226    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4227  return QualType();
4228}
4229
4230/// FindCompositeObjCPointerType - Helper method to find composite type of
4231/// two objective-c pointer types of the two input expressions.
4232QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4233                                        SourceLocation QuestionLoc) {
4234  QualType LHSTy = LHS->getType();
4235  QualType RHSTy = RHS->getType();
4236
4237  // Handle things like Class and struct objc_class*.  Here we case the result
4238  // to the pseudo-builtin, because that will be implicitly cast back to the
4239  // redefinition type if an attempt is made to access its fields.
4240  if (LHSTy->isObjCClassType() &&
4241      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4242    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4243    return LHSTy;
4244  }
4245  if (RHSTy->isObjCClassType() &&
4246      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4247    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4248    return RHSTy;
4249  }
4250  // And the same for struct objc_object* / id
4251  if (LHSTy->isObjCIdType() &&
4252      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4253    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4254    return LHSTy;
4255  }
4256  if (RHSTy->isObjCIdType() &&
4257      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4258    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4259    return RHSTy;
4260  }
4261  // And the same for struct objc_selector* / SEL
4262  if (Context.isObjCSelType(LHSTy) &&
4263      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4264    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4265    return LHSTy;
4266  }
4267  if (Context.isObjCSelType(RHSTy) &&
4268      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4269    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4270    return RHSTy;
4271  }
4272  // Check constraints for Objective-C object pointers types.
4273  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4274
4275    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4276      // Two identical object pointer types are always compatible.
4277      return LHSTy;
4278    }
4279    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4280    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4281    QualType compositeType = LHSTy;
4282
4283    // If both operands are interfaces and either operand can be
4284    // assigned to the other, use that type as the composite
4285    // type. This allows
4286    //   xxx ? (A*) a : (B*) b
4287    // where B is a subclass of A.
4288    //
4289    // Additionally, as for assignment, if either type is 'id'
4290    // allow silent coercion. Finally, if the types are
4291    // incompatible then make sure to use 'id' as the composite
4292    // type so the result is acceptable for sending messages to.
4293
4294    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4295    // It could return the composite type.
4296    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4297      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4298    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4299      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4300    } else if ((LHSTy->isObjCQualifiedIdType() ||
4301                RHSTy->isObjCQualifiedIdType()) &&
4302               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4303      // Need to handle "id<xx>" explicitly.
4304      // GCC allows qualified id and any Objective-C type to devolve to
4305      // id. Currently localizing to here until clear this should be
4306      // part of ObjCQualifiedIdTypesAreCompatible.
4307      compositeType = Context.getObjCIdType();
4308    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4309      compositeType = Context.getObjCIdType();
4310    } else if (!(compositeType =
4311                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4312      ;
4313    else {
4314      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4315      << LHSTy << RHSTy
4316      << LHS->getSourceRange() << RHS->getSourceRange();
4317      QualType incompatTy = Context.getObjCIdType();
4318      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4319      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4320      return incompatTy;
4321    }
4322    // The object pointer types are compatible.
4323    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4324    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4325    return compositeType;
4326  }
4327  // Check Objective-C object pointer types and 'void *'
4328  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4329    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4330    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4331    QualType destPointee
4332    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4333    QualType destType = Context.getPointerType(destPointee);
4334    // Add qualifiers if necessary.
4335    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4336    // Promote to void*.
4337    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4338    return destType;
4339  }
4340  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4341    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4342    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4343    QualType destPointee
4344    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4345    QualType destType = Context.getPointerType(destPointee);
4346    // Add qualifiers if necessary.
4347    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4348    // Promote to void*.
4349    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4350    return destType;
4351  }
4352  return QualType();
4353}
4354
4355/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4356/// in the case of a the GNU conditional expr extension.
4357Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4358                                                  SourceLocation ColonLoc,
4359                                                  ExprArg Cond, ExprArg LHS,
4360                                                  ExprArg RHS) {
4361  Expr *CondExpr = (Expr *) Cond.get();
4362  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4363
4364  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4365  // was the condition.
4366  bool isLHSNull = LHSExpr == 0;
4367  if (isLHSNull)
4368    LHSExpr = CondExpr;
4369
4370  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4371                                             RHSExpr, QuestionLoc);
4372  if (result.isNull())
4373    return ExprError();
4374
4375  Cond.release();
4376  LHS.release();
4377  RHS.release();
4378  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4379                                                 isLHSNull ? 0 : LHSExpr,
4380                                                 ColonLoc, RHSExpr, result));
4381}
4382
4383// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4384// being closely modeled after the C99 spec:-). The odd characteristic of this
4385// routine is it effectively iqnores the qualifiers on the top level pointee.
4386// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4387// FIXME: add a couple examples in this comment.
4388Sema::AssignConvertType
4389Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4390  QualType lhptee, rhptee;
4391
4392  if ((lhsType->isObjCClassType() &&
4393       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4394     (rhsType->isObjCClassType() &&
4395       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4396      return Compatible;
4397  }
4398
4399  // get the "pointed to" type (ignoring qualifiers at the top level)
4400  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4401  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4402
4403  // make sure we operate on the canonical type
4404  lhptee = Context.getCanonicalType(lhptee);
4405  rhptee = Context.getCanonicalType(rhptee);
4406
4407  AssignConvertType ConvTy = Compatible;
4408
4409  // C99 6.5.16.1p1: This following citation is common to constraints
4410  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4411  // qualifiers of the type *pointed to* by the right;
4412  // FIXME: Handle ExtQualType
4413  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4414    ConvTy = CompatiblePointerDiscardsQualifiers;
4415
4416  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4417  // incomplete type and the other is a pointer to a qualified or unqualified
4418  // version of void...
4419  if (lhptee->isVoidType()) {
4420    if (rhptee->isIncompleteOrObjectType())
4421      return ConvTy;
4422
4423    // As an extension, we allow cast to/from void* to function pointer.
4424    assert(rhptee->isFunctionType());
4425    return FunctionVoidPointer;
4426  }
4427
4428  if (rhptee->isVoidType()) {
4429    if (lhptee->isIncompleteOrObjectType())
4430      return ConvTy;
4431
4432    // As an extension, we allow cast to/from void* to function pointer.
4433    assert(lhptee->isFunctionType());
4434    return FunctionVoidPointer;
4435  }
4436  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4437  // unqualified versions of compatible types, ...
4438  lhptee = lhptee.getUnqualifiedType();
4439  rhptee = rhptee.getUnqualifiedType();
4440  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4441    // Check if the pointee types are compatible ignoring the sign.
4442    // We explicitly check for char so that we catch "char" vs
4443    // "unsigned char" on systems where "char" is unsigned.
4444    if (lhptee->isCharType())
4445      lhptee = Context.UnsignedCharTy;
4446    else if (lhptee->isSignedIntegerType())
4447      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4448
4449    if (rhptee->isCharType())
4450      rhptee = Context.UnsignedCharTy;
4451    else if (rhptee->isSignedIntegerType())
4452      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4453
4454    if (lhptee == rhptee) {
4455      // Types are compatible ignoring the sign. Qualifier incompatibility
4456      // takes priority over sign incompatibility because the sign
4457      // warning can be disabled.
4458      if (ConvTy != Compatible)
4459        return ConvTy;
4460      return IncompatiblePointerSign;
4461    }
4462
4463    // If we are a multi-level pointer, it's possible that our issue is simply
4464    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4465    // the eventual target type is the same and the pointers have the same
4466    // level of indirection, this must be the issue.
4467    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4468      do {
4469        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4470        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4471
4472        lhptee = Context.getCanonicalType(lhptee);
4473        rhptee = Context.getCanonicalType(rhptee);
4474      } while (lhptee->isPointerType() && rhptee->isPointerType());
4475
4476      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4477        return IncompatibleNestedPointerQualifiers;
4478    }
4479
4480    // General pointer incompatibility takes priority over qualifiers.
4481    return IncompatiblePointer;
4482  }
4483  return ConvTy;
4484}
4485
4486/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4487/// block pointer types are compatible or whether a block and normal pointer
4488/// are compatible. It is more restrict than comparing two function pointer
4489// types.
4490Sema::AssignConvertType
4491Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4492                                          QualType rhsType) {
4493  QualType lhptee, rhptee;
4494
4495  // get the "pointed to" type (ignoring qualifiers at the top level)
4496  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4497  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4498
4499  // make sure we operate on the canonical type
4500  lhptee = Context.getCanonicalType(lhptee);
4501  rhptee = Context.getCanonicalType(rhptee);
4502
4503  AssignConvertType ConvTy = Compatible;
4504
4505  // For blocks we enforce that qualifiers are identical.
4506  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4507    ConvTy = CompatiblePointerDiscardsQualifiers;
4508
4509  if (!Context.typesAreCompatible(lhptee, rhptee))
4510    return IncompatibleBlockPointer;
4511  return ConvTy;
4512}
4513
4514/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4515/// for assignment compatibility.
4516Sema::AssignConvertType
4517Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4518  if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
4519    return Compatible;
4520  QualType lhptee =
4521  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4522  QualType rhptee =
4523  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4524  // make sure we operate on the canonical type
4525  lhptee = Context.getCanonicalType(lhptee);
4526  rhptee = Context.getCanonicalType(rhptee);
4527  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4528    return CompatiblePointerDiscardsQualifiers;
4529
4530  if (Context.typesAreCompatible(lhsType, rhsType))
4531    return Compatible;
4532  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4533    return IncompatibleObjCQualifiedId;
4534  return IncompatiblePointer;
4535}
4536
4537/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4538/// has code to accommodate several GCC extensions when type checking
4539/// pointers. Here are some objectionable examples that GCC considers warnings:
4540///
4541///  int a, *pint;
4542///  short *pshort;
4543///  struct foo *pfoo;
4544///
4545///  pint = pshort; // warning: assignment from incompatible pointer type
4546///  a = pint; // warning: assignment makes integer from pointer without a cast
4547///  pint = a; // warning: assignment makes pointer from integer without a cast
4548///  pint = pfoo; // warning: assignment from incompatible pointer type
4549///
4550/// As a result, the code for dealing with pointers is more complex than the
4551/// C99 spec dictates.
4552///
4553Sema::AssignConvertType
4554Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4555  // Get canonical types.  We're not formatting these types, just comparing
4556  // them.
4557  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4558  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4559
4560  if (lhsType == rhsType)
4561    return Compatible; // Common case: fast path an exact match.
4562
4563  if ((lhsType->isObjCClassType() &&
4564       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4565     (rhsType->isObjCClassType() &&
4566       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4567      return Compatible;
4568  }
4569
4570  // If the left-hand side is a reference type, then we are in a
4571  // (rare!) case where we've allowed the use of references in C,
4572  // e.g., as a parameter type in a built-in function. In this case,
4573  // just make sure that the type referenced is compatible with the
4574  // right-hand side type. The caller is responsible for adjusting
4575  // lhsType so that the resulting expression does not have reference
4576  // type.
4577  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4578    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4579      return Compatible;
4580    return Incompatible;
4581  }
4582  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4583  // to the same ExtVector type.
4584  if (lhsType->isExtVectorType()) {
4585    if (rhsType->isExtVectorType())
4586      return lhsType == rhsType ? Compatible : Incompatible;
4587    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4588      return Compatible;
4589  }
4590
4591  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4592    // If we are allowing lax vector conversions, and LHS and RHS are both
4593    // vectors, the total size only needs to be the same. This is a bitcast;
4594    // no bits are changed but the result type is different.
4595    if (getLangOptions().LaxVectorConversions &&
4596        lhsType->isVectorType() && rhsType->isVectorType()) {
4597      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4598        return IncompatibleVectors;
4599    }
4600    return Incompatible;
4601  }
4602
4603  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4604    return Compatible;
4605
4606  if (isa<PointerType>(lhsType)) {
4607    if (rhsType->isIntegerType())
4608      return IntToPointer;
4609
4610    if (isa<PointerType>(rhsType))
4611      return CheckPointerTypesForAssignment(lhsType, rhsType);
4612
4613    // In general, C pointers are not compatible with ObjC object pointers.
4614    if (isa<ObjCObjectPointerType>(rhsType)) {
4615      if (lhsType->isVoidPointerType()) // an exception to the rule.
4616        return Compatible;
4617      return IncompatiblePointer;
4618    }
4619    if (rhsType->getAs<BlockPointerType>()) {
4620      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4621        return Compatible;
4622
4623      // Treat block pointers as objects.
4624      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4625        return Compatible;
4626    }
4627    return Incompatible;
4628  }
4629
4630  if (isa<BlockPointerType>(lhsType)) {
4631    if (rhsType->isIntegerType())
4632      return IntToBlockPointer;
4633
4634    // Treat block pointers as objects.
4635    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4636      return Compatible;
4637
4638    if (rhsType->isBlockPointerType())
4639      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4640
4641    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4642      if (RHSPT->getPointeeType()->isVoidType())
4643        return Compatible;
4644    }
4645    return Incompatible;
4646  }
4647
4648  if (isa<ObjCObjectPointerType>(lhsType)) {
4649    if (rhsType->isIntegerType())
4650      return IntToPointer;
4651
4652    // In general, C pointers are not compatible with ObjC object pointers.
4653    if (isa<PointerType>(rhsType)) {
4654      if (rhsType->isVoidPointerType()) // an exception to the rule.
4655        return Compatible;
4656      return IncompatiblePointer;
4657    }
4658    if (rhsType->isObjCObjectPointerType()) {
4659      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4660    }
4661    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4662      if (RHSPT->getPointeeType()->isVoidType())
4663        return Compatible;
4664    }
4665    // Treat block pointers as objects.
4666    if (rhsType->isBlockPointerType())
4667      return Compatible;
4668    return Incompatible;
4669  }
4670  if (isa<PointerType>(rhsType)) {
4671    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4672    if (lhsType == Context.BoolTy)
4673      return Compatible;
4674
4675    if (lhsType->isIntegerType())
4676      return PointerToInt;
4677
4678    if (isa<PointerType>(lhsType))
4679      return CheckPointerTypesForAssignment(lhsType, rhsType);
4680
4681    if (isa<BlockPointerType>(lhsType) &&
4682        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4683      return Compatible;
4684    return Incompatible;
4685  }
4686  if (isa<ObjCObjectPointerType>(rhsType)) {
4687    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4688    if (lhsType == Context.BoolTy)
4689      return Compatible;
4690
4691    if (lhsType->isIntegerType())
4692      return PointerToInt;
4693
4694    // In general, C pointers are not compatible with ObjC object pointers.
4695    if (isa<PointerType>(lhsType)) {
4696      if (lhsType->isVoidPointerType()) // an exception to the rule.
4697        return Compatible;
4698      return IncompatiblePointer;
4699    }
4700    if (isa<BlockPointerType>(lhsType) &&
4701        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4702      return Compatible;
4703    return Incompatible;
4704  }
4705
4706  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4707    if (Context.typesAreCompatible(lhsType, rhsType))
4708      return Compatible;
4709  }
4710  return Incompatible;
4711}
4712
4713/// \brief Constructs a transparent union from an expression that is
4714/// used to initialize the transparent union.
4715static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4716                                      QualType UnionType, FieldDecl *Field) {
4717  // Build an initializer list that designates the appropriate member
4718  // of the transparent union.
4719  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
4720                                                   &E, 1,
4721                                                   SourceLocation());
4722  Initializer->setType(UnionType);
4723  Initializer->setInitializedFieldInUnion(Field);
4724
4725  // Build a compound literal constructing a value of the transparent
4726  // union type from this initializer list.
4727  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4728  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4729                                  Initializer, false);
4730}
4731
4732Sema::AssignConvertType
4733Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4734  QualType FromType = rExpr->getType();
4735
4736  // If the ArgType is a Union type, we want to handle a potential
4737  // transparent_union GCC extension.
4738  const RecordType *UT = ArgType->getAsUnionType();
4739  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4740    return Incompatible;
4741
4742  // The field to initialize within the transparent union.
4743  RecordDecl *UD = UT->getDecl();
4744  FieldDecl *InitField = 0;
4745  // It's compatible if the expression matches any of the fields.
4746  for (RecordDecl::field_iterator it = UD->field_begin(),
4747         itend = UD->field_end();
4748       it != itend; ++it) {
4749    if (it->getType()->isPointerType()) {
4750      // If the transparent union contains a pointer type, we allow:
4751      // 1) void pointer
4752      // 2) null pointer constant
4753      if (FromType->isPointerType())
4754        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4755          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4756          InitField = *it;
4757          break;
4758        }
4759
4760      if (rExpr->isNullPointerConstant(Context,
4761                                       Expr::NPC_ValueDependentIsNull)) {
4762        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4763        InitField = *it;
4764        break;
4765      }
4766    }
4767
4768    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4769          == Compatible) {
4770      InitField = *it;
4771      break;
4772    }
4773  }
4774
4775  if (!InitField)
4776    return Incompatible;
4777
4778  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4779  return Compatible;
4780}
4781
4782Sema::AssignConvertType
4783Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4784  if (getLangOptions().CPlusPlus) {
4785    if (!lhsType->isRecordType()) {
4786      // C++ 5.17p3: If the left operand is not of class type, the
4787      // expression is implicitly converted (C++ 4) to the
4788      // cv-unqualified type of the left operand.
4789      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4790                                    AA_Assigning))
4791        return Incompatible;
4792      return Compatible;
4793    }
4794
4795    // FIXME: Currently, we fall through and treat C++ classes like C
4796    // structures.
4797  }
4798
4799  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4800  // a null pointer constant.
4801  if ((lhsType->isPointerType() ||
4802       lhsType->isObjCObjectPointerType() ||
4803       lhsType->isBlockPointerType())
4804      && rExpr->isNullPointerConstant(Context,
4805                                      Expr::NPC_ValueDependentIsNull)) {
4806    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4807    return Compatible;
4808  }
4809
4810  // This check seems unnatural, however it is necessary to ensure the proper
4811  // conversion of functions/arrays. If the conversion were done for all
4812  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4813  // expressions that surpress this implicit conversion (&, sizeof).
4814  //
4815  // Suppress this for references: C++ 8.5.3p5.
4816  if (!lhsType->isReferenceType())
4817    DefaultFunctionArrayConversion(rExpr);
4818
4819  Sema::AssignConvertType result =
4820    CheckAssignmentConstraints(lhsType, rExpr->getType());
4821
4822  // C99 6.5.16.1p2: The value of the right operand is converted to the
4823  // type of the assignment expression.
4824  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4825  // so that we can use references in built-in functions even in C.
4826  // The getNonReferenceType() call makes sure that the resulting expression
4827  // does not have reference type.
4828  if (result != Incompatible && rExpr->getType() != lhsType)
4829    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4830                      CastExpr::CK_Unknown);
4831  return result;
4832}
4833
4834QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4835  Diag(Loc, diag::err_typecheck_invalid_operands)
4836    << lex->getType() << rex->getType()
4837    << lex->getSourceRange() << rex->getSourceRange();
4838  return QualType();
4839}
4840
4841QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4842  // For conversion purposes, we ignore any qualifiers.
4843  // For example, "const float" and "float" are equivalent.
4844  QualType lhsType =
4845    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4846  QualType rhsType =
4847    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4848
4849  // If the vector types are identical, return.
4850  if (lhsType == rhsType)
4851    return lhsType;
4852
4853  // Handle the case of a vector & extvector type of the same size and element
4854  // type.  It would be nice if we only had one vector type someday.
4855  if (getLangOptions().LaxVectorConversions) {
4856    // FIXME: Should we warn here?
4857    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4858      if (const VectorType *RV = rhsType->getAs<VectorType>())
4859        if (LV->getElementType() == RV->getElementType() &&
4860            LV->getNumElements() == RV->getNumElements()) {
4861          return lhsType->isExtVectorType() ? lhsType : rhsType;
4862        }
4863    }
4864  }
4865
4866  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4867  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4868  bool swapped = false;
4869  if (rhsType->isExtVectorType()) {
4870    swapped = true;
4871    std::swap(rex, lex);
4872    std::swap(rhsType, lhsType);
4873  }
4874
4875  // Handle the case of an ext vector and scalar.
4876  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4877    QualType EltTy = LV->getElementType();
4878    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4879      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4880        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4881        if (swapped) std::swap(rex, lex);
4882        return lhsType;
4883      }
4884    }
4885    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4886        rhsType->isRealFloatingType()) {
4887      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4888        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4889        if (swapped) std::swap(rex, lex);
4890        return lhsType;
4891      }
4892    }
4893  }
4894
4895  // Vectors of different size or scalar and non-ext-vector are errors.
4896  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4897    << lex->getType() << rex->getType()
4898    << lex->getSourceRange() << rex->getSourceRange();
4899  return QualType();
4900}
4901
4902QualType Sema::CheckMultiplyDivideOperands(
4903  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4904  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4905    return CheckVectorOperands(Loc, lex, rex);
4906
4907  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4908
4909  if (!lex->getType()->isArithmeticType() ||
4910      !rex->getType()->isArithmeticType())
4911    return InvalidOperands(Loc, lex, rex);
4912
4913  // Check for division by zero.
4914  if (isDiv &&
4915      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4916    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4917                                     << rex->getSourceRange());
4918
4919  return compType;
4920}
4921
4922QualType Sema::CheckRemainderOperands(
4923  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4924  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4925    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4926      return CheckVectorOperands(Loc, lex, rex);
4927    return InvalidOperands(Loc, lex, rex);
4928  }
4929
4930  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4931
4932  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4933    return InvalidOperands(Loc, lex, rex);
4934
4935  // Check for remainder by zero.
4936  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4937    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
4938                                 << rex->getSourceRange());
4939
4940  return compType;
4941}
4942
4943QualType Sema::CheckAdditionOperands( // C99 6.5.6
4944  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4945  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4946    QualType compType = CheckVectorOperands(Loc, lex, rex);
4947    if (CompLHSTy) *CompLHSTy = compType;
4948    return compType;
4949  }
4950
4951  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4952
4953  // handle the common case first (both operands are arithmetic).
4954  if (lex->getType()->isArithmeticType() &&
4955      rex->getType()->isArithmeticType()) {
4956    if (CompLHSTy) *CompLHSTy = compType;
4957    return compType;
4958  }
4959
4960  // Put any potential pointer into PExp
4961  Expr* PExp = lex, *IExp = rex;
4962  if (IExp->getType()->isAnyPointerType())
4963    std::swap(PExp, IExp);
4964
4965  if (PExp->getType()->isAnyPointerType()) {
4966
4967    if (IExp->getType()->isIntegerType()) {
4968      QualType PointeeTy = PExp->getType()->getPointeeType();
4969
4970      // Check for arithmetic on pointers to incomplete types.
4971      if (PointeeTy->isVoidType()) {
4972        if (getLangOptions().CPlusPlus) {
4973          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4974            << lex->getSourceRange() << rex->getSourceRange();
4975          return QualType();
4976        }
4977
4978        // GNU extension: arithmetic on pointer to void
4979        Diag(Loc, diag::ext_gnu_void_ptr)
4980          << lex->getSourceRange() << rex->getSourceRange();
4981      } else if (PointeeTy->isFunctionType()) {
4982        if (getLangOptions().CPlusPlus) {
4983          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4984            << lex->getType() << lex->getSourceRange();
4985          return QualType();
4986        }
4987
4988        // GNU extension: arithmetic on pointer to function
4989        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4990          << lex->getType() << lex->getSourceRange();
4991      } else {
4992        // Check if we require a complete type.
4993        if (((PExp->getType()->isPointerType() &&
4994              !PExp->getType()->isDependentType()) ||
4995              PExp->getType()->isObjCObjectPointerType()) &&
4996             RequireCompleteType(Loc, PointeeTy,
4997                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
4998                             << PExp->getSourceRange()
4999                             << PExp->getType()))
5000          return QualType();
5001      }
5002      // Diagnose bad cases where we step over interface counts.
5003      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5004        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5005          << PointeeTy << PExp->getSourceRange();
5006        return QualType();
5007      }
5008
5009      if (CompLHSTy) {
5010        QualType LHSTy = Context.isPromotableBitField(lex);
5011        if (LHSTy.isNull()) {
5012          LHSTy = lex->getType();
5013          if (LHSTy->isPromotableIntegerType())
5014            LHSTy = Context.getPromotedIntegerType(LHSTy);
5015        }
5016        *CompLHSTy = LHSTy;
5017      }
5018      return PExp->getType();
5019    }
5020  }
5021
5022  return InvalidOperands(Loc, lex, rex);
5023}
5024
5025// C99 6.5.6
5026QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5027                                        SourceLocation Loc, QualType* CompLHSTy) {
5028  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5029    QualType compType = CheckVectorOperands(Loc, lex, rex);
5030    if (CompLHSTy) *CompLHSTy = compType;
5031    return compType;
5032  }
5033
5034  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5035
5036  // Enforce type constraints: C99 6.5.6p3.
5037
5038  // Handle the common case first (both operands are arithmetic).
5039  if (lex->getType()->isArithmeticType()
5040      && rex->getType()->isArithmeticType()) {
5041    if (CompLHSTy) *CompLHSTy = compType;
5042    return compType;
5043  }
5044
5045  // Either ptr - int   or   ptr - ptr.
5046  if (lex->getType()->isAnyPointerType()) {
5047    QualType lpointee = lex->getType()->getPointeeType();
5048
5049    // The LHS must be an completely-defined object type.
5050
5051    bool ComplainAboutVoid = false;
5052    Expr *ComplainAboutFunc = 0;
5053    if (lpointee->isVoidType()) {
5054      if (getLangOptions().CPlusPlus) {
5055        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5056          << lex->getSourceRange() << rex->getSourceRange();
5057        return QualType();
5058      }
5059
5060      // GNU C extension: arithmetic on pointer to void
5061      ComplainAboutVoid = true;
5062    } else if (lpointee->isFunctionType()) {
5063      if (getLangOptions().CPlusPlus) {
5064        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5065          << lex->getType() << lex->getSourceRange();
5066        return QualType();
5067      }
5068
5069      // GNU C extension: arithmetic on pointer to function
5070      ComplainAboutFunc = lex;
5071    } else if (!lpointee->isDependentType() &&
5072               RequireCompleteType(Loc, lpointee,
5073                                   PDiag(diag::err_typecheck_sub_ptr_object)
5074                                     << lex->getSourceRange()
5075                                     << lex->getType()))
5076      return QualType();
5077
5078    // Diagnose bad cases where we step over interface counts.
5079    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5080      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5081        << lpointee << lex->getSourceRange();
5082      return QualType();
5083    }
5084
5085    // The result type of a pointer-int computation is the pointer type.
5086    if (rex->getType()->isIntegerType()) {
5087      if (ComplainAboutVoid)
5088        Diag(Loc, diag::ext_gnu_void_ptr)
5089          << lex->getSourceRange() << rex->getSourceRange();
5090      if (ComplainAboutFunc)
5091        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5092          << ComplainAboutFunc->getType()
5093          << ComplainAboutFunc->getSourceRange();
5094
5095      if (CompLHSTy) *CompLHSTy = lex->getType();
5096      return lex->getType();
5097    }
5098
5099    // Handle pointer-pointer subtractions.
5100    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5101      QualType rpointee = RHSPTy->getPointeeType();
5102
5103      // RHS must be a completely-type object type.
5104      // Handle the GNU void* extension.
5105      if (rpointee->isVoidType()) {
5106        if (getLangOptions().CPlusPlus) {
5107          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5108            << lex->getSourceRange() << rex->getSourceRange();
5109          return QualType();
5110        }
5111
5112        ComplainAboutVoid = true;
5113      } else if (rpointee->isFunctionType()) {
5114        if (getLangOptions().CPlusPlus) {
5115          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5116            << rex->getType() << rex->getSourceRange();
5117          return QualType();
5118        }
5119
5120        // GNU extension: arithmetic on pointer to function
5121        if (!ComplainAboutFunc)
5122          ComplainAboutFunc = rex;
5123      } else if (!rpointee->isDependentType() &&
5124                 RequireCompleteType(Loc, rpointee,
5125                                     PDiag(diag::err_typecheck_sub_ptr_object)
5126                                       << rex->getSourceRange()
5127                                       << rex->getType()))
5128        return QualType();
5129
5130      if (getLangOptions().CPlusPlus) {
5131        // Pointee types must be the same: C++ [expr.add]
5132        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5133          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5134            << lex->getType() << rex->getType()
5135            << lex->getSourceRange() << rex->getSourceRange();
5136          return QualType();
5137        }
5138      } else {
5139        // Pointee types must be compatible C99 6.5.6p3
5140        if (!Context.typesAreCompatible(
5141                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5142                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5143          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5144            << lex->getType() << rex->getType()
5145            << lex->getSourceRange() << rex->getSourceRange();
5146          return QualType();
5147        }
5148      }
5149
5150      if (ComplainAboutVoid)
5151        Diag(Loc, diag::ext_gnu_void_ptr)
5152          << lex->getSourceRange() << rex->getSourceRange();
5153      if (ComplainAboutFunc)
5154        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5155          << ComplainAboutFunc->getType()
5156          << ComplainAboutFunc->getSourceRange();
5157
5158      if (CompLHSTy) *CompLHSTy = lex->getType();
5159      return Context.getPointerDiffType();
5160    }
5161  }
5162
5163  return InvalidOperands(Loc, lex, rex);
5164}
5165
5166// C99 6.5.7
5167QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5168                                  bool isCompAssign) {
5169  // C99 6.5.7p2: Each of the operands shall have integer type.
5170  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5171    return InvalidOperands(Loc, lex, rex);
5172
5173  // Vector shifts promote their scalar inputs to vector type.
5174  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5175    return CheckVectorOperands(Loc, lex, rex);
5176
5177  // Shifts don't perform usual arithmetic conversions, they just do integer
5178  // promotions on each operand. C99 6.5.7p3
5179  QualType LHSTy = Context.isPromotableBitField(lex);
5180  if (LHSTy.isNull()) {
5181    LHSTy = lex->getType();
5182    if (LHSTy->isPromotableIntegerType())
5183      LHSTy = Context.getPromotedIntegerType(LHSTy);
5184  }
5185  if (!isCompAssign)
5186    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5187
5188  UsualUnaryConversions(rex);
5189
5190  // Sanity-check shift operands
5191  llvm::APSInt Right;
5192  // Check right/shifter operand
5193  if (!rex->isValueDependent() &&
5194      rex->isIntegerConstantExpr(Right, Context)) {
5195    if (Right.isNegative())
5196      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5197    else {
5198      llvm::APInt LeftBits(Right.getBitWidth(),
5199                          Context.getTypeSize(lex->getType()));
5200      if (Right.uge(LeftBits))
5201        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5202    }
5203  }
5204
5205  // "The type of the result is that of the promoted left operand."
5206  return LHSTy;
5207}
5208
5209// C99 6.5.8, C++ [expr.rel]
5210QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5211                                    unsigned OpaqueOpc, bool isRelational) {
5212  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5213
5214  // Handle vector comparisons separately.
5215  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5216    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5217
5218  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
5219                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
5220
5221  // C99 6.5.8p3 / C99 6.5.9p4
5222  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5223    UsualArithmeticConversions(lex, rex);
5224  else {
5225    UsualUnaryConversions(lex);
5226    UsualUnaryConversions(rex);
5227  }
5228  QualType lType = lex->getType();
5229  QualType rType = rex->getType();
5230
5231  if (!lType->isFloatingType()
5232      && !(lType->isBlockPointerType() && isRelational)) {
5233    // For non-floating point types, check for self-comparisons of the form
5234    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5235    // often indicate logic errors in the program.
5236    // NOTE: Don't warn about comparisons of enum constants. These can arise
5237    //  from macro expansions, and are usually quite deliberate.
5238    Expr *LHSStripped = lex->IgnoreParens();
5239    Expr *RHSStripped = rex->IgnoreParens();
5240    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5241      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5242        if (DRL->getDecl() == DRR->getDecl() &&
5243            !isa<EnumConstantDecl>(DRL->getDecl()))
5244          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5245
5246    if (isa<CastExpr>(LHSStripped))
5247      LHSStripped = LHSStripped->IgnoreParenCasts();
5248    if (isa<CastExpr>(RHSStripped))
5249      RHSStripped = RHSStripped->IgnoreParenCasts();
5250
5251    // Warn about comparisons against a string constant (unless the other
5252    // operand is null), the user probably wants strcmp.
5253    Expr *literalString = 0;
5254    Expr *literalStringStripped = 0;
5255    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5256        !RHSStripped->isNullPointerConstant(Context,
5257                                            Expr::NPC_ValueDependentIsNull)) {
5258      literalString = lex;
5259      literalStringStripped = LHSStripped;
5260    } else if ((isa<StringLiteral>(RHSStripped) ||
5261                isa<ObjCEncodeExpr>(RHSStripped)) &&
5262               !LHSStripped->isNullPointerConstant(Context,
5263                                            Expr::NPC_ValueDependentIsNull)) {
5264      literalString = rex;
5265      literalStringStripped = RHSStripped;
5266    }
5267
5268    if (literalString) {
5269      std::string resultComparison;
5270      switch (Opc) {
5271      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5272      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5273      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5274      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5275      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5276      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5277      default: assert(false && "Invalid comparison operator");
5278      }
5279
5280      DiagRuntimeBehavior(Loc,
5281        PDiag(diag::warn_stringcompare)
5282          << isa<ObjCEncodeExpr>(literalStringStripped)
5283          << literalString->getSourceRange()
5284          << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
5285          << CodeModificationHint::CreateInsertion(lex->getLocStart(),
5286                                                   "strcmp(")
5287          << CodeModificationHint::CreateInsertion(
5288                                         PP.getLocForEndOfToken(rex->getLocEnd()),
5289                                         resultComparison));
5290    }
5291  }
5292
5293  // The result of comparisons is 'bool' in C++, 'int' in C.
5294  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5295
5296  if (isRelational) {
5297    if (lType->isRealType() && rType->isRealType())
5298      return ResultTy;
5299  } else {
5300    // Check for comparisons of floating point operands using != and ==.
5301    if (lType->isFloatingType() && rType->isFloatingType())
5302      CheckFloatComparison(Loc,lex,rex);
5303
5304    if (lType->isArithmeticType() && rType->isArithmeticType())
5305      return ResultTy;
5306  }
5307
5308  bool LHSIsNull = lex->isNullPointerConstant(Context,
5309                                              Expr::NPC_ValueDependentIsNull);
5310  bool RHSIsNull = rex->isNullPointerConstant(Context,
5311                                              Expr::NPC_ValueDependentIsNull);
5312
5313  // All of the following pointer related warnings are GCC extensions, except
5314  // when handling null pointer constants. One day, we can consider making them
5315  // errors (when -pedantic-errors is enabled).
5316  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5317    QualType LCanPointeeTy =
5318      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5319    QualType RCanPointeeTy =
5320      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5321
5322    if (getLangOptions().CPlusPlus) {
5323      if (LCanPointeeTy == RCanPointeeTy)
5324        return ResultTy;
5325      if (!isRelational &&
5326          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5327        // Valid unless comparison between non-null pointer and function pointer
5328        // This is a gcc extension compatibility comparison.
5329        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5330            && !LHSIsNull && !RHSIsNull) {
5331          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5332            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5333          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5334          return ResultTy;
5335        }
5336      }
5337      // C++ [expr.rel]p2:
5338      //   [...] Pointer conversions (4.10) and qualification
5339      //   conversions (4.4) are performed on pointer operands (or on
5340      //   a pointer operand and a null pointer constant) to bring
5341      //   them to their composite pointer type. [...]
5342      //
5343      // C++ [expr.eq]p1 uses the same notion for (in)equality
5344      // comparisons of pointers.
5345      QualType T = FindCompositePointerType(lex, rex);
5346      if (T.isNull()) {
5347        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5348          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5349        return QualType();
5350      }
5351
5352      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5353      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5354      return ResultTy;
5355    }
5356    // C99 6.5.9p2 and C99 6.5.8p2
5357    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5358                                   RCanPointeeTy.getUnqualifiedType())) {
5359      // Valid unless a relational comparison of function pointers
5360      if (isRelational && LCanPointeeTy->isFunctionType()) {
5361        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5362          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5363      }
5364    } else if (!isRelational &&
5365               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5366      // Valid unless comparison between non-null pointer and function pointer
5367      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5368          && !LHSIsNull && !RHSIsNull) {
5369        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5370          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5371      }
5372    } else {
5373      // Invalid
5374      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5375        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5376    }
5377    if (LCanPointeeTy != RCanPointeeTy)
5378      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5379    return ResultTy;
5380  }
5381
5382  if (getLangOptions().CPlusPlus) {
5383    // Comparison of pointers with null pointer constants and equality
5384    // comparisons of member pointers to null pointer constants.
5385    if (RHSIsNull &&
5386        (lType->isPointerType() ||
5387         (!isRelational && lType->isMemberPointerType()))) {
5388      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5389      return ResultTy;
5390    }
5391    if (LHSIsNull &&
5392        (rType->isPointerType() ||
5393         (!isRelational && rType->isMemberPointerType()))) {
5394      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5395      return ResultTy;
5396    }
5397
5398    // Comparison of member pointers.
5399    if (!isRelational &&
5400        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5401      // C++ [expr.eq]p2:
5402      //   In addition, pointers to members can be compared, or a pointer to
5403      //   member and a null pointer constant. Pointer to member conversions
5404      //   (4.11) and qualification conversions (4.4) are performed to bring
5405      //   them to a common type. If one operand is a null pointer constant,
5406      //   the common type is the type of the other operand. Otherwise, the
5407      //   common type is a pointer to member type similar (4.4) to the type
5408      //   of one of the operands, with a cv-qualification signature (4.4)
5409      //   that is the union of the cv-qualification signatures of the operand
5410      //   types.
5411      QualType T = FindCompositePointerType(lex, rex);
5412      if (T.isNull()) {
5413        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5414        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5415        return QualType();
5416      }
5417
5418      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5419      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5420      return ResultTy;
5421    }
5422
5423    // Comparison of nullptr_t with itself.
5424    if (lType->isNullPtrType() && rType->isNullPtrType())
5425      return ResultTy;
5426  }
5427
5428  // Handle block pointer types.
5429  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5430    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5431    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5432
5433    if (!LHSIsNull && !RHSIsNull &&
5434        !Context.typesAreCompatible(lpointee, rpointee)) {
5435      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5436        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5437    }
5438    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5439    return ResultTy;
5440  }
5441  // Allow block pointers to be compared with null pointer constants.
5442  if (!isRelational
5443      && ((lType->isBlockPointerType() && rType->isPointerType())
5444          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5445    if (!LHSIsNull && !RHSIsNull) {
5446      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5447             ->getPointeeType()->isVoidType())
5448            || (lType->isPointerType() && lType->getAs<PointerType>()
5449                ->getPointeeType()->isVoidType())))
5450        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5451          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5452    }
5453    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5454    return ResultTy;
5455  }
5456
5457  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5458    if (lType->isPointerType() || rType->isPointerType()) {
5459      const PointerType *LPT = lType->getAs<PointerType>();
5460      const PointerType *RPT = rType->getAs<PointerType>();
5461      bool LPtrToVoid = LPT ?
5462        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5463      bool RPtrToVoid = RPT ?
5464        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5465
5466      if (!LPtrToVoid && !RPtrToVoid &&
5467          !Context.typesAreCompatible(lType, rType)) {
5468        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5469          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5470      }
5471      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5472      return ResultTy;
5473    }
5474    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5475      if (!Context.areComparableObjCPointerTypes(lType, rType))
5476        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5477          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5478      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5479      return ResultTy;
5480    }
5481  }
5482  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5483    unsigned DiagID = 0;
5484    if (RHSIsNull) {
5485      if (isRelational)
5486        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5487    } else if (isRelational)
5488      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5489    else
5490      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5491
5492    if (DiagID) {
5493      Diag(Loc, DiagID)
5494        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5495    }
5496    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5497    return ResultTy;
5498  }
5499  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5500    unsigned DiagID = 0;
5501    if (LHSIsNull) {
5502      if (isRelational)
5503        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5504    } else if (isRelational)
5505      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5506    else
5507      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5508
5509    if (DiagID) {
5510      Diag(Loc, DiagID)
5511        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5512    }
5513    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5514    return ResultTy;
5515  }
5516  // Handle block pointers.
5517  if (!isRelational && RHSIsNull
5518      && lType->isBlockPointerType() && rType->isIntegerType()) {
5519    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5520    return ResultTy;
5521  }
5522  if (!isRelational && LHSIsNull
5523      && lType->isIntegerType() && rType->isBlockPointerType()) {
5524    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5525    return ResultTy;
5526  }
5527  return InvalidOperands(Loc, lex, rex);
5528}
5529
5530/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5531/// operates on extended vector types.  Instead of producing an IntTy result,
5532/// like a scalar comparison, a vector comparison produces a vector of integer
5533/// types.
5534QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5535                                          SourceLocation Loc,
5536                                          bool isRelational) {
5537  // Check to make sure we're operating on vectors of the same type and width,
5538  // Allowing one side to be a scalar of element type.
5539  QualType vType = CheckVectorOperands(Loc, lex, rex);
5540  if (vType.isNull())
5541    return vType;
5542
5543  QualType lType = lex->getType();
5544  QualType rType = rex->getType();
5545
5546  // For non-floating point types, check for self-comparisons of the form
5547  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5548  // often indicate logic errors in the program.
5549  if (!lType->isFloatingType()) {
5550    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5551      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5552        if (DRL->getDecl() == DRR->getDecl())
5553          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5554  }
5555
5556  // Check for comparisons of floating point operands using != and ==.
5557  if (!isRelational && lType->isFloatingType()) {
5558    assert (rType->isFloatingType());
5559    CheckFloatComparison(Loc,lex,rex);
5560  }
5561
5562  // Return the type for the comparison, which is the same as vector type for
5563  // integer vectors, or an integer type of identical size and number of
5564  // elements for floating point vectors.
5565  if (lType->isIntegerType())
5566    return lType;
5567
5568  const VectorType *VTy = lType->getAs<VectorType>();
5569  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5570  if (TypeSize == Context.getTypeSize(Context.IntTy))
5571    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5572  if (TypeSize == Context.getTypeSize(Context.LongTy))
5573    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5574
5575  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5576         "Unhandled vector element size in vector compare");
5577  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5578}
5579
5580inline QualType Sema::CheckBitwiseOperands(
5581  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5582  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5583    return CheckVectorOperands(Loc, lex, rex);
5584
5585  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5586
5587  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5588    return compType;
5589  return InvalidOperands(Loc, lex, rex);
5590}
5591
5592inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5593  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5594  if (!Context.getLangOptions().CPlusPlus) {
5595    UsualUnaryConversions(lex);
5596    UsualUnaryConversions(rex);
5597
5598    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5599      return InvalidOperands(Loc, lex, rex);
5600
5601    return Context.IntTy;
5602  }
5603
5604  // C++ [expr.log.and]p1
5605  // C++ [expr.log.or]p1
5606  // The operands are both implicitly converted to type bool (clause 4).
5607  StandardConversionSequence LHS;
5608  if (!IsStandardConversion(lex, Context.BoolTy,
5609                            /*InOverloadResolution=*/false, LHS))
5610    return InvalidOperands(Loc, lex, rex);
5611
5612  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5613                                AA_Passing, /*IgnoreBaseAccess=*/false))
5614    return InvalidOperands(Loc, lex, rex);
5615
5616  StandardConversionSequence RHS;
5617  if (!IsStandardConversion(rex, Context.BoolTy,
5618                            /*InOverloadResolution=*/false, RHS))
5619    return InvalidOperands(Loc, lex, rex);
5620
5621  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5622                                AA_Passing, /*IgnoreBaseAccess=*/false))
5623    return InvalidOperands(Loc, lex, rex);
5624
5625  // C++ [expr.log.and]p2
5626  // C++ [expr.log.or]p2
5627  // The result is a bool.
5628  return Context.BoolTy;
5629}
5630
5631/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5632/// is a read-only property; return true if so. A readonly property expression
5633/// depends on various declarations and thus must be treated specially.
5634///
5635static bool IsReadonlyProperty(Expr *E, Sema &S) {
5636  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5637    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5638    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5639      QualType BaseType = PropExpr->getBase()->getType();
5640      if (const ObjCObjectPointerType *OPT =
5641            BaseType->getAsObjCInterfacePointerType())
5642        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5643          if (S.isPropertyReadonly(PDecl, IFace))
5644            return true;
5645    }
5646  }
5647  return false;
5648}
5649
5650/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5651/// emit an error and return true.  If so, return false.
5652static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5653  SourceLocation OrigLoc = Loc;
5654  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5655                                                              &Loc);
5656  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5657    IsLV = Expr::MLV_ReadonlyProperty;
5658  if (IsLV == Expr::MLV_Valid)
5659    return false;
5660
5661  unsigned Diag = 0;
5662  bool NeedType = false;
5663  switch (IsLV) { // C99 6.5.16p2
5664  default: assert(0 && "Unknown result from isModifiableLvalue!");
5665  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5666  case Expr::MLV_ArrayType:
5667    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5668    NeedType = true;
5669    break;
5670  case Expr::MLV_NotObjectType:
5671    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5672    NeedType = true;
5673    break;
5674  case Expr::MLV_LValueCast:
5675    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5676    break;
5677  case Expr::MLV_InvalidExpression:
5678    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5679    break;
5680  case Expr::MLV_IncompleteType:
5681  case Expr::MLV_IncompleteVoidType:
5682    return S.RequireCompleteType(Loc, E->getType(),
5683                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5684                  << E->getSourceRange());
5685  case Expr::MLV_DuplicateVectorComponents:
5686    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5687    break;
5688  case Expr::MLV_NotBlockQualified:
5689    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5690    break;
5691  case Expr::MLV_ReadonlyProperty:
5692    Diag = diag::error_readonly_property_assignment;
5693    break;
5694  case Expr::MLV_NoSetterProperty:
5695    Diag = diag::error_nosetter_property_assignment;
5696    break;
5697  case Expr::MLV_SubObjCPropertySetting:
5698    Diag = diag::error_no_subobject_property_setting;
5699    break;
5700  }
5701
5702  SourceRange Assign;
5703  if (Loc != OrigLoc)
5704    Assign = SourceRange(OrigLoc, OrigLoc);
5705  if (NeedType)
5706    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5707  else
5708    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5709  return true;
5710}
5711
5712
5713
5714// C99 6.5.16.1
5715QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5716                                       SourceLocation Loc,
5717                                       QualType CompoundType) {
5718  // Verify that LHS is a modifiable lvalue, and emit error if not.
5719  if (CheckForModifiableLvalue(LHS, Loc, *this))
5720    return QualType();
5721
5722  QualType LHSType = LHS->getType();
5723  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5724
5725  AssignConvertType ConvTy;
5726  if (CompoundType.isNull()) {
5727    // Simple assignment "x = y".
5728    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5729    // Special case of NSObject attributes on c-style pointer types.
5730    if (ConvTy == IncompatiblePointer &&
5731        ((Context.isObjCNSObjectType(LHSType) &&
5732          RHSType->isObjCObjectPointerType()) ||
5733         (Context.isObjCNSObjectType(RHSType) &&
5734          LHSType->isObjCObjectPointerType())))
5735      ConvTy = Compatible;
5736
5737    // If the RHS is a unary plus or minus, check to see if they = and + are
5738    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5739    // instead of "x += 4".
5740    Expr *RHSCheck = RHS;
5741    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5742      RHSCheck = ICE->getSubExpr();
5743    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5744      if ((UO->getOpcode() == UnaryOperator::Plus ||
5745           UO->getOpcode() == UnaryOperator::Minus) &&
5746          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5747          // Only if the two operators are exactly adjacent.
5748          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5749          // And there is a space or other character before the subexpr of the
5750          // unary +/-.  We don't want to warn on "x=-1".
5751          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5752          UO->getSubExpr()->getLocStart().isFileID()) {
5753        Diag(Loc, diag::warn_not_compound_assign)
5754          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5755          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5756      }
5757    }
5758  } else {
5759    // Compound assignment "x += y"
5760    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5761  }
5762
5763  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5764                               RHS, AA_Assigning))
5765    return QualType();
5766
5767  // C99 6.5.16p3: The type of an assignment expression is the type of the
5768  // left operand unless the left operand has qualified type, in which case
5769  // it is the unqualified version of the type of the left operand.
5770  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5771  // is converted to the type of the assignment expression (above).
5772  // C++ 5.17p1: the type of the assignment expression is that of its left
5773  // operand.
5774  return LHSType.getUnqualifiedType();
5775}
5776
5777// C99 6.5.17
5778QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5779  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5780  DefaultFunctionArrayConversion(RHS);
5781
5782  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5783  // incomplete in C++).
5784
5785  return RHS->getType();
5786}
5787
5788/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5789/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5790QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5791                                              bool isInc) {
5792  if (Op->isTypeDependent())
5793    return Context.DependentTy;
5794
5795  QualType ResType = Op->getType();
5796  assert(!ResType.isNull() && "no type for increment/decrement expression");
5797
5798  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5799    // Decrement of bool is not allowed.
5800    if (!isInc) {
5801      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5802      return QualType();
5803    }
5804    // Increment of bool sets it to true, but is deprecated.
5805    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5806  } else if (ResType->isRealType()) {
5807    // OK!
5808  } else if (ResType->isAnyPointerType()) {
5809    QualType PointeeTy = ResType->getPointeeType();
5810
5811    // C99 6.5.2.4p2, 6.5.6p2
5812    if (PointeeTy->isVoidType()) {
5813      if (getLangOptions().CPlusPlus) {
5814        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5815          << Op->getSourceRange();
5816        return QualType();
5817      }
5818
5819      // Pointer to void is a GNU extension in C.
5820      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5821    } else if (PointeeTy->isFunctionType()) {
5822      if (getLangOptions().CPlusPlus) {
5823        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5824          << Op->getType() << Op->getSourceRange();
5825        return QualType();
5826      }
5827
5828      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5829        << ResType << Op->getSourceRange();
5830    } else if (RequireCompleteType(OpLoc, PointeeTy,
5831                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5832                             << Op->getSourceRange()
5833                             << ResType))
5834      return QualType();
5835    // Diagnose bad cases where we step over interface counts.
5836    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5837      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5838        << PointeeTy << Op->getSourceRange();
5839      return QualType();
5840    }
5841  } else if (ResType->isAnyComplexType()) {
5842    // C99 does not support ++/-- on complex types, we allow as an extension.
5843    Diag(OpLoc, diag::ext_integer_increment_complex)
5844      << ResType << Op->getSourceRange();
5845  } else {
5846    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5847      << ResType << int(isInc) << Op->getSourceRange();
5848    return QualType();
5849  }
5850  // At this point, we know we have a real, complex or pointer type.
5851  // Now make sure the operand is a modifiable lvalue.
5852  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5853    return QualType();
5854  return ResType;
5855}
5856
5857/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5858/// This routine allows us to typecheck complex/recursive expressions
5859/// where the declaration is needed for type checking. We only need to
5860/// handle cases when the expression references a function designator
5861/// or is an lvalue. Here are some examples:
5862///  - &(x) => x
5863///  - &*****f => f for f a function designator.
5864///  - &s.xx => s
5865///  - &s.zz[1].yy -> s, if zz is an array
5866///  - *(x + 1) -> x, if x is an array
5867///  - &"123"[2] -> 0
5868///  - & __real__ x -> x
5869static NamedDecl *getPrimaryDecl(Expr *E) {
5870  switch (E->getStmtClass()) {
5871  case Stmt::DeclRefExprClass:
5872    return cast<DeclRefExpr>(E)->getDecl();
5873  case Stmt::MemberExprClass:
5874    // If this is an arrow operator, the address is an offset from
5875    // the base's value, so the object the base refers to is
5876    // irrelevant.
5877    if (cast<MemberExpr>(E)->isArrow())
5878      return 0;
5879    // Otherwise, the expression refers to a part of the base
5880    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5881  case Stmt::ArraySubscriptExprClass: {
5882    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5883    // promotion of register arrays earlier.
5884    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5885    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5886      if (ICE->getSubExpr()->getType()->isArrayType())
5887        return getPrimaryDecl(ICE->getSubExpr());
5888    }
5889    return 0;
5890  }
5891  case Stmt::UnaryOperatorClass: {
5892    UnaryOperator *UO = cast<UnaryOperator>(E);
5893
5894    switch(UO->getOpcode()) {
5895    case UnaryOperator::Real:
5896    case UnaryOperator::Imag:
5897    case UnaryOperator::Extension:
5898      return getPrimaryDecl(UO->getSubExpr());
5899    default:
5900      return 0;
5901    }
5902  }
5903  case Stmt::ParenExprClass:
5904    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5905  case Stmt::ImplicitCastExprClass:
5906    // If the result of an implicit cast is an l-value, we care about
5907    // the sub-expression; otherwise, the result here doesn't matter.
5908    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5909  default:
5910    return 0;
5911  }
5912}
5913
5914/// CheckAddressOfOperand - The operand of & must be either a function
5915/// designator or an lvalue designating an object. If it is an lvalue, the
5916/// object cannot be declared with storage class register or be a bit field.
5917/// Note: The usual conversions are *not* applied to the operand of the &
5918/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5919/// In C++, the operand might be an overloaded function name, in which case
5920/// we allow the '&' but retain the overloaded-function type.
5921QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5922  // Make sure to ignore parentheses in subsequent checks
5923  op = op->IgnoreParens();
5924
5925  if (op->isTypeDependent())
5926    return Context.DependentTy;
5927
5928  if (getLangOptions().C99) {
5929    // Implement C99-only parts of addressof rules.
5930    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5931      if (uOp->getOpcode() == UnaryOperator::Deref)
5932        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5933        // (assuming the deref expression is valid).
5934        return uOp->getSubExpr()->getType();
5935    }
5936    // Technically, there should be a check for array subscript
5937    // expressions here, but the result of one is always an lvalue anyway.
5938  }
5939  NamedDecl *dcl = getPrimaryDecl(op);
5940  Expr::isLvalueResult lval = op->isLvalue(Context);
5941
5942  MemberExpr *ME = dyn_cast<MemberExpr>(op);
5943  if (lval == Expr::LV_MemberFunction && ME &&
5944      isa<CXXMethodDecl>(ME->getMemberDecl())) {
5945    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
5946    // &f where f is a member of the current object, or &o.f, or &p->f
5947    // All these are not allowed, and we need to catch them before the dcl
5948    // branch of the if, below.
5949    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
5950        << dcl;
5951    // FIXME: Improve this diagnostic and provide a fixit.
5952
5953    // Now recover by acting as if the function had been accessed qualified.
5954    return Context.getMemberPointerType(op->getType(),
5955                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
5956                       .getTypePtr());
5957  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5958    // C99 6.5.3.2p1
5959    // The operand must be either an l-value or a function designator
5960    if (!op->getType()->isFunctionType()) {
5961      // FIXME: emit more specific diag...
5962      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5963        << op->getSourceRange();
5964      return QualType();
5965    }
5966  } else if (op->getBitField()) { // C99 6.5.3.2p1
5967    // The operand cannot be a bit-field
5968    Diag(OpLoc, diag::err_typecheck_address_of)
5969      << "bit-field" << op->getSourceRange();
5970        return QualType();
5971  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
5972           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
5973    // The operand cannot be an element of a vector
5974    Diag(OpLoc, diag::err_typecheck_address_of)
5975      << "vector element" << op->getSourceRange();
5976    return QualType();
5977  } else if (isa<ObjCPropertyRefExpr>(op)) {
5978    // cannot take address of a property expression.
5979    Diag(OpLoc, diag::err_typecheck_address_of)
5980      << "property expression" << op->getSourceRange();
5981    return QualType();
5982  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
5983    // FIXME: Can LHS ever be null here?
5984    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
5985      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
5986  } else if (isa<UnresolvedLookupExpr>(op)) {
5987    return Context.OverloadTy;
5988  } else if (dcl) { // C99 6.5.3.2p1
5989    // We have an lvalue with a decl. Make sure the decl is not declared
5990    // with the register storage-class specifier.
5991    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
5992      if (vd->getStorageClass() == VarDecl::Register) {
5993        Diag(OpLoc, diag::err_typecheck_address_of)
5994          << "register variable" << op->getSourceRange();
5995        return QualType();
5996      }
5997    } else if (isa<FunctionTemplateDecl>(dcl)) {
5998      return Context.OverloadTy;
5999    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6000      // Okay: we can take the address of a field.
6001      // Could be a pointer to member, though, if there is an explicit
6002      // scope qualifier for the class.
6003      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6004        DeclContext *Ctx = dcl->getDeclContext();
6005        if (Ctx && Ctx->isRecord()) {
6006          if (FD->getType()->isReferenceType()) {
6007            Diag(OpLoc,
6008                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6009              << FD->getDeclName() << FD->getType();
6010            return QualType();
6011          }
6012
6013          return Context.getMemberPointerType(op->getType(),
6014                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6015        }
6016      }
6017    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6018      // Okay: we can take the address of a function.
6019      // As above.
6020      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6021          MD->isInstance())
6022        return Context.getMemberPointerType(op->getType(),
6023              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6024    } else if (!isa<FunctionDecl>(dcl))
6025      assert(0 && "Unknown/unexpected decl type");
6026  }
6027
6028  if (lval == Expr::LV_IncompleteVoidType) {
6029    // Taking the address of a void variable is technically illegal, but we
6030    // allow it in cases which are otherwise valid.
6031    // Example: "extern void x; void* y = &x;".
6032    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6033  }
6034
6035  // If the operand has type "type", the result has type "pointer to type".
6036  return Context.getPointerType(op->getType());
6037}
6038
6039QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6040  if (Op->isTypeDependent())
6041    return Context.DependentTy;
6042
6043  UsualUnaryConversions(Op);
6044  QualType Ty = Op->getType();
6045
6046  // Note that per both C89 and C99, this is always legal, even if ptype is an
6047  // incomplete type or void.  It would be possible to warn about dereferencing
6048  // a void pointer, but it's completely well-defined, and such a warning is
6049  // unlikely to catch any mistakes.
6050  if (const PointerType *PT = Ty->getAs<PointerType>())
6051    return PT->getPointeeType();
6052
6053  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6054    return OPT->getPointeeType();
6055
6056  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6057    << Ty << Op->getSourceRange();
6058  return QualType();
6059}
6060
6061static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6062  tok::TokenKind Kind) {
6063  BinaryOperator::Opcode Opc;
6064  switch (Kind) {
6065  default: assert(0 && "Unknown binop!");
6066  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6067  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6068  case tok::star:                 Opc = BinaryOperator::Mul; break;
6069  case tok::slash:                Opc = BinaryOperator::Div; break;
6070  case tok::percent:              Opc = BinaryOperator::Rem; break;
6071  case tok::plus:                 Opc = BinaryOperator::Add; break;
6072  case tok::minus:                Opc = BinaryOperator::Sub; break;
6073  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6074  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6075  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6076  case tok::less:                 Opc = BinaryOperator::LT; break;
6077  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6078  case tok::greater:              Opc = BinaryOperator::GT; break;
6079  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6080  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6081  case tok::amp:                  Opc = BinaryOperator::And; break;
6082  case tok::caret:                Opc = BinaryOperator::Xor; break;
6083  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6084  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6085  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6086  case tok::equal:                Opc = BinaryOperator::Assign; break;
6087  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6088  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6089  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6090  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6091  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6092  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6093  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6094  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6095  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6096  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6097  case tok::comma:                Opc = BinaryOperator::Comma; break;
6098  }
6099  return Opc;
6100}
6101
6102static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6103  tok::TokenKind Kind) {
6104  UnaryOperator::Opcode Opc;
6105  switch (Kind) {
6106  default: assert(0 && "Unknown unary op!");
6107  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6108  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6109  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6110  case tok::star:         Opc = UnaryOperator::Deref; break;
6111  case tok::plus:         Opc = UnaryOperator::Plus; break;
6112  case tok::minus:        Opc = UnaryOperator::Minus; break;
6113  case tok::tilde:        Opc = UnaryOperator::Not; break;
6114  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6115  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6116  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6117  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6118  }
6119  return Opc;
6120}
6121
6122/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6123/// operator @p Opc at location @c TokLoc. This routine only supports
6124/// built-in operations; ActOnBinOp handles overloaded operators.
6125Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6126                                                  unsigned Op,
6127                                                  Expr *lhs, Expr *rhs) {
6128  QualType ResultTy;     // Result type of the binary operator.
6129  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6130  // The following two variables are used for compound assignment operators
6131  QualType CompLHSTy;    // Type of LHS after promotions for computation
6132  QualType CompResultTy; // Type of computation result
6133
6134  switch (Opc) {
6135  case BinaryOperator::Assign:
6136    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6137    break;
6138  case BinaryOperator::PtrMemD:
6139  case BinaryOperator::PtrMemI:
6140    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6141                                            Opc == BinaryOperator::PtrMemI);
6142    break;
6143  case BinaryOperator::Mul:
6144  case BinaryOperator::Div:
6145    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6146                                           Opc == BinaryOperator::Div);
6147    break;
6148  case BinaryOperator::Rem:
6149    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6150    break;
6151  case BinaryOperator::Add:
6152    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6153    break;
6154  case BinaryOperator::Sub:
6155    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6156    break;
6157  case BinaryOperator::Shl:
6158  case BinaryOperator::Shr:
6159    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6160    break;
6161  case BinaryOperator::LE:
6162  case BinaryOperator::LT:
6163  case BinaryOperator::GE:
6164  case BinaryOperator::GT:
6165    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6166    break;
6167  case BinaryOperator::EQ:
6168  case BinaryOperator::NE:
6169    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6170    break;
6171  case BinaryOperator::And:
6172  case BinaryOperator::Xor:
6173  case BinaryOperator::Or:
6174    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6175    break;
6176  case BinaryOperator::LAnd:
6177  case BinaryOperator::LOr:
6178    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6179    break;
6180  case BinaryOperator::MulAssign:
6181  case BinaryOperator::DivAssign:
6182    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6183                                              Opc == BinaryOperator::DivAssign);
6184    CompLHSTy = CompResultTy;
6185    if (!CompResultTy.isNull())
6186      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6187    break;
6188  case BinaryOperator::RemAssign:
6189    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6190    CompLHSTy = CompResultTy;
6191    if (!CompResultTy.isNull())
6192      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6193    break;
6194  case BinaryOperator::AddAssign:
6195    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6196    if (!CompResultTy.isNull())
6197      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6198    break;
6199  case BinaryOperator::SubAssign:
6200    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6201    if (!CompResultTy.isNull())
6202      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6203    break;
6204  case BinaryOperator::ShlAssign:
6205  case BinaryOperator::ShrAssign:
6206    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6207    CompLHSTy = CompResultTy;
6208    if (!CompResultTy.isNull())
6209      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6210    break;
6211  case BinaryOperator::AndAssign:
6212  case BinaryOperator::XorAssign:
6213  case BinaryOperator::OrAssign:
6214    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6215    CompLHSTy = CompResultTy;
6216    if (!CompResultTy.isNull())
6217      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6218    break;
6219  case BinaryOperator::Comma:
6220    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6221    break;
6222  }
6223  if (ResultTy.isNull())
6224    return ExprError();
6225  if (CompResultTy.isNull())
6226    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6227  else
6228    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6229                                                      CompLHSTy, CompResultTy,
6230                                                      OpLoc));
6231}
6232
6233/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6234/// ParenRange in parentheses.
6235static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6236                               const PartialDiagnostic &PD,
6237                               SourceRange ParenRange,
6238                      const PartialDiagnostic &SecondPD = PartialDiagnostic(0),
6239                               SourceRange SecondParenRange = SourceRange()) {
6240  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6241  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6242    // We can't display the parentheses, so just dig the
6243    // warning/error and return.
6244    Self.Diag(Loc, PD);
6245    return;
6246  }
6247
6248  Self.Diag(Loc, PD)
6249    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
6250    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6251
6252  if (!SecondPD.getDiagID())
6253    return;
6254
6255  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6256  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6257    // We can't display the parentheses, so just dig the
6258    // warning/error and return.
6259    Self.Diag(Loc, SecondPD);
6260    return;
6261  }
6262
6263  Self.Diag(Loc, SecondPD)
6264    << CodeModificationHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6265    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6266}
6267
6268/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6269/// operators are mixed in a way that suggests that the programmer forgot that
6270/// comparison operators have higher precedence. The most typical example of
6271/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6272static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6273                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6274  typedef BinaryOperator BinOp;
6275  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6276                rhsopc = static_cast<BinOp::Opcode>(-1);
6277  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6278    lhsopc = BO->getOpcode();
6279  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6280    rhsopc = BO->getOpcode();
6281
6282  // Subs are not binary operators.
6283  if (lhsopc == -1 && rhsopc == -1)
6284    return;
6285
6286  // Bitwise operations are sometimes used as eager logical ops.
6287  // Don't diagnose this.
6288  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6289      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6290    return;
6291
6292  if (BinOp::isComparisonOp(lhsopc))
6293    SuggestParentheses(Self, OpLoc,
6294      PDiag(diag::warn_precedence_bitwise_rel)
6295          << SourceRange(lhs->getLocStart(), OpLoc)
6296          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6297      lhs->getSourceRange(),
6298      PDiag(diag::note_precedence_bitwise_first)
6299          << BinOp::getOpcodeStr(Opc),
6300      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
6301  else if (BinOp::isComparisonOp(rhsopc))
6302    SuggestParentheses(Self, OpLoc,
6303      PDiag(diag::warn_precedence_bitwise_rel)
6304          << SourceRange(OpLoc, rhs->getLocEnd())
6305          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6306      rhs->getSourceRange(),
6307      PDiag(diag::note_precedence_bitwise_first)
6308        << BinOp::getOpcodeStr(Opc),
6309      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
6310}
6311
6312/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6313/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6314/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6315static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6316                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6317  if (BinaryOperator::isBitwiseOp(Opc))
6318    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6319}
6320
6321// Binary Operators.  'Tok' is the token for the operator.
6322Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6323                                          tok::TokenKind Kind,
6324                                          ExprArg LHS, ExprArg RHS) {
6325  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6326  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6327
6328  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6329  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6330
6331  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6332  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6333
6334  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6335}
6336
6337Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6338                                          BinaryOperator::Opcode Opc,
6339                                          Expr *lhs, Expr *rhs) {
6340  if (getLangOptions().CPlusPlus &&
6341      (lhs->getType()->isOverloadableType() ||
6342       rhs->getType()->isOverloadableType())) {
6343    // Find all of the overloaded operators visible from this
6344    // point. We perform both an operator-name lookup from the local
6345    // scope and an argument-dependent lookup based on the types of
6346    // the arguments.
6347    UnresolvedSet<16> Functions;
6348    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6349    if (S && OverOp != OO_None)
6350      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6351                                   Functions);
6352
6353    // Build the (potentially-overloaded, potentially-dependent)
6354    // binary operation.
6355    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6356  }
6357
6358  // Build a built-in binary operation.
6359  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6360}
6361
6362Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6363                                                    unsigned OpcIn,
6364                                                    ExprArg InputArg) {
6365  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6366
6367  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6368  Expr *Input = (Expr *)InputArg.get();
6369  QualType resultType;
6370  switch (Opc) {
6371  case UnaryOperator::OffsetOf:
6372    assert(false && "Invalid unary operator");
6373    break;
6374
6375  case UnaryOperator::PreInc:
6376  case UnaryOperator::PreDec:
6377  case UnaryOperator::PostInc:
6378  case UnaryOperator::PostDec:
6379    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6380                                                Opc == UnaryOperator::PreInc ||
6381                                                Opc == UnaryOperator::PostInc);
6382    break;
6383  case UnaryOperator::AddrOf:
6384    resultType = CheckAddressOfOperand(Input, OpLoc);
6385    break;
6386  case UnaryOperator::Deref:
6387    DefaultFunctionArrayConversion(Input);
6388    resultType = CheckIndirectionOperand(Input, OpLoc);
6389    break;
6390  case UnaryOperator::Plus:
6391  case UnaryOperator::Minus:
6392    UsualUnaryConversions(Input);
6393    resultType = Input->getType();
6394    if (resultType->isDependentType())
6395      break;
6396    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6397      break;
6398    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6399             resultType->isEnumeralType())
6400      break;
6401    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6402             Opc == UnaryOperator::Plus &&
6403             resultType->isPointerType())
6404      break;
6405
6406    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6407      << resultType << Input->getSourceRange());
6408  case UnaryOperator::Not: // bitwise complement
6409    UsualUnaryConversions(Input);
6410    resultType = Input->getType();
6411    if (resultType->isDependentType())
6412      break;
6413    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6414    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6415      // C99 does not support '~' for complex conjugation.
6416      Diag(OpLoc, diag::ext_integer_complement_complex)
6417        << resultType << Input->getSourceRange();
6418    else if (!resultType->isIntegerType())
6419      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6420        << resultType << Input->getSourceRange());
6421    break;
6422  case UnaryOperator::LNot: // logical negation
6423    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6424    DefaultFunctionArrayConversion(Input);
6425    resultType = Input->getType();
6426    if (resultType->isDependentType())
6427      break;
6428    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6429      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6430        << resultType << Input->getSourceRange());
6431    // LNot always has type int. C99 6.5.3.3p5.
6432    // In C++, it's bool. C++ 5.3.1p8
6433    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6434    break;
6435  case UnaryOperator::Real:
6436  case UnaryOperator::Imag:
6437    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6438    break;
6439  case UnaryOperator::Extension:
6440    resultType = Input->getType();
6441    break;
6442  }
6443  if (resultType.isNull())
6444    return ExprError();
6445
6446  InputArg.release();
6447  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6448}
6449
6450Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6451                                            UnaryOperator::Opcode Opc,
6452                                            ExprArg input) {
6453  Expr *Input = (Expr*)input.get();
6454  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6455      Opc != UnaryOperator::Extension) {
6456    // Find all of the overloaded operators visible from this
6457    // point. We perform both an operator-name lookup from the local
6458    // scope and an argument-dependent lookup based on the types of
6459    // the arguments.
6460    UnresolvedSet<16> Functions;
6461    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6462    if (S && OverOp != OO_None)
6463      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6464                                   Functions);
6465
6466    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6467  }
6468
6469  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6470}
6471
6472// Unary Operators.  'Tok' is the token for the operator.
6473Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6474                                            tok::TokenKind Op, ExprArg input) {
6475  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6476}
6477
6478/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6479Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6480                                            SourceLocation LabLoc,
6481                                            IdentifierInfo *LabelII) {
6482  // Look up the record for this label identifier.
6483  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6484
6485  // If we haven't seen this label yet, create a forward reference. It
6486  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6487  if (LabelDecl == 0)
6488    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6489
6490  // Create the AST node.  The address of a label always has type 'void*'.
6491  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6492                                       Context.getPointerType(Context.VoidTy)));
6493}
6494
6495Sema::OwningExprResult
6496Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6497                    SourceLocation RPLoc) { // "({..})"
6498  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6499  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6500  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6501
6502  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
6503  if (isFileScope)
6504    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6505
6506  // FIXME: there are a variety of strange constraints to enforce here, for
6507  // example, it is not possible to goto into a stmt expression apparently.
6508  // More semantic analysis is needed.
6509
6510  // If there are sub stmts in the compound stmt, take the type of the last one
6511  // as the type of the stmtexpr.
6512  QualType Ty = Context.VoidTy;
6513
6514  if (!Compound->body_empty()) {
6515    Stmt *LastStmt = Compound->body_back();
6516    // If LastStmt is a label, skip down through into the body.
6517    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6518      LastStmt = Label->getSubStmt();
6519
6520    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6521      Ty = LastExpr->getType();
6522  }
6523
6524  // FIXME: Check that expression type is complete/non-abstract; statement
6525  // expressions are not lvalues.
6526
6527  substmt.release();
6528  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6529}
6530
6531Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6532                                                  SourceLocation BuiltinLoc,
6533                                                  SourceLocation TypeLoc,
6534                                                  TypeTy *argty,
6535                                                  OffsetOfComponent *CompPtr,
6536                                                  unsigned NumComponents,
6537                                                  SourceLocation RPLoc) {
6538  // FIXME: This function leaks all expressions in the offset components on
6539  // error.
6540  // FIXME: Preserve type source info.
6541  QualType ArgTy = GetTypeFromParser(argty);
6542  assert(!ArgTy.isNull() && "Missing type argument!");
6543
6544  bool Dependent = ArgTy->isDependentType();
6545
6546  // We must have at least one component that refers to the type, and the first
6547  // one is known to be a field designator.  Verify that the ArgTy represents
6548  // a struct/union/class.
6549  if (!Dependent && !ArgTy->isRecordType())
6550    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6551
6552  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6553  // with an incomplete type would be illegal.
6554
6555  // Otherwise, create a null pointer as the base, and iteratively process
6556  // the offsetof designators.
6557  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6558  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6559  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6560                                    ArgTy, SourceLocation());
6561
6562  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6563  // GCC extension, diagnose them.
6564  // FIXME: This diagnostic isn't actually visible because the location is in
6565  // a system header!
6566  if (NumComponents != 1)
6567    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6568      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6569
6570  if (!Dependent) {
6571    bool DidWarnAboutNonPOD = false;
6572
6573    if (RequireCompleteType(TypeLoc, Res->getType(),
6574                            diag::err_offsetof_incomplete_type))
6575      return ExprError();
6576
6577    // FIXME: Dependent case loses a lot of information here. And probably
6578    // leaks like a sieve.
6579    for (unsigned i = 0; i != NumComponents; ++i) {
6580      const OffsetOfComponent &OC = CompPtr[i];
6581      if (OC.isBrackets) {
6582        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6583        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6584        if (!AT) {
6585          Res->Destroy(Context);
6586          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6587            << Res->getType());
6588        }
6589
6590        // FIXME: C++: Verify that operator[] isn't overloaded.
6591
6592        // Promote the array so it looks more like a normal array subscript
6593        // expression.
6594        DefaultFunctionArrayConversion(Res);
6595
6596        // C99 6.5.2.1p1
6597        Expr *Idx = static_cast<Expr*>(OC.U.E);
6598        // FIXME: Leaks Res
6599        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6600          return ExprError(Diag(Idx->getLocStart(),
6601                                diag::err_typecheck_subscript_not_integer)
6602            << Idx->getSourceRange());
6603
6604        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6605                                               OC.LocEnd);
6606        continue;
6607      }
6608
6609      const RecordType *RC = Res->getType()->getAs<RecordType>();
6610      if (!RC) {
6611        Res->Destroy(Context);
6612        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6613          << Res->getType());
6614      }
6615
6616      // Get the decl corresponding to this.
6617      RecordDecl *RD = RC->getDecl();
6618      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6619        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6620            DiagRuntimeBehavior(BuiltinLoc,
6621                                PDiag(diag::warn_offsetof_non_pod_type)
6622                                  << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6623                                  << Res->getType()))
6624          DidWarnAboutNonPOD = true;
6625      }
6626
6627      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6628      LookupQualifiedName(R, RD);
6629
6630      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6631      // FIXME: Leaks Res
6632      if (!MemberDecl)
6633        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6634         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6635
6636      // FIXME: C++: Verify that MemberDecl isn't a static field.
6637      // FIXME: Verify that MemberDecl isn't a bitfield.
6638      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6639        Res = BuildAnonymousStructUnionMemberReference(
6640            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6641      } else {
6642        PerformObjectMemberConversion(Res, MemberDecl);
6643        // MemberDecl->getType() doesn't get the right qualifiers, but it
6644        // doesn't matter here.
6645        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6646                MemberDecl->getType().getNonReferenceType());
6647      }
6648    }
6649  }
6650
6651  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6652                                           Context.getSizeType(), BuiltinLoc));
6653}
6654
6655
6656Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6657                                                      TypeTy *arg1,TypeTy *arg2,
6658                                                      SourceLocation RPLoc) {
6659  // FIXME: Preserve type source info.
6660  QualType argT1 = GetTypeFromParser(arg1);
6661  QualType argT2 = GetTypeFromParser(arg2);
6662
6663  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6664
6665  if (getLangOptions().CPlusPlus) {
6666    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6667      << SourceRange(BuiltinLoc, RPLoc);
6668    return ExprError();
6669  }
6670
6671  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6672                                                 argT1, argT2, RPLoc));
6673}
6674
6675Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6676                                             ExprArg cond,
6677                                             ExprArg expr1, ExprArg expr2,
6678                                             SourceLocation RPLoc) {
6679  Expr *CondExpr = static_cast<Expr*>(cond.get());
6680  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6681  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6682
6683  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6684
6685  QualType resType;
6686  bool ValueDependent = false;
6687  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6688    resType = Context.DependentTy;
6689    ValueDependent = true;
6690  } else {
6691    // The conditional expression is required to be a constant expression.
6692    llvm::APSInt condEval(32);
6693    SourceLocation ExpLoc;
6694    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6695      return ExprError(Diag(ExpLoc,
6696                       diag::err_typecheck_choose_expr_requires_constant)
6697        << CondExpr->getSourceRange());
6698
6699    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6700    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6701    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6702                                             : RHSExpr->isValueDependent();
6703  }
6704
6705  cond.release(); expr1.release(); expr2.release();
6706  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6707                                        resType, RPLoc,
6708                                        resType->isDependentType(),
6709                                        ValueDependent));
6710}
6711
6712//===----------------------------------------------------------------------===//
6713// Clang Extensions.
6714//===----------------------------------------------------------------------===//
6715
6716/// ActOnBlockStart - This callback is invoked when a block literal is started.
6717void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6718  // Analyze block parameters.
6719  BlockSemaInfo *BSI = new BlockSemaInfo();
6720
6721  // Add BSI to CurBlock.
6722  BSI->PrevBlockInfo = CurBlock;
6723  CurBlock = BSI;
6724
6725  BSI->ReturnType = QualType();
6726  BSI->TheScope = BlockScope;
6727  BSI->hasBlockDeclRefExprs = false;
6728  BSI->hasPrototype = false;
6729  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
6730  CurFunctionNeedsScopeChecking = false;
6731
6732  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
6733  CurContext->addDecl(BSI->TheDecl);
6734  PushDeclContext(BlockScope, BSI->TheDecl);
6735}
6736
6737void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6738  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6739
6740  if (ParamInfo.getNumTypeObjects() == 0
6741      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6742    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6743    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6744
6745    if (T->isArrayType()) {
6746      Diag(ParamInfo.getSourceRange().getBegin(),
6747           diag::err_block_returns_array);
6748      return;
6749    }
6750
6751    // The parameter list is optional, if there was none, assume ().
6752    if (!T->isFunctionType())
6753      T = Context.getFunctionType(T, NULL, 0, 0, 0);
6754
6755    CurBlock->hasPrototype = true;
6756    CurBlock->isVariadic = false;
6757    // Check for a valid sentinel attribute on this block.
6758    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6759      Diag(ParamInfo.getAttributes()->getLoc(),
6760           diag::warn_attribute_sentinel_not_variadic) << 1;
6761      // FIXME: remove the attribute.
6762    }
6763    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6764
6765    // Do not allow returning a objc interface by-value.
6766    if (RetTy->isObjCInterfaceType()) {
6767      Diag(ParamInfo.getSourceRange().getBegin(),
6768           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6769      return;
6770    }
6771    return;
6772  }
6773
6774  // Analyze arguments to block.
6775  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6776         "Not a function declarator!");
6777  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6778
6779  CurBlock->hasPrototype = FTI.hasPrototype;
6780  CurBlock->isVariadic = true;
6781
6782  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6783  // no arguments, not a function that takes a single void argument.
6784  if (FTI.hasPrototype &&
6785      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6786     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6787        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6788    // empty arg list, don't push any params.
6789    CurBlock->isVariadic = false;
6790  } else if (FTI.hasPrototype) {
6791    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
6792      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
6793    CurBlock->isVariadic = FTI.isVariadic;
6794  }
6795  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
6796                               CurBlock->Params.size());
6797  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6798  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6799  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6800         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
6801    (*AI)->setOwningFunction(CurBlock->TheDecl);
6802
6803    // If this has an identifier, add it to the scope stack.
6804    if ((*AI)->getIdentifier())
6805      PushOnScopeChains(*AI, CurBlock->TheScope);
6806  }
6807
6808  // Check for a valid sentinel attribute on this block.
6809  if (!CurBlock->isVariadic &&
6810      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6811    Diag(ParamInfo.getAttributes()->getLoc(),
6812         diag::warn_attribute_sentinel_not_variadic) << 1;
6813    // FIXME: remove the attribute.
6814  }
6815
6816  // Analyze the return type.
6817  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6818  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6819
6820  // Do not allow returning a objc interface by-value.
6821  if (RetTy->isObjCInterfaceType()) {
6822    Diag(ParamInfo.getSourceRange().getBegin(),
6823         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6824  } else if (!RetTy->isDependentType())
6825    CurBlock->ReturnType = RetTy;
6826}
6827
6828/// ActOnBlockError - If there is an error parsing a block, this callback
6829/// is invoked to pop the information about the block from the action impl.
6830void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6831  // Ensure that CurBlock is deleted.
6832  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
6833
6834  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
6835
6836  // Pop off CurBlock, handle nested blocks.
6837  PopDeclContext();
6838  CurBlock = CurBlock->PrevBlockInfo;
6839  // FIXME: Delete the ParmVarDecl objects as well???
6840}
6841
6842/// ActOnBlockStmtExpr - This is called when the body of a block statement
6843/// literal was successfully completed.  ^(int x){...}
6844Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6845                                                StmtArg body, Scope *CurScope) {
6846  // If blocks are disabled, emit an error.
6847  if (!LangOpts.Blocks)
6848    Diag(CaretLoc, diag::err_blocks_disable);
6849
6850  // Ensure that CurBlock is deleted.
6851  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6852
6853  PopDeclContext();
6854
6855  // Pop off CurBlock, handle nested blocks.
6856  CurBlock = CurBlock->PrevBlockInfo;
6857
6858  QualType RetTy = Context.VoidTy;
6859  if (!BSI->ReturnType.isNull())
6860    RetTy = BSI->ReturnType;
6861
6862  llvm::SmallVector<QualType, 8> ArgTypes;
6863  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6864    ArgTypes.push_back(BSI->Params[i]->getType());
6865
6866  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6867  QualType BlockTy;
6868  if (!BSI->hasPrototype)
6869    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6870                                      NoReturn);
6871  else
6872    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6873                                      BSI->isVariadic, 0, false, false, 0, 0,
6874                                      NoReturn);
6875
6876  // FIXME: Check that return/parameter types are complete/non-abstract
6877  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6878  BlockTy = Context.getBlockPointerType(BlockTy);
6879
6880  // If needed, diagnose invalid gotos and switches in the block.
6881  if (CurFunctionNeedsScopeChecking)
6882    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6883  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6884
6885  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6886
6887  bool Good = true;
6888  // Check goto/label use.
6889  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
6890         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
6891    LabelStmt *L = I->second;
6892
6893    // Verify that we have no forward references left.  If so, there was a goto
6894    // or address of a label taken, but no definition of it.
6895    if (L->getSubStmt() != 0)
6896      continue;
6897
6898    // Emit error.
6899    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
6900    Good = false;
6901  }
6902  BSI->LabelMap.clear();
6903  if (!Good)
6904    return ExprError();
6905
6906  AnalysisContext AC(BSI->TheDecl);
6907  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody(), AC);
6908  CheckUnreachable(AC);
6909  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6910                                       BSI->hasBlockDeclRefExprs));
6911}
6912
6913Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6914                                        ExprArg expr, TypeTy *type,
6915                                        SourceLocation RPLoc) {
6916  QualType T = GetTypeFromParser(type);
6917  Expr *E = static_cast<Expr*>(expr.get());
6918  Expr *OrigExpr = E;
6919
6920  InitBuiltinVaListType();
6921
6922  // Get the va_list type
6923  QualType VaListType = Context.getBuiltinVaListType();
6924  if (VaListType->isArrayType()) {
6925    // Deal with implicit array decay; for example, on x86-64,
6926    // va_list is an array, but it's supposed to decay to
6927    // a pointer for va_arg.
6928    VaListType = Context.getArrayDecayedType(VaListType);
6929    // Make sure the input expression also decays appropriately.
6930    UsualUnaryConversions(E);
6931  } else {
6932    // Otherwise, the va_list argument must be an l-value because
6933    // it is modified by va_arg.
6934    if (!E->isTypeDependent() &&
6935        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6936      return ExprError();
6937  }
6938
6939  if (!E->isTypeDependent() &&
6940      !Context.hasSameType(VaListType, E->getType())) {
6941    return ExprError(Diag(E->getLocStart(),
6942                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6943      << OrigExpr->getType() << E->getSourceRange());
6944  }
6945
6946  // FIXME: Check that type is complete/non-abstract
6947  // FIXME: Warn if a non-POD type is passed in.
6948
6949  expr.release();
6950  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6951                                       RPLoc));
6952}
6953
6954Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6955  // The type of __null will be int or long, depending on the size of
6956  // pointers on the target.
6957  QualType Ty;
6958  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6959    Ty = Context.IntTy;
6960  else
6961    Ty = Context.LongTy;
6962
6963  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6964}
6965
6966static void
6967MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
6968                                          QualType DstType,
6969                                          Expr *SrcExpr,
6970                                          CodeModificationHint &Hint) {
6971  if (!SemaRef.getLangOptions().ObjC1)
6972    return;
6973
6974  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
6975  if (!PT)
6976    return;
6977
6978  // Check if the destination is of type 'id'.
6979  if (!PT->isObjCIdType()) {
6980    // Check if the destination is the 'NSString' interface.
6981    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
6982    if (!ID || !ID->getIdentifier()->isStr("NSString"))
6983      return;
6984  }
6985
6986  // Strip off any parens and casts.
6987  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
6988  if (!SL || SL->isWide())
6989    return;
6990
6991  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
6992}
6993
6994bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
6995                                    SourceLocation Loc,
6996                                    QualType DstType, QualType SrcType,
6997                                    Expr *SrcExpr, AssignmentAction Action) {
6998  // Decode the result (notice that AST's are still created for extensions).
6999  bool isInvalid = false;
7000  unsigned DiagKind;
7001  CodeModificationHint Hint;
7002
7003  switch (ConvTy) {
7004  default: assert(0 && "Unknown conversion type");
7005  case Compatible: return false;
7006  case PointerToInt:
7007    DiagKind = diag::ext_typecheck_convert_pointer_int;
7008    break;
7009  case IntToPointer:
7010    DiagKind = diag::ext_typecheck_convert_int_pointer;
7011    break;
7012  case IncompatiblePointer:
7013    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
7014    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7015    break;
7016  case IncompatiblePointerSign:
7017    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7018    break;
7019  case FunctionVoidPointer:
7020    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7021    break;
7022  case CompatiblePointerDiscardsQualifiers:
7023    // If the qualifiers lost were because we were applying the
7024    // (deprecated) C++ conversion from a string literal to a char*
7025    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7026    // Ideally, this check would be performed in
7027    // CheckPointerTypesForAssignment. However, that would require a
7028    // bit of refactoring (so that the second argument is an
7029    // expression, rather than a type), which should be done as part
7030    // of a larger effort to fix CheckPointerTypesForAssignment for
7031    // C++ semantics.
7032    if (getLangOptions().CPlusPlus &&
7033        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7034      return false;
7035    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7036    break;
7037  case IncompatibleNestedPointerQualifiers:
7038    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7039    break;
7040  case IntToBlockPointer:
7041    DiagKind = diag::err_int_to_block_pointer;
7042    break;
7043  case IncompatibleBlockPointer:
7044    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7045    break;
7046  case IncompatibleObjCQualifiedId:
7047    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7048    // it can give a more specific diagnostic.
7049    DiagKind = diag::warn_incompatible_qualified_id;
7050    break;
7051  case IncompatibleVectors:
7052    DiagKind = diag::warn_incompatible_vectors;
7053    break;
7054  case Incompatible:
7055    DiagKind = diag::err_typecheck_convert_incompatible;
7056    isInvalid = true;
7057    break;
7058  }
7059
7060  Diag(Loc, DiagKind) << DstType << SrcType << Action
7061    << SrcExpr->getSourceRange() << Hint;
7062  return isInvalid;
7063}
7064
7065bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7066  llvm::APSInt ICEResult;
7067  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7068    if (Result)
7069      *Result = ICEResult;
7070    return false;
7071  }
7072
7073  Expr::EvalResult EvalResult;
7074
7075  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7076      EvalResult.HasSideEffects) {
7077    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7078
7079    if (EvalResult.Diag) {
7080      // We only show the note if it's not the usual "invalid subexpression"
7081      // or if it's actually in a subexpression.
7082      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7083          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7084        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7085    }
7086
7087    return true;
7088  }
7089
7090  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7091    E->getSourceRange();
7092
7093  if (EvalResult.Diag &&
7094      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7095    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7096
7097  if (Result)
7098    *Result = EvalResult.Val.getInt();
7099  return false;
7100}
7101
7102void
7103Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7104  ExprEvalContexts.push_back(
7105        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7106}
7107
7108void
7109Sema::PopExpressionEvaluationContext() {
7110  // Pop the current expression evaluation context off the stack.
7111  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7112  ExprEvalContexts.pop_back();
7113
7114  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7115    if (Rec.PotentiallyReferenced) {
7116      // Mark any remaining declarations in the current position of the stack
7117      // as "referenced". If they were not meant to be referenced, semantic
7118      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7119      for (PotentiallyReferencedDecls::iterator
7120             I = Rec.PotentiallyReferenced->begin(),
7121             IEnd = Rec.PotentiallyReferenced->end();
7122           I != IEnd; ++I)
7123        MarkDeclarationReferenced(I->first, I->second);
7124    }
7125
7126    if (Rec.PotentiallyDiagnosed) {
7127      // Emit any pending diagnostics.
7128      for (PotentiallyEmittedDiagnostics::iterator
7129                I = Rec.PotentiallyDiagnosed->begin(),
7130             IEnd = Rec.PotentiallyDiagnosed->end();
7131           I != IEnd; ++I)
7132        Diag(I->first, I->second);
7133    }
7134  }
7135
7136  // When are coming out of an unevaluated context, clear out any
7137  // temporaries that we may have created as part of the evaluation of
7138  // the expression in that context: they aren't relevant because they
7139  // will never be constructed.
7140  if (Rec.Context == Unevaluated &&
7141      ExprTemporaries.size() > Rec.NumTemporaries)
7142    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7143                          ExprTemporaries.end());
7144
7145  // Destroy the popped expression evaluation record.
7146  Rec.Destroy();
7147}
7148
7149/// \brief Note that the given declaration was referenced in the source code.
7150///
7151/// This routine should be invoke whenever a given declaration is referenced
7152/// in the source code, and where that reference occurred. If this declaration
7153/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7154/// C99 6.9p3), then the declaration will be marked as used.
7155///
7156/// \param Loc the location where the declaration was referenced.
7157///
7158/// \param D the declaration that has been referenced by the source code.
7159void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7160  assert(D && "No declaration?");
7161
7162  if (D->isUsed())
7163    return;
7164
7165  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7166  // template or not. The reason for this is that unevaluated expressions
7167  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7168  // -Wunused-parameters)
7169  if (isa<ParmVarDecl>(D) ||
7170      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
7171    D->setUsed(true);
7172
7173  // Do not mark anything as "used" within a dependent context; wait for
7174  // an instantiation.
7175  if (CurContext->isDependentContext())
7176    return;
7177
7178  switch (ExprEvalContexts.back().Context) {
7179    case Unevaluated:
7180      // We are in an expression that is not potentially evaluated; do nothing.
7181      return;
7182
7183    case PotentiallyEvaluated:
7184      // We are in a potentially-evaluated expression, so this declaration is
7185      // "used"; handle this below.
7186      break;
7187
7188    case PotentiallyPotentiallyEvaluated:
7189      // We are in an expression that may be potentially evaluated; queue this
7190      // declaration reference until we know whether the expression is
7191      // potentially evaluated.
7192      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7193      return;
7194  }
7195
7196  // Note that this declaration has been used.
7197  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7198    unsigned TypeQuals;
7199    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7200        if (!Constructor->isUsed())
7201          DefineImplicitDefaultConstructor(Loc, Constructor);
7202    } else if (Constructor->isImplicit() &&
7203               Constructor->isCopyConstructor(TypeQuals)) {
7204      if (!Constructor->isUsed())
7205        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7206    }
7207
7208    MaybeMarkVirtualMembersReferenced(Loc, Constructor);
7209  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7210    if (Destructor->isImplicit() && !Destructor->isUsed())
7211      DefineImplicitDestructor(Loc, Destructor);
7212
7213  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7214    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7215        MethodDecl->getOverloadedOperator() == OO_Equal) {
7216      if (!MethodDecl->isUsed())
7217        DefineImplicitOverloadedAssign(Loc, MethodDecl);
7218    }
7219  }
7220  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7221    // Implicit instantiation of function templates and member functions of
7222    // class templates.
7223    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
7224      bool AlreadyInstantiated = false;
7225      if (FunctionTemplateSpecializationInfo *SpecInfo
7226                                = Function->getTemplateSpecializationInfo()) {
7227        if (SpecInfo->getPointOfInstantiation().isInvalid())
7228          SpecInfo->setPointOfInstantiation(Loc);
7229        else if (SpecInfo->getTemplateSpecializationKind()
7230                   == TSK_ImplicitInstantiation)
7231          AlreadyInstantiated = true;
7232      } else if (MemberSpecializationInfo *MSInfo
7233                                  = Function->getMemberSpecializationInfo()) {
7234        if (MSInfo->getPointOfInstantiation().isInvalid())
7235          MSInfo->setPointOfInstantiation(Loc);
7236        else if (MSInfo->getTemplateSpecializationKind()
7237                   == TSK_ImplicitInstantiation)
7238          AlreadyInstantiated = true;
7239      }
7240
7241      if (!AlreadyInstantiated) {
7242        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7243            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7244          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7245                                                                      Loc));
7246        else
7247          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7248                                                                 Loc));
7249      }
7250    }
7251
7252    // FIXME: keep track of references to static functions
7253    Function->setUsed(true);
7254    return;
7255  }
7256
7257  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7258    // Implicit instantiation of static data members of class templates.
7259    if (Var->isStaticDataMember() &&
7260        Var->getInstantiatedFromStaticDataMember()) {
7261      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7262      assert(MSInfo && "Missing member specialization information?");
7263      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7264          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7265        MSInfo->setPointOfInstantiation(Loc);
7266        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7267      }
7268    }
7269
7270    // FIXME: keep track of references to static data?
7271
7272    D->setUsed(true);
7273    return;
7274  }
7275}
7276
7277/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7278/// of the program being compiled.
7279///
7280/// This routine emits the given diagnostic when the code currently being
7281/// type-checked is "potentially evaluated", meaning that there is a
7282/// possibility that the code will actually be executable. Code in sizeof()
7283/// expressions, code used only during overload resolution, etc., are not
7284/// potentially evaluated. This routine will suppress such diagnostics or,
7285/// in the absolutely nutty case of potentially potentially evaluated
7286/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7287/// later.
7288///
7289/// This routine should be used for all diagnostics that describe the run-time
7290/// behavior of a program, such as passing a non-POD value through an ellipsis.
7291/// Failure to do so will likely result in spurious diagnostics or failures
7292/// during overload resolution or within sizeof/alignof/typeof/typeid.
7293bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7294                               const PartialDiagnostic &PD) {
7295  switch (ExprEvalContexts.back().Context ) {
7296  case Unevaluated:
7297    // The argument will never be evaluated, so don't complain.
7298    break;
7299
7300  case PotentiallyEvaluated:
7301    Diag(Loc, PD);
7302    return true;
7303
7304  case PotentiallyPotentiallyEvaluated:
7305    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7306    break;
7307  }
7308
7309  return false;
7310}
7311
7312bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7313                               CallExpr *CE, FunctionDecl *FD) {
7314  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7315    return false;
7316
7317  PartialDiagnostic Note =
7318    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7319    << FD->getDeclName() : PDiag();
7320  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7321
7322  if (RequireCompleteType(Loc, ReturnType,
7323                          FD ?
7324                          PDiag(diag::err_call_function_incomplete_return)
7325                            << CE->getSourceRange() << FD->getDeclName() :
7326                          PDiag(diag::err_call_incomplete_return)
7327                            << CE->getSourceRange(),
7328                          std::make_pair(NoteLoc, Note)))
7329    return true;
7330
7331  return false;
7332}
7333
7334// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7335// will prevent this condition from triggering, which is what we want.
7336void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7337  SourceLocation Loc;
7338
7339  unsigned diagnostic = diag::warn_condition_is_assignment;
7340
7341  if (isa<BinaryOperator>(E)) {
7342    BinaryOperator *Op = cast<BinaryOperator>(E);
7343    if (Op->getOpcode() != BinaryOperator::Assign)
7344      return;
7345
7346    // Greylist some idioms by putting them into a warning subcategory.
7347    if (ObjCMessageExpr *ME
7348          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7349      Selector Sel = ME->getSelector();
7350
7351      // self = [<foo> init...]
7352      if (isSelfExpr(Op->getLHS())
7353          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7354        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7355
7356      // <foo> = [<bar> nextObject]
7357      else if (Sel.isUnarySelector() &&
7358               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7359        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7360    }
7361
7362    Loc = Op->getOperatorLoc();
7363  } else if (isa<CXXOperatorCallExpr>(E)) {
7364    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7365    if (Op->getOperator() != OO_Equal)
7366      return;
7367
7368    Loc = Op->getOperatorLoc();
7369  } else {
7370    // Not an assignment.
7371    return;
7372  }
7373
7374  SourceLocation Open = E->getSourceRange().getBegin();
7375  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7376
7377  Diag(Loc, diagnostic)
7378    << E->getSourceRange()
7379    << CodeModificationHint::CreateInsertion(Open, "(")
7380    << CodeModificationHint::CreateInsertion(Close, ")");
7381  Diag(Loc, diag::note_condition_assign_to_comparison)
7382    << CodeModificationHint::CreateReplacement(Loc, "==");
7383}
7384
7385bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7386  DiagnoseAssignmentAsCondition(E);
7387
7388  if (!E->isTypeDependent()) {
7389    DefaultFunctionArrayConversion(E);
7390
7391    QualType T = E->getType();
7392
7393    if (getLangOptions().CPlusPlus) {
7394      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7395        return true;
7396    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7397      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7398        << T << E->getSourceRange();
7399      return true;
7400    }
7401  }
7402
7403  return false;
7404}
7405