SemaExpr.cpp revision 73f428cf2c5a0847014a3125b7bb8d271aaa7c65
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/AnalysisBasedWarnings.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Lex/LiteralSupport.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44#include "TreeTransform.h"
45using namespace clang;
46using namespace sema;
47
48/// \brief Determine whether the use of this declaration is valid, without
49/// emitting diagnostics.
50bool Sema::CanUseDecl(NamedDecl *D) {
51  // See if this is an auto-typed variable whose initializer we are parsing.
52  if (ParsingInitForAutoVars.count(D))
53    return false;
54
55  // See if this is a deleted function.
56  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57    if (FD->isDeleted())
58      return false;
59  }
60
61  // See if this function is unavailable.
62  if (D->getAvailability() == AR_Unavailable &&
63      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64    return false;
65
66  return true;
67}
68
69static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
70                              NamedDecl *D, SourceLocation Loc,
71                              const ObjCInterfaceDecl *UnknownObjCClass) {
72  // See if this declaration is unavailable or deprecated.
73  std::string Message;
74  AvailabilityResult Result = D->getAvailability(&Message);
75  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
76    if (Result == AR_Available) {
77      const DeclContext *DC = ECD->getDeclContext();
78      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
79        Result = TheEnumDecl->getAvailability(&Message);
80    }
81
82  switch (Result) {
83    case AR_Available:
84    case AR_NotYetIntroduced:
85      break;
86
87    case AR_Deprecated:
88      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
89      break;
90
91    case AR_Unavailable:
92      if (S.getCurContextAvailability() != AR_Unavailable) {
93        if (Message.empty()) {
94          if (!UnknownObjCClass)
95            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
96          else
97            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
98              << D->getDeclName();
99        }
100        else
101          S.Diag(Loc, diag::err_unavailable_message)
102            << D->getDeclName() << Message;
103          S.Diag(D->getLocation(), diag::note_unavailable_here)
104          << isa<FunctionDecl>(D) << false;
105      }
106      break;
107    }
108    return Result;
109}
110
111/// \brief Emit a note explaining that this function is deleted or unavailable.
112void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
113  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
114
115  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
116    // If the method was explicitly defaulted, point at that declaration.
117    if (!Method->isImplicit())
118      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
119
120    // Try to diagnose why this special member function was implicitly
121    // deleted. This might fail, if that reason no longer applies.
122    CXXSpecialMember CSM = getSpecialMember(Method);
123    if (CSM != CXXInvalid)
124      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
125
126    return;
127  }
128
129  Diag(Decl->getLocation(), diag::note_unavailable_here)
130    << 1 << Decl->isDeleted();
131}
132
133/// \brief Determine whether the use of this declaration is valid, and
134/// emit any corresponding diagnostics.
135///
136/// This routine diagnoses various problems with referencing
137/// declarations that can occur when using a declaration. For example,
138/// it might warn if a deprecated or unavailable declaration is being
139/// used, or produce an error (and return true) if a C++0x deleted
140/// function is being used.
141///
142/// \returns true if there was an error (this declaration cannot be
143/// referenced), false otherwise.
144///
145bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
146                             const ObjCInterfaceDecl *UnknownObjCClass) {
147  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
148    // If there were any diagnostics suppressed by template argument deduction,
149    // emit them now.
150    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
151      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
152    if (Pos != SuppressedDiagnostics.end()) {
153      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
154      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
155        Diag(Suppressed[I].first, Suppressed[I].second);
156
157      // Clear out the list of suppressed diagnostics, so that we don't emit
158      // them again for this specialization. However, we don't obsolete this
159      // entry from the table, because we want to avoid ever emitting these
160      // diagnostics again.
161      Suppressed.clear();
162    }
163  }
164
165  // See if this is an auto-typed variable whose initializer we are parsing.
166  if (ParsingInitForAutoVars.count(D)) {
167    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
168      << D->getDeclName();
169    return true;
170  }
171
172  // See if this is a deleted function.
173  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
174    if (FD->isDeleted()) {
175      Diag(Loc, diag::err_deleted_function_use);
176      NoteDeletedFunction(FD);
177      return true;
178    }
179  }
180  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
181
182  // Warn if this is used but marked unused.
183  if (D->hasAttr<UnusedAttr>())
184    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
185  return false;
186}
187
188/// \brief Retrieve the message suffix that should be added to a
189/// diagnostic complaining about the given function being deleted or
190/// unavailable.
191std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
192  // FIXME: C++0x implicitly-deleted special member functions could be
193  // detected here so that we could improve diagnostics to say, e.g.,
194  // "base class 'A' had a deleted copy constructor".
195  if (FD->isDeleted())
196    return std::string();
197
198  std::string Message;
199  if (FD->getAvailability(&Message))
200    return ": " + Message;
201
202  return std::string();
203}
204
205/// DiagnoseSentinelCalls - This routine checks whether a call or
206/// message-send is to a declaration with the sentinel attribute, and
207/// if so, it checks that the requirements of the sentinel are
208/// satisfied.
209void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
210                                 Expr **args, unsigned numArgs) {
211  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
212  if (!attr)
213    return;
214
215  // The number of formal parameters of the declaration.
216  unsigned numFormalParams;
217
218  // The kind of declaration.  This is also an index into a %select in
219  // the diagnostic.
220  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
221
222  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
223    numFormalParams = MD->param_size();
224    calleeType = CT_Method;
225  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
226    numFormalParams = FD->param_size();
227    calleeType = CT_Function;
228  } else if (isa<VarDecl>(D)) {
229    QualType type = cast<ValueDecl>(D)->getType();
230    const FunctionType *fn = 0;
231    if (const PointerType *ptr = type->getAs<PointerType>()) {
232      fn = ptr->getPointeeType()->getAs<FunctionType>();
233      if (!fn) return;
234      calleeType = CT_Function;
235    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
236      fn = ptr->getPointeeType()->castAs<FunctionType>();
237      calleeType = CT_Block;
238    } else {
239      return;
240    }
241
242    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
243      numFormalParams = proto->getNumArgs();
244    } else {
245      numFormalParams = 0;
246    }
247  } else {
248    return;
249  }
250
251  // "nullPos" is the number of formal parameters at the end which
252  // effectively count as part of the variadic arguments.  This is
253  // useful if you would prefer to not have *any* formal parameters,
254  // but the language forces you to have at least one.
255  unsigned nullPos = attr->getNullPos();
256  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
257  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
258
259  // The number of arguments which should follow the sentinel.
260  unsigned numArgsAfterSentinel = attr->getSentinel();
261
262  // If there aren't enough arguments for all the formal parameters,
263  // the sentinel, and the args after the sentinel, complain.
264  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
265    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
266    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
267    return;
268  }
269
270  // Otherwise, find the sentinel expression.
271  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
272  if (!sentinelExpr) return;
273  if (sentinelExpr->isValueDependent()) return;
274  if (Context.isSentinelNullExpr(sentinelExpr)) return;
275
276  // Pick a reasonable string to insert.  Optimistically use 'nil' or
277  // 'NULL' if those are actually defined in the context.  Only use
278  // 'nil' for ObjC methods, where it's much more likely that the
279  // variadic arguments form a list of object pointers.
280  SourceLocation MissingNilLoc
281    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
282  std::string NullValue;
283  if (calleeType == CT_Method &&
284      PP.getIdentifierInfo("nil")->hasMacroDefinition())
285    NullValue = "nil";
286  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
287    NullValue = "NULL";
288  else
289    NullValue = "(void*) 0";
290
291  if (MissingNilLoc.isInvalid())
292    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
293  else
294    Diag(MissingNilLoc, diag::warn_missing_sentinel)
295      << calleeType
296      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
297  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
298}
299
300SourceRange Sema::getExprRange(Expr *E) const {
301  return E ? E->getSourceRange() : SourceRange();
302}
303
304//===----------------------------------------------------------------------===//
305//  Standard Promotions and Conversions
306//===----------------------------------------------------------------------===//
307
308/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
309ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
310  // Handle any placeholder expressions which made it here.
311  if (E->getType()->isPlaceholderType()) {
312    ExprResult result = CheckPlaceholderExpr(E);
313    if (result.isInvalid()) return ExprError();
314    E = result.take();
315  }
316
317  QualType Ty = E->getType();
318  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
319
320  if (Ty->isFunctionType())
321    E = ImpCastExprToType(E, Context.getPointerType(Ty),
322                          CK_FunctionToPointerDecay).take();
323  else if (Ty->isArrayType()) {
324    // In C90 mode, arrays only promote to pointers if the array expression is
325    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
326    // type 'array of type' is converted to an expression that has type 'pointer
327    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
328    // that has type 'array of type' ...".  The relevant change is "an lvalue"
329    // (C90) to "an expression" (C99).
330    //
331    // C++ 4.2p1:
332    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
333    // T" can be converted to an rvalue of type "pointer to T".
334    //
335    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
336      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
337                            CK_ArrayToPointerDecay).take();
338  }
339  return Owned(E);
340}
341
342static void CheckForNullPointerDereference(Sema &S, Expr *E) {
343  // Check to see if we are dereferencing a null pointer.  If so,
344  // and if not volatile-qualified, this is undefined behavior that the
345  // optimizer will delete, so warn about it.  People sometimes try to use this
346  // to get a deterministic trap and are surprised by clang's behavior.  This
347  // only handles the pattern "*null", which is a very syntactic check.
348  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
349    if (UO->getOpcode() == UO_Deref &&
350        UO->getSubExpr()->IgnoreParenCasts()->
351          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
352        !UO->getType().isVolatileQualified()) {
353    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
354                          S.PDiag(diag::warn_indirection_through_null)
355                            << UO->getSubExpr()->getSourceRange());
356    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
357                        S.PDiag(diag::note_indirection_through_null));
358  }
359}
360
361ExprResult Sema::DefaultLvalueConversion(Expr *E) {
362  // Handle any placeholder expressions which made it here.
363  if (E->getType()->isPlaceholderType()) {
364    ExprResult result = CheckPlaceholderExpr(E);
365    if (result.isInvalid()) return ExprError();
366    E = result.take();
367  }
368
369  // C++ [conv.lval]p1:
370  //   A glvalue of a non-function, non-array type T can be
371  //   converted to a prvalue.
372  if (!E->isGLValue()) return Owned(E);
373
374  QualType T = E->getType();
375  assert(!T.isNull() && "r-value conversion on typeless expression?");
376
377  // We can't do lvalue-to-rvalue on atomics yet.
378  if (T->isAtomicType())
379    return Owned(E);
380
381  // We don't want to throw lvalue-to-rvalue casts on top of
382  // expressions of certain types in C++.
383  if (getLangOpts().CPlusPlus &&
384      (E->getType() == Context.OverloadTy ||
385       T->isDependentType() ||
386       T->isRecordType()))
387    return Owned(E);
388
389  // The C standard is actually really unclear on this point, and
390  // DR106 tells us what the result should be but not why.  It's
391  // generally best to say that void types just doesn't undergo
392  // lvalue-to-rvalue at all.  Note that expressions of unqualified
393  // 'void' type are never l-values, but qualified void can be.
394  if (T->isVoidType())
395    return Owned(E);
396
397  CheckForNullPointerDereference(*this, E);
398
399  // C++ [conv.lval]p1:
400  //   [...] If T is a non-class type, the type of the prvalue is the
401  //   cv-unqualified version of T. Otherwise, the type of the
402  //   rvalue is T.
403  //
404  // C99 6.3.2.1p2:
405  //   If the lvalue has qualified type, the value has the unqualified
406  //   version of the type of the lvalue; otherwise, the value has the
407  //   type of the lvalue.
408  if (T.hasQualifiers())
409    T = T.getUnqualifiedType();
410
411  UpdateMarkingForLValueToRValue(E);
412
413  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
414                                                  E, 0, VK_RValue));
415
416  return Res;
417}
418
419ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
420  ExprResult Res = DefaultFunctionArrayConversion(E);
421  if (Res.isInvalid())
422    return ExprError();
423  Res = DefaultLvalueConversion(Res.take());
424  if (Res.isInvalid())
425    return ExprError();
426  return move(Res);
427}
428
429
430/// UsualUnaryConversions - Performs various conversions that are common to most
431/// operators (C99 6.3). The conversions of array and function types are
432/// sometimes suppressed. For example, the array->pointer conversion doesn't
433/// apply if the array is an argument to the sizeof or address (&) operators.
434/// In these instances, this routine should *not* be called.
435ExprResult Sema::UsualUnaryConversions(Expr *E) {
436  // First, convert to an r-value.
437  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
438  if (Res.isInvalid())
439    return Owned(E);
440  E = Res.take();
441
442  QualType Ty = E->getType();
443  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
444
445  // Half FP is a bit different: it's a storage-only type, meaning that any
446  // "use" of it should be promoted to float.
447  if (Ty->isHalfType())
448    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
449
450  // Try to perform integral promotions if the object has a theoretically
451  // promotable type.
452  if (Ty->isIntegralOrUnscopedEnumerationType()) {
453    // C99 6.3.1.1p2:
454    //
455    //   The following may be used in an expression wherever an int or
456    //   unsigned int may be used:
457    //     - an object or expression with an integer type whose integer
458    //       conversion rank is less than or equal to the rank of int
459    //       and unsigned int.
460    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
461    //
462    //   If an int can represent all values of the original type, the
463    //   value is converted to an int; otherwise, it is converted to an
464    //   unsigned int. These are called the integer promotions. All
465    //   other types are unchanged by the integer promotions.
466
467    QualType PTy = Context.isPromotableBitField(E);
468    if (!PTy.isNull()) {
469      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
470      return Owned(E);
471    }
472    if (Ty->isPromotableIntegerType()) {
473      QualType PT = Context.getPromotedIntegerType(Ty);
474      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
475      return Owned(E);
476    }
477  }
478  return Owned(E);
479}
480
481/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
482/// do not have a prototype. Arguments that have type float are promoted to
483/// double. All other argument types are converted by UsualUnaryConversions().
484ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
485  QualType Ty = E->getType();
486  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
487
488  ExprResult Res = UsualUnaryConversions(E);
489  if (Res.isInvalid())
490    return Owned(E);
491  E = Res.take();
492
493  // If this is a 'float' (CVR qualified or typedef) promote to double.
494  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
495    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
496
497  // C++ performs lvalue-to-rvalue conversion as a default argument
498  // promotion, even on class types, but note:
499  //   C++11 [conv.lval]p2:
500  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
501  //     operand or a subexpression thereof the value contained in the
502  //     referenced object is not accessed. Otherwise, if the glvalue
503  //     has a class type, the conversion copy-initializes a temporary
504  //     of type T from the glvalue and the result of the conversion
505  //     is a prvalue for the temporary.
506  // FIXME: add some way to gate this entire thing for correctness in
507  // potentially potentially evaluated contexts.
508  if (getLangOpts().CPlusPlus && E->isGLValue() &&
509      ExprEvalContexts.back().Context != Unevaluated) {
510    ExprResult Temp = PerformCopyInitialization(
511                       InitializedEntity::InitializeTemporary(E->getType()),
512                                                E->getExprLoc(),
513                                                Owned(E));
514    if (Temp.isInvalid())
515      return ExprError();
516    E = Temp.get();
517  }
518
519  return Owned(E);
520}
521
522/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
523/// will warn if the resulting type is not a POD type, and rejects ObjC
524/// interfaces passed by value.
525ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
526                                                  FunctionDecl *FDecl) {
527  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
528    // Strip the unbridged-cast placeholder expression off, if applicable.
529    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
530        (CT == VariadicMethod ||
531         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
532      E = stripARCUnbridgedCast(E);
533
534    // Otherwise, do normal placeholder checking.
535    } else {
536      ExprResult ExprRes = CheckPlaceholderExpr(E);
537      if (ExprRes.isInvalid())
538        return ExprError();
539      E = ExprRes.take();
540    }
541  }
542
543  ExprResult ExprRes = DefaultArgumentPromotion(E);
544  if (ExprRes.isInvalid())
545    return ExprError();
546  E = ExprRes.take();
547
548  // Don't allow one to pass an Objective-C interface to a vararg.
549  if (E->getType()->isObjCObjectType() &&
550    DiagRuntimeBehavior(E->getLocStart(), 0,
551                        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
552                          << E->getType() << CT))
553    return ExprError();
554
555  // Complain about passing non-POD types through varargs. However, don't
556  // perform this check for incomplete types, which we can get here when we're
557  // in an unevaluated context.
558  if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
559    // C++0x [expr.call]p7:
560    //   Passing a potentially-evaluated argument of class type (Clause 9)
561    //   having a non-trivial copy constructor, a non-trivial move constructor,
562    //   or a non-trivial destructor, with no corresponding parameter,
563    //   is conditionally-supported with implementation-defined semantics.
564    bool TrivialEnough = false;
565    if (getLangOpts().CPlusPlus0x && !E->getType()->isDependentType())  {
566      if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
567        if (Record->hasTrivialCopyConstructor() &&
568            Record->hasTrivialMoveConstructor() &&
569            Record->hasTrivialDestructor()) {
570          DiagRuntimeBehavior(E->getLocStart(), 0,
571            PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
572              << E->getType() << CT);
573          TrivialEnough = true;
574        }
575      }
576    }
577
578    if (!TrivialEnough &&
579        getLangOpts().ObjCAutoRefCount &&
580        E->getType()->isObjCLifetimeType())
581      TrivialEnough = true;
582
583    if (TrivialEnough) {
584      // Nothing to diagnose. This is okay.
585    } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
586                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
587                            << getLangOpts().CPlusPlus0x << E->getType()
588                            << CT)) {
589      // Turn this into a trap.
590      CXXScopeSpec SS;
591      SourceLocation TemplateKWLoc;
592      UnqualifiedId Name;
593      Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
594                         E->getLocStart());
595      ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
596                                            true, false);
597      if (TrapFn.isInvalid())
598        return ExprError();
599
600      ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
601                                      MultiExprArg(), E->getLocEnd());
602      if (Call.isInvalid())
603        return ExprError();
604
605      ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
606                                    Call.get(), E);
607      if (Comma.isInvalid())
608        return ExprError();
609      E = Comma.get();
610    }
611  }
612  // c++ rules are enforced elsewhere.
613  if (!getLangOpts().CPlusPlus &&
614      RequireCompleteType(E->getExprLoc(), E->getType(),
615                          diag::err_call_incomplete_argument))
616    return ExprError();
617
618  return Owned(E);
619}
620
621/// \brief Converts an integer to complex float type.  Helper function of
622/// UsualArithmeticConversions()
623///
624/// \return false if the integer expression is an integer type and is
625/// successfully converted to the complex type.
626static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
627                                                  ExprResult &ComplexExpr,
628                                                  QualType IntTy,
629                                                  QualType ComplexTy,
630                                                  bool SkipCast) {
631  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
632  if (SkipCast) return false;
633  if (IntTy->isIntegerType()) {
634    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
635    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
636    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
637                                  CK_FloatingRealToComplex);
638  } else {
639    assert(IntTy->isComplexIntegerType());
640    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
641                                  CK_IntegralComplexToFloatingComplex);
642  }
643  return false;
644}
645
646/// \brief Takes two complex float types and converts them to the same type.
647/// Helper function of UsualArithmeticConversions()
648static QualType
649handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
650                                            ExprResult &RHS, QualType LHSType,
651                                            QualType RHSType,
652                                            bool IsCompAssign) {
653  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
654
655  if (order < 0) {
656    // _Complex float -> _Complex double
657    if (!IsCompAssign)
658      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
659    return RHSType;
660  }
661  if (order > 0)
662    // _Complex float -> _Complex double
663    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
664  return LHSType;
665}
666
667/// \brief Converts otherExpr to complex float and promotes complexExpr if
668/// necessary.  Helper function of UsualArithmeticConversions()
669static QualType handleOtherComplexFloatConversion(Sema &S,
670                                                  ExprResult &ComplexExpr,
671                                                  ExprResult &OtherExpr,
672                                                  QualType ComplexTy,
673                                                  QualType OtherTy,
674                                                  bool ConvertComplexExpr,
675                                                  bool ConvertOtherExpr) {
676  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
677
678  // If just the complexExpr is complex, the otherExpr needs to be converted,
679  // and the complexExpr might need to be promoted.
680  if (order > 0) { // complexExpr is wider
681    // float -> _Complex double
682    if (ConvertOtherExpr) {
683      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
684      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
685      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
686                                      CK_FloatingRealToComplex);
687    }
688    return ComplexTy;
689  }
690
691  // otherTy is at least as wide.  Find its corresponding complex type.
692  QualType result = (order == 0 ? ComplexTy :
693                                  S.Context.getComplexType(OtherTy));
694
695  // double -> _Complex double
696  if (ConvertOtherExpr)
697    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
698                                    CK_FloatingRealToComplex);
699
700  // _Complex float -> _Complex double
701  if (ConvertComplexExpr && order < 0)
702    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
703                                      CK_FloatingComplexCast);
704
705  return result;
706}
707
708/// \brief Handle arithmetic conversion with complex types.  Helper function of
709/// UsualArithmeticConversions()
710static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
711                                             ExprResult &RHS, QualType LHSType,
712                                             QualType RHSType,
713                                             bool IsCompAssign) {
714  // if we have an integer operand, the result is the complex type.
715  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
716                                             /*skipCast*/false))
717    return LHSType;
718  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
719                                             /*skipCast*/IsCompAssign))
720    return RHSType;
721
722  // This handles complex/complex, complex/float, or float/complex.
723  // When both operands are complex, the shorter operand is converted to the
724  // type of the longer, and that is the type of the result. This corresponds
725  // to what is done when combining two real floating-point operands.
726  // The fun begins when size promotion occur across type domains.
727  // From H&S 6.3.4: When one operand is complex and the other is a real
728  // floating-point type, the less precise type is converted, within it's
729  // real or complex domain, to the precision of the other type. For example,
730  // when combining a "long double" with a "double _Complex", the
731  // "double _Complex" is promoted to "long double _Complex".
732
733  bool LHSComplexFloat = LHSType->isComplexType();
734  bool RHSComplexFloat = RHSType->isComplexType();
735
736  // If both are complex, just cast to the more precise type.
737  if (LHSComplexFloat && RHSComplexFloat)
738    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
739                                                       LHSType, RHSType,
740                                                       IsCompAssign);
741
742  // If only one operand is complex, promote it if necessary and convert the
743  // other operand to complex.
744  if (LHSComplexFloat)
745    return handleOtherComplexFloatConversion(
746        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
747        /*convertOtherExpr*/ true);
748
749  assert(RHSComplexFloat);
750  return handleOtherComplexFloatConversion(
751      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
752      /*convertOtherExpr*/ !IsCompAssign);
753}
754
755/// \brief Hande arithmetic conversion from integer to float.  Helper function
756/// of UsualArithmeticConversions()
757static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
758                                           ExprResult &IntExpr,
759                                           QualType FloatTy, QualType IntTy,
760                                           bool ConvertFloat, bool ConvertInt) {
761  if (IntTy->isIntegerType()) {
762    if (ConvertInt)
763      // Convert intExpr to the lhs floating point type.
764      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
765                                    CK_IntegralToFloating);
766    return FloatTy;
767  }
768
769  // Convert both sides to the appropriate complex float.
770  assert(IntTy->isComplexIntegerType());
771  QualType result = S.Context.getComplexType(FloatTy);
772
773  // _Complex int -> _Complex float
774  if (ConvertInt)
775    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
776                                  CK_IntegralComplexToFloatingComplex);
777
778  // float -> _Complex float
779  if (ConvertFloat)
780    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
781                                    CK_FloatingRealToComplex);
782
783  return result;
784}
785
786/// \brief Handle arithmethic conversion with floating point types.  Helper
787/// function of UsualArithmeticConversions()
788static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
789                                      ExprResult &RHS, QualType LHSType,
790                                      QualType RHSType, bool IsCompAssign) {
791  bool LHSFloat = LHSType->isRealFloatingType();
792  bool RHSFloat = RHSType->isRealFloatingType();
793
794  // If we have two real floating types, convert the smaller operand
795  // to the bigger result.
796  if (LHSFloat && RHSFloat) {
797    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
798    if (order > 0) {
799      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
800      return LHSType;
801    }
802
803    assert(order < 0 && "illegal float comparison");
804    if (!IsCompAssign)
805      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
806    return RHSType;
807  }
808
809  if (LHSFloat)
810    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
811                                      /*convertFloat=*/!IsCompAssign,
812                                      /*convertInt=*/ true);
813  assert(RHSFloat);
814  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
815                                    /*convertInt=*/ true,
816                                    /*convertFloat=*/!IsCompAssign);
817}
818
819/// \brief Handle conversions with GCC complex int extension.  Helper function
820/// of UsualArithmeticConversions()
821// FIXME: if the operands are (int, _Complex long), we currently
822// don't promote the complex.  Also, signedness?
823static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
824                                           ExprResult &RHS, QualType LHSType,
825                                           QualType RHSType,
826                                           bool IsCompAssign) {
827  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
828  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
829
830  if (LHSComplexInt && RHSComplexInt) {
831    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
832                                              RHSComplexInt->getElementType());
833    assert(order && "inequal types with equal element ordering");
834    if (order > 0) {
835      // _Complex int -> _Complex long
836      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
837      return LHSType;
838    }
839
840    if (!IsCompAssign)
841      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
842    return RHSType;
843  }
844
845  if (LHSComplexInt) {
846    // int -> _Complex int
847    // FIXME: This needs to take integer ranks into account
848    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
849                              CK_IntegralCast);
850    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
851    return LHSType;
852  }
853
854  assert(RHSComplexInt);
855  // int -> _Complex int
856  // FIXME: This needs to take integer ranks into account
857  if (!IsCompAssign) {
858    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
859                              CK_IntegralCast);
860    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
861  }
862  return RHSType;
863}
864
865/// \brief Handle integer arithmetic conversions.  Helper function of
866/// UsualArithmeticConversions()
867static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
868                                        ExprResult &RHS, QualType LHSType,
869                                        QualType RHSType, bool IsCompAssign) {
870  // The rules for this case are in C99 6.3.1.8
871  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
872  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
873  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
874  if (LHSSigned == RHSSigned) {
875    // Same signedness; use the higher-ranked type
876    if (order >= 0) {
877      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
878      return LHSType;
879    } else if (!IsCompAssign)
880      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
881    return RHSType;
882  } else if (order != (LHSSigned ? 1 : -1)) {
883    // The unsigned type has greater than or equal rank to the
884    // signed type, so use the unsigned type
885    if (RHSSigned) {
886      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
887      return LHSType;
888    } else if (!IsCompAssign)
889      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
890    return RHSType;
891  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
892    // The two types are different widths; if we are here, that
893    // means the signed type is larger than the unsigned type, so
894    // use the signed type.
895    if (LHSSigned) {
896      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
897      return LHSType;
898    } else if (!IsCompAssign)
899      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
900    return RHSType;
901  } else {
902    // The signed type is higher-ranked than the unsigned type,
903    // but isn't actually any bigger (like unsigned int and long
904    // on most 32-bit systems).  Use the unsigned type corresponding
905    // to the signed type.
906    QualType result =
907      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
908    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
909    if (!IsCompAssign)
910      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
911    return result;
912  }
913}
914
915/// UsualArithmeticConversions - Performs various conversions that are common to
916/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
917/// routine returns the first non-arithmetic type found. The client is
918/// responsible for emitting appropriate error diagnostics.
919/// FIXME: verify the conversion rules for "complex int" are consistent with
920/// GCC.
921QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
922                                          bool IsCompAssign) {
923  if (!IsCompAssign) {
924    LHS = UsualUnaryConversions(LHS.take());
925    if (LHS.isInvalid())
926      return QualType();
927  }
928
929  RHS = UsualUnaryConversions(RHS.take());
930  if (RHS.isInvalid())
931    return QualType();
932
933  // For conversion purposes, we ignore any qualifiers.
934  // For example, "const float" and "float" are equivalent.
935  QualType LHSType =
936    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
937  QualType RHSType =
938    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
939
940  // If both types are identical, no conversion is needed.
941  if (LHSType == RHSType)
942    return LHSType;
943
944  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
945  // The caller can deal with this (e.g. pointer + int).
946  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
947    return LHSType;
948
949  // Apply unary and bitfield promotions to the LHS's type.
950  QualType LHSUnpromotedType = LHSType;
951  if (LHSType->isPromotableIntegerType())
952    LHSType = Context.getPromotedIntegerType(LHSType);
953  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
954  if (!LHSBitfieldPromoteTy.isNull())
955    LHSType = LHSBitfieldPromoteTy;
956  if (LHSType != LHSUnpromotedType && !IsCompAssign)
957    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
958
959  // If both types are identical, no conversion is needed.
960  if (LHSType == RHSType)
961    return LHSType;
962
963  // At this point, we have two different arithmetic types.
964
965  // Handle complex types first (C99 6.3.1.8p1).
966  if (LHSType->isComplexType() || RHSType->isComplexType())
967    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
968                                        IsCompAssign);
969
970  // Now handle "real" floating types (i.e. float, double, long double).
971  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
972    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
973                                 IsCompAssign);
974
975  // Handle GCC complex int extension.
976  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
977    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
978                                      IsCompAssign);
979
980  // Finally, we have two differing integer types.
981  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
982                                 IsCompAssign);
983}
984
985//===----------------------------------------------------------------------===//
986//  Semantic Analysis for various Expression Types
987//===----------------------------------------------------------------------===//
988
989
990ExprResult
991Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
992                                SourceLocation DefaultLoc,
993                                SourceLocation RParenLoc,
994                                Expr *ControllingExpr,
995                                MultiTypeArg ArgTypes,
996                                MultiExprArg ArgExprs) {
997  unsigned NumAssocs = ArgTypes.size();
998  assert(NumAssocs == ArgExprs.size());
999
1000  ParsedType *ParsedTypes = ArgTypes.release();
1001  Expr **Exprs = ArgExprs.release();
1002
1003  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1004  for (unsigned i = 0; i < NumAssocs; ++i) {
1005    if (ParsedTypes[i])
1006      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1007    else
1008      Types[i] = 0;
1009  }
1010
1011  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1012                                             ControllingExpr, Types, Exprs,
1013                                             NumAssocs);
1014  delete [] Types;
1015  return ER;
1016}
1017
1018ExprResult
1019Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1020                                 SourceLocation DefaultLoc,
1021                                 SourceLocation RParenLoc,
1022                                 Expr *ControllingExpr,
1023                                 TypeSourceInfo **Types,
1024                                 Expr **Exprs,
1025                                 unsigned NumAssocs) {
1026  bool TypeErrorFound = false,
1027       IsResultDependent = ControllingExpr->isTypeDependent(),
1028       ContainsUnexpandedParameterPack
1029         = ControllingExpr->containsUnexpandedParameterPack();
1030
1031  for (unsigned i = 0; i < NumAssocs; ++i) {
1032    if (Exprs[i]->containsUnexpandedParameterPack())
1033      ContainsUnexpandedParameterPack = true;
1034
1035    if (Types[i]) {
1036      if (Types[i]->getType()->containsUnexpandedParameterPack())
1037        ContainsUnexpandedParameterPack = true;
1038
1039      if (Types[i]->getType()->isDependentType()) {
1040        IsResultDependent = true;
1041      } else {
1042        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1043        // complete object type other than a variably modified type."
1044        unsigned D = 0;
1045        if (Types[i]->getType()->isIncompleteType())
1046          D = diag::err_assoc_type_incomplete;
1047        else if (!Types[i]->getType()->isObjectType())
1048          D = diag::err_assoc_type_nonobject;
1049        else if (Types[i]->getType()->isVariablyModifiedType())
1050          D = diag::err_assoc_type_variably_modified;
1051
1052        if (D != 0) {
1053          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1054            << Types[i]->getTypeLoc().getSourceRange()
1055            << Types[i]->getType();
1056          TypeErrorFound = true;
1057        }
1058
1059        // C11 6.5.1.1p2 "No two generic associations in the same generic
1060        // selection shall specify compatible types."
1061        for (unsigned j = i+1; j < NumAssocs; ++j)
1062          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1063              Context.typesAreCompatible(Types[i]->getType(),
1064                                         Types[j]->getType())) {
1065            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1066                 diag::err_assoc_compatible_types)
1067              << Types[j]->getTypeLoc().getSourceRange()
1068              << Types[j]->getType()
1069              << Types[i]->getType();
1070            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1071                 diag::note_compat_assoc)
1072              << Types[i]->getTypeLoc().getSourceRange()
1073              << Types[i]->getType();
1074            TypeErrorFound = true;
1075          }
1076      }
1077    }
1078  }
1079  if (TypeErrorFound)
1080    return ExprError();
1081
1082  // If we determined that the generic selection is result-dependent, don't
1083  // try to compute the result expression.
1084  if (IsResultDependent)
1085    return Owned(new (Context) GenericSelectionExpr(
1086                   Context, KeyLoc, ControllingExpr,
1087                   Types, Exprs, NumAssocs, DefaultLoc,
1088                   RParenLoc, ContainsUnexpandedParameterPack));
1089
1090  SmallVector<unsigned, 1> CompatIndices;
1091  unsigned DefaultIndex = -1U;
1092  for (unsigned i = 0; i < NumAssocs; ++i) {
1093    if (!Types[i])
1094      DefaultIndex = i;
1095    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1096                                        Types[i]->getType()))
1097      CompatIndices.push_back(i);
1098  }
1099
1100  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1101  // type compatible with at most one of the types named in its generic
1102  // association list."
1103  if (CompatIndices.size() > 1) {
1104    // We strip parens here because the controlling expression is typically
1105    // parenthesized in macro definitions.
1106    ControllingExpr = ControllingExpr->IgnoreParens();
1107    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1108      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1109      << (unsigned) CompatIndices.size();
1110    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1111         E = CompatIndices.end(); I != E; ++I) {
1112      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1113           diag::note_compat_assoc)
1114        << Types[*I]->getTypeLoc().getSourceRange()
1115        << Types[*I]->getType();
1116    }
1117    return ExprError();
1118  }
1119
1120  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1121  // its controlling expression shall have type compatible with exactly one of
1122  // the types named in its generic association list."
1123  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1124    // We strip parens here because the controlling expression is typically
1125    // parenthesized in macro definitions.
1126    ControllingExpr = ControllingExpr->IgnoreParens();
1127    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1128      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1129    return ExprError();
1130  }
1131
1132  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1133  // type name that is compatible with the type of the controlling expression,
1134  // then the result expression of the generic selection is the expression
1135  // in that generic association. Otherwise, the result expression of the
1136  // generic selection is the expression in the default generic association."
1137  unsigned ResultIndex =
1138    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1139
1140  return Owned(new (Context) GenericSelectionExpr(
1141                 Context, KeyLoc, ControllingExpr,
1142                 Types, Exprs, NumAssocs, DefaultLoc,
1143                 RParenLoc, ContainsUnexpandedParameterPack,
1144                 ResultIndex));
1145}
1146
1147/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1148/// location of the token and the offset of the ud-suffix within it.
1149static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1150                                     unsigned Offset) {
1151  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1152                                        S.getLangOpts());
1153}
1154
1155/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1156/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1157static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1158                                                 IdentifierInfo *UDSuffix,
1159                                                 SourceLocation UDSuffixLoc,
1160                                                 ArrayRef<Expr*> Args,
1161                                                 SourceLocation LitEndLoc) {
1162  assert(Args.size() <= 2 && "too many arguments for literal operator");
1163
1164  QualType ArgTy[2];
1165  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1166    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1167    if (ArgTy[ArgIdx]->isArrayType())
1168      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1169  }
1170
1171  DeclarationName OpName =
1172    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1173  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1174  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1175
1176  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1177  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1178                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1179    return ExprError();
1180
1181  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1182}
1183
1184/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1185/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1186/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1187/// multiple tokens.  However, the common case is that StringToks points to one
1188/// string.
1189///
1190ExprResult
1191Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1192                         Scope *UDLScope) {
1193  assert(NumStringToks && "Must have at least one string!");
1194
1195  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1196  if (Literal.hadError)
1197    return ExprError();
1198
1199  SmallVector<SourceLocation, 4> StringTokLocs;
1200  for (unsigned i = 0; i != NumStringToks; ++i)
1201    StringTokLocs.push_back(StringToks[i].getLocation());
1202
1203  QualType StrTy = Context.CharTy;
1204  if (Literal.isWide())
1205    StrTy = Context.getWCharType();
1206  else if (Literal.isUTF16())
1207    StrTy = Context.Char16Ty;
1208  else if (Literal.isUTF32())
1209    StrTy = Context.Char32Ty;
1210  else if (Literal.isPascal())
1211    StrTy = Context.UnsignedCharTy;
1212
1213  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1214  if (Literal.isWide())
1215    Kind = StringLiteral::Wide;
1216  else if (Literal.isUTF8())
1217    Kind = StringLiteral::UTF8;
1218  else if (Literal.isUTF16())
1219    Kind = StringLiteral::UTF16;
1220  else if (Literal.isUTF32())
1221    Kind = StringLiteral::UTF32;
1222
1223  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1224  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1225    StrTy.addConst();
1226
1227  // Get an array type for the string, according to C99 6.4.5.  This includes
1228  // the nul terminator character as well as the string length for pascal
1229  // strings.
1230  StrTy = Context.getConstantArrayType(StrTy,
1231                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1232                                       ArrayType::Normal, 0);
1233
1234  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1235  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1236                                             Kind, Literal.Pascal, StrTy,
1237                                             &StringTokLocs[0],
1238                                             StringTokLocs.size());
1239  if (Literal.getUDSuffix().empty())
1240    return Owned(Lit);
1241
1242  // We're building a user-defined literal.
1243  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1244  SourceLocation UDSuffixLoc =
1245    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1246                   Literal.getUDSuffixOffset());
1247
1248  // Make sure we're allowed user-defined literals here.
1249  if (!UDLScope)
1250    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1251
1252  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1253  //   operator "" X (str, len)
1254  QualType SizeType = Context.getSizeType();
1255  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1256  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1257                                                  StringTokLocs[0]);
1258  Expr *Args[] = { Lit, LenArg };
1259  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1260                                        Args, StringTokLocs.back());
1261}
1262
1263ExprResult
1264Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1265                       SourceLocation Loc,
1266                       const CXXScopeSpec *SS) {
1267  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1268  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1269}
1270
1271/// BuildDeclRefExpr - Build an expression that references a
1272/// declaration that does not require a closure capture.
1273ExprResult
1274Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1275                       const DeclarationNameInfo &NameInfo,
1276                       const CXXScopeSpec *SS) {
1277  if (getLangOpts().CUDA)
1278    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1279      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1280        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1281                           CalleeTarget = IdentifyCUDATarget(Callee);
1282        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1283          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1284            << CalleeTarget << D->getIdentifier() << CallerTarget;
1285          Diag(D->getLocation(), diag::note_previous_decl)
1286            << D->getIdentifier();
1287          return ExprError();
1288        }
1289      }
1290
1291  bool refersToEnclosingScope =
1292    (CurContext != D->getDeclContext() &&
1293     D->getDeclContext()->isFunctionOrMethod());
1294
1295  DeclRefExpr *E = DeclRefExpr::Create(Context,
1296                                       SS ? SS->getWithLocInContext(Context)
1297                                              : NestedNameSpecifierLoc(),
1298                                       SourceLocation(),
1299                                       D, refersToEnclosingScope,
1300                                       NameInfo, Ty, VK);
1301
1302  MarkDeclRefReferenced(E);
1303
1304  // Just in case we're building an illegal pointer-to-member.
1305  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1306  if (FD && FD->isBitField())
1307    E->setObjectKind(OK_BitField);
1308
1309  return Owned(E);
1310}
1311
1312/// Decomposes the given name into a DeclarationNameInfo, its location, and
1313/// possibly a list of template arguments.
1314///
1315/// If this produces template arguments, it is permitted to call
1316/// DecomposeTemplateName.
1317///
1318/// This actually loses a lot of source location information for
1319/// non-standard name kinds; we should consider preserving that in
1320/// some way.
1321void
1322Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1323                             TemplateArgumentListInfo &Buffer,
1324                             DeclarationNameInfo &NameInfo,
1325                             const TemplateArgumentListInfo *&TemplateArgs) {
1326  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1327    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1328    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1329
1330    ASTTemplateArgsPtr TemplateArgsPtr(*this,
1331                                       Id.TemplateId->getTemplateArgs(),
1332                                       Id.TemplateId->NumArgs);
1333    translateTemplateArguments(TemplateArgsPtr, Buffer);
1334    TemplateArgsPtr.release();
1335
1336    TemplateName TName = Id.TemplateId->Template.get();
1337    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1338    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1339    TemplateArgs = &Buffer;
1340  } else {
1341    NameInfo = GetNameFromUnqualifiedId(Id);
1342    TemplateArgs = 0;
1343  }
1344}
1345
1346/// Diagnose an empty lookup.
1347///
1348/// \return false if new lookup candidates were found
1349bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1350                               CorrectionCandidateCallback &CCC,
1351                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1352                               llvm::ArrayRef<Expr *> Args) {
1353  DeclarationName Name = R.getLookupName();
1354
1355  unsigned diagnostic = diag::err_undeclared_var_use;
1356  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1357  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1358      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1359      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1360    diagnostic = diag::err_undeclared_use;
1361    diagnostic_suggest = diag::err_undeclared_use_suggest;
1362  }
1363
1364  // If the original lookup was an unqualified lookup, fake an
1365  // unqualified lookup.  This is useful when (for example) the
1366  // original lookup would not have found something because it was a
1367  // dependent name.
1368  DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1369  while (DC) {
1370    if (isa<CXXRecordDecl>(DC)) {
1371      LookupQualifiedName(R, DC);
1372
1373      if (!R.empty()) {
1374        // Don't give errors about ambiguities in this lookup.
1375        R.suppressDiagnostics();
1376
1377        // During a default argument instantiation the CurContext points
1378        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1379        // function parameter list, hence add an explicit check.
1380        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1381                              ActiveTemplateInstantiations.back().Kind ==
1382            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1383        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1384        bool isInstance = CurMethod &&
1385                          CurMethod->isInstance() &&
1386                          DC == CurMethod->getParent() && !isDefaultArgument;
1387
1388
1389        // Give a code modification hint to insert 'this->'.
1390        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1391        // Actually quite difficult!
1392        if (isInstance) {
1393          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1394              CallsUndergoingInstantiation.back()->getCallee());
1395          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1396              CurMethod->getInstantiatedFromMemberFunction());
1397          if (DepMethod) {
1398            if (getLangOpts().MicrosoftMode)
1399              diagnostic = diag::warn_found_via_dependent_bases_lookup;
1400            Diag(R.getNameLoc(), diagnostic) << Name
1401              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1402            QualType DepThisType = DepMethod->getThisType(Context);
1403            CheckCXXThisCapture(R.getNameLoc());
1404            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1405                                       R.getNameLoc(), DepThisType, false);
1406            TemplateArgumentListInfo TList;
1407            if (ULE->hasExplicitTemplateArgs())
1408              ULE->copyTemplateArgumentsInto(TList);
1409
1410            CXXScopeSpec SS;
1411            SS.Adopt(ULE->getQualifierLoc());
1412            CXXDependentScopeMemberExpr *DepExpr =
1413                CXXDependentScopeMemberExpr::Create(
1414                    Context, DepThis, DepThisType, true, SourceLocation(),
1415                    SS.getWithLocInContext(Context),
1416                    ULE->getTemplateKeywordLoc(), 0,
1417                    R.getLookupNameInfo(),
1418                    ULE->hasExplicitTemplateArgs() ? &TList : 0);
1419            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1420          } else {
1421            // FIXME: we should be able to handle this case too. It is correct
1422            // to add this-> here. This is a workaround for PR7947.
1423            Diag(R.getNameLoc(), diagnostic) << Name;
1424          }
1425        } else {
1426          if (getLangOpts().MicrosoftMode)
1427            diagnostic = diag::warn_found_via_dependent_bases_lookup;
1428          Diag(R.getNameLoc(), diagnostic) << Name;
1429        }
1430
1431        // Do we really want to note all of these?
1432        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1433          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1434
1435        // Return true if we are inside a default argument instantiation
1436        // and the found name refers to an instance member function, otherwise
1437        // the function calling DiagnoseEmptyLookup will try to create an
1438        // implicit member call and this is wrong for default argument.
1439        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1440          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1441          return true;
1442        }
1443
1444        // Tell the callee to try to recover.
1445        return false;
1446      }
1447
1448      R.clear();
1449    }
1450
1451    // In Microsoft mode, if we are performing lookup from within a friend
1452    // function definition declared at class scope then we must set
1453    // DC to the lexical parent to be able to search into the parent
1454    // class.
1455    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1456        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1457        DC->getLexicalParent()->isRecord())
1458      DC = DC->getLexicalParent();
1459    else
1460      DC = DC->getParent();
1461  }
1462
1463  // We didn't find anything, so try to correct for a typo.
1464  TypoCorrection Corrected;
1465  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1466                                    S, &SS, CCC))) {
1467    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1468    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1469    R.setLookupName(Corrected.getCorrection());
1470
1471    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1472      if (Corrected.isOverloaded()) {
1473        OverloadCandidateSet OCS(R.getNameLoc());
1474        OverloadCandidateSet::iterator Best;
1475        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1476                                        CDEnd = Corrected.end();
1477             CD != CDEnd; ++CD) {
1478          if (FunctionTemplateDecl *FTD =
1479                   dyn_cast<FunctionTemplateDecl>(*CD))
1480            AddTemplateOverloadCandidate(
1481                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1482                Args, OCS);
1483          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1484            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1485              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1486                                   Args, OCS);
1487        }
1488        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1489          case OR_Success:
1490            ND = Best->Function;
1491            break;
1492          default:
1493            break;
1494        }
1495      }
1496      R.addDecl(ND);
1497      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1498        if (SS.isEmpty())
1499          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1500            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1501        else
1502          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1503            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1504            << SS.getRange()
1505            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1506        if (ND)
1507          Diag(ND->getLocation(), diag::note_previous_decl)
1508            << CorrectedQuotedStr;
1509
1510        // Tell the callee to try to recover.
1511        return false;
1512      }
1513
1514      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1515        // FIXME: If we ended up with a typo for a type name or
1516        // Objective-C class name, we're in trouble because the parser
1517        // is in the wrong place to recover. Suggest the typo
1518        // correction, but don't make it a fix-it since we're not going
1519        // to recover well anyway.
1520        if (SS.isEmpty())
1521          Diag(R.getNameLoc(), diagnostic_suggest)
1522            << Name << CorrectedQuotedStr;
1523        else
1524          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1525            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1526            << SS.getRange();
1527
1528        // Don't try to recover; it won't work.
1529        return true;
1530      }
1531    } else {
1532      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1533      // because we aren't able to recover.
1534      if (SS.isEmpty())
1535        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1536      else
1537        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1538        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1539        << SS.getRange();
1540      return true;
1541    }
1542  }
1543  R.clear();
1544
1545  // Emit a special diagnostic for failed member lookups.
1546  // FIXME: computing the declaration context might fail here (?)
1547  if (!SS.isEmpty()) {
1548    Diag(R.getNameLoc(), diag::err_no_member)
1549      << Name << computeDeclContext(SS, false)
1550      << SS.getRange();
1551    return true;
1552  }
1553
1554  // Give up, we can't recover.
1555  Diag(R.getNameLoc(), diagnostic) << Name;
1556  return true;
1557}
1558
1559ExprResult Sema::ActOnIdExpression(Scope *S,
1560                                   CXXScopeSpec &SS,
1561                                   SourceLocation TemplateKWLoc,
1562                                   UnqualifiedId &Id,
1563                                   bool HasTrailingLParen,
1564                                   bool IsAddressOfOperand,
1565                                   CorrectionCandidateCallback *CCC) {
1566  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1567         "cannot be direct & operand and have a trailing lparen");
1568
1569  if (SS.isInvalid())
1570    return ExprError();
1571
1572  TemplateArgumentListInfo TemplateArgsBuffer;
1573
1574  // Decompose the UnqualifiedId into the following data.
1575  DeclarationNameInfo NameInfo;
1576  const TemplateArgumentListInfo *TemplateArgs;
1577  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1578
1579  DeclarationName Name = NameInfo.getName();
1580  IdentifierInfo *II = Name.getAsIdentifierInfo();
1581  SourceLocation NameLoc = NameInfo.getLoc();
1582
1583  // C++ [temp.dep.expr]p3:
1584  //   An id-expression is type-dependent if it contains:
1585  //     -- an identifier that was declared with a dependent type,
1586  //        (note: handled after lookup)
1587  //     -- a template-id that is dependent,
1588  //        (note: handled in BuildTemplateIdExpr)
1589  //     -- a conversion-function-id that specifies a dependent type,
1590  //     -- a nested-name-specifier that contains a class-name that
1591  //        names a dependent type.
1592  // Determine whether this is a member of an unknown specialization;
1593  // we need to handle these differently.
1594  bool DependentID = false;
1595  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1596      Name.getCXXNameType()->isDependentType()) {
1597    DependentID = true;
1598  } else if (SS.isSet()) {
1599    if (DeclContext *DC = computeDeclContext(SS, false)) {
1600      if (RequireCompleteDeclContext(SS, DC))
1601        return ExprError();
1602    } else {
1603      DependentID = true;
1604    }
1605  }
1606
1607  if (DependentID)
1608    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1609                                      IsAddressOfOperand, TemplateArgs);
1610
1611  // Perform the required lookup.
1612  LookupResult R(*this, NameInfo,
1613                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1614                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1615  if (TemplateArgs) {
1616    // Lookup the template name again to correctly establish the context in
1617    // which it was found. This is really unfortunate as we already did the
1618    // lookup to determine that it was a template name in the first place. If
1619    // this becomes a performance hit, we can work harder to preserve those
1620    // results until we get here but it's likely not worth it.
1621    bool MemberOfUnknownSpecialization;
1622    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1623                       MemberOfUnknownSpecialization);
1624
1625    if (MemberOfUnknownSpecialization ||
1626        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1627      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1628                                        IsAddressOfOperand, TemplateArgs);
1629  } else {
1630    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1631    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1632
1633    // If the result might be in a dependent base class, this is a dependent
1634    // id-expression.
1635    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1636      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1637                                        IsAddressOfOperand, TemplateArgs);
1638
1639    // If this reference is in an Objective-C method, then we need to do
1640    // some special Objective-C lookup, too.
1641    if (IvarLookupFollowUp) {
1642      ExprResult E(LookupInObjCMethod(R, S, II, true));
1643      if (E.isInvalid())
1644        return ExprError();
1645
1646      if (Expr *Ex = E.takeAs<Expr>())
1647        return Owned(Ex);
1648    }
1649  }
1650
1651  if (R.isAmbiguous())
1652    return ExprError();
1653
1654  // Determine whether this name might be a candidate for
1655  // argument-dependent lookup.
1656  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1657
1658  if (R.empty() && !ADL) {
1659    // Otherwise, this could be an implicitly declared function reference (legal
1660    // in C90, extension in C99, forbidden in C++).
1661    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1662      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1663      if (D) R.addDecl(D);
1664    }
1665
1666    // If this name wasn't predeclared and if this is not a function
1667    // call, diagnose the problem.
1668    if (R.empty()) {
1669
1670      // In Microsoft mode, if we are inside a template class member function
1671      // and we can't resolve an identifier then assume the identifier is type
1672      // dependent. The goal is to postpone name lookup to instantiation time
1673      // to be able to search into type dependent base classes.
1674      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1675          isa<CXXMethodDecl>(CurContext))
1676        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1677                                          IsAddressOfOperand, TemplateArgs);
1678
1679      CorrectionCandidateCallback DefaultValidator;
1680      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1681        return ExprError();
1682
1683      assert(!R.empty() &&
1684             "DiagnoseEmptyLookup returned false but added no results");
1685
1686      // If we found an Objective-C instance variable, let
1687      // LookupInObjCMethod build the appropriate expression to
1688      // reference the ivar.
1689      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1690        R.clear();
1691        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1692        // In a hopelessly buggy code, Objective-C instance variable
1693        // lookup fails and no expression will be built to reference it.
1694        if (!E.isInvalid() && !E.get())
1695          return ExprError();
1696        return move(E);
1697      }
1698    }
1699  }
1700
1701  // This is guaranteed from this point on.
1702  assert(!R.empty() || ADL);
1703
1704  // Check whether this might be a C++ implicit instance member access.
1705  // C++ [class.mfct.non-static]p3:
1706  //   When an id-expression that is not part of a class member access
1707  //   syntax and not used to form a pointer to member is used in the
1708  //   body of a non-static member function of class X, if name lookup
1709  //   resolves the name in the id-expression to a non-static non-type
1710  //   member of some class C, the id-expression is transformed into a
1711  //   class member access expression using (*this) as the
1712  //   postfix-expression to the left of the . operator.
1713  //
1714  // But we don't actually need to do this for '&' operands if R
1715  // resolved to a function or overloaded function set, because the
1716  // expression is ill-formed if it actually works out to be a
1717  // non-static member function:
1718  //
1719  // C++ [expr.ref]p4:
1720  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1721  //   [t]he expression can be used only as the left-hand operand of a
1722  //   member function call.
1723  //
1724  // There are other safeguards against such uses, but it's important
1725  // to get this right here so that we don't end up making a
1726  // spuriously dependent expression if we're inside a dependent
1727  // instance method.
1728  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1729    bool MightBeImplicitMember;
1730    if (!IsAddressOfOperand)
1731      MightBeImplicitMember = true;
1732    else if (!SS.isEmpty())
1733      MightBeImplicitMember = false;
1734    else if (R.isOverloadedResult())
1735      MightBeImplicitMember = false;
1736    else if (R.isUnresolvableResult())
1737      MightBeImplicitMember = true;
1738    else
1739      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1740                              isa<IndirectFieldDecl>(R.getFoundDecl());
1741
1742    if (MightBeImplicitMember)
1743      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1744                                             R, TemplateArgs);
1745  }
1746
1747  if (TemplateArgs || TemplateKWLoc.isValid())
1748    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1749
1750  return BuildDeclarationNameExpr(SS, R, ADL);
1751}
1752
1753/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1754/// declaration name, generally during template instantiation.
1755/// There's a large number of things which don't need to be done along
1756/// this path.
1757ExprResult
1758Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1759                                        const DeclarationNameInfo &NameInfo) {
1760  DeclContext *DC;
1761  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1762    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1763                                     NameInfo, /*TemplateArgs=*/0);
1764
1765  if (RequireCompleteDeclContext(SS, DC))
1766    return ExprError();
1767
1768  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1769  LookupQualifiedName(R, DC);
1770
1771  if (R.isAmbiguous())
1772    return ExprError();
1773
1774  if (R.empty()) {
1775    Diag(NameInfo.getLoc(), diag::err_no_member)
1776      << NameInfo.getName() << DC << SS.getRange();
1777    return ExprError();
1778  }
1779
1780  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1781}
1782
1783/// LookupInObjCMethod - The parser has read a name in, and Sema has
1784/// detected that we're currently inside an ObjC method.  Perform some
1785/// additional lookup.
1786///
1787/// Ideally, most of this would be done by lookup, but there's
1788/// actually quite a lot of extra work involved.
1789///
1790/// Returns a null sentinel to indicate trivial success.
1791ExprResult
1792Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1793                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1794  SourceLocation Loc = Lookup.getNameLoc();
1795  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1796
1797  // There are two cases to handle here.  1) scoped lookup could have failed,
1798  // in which case we should look for an ivar.  2) scoped lookup could have
1799  // found a decl, but that decl is outside the current instance method (i.e.
1800  // a global variable).  In these two cases, we do a lookup for an ivar with
1801  // this name, if the lookup sucedes, we replace it our current decl.
1802
1803  // If we're in a class method, we don't normally want to look for
1804  // ivars.  But if we don't find anything else, and there's an
1805  // ivar, that's an error.
1806  bool IsClassMethod = CurMethod->isClassMethod();
1807
1808  bool LookForIvars;
1809  if (Lookup.empty())
1810    LookForIvars = true;
1811  else if (IsClassMethod)
1812    LookForIvars = false;
1813  else
1814    LookForIvars = (Lookup.isSingleResult() &&
1815                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1816  ObjCInterfaceDecl *IFace = 0;
1817  if (LookForIvars) {
1818    IFace = CurMethod->getClassInterface();
1819    ObjCInterfaceDecl *ClassDeclared;
1820    ObjCIvarDecl *IV = 0;
1821    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1822      // Diagnose using an ivar in a class method.
1823      if (IsClassMethod)
1824        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1825                         << IV->getDeclName());
1826
1827      // If we're referencing an invalid decl, just return this as a silent
1828      // error node.  The error diagnostic was already emitted on the decl.
1829      if (IV->isInvalidDecl())
1830        return ExprError();
1831
1832      // Check if referencing a field with __attribute__((deprecated)).
1833      if (DiagnoseUseOfDecl(IV, Loc))
1834        return ExprError();
1835
1836      // Diagnose the use of an ivar outside of the declaring class.
1837      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1838          !declaresSameEntity(ClassDeclared, IFace) &&
1839          !getLangOpts().DebuggerSupport)
1840        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1841
1842      // FIXME: This should use a new expr for a direct reference, don't
1843      // turn this into Self->ivar, just return a BareIVarExpr or something.
1844      IdentifierInfo &II = Context.Idents.get("self");
1845      UnqualifiedId SelfName;
1846      SelfName.setIdentifier(&II, SourceLocation());
1847      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1848      CXXScopeSpec SelfScopeSpec;
1849      SourceLocation TemplateKWLoc;
1850      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1851                                              SelfName, false, false);
1852      if (SelfExpr.isInvalid())
1853        return ExprError();
1854
1855      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1856      if (SelfExpr.isInvalid())
1857        return ExprError();
1858
1859      MarkAnyDeclReferenced(Loc, IV);
1860      return Owned(new (Context)
1861                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1862                                   SelfExpr.take(), true, true));
1863    }
1864  } else if (CurMethod->isInstanceMethod()) {
1865    // We should warn if a local variable hides an ivar.
1866    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1867      ObjCInterfaceDecl *ClassDeclared;
1868      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1869        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1870            declaresSameEntity(IFace, ClassDeclared))
1871          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1872      }
1873    }
1874  } else if (Lookup.isSingleResult() &&
1875             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1876    // If accessing a stand-alone ivar in a class method, this is an error.
1877    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1878      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1879                       << IV->getDeclName());
1880  }
1881
1882  if (Lookup.empty() && II && AllowBuiltinCreation) {
1883    // FIXME. Consolidate this with similar code in LookupName.
1884    if (unsigned BuiltinID = II->getBuiltinID()) {
1885      if (!(getLangOpts().CPlusPlus &&
1886            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1887        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1888                                           S, Lookup.isForRedeclaration(),
1889                                           Lookup.getNameLoc());
1890        if (D) Lookup.addDecl(D);
1891      }
1892    }
1893  }
1894  // Sentinel value saying that we didn't do anything special.
1895  return Owned((Expr*) 0);
1896}
1897
1898/// \brief Cast a base object to a member's actual type.
1899///
1900/// Logically this happens in three phases:
1901///
1902/// * First we cast from the base type to the naming class.
1903///   The naming class is the class into which we were looking
1904///   when we found the member;  it's the qualifier type if a
1905///   qualifier was provided, and otherwise it's the base type.
1906///
1907/// * Next we cast from the naming class to the declaring class.
1908///   If the member we found was brought into a class's scope by
1909///   a using declaration, this is that class;  otherwise it's
1910///   the class declaring the member.
1911///
1912/// * Finally we cast from the declaring class to the "true"
1913///   declaring class of the member.  This conversion does not
1914///   obey access control.
1915ExprResult
1916Sema::PerformObjectMemberConversion(Expr *From,
1917                                    NestedNameSpecifier *Qualifier,
1918                                    NamedDecl *FoundDecl,
1919                                    NamedDecl *Member) {
1920  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1921  if (!RD)
1922    return Owned(From);
1923
1924  QualType DestRecordType;
1925  QualType DestType;
1926  QualType FromRecordType;
1927  QualType FromType = From->getType();
1928  bool PointerConversions = false;
1929  if (isa<FieldDecl>(Member)) {
1930    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1931
1932    if (FromType->getAs<PointerType>()) {
1933      DestType = Context.getPointerType(DestRecordType);
1934      FromRecordType = FromType->getPointeeType();
1935      PointerConversions = true;
1936    } else {
1937      DestType = DestRecordType;
1938      FromRecordType = FromType;
1939    }
1940  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1941    if (Method->isStatic())
1942      return Owned(From);
1943
1944    DestType = Method->getThisType(Context);
1945    DestRecordType = DestType->getPointeeType();
1946
1947    if (FromType->getAs<PointerType>()) {
1948      FromRecordType = FromType->getPointeeType();
1949      PointerConversions = true;
1950    } else {
1951      FromRecordType = FromType;
1952      DestType = DestRecordType;
1953    }
1954  } else {
1955    // No conversion necessary.
1956    return Owned(From);
1957  }
1958
1959  if (DestType->isDependentType() || FromType->isDependentType())
1960    return Owned(From);
1961
1962  // If the unqualified types are the same, no conversion is necessary.
1963  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1964    return Owned(From);
1965
1966  SourceRange FromRange = From->getSourceRange();
1967  SourceLocation FromLoc = FromRange.getBegin();
1968
1969  ExprValueKind VK = From->getValueKind();
1970
1971  // C++ [class.member.lookup]p8:
1972  //   [...] Ambiguities can often be resolved by qualifying a name with its
1973  //   class name.
1974  //
1975  // If the member was a qualified name and the qualified referred to a
1976  // specific base subobject type, we'll cast to that intermediate type
1977  // first and then to the object in which the member is declared. That allows
1978  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1979  //
1980  //   class Base { public: int x; };
1981  //   class Derived1 : public Base { };
1982  //   class Derived2 : public Base { };
1983  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1984  //
1985  //   void VeryDerived::f() {
1986  //     x = 17; // error: ambiguous base subobjects
1987  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1988  //   }
1989  if (Qualifier) {
1990    QualType QType = QualType(Qualifier->getAsType(), 0);
1991    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1992    assert(QType->isRecordType() && "lookup done with non-record type");
1993
1994    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1995
1996    // In C++98, the qualifier type doesn't actually have to be a base
1997    // type of the object type, in which case we just ignore it.
1998    // Otherwise build the appropriate casts.
1999    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2000      CXXCastPath BasePath;
2001      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2002                                       FromLoc, FromRange, &BasePath))
2003        return ExprError();
2004
2005      if (PointerConversions)
2006        QType = Context.getPointerType(QType);
2007      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2008                               VK, &BasePath).take();
2009
2010      FromType = QType;
2011      FromRecordType = QRecordType;
2012
2013      // If the qualifier type was the same as the destination type,
2014      // we're done.
2015      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2016        return Owned(From);
2017    }
2018  }
2019
2020  bool IgnoreAccess = false;
2021
2022  // If we actually found the member through a using declaration, cast
2023  // down to the using declaration's type.
2024  //
2025  // Pointer equality is fine here because only one declaration of a
2026  // class ever has member declarations.
2027  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2028    assert(isa<UsingShadowDecl>(FoundDecl));
2029    QualType URecordType = Context.getTypeDeclType(
2030                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2031
2032    // We only need to do this if the naming-class to declaring-class
2033    // conversion is non-trivial.
2034    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2035      assert(IsDerivedFrom(FromRecordType, URecordType));
2036      CXXCastPath BasePath;
2037      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2038                                       FromLoc, FromRange, &BasePath))
2039        return ExprError();
2040
2041      QualType UType = URecordType;
2042      if (PointerConversions)
2043        UType = Context.getPointerType(UType);
2044      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2045                               VK, &BasePath).take();
2046      FromType = UType;
2047      FromRecordType = URecordType;
2048    }
2049
2050    // We don't do access control for the conversion from the
2051    // declaring class to the true declaring class.
2052    IgnoreAccess = true;
2053  }
2054
2055  CXXCastPath BasePath;
2056  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2057                                   FromLoc, FromRange, &BasePath,
2058                                   IgnoreAccess))
2059    return ExprError();
2060
2061  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2062                           VK, &BasePath);
2063}
2064
2065bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2066                                      const LookupResult &R,
2067                                      bool HasTrailingLParen) {
2068  // Only when used directly as the postfix-expression of a call.
2069  if (!HasTrailingLParen)
2070    return false;
2071
2072  // Never if a scope specifier was provided.
2073  if (SS.isSet())
2074    return false;
2075
2076  // Only in C++ or ObjC++.
2077  if (!getLangOpts().CPlusPlus)
2078    return false;
2079
2080  // Turn off ADL when we find certain kinds of declarations during
2081  // normal lookup:
2082  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2083    NamedDecl *D = *I;
2084
2085    // C++0x [basic.lookup.argdep]p3:
2086    //     -- a declaration of a class member
2087    // Since using decls preserve this property, we check this on the
2088    // original decl.
2089    if (D->isCXXClassMember())
2090      return false;
2091
2092    // C++0x [basic.lookup.argdep]p3:
2093    //     -- a block-scope function declaration that is not a
2094    //        using-declaration
2095    // NOTE: we also trigger this for function templates (in fact, we
2096    // don't check the decl type at all, since all other decl types
2097    // turn off ADL anyway).
2098    if (isa<UsingShadowDecl>(D))
2099      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2100    else if (D->getDeclContext()->isFunctionOrMethod())
2101      return false;
2102
2103    // C++0x [basic.lookup.argdep]p3:
2104    //     -- a declaration that is neither a function or a function
2105    //        template
2106    // And also for builtin functions.
2107    if (isa<FunctionDecl>(D)) {
2108      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2109
2110      // But also builtin functions.
2111      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2112        return false;
2113    } else if (!isa<FunctionTemplateDecl>(D))
2114      return false;
2115  }
2116
2117  return true;
2118}
2119
2120
2121/// Diagnoses obvious problems with the use of the given declaration
2122/// as an expression.  This is only actually called for lookups that
2123/// were not overloaded, and it doesn't promise that the declaration
2124/// will in fact be used.
2125static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2126  if (isa<TypedefNameDecl>(D)) {
2127    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2128    return true;
2129  }
2130
2131  if (isa<ObjCInterfaceDecl>(D)) {
2132    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2133    return true;
2134  }
2135
2136  if (isa<NamespaceDecl>(D)) {
2137    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2138    return true;
2139  }
2140
2141  return false;
2142}
2143
2144ExprResult
2145Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2146                               LookupResult &R,
2147                               bool NeedsADL) {
2148  // If this is a single, fully-resolved result and we don't need ADL,
2149  // just build an ordinary singleton decl ref.
2150  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2151    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2152                                    R.getFoundDecl());
2153
2154  // We only need to check the declaration if there's exactly one
2155  // result, because in the overloaded case the results can only be
2156  // functions and function templates.
2157  if (R.isSingleResult() &&
2158      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2159    return ExprError();
2160
2161  // Otherwise, just build an unresolved lookup expression.  Suppress
2162  // any lookup-related diagnostics; we'll hash these out later, when
2163  // we've picked a target.
2164  R.suppressDiagnostics();
2165
2166  UnresolvedLookupExpr *ULE
2167    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2168                                   SS.getWithLocInContext(Context),
2169                                   R.getLookupNameInfo(),
2170                                   NeedsADL, R.isOverloadedResult(),
2171                                   R.begin(), R.end());
2172
2173  return Owned(ULE);
2174}
2175
2176/// \brief Complete semantic analysis for a reference to the given declaration.
2177ExprResult
2178Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2179                               const DeclarationNameInfo &NameInfo,
2180                               NamedDecl *D) {
2181  assert(D && "Cannot refer to a NULL declaration");
2182  assert(!isa<FunctionTemplateDecl>(D) &&
2183         "Cannot refer unambiguously to a function template");
2184
2185  SourceLocation Loc = NameInfo.getLoc();
2186  if (CheckDeclInExpr(*this, Loc, D))
2187    return ExprError();
2188
2189  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2190    // Specifically diagnose references to class templates that are missing
2191    // a template argument list.
2192    Diag(Loc, diag::err_template_decl_ref)
2193      << Template << SS.getRange();
2194    Diag(Template->getLocation(), diag::note_template_decl_here);
2195    return ExprError();
2196  }
2197
2198  // Make sure that we're referring to a value.
2199  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2200  if (!VD) {
2201    Diag(Loc, diag::err_ref_non_value)
2202      << D << SS.getRange();
2203    Diag(D->getLocation(), diag::note_declared_at);
2204    return ExprError();
2205  }
2206
2207  // Check whether this declaration can be used. Note that we suppress
2208  // this check when we're going to perform argument-dependent lookup
2209  // on this function name, because this might not be the function
2210  // that overload resolution actually selects.
2211  if (DiagnoseUseOfDecl(VD, Loc))
2212    return ExprError();
2213
2214  // Only create DeclRefExpr's for valid Decl's.
2215  if (VD->isInvalidDecl())
2216    return ExprError();
2217
2218  // Handle members of anonymous structs and unions.  If we got here,
2219  // and the reference is to a class member indirect field, then this
2220  // must be the subject of a pointer-to-member expression.
2221  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2222    if (!indirectField->isCXXClassMember())
2223      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2224                                                      indirectField);
2225
2226  {
2227    QualType type = VD->getType();
2228    ExprValueKind valueKind = VK_RValue;
2229
2230    switch (D->getKind()) {
2231    // Ignore all the non-ValueDecl kinds.
2232#define ABSTRACT_DECL(kind)
2233#define VALUE(type, base)
2234#define DECL(type, base) \
2235    case Decl::type:
2236#include "clang/AST/DeclNodes.inc"
2237      llvm_unreachable("invalid value decl kind");
2238
2239    // These shouldn't make it here.
2240    case Decl::ObjCAtDefsField:
2241    case Decl::ObjCIvar:
2242      llvm_unreachable("forming non-member reference to ivar?");
2243
2244    // Enum constants are always r-values and never references.
2245    // Unresolved using declarations are dependent.
2246    case Decl::EnumConstant:
2247    case Decl::UnresolvedUsingValue:
2248      valueKind = VK_RValue;
2249      break;
2250
2251    // Fields and indirect fields that got here must be for
2252    // pointer-to-member expressions; we just call them l-values for
2253    // internal consistency, because this subexpression doesn't really
2254    // exist in the high-level semantics.
2255    case Decl::Field:
2256    case Decl::IndirectField:
2257      assert(getLangOpts().CPlusPlus &&
2258             "building reference to field in C?");
2259
2260      // These can't have reference type in well-formed programs, but
2261      // for internal consistency we do this anyway.
2262      type = type.getNonReferenceType();
2263      valueKind = VK_LValue;
2264      break;
2265
2266    // Non-type template parameters are either l-values or r-values
2267    // depending on the type.
2268    case Decl::NonTypeTemplateParm: {
2269      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2270        type = reftype->getPointeeType();
2271        valueKind = VK_LValue; // even if the parameter is an r-value reference
2272        break;
2273      }
2274
2275      // For non-references, we need to strip qualifiers just in case
2276      // the template parameter was declared as 'const int' or whatever.
2277      valueKind = VK_RValue;
2278      type = type.getUnqualifiedType();
2279      break;
2280    }
2281
2282    case Decl::Var:
2283      // In C, "extern void blah;" is valid and is an r-value.
2284      if (!getLangOpts().CPlusPlus &&
2285          !type.hasQualifiers() &&
2286          type->isVoidType()) {
2287        valueKind = VK_RValue;
2288        break;
2289      }
2290      // fallthrough
2291
2292    case Decl::ImplicitParam:
2293    case Decl::ParmVar: {
2294      // These are always l-values.
2295      valueKind = VK_LValue;
2296      type = type.getNonReferenceType();
2297
2298      // FIXME: Does the addition of const really only apply in
2299      // potentially-evaluated contexts? Since the variable isn't actually
2300      // captured in an unevaluated context, it seems that the answer is no.
2301      if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
2302        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2303        if (!CapturedType.isNull())
2304          type = CapturedType;
2305      }
2306
2307      break;
2308    }
2309
2310    case Decl::Function: {
2311      const FunctionType *fty = type->castAs<FunctionType>();
2312
2313      // If we're referring to a function with an __unknown_anytype
2314      // result type, make the entire expression __unknown_anytype.
2315      if (fty->getResultType() == Context.UnknownAnyTy) {
2316        type = Context.UnknownAnyTy;
2317        valueKind = VK_RValue;
2318        break;
2319      }
2320
2321      // Functions are l-values in C++.
2322      if (getLangOpts().CPlusPlus) {
2323        valueKind = VK_LValue;
2324        break;
2325      }
2326
2327      // C99 DR 316 says that, if a function type comes from a
2328      // function definition (without a prototype), that type is only
2329      // used for checking compatibility. Therefore, when referencing
2330      // the function, we pretend that we don't have the full function
2331      // type.
2332      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2333          isa<FunctionProtoType>(fty))
2334        type = Context.getFunctionNoProtoType(fty->getResultType(),
2335                                              fty->getExtInfo());
2336
2337      // Functions are r-values in C.
2338      valueKind = VK_RValue;
2339      break;
2340    }
2341
2342    case Decl::CXXMethod:
2343      // If we're referring to a method with an __unknown_anytype
2344      // result type, make the entire expression __unknown_anytype.
2345      // This should only be possible with a type written directly.
2346      if (const FunctionProtoType *proto
2347            = dyn_cast<FunctionProtoType>(VD->getType()))
2348        if (proto->getResultType() == Context.UnknownAnyTy) {
2349          type = Context.UnknownAnyTy;
2350          valueKind = VK_RValue;
2351          break;
2352        }
2353
2354      // C++ methods are l-values if static, r-values if non-static.
2355      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2356        valueKind = VK_LValue;
2357        break;
2358      }
2359      // fallthrough
2360
2361    case Decl::CXXConversion:
2362    case Decl::CXXDestructor:
2363    case Decl::CXXConstructor:
2364      valueKind = VK_RValue;
2365      break;
2366    }
2367
2368    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2369  }
2370}
2371
2372ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2373  PredefinedExpr::IdentType IT;
2374
2375  switch (Kind) {
2376  default: llvm_unreachable("Unknown simple primary expr!");
2377  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2378  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2379  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2380  }
2381
2382  // Pre-defined identifiers are of type char[x], where x is the length of the
2383  // string.
2384
2385  Decl *currentDecl = getCurFunctionOrMethodDecl();
2386  if (!currentDecl && getCurBlock())
2387    currentDecl = getCurBlock()->TheDecl;
2388  if (!currentDecl) {
2389    Diag(Loc, diag::ext_predef_outside_function);
2390    currentDecl = Context.getTranslationUnitDecl();
2391  }
2392
2393  QualType ResTy;
2394  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2395    ResTy = Context.DependentTy;
2396  } else {
2397    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2398
2399    llvm::APInt LengthI(32, Length + 1);
2400    ResTy = Context.CharTy.withConst();
2401    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2402  }
2403  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2404}
2405
2406ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2407  SmallString<16> CharBuffer;
2408  bool Invalid = false;
2409  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2410  if (Invalid)
2411    return ExprError();
2412
2413  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2414                            PP, Tok.getKind());
2415  if (Literal.hadError())
2416    return ExprError();
2417
2418  QualType Ty;
2419  if (Literal.isWide())
2420    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2421  else if (Literal.isUTF16())
2422    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2423  else if (Literal.isUTF32())
2424    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2425  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2426    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2427  else
2428    Ty = Context.CharTy;  // 'x' -> char in C++
2429
2430  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2431  if (Literal.isWide())
2432    Kind = CharacterLiteral::Wide;
2433  else if (Literal.isUTF16())
2434    Kind = CharacterLiteral::UTF16;
2435  else if (Literal.isUTF32())
2436    Kind = CharacterLiteral::UTF32;
2437
2438  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2439                                             Tok.getLocation());
2440
2441  if (Literal.getUDSuffix().empty())
2442    return Owned(Lit);
2443
2444  // We're building a user-defined literal.
2445  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2446  SourceLocation UDSuffixLoc =
2447    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2448
2449  // Make sure we're allowed user-defined literals here.
2450  if (!UDLScope)
2451    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2452
2453  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2454  //   operator "" X (ch)
2455  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2456                                        llvm::makeArrayRef(&Lit, 1),
2457                                        Tok.getLocation());
2458}
2459
2460ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2461  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2462  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2463                                      Context.IntTy, Loc));
2464}
2465
2466static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2467                                  QualType Ty, SourceLocation Loc) {
2468  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2469
2470  using llvm::APFloat;
2471  APFloat Val(Format);
2472
2473  APFloat::opStatus result = Literal.GetFloatValue(Val);
2474
2475  // Overflow is always an error, but underflow is only an error if
2476  // we underflowed to zero (APFloat reports denormals as underflow).
2477  if ((result & APFloat::opOverflow) ||
2478      ((result & APFloat::opUnderflow) && Val.isZero())) {
2479    unsigned diagnostic;
2480    SmallString<20> buffer;
2481    if (result & APFloat::opOverflow) {
2482      diagnostic = diag::warn_float_overflow;
2483      APFloat::getLargest(Format).toString(buffer);
2484    } else {
2485      diagnostic = diag::warn_float_underflow;
2486      APFloat::getSmallest(Format).toString(buffer);
2487    }
2488
2489    S.Diag(Loc, diagnostic)
2490      << Ty
2491      << StringRef(buffer.data(), buffer.size());
2492  }
2493
2494  bool isExact = (result == APFloat::opOK);
2495  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2496}
2497
2498ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2499  // Fast path for a single digit (which is quite common).  A single digit
2500  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2501  if (Tok.getLength() == 1) {
2502    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2503    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2504  }
2505
2506  SmallString<512> IntegerBuffer;
2507  // Add padding so that NumericLiteralParser can overread by one character.
2508  IntegerBuffer.resize(Tok.getLength()+1);
2509  const char *ThisTokBegin = &IntegerBuffer[0];
2510
2511  // Get the spelling of the token, which eliminates trigraphs, etc.
2512  bool Invalid = false;
2513  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2514  if (Invalid)
2515    return ExprError();
2516
2517  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2518                               Tok.getLocation(), PP);
2519  if (Literal.hadError)
2520    return ExprError();
2521
2522  if (Literal.hasUDSuffix()) {
2523    // We're building a user-defined literal.
2524    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2525    SourceLocation UDSuffixLoc =
2526      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2527
2528    // Make sure we're allowed user-defined literals here.
2529    if (!UDLScope)
2530      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2531
2532    QualType CookedTy;
2533    if (Literal.isFloatingLiteral()) {
2534      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2535      // long double, the literal is treated as a call of the form
2536      //   operator "" X (f L)
2537      CookedTy = Context.LongDoubleTy;
2538    } else {
2539      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2540      // unsigned long long, the literal is treated as a call of the form
2541      //   operator "" X (n ULL)
2542      CookedTy = Context.UnsignedLongLongTy;
2543    }
2544
2545    DeclarationName OpName =
2546      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2547    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2548    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2549
2550    // Perform literal operator lookup to determine if we're building a raw
2551    // literal or a cooked one.
2552    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2553    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2554                                  /*AllowRawAndTemplate*/true)) {
2555    case LOLR_Error:
2556      return ExprError();
2557
2558    case LOLR_Cooked: {
2559      Expr *Lit;
2560      if (Literal.isFloatingLiteral()) {
2561        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2562      } else {
2563        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2564        if (Literal.GetIntegerValue(ResultVal))
2565          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2566        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2567                                     Tok.getLocation());
2568      }
2569      return BuildLiteralOperatorCall(R, OpNameInfo,
2570                                      llvm::makeArrayRef(&Lit, 1),
2571                                      Tok.getLocation());
2572    }
2573
2574    case LOLR_Raw: {
2575      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2576      // literal is treated as a call of the form
2577      //   operator "" X ("n")
2578      SourceLocation TokLoc = Tok.getLocation();
2579      unsigned Length = Literal.getUDSuffixOffset();
2580      QualType StrTy = Context.getConstantArrayType(
2581          Context.CharTy, llvm::APInt(32, Length + 1),
2582          ArrayType::Normal, 0);
2583      Expr *Lit = StringLiteral::Create(
2584          Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2585          /*Pascal*/false, StrTy, &TokLoc, 1);
2586      return BuildLiteralOperatorCall(R, OpNameInfo,
2587                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2588    }
2589
2590    case LOLR_Template:
2591      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2592      // template), L is treated as a call fo the form
2593      //   operator "" X <'c1', 'c2', ... 'ck'>()
2594      // where n is the source character sequence c1 c2 ... ck.
2595      TemplateArgumentListInfo ExplicitArgs;
2596      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2597      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2598      llvm::APSInt Value(CharBits, CharIsUnsigned);
2599      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2600        Value = ThisTokBegin[I];
2601        TemplateArgument Arg(Value, Context.CharTy);
2602        TemplateArgumentLocInfo ArgInfo;
2603        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2604      }
2605      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2606                                      Tok.getLocation(), &ExplicitArgs);
2607    }
2608
2609    llvm_unreachable("unexpected literal operator lookup result");
2610  }
2611
2612  Expr *Res;
2613
2614  if (Literal.isFloatingLiteral()) {
2615    QualType Ty;
2616    if (Literal.isFloat)
2617      Ty = Context.FloatTy;
2618    else if (!Literal.isLong)
2619      Ty = Context.DoubleTy;
2620    else
2621      Ty = Context.LongDoubleTy;
2622
2623    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2624
2625    if (Ty == Context.DoubleTy) {
2626      if (getLangOpts().SinglePrecisionConstants) {
2627        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2628      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2629        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2630        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2631      }
2632    }
2633  } else if (!Literal.isIntegerLiteral()) {
2634    return ExprError();
2635  } else {
2636    QualType Ty;
2637
2638    // long long is a C99 feature.
2639    if (!getLangOpts().C99 && Literal.isLongLong)
2640      Diag(Tok.getLocation(),
2641           getLangOpts().CPlusPlus0x ?
2642             diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2643
2644    // Get the value in the widest-possible width.
2645    llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
2646
2647    if (Literal.GetIntegerValue(ResultVal)) {
2648      // If this value didn't fit into uintmax_t, warn and force to ull.
2649      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2650      Ty = Context.UnsignedLongLongTy;
2651      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2652             "long long is not intmax_t?");
2653    } else {
2654      // If this value fits into a ULL, try to figure out what else it fits into
2655      // according to the rules of C99 6.4.4.1p5.
2656
2657      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2658      // be an unsigned int.
2659      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2660
2661      // Check from smallest to largest, picking the smallest type we can.
2662      unsigned Width = 0;
2663      if (!Literal.isLong && !Literal.isLongLong) {
2664        // Are int/unsigned possibilities?
2665        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2666
2667        // Does it fit in a unsigned int?
2668        if (ResultVal.isIntN(IntSize)) {
2669          // Does it fit in a signed int?
2670          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2671            Ty = Context.IntTy;
2672          else if (AllowUnsigned)
2673            Ty = Context.UnsignedIntTy;
2674          Width = IntSize;
2675        }
2676      }
2677
2678      // Are long/unsigned long possibilities?
2679      if (Ty.isNull() && !Literal.isLongLong) {
2680        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2681
2682        // Does it fit in a unsigned long?
2683        if (ResultVal.isIntN(LongSize)) {
2684          // Does it fit in a signed long?
2685          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2686            Ty = Context.LongTy;
2687          else if (AllowUnsigned)
2688            Ty = Context.UnsignedLongTy;
2689          Width = LongSize;
2690        }
2691      }
2692
2693      // Finally, check long long if needed.
2694      if (Ty.isNull()) {
2695        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2696
2697        // Does it fit in a unsigned long long?
2698        if (ResultVal.isIntN(LongLongSize)) {
2699          // Does it fit in a signed long long?
2700          // To be compatible with MSVC, hex integer literals ending with the
2701          // LL or i64 suffix are always signed in Microsoft mode.
2702          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2703              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2704            Ty = Context.LongLongTy;
2705          else if (AllowUnsigned)
2706            Ty = Context.UnsignedLongLongTy;
2707          Width = LongLongSize;
2708        }
2709      }
2710
2711      // If we still couldn't decide a type, we probably have something that
2712      // does not fit in a signed long long, but has no U suffix.
2713      if (Ty.isNull()) {
2714        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2715        Ty = Context.UnsignedLongLongTy;
2716        Width = Context.getTargetInfo().getLongLongWidth();
2717      }
2718
2719      if (ResultVal.getBitWidth() != Width)
2720        ResultVal = ResultVal.trunc(Width);
2721    }
2722    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2723  }
2724
2725  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2726  if (Literal.isImaginary)
2727    Res = new (Context) ImaginaryLiteral(Res,
2728                                        Context.getComplexType(Res->getType()));
2729
2730  return Owned(Res);
2731}
2732
2733ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2734  assert((E != 0) && "ActOnParenExpr() missing expr");
2735  return Owned(new (Context) ParenExpr(L, R, E));
2736}
2737
2738static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2739                                         SourceLocation Loc,
2740                                         SourceRange ArgRange) {
2741  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2742  // scalar or vector data type argument..."
2743  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2744  // type (C99 6.2.5p18) or void.
2745  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2746    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2747      << T << ArgRange;
2748    return true;
2749  }
2750
2751  assert((T->isVoidType() || !T->isIncompleteType()) &&
2752         "Scalar types should always be complete");
2753  return false;
2754}
2755
2756static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2757                                           SourceLocation Loc,
2758                                           SourceRange ArgRange,
2759                                           UnaryExprOrTypeTrait TraitKind) {
2760  // C99 6.5.3.4p1:
2761  if (T->isFunctionType()) {
2762    // alignof(function) is allowed as an extension.
2763    if (TraitKind == UETT_SizeOf)
2764      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2765    return false;
2766  }
2767
2768  // Allow sizeof(void)/alignof(void) as an extension.
2769  if (T->isVoidType()) {
2770    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2771    return false;
2772  }
2773
2774  return true;
2775}
2776
2777static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2778                                             SourceLocation Loc,
2779                                             SourceRange ArgRange,
2780                                             UnaryExprOrTypeTrait TraitKind) {
2781  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2782  if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2783    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2784      << T << (TraitKind == UETT_SizeOf)
2785      << ArgRange;
2786    return true;
2787  }
2788
2789  return false;
2790}
2791
2792/// \brief Check the constrains on expression operands to unary type expression
2793/// and type traits.
2794///
2795/// Completes any types necessary and validates the constraints on the operand
2796/// expression. The logic mostly mirrors the type-based overload, but may modify
2797/// the expression as it completes the type for that expression through template
2798/// instantiation, etc.
2799bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2800                                            UnaryExprOrTypeTrait ExprKind) {
2801  QualType ExprTy = E->getType();
2802
2803  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2804  //   the result is the size of the referenced type."
2805  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2806  //   result shall be the alignment of the referenced type."
2807  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2808    ExprTy = Ref->getPointeeType();
2809
2810  if (ExprKind == UETT_VecStep)
2811    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2812                                        E->getSourceRange());
2813
2814  // Whitelist some types as extensions
2815  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2816                                      E->getSourceRange(), ExprKind))
2817    return false;
2818
2819  if (RequireCompleteExprType(E,
2820                              PDiag(diag::err_sizeof_alignof_incomplete_type)
2821                              << ExprKind << E->getSourceRange(),
2822                              std::make_pair(SourceLocation(), PDiag(0))))
2823    return true;
2824
2825  // Completeing the expression's type may have changed it.
2826  ExprTy = E->getType();
2827  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2828    ExprTy = Ref->getPointeeType();
2829
2830  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2831                                       E->getSourceRange(), ExprKind))
2832    return true;
2833
2834  if (ExprKind == UETT_SizeOf) {
2835    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2836      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2837        QualType OType = PVD->getOriginalType();
2838        QualType Type = PVD->getType();
2839        if (Type->isPointerType() && OType->isArrayType()) {
2840          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2841            << Type << OType;
2842          Diag(PVD->getLocation(), diag::note_declared_at);
2843        }
2844      }
2845    }
2846  }
2847
2848  return false;
2849}
2850
2851/// \brief Check the constraints on operands to unary expression and type
2852/// traits.
2853///
2854/// This will complete any types necessary, and validate the various constraints
2855/// on those operands.
2856///
2857/// The UsualUnaryConversions() function is *not* called by this routine.
2858/// C99 6.3.2.1p[2-4] all state:
2859///   Except when it is the operand of the sizeof operator ...
2860///
2861/// C++ [expr.sizeof]p4
2862///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2863///   standard conversions are not applied to the operand of sizeof.
2864///
2865/// This policy is followed for all of the unary trait expressions.
2866bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2867                                            SourceLocation OpLoc,
2868                                            SourceRange ExprRange,
2869                                            UnaryExprOrTypeTrait ExprKind) {
2870  if (ExprType->isDependentType())
2871    return false;
2872
2873  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2874  //   the result is the size of the referenced type."
2875  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2876  //   result shall be the alignment of the referenced type."
2877  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
2878    ExprType = Ref->getPointeeType();
2879
2880  if (ExprKind == UETT_VecStep)
2881    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
2882
2883  // Whitelist some types as extensions
2884  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
2885                                      ExprKind))
2886    return false;
2887
2888  if (RequireCompleteType(OpLoc, ExprType,
2889                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2890                          << ExprKind << ExprRange))
2891    return true;
2892
2893  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
2894                                       ExprKind))
2895    return true;
2896
2897  return false;
2898}
2899
2900static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2901  E = E->IgnoreParens();
2902
2903  // alignof decl is always ok.
2904  if (isa<DeclRefExpr>(E))
2905    return false;
2906
2907  // Cannot know anything else if the expression is dependent.
2908  if (E->isTypeDependent())
2909    return false;
2910
2911  if (E->getBitField()) {
2912    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2913       << 1 << E->getSourceRange();
2914    return true;
2915  }
2916
2917  // Alignment of a field access is always okay, so long as it isn't a
2918  // bit-field.
2919  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2920    if (isa<FieldDecl>(ME->getMemberDecl()))
2921      return false;
2922
2923  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2924}
2925
2926bool Sema::CheckVecStepExpr(Expr *E) {
2927  E = E->IgnoreParens();
2928
2929  // Cannot know anything else if the expression is dependent.
2930  if (E->isTypeDependent())
2931    return false;
2932
2933  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2934}
2935
2936/// \brief Build a sizeof or alignof expression given a type operand.
2937ExprResult
2938Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2939                                     SourceLocation OpLoc,
2940                                     UnaryExprOrTypeTrait ExprKind,
2941                                     SourceRange R) {
2942  if (!TInfo)
2943    return ExprError();
2944
2945  QualType T = TInfo->getType();
2946
2947  if (!T->isDependentType() &&
2948      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2949    return ExprError();
2950
2951  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2952  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2953                                                      Context.getSizeType(),
2954                                                      OpLoc, R.getEnd()));
2955}
2956
2957/// \brief Build a sizeof or alignof expression given an expression
2958/// operand.
2959ExprResult
2960Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
2961                                     UnaryExprOrTypeTrait ExprKind) {
2962  ExprResult PE = CheckPlaceholderExpr(E);
2963  if (PE.isInvalid())
2964    return ExprError();
2965
2966  E = PE.get();
2967
2968  // Verify that the operand is valid.
2969  bool isInvalid = false;
2970  if (E->isTypeDependent()) {
2971    // Delay type-checking for type-dependent expressions.
2972  } else if (ExprKind == UETT_AlignOf) {
2973    isInvalid = CheckAlignOfExpr(*this, E);
2974  } else if (ExprKind == UETT_VecStep) {
2975    isInvalid = CheckVecStepExpr(E);
2976  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2977    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
2978    isInvalid = true;
2979  } else {
2980    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
2981  }
2982
2983  if (isInvalid)
2984    return ExprError();
2985
2986  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
2987    PE = TranformToPotentiallyEvaluated(E);
2988    if (PE.isInvalid()) return ExprError();
2989    E = PE.take();
2990  }
2991
2992  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2993  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
2994      ExprKind, E, Context.getSizeType(), OpLoc,
2995      E->getSourceRange().getEnd()));
2996}
2997
2998/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
2999/// expr and the same for @c alignof and @c __alignof
3000/// Note that the ArgRange is invalid if isType is false.
3001ExprResult
3002Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3003                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3004                                    void *TyOrEx, const SourceRange &ArgRange) {
3005  // If error parsing type, ignore.
3006  if (TyOrEx == 0) return ExprError();
3007
3008  if (IsType) {
3009    TypeSourceInfo *TInfo;
3010    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3011    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3012  }
3013
3014  Expr *ArgEx = (Expr *)TyOrEx;
3015  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3016  return move(Result);
3017}
3018
3019static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3020                                     bool IsReal) {
3021  if (V.get()->isTypeDependent())
3022    return S.Context.DependentTy;
3023
3024  // _Real and _Imag are only l-values for normal l-values.
3025  if (V.get()->getObjectKind() != OK_Ordinary) {
3026    V = S.DefaultLvalueConversion(V.take());
3027    if (V.isInvalid())
3028      return QualType();
3029  }
3030
3031  // These operators return the element type of a complex type.
3032  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3033    return CT->getElementType();
3034
3035  // Otherwise they pass through real integer and floating point types here.
3036  if (V.get()->getType()->isArithmeticType())
3037    return V.get()->getType();
3038
3039  // Test for placeholders.
3040  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3041  if (PR.isInvalid()) return QualType();
3042  if (PR.get() != V.get()) {
3043    V = move(PR);
3044    return CheckRealImagOperand(S, V, Loc, IsReal);
3045  }
3046
3047  // Reject anything else.
3048  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3049    << (IsReal ? "__real" : "__imag");
3050  return QualType();
3051}
3052
3053
3054
3055ExprResult
3056Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3057                          tok::TokenKind Kind, Expr *Input) {
3058  UnaryOperatorKind Opc;
3059  switch (Kind) {
3060  default: llvm_unreachable("Unknown unary op!");
3061  case tok::plusplus:   Opc = UO_PostInc; break;
3062  case tok::minusminus: Opc = UO_PostDec; break;
3063  }
3064
3065  // Since this might is a postfix expression, get rid of ParenListExprs.
3066  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3067  if (Result.isInvalid()) return ExprError();
3068  Input = Result.take();
3069
3070  return BuildUnaryOp(S, OpLoc, Opc, Input);
3071}
3072
3073ExprResult
3074Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3075                              Expr *Idx, SourceLocation RLoc) {
3076  // Since this might be a postfix expression, get rid of ParenListExprs.
3077  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3078  if (Result.isInvalid()) return ExprError();
3079  Base = Result.take();
3080
3081  Expr *LHSExp = Base, *RHSExp = Idx;
3082
3083  if (getLangOpts().CPlusPlus &&
3084      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3085    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3086                                                  Context.DependentTy,
3087                                                  VK_LValue, OK_Ordinary,
3088                                                  RLoc));
3089  }
3090
3091  if (getLangOpts().CPlusPlus &&
3092      (LHSExp->getType()->isRecordType() ||
3093       LHSExp->getType()->isEnumeralType() ||
3094       RHSExp->getType()->isRecordType() ||
3095       RHSExp->getType()->isEnumeralType()) &&
3096      !LHSExp->getType()->isObjCObjectPointerType()) {
3097    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3098  }
3099
3100  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3101}
3102
3103
3104ExprResult
3105Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3106                                      Expr *Idx, SourceLocation RLoc) {
3107  Expr *LHSExp = Base;
3108  Expr *RHSExp = Idx;
3109
3110  // Perform default conversions.
3111  if (!LHSExp->getType()->getAs<VectorType>()) {
3112    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3113    if (Result.isInvalid())
3114      return ExprError();
3115    LHSExp = Result.take();
3116  }
3117  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3118  if (Result.isInvalid())
3119    return ExprError();
3120  RHSExp = Result.take();
3121
3122  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3123  ExprValueKind VK = VK_LValue;
3124  ExprObjectKind OK = OK_Ordinary;
3125
3126  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3127  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3128  // in the subscript position. As a result, we need to derive the array base
3129  // and index from the expression types.
3130  Expr *BaseExpr, *IndexExpr;
3131  QualType ResultType;
3132  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3133    BaseExpr = LHSExp;
3134    IndexExpr = RHSExp;
3135    ResultType = Context.DependentTy;
3136  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3137    BaseExpr = LHSExp;
3138    IndexExpr = RHSExp;
3139    ResultType = PTy->getPointeeType();
3140  } else if (const ObjCObjectPointerType *PTy =
3141             LHSTy->getAs<ObjCObjectPointerType>()) {
3142    BaseExpr = LHSExp;
3143    IndexExpr = RHSExp;
3144    Result = BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3145    if (!Result.isInvalid())
3146      return Owned(Result.take());
3147    ResultType = PTy->getPointeeType();
3148  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3149     // Handle the uncommon case of "123[Ptr]".
3150    BaseExpr = RHSExp;
3151    IndexExpr = LHSExp;
3152    ResultType = PTy->getPointeeType();
3153  } else if (const ObjCObjectPointerType *PTy =
3154               RHSTy->getAs<ObjCObjectPointerType>()) {
3155     // Handle the uncommon case of "123[Ptr]".
3156    BaseExpr = RHSExp;
3157    IndexExpr = LHSExp;
3158    ResultType = PTy->getPointeeType();
3159  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3160    BaseExpr = LHSExp;    // vectors: V[123]
3161    IndexExpr = RHSExp;
3162    VK = LHSExp->getValueKind();
3163    if (VK != VK_RValue)
3164      OK = OK_VectorComponent;
3165
3166    // FIXME: need to deal with const...
3167    ResultType = VTy->getElementType();
3168  } else if (LHSTy->isArrayType()) {
3169    // If we see an array that wasn't promoted by
3170    // DefaultFunctionArrayLvalueConversion, it must be an array that
3171    // wasn't promoted because of the C90 rule that doesn't
3172    // allow promoting non-lvalue arrays.  Warn, then
3173    // force the promotion here.
3174    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3175        LHSExp->getSourceRange();
3176    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3177                               CK_ArrayToPointerDecay).take();
3178    LHSTy = LHSExp->getType();
3179
3180    BaseExpr = LHSExp;
3181    IndexExpr = RHSExp;
3182    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3183  } else if (RHSTy->isArrayType()) {
3184    // Same as previous, except for 123[f().a] case
3185    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3186        RHSExp->getSourceRange();
3187    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3188                               CK_ArrayToPointerDecay).take();
3189    RHSTy = RHSExp->getType();
3190
3191    BaseExpr = RHSExp;
3192    IndexExpr = LHSExp;
3193    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3194  } else {
3195    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3196       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3197  }
3198  // C99 6.5.2.1p1
3199  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3200    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3201                     << IndexExpr->getSourceRange());
3202
3203  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3204       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3205         && !IndexExpr->isTypeDependent())
3206    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3207
3208  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3209  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3210  // type. Note that Functions are not objects, and that (in C99 parlance)
3211  // incomplete types are not object types.
3212  if (ResultType->isFunctionType()) {
3213    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3214      << ResultType << BaseExpr->getSourceRange();
3215    return ExprError();
3216  }
3217
3218  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3219    // GNU extension: subscripting on pointer to void
3220    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3221      << BaseExpr->getSourceRange();
3222
3223    // C forbids expressions of unqualified void type from being l-values.
3224    // See IsCForbiddenLValueType.
3225    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3226  } else if (!ResultType->isDependentType() &&
3227      RequireCompleteType(LLoc, ResultType,
3228                          PDiag(diag::err_subscript_incomplete_type)
3229                            << BaseExpr->getSourceRange()))
3230    return ExprError();
3231
3232  // Diagnose bad cases where we step over interface counts.
3233  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3234    Diag(LLoc, diag::err_subscript_nonfragile_interface)
3235      << ResultType << BaseExpr->getSourceRange();
3236    return ExprError();
3237  }
3238
3239  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3240         !ResultType.isCForbiddenLValueType());
3241
3242  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3243                                                ResultType, VK, OK, RLoc));
3244}
3245
3246ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3247                                        FunctionDecl *FD,
3248                                        ParmVarDecl *Param) {
3249  if (Param->hasUnparsedDefaultArg()) {
3250    Diag(CallLoc,
3251         diag::err_use_of_default_argument_to_function_declared_later) <<
3252      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3253    Diag(UnparsedDefaultArgLocs[Param],
3254         diag::note_default_argument_declared_here);
3255    return ExprError();
3256  }
3257
3258  if (Param->hasUninstantiatedDefaultArg()) {
3259    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3260
3261    // Instantiate the expression.
3262    MultiLevelTemplateArgumentList ArgList
3263      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3264
3265    std::pair<const TemplateArgument *, unsigned> Innermost
3266      = ArgList.getInnermost();
3267    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3268                               Innermost.second);
3269
3270    ExprResult Result;
3271    {
3272      // C++ [dcl.fct.default]p5:
3273      //   The names in the [default argument] expression are bound, and
3274      //   the semantic constraints are checked, at the point where the
3275      //   default argument expression appears.
3276      ContextRAII SavedContext(*this, FD);
3277      LocalInstantiationScope Local(*this);
3278      Result = SubstExpr(UninstExpr, ArgList);
3279    }
3280    if (Result.isInvalid())
3281      return ExprError();
3282
3283    // Check the expression as an initializer for the parameter.
3284    InitializedEntity Entity
3285      = InitializedEntity::InitializeParameter(Context, Param);
3286    InitializationKind Kind
3287      = InitializationKind::CreateCopy(Param->getLocation(),
3288             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3289    Expr *ResultE = Result.takeAs<Expr>();
3290
3291    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3292    Result = InitSeq.Perform(*this, Entity, Kind,
3293                             MultiExprArg(*this, &ResultE, 1));
3294    if (Result.isInvalid())
3295      return ExprError();
3296
3297    // Build the default argument expression.
3298    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3299                                           Result.takeAs<Expr>()));
3300  }
3301
3302  // If the default expression creates temporaries, we need to
3303  // push them to the current stack of expression temporaries so they'll
3304  // be properly destroyed.
3305  // FIXME: We should really be rebuilding the default argument with new
3306  // bound temporaries; see the comment in PR5810.
3307  // We don't need to do that with block decls, though, because
3308  // blocks in default argument expression can never capture anything.
3309  if (isa<ExprWithCleanups>(Param->getInit())) {
3310    // Set the "needs cleanups" bit regardless of whether there are
3311    // any explicit objects.
3312    ExprNeedsCleanups = true;
3313
3314    // Append all the objects to the cleanup list.  Right now, this
3315    // should always be a no-op, because blocks in default argument
3316    // expressions should never be able to capture anything.
3317    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3318           "default argument expression has capturing blocks?");
3319  }
3320
3321  // We already type-checked the argument, so we know it works.
3322  // Just mark all of the declarations in this potentially-evaluated expression
3323  // as being "referenced".
3324  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3325                                   /*SkipLocalVariables=*/true);
3326  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3327}
3328
3329/// ConvertArgumentsForCall - Converts the arguments specified in
3330/// Args/NumArgs to the parameter types of the function FDecl with
3331/// function prototype Proto. Call is the call expression itself, and
3332/// Fn is the function expression. For a C++ member function, this
3333/// routine does not attempt to convert the object argument. Returns
3334/// true if the call is ill-formed.
3335bool
3336Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3337                              FunctionDecl *FDecl,
3338                              const FunctionProtoType *Proto,
3339                              Expr **Args, unsigned NumArgs,
3340                              SourceLocation RParenLoc,
3341                              bool IsExecConfig) {
3342  // Bail out early if calling a builtin with custom typechecking.
3343  // We don't need to do this in the
3344  if (FDecl)
3345    if (unsigned ID = FDecl->getBuiltinID())
3346      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3347        return false;
3348
3349  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3350  // assignment, to the types of the corresponding parameter, ...
3351  unsigned NumArgsInProto = Proto->getNumArgs();
3352  bool Invalid = false;
3353  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3354  unsigned FnKind = Fn->getType()->isBlockPointerType()
3355                       ? 1 /* block */
3356                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3357                                       : 0 /* function */);
3358
3359  // If too few arguments are available (and we don't have default
3360  // arguments for the remaining parameters), don't make the call.
3361  if (NumArgs < NumArgsInProto) {
3362    if (NumArgs < MinArgs) {
3363      Diag(RParenLoc, MinArgs == NumArgsInProto
3364                        ? diag::err_typecheck_call_too_few_args
3365                        : diag::err_typecheck_call_too_few_args_at_least)
3366        << FnKind
3367        << MinArgs << NumArgs << Fn->getSourceRange();
3368
3369      // Emit the location of the prototype.
3370      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3371        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3372          << FDecl;
3373
3374      return true;
3375    }
3376    Call->setNumArgs(Context, NumArgsInProto);
3377  }
3378
3379  // If too many are passed and not variadic, error on the extras and drop
3380  // them.
3381  if (NumArgs > NumArgsInProto) {
3382    if (!Proto->isVariadic()) {
3383      Diag(Args[NumArgsInProto]->getLocStart(),
3384           MinArgs == NumArgsInProto
3385             ? diag::err_typecheck_call_too_many_args
3386             : diag::err_typecheck_call_too_many_args_at_most)
3387        << FnKind
3388        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3389        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3390                       Args[NumArgs-1]->getLocEnd());
3391
3392      // Emit the location of the prototype.
3393      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3394        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3395          << FDecl;
3396
3397      // This deletes the extra arguments.
3398      Call->setNumArgs(Context, NumArgsInProto);
3399      return true;
3400    }
3401  }
3402  SmallVector<Expr *, 8> AllArgs;
3403  VariadicCallType CallType =
3404    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3405  if (Fn->getType()->isBlockPointerType())
3406    CallType = VariadicBlock; // Block
3407  else if (isa<MemberExpr>(Fn))
3408    CallType = VariadicMethod;
3409  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3410                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3411  if (Invalid)
3412    return true;
3413  unsigned TotalNumArgs = AllArgs.size();
3414  for (unsigned i = 0; i < TotalNumArgs; ++i)
3415    Call->setArg(i, AllArgs[i]);
3416
3417  return false;
3418}
3419
3420bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3421                                  FunctionDecl *FDecl,
3422                                  const FunctionProtoType *Proto,
3423                                  unsigned FirstProtoArg,
3424                                  Expr **Args, unsigned NumArgs,
3425                                  SmallVector<Expr *, 8> &AllArgs,
3426                                  VariadicCallType CallType,
3427                                  bool AllowExplicit) {
3428  unsigned NumArgsInProto = Proto->getNumArgs();
3429  unsigned NumArgsToCheck = NumArgs;
3430  bool Invalid = false;
3431  if (NumArgs != NumArgsInProto)
3432    // Use default arguments for missing arguments
3433    NumArgsToCheck = NumArgsInProto;
3434  unsigned ArgIx = 0;
3435  // Continue to check argument types (even if we have too few/many args).
3436  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3437    QualType ProtoArgType = Proto->getArgType(i);
3438
3439    Expr *Arg;
3440    ParmVarDecl *Param;
3441    if (ArgIx < NumArgs) {
3442      Arg = Args[ArgIx++];
3443
3444      if (RequireCompleteType(Arg->getLocStart(),
3445                              ProtoArgType,
3446                              PDiag(diag::err_call_incomplete_argument)
3447                              << Arg->getSourceRange()))
3448        return true;
3449
3450      // Pass the argument
3451      Param = 0;
3452      if (FDecl && i < FDecl->getNumParams())
3453        Param = FDecl->getParamDecl(i);
3454
3455      // Strip the unbridged-cast placeholder expression off, if applicable.
3456      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3457          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3458          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3459        Arg = stripARCUnbridgedCast(Arg);
3460
3461      InitializedEntity Entity =
3462        Param? InitializedEntity::InitializeParameter(Context, Param)
3463             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3464                                                      Proto->isArgConsumed(i));
3465      ExprResult ArgE = PerformCopyInitialization(Entity,
3466                                                  SourceLocation(),
3467                                                  Owned(Arg),
3468                                                  /*TopLevelOfInitList=*/false,
3469                                                  AllowExplicit);
3470      if (ArgE.isInvalid())
3471        return true;
3472
3473      Arg = ArgE.takeAs<Expr>();
3474    } else {
3475      Param = FDecl->getParamDecl(i);
3476
3477      ExprResult ArgExpr =
3478        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3479      if (ArgExpr.isInvalid())
3480        return true;
3481
3482      Arg = ArgExpr.takeAs<Expr>();
3483    }
3484
3485    // Check for array bounds violations for each argument to the call. This
3486    // check only triggers warnings when the argument isn't a more complex Expr
3487    // with its own checking, such as a BinaryOperator.
3488    CheckArrayAccess(Arg);
3489
3490    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3491    CheckStaticArrayArgument(CallLoc, Param, Arg);
3492
3493    AllArgs.push_back(Arg);
3494  }
3495
3496  // If this is a variadic call, handle args passed through "...".
3497  if (CallType != VariadicDoesNotApply) {
3498
3499    // Assume that extern "C" functions with variadic arguments that
3500    // return __unknown_anytype aren't *really* variadic.
3501    if (Proto->getResultType() == Context.UnknownAnyTy &&
3502        FDecl && FDecl->isExternC()) {
3503      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3504        ExprResult arg;
3505        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3506          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3507        else
3508          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3509        Invalid |= arg.isInvalid();
3510        AllArgs.push_back(arg.take());
3511      }
3512
3513    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3514    } else {
3515      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3516        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3517                                                          FDecl);
3518        Invalid |= Arg.isInvalid();
3519        AllArgs.push_back(Arg.take());
3520      }
3521    }
3522
3523    // Check for array bounds violations.
3524    for (unsigned i = ArgIx; i != NumArgs; ++i)
3525      CheckArrayAccess(Args[i]);
3526  }
3527  return Invalid;
3528}
3529
3530static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3531  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3532  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3533    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3534      << ATL->getLocalSourceRange();
3535}
3536
3537/// CheckStaticArrayArgument - If the given argument corresponds to a static
3538/// array parameter, check that it is non-null, and that if it is formed by
3539/// array-to-pointer decay, the underlying array is sufficiently large.
3540///
3541/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3542/// array type derivation, then for each call to the function, the value of the
3543/// corresponding actual argument shall provide access to the first element of
3544/// an array with at least as many elements as specified by the size expression.
3545void
3546Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3547                               ParmVarDecl *Param,
3548                               const Expr *ArgExpr) {
3549  // Static array parameters are not supported in C++.
3550  if (!Param || getLangOpts().CPlusPlus)
3551    return;
3552
3553  QualType OrigTy = Param->getOriginalType();
3554
3555  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3556  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3557    return;
3558
3559  if (ArgExpr->isNullPointerConstant(Context,
3560                                     Expr::NPC_NeverValueDependent)) {
3561    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3562    DiagnoseCalleeStaticArrayParam(*this, Param);
3563    return;
3564  }
3565
3566  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3567  if (!CAT)
3568    return;
3569
3570  const ConstantArrayType *ArgCAT =
3571    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3572  if (!ArgCAT)
3573    return;
3574
3575  if (ArgCAT->getSize().ult(CAT->getSize())) {
3576    Diag(CallLoc, diag::warn_static_array_too_small)
3577      << ArgExpr->getSourceRange()
3578      << (unsigned) ArgCAT->getSize().getZExtValue()
3579      << (unsigned) CAT->getSize().getZExtValue();
3580    DiagnoseCalleeStaticArrayParam(*this, Param);
3581  }
3582}
3583
3584/// Given a function expression of unknown-any type, try to rebuild it
3585/// to have a function type.
3586static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3587
3588/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3589/// This provides the location of the left/right parens and a list of comma
3590/// locations.
3591ExprResult
3592Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3593                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3594                    Expr *ExecConfig, bool IsExecConfig) {
3595  unsigned NumArgs = ArgExprs.size();
3596
3597  // Since this might be a postfix expression, get rid of ParenListExprs.
3598  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3599  if (Result.isInvalid()) return ExprError();
3600  Fn = Result.take();
3601
3602  Expr **Args = ArgExprs.release();
3603
3604  if (getLangOpts().CPlusPlus) {
3605    // If this is a pseudo-destructor expression, build the call immediately.
3606    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3607      if (NumArgs > 0) {
3608        // Pseudo-destructor calls should not have any arguments.
3609        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3610          << FixItHint::CreateRemoval(
3611                                    SourceRange(Args[0]->getLocStart(),
3612                                                Args[NumArgs-1]->getLocEnd()));
3613      }
3614
3615      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3616                                          VK_RValue, RParenLoc));
3617    }
3618
3619    // Determine whether this is a dependent call inside a C++ template,
3620    // in which case we won't do any semantic analysis now.
3621    // FIXME: Will need to cache the results of name lookup (including ADL) in
3622    // Fn.
3623    bool Dependent = false;
3624    if (Fn->isTypeDependent())
3625      Dependent = true;
3626    else if (Expr::hasAnyTypeDependentArguments(
3627        llvm::makeArrayRef(Args, NumArgs)))
3628      Dependent = true;
3629
3630    if (Dependent) {
3631      if (ExecConfig) {
3632        return Owned(new (Context) CUDAKernelCallExpr(
3633            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3634            Context.DependentTy, VK_RValue, RParenLoc));
3635      } else {
3636        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3637                                            Context.DependentTy, VK_RValue,
3638                                            RParenLoc));
3639      }
3640    }
3641
3642    // Determine whether this is a call to an object (C++ [over.call.object]).
3643    if (Fn->getType()->isRecordType())
3644      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3645                                                RParenLoc));
3646
3647    if (Fn->getType() == Context.UnknownAnyTy) {
3648      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3649      if (result.isInvalid()) return ExprError();
3650      Fn = result.take();
3651    }
3652
3653    if (Fn->getType() == Context.BoundMemberTy) {
3654      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3655                                       RParenLoc);
3656    }
3657  }
3658
3659  // Check for overloaded calls.  This can happen even in C due to extensions.
3660  if (Fn->getType() == Context.OverloadTy) {
3661    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3662
3663    // We aren't supposed to apply this logic for if there's an '&' involved.
3664    if (!find.HasFormOfMemberPointer) {
3665      OverloadExpr *ovl = find.Expression;
3666      if (isa<UnresolvedLookupExpr>(ovl)) {
3667        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3668        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3669                                       RParenLoc, ExecConfig);
3670      } else {
3671        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3672                                         RParenLoc);
3673      }
3674    }
3675  }
3676
3677  // If we're directly calling a function, get the appropriate declaration.
3678  if (Fn->getType() == Context.UnknownAnyTy) {
3679    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3680    if (result.isInvalid()) return ExprError();
3681    Fn = result.take();
3682  }
3683
3684  Expr *NakedFn = Fn->IgnoreParens();
3685
3686  NamedDecl *NDecl = 0;
3687  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3688    if (UnOp->getOpcode() == UO_AddrOf)
3689      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3690
3691  if (isa<DeclRefExpr>(NakedFn))
3692    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3693  else if (isa<MemberExpr>(NakedFn))
3694    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3695
3696  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3697                               ExecConfig, IsExecConfig);
3698}
3699
3700ExprResult
3701Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3702                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3703  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3704  if (!ConfigDecl)
3705    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3706                          << "cudaConfigureCall");
3707  QualType ConfigQTy = ConfigDecl->getType();
3708
3709  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3710      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3711  MarkFunctionReferenced(LLLLoc, ConfigDecl);
3712
3713  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3714                       /*IsExecConfig=*/true);
3715}
3716
3717/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3718///
3719/// __builtin_astype( value, dst type )
3720///
3721ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3722                                 SourceLocation BuiltinLoc,
3723                                 SourceLocation RParenLoc) {
3724  ExprValueKind VK = VK_RValue;
3725  ExprObjectKind OK = OK_Ordinary;
3726  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3727  QualType SrcTy = E->getType();
3728  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3729    return ExprError(Diag(BuiltinLoc,
3730                          diag::err_invalid_astype_of_different_size)
3731                     << DstTy
3732                     << SrcTy
3733                     << E->getSourceRange());
3734  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3735               RParenLoc));
3736}
3737
3738/// BuildResolvedCallExpr - Build a call to a resolved expression,
3739/// i.e. an expression not of \p OverloadTy.  The expression should
3740/// unary-convert to an expression of function-pointer or
3741/// block-pointer type.
3742///
3743/// \param NDecl the declaration being called, if available
3744ExprResult
3745Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3746                            SourceLocation LParenLoc,
3747                            Expr **Args, unsigned NumArgs,
3748                            SourceLocation RParenLoc,
3749                            Expr *Config, bool IsExecConfig) {
3750  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3751
3752  // Promote the function operand.
3753  ExprResult Result = UsualUnaryConversions(Fn);
3754  if (Result.isInvalid())
3755    return ExprError();
3756  Fn = Result.take();
3757
3758  // Make the call expr early, before semantic checks.  This guarantees cleanup
3759  // of arguments and function on error.
3760  CallExpr *TheCall;
3761  if (Config) {
3762    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3763                                               cast<CallExpr>(Config),
3764                                               Args, NumArgs,
3765                                               Context.BoolTy,
3766                                               VK_RValue,
3767                                               RParenLoc);
3768  } else {
3769    TheCall = new (Context) CallExpr(Context, Fn,
3770                                     Args, NumArgs,
3771                                     Context.BoolTy,
3772                                     VK_RValue,
3773                                     RParenLoc);
3774  }
3775
3776  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3777
3778  // Bail out early if calling a builtin with custom typechecking.
3779  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3780    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3781
3782 retry:
3783  const FunctionType *FuncT;
3784  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3785    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3786    // have type pointer to function".
3787    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3788    if (FuncT == 0)
3789      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3790                         << Fn->getType() << Fn->getSourceRange());
3791  } else if (const BlockPointerType *BPT =
3792               Fn->getType()->getAs<BlockPointerType>()) {
3793    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3794  } else {
3795    // Handle calls to expressions of unknown-any type.
3796    if (Fn->getType() == Context.UnknownAnyTy) {
3797      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3798      if (rewrite.isInvalid()) return ExprError();
3799      Fn = rewrite.take();
3800      TheCall->setCallee(Fn);
3801      goto retry;
3802    }
3803
3804    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3805      << Fn->getType() << Fn->getSourceRange());
3806  }
3807
3808  if (getLangOpts().CUDA) {
3809    if (Config) {
3810      // CUDA: Kernel calls must be to global functions
3811      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3812        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3813            << FDecl->getName() << Fn->getSourceRange());
3814
3815      // CUDA: Kernel function must have 'void' return type
3816      if (!FuncT->getResultType()->isVoidType())
3817        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3818            << Fn->getType() << Fn->getSourceRange());
3819    } else {
3820      // CUDA: Calls to global functions must be configured
3821      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
3822        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
3823            << FDecl->getName() << Fn->getSourceRange());
3824    }
3825  }
3826
3827  // Check for a valid return type
3828  if (CheckCallReturnType(FuncT->getResultType(),
3829                          Fn->getLocStart(), TheCall,
3830                          FDecl))
3831    return ExprError();
3832
3833  // We know the result type of the call, set it.
3834  TheCall->setType(FuncT->getCallResultType(Context));
3835  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3836
3837  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3838    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3839                                RParenLoc, IsExecConfig))
3840      return ExprError();
3841  } else {
3842    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3843
3844    if (FDecl) {
3845      // Check if we have too few/too many template arguments, based
3846      // on our knowledge of the function definition.
3847      const FunctionDecl *Def = 0;
3848      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3849        const FunctionProtoType *Proto
3850          = Def->getType()->getAs<FunctionProtoType>();
3851        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3852          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3853            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3854      }
3855
3856      // If the function we're calling isn't a function prototype, but we have
3857      // a function prototype from a prior declaratiom, use that prototype.
3858      if (!FDecl->hasPrototype())
3859        Proto = FDecl->getType()->getAs<FunctionProtoType>();
3860    }
3861
3862    // Promote the arguments (C99 6.5.2.2p6).
3863    for (unsigned i = 0; i != NumArgs; i++) {
3864      Expr *Arg = Args[i];
3865
3866      if (Proto && i < Proto->getNumArgs()) {
3867        InitializedEntity Entity
3868          = InitializedEntity::InitializeParameter(Context,
3869                                                   Proto->getArgType(i),
3870                                                   Proto->isArgConsumed(i));
3871        ExprResult ArgE = PerformCopyInitialization(Entity,
3872                                                    SourceLocation(),
3873                                                    Owned(Arg));
3874        if (ArgE.isInvalid())
3875          return true;
3876
3877        Arg = ArgE.takeAs<Expr>();
3878
3879      } else {
3880        ExprResult ArgE = DefaultArgumentPromotion(Arg);
3881
3882        if (ArgE.isInvalid())
3883          return true;
3884
3885        Arg = ArgE.takeAs<Expr>();
3886      }
3887
3888      if (RequireCompleteType(Arg->getLocStart(),
3889                              Arg->getType(),
3890                              PDiag(diag::err_call_incomplete_argument)
3891                                << Arg->getSourceRange()))
3892        return ExprError();
3893
3894      TheCall->setArg(i, Arg);
3895    }
3896  }
3897
3898  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3899    if (!Method->isStatic())
3900      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3901        << Fn->getSourceRange());
3902
3903  // Check for sentinels
3904  if (NDecl)
3905    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3906
3907  // Do special checking on direct calls to functions.
3908  if (FDecl) {
3909    if (CheckFunctionCall(FDecl, TheCall))
3910      return ExprError();
3911
3912    if (BuiltinID)
3913      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3914  } else if (NDecl) {
3915    if (CheckBlockCall(NDecl, TheCall))
3916      return ExprError();
3917  }
3918
3919  return MaybeBindToTemporary(TheCall);
3920}
3921
3922ExprResult
3923Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3924                           SourceLocation RParenLoc, Expr *InitExpr) {
3925  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3926  // FIXME: put back this assert when initializers are worked out.
3927  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3928
3929  TypeSourceInfo *TInfo;
3930  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3931  if (!TInfo)
3932    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3933
3934  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3935}
3936
3937ExprResult
3938Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3939                               SourceLocation RParenLoc, Expr *LiteralExpr) {
3940  QualType literalType = TInfo->getType();
3941
3942  if (literalType->isArrayType()) {
3943    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3944             PDiag(diag::err_illegal_decl_array_incomplete_type)
3945               << SourceRange(LParenLoc,
3946                              LiteralExpr->getSourceRange().getEnd())))
3947      return ExprError();
3948    if (literalType->isVariableArrayType())
3949      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3950        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
3951  } else if (!literalType->isDependentType() &&
3952             RequireCompleteType(LParenLoc, literalType,
3953                      PDiag(diag::err_typecheck_decl_incomplete_type)
3954                        << SourceRange(LParenLoc,
3955                                       LiteralExpr->getSourceRange().getEnd())))
3956    return ExprError();
3957
3958  InitializedEntity Entity
3959    = InitializedEntity::InitializeTemporary(literalType);
3960  InitializationKind Kind
3961    = InitializationKind::CreateCStyleCast(LParenLoc,
3962                                           SourceRange(LParenLoc, RParenLoc),
3963                                           /*InitList=*/true);
3964  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
3965  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3966                                       MultiExprArg(*this, &LiteralExpr, 1),
3967                                            &literalType);
3968  if (Result.isInvalid())
3969    return ExprError();
3970  LiteralExpr = Result.get();
3971
3972  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3973  if (isFileScope) { // 6.5.2.5p3
3974    if (CheckForConstantInitializer(LiteralExpr, literalType))
3975      return ExprError();
3976  }
3977
3978  // In C, compound literals are l-values for some reason.
3979  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
3980
3981  return MaybeBindToTemporary(
3982           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3983                                             VK, LiteralExpr, isFileScope));
3984}
3985
3986ExprResult
3987Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
3988                    SourceLocation RBraceLoc) {
3989  unsigned NumInit = InitArgList.size();
3990  Expr **InitList = InitArgList.release();
3991
3992  // Immediately handle non-overload placeholders.  Overloads can be
3993  // resolved contextually, but everything else here can't.
3994  for (unsigned I = 0; I != NumInit; ++I) {
3995    if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
3996      ExprResult result = CheckPlaceholderExpr(InitList[I]);
3997
3998      // Ignore failures; dropping the entire initializer list because
3999      // of one failure would be terrible for indexing/etc.
4000      if (result.isInvalid()) continue;
4001
4002      InitList[I] = result.take();
4003    }
4004  }
4005
4006  // Semantic analysis for initializers is done by ActOnDeclarator() and
4007  // CheckInitializer() - it requires knowledge of the object being intialized.
4008
4009  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4010                                               NumInit, RBraceLoc);
4011  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4012  return Owned(E);
4013}
4014
4015/// Do an explicit extend of the given block pointer if we're in ARC.
4016static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4017  assert(E.get()->getType()->isBlockPointerType());
4018  assert(E.get()->isRValue());
4019
4020  // Only do this in an r-value context.
4021  if (!S.getLangOpts().ObjCAutoRefCount) return;
4022
4023  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4024                               CK_ARCExtendBlockObject, E.get(),
4025                               /*base path*/ 0, VK_RValue);
4026  S.ExprNeedsCleanups = true;
4027}
4028
4029/// Prepare a conversion of the given expression to an ObjC object
4030/// pointer type.
4031CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4032  QualType type = E.get()->getType();
4033  if (type->isObjCObjectPointerType()) {
4034    return CK_BitCast;
4035  } else if (type->isBlockPointerType()) {
4036    maybeExtendBlockObject(*this, E);
4037    return CK_BlockPointerToObjCPointerCast;
4038  } else {
4039    assert(type->isPointerType());
4040    return CK_CPointerToObjCPointerCast;
4041  }
4042}
4043
4044/// Prepares for a scalar cast, performing all the necessary stages
4045/// except the final cast and returning the kind required.
4046CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4047  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4048  // Also, callers should have filtered out the invalid cases with
4049  // pointers.  Everything else should be possible.
4050
4051  QualType SrcTy = Src.get()->getType();
4052  if (const AtomicType *SrcAtomicTy = SrcTy->getAs<AtomicType>())
4053    SrcTy = SrcAtomicTy->getValueType();
4054  if (const AtomicType *DestAtomicTy = DestTy->getAs<AtomicType>())
4055    DestTy = DestAtomicTy->getValueType();
4056
4057  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4058    return CK_NoOp;
4059
4060  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4061  case Type::STK_MemberPointer:
4062    llvm_unreachable("member pointer type in C");
4063
4064  case Type::STK_CPointer:
4065  case Type::STK_BlockPointer:
4066  case Type::STK_ObjCObjectPointer:
4067    switch (DestTy->getScalarTypeKind()) {
4068    case Type::STK_CPointer:
4069      return CK_BitCast;
4070    case Type::STK_BlockPointer:
4071      return (SrcKind == Type::STK_BlockPointer
4072                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4073    case Type::STK_ObjCObjectPointer:
4074      if (SrcKind == Type::STK_ObjCObjectPointer)
4075        return CK_BitCast;
4076      if (SrcKind == Type::STK_CPointer)
4077        return CK_CPointerToObjCPointerCast;
4078      maybeExtendBlockObject(*this, Src);
4079      return CK_BlockPointerToObjCPointerCast;
4080    case Type::STK_Bool:
4081      return CK_PointerToBoolean;
4082    case Type::STK_Integral:
4083      return CK_PointerToIntegral;
4084    case Type::STK_Floating:
4085    case Type::STK_FloatingComplex:
4086    case Type::STK_IntegralComplex:
4087    case Type::STK_MemberPointer:
4088      llvm_unreachable("illegal cast from pointer");
4089    }
4090    llvm_unreachable("Should have returned before this");
4091
4092  case Type::STK_Bool: // casting from bool is like casting from an integer
4093  case Type::STK_Integral:
4094    switch (DestTy->getScalarTypeKind()) {
4095    case Type::STK_CPointer:
4096    case Type::STK_ObjCObjectPointer:
4097    case Type::STK_BlockPointer:
4098      if (Src.get()->isNullPointerConstant(Context,
4099                                           Expr::NPC_ValueDependentIsNull))
4100        return CK_NullToPointer;
4101      return CK_IntegralToPointer;
4102    case Type::STK_Bool:
4103      return CK_IntegralToBoolean;
4104    case Type::STK_Integral:
4105      return CK_IntegralCast;
4106    case Type::STK_Floating:
4107      return CK_IntegralToFloating;
4108    case Type::STK_IntegralComplex:
4109      Src = ImpCastExprToType(Src.take(),
4110                              DestTy->castAs<ComplexType>()->getElementType(),
4111                              CK_IntegralCast);
4112      return CK_IntegralRealToComplex;
4113    case Type::STK_FloatingComplex:
4114      Src = ImpCastExprToType(Src.take(),
4115                              DestTy->castAs<ComplexType>()->getElementType(),
4116                              CK_IntegralToFloating);
4117      return CK_FloatingRealToComplex;
4118    case Type::STK_MemberPointer:
4119      llvm_unreachable("member pointer type in C");
4120    }
4121    llvm_unreachable("Should have returned before this");
4122
4123  case Type::STK_Floating:
4124    switch (DestTy->getScalarTypeKind()) {
4125    case Type::STK_Floating:
4126      return CK_FloatingCast;
4127    case Type::STK_Bool:
4128      return CK_FloatingToBoolean;
4129    case Type::STK_Integral:
4130      return CK_FloatingToIntegral;
4131    case Type::STK_FloatingComplex:
4132      Src = ImpCastExprToType(Src.take(),
4133                              DestTy->castAs<ComplexType>()->getElementType(),
4134                              CK_FloatingCast);
4135      return CK_FloatingRealToComplex;
4136    case Type::STK_IntegralComplex:
4137      Src = ImpCastExprToType(Src.take(),
4138                              DestTy->castAs<ComplexType>()->getElementType(),
4139                              CK_FloatingToIntegral);
4140      return CK_IntegralRealToComplex;
4141    case Type::STK_CPointer:
4142    case Type::STK_ObjCObjectPointer:
4143    case Type::STK_BlockPointer:
4144      llvm_unreachable("valid float->pointer cast?");
4145    case Type::STK_MemberPointer:
4146      llvm_unreachable("member pointer type in C");
4147    }
4148    llvm_unreachable("Should have returned before this");
4149
4150  case Type::STK_FloatingComplex:
4151    switch (DestTy->getScalarTypeKind()) {
4152    case Type::STK_FloatingComplex:
4153      return CK_FloatingComplexCast;
4154    case Type::STK_IntegralComplex:
4155      return CK_FloatingComplexToIntegralComplex;
4156    case Type::STK_Floating: {
4157      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4158      if (Context.hasSameType(ET, DestTy))
4159        return CK_FloatingComplexToReal;
4160      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4161      return CK_FloatingCast;
4162    }
4163    case Type::STK_Bool:
4164      return CK_FloatingComplexToBoolean;
4165    case Type::STK_Integral:
4166      Src = ImpCastExprToType(Src.take(),
4167                              SrcTy->castAs<ComplexType>()->getElementType(),
4168                              CK_FloatingComplexToReal);
4169      return CK_FloatingToIntegral;
4170    case Type::STK_CPointer:
4171    case Type::STK_ObjCObjectPointer:
4172    case Type::STK_BlockPointer:
4173      llvm_unreachable("valid complex float->pointer cast?");
4174    case Type::STK_MemberPointer:
4175      llvm_unreachable("member pointer type in C");
4176    }
4177    llvm_unreachable("Should have returned before this");
4178
4179  case Type::STK_IntegralComplex:
4180    switch (DestTy->getScalarTypeKind()) {
4181    case Type::STK_FloatingComplex:
4182      return CK_IntegralComplexToFloatingComplex;
4183    case Type::STK_IntegralComplex:
4184      return CK_IntegralComplexCast;
4185    case Type::STK_Integral: {
4186      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4187      if (Context.hasSameType(ET, DestTy))
4188        return CK_IntegralComplexToReal;
4189      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4190      return CK_IntegralCast;
4191    }
4192    case Type::STK_Bool:
4193      return CK_IntegralComplexToBoolean;
4194    case Type::STK_Floating:
4195      Src = ImpCastExprToType(Src.take(),
4196                              SrcTy->castAs<ComplexType>()->getElementType(),
4197                              CK_IntegralComplexToReal);
4198      return CK_IntegralToFloating;
4199    case Type::STK_CPointer:
4200    case Type::STK_ObjCObjectPointer:
4201    case Type::STK_BlockPointer:
4202      llvm_unreachable("valid complex int->pointer cast?");
4203    case Type::STK_MemberPointer:
4204      llvm_unreachable("member pointer type in C");
4205    }
4206    llvm_unreachable("Should have returned before this");
4207  }
4208
4209  llvm_unreachable("Unhandled scalar cast");
4210}
4211
4212bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4213                           CastKind &Kind) {
4214  assert(VectorTy->isVectorType() && "Not a vector type!");
4215
4216  if (Ty->isVectorType() || Ty->isIntegerType()) {
4217    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4218      return Diag(R.getBegin(),
4219                  Ty->isVectorType() ?
4220                  diag::err_invalid_conversion_between_vectors :
4221                  diag::err_invalid_conversion_between_vector_and_integer)
4222        << VectorTy << Ty << R;
4223  } else
4224    return Diag(R.getBegin(),
4225                diag::err_invalid_conversion_between_vector_and_scalar)
4226      << VectorTy << Ty << R;
4227
4228  Kind = CK_BitCast;
4229  return false;
4230}
4231
4232ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4233                                    Expr *CastExpr, CastKind &Kind) {
4234  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4235
4236  QualType SrcTy = CastExpr->getType();
4237
4238  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4239  // an ExtVectorType.
4240  // In OpenCL, casts between vectors of different types are not allowed.
4241  // (See OpenCL 6.2).
4242  if (SrcTy->isVectorType()) {
4243    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4244        || (getLangOpts().OpenCL &&
4245            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4246      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4247        << DestTy << SrcTy << R;
4248      return ExprError();
4249    }
4250    Kind = CK_BitCast;
4251    return Owned(CastExpr);
4252  }
4253
4254  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4255  // conversion will take place first from scalar to elt type, and then
4256  // splat from elt type to vector.
4257  if (SrcTy->isPointerType())
4258    return Diag(R.getBegin(),
4259                diag::err_invalid_conversion_between_vector_and_scalar)
4260      << DestTy << SrcTy << R;
4261
4262  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4263  ExprResult CastExprRes = Owned(CastExpr);
4264  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4265  if (CastExprRes.isInvalid())
4266    return ExprError();
4267  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4268
4269  Kind = CK_VectorSplat;
4270  return Owned(CastExpr);
4271}
4272
4273ExprResult
4274Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4275                    Declarator &D, ParsedType &Ty,
4276                    SourceLocation RParenLoc, Expr *CastExpr) {
4277  assert(!D.isInvalidType() && (CastExpr != 0) &&
4278         "ActOnCastExpr(): missing type or expr");
4279
4280  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4281  if (D.isInvalidType())
4282    return ExprError();
4283
4284  if (getLangOpts().CPlusPlus) {
4285    // Check that there are no default arguments (C++ only).
4286    CheckExtraCXXDefaultArguments(D);
4287  }
4288
4289  checkUnusedDeclAttributes(D);
4290
4291  QualType castType = castTInfo->getType();
4292  Ty = CreateParsedType(castType, castTInfo);
4293
4294  bool isVectorLiteral = false;
4295
4296  // Check for an altivec or OpenCL literal,
4297  // i.e. all the elements are integer constants.
4298  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4299  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4300  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4301       && castType->isVectorType() && (PE || PLE)) {
4302    if (PLE && PLE->getNumExprs() == 0) {
4303      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4304      return ExprError();
4305    }
4306    if (PE || PLE->getNumExprs() == 1) {
4307      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4308      if (!E->getType()->isVectorType())
4309        isVectorLiteral = true;
4310    }
4311    else
4312      isVectorLiteral = true;
4313  }
4314
4315  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4316  // then handle it as such.
4317  if (isVectorLiteral)
4318    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4319
4320  // If the Expr being casted is a ParenListExpr, handle it specially.
4321  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4322  // sequence of BinOp comma operators.
4323  if (isa<ParenListExpr>(CastExpr)) {
4324    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4325    if (Result.isInvalid()) return ExprError();
4326    CastExpr = Result.take();
4327  }
4328
4329  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4330}
4331
4332ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4333                                    SourceLocation RParenLoc, Expr *E,
4334                                    TypeSourceInfo *TInfo) {
4335  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4336         "Expected paren or paren list expression");
4337
4338  Expr **exprs;
4339  unsigned numExprs;
4340  Expr *subExpr;
4341  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4342    exprs = PE->getExprs();
4343    numExprs = PE->getNumExprs();
4344  } else {
4345    subExpr = cast<ParenExpr>(E)->getSubExpr();
4346    exprs = &subExpr;
4347    numExprs = 1;
4348  }
4349
4350  QualType Ty = TInfo->getType();
4351  assert(Ty->isVectorType() && "Expected vector type");
4352
4353  SmallVector<Expr *, 8> initExprs;
4354  const VectorType *VTy = Ty->getAs<VectorType>();
4355  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4356
4357  // '(...)' form of vector initialization in AltiVec: the number of
4358  // initializers must be one or must match the size of the vector.
4359  // If a single value is specified in the initializer then it will be
4360  // replicated to all the components of the vector
4361  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4362    // The number of initializers must be one or must match the size of the
4363    // vector. If a single value is specified in the initializer then it will
4364    // be replicated to all the components of the vector
4365    if (numExprs == 1) {
4366      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4367      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4368      if (Literal.isInvalid())
4369        return ExprError();
4370      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4371                                  PrepareScalarCast(Literal, ElemTy));
4372      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4373    }
4374    else if (numExprs < numElems) {
4375      Diag(E->getExprLoc(),
4376           diag::err_incorrect_number_of_vector_initializers);
4377      return ExprError();
4378    }
4379    else
4380      initExprs.append(exprs, exprs + numExprs);
4381  }
4382  else {
4383    // For OpenCL, when the number of initializers is a single value,
4384    // it will be replicated to all components of the vector.
4385    if (getLangOpts().OpenCL &&
4386        VTy->getVectorKind() == VectorType::GenericVector &&
4387        numExprs == 1) {
4388        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4389        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4390        if (Literal.isInvalid())
4391          return ExprError();
4392        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4393                                    PrepareScalarCast(Literal, ElemTy));
4394        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4395    }
4396
4397    initExprs.append(exprs, exprs + numExprs);
4398  }
4399  // FIXME: This means that pretty-printing the final AST will produce curly
4400  // braces instead of the original commas.
4401  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4402                                                   &initExprs[0],
4403                                                   initExprs.size(), RParenLoc);
4404  initE->setType(Ty);
4405  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4406}
4407
4408/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4409/// the ParenListExpr into a sequence of comma binary operators.
4410ExprResult
4411Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4412  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4413  if (!E)
4414    return Owned(OrigExpr);
4415
4416  ExprResult Result(E->getExpr(0));
4417
4418  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4419    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4420                        E->getExpr(i));
4421
4422  if (Result.isInvalid()) return ExprError();
4423
4424  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4425}
4426
4427ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4428                                    SourceLocation R,
4429                                    MultiExprArg Val) {
4430  unsigned nexprs = Val.size();
4431  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4432  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4433  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4434  return Owned(expr);
4435}
4436
4437/// \brief Emit a specialized diagnostic when one expression is a null pointer
4438/// constant and the other is not a pointer.  Returns true if a diagnostic is
4439/// emitted.
4440bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4441                                      SourceLocation QuestionLoc) {
4442  Expr *NullExpr = LHSExpr;
4443  Expr *NonPointerExpr = RHSExpr;
4444  Expr::NullPointerConstantKind NullKind =
4445      NullExpr->isNullPointerConstant(Context,
4446                                      Expr::NPC_ValueDependentIsNotNull);
4447
4448  if (NullKind == Expr::NPCK_NotNull) {
4449    NullExpr = RHSExpr;
4450    NonPointerExpr = LHSExpr;
4451    NullKind =
4452        NullExpr->isNullPointerConstant(Context,
4453                                        Expr::NPC_ValueDependentIsNotNull);
4454  }
4455
4456  if (NullKind == Expr::NPCK_NotNull)
4457    return false;
4458
4459  if (NullKind == Expr::NPCK_ZeroInteger) {
4460    // In this case, check to make sure that we got here from a "NULL"
4461    // string in the source code.
4462    NullExpr = NullExpr->IgnoreParenImpCasts();
4463    SourceLocation loc = NullExpr->getExprLoc();
4464    if (!findMacroSpelling(loc, "NULL"))
4465      return false;
4466  }
4467
4468  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4469  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4470      << NonPointerExpr->getType() << DiagType
4471      << NonPointerExpr->getSourceRange();
4472  return true;
4473}
4474
4475/// \brief Return false if the condition expression is valid, true otherwise.
4476static bool checkCondition(Sema &S, Expr *Cond) {
4477  QualType CondTy = Cond->getType();
4478
4479  // C99 6.5.15p2
4480  if (CondTy->isScalarType()) return false;
4481
4482  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4483  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4484    return false;
4485
4486  // Emit the proper error message.
4487  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4488                              diag::err_typecheck_cond_expect_scalar :
4489                              diag::err_typecheck_cond_expect_scalar_or_vector)
4490    << CondTy;
4491  return true;
4492}
4493
4494/// \brief Return false if the two expressions can be converted to a vector,
4495/// true otherwise
4496static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4497                                                    ExprResult &RHS,
4498                                                    QualType CondTy) {
4499  // Both operands should be of scalar type.
4500  if (!LHS.get()->getType()->isScalarType()) {
4501    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4502      << CondTy;
4503    return true;
4504  }
4505  if (!RHS.get()->getType()->isScalarType()) {
4506    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4507      << CondTy;
4508    return true;
4509  }
4510
4511  // Implicity convert these scalars to the type of the condition.
4512  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4513  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4514  return false;
4515}
4516
4517/// \brief Handle when one or both operands are void type.
4518static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4519                                         ExprResult &RHS) {
4520    Expr *LHSExpr = LHS.get();
4521    Expr *RHSExpr = RHS.get();
4522
4523    if (!LHSExpr->getType()->isVoidType())
4524      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4525        << RHSExpr->getSourceRange();
4526    if (!RHSExpr->getType()->isVoidType())
4527      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4528        << LHSExpr->getSourceRange();
4529    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4530    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4531    return S.Context.VoidTy;
4532}
4533
4534/// \brief Return false if the NullExpr can be promoted to PointerTy,
4535/// true otherwise.
4536static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4537                                        QualType PointerTy) {
4538  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4539      !NullExpr.get()->isNullPointerConstant(S.Context,
4540                                            Expr::NPC_ValueDependentIsNull))
4541    return true;
4542
4543  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4544  return false;
4545}
4546
4547/// \brief Checks compatibility between two pointers and return the resulting
4548/// type.
4549static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4550                                                     ExprResult &RHS,
4551                                                     SourceLocation Loc) {
4552  QualType LHSTy = LHS.get()->getType();
4553  QualType RHSTy = RHS.get()->getType();
4554
4555  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4556    // Two identical pointers types are always compatible.
4557    return LHSTy;
4558  }
4559
4560  QualType lhptee, rhptee;
4561
4562  // Get the pointee types.
4563  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4564    lhptee = LHSBTy->getPointeeType();
4565    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4566  } else {
4567    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4568    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4569  }
4570
4571  if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4572                                    rhptee.getUnqualifiedType())) {
4573    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4574      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4575      << RHS.get()->getSourceRange();
4576    // In this situation, we assume void* type. No especially good
4577    // reason, but this is what gcc does, and we do have to pick
4578    // to get a consistent AST.
4579    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4580    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4581    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4582    return incompatTy;
4583  }
4584
4585  // The pointer types are compatible.
4586  // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4587  // differently qualified versions of compatible types, the result type is
4588  // a pointer to an appropriately qualified version of the *composite*
4589  // type.
4590  // FIXME: Need to calculate the composite type.
4591  // FIXME: Need to add qualifiers
4592
4593  LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
4594  RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4595  return LHSTy;
4596}
4597
4598/// \brief Return the resulting type when the operands are both block pointers.
4599static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4600                                                          ExprResult &LHS,
4601                                                          ExprResult &RHS,
4602                                                          SourceLocation Loc) {
4603  QualType LHSTy = LHS.get()->getType();
4604  QualType RHSTy = RHS.get()->getType();
4605
4606  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4607    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4608      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4609      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4610      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4611      return destType;
4612    }
4613    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4614      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4615      << RHS.get()->getSourceRange();
4616    return QualType();
4617  }
4618
4619  // We have 2 block pointer types.
4620  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4621}
4622
4623/// \brief Return the resulting type when the operands are both pointers.
4624static QualType
4625checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4626                                            ExprResult &RHS,
4627                                            SourceLocation Loc) {
4628  // get the pointer types
4629  QualType LHSTy = LHS.get()->getType();
4630  QualType RHSTy = RHS.get()->getType();
4631
4632  // get the "pointed to" types
4633  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4634  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4635
4636  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4637  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4638    // Figure out necessary qualifiers (C99 6.5.15p6)
4639    QualType destPointee
4640      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4641    QualType destType = S.Context.getPointerType(destPointee);
4642    // Add qualifiers if necessary.
4643    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4644    // Promote to void*.
4645    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4646    return destType;
4647  }
4648  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4649    QualType destPointee
4650      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4651    QualType destType = S.Context.getPointerType(destPointee);
4652    // Add qualifiers if necessary.
4653    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4654    // Promote to void*.
4655    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4656    return destType;
4657  }
4658
4659  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4660}
4661
4662/// \brief Return false if the first expression is not an integer and the second
4663/// expression is not a pointer, true otherwise.
4664static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4665                                        Expr* PointerExpr, SourceLocation Loc,
4666                                        bool IsIntFirstExpr) {
4667  if (!PointerExpr->getType()->isPointerType() ||
4668      !Int.get()->getType()->isIntegerType())
4669    return false;
4670
4671  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4672  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4673
4674  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4675    << Expr1->getType() << Expr2->getType()
4676    << Expr1->getSourceRange() << Expr2->getSourceRange();
4677  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4678                            CK_IntegralToPointer);
4679  return true;
4680}
4681
4682/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4683/// In that case, LHS = cond.
4684/// C99 6.5.15
4685QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4686                                        ExprResult &RHS, ExprValueKind &VK,
4687                                        ExprObjectKind &OK,
4688                                        SourceLocation QuestionLoc) {
4689
4690  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4691  if (!LHSResult.isUsable()) return QualType();
4692  LHS = move(LHSResult);
4693
4694  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4695  if (!RHSResult.isUsable()) return QualType();
4696  RHS = move(RHSResult);
4697
4698  // C++ is sufficiently different to merit its own checker.
4699  if (getLangOpts().CPlusPlus)
4700    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4701
4702  VK = VK_RValue;
4703  OK = OK_Ordinary;
4704
4705  Cond = UsualUnaryConversions(Cond.take());
4706  if (Cond.isInvalid())
4707    return QualType();
4708  LHS = UsualUnaryConversions(LHS.take());
4709  if (LHS.isInvalid())
4710    return QualType();
4711  RHS = UsualUnaryConversions(RHS.take());
4712  if (RHS.isInvalid())
4713    return QualType();
4714
4715  QualType CondTy = Cond.get()->getType();
4716  QualType LHSTy = LHS.get()->getType();
4717  QualType RHSTy = RHS.get()->getType();
4718
4719  // first, check the condition.
4720  if (checkCondition(*this, Cond.get()))
4721    return QualType();
4722
4723  // Now check the two expressions.
4724  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4725    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4726
4727  // OpenCL: If the condition is a vector, and both operands are scalar,
4728  // attempt to implicity convert them to the vector type to act like the
4729  // built in select.
4730  if (getLangOpts().OpenCL && CondTy->isVectorType())
4731    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4732      return QualType();
4733
4734  // If both operands have arithmetic type, do the usual arithmetic conversions
4735  // to find a common type: C99 6.5.15p3,5.
4736  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4737    UsualArithmeticConversions(LHS, RHS);
4738    if (LHS.isInvalid() || RHS.isInvalid())
4739      return QualType();
4740    return LHS.get()->getType();
4741  }
4742
4743  // If both operands are the same structure or union type, the result is that
4744  // type.
4745  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4746    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4747      if (LHSRT->getDecl() == RHSRT->getDecl())
4748        // "If both the operands have structure or union type, the result has
4749        // that type."  This implies that CV qualifiers are dropped.
4750        return LHSTy.getUnqualifiedType();
4751    // FIXME: Type of conditional expression must be complete in C mode.
4752  }
4753
4754  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4755  // The following || allows only one side to be void (a GCC-ism).
4756  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4757    return checkConditionalVoidType(*this, LHS, RHS);
4758  }
4759
4760  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4761  // the type of the other operand."
4762  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4763  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4764
4765  // All objective-c pointer type analysis is done here.
4766  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4767                                                        QuestionLoc);
4768  if (LHS.isInvalid() || RHS.isInvalid())
4769    return QualType();
4770  if (!compositeType.isNull())
4771    return compositeType;
4772
4773
4774  // Handle block pointer types.
4775  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4776    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4777                                                     QuestionLoc);
4778
4779  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4780  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4781    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4782                                                       QuestionLoc);
4783
4784  // GCC compatibility: soften pointer/integer mismatch.  Note that
4785  // null pointers have been filtered out by this point.
4786  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4787      /*isIntFirstExpr=*/true))
4788    return RHSTy;
4789  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4790      /*isIntFirstExpr=*/false))
4791    return LHSTy;
4792
4793  // Emit a better diagnostic if one of the expressions is a null pointer
4794  // constant and the other is not a pointer type. In this case, the user most
4795  // likely forgot to take the address of the other expression.
4796  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4797    return QualType();
4798
4799  // Otherwise, the operands are not compatible.
4800  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4801    << LHSTy << RHSTy << LHS.get()->getSourceRange()
4802    << RHS.get()->getSourceRange();
4803  return QualType();
4804}
4805
4806/// FindCompositeObjCPointerType - Helper method to find composite type of
4807/// two objective-c pointer types of the two input expressions.
4808QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4809                                            SourceLocation QuestionLoc) {
4810  QualType LHSTy = LHS.get()->getType();
4811  QualType RHSTy = RHS.get()->getType();
4812
4813  // Handle things like Class and struct objc_class*.  Here we case the result
4814  // to the pseudo-builtin, because that will be implicitly cast back to the
4815  // redefinition type if an attempt is made to access its fields.
4816  if (LHSTy->isObjCClassType() &&
4817      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4818    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4819    return LHSTy;
4820  }
4821  if (RHSTy->isObjCClassType() &&
4822      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4823    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4824    return RHSTy;
4825  }
4826  // And the same for struct objc_object* / id
4827  if (LHSTy->isObjCIdType() &&
4828      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4829    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4830    return LHSTy;
4831  }
4832  if (RHSTy->isObjCIdType() &&
4833      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
4834    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4835    return RHSTy;
4836  }
4837  // And the same for struct objc_selector* / SEL
4838  if (Context.isObjCSelType(LHSTy) &&
4839      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
4840    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4841    return LHSTy;
4842  }
4843  if (Context.isObjCSelType(RHSTy) &&
4844      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
4845    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4846    return RHSTy;
4847  }
4848  // Check constraints for Objective-C object pointers types.
4849  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4850
4851    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4852      // Two identical object pointer types are always compatible.
4853      return LHSTy;
4854    }
4855    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
4856    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
4857    QualType compositeType = LHSTy;
4858
4859    // If both operands are interfaces and either operand can be
4860    // assigned to the other, use that type as the composite
4861    // type. This allows
4862    //   xxx ? (A*) a : (B*) b
4863    // where B is a subclass of A.
4864    //
4865    // Additionally, as for assignment, if either type is 'id'
4866    // allow silent coercion. Finally, if the types are
4867    // incompatible then make sure to use 'id' as the composite
4868    // type so the result is acceptable for sending messages to.
4869
4870    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4871    // It could return the composite type.
4872    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4873      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4874    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4875      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4876    } else if ((LHSTy->isObjCQualifiedIdType() ||
4877                RHSTy->isObjCQualifiedIdType()) &&
4878               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4879      // Need to handle "id<xx>" explicitly.
4880      // GCC allows qualified id and any Objective-C type to devolve to
4881      // id. Currently localizing to here until clear this should be
4882      // part of ObjCQualifiedIdTypesAreCompatible.
4883      compositeType = Context.getObjCIdType();
4884    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4885      compositeType = Context.getObjCIdType();
4886    } else if (!(compositeType =
4887                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4888      ;
4889    else {
4890      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4891      << LHSTy << RHSTy
4892      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4893      QualType incompatTy = Context.getObjCIdType();
4894      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4895      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4896      return incompatTy;
4897    }
4898    // The object pointer types are compatible.
4899    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4900    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4901    return compositeType;
4902  }
4903  // Check Objective-C object pointer types and 'void *'
4904  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4905    if (getLangOpts().ObjCAutoRefCount) {
4906      // ARC forbids the implicit conversion of object pointers to 'void *',
4907      // so these types are not compatible.
4908      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4909          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4910      LHS = RHS = true;
4911      return QualType();
4912    }
4913    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4914    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4915    QualType destPointee
4916    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4917    QualType destType = Context.getPointerType(destPointee);
4918    // Add qualifiers if necessary.
4919    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4920    // Promote to void*.
4921    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4922    return destType;
4923  }
4924  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4925    if (getLangOpts().ObjCAutoRefCount) {
4926      // ARC forbids the implicit conversion of object pointers to 'void *',
4927      // so these types are not compatible.
4928      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4929          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4930      LHS = RHS = true;
4931      return QualType();
4932    }
4933    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4934    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4935    QualType destPointee
4936    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4937    QualType destType = Context.getPointerType(destPointee);
4938    // Add qualifiers if necessary.
4939    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4940    // Promote to void*.
4941    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4942    return destType;
4943  }
4944  return QualType();
4945}
4946
4947/// SuggestParentheses - Emit a note with a fixit hint that wraps
4948/// ParenRange in parentheses.
4949static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4950                               const PartialDiagnostic &Note,
4951                               SourceRange ParenRange) {
4952  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4953  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4954      EndLoc.isValid()) {
4955    Self.Diag(Loc, Note)
4956      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4957      << FixItHint::CreateInsertion(EndLoc, ")");
4958  } else {
4959    // We can't display the parentheses, so just show the bare note.
4960    Self.Diag(Loc, Note) << ParenRange;
4961  }
4962}
4963
4964static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4965  return Opc >= BO_Mul && Opc <= BO_Shr;
4966}
4967
4968/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
4969/// expression, either using a built-in or overloaded operator,
4970/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
4971/// expression.
4972static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
4973                                   Expr **RHSExprs) {
4974  // Don't strip parenthesis: we should not warn if E is in parenthesis.
4975  E = E->IgnoreImpCasts();
4976  E = E->IgnoreConversionOperator();
4977  E = E->IgnoreImpCasts();
4978
4979  // Built-in binary operator.
4980  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
4981    if (IsArithmeticOp(OP->getOpcode())) {
4982      *Opcode = OP->getOpcode();
4983      *RHSExprs = OP->getRHS();
4984      return true;
4985    }
4986  }
4987
4988  // Overloaded operator.
4989  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
4990    if (Call->getNumArgs() != 2)
4991      return false;
4992
4993    // Make sure this is really a binary operator that is safe to pass into
4994    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
4995    OverloadedOperatorKind OO = Call->getOperator();
4996    if (OO < OO_Plus || OO > OO_Arrow)
4997      return false;
4998
4999    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5000    if (IsArithmeticOp(OpKind)) {
5001      *Opcode = OpKind;
5002      *RHSExprs = Call->getArg(1);
5003      return true;
5004    }
5005  }
5006
5007  return false;
5008}
5009
5010static bool IsLogicOp(BinaryOperatorKind Opc) {
5011  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5012}
5013
5014/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5015/// or is a logical expression such as (x==y) which has int type, but is
5016/// commonly interpreted as boolean.
5017static bool ExprLooksBoolean(Expr *E) {
5018  E = E->IgnoreParenImpCasts();
5019
5020  if (E->getType()->isBooleanType())
5021    return true;
5022  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5023    return IsLogicOp(OP->getOpcode());
5024  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5025    return OP->getOpcode() == UO_LNot;
5026
5027  return false;
5028}
5029
5030/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5031/// and binary operator are mixed in a way that suggests the programmer assumed
5032/// the conditional operator has higher precedence, for example:
5033/// "int x = a + someBinaryCondition ? 1 : 2".
5034static void DiagnoseConditionalPrecedence(Sema &Self,
5035                                          SourceLocation OpLoc,
5036                                          Expr *Condition,
5037                                          Expr *LHSExpr,
5038                                          Expr *RHSExpr) {
5039  BinaryOperatorKind CondOpcode;
5040  Expr *CondRHS;
5041
5042  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5043    return;
5044  if (!ExprLooksBoolean(CondRHS))
5045    return;
5046
5047  // The condition is an arithmetic binary expression, with a right-
5048  // hand side that looks boolean, so warn.
5049
5050  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5051      << Condition->getSourceRange()
5052      << BinaryOperator::getOpcodeStr(CondOpcode);
5053
5054  SuggestParentheses(Self, OpLoc,
5055    Self.PDiag(diag::note_precedence_conditional_silence)
5056      << BinaryOperator::getOpcodeStr(CondOpcode),
5057    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5058
5059  SuggestParentheses(Self, OpLoc,
5060    Self.PDiag(diag::note_precedence_conditional_first),
5061    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5062}
5063
5064/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5065/// in the case of a the GNU conditional expr extension.
5066ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5067                                    SourceLocation ColonLoc,
5068                                    Expr *CondExpr, Expr *LHSExpr,
5069                                    Expr *RHSExpr) {
5070  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5071  // was the condition.
5072  OpaqueValueExpr *opaqueValue = 0;
5073  Expr *commonExpr = 0;
5074  if (LHSExpr == 0) {
5075    commonExpr = CondExpr;
5076
5077    // We usually want to apply unary conversions *before* saving, except
5078    // in the special case of a C++ l-value conditional.
5079    if (!(getLangOpts().CPlusPlus
5080          && !commonExpr->isTypeDependent()
5081          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5082          && commonExpr->isGLValue()
5083          && commonExpr->isOrdinaryOrBitFieldObject()
5084          && RHSExpr->isOrdinaryOrBitFieldObject()
5085          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5086      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5087      if (commonRes.isInvalid())
5088        return ExprError();
5089      commonExpr = commonRes.take();
5090    }
5091
5092    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5093                                                commonExpr->getType(),
5094                                                commonExpr->getValueKind(),
5095                                                commonExpr->getObjectKind(),
5096                                                commonExpr);
5097    LHSExpr = CondExpr = opaqueValue;
5098  }
5099
5100  ExprValueKind VK = VK_RValue;
5101  ExprObjectKind OK = OK_Ordinary;
5102  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5103  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5104                                             VK, OK, QuestionLoc);
5105  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5106      RHS.isInvalid())
5107    return ExprError();
5108
5109  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5110                                RHS.get());
5111
5112  if (!commonExpr)
5113    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5114                                                   LHS.take(), ColonLoc,
5115                                                   RHS.take(), result, VK, OK));
5116
5117  return Owned(new (Context)
5118    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5119                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5120                              OK));
5121}
5122
5123// checkPointerTypesForAssignment - This is a very tricky routine (despite
5124// being closely modeled after the C99 spec:-). The odd characteristic of this
5125// routine is it effectively iqnores the qualifiers on the top level pointee.
5126// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5127// FIXME: add a couple examples in this comment.
5128static Sema::AssignConvertType
5129checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5130  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5131  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5132
5133  // get the "pointed to" type (ignoring qualifiers at the top level)
5134  const Type *lhptee, *rhptee;
5135  Qualifiers lhq, rhq;
5136  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5137  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5138
5139  Sema::AssignConvertType ConvTy = Sema::Compatible;
5140
5141  // C99 6.5.16.1p1: This following citation is common to constraints
5142  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5143  // qualifiers of the type *pointed to* by the right;
5144  Qualifiers lq;
5145
5146  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5147  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5148      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5149    // Ignore lifetime for further calculation.
5150    lhq.removeObjCLifetime();
5151    rhq.removeObjCLifetime();
5152  }
5153
5154  if (!lhq.compatiblyIncludes(rhq)) {
5155    // Treat address-space mismatches as fatal.  TODO: address subspaces
5156    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5157      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5158
5159    // It's okay to add or remove GC or lifetime qualifiers when converting to
5160    // and from void*.
5161    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5162                        .compatiblyIncludes(
5163                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5164             && (lhptee->isVoidType() || rhptee->isVoidType()))
5165      ; // keep old
5166
5167    // Treat lifetime mismatches as fatal.
5168    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5169      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5170
5171    // For GCC compatibility, other qualifier mismatches are treated
5172    // as still compatible in C.
5173    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5174  }
5175
5176  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5177  // incomplete type and the other is a pointer to a qualified or unqualified
5178  // version of void...
5179  if (lhptee->isVoidType()) {
5180    if (rhptee->isIncompleteOrObjectType())
5181      return ConvTy;
5182
5183    // As an extension, we allow cast to/from void* to function pointer.
5184    assert(rhptee->isFunctionType());
5185    return Sema::FunctionVoidPointer;
5186  }
5187
5188  if (rhptee->isVoidType()) {
5189    if (lhptee->isIncompleteOrObjectType())
5190      return ConvTy;
5191
5192    // As an extension, we allow cast to/from void* to function pointer.
5193    assert(lhptee->isFunctionType());
5194    return Sema::FunctionVoidPointer;
5195  }
5196
5197  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5198  // unqualified versions of compatible types, ...
5199  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5200  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5201    // Check if the pointee types are compatible ignoring the sign.
5202    // We explicitly check for char so that we catch "char" vs
5203    // "unsigned char" on systems where "char" is unsigned.
5204    if (lhptee->isCharType())
5205      ltrans = S.Context.UnsignedCharTy;
5206    else if (lhptee->hasSignedIntegerRepresentation())
5207      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5208
5209    if (rhptee->isCharType())
5210      rtrans = S.Context.UnsignedCharTy;
5211    else if (rhptee->hasSignedIntegerRepresentation())
5212      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5213
5214    if (ltrans == rtrans) {
5215      // Types are compatible ignoring the sign. Qualifier incompatibility
5216      // takes priority over sign incompatibility because the sign
5217      // warning can be disabled.
5218      if (ConvTy != Sema::Compatible)
5219        return ConvTy;
5220
5221      return Sema::IncompatiblePointerSign;
5222    }
5223
5224    // If we are a multi-level pointer, it's possible that our issue is simply
5225    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5226    // the eventual target type is the same and the pointers have the same
5227    // level of indirection, this must be the issue.
5228    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5229      do {
5230        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5231        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5232      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5233
5234      if (lhptee == rhptee)
5235        return Sema::IncompatibleNestedPointerQualifiers;
5236    }
5237
5238    // General pointer incompatibility takes priority over qualifiers.
5239    return Sema::IncompatiblePointer;
5240  }
5241  if (!S.getLangOpts().CPlusPlus &&
5242      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5243    return Sema::IncompatiblePointer;
5244  return ConvTy;
5245}
5246
5247/// checkBlockPointerTypesForAssignment - This routine determines whether two
5248/// block pointer types are compatible or whether a block and normal pointer
5249/// are compatible. It is more restrict than comparing two function pointer
5250// types.
5251static Sema::AssignConvertType
5252checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5253                                    QualType RHSType) {
5254  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5255  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5256
5257  QualType lhptee, rhptee;
5258
5259  // get the "pointed to" type (ignoring qualifiers at the top level)
5260  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5261  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5262
5263  // In C++, the types have to match exactly.
5264  if (S.getLangOpts().CPlusPlus)
5265    return Sema::IncompatibleBlockPointer;
5266
5267  Sema::AssignConvertType ConvTy = Sema::Compatible;
5268
5269  // For blocks we enforce that qualifiers are identical.
5270  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5271    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5272
5273  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5274    return Sema::IncompatibleBlockPointer;
5275
5276  return ConvTy;
5277}
5278
5279/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5280/// for assignment compatibility.
5281static Sema::AssignConvertType
5282checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5283                                   QualType RHSType) {
5284  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5285  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5286
5287  if (LHSType->isObjCBuiltinType()) {
5288    // Class is not compatible with ObjC object pointers.
5289    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5290        !RHSType->isObjCQualifiedClassType())
5291      return Sema::IncompatiblePointer;
5292    return Sema::Compatible;
5293  }
5294  if (RHSType->isObjCBuiltinType()) {
5295    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5296        !LHSType->isObjCQualifiedClassType())
5297      return Sema::IncompatiblePointer;
5298    return Sema::Compatible;
5299  }
5300  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5301  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5302
5303  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5304      // make an exception for id<P>
5305      !LHSType->isObjCQualifiedIdType())
5306    return Sema::CompatiblePointerDiscardsQualifiers;
5307
5308  if (S.Context.typesAreCompatible(LHSType, RHSType))
5309    return Sema::Compatible;
5310  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5311    return Sema::IncompatibleObjCQualifiedId;
5312  return Sema::IncompatiblePointer;
5313}
5314
5315Sema::AssignConvertType
5316Sema::CheckAssignmentConstraints(SourceLocation Loc,
5317                                 QualType LHSType, QualType RHSType) {
5318  // Fake up an opaque expression.  We don't actually care about what
5319  // cast operations are required, so if CheckAssignmentConstraints
5320  // adds casts to this they'll be wasted, but fortunately that doesn't
5321  // usually happen on valid code.
5322  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5323  ExprResult RHSPtr = &RHSExpr;
5324  CastKind K = CK_Invalid;
5325
5326  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5327}
5328
5329/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5330/// has code to accommodate several GCC extensions when type checking
5331/// pointers. Here are some objectionable examples that GCC considers warnings:
5332///
5333///  int a, *pint;
5334///  short *pshort;
5335///  struct foo *pfoo;
5336///
5337///  pint = pshort; // warning: assignment from incompatible pointer type
5338///  a = pint; // warning: assignment makes integer from pointer without a cast
5339///  pint = a; // warning: assignment makes pointer from integer without a cast
5340///  pint = pfoo; // warning: assignment from incompatible pointer type
5341///
5342/// As a result, the code for dealing with pointers is more complex than the
5343/// C99 spec dictates.
5344///
5345/// Sets 'Kind' for any result kind except Incompatible.
5346Sema::AssignConvertType
5347Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5348                                 CastKind &Kind) {
5349  QualType RHSType = RHS.get()->getType();
5350  QualType OrigLHSType = LHSType;
5351
5352  // Get canonical types.  We're not formatting these types, just comparing
5353  // them.
5354  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5355  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5356
5357
5358  // Common case: no conversion required.
5359  if (LHSType == RHSType) {
5360    Kind = CK_NoOp;
5361    return Compatible;
5362  }
5363
5364  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5365    if (AtomicTy->getValueType() == RHSType) {
5366      Kind = CK_NonAtomicToAtomic;
5367      return Compatible;
5368    }
5369  }
5370
5371  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(RHSType)) {
5372    if (AtomicTy->getValueType() == LHSType) {
5373      Kind = CK_AtomicToNonAtomic;
5374      return Compatible;
5375    }
5376  }
5377
5378
5379  // If the left-hand side is a reference type, then we are in a
5380  // (rare!) case where we've allowed the use of references in C,
5381  // e.g., as a parameter type in a built-in function. In this case,
5382  // just make sure that the type referenced is compatible with the
5383  // right-hand side type. The caller is responsible for adjusting
5384  // LHSType so that the resulting expression does not have reference
5385  // type.
5386  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5387    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5388      Kind = CK_LValueBitCast;
5389      return Compatible;
5390    }
5391    return Incompatible;
5392  }
5393
5394  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5395  // to the same ExtVector type.
5396  if (LHSType->isExtVectorType()) {
5397    if (RHSType->isExtVectorType())
5398      return Incompatible;
5399    if (RHSType->isArithmeticType()) {
5400      // CK_VectorSplat does T -> vector T, so first cast to the
5401      // element type.
5402      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5403      if (elType != RHSType) {
5404        Kind = PrepareScalarCast(RHS, elType);
5405        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5406      }
5407      Kind = CK_VectorSplat;
5408      return Compatible;
5409    }
5410  }
5411
5412  // Conversions to or from vector type.
5413  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5414    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5415      // Allow assignments of an AltiVec vector type to an equivalent GCC
5416      // vector type and vice versa
5417      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5418        Kind = CK_BitCast;
5419        return Compatible;
5420      }
5421
5422      // If we are allowing lax vector conversions, and LHS and RHS are both
5423      // vectors, the total size only needs to be the same. This is a bitcast;
5424      // no bits are changed but the result type is different.
5425      if (getLangOpts().LaxVectorConversions &&
5426          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5427        Kind = CK_BitCast;
5428        return IncompatibleVectors;
5429      }
5430    }
5431    return Incompatible;
5432  }
5433
5434  // Arithmetic conversions.
5435  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5436      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5437    Kind = PrepareScalarCast(RHS, LHSType);
5438    return Compatible;
5439  }
5440
5441  // Conversions to normal pointers.
5442  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5443    // U* -> T*
5444    if (isa<PointerType>(RHSType)) {
5445      Kind = CK_BitCast;
5446      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5447    }
5448
5449    // int -> T*
5450    if (RHSType->isIntegerType()) {
5451      Kind = CK_IntegralToPointer; // FIXME: null?
5452      return IntToPointer;
5453    }
5454
5455    // C pointers are not compatible with ObjC object pointers,
5456    // with two exceptions:
5457    if (isa<ObjCObjectPointerType>(RHSType)) {
5458      //  - conversions to void*
5459      if (LHSPointer->getPointeeType()->isVoidType()) {
5460        Kind = CK_BitCast;
5461        return Compatible;
5462      }
5463
5464      //  - conversions from 'Class' to the redefinition type
5465      if (RHSType->isObjCClassType() &&
5466          Context.hasSameType(LHSType,
5467                              Context.getObjCClassRedefinitionType())) {
5468        Kind = CK_BitCast;
5469        return Compatible;
5470      }
5471
5472      Kind = CK_BitCast;
5473      return IncompatiblePointer;
5474    }
5475
5476    // U^ -> void*
5477    if (RHSType->getAs<BlockPointerType>()) {
5478      if (LHSPointer->getPointeeType()->isVoidType()) {
5479        Kind = CK_BitCast;
5480        return Compatible;
5481      }
5482    }
5483
5484    return Incompatible;
5485  }
5486
5487  // Conversions to block pointers.
5488  if (isa<BlockPointerType>(LHSType)) {
5489    // U^ -> T^
5490    if (RHSType->isBlockPointerType()) {
5491      Kind = CK_BitCast;
5492      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5493    }
5494
5495    // int or null -> T^
5496    if (RHSType->isIntegerType()) {
5497      Kind = CK_IntegralToPointer; // FIXME: null
5498      return IntToBlockPointer;
5499    }
5500
5501    // id -> T^
5502    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5503      Kind = CK_AnyPointerToBlockPointerCast;
5504      return Compatible;
5505    }
5506
5507    // void* -> T^
5508    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5509      if (RHSPT->getPointeeType()->isVoidType()) {
5510        Kind = CK_AnyPointerToBlockPointerCast;
5511        return Compatible;
5512      }
5513
5514    return Incompatible;
5515  }
5516
5517  // Conversions to Objective-C pointers.
5518  if (isa<ObjCObjectPointerType>(LHSType)) {
5519    // A* -> B*
5520    if (RHSType->isObjCObjectPointerType()) {
5521      Kind = CK_BitCast;
5522      Sema::AssignConvertType result =
5523        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5524      if (getLangOpts().ObjCAutoRefCount &&
5525          result == Compatible &&
5526          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5527        result = IncompatibleObjCWeakRef;
5528      return result;
5529    }
5530
5531    // int or null -> A*
5532    if (RHSType->isIntegerType()) {
5533      Kind = CK_IntegralToPointer; // FIXME: null
5534      return IntToPointer;
5535    }
5536
5537    // In general, C pointers are not compatible with ObjC object pointers,
5538    // with two exceptions:
5539    if (isa<PointerType>(RHSType)) {
5540      Kind = CK_CPointerToObjCPointerCast;
5541
5542      //  - conversions from 'void*'
5543      if (RHSType->isVoidPointerType()) {
5544        return Compatible;
5545      }
5546
5547      //  - conversions to 'Class' from its redefinition type
5548      if (LHSType->isObjCClassType() &&
5549          Context.hasSameType(RHSType,
5550                              Context.getObjCClassRedefinitionType())) {
5551        return Compatible;
5552      }
5553
5554      return IncompatiblePointer;
5555    }
5556
5557    // T^ -> A*
5558    if (RHSType->isBlockPointerType()) {
5559      maybeExtendBlockObject(*this, RHS);
5560      Kind = CK_BlockPointerToObjCPointerCast;
5561      return Compatible;
5562    }
5563
5564    return Incompatible;
5565  }
5566
5567  // Conversions from pointers that are not covered by the above.
5568  if (isa<PointerType>(RHSType)) {
5569    // T* -> _Bool
5570    if (LHSType == Context.BoolTy) {
5571      Kind = CK_PointerToBoolean;
5572      return Compatible;
5573    }
5574
5575    // T* -> int
5576    if (LHSType->isIntegerType()) {
5577      Kind = CK_PointerToIntegral;
5578      return PointerToInt;
5579    }
5580
5581    return Incompatible;
5582  }
5583
5584  // Conversions from Objective-C pointers that are not covered by the above.
5585  if (isa<ObjCObjectPointerType>(RHSType)) {
5586    // T* -> _Bool
5587    if (LHSType == Context.BoolTy) {
5588      Kind = CK_PointerToBoolean;
5589      return Compatible;
5590    }
5591
5592    // T* -> int
5593    if (LHSType->isIntegerType()) {
5594      Kind = CK_PointerToIntegral;
5595      return PointerToInt;
5596    }
5597
5598    return Incompatible;
5599  }
5600
5601  // struct A -> struct B
5602  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5603    if (Context.typesAreCompatible(LHSType, RHSType)) {
5604      Kind = CK_NoOp;
5605      return Compatible;
5606    }
5607  }
5608
5609  return Incompatible;
5610}
5611
5612/// \brief Constructs a transparent union from an expression that is
5613/// used to initialize the transparent union.
5614static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5615                                      ExprResult &EResult, QualType UnionType,
5616                                      FieldDecl *Field) {
5617  // Build an initializer list that designates the appropriate member
5618  // of the transparent union.
5619  Expr *E = EResult.take();
5620  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5621                                                   &E, 1,
5622                                                   SourceLocation());
5623  Initializer->setType(UnionType);
5624  Initializer->setInitializedFieldInUnion(Field);
5625
5626  // Build a compound literal constructing a value of the transparent
5627  // union type from this initializer list.
5628  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5629  EResult = S.Owned(
5630    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5631                                VK_RValue, Initializer, false));
5632}
5633
5634Sema::AssignConvertType
5635Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5636                                               ExprResult &RHS) {
5637  QualType RHSType = RHS.get()->getType();
5638
5639  // If the ArgType is a Union type, we want to handle a potential
5640  // transparent_union GCC extension.
5641  const RecordType *UT = ArgType->getAsUnionType();
5642  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5643    return Incompatible;
5644
5645  // The field to initialize within the transparent union.
5646  RecordDecl *UD = UT->getDecl();
5647  FieldDecl *InitField = 0;
5648  // It's compatible if the expression matches any of the fields.
5649  for (RecordDecl::field_iterator it = UD->field_begin(),
5650         itend = UD->field_end();
5651       it != itend; ++it) {
5652    if (it->getType()->isPointerType()) {
5653      // If the transparent union contains a pointer type, we allow:
5654      // 1) void pointer
5655      // 2) null pointer constant
5656      if (RHSType->isPointerType())
5657        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5658          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5659          InitField = *it;
5660          break;
5661        }
5662
5663      if (RHS.get()->isNullPointerConstant(Context,
5664                                           Expr::NPC_ValueDependentIsNull)) {
5665        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5666                                CK_NullToPointer);
5667        InitField = *it;
5668        break;
5669      }
5670    }
5671
5672    CastKind Kind = CK_Invalid;
5673    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5674          == Compatible) {
5675      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5676      InitField = *it;
5677      break;
5678    }
5679  }
5680
5681  if (!InitField)
5682    return Incompatible;
5683
5684  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5685  return Compatible;
5686}
5687
5688Sema::AssignConvertType
5689Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5690                                       bool Diagnose) {
5691  if (getLangOpts().CPlusPlus) {
5692    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5693      // C++ 5.17p3: If the left operand is not of class type, the
5694      // expression is implicitly converted (C++ 4) to the
5695      // cv-unqualified type of the left operand.
5696      ExprResult Res;
5697      if (Diagnose) {
5698        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5699                                        AA_Assigning);
5700      } else {
5701        ImplicitConversionSequence ICS =
5702            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5703                                  /*SuppressUserConversions=*/false,
5704                                  /*AllowExplicit=*/false,
5705                                  /*InOverloadResolution=*/false,
5706                                  /*CStyle=*/false,
5707                                  /*AllowObjCWritebackConversion=*/false);
5708        if (ICS.isFailure())
5709          return Incompatible;
5710        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5711                                        ICS, AA_Assigning);
5712      }
5713      if (Res.isInvalid())
5714        return Incompatible;
5715      Sema::AssignConvertType result = Compatible;
5716      if (getLangOpts().ObjCAutoRefCount &&
5717          !CheckObjCARCUnavailableWeakConversion(LHSType,
5718                                                 RHS.get()->getType()))
5719        result = IncompatibleObjCWeakRef;
5720      RHS = move(Res);
5721      return result;
5722    }
5723
5724    // FIXME: Currently, we fall through and treat C++ classes like C
5725    // structures.
5726    // FIXME: We also fall through for atomics; not sure what should
5727    // happen there, though.
5728  }
5729
5730  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5731  // a null pointer constant.
5732  if ((LHSType->isPointerType() ||
5733       LHSType->isObjCObjectPointerType() ||
5734       LHSType->isBlockPointerType())
5735      && RHS.get()->isNullPointerConstant(Context,
5736                                          Expr::NPC_ValueDependentIsNull)) {
5737    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5738    return Compatible;
5739  }
5740
5741  // This check seems unnatural, however it is necessary to ensure the proper
5742  // conversion of functions/arrays. If the conversion were done for all
5743  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5744  // expressions that suppress this implicit conversion (&, sizeof).
5745  //
5746  // Suppress this for references: C++ 8.5.3p5.
5747  if (!LHSType->isReferenceType()) {
5748    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5749    if (RHS.isInvalid())
5750      return Incompatible;
5751  }
5752
5753  CastKind Kind = CK_Invalid;
5754  Sema::AssignConvertType result =
5755    CheckAssignmentConstraints(LHSType, RHS, Kind);
5756
5757  // C99 6.5.16.1p2: The value of the right operand is converted to the
5758  // type of the assignment expression.
5759  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5760  // so that we can use references in built-in functions even in C.
5761  // The getNonReferenceType() call makes sure that the resulting expression
5762  // does not have reference type.
5763  if (result != Incompatible && RHS.get()->getType() != LHSType)
5764    RHS = ImpCastExprToType(RHS.take(),
5765                            LHSType.getNonLValueExprType(Context), Kind);
5766  return result;
5767}
5768
5769QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5770                               ExprResult &RHS) {
5771  Diag(Loc, diag::err_typecheck_invalid_operands)
5772    << LHS.get()->getType() << RHS.get()->getType()
5773    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5774  return QualType();
5775}
5776
5777QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5778                                   SourceLocation Loc, bool IsCompAssign) {
5779  if (!IsCompAssign) {
5780    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5781    if (LHS.isInvalid())
5782      return QualType();
5783  }
5784  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5785  if (RHS.isInvalid())
5786    return QualType();
5787
5788  // For conversion purposes, we ignore any qualifiers.
5789  // For example, "const float" and "float" are equivalent.
5790  QualType LHSType =
5791    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5792  QualType RHSType =
5793    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5794
5795  // If the vector types are identical, return.
5796  if (LHSType == RHSType)
5797    return LHSType;
5798
5799  // Handle the case of equivalent AltiVec and GCC vector types
5800  if (LHSType->isVectorType() && RHSType->isVectorType() &&
5801      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5802    if (LHSType->isExtVectorType()) {
5803      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5804      return LHSType;
5805    }
5806
5807    if (!IsCompAssign)
5808      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5809    return RHSType;
5810  }
5811
5812  if (getLangOpts().LaxVectorConversions &&
5813      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5814    // If we are allowing lax vector conversions, and LHS and RHS are both
5815    // vectors, the total size only needs to be the same. This is a
5816    // bitcast; no bits are changed but the result type is different.
5817    // FIXME: Should we really be allowing this?
5818    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5819    return LHSType;
5820  }
5821
5822  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5823  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5824  bool swapped = false;
5825  if (RHSType->isExtVectorType() && !IsCompAssign) {
5826    swapped = true;
5827    std::swap(RHS, LHS);
5828    std::swap(RHSType, LHSType);
5829  }
5830
5831  // Handle the case of an ext vector and scalar.
5832  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5833    QualType EltTy = LV->getElementType();
5834    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
5835      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
5836      if (order > 0)
5837        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
5838      if (order >= 0) {
5839        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5840        if (swapped) std::swap(RHS, LHS);
5841        return LHSType;
5842      }
5843    }
5844    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
5845        RHSType->isRealFloatingType()) {
5846      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
5847      if (order > 0)
5848        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
5849      if (order >= 0) {
5850        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5851        if (swapped) std::swap(RHS, LHS);
5852        return LHSType;
5853      }
5854    }
5855  }
5856
5857  // Vectors of different size or scalar and non-ext-vector are errors.
5858  if (swapped) std::swap(RHS, LHS);
5859  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5860    << LHS.get()->getType() << RHS.get()->getType()
5861    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5862  return QualType();
5863}
5864
5865// checkArithmeticNull - Detect when a NULL constant is used improperly in an
5866// expression.  These are mainly cases where the null pointer is used as an
5867// integer instead of a pointer.
5868static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
5869                                SourceLocation Loc, bool IsCompare) {
5870  // The canonical way to check for a GNU null is with isNullPointerConstant,
5871  // but we use a bit of a hack here for speed; this is a relatively
5872  // hot path, and isNullPointerConstant is slow.
5873  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
5874  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
5875
5876  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
5877
5878  // Avoid analyzing cases where the result will either be invalid (and
5879  // diagnosed as such) or entirely valid and not something to warn about.
5880  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
5881      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
5882    return;
5883
5884  // Comparison operations would not make sense with a null pointer no matter
5885  // what the other expression is.
5886  if (!IsCompare) {
5887    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
5888        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
5889        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
5890    return;
5891  }
5892
5893  // The rest of the operations only make sense with a null pointer
5894  // if the other expression is a pointer.
5895  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
5896      NonNullType->canDecayToPointerType())
5897    return;
5898
5899  S.Diag(Loc, diag::warn_null_in_comparison_operation)
5900      << LHSNull /* LHS is NULL */ << NonNullType
5901      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5902}
5903
5904QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
5905                                           SourceLocation Loc,
5906                                           bool IsCompAssign, bool IsDiv) {
5907  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5908
5909  if (LHS.get()->getType()->isVectorType() ||
5910      RHS.get()->getType()->isVectorType())
5911    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5912
5913  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5914  if (LHS.isInvalid() || RHS.isInvalid())
5915    return QualType();
5916
5917
5918  if (!LHS.get()->getType()->isArithmeticType() ||
5919      !RHS.get()->getType()->isArithmeticType()) {
5920    if (IsCompAssign &&
5921        LHS.get()->getType()->isAtomicType() &&
5922        RHS.get()->getType()->isArithmeticType())
5923      return compType;
5924    return InvalidOperands(Loc, LHS, RHS);
5925  }
5926
5927  // Check for division by zero.
5928  if (IsDiv &&
5929      RHS.get()->isNullPointerConstant(Context,
5930                                       Expr::NPC_ValueDependentIsNotNull))
5931    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
5932                                          << RHS.get()->getSourceRange());
5933
5934  return compType;
5935}
5936
5937QualType Sema::CheckRemainderOperands(
5938  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
5939  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5940
5941  if (LHS.get()->getType()->isVectorType() ||
5942      RHS.get()->getType()->isVectorType()) {
5943    if (LHS.get()->getType()->hasIntegerRepresentation() &&
5944        RHS.get()->getType()->hasIntegerRepresentation())
5945      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5946    return InvalidOperands(Loc, LHS, RHS);
5947  }
5948
5949  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5950  if (LHS.isInvalid() || RHS.isInvalid())
5951    return QualType();
5952
5953  if (!LHS.get()->getType()->isIntegerType() ||
5954      !RHS.get()->getType()->isIntegerType())
5955    return InvalidOperands(Loc, LHS, RHS);
5956
5957  // Check for remainder by zero.
5958  if (RHS.get()->isNullPointerConstant(Context,
5959                                       Expr::NPC_ValueDependentIsNotNull))
5960    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
5961                                 << RHS.get()->getSourceRange());
5962
5963  return compType;
5964}
5965
5966/// \brief Diagnose invalid arithmetic on two void pointers.
5967static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
5968                                                Expr *LHSExpr, Expr *RHSExpr) {
5969  S.Diag(Loc, S.getLangOpts().CPlusPlus
5970                ? diag::err_typecheck_pointer_arith_void_type
5971                : diag::ext_gnu_void_ptr)
5972    << 1 /* two pointers */ << LHSExpr->getSourceRange()
5973                            << RHSExpr->getSourceRange();
5974}
5975
5976/// \brief Diagnose invalid arithmetic on a void pointer.
5977static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
5978                                            Expr *Pointer) {
5979  S.Diag(Loc, S.getLangOpts().CPlusPlus
5980                ? diag::err_typecheck_pointer_arith_void_type
5981                : diag::ext_gnu_void_ptr)
5982    << 0 /* one pointer */ << Pointer->getSourceRange();
5983}
5984
5985/// \brief Diagnose invalid arithmetic on two function pointers.
5986static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
5987                                                    Expr *LHS, Expr *RHS) {
5988  assert(LHS->getType()->isAnyPointerType());
5989  assert(RHS->getType()->isAnyPointerType());
5990  S.Diag(Loc, S.getLangOpts().CPlusPlus
5991                ? diag::err_typecheck_pointer_arith_function_type
5992                : diag::ext_gnu_ptr_func_arith)
5993    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
5994    // We only show the second type if it differs from the first.
5995    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
5996                                                   RHS->getType())
5997    << RHS->getType()->getPointeeType()
5998    << LHS->getSourceRange() << RHS->getSourceRange();
5999}
6000
6001/// \brief Diagnose invalid arithmetic on a function pointer.
6002static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6003                                                Expr *Pointer) {
6004  assert(Pointer->getType()->isAnyPointerType());
6005  S.Diag(Loc, S.getLangOpts().CPlusPlus
6006                ? diag::err_typecheck_pointer_arith_function_type
6007                : diag::ext_gnu_ptr_func_arith)
6008    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6009    << 0 /* one pointer, so only one type */
6010    << Pointer->getSourceRange();
6011}
6012
6013/// \brief Emit error if Operand is incomplete pointer type
6014///
6015/// \returns True if pointer has incomplete type
6016static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6017                                                 Expr *Operand) {
6018  if ((Operand->getType()->isPointerType() &&
6019       !Operand->getType()->isDependentType()) ||
6020      Operand->getType()->isObjCObjectPointerType()) {
6021    QualType PointeeTy = Operand->getType()->getPointeeType();
6022    if (S.RequireCompleteType(
6023          Loc, PointeeTy,
6024          S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6025            << PointeeTy << Operand->getSourceRange()))
6026      return true;
6027  }
6028  return false;
6029}
6030
6031/// \brief Check the validity of an arithmetic pointer operand.
6032///
6033/// If the operand has pointer type, this code will check for pointer types
6034/// which are invalid in arithmetic operations. These will be diagnosed
6035/// appropriately, including whether or not the use is supported as an
6036/// extension.
6037///
6038/// \returns True when the operand is valid to use (even if as an extension).
6039static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6040                                            Expr *Operand) {
6041  if (!Operand->getType()->isAnyPointerType()) return true;
6042
6043  QualType PointeeTy = Operand->getType()->getPointeeType();
6044  if (PointeeTy->isVoidType()) {
6045    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6046    return !S.getLangOpts().CPlusPlus;
6047  }
6048  if (PointeeTy->isFunctionType()) {
6049    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6050    return !S.getLangOpts().CPlusPlus;
6051  }
6052
6053  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6054
6055  return true;
6056}
6057
6058/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6059/// operands.
6060///
6061/// This routine will diagnose any invalid arithmetic on pointer operands much
6062/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6063/// for emitting a single diagnostic even for operations where both LHS and RHS
6064/// are (potentially problematic) pointers.
6065///
6066/// \returns True when the operand is valid to use (even if as an extension).
6067static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6068                                                Expr *LHSExpr, Expr *RHSExpr) {
6069  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6070  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6071  if (!isLHSPointer && !isRHSPointer) return true;
6072
6073  QualType LHSPointeeTy, RHSPointeeTy;
6074  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6075  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6076
6077  // Check for arithmetic on pointers to incomplete types.
6078  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6079  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6080  if (isLHSVoidPtr || isRHSVoidPtr) {
6081    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6082    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6083    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6084
6085    return !S.getLangOpts().CPlusPlus;
6086  }
6087
6088  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6089  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6090  if (isLHSFuncPtr || isRHSFuncPtr) {
6091    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6092    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6093                                                                RHSExpr);
6094    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6095
6096    return !S.getLangOpts().CPlusPlus;
6097  }
6098
6099  if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
6100  if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
6101
6102  return true;
6103}
6104
6105/// \brief Check bad cases where we step over interface counts.
6106static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
6107                                                   SourceLocation OpLoc,
6108                                                   Expr *Op) {
6109  assert(Op->getType()->isAnyPointerType());
6110  QualType PointeeTy = Op->getType()->getPointeeType();
6111  if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
6112    return true;
6113
6114  S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6115    << PointeeTy << Op->getSourceRange();
6116  return false;
6117}
6118
6119/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6120/// literal.
6121static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6122                                  Expr *LHSExpr, Expr *RHSExpr) {
6123  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6124  Expr* IndexExpr = RHSExpr;
6125  if (!StrExpr) {
6126    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6127    IndexExpr = LHSExpr;
6128  }
6129
6130  bool IsStringPlusInt = StrExpr &&
6131      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6132  if (!IsStringPlusInt)
6133    return;
6134
6135  llvm::APSInt index;
6136  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6137    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6138    if (index.isNonNegative() &&
6139        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6140                              index.isUnsigned()))
6141      return;
6142  }
6143
6144  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6145  Self.Diag(OpLoc, diag::warn_string_plus_int)
6146      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6147
6148  // Only print a fixit for "str" + int, not for int + "str".
6149  if (IndexExpr == RHSExpr) {
6150    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6151    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6152        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6153        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6154        << FixItHint::CreateInsertion(EndLoc, "]");
6155  } else
6156    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6157}
6158
6159/// \brief Emit error when two pointers are incompatible.
6160static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6161                                           Expr *LHSExpr, Expr *RHSExpr) {
6162  assert(LHSExpr->getType()->isAnyPointerType());
6163  assert(RHSExpr->getType()->isAnyPointerType());
6164  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6165    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6166    << RHSExpr->getSourceRange();
6167}
6168
6169QualType Sema::CheckAdditionOperands( // C99 6.5.6
6170    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6171    QualType* CompLHSTy) {
6172  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6173
6174  if (LHS.get()->getType()->isVectorType() ||
6175      RHS.get()->getType()->isVectorType()) {
6176    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6177    if (CompLHSTy) *CompLHSTy = compType;
6178    return compType;
6179  }
6180
6181  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6182  if (LHS.isInvalid() || RHS.isInvalid())
6183    return QualType();
6184
6185  // Diagnose "string literal" '+' int.
6186  if (Opc == BO_Add)
6187    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6188
6189  // handle the common case first (both operands are arithmetic).
6190  if (LHS.get()->getType()->isArithmeticType() &&
6191      RHS.get()->getType()->isArithmeticType()) {
6192    if (CompLHSTy) *CompLHSTy = compType;
6193    return compType;
6194  }
6195
6196  if (LHS.get()->getType()->isAtomicType() &&
6197      RHS.get()->getType()->isArithmeticType()) {
6198    *CompLHSTy = LHS.get()->getType();
6199    return compType;
6200  }
6201
6202  // Put any potential pointer into PExp
6203  Expr* PExp = LHS.get(), *IExp = RHS.get();
6204  if (IExp->getType()->isAnyPointerType())
6205    std::swap(PExp, IExp);
6206
6207  if (!PExp->getType()->isAnyPointerType())
6208    return InvalidOperands(Loc, LHS, RHS);
6209
6210  if (!IExp->getType()->isIntegerType())
6211    return InvalidOperands(Loc, LHS, RHS);
6212
6213  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6214    return QualType();
6215
6216  // Diagnose bad cases where we step over interface counts.
6217  if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
6218    return QualType();
6219
6220  // Check array bounds for pointer arithemtic
6221  CheckArrayAccess(PExp, IExp);
6222
6223  if (CompLHSTy) {
6224    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6225    if (LHSTy.isNull()) {
6226      LHSTy = LHS.get()->getType();
6227      if (LHSTy->isPromotableIntegerType())
6228        LHSTy = Context.getPromotedIntegerType(LHSTy);
6229    }
6230    *CompLHSTy = LHSTy;
6231  }
6232
6233  return PExp->getType();
6234}
6235
6236// C99 6.5.6
6237QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6238                                        SourceLocation Loc,
6239                                        QualType* CompLHSTy) {
6240  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6241
6242  if (LHS.get()->getType()->isVectorType() ||
6243      RHS.get()->getType()->isVectorType()) {
6244    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6245    if (CompLHSTy) *CompLHSTy = compType;
6246    return compType;
6247  }
6248
6249  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6250  if (LHS.isInvalid() || RHS.isInvalid())
6251    return QualType();
6252
6253  // Enforce type constraints: C99 6.5.6p3.
6254
6255  // Handle the common case first (both operands are arithmetic).
6256  if (LHS.get()->getType()->isArithmeticType() &&
6257      RHS.get()->getType()->isArithmeticType()) {
6258    if (CompLHSTy) *CompLHSTy = compType;
6259    return compType;
6260  }
6261
6262  if (LHS.get()->getType()->isAtomicType() &&
6263      RHS.get()->getType()->isArithmeticType()) {
6264    *CompLHSTy = LHS.get()->getType();
6265    return compType;
6266  }
6267
6268  // Either ptr - int   or   ptr - ptr.
6269  if (LHS.get()->getType()->isAnyPointerType()) {
6270    QualType lpointee = LHS.get()->getType()->getPointeeType();
6271
6272    // Diagnose bad cases where we step over interface counts.
6273    if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
6274      return QualType();
6275
6276    // The result type of a pointer-int computation is the pointer type.
6277    if (RHS.get()->getType()->isIntegerType()) {
6278      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6279        return QualType();
6280
6281      // Check array bounds for pointer arithemtic
6282      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6283                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6284
6285      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6286      return LHS.get()->getType();
6287    }
6288
6289    // Handle pointer-pointer subtractions.
6290    if (const PointerType *RHSPTy
6291          = RHS.get()->getType()->getAs<PointerType>()) {
6292      QualType rpointee = RHSPTy->getPointeeType();
6293
6294      if (getLangOpts().CPlusPlus) {
6295        // Pointee types must be the same: C++ [expr.add]
6296        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6297          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6298        }
6299      } else {
6300        // Pointee types must be compatible C99 6.5.6p3
6301        if (!Context.typesAreCompatible(
6302                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6303                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6304          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6305          return QualType();
6306        }
6307      }
6308
6309      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6310                                               LHS.get(), RHS.get()))
6311        return QualType();
6312
6313      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6314      return Context.getPointerDiffType();
6315    }
6316  }
6317
6318  return InvalidOperands(Loc, LHS, RHS);
6319}
6320
6321static bool isScopedEnumerationType(QualType T) {
6322  if (const EnumType *ET = dyn_cast<EnumType>(T))
6323    return ET->getDecl()->isScoped();
6324  return false;
6325}
6326
6327static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6328                                   SourceLocation Loc, unsigned Opc,
6329                                   QualType LHSType) {
6330  llvm::APSInt Right;
6331  // Check right/shifter operand
6332  if (RHS.get()->isValueDependent() ||
6333      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6334    return;
6335
6336  if (Right.isNegative()) {
6337    S.DiagRuntimeBehavior(Loc, RHS.get(),
6338                          S.PDiag(diag::warn_shift_negative)
6339                            << RHS.get()->getSourceRange());
6340    return;
6341  }
6342  llvm::APInt LeftBits(Right.getBitWidth(),
6343                       S.Context.getTypeSize(LHS.get()->getType()));
6344  if (Right.uge(LeftBits)) {
6345    S.DiagRuntimeBehavior(Loc, RHS.get(),
6346                          S.PDiag(diag::warn_shift_gt_typewidth)
6347                            << RHS.get()->getSourceRange());
6348    return;
6349  }
6350  if (Opc != BO_Shl)
6351    return;
6352
6353  // When left shifting an ICE which is signed, we can check for overflow which
6354  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6355  // integers have defined behavior modulo one more than the maximum value
6356  // representable in the result type, so never warn for those.
6357  llvm::APSInt Left;
6358  if (LHS.get()->isValueDependent() ||
6359      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6360      LHSType->hasUnsignedIntegerRepresentation())
6361    return;
6362  llvm::APInt ResultBits =
6363      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6364  if (LeftBits.uge(ResultBits))
6365    return;
6366  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6367  Result = Result.shl(Right);
6368
6369  // Print the bit representation of the signed integer as an unsigned
6370  // hexadecimal number.
6371  SmallString<40> HexResult;
6372  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6373
6374  // If we are only missing a sign bit, this is less likely to result in actual
6375  // bugs -- if the result is cast back to an unsigned type, it will have the
6376  // expected value. Thus we place this behind a different warning that can be
6377  // turned off separately if needed.
6378  if (LeftBits == ResultBits - 1) {
6379    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6380        << HexResult.str() << LHSType
6381        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6382    return;
6383  }
6384
6385  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6386    << HexResult.str() << Result.getMinSignedBits() << LHSType
6387    << Left.getBitWidth() << LHS.get()->getSourceRange()
6388    << RHS.get()->getSourceRange();
6389}
6390
6391// C99 6.5.7
6392QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6393                                  SourceLocation Loc, unsigned Opc,
6394                                  bool IsCompAssign) {
6395  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6396
6397  // C99 6.5.7p2: Each of the operands shall have integer type.
6398  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6399      !RHS.get()->getType()->hasIntegerRepresentation())
6400    return InvalidOperands(Loc, LHS, RHS);
6401
6402  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6403  // hasIntegerRepresentation() above instead of this.
6404  if (isScopedEnumerationType(LHS.get()->getType()) ||
6405      isScopedEnumerationType(RHS.get()->getType())) {
6406    return InvalidOperands(Loc, LHS, RHS);
6407  }
6408
6409  // Vector shifts promote their scalar inputs to vector type.
6410  if (LHS.get()->getType()->isVectorType() ||
6411      RHS.get()->getType()->isVectorType())
6412    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6413
6414  // Shifts don't perform usual arithmetic conversions, they just do integer
6415  // promotions on each operand. C99 6.5.7p3
6416
6417  // For the LHS, do usual unary conversions, but then reset them away
6418  // if this is a compound assignment.
6419  ExprResult OldLHS = LHS;
6420  LHS = UsualUnaryConversions(LHS.take());
6421  if (LHS.isInvalid())
6422    return QualType();
6423  QualType LHSType = LHS.get()->getType();
6424  if (IsCompAssign) LHS = OldLHS;
6425
6426  // The RHS is simpler.
6427  RHS = UsualUnaryConversions(RHS.take());
6428  if (RHS.isInvalid())
6429    return QualType();
6430
6431  // Sanity-check shift operands
6432  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6433
6434  // "The type of the result is that of the promoted left operand."
6435  return LHSType;
6436}
6437
6438static bool IsWithinTemplateSpecialization(Decl *D) {
6439  if (DeclContext *DC = D->getDeclContext()) {
6440    if (isa<ClassTemplateSpecializationDecl>(DC))
6441      return true;
6442    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6443      return FD->isFunctionTemplateSpecialization();
6444  }
6445  return false;
6446}
6447
6448/// If two different enums are compared, raise a warning.
6449static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6450                                ExprResult &RHS) {
6451  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6452  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6453
6454  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6455  if (!LHSEnumType)
6456    return;
6457  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6458  if (!RHSEnumType)
6459    return;
6460
6461  // Ignore anonymous enums.
6462  if (!LHSEnumType->getDecl()->getIdentifier())
6463    return;
6464  if (!RHSEnumType->getDecl()->getIdentifier())
6465    return;
6466
6467  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6468    return;
6469
6470  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6471      << LHSStrippedType << RHSStrippedType
6472      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6473}
6474
6475/// \brief Diagnose bad pointer comparisons.
6476static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6477                                              ExprResult &LHS, ExprResult &RHS,
6478                                              bool IsError) {
6479  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6480                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6481    << LHS.get()->getType() << RHS.get()->getType()
6482    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6483}
6484
6485/// \brief Returns false if the pointers are converted to a composite type,
6486/// true otherwise.
6487static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6488                                           ExprResult &LHS, ExprResult &RHS) {
6489  // C++ [expr.rel]p2:
6490  //   [...] Pointer conversions (4.10) and qualification
6491  //   conversions (4.4) are performed on pointer operands (or on
6492  //   a pointer operand and a null pointer constant) to bring
6493  //   them to their composite pointer type. [...]
6494  //
6495  // C++ [expr.eq]p1 uses the same notion for (in)equality
6496  // comparisons of pointers.
6497
6498  // C++ [expr.eq]p2:
6499  //   In addition, pointers to members can be compared, or a pointer to
6500  //   member and a null pointer constant. Pointer to member conversions
6501  //   (4.11) and qualification conversions (4.4) are performed to bring
6502  //   them to a common type. If one operand is a null pointer constant,
6503  //   the common type is the type of the other operand. Otherwise, the
6504  //   common type is a pointer to member type similar (4.4) to the type
6505  //   of one of the operands, with a cv-qualification signature (4.4)
6506  //   that is the union of the cv-qualification signatures of the operand
6507  //   types.
6508
6509  QualType LHSType = LHS.get()->getType();
6510  QualType RHSType = RHS.get()->getType();
6511  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6512         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6513
6514  bool NonStandardCompositeType = false;
6515  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6516  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6517  if (T.isNull()) {
6518    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6519    return true;
6520  }
6521
6522  if (NonStandardCompositeType)
6523    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6524      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6525      << RHS.get()->getSourceRange();
6526
6527  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6528  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6529  return false;
6530}
6531
6532static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6533                                                    ExprResult &LHS,
6534                                                    ExprResult &RHS,
6535                                                    bool IsError) {
6536  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6537                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6538    << LHS.get()->getType() << RHS.get()->getType()
6539    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6540}
6541
6542// C99 6.5.8, C++ [expr.rel]
6543QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6544                                    SourceLocation Loc, unsigned OpaqueOpc,
6545                                    bool IsRelational) {
6546  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6547
6548  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6549
6550  // Handle vector comparisons separately.
6551  if (LHS.get()->getType()->isVectorType() ||
6552      RHS.get()->getType()->isVectorType())
6553    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6554
6555  QualType LHSType = LHS.get()->getType();
6556  QualType RHSType = RHS.get()->getType();
6557
6558  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6559  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6560
6561  checkEnumComparison(*this, Loc, LHS, RHS);
6562
6563  if (!LHSType->hasFloatingRepresentation() &&
6564      !(LHSType->isBlockPointerType() && IsRelational) &&
6565      !LHS.get()->getLocStart().isMacroID() &&
6566      !RHS.get()->getLocStart().isMacroID()) {
6567    // For non-floating point types, check for self-comparisons of the form
6568    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6569    // often indicate logic errors in the program.
6570    //
6571    // NOTE: Don't warn about comparison expressions resulting from macro
6572    // expansion. Also don't warn about comparisons which are only self
6573    // comparisons within a template specialization. The warnings should catch
6574    // obvious cases in the definition of the template anyways. The idea is to
6575    // warn when the typed comparison operator will always evaluate to the same
6576    // result.
6577    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6578      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6579        if (DRL->getDecl() == DRR->getDecl() &&
6580            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6581          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6582                              << 0 // self-
6583                              << (Opc == BO_EQ
6584                                  || Opc == BO_LE
6585                                  || Opc == BO_GE));
6586        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6587                   !DRL->getDecl()->getType()->isReferenceType() &&
6588                   !DRR->getDecl()->getType()->isReferenceType()) {
6589            // what is it always going to eval to?
6590            char always_evals_to;
6591            switch(Opc) {
6592            case BO_EQ: // e.g. array1 == array2
6593              always_evals_to = 0; // false
6594              break;
6595            case BO_NE: // e.g. array1 != array2
6596              always_evals_to = 1; // true
6597              break;
6598            default:
6599              // best we can say is 'a constant'
6600              always_evals_to = 2; // e.g. array1 <= array2
6601              break;
6602            }
6603            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6604                                << 1 // array
6605                                << always_evals_to);
6606        }
6607      }
6608    }
6609
6610    if (isa<CastExpr>(LHSStripped))
6611      LHSStripped = LHSStripped->IgnoreParenCasts();
6612    if (isa<CastExpr>(RHSStripped))
6613      RHSStripped = RHSStripped->IgnoreParenCasts();
6614
6615    // Warn about comparisons against a string constant (unless the other
6616    // operand is null), the user probably wants strcmp.
6617    Expr *literalString = 0;
6618    Expr *literalStringStripped = 0;
6619    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6620        !RHSStripped->isNullPointerConstant(Context,
6621                                            Expr::NPC_ValueDependentIsNull)) {
6622      literalString = LHS.get();
6623      literalStringStripped = LHSStripped;
6624    } else if ((isa<StringLiteral>(RHSStripped) ||
6625                isa<ObjCEncodeExpr>(RHSStripped)) &&
6626               !LHSStripped->isNullPointerConstant(Context,
6627                                            Expr::NPC_ValueDependentIsNull)) {
6628      literalString = RHS.get();
6629      literalStringStripped = RHSStripped;
6630    }
6631
6632    if (literalString) {
6633      std::string resultComparison;
6634      switch (Opc) {
6635      case BO_LT: resultComparison = ") < 0"; break;
6636      case BO_GT: resultComparison = ") > 0"; break;
6637      case BO_LE: resultComparison = ") <= 0"; break;
6638      case BO_GE: resultComparison = ") >= 0"; break;
6639      case BO_EQ: resultComparison = ") == 0"; break;
6640      case BO_NE: resultComparison = ") != 0"; break;
6641      default: llvm_unreachable("Invalid comparison operator");
6642      }
6643
6644      DiagRuntimeBehavior(Loc, 0,
6645        PDiag(diag::warn_stringcompare)
6646          << isa<ObjCEncodeExpr>(literalStringStripped)
6647          << literalString->getSourceRange());
6648    }
6649  }
6650
6651  // C99 6.5.8p3 / C99 6.5.9p4
6652  if (LHS.get()->getType()->isArithmeticType() &&
6653      RHS.get()->getType()->isArithmeticType()) {
6654    UsualArithmeticConversions(LHS, RHS);
6655    if (LHS.isInvalid() || RHS.isInvalid())
6656      return QualType();
6657  }
6658  else {
6659    LHS = UsualUnaryConversions(LHS.take());
6660    if (LHS.isInvalid())
6661      return QualType();
6662
6663    RHS = UsualUnaryConversions(RHS.take());
6664    if (RHS.isInvalid())
6665      return QualType();
6666  }
6667
6668  LHSType = LHS.get()->getType();
6669  RHSType = RHS.get()->getType();
6670
6671  // The result of comparisons is 'bool' in C++, 'int' in C.
6672  QualType ResultTy = Context.getLogicalOperationType();
6673
6674  if (IsRelational) {
6675    if (LHSType->isRealType() && RHSType->isRealType())
6676      return ResultTy;
6677  } else {
6678    // Check for comparisons of floating point operands using != and ==.
6679    if (LHSType->hasFloatingRepresentation())
6680      CheckFloatComparison(Loc, LHS.get(), RHS.get());
6681
6682    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
6683      return ResultTy;
6684  }
6685
6686  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
6687                                              Expr::NPC_ValueDependentIsNull);
6688  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
6689                                              Expr::NPC_ValueDependentIsNull);
6690
6691  // All of the following pointer-related warnings are GCC extensions, except
6692  // when handling null pointer constants.
6693  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
6694    QualType LCanPointeeTy =
6695      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6696    QualType RCanPointeeTy =
6697      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6698
6699    if (getLangOpts().CPlusPlus) {
6700      if (LCanPointeeTy == RCanPointeeTy)
6701        return ResultTy;
6702      if (!IsRelational &&
6703          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6704        // Valid unless comparison between non-null pointer and function pointer
6705        // This is a gcc extension compatibility comparison.
6706        // In a SFINAE context, we treat this as a hard error to maintain
6707        // conformance with the C++ standard.
6708        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6709            && !LHSIsNull && !RHSIsNull) {
6710          diagnoseFunctionPointerToVoidComparison(
6711              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
6712
6713          if (isSFINAEContext())
6714            return QualType();
6715
6716          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6717          return ResultTy;
6718        }
6719      }
6720
6721      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6722        return QualType();
6723      else
6724        return ResultTy;
6725    }
6726    // C99 6.5.9p2 and C99 6.5.8p2
6727    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6728                                   RCanPointeeTy.getUnqualifiedType())) {
6729      // Valid unless a relational comparison of function pointers
6730      if (IsRelational && LCanPointeeTy->isFunctionType()) {
6731        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6732          << LHSType << RHSType << LHS.get()->getSourceRange()
6733          << RHS.get()->getSourceRange();
6734      }
6735    } else if (!IsRelational &&
6736               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6737      // Valid unless comparison between non-null pointer and function pointer
6738      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6739          && !LHSIsNull && !RHSIsNull)
6740        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
6741                                                /*isError*/false);
6742    } else {
6743      // Invalid
6744      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
6745    }
6746    if (LCanPointeeTy != RCanPointeeTy) {
6747      if (LHSIsNull && !RHSIsNull)
6748        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6749      else
6750        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6751    }
6752    return ResultTy;
6753  }
6754
6755  if (getLangOpts().CPlusPlus) {
6756    // Comparison of nullptr_t with itself.
6757    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
6758      return ResultTy;
6759
6760    // Comparison of pointers with null pointer constants and equality
6761    // comparisons of member pointers to null pointer constants.
6762    if (RHSIsNull &&
6763        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
6764         (!IsRelational &&
6765          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
6766      RHS = ImpCastExprToType(RHS.take(), LHSType,
6767                        LHSType->isMemberPointerType()
6768                          ? CK_NullToMemberPointer
6769                          : CK_NullToPointer);
6770      return ResultTy;
6771    }
6772    if (LHSIsNull &&
6773        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
6774         (!IsRelational &&
6775          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
6776      LHS = ImpCastExprToType(LHS.take(), RHSType,
6777                        RHSType->isMemberPointerType()
6778                          ? CK_NullToMemberPointer
6779                          : CK_NullToPointer);
6780      return ResultTy;
6781    }
6782
6783    // Comparison of member pointers.
6784    if (!IsRelational &&
6785        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
6786      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6787        return QualType();
6788      else
6789        return ResultTy;
6790    }
6791
6792    // Handle scoped enumeration types specifically, since they don't promote
6793    // to integers.
6794    if (LHS.get()->getType()->isEnumeralType() &&
6795        Context.hasSameUnqualifiedType(LHS.get()->getType(),
6796                                       RHS.get()->getType()))
6797      return ResultTy;
6798  }
6799
6800  // Handle block pointer types.
6801  if (!IsRelational && LHSType->isBlockPointerType() &&
6802      RHSType->isBlockPointerType()) {
6803    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
6804    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
6805
6806    if (!LHSIsNull && !RHSIsNull &&
6807        !Context.typesAreCompatible(lpointee, rpointee)) {
6808      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6809        << LHSType << RHSType << LHS.get()->getSourceRange()
6810        << RHS.get()->getSourceRange();
6811    }
6812    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6813    return ResultTy;
6814  }
6815
6816  // Allow block pointers to be compared with null pointer constants.
6817  if (!IsRelational
6818      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
6819          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
6820    if (!LHSIsNull && !RHSIsNull) {
6821      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
6822             ->getPointeeType()->isVoidType())
6823            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
6824                ->getPointeeType()->isVoidType())))
6825        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6826          << LHSType << RHSType << LHS.get()->getSourceRange()
6827          << RHS.get()->getSourceRange();
6828    }
6829    if (LHSIsNull && !RHSIsNull)
6830      LHS = ImpCastExprToType(LHS.take(), RHSType,
6831                              RHSType->isPointerType() ? CK_BitCast
6832                                : CK_AnyPointerToBlockPointerCast);
6833    else
6834      RHS = ImpCastExprToType(RHS.take(), LHSType,
6835                              LHSType->isPointerType() ? CK_BitCast
6836                                : CK_AnyPointerToBlockPointerCast);
6837    return ResultTy;
6838  }
6839
6840  if (LHSType->isObjCObjectPointerType() ||
6841      RHSType->isObjCObjectPointerType()) {
6842    const PointerType *LPT = LHSType->getAs<PointerType>();
6843    const PointerType *RPT = RHSType->getAs<PointerType>();
6844    if (LPT || RPT) {
6845      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6846      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6847
6848      if (!LPtrToVoid && !RPtrToVoid &&
6849          !Context.typesAreCompatible(LHSType, RHSType)) {
6850        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6851                                          /*isError*/false);
6852      }
6853      if (LHSIsNull && !RHSIsNull)
6854        LHS = ImpCastExprToType(LHS.take(), RHSType,
6855                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6856      else
6857        RHS = ImpCastExprToType(RHS.take(), LHSType,
6858                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6859      return ResultTy;
6860    }
6861    if (LHSType->isObjCObjectPointerType() &&
6862        RHSType->isObjCObjectPointerType()) {
6863      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
6864        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6865                                          /*isError*/false);
6866      if (LHSIsNull && !RHSIsNull)
6867        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6868      else
6869        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6870      return ResultTy;
6871    }
6872  }
6873  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
6874      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
6875    unsigned DiagID = 0;
6876    bool isError = false;
6877    if ((LHSIsNull && LHSType->isIntegerType()) ||
6878        (RHSIsNull && RHSType->isIntegerType())) {
6879      if (IsRelational && !getLangOpts().CPlusPlus)
6880        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6881    } else if (IsRelational && !getLangOpts().CPlusPlus)
6882      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6883    else if (getLangOpts().CPlusPlus) {
6884      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6885      isError = true;
6886    } else
6887      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6888
6889    if (DiagID) {
6890      Diag(Loc, DiagID)
6891        << LHSType << RHSType << LHS.get()->getSourceRange()
6892        << RHS.get()->getSourceRange();
6893      if (isError)
6894        return QualType();
6895    }
6896
6897    if (LHSType->isIntegerType())
6898      LHS = ImpCastExprToType(LHS.take(), RHSType,
6899                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6900    else
6901      RHS = ImpCastExprToType(RHS.take(), LHSType,
6902                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6903    return ResultTy;
6904  }
6905
6906  // Handle block pointers.
6907  if (!IsRelational && RHSIsNull
6908      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
6909    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6910    return ResultTy;
6911  }
6912  if (!IsRelational && LHSIsNull
6913      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
6914    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
6915    return ResultTy;
6916  }
6917
6918  return InvalidOperands(Loc, LHS, RHS);
6919}
6920
6921
6922// Return a signed type that is of identical size and number of elements.
6923// For floating point vectors, return an integer type of identical size
6924// and number of elements.
6925QualType Sema::GetSignedVectorType(QualType V) {
6926  const VectorType *VTy = V->getAs<VectorType>();
6927  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6928  if (TypeSize == Context.getTypeSize(Context.CharTy))
6929    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
6930  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
6931    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
6932  else if (TypeSize == Context.getTypeSize(Context.IntTy))
6933    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6934  else if (TypeSize == Context.getTypeSize(Context.LongTy))
6935    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6936  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6937         "Unhandled vector element size in vector compare");
6938  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6939}
6940
6941/// CheckVectorCompareOperands - vector comparisons are a clang extension that
6942/// operates on extended vector types.  Instead of producing an IntTy result,
6943/// like a scalar comparison, a vector comparison produces a vector of integer
6944/// types.
6945QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
6946                                          SourceLocation Loc,
6947                                          bool IsRelational) {
6948  // Check to make sure we're operating on vectors of the same type and width,
6949  // Allowing one side to be a scalar of element type.
6950  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
6951  if (vType.isNull())
6952    return vType;
6953
6954  QualType LHSType = LHS.get()->getType();
6955
6956  // If AltiVec, the comparison results in a numeric type, i.e.
6957  // bool for C++, int for C
6958  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6959    return Context.getLogicalOperationType();
6960
6961  // For non-floating point types, check for self-comparisons of the form
6962  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6963  // often indicate logic errors in the program.
6964  if (!LHSType->hasFloatingRepresentation()) {
6965    if (DeclRefExpr* DRL
6966          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
6967      if (DeclRefExpr* DRR
6968            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
6969        if (DRL->getDecl() == DRR->getDecl())
6970          DiagRuntimeBehavior(Loc, 0,
6971                              PDiag(diag::warn_comparison_always)
6972                                << 0 // self-
6973                                << 2 // "a constant"
6974                              );
6975  }
6976
6977  // Check for comparisons of floating point operands using != and ==.
6978  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
6979    assert (RHS.get()->getType()->hasFloatingRepresentation());
6980    CheckFloatComparison(Loc, LHS.get(), RHS.get());
6981  }
6982
6983  // Return a signed type for the vector.
6984  return GetSignedVectorType(LHSType);
6985}
6986
6987QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
6988                                          SourceLocation Loc) {
6989  // Ensure that either both operands are of the same vector type, or
6990  // one operand is of a vector type and the other is of its element type.
6991  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
6992  if (vType.isNull() || vType->isFloatingType())
6993    return InvalidOperands(Loc, LHS, RHS);
6994
6995  return GetSignedVectorType(LHS.get()->getType());
6996}
6997
6998inline QualType Sema::CheckBitwiseOperands(
6999  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7000  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7001
7002  if (LHS.get()->getType()->isVectorType() ||
7003      RHS.get()->getType()->isVectorType()) {
7004    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7005        RHS.get()->getType()->hasIntegerRepresentation())
7006      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7007
7008    return InvalidOperands(Loc, LHS, RHS);
7009  }
7010
7011  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7012  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7013                                                 IsCompAssign);
7014  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7015    return QualType();
7016  LHS = LHSResult.take();
7017  RHS = RHSResult.take();
7018
7019  if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
7020      RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
7021    return compType;
7022  return InvalidOperands(Loc, LHS, RHS);
7023}
7024
7025inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7026  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7027
7028  // Check vector operands differently.
7029  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7030    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7031
7032  // Diagnose cases where the user write a logical and/or but probably meant a
7033  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7034  // is a constant.
7035  if (LHS.get()->getType()->isIntegerType() &&
7036      !LHS.get()->getType()->isBooleanType() &&
7037      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7038      // Don't warn in macros or template instantiations.
7039      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7040    // If the RHS can be constant folded, and if it constant folds to something
7041    // that isn't 0 or 1 (which indicate a potential logical operation that
7042    // happened to fold to true/false) then warn.
7043    // Parens on the RHS are ignored.
7044    llvm::APSInt Result;
7045    if (RHS.get()->EvaluateAsInt(Result, Context))
7046      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7047          (Result != 0 && Result != 1)) {
7048        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7049          << RHS.get()->getSourceRange()
7050          << (Opc == BO_LAnd ? "&&" : "||");
7051        // Suggest replacing the logical operator with the bitwise version
7052        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7053            << (Opc == BO_LAnd ? "&" : "|")
7054            << FixItHint::CreateReplacement(SourceRange(
7055                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7056                                                getLangOpts())),
7057                                            Opc == BO_LAnd ? "&" : "|");
7058        if (Opc == BO_LAnd)
7059          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7060          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7061              << FixItHint::CreateRemoval(
7062                  SourceRange(
7063                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7064                                                 0, getSourceManager(),
7065                                                 getLangOpts()),
7066                      RHS.get()->getLocEnd()));
7067      }
7068  }
7069
7070  if (!Context.getLangOpts().CPlusPlus) {
7071    LHS = UsualUnaryConversions(LHS.take());
7072    if (LHS.isInvalid())
7073      return QualType();
7074
7075    RHS = UsualUnaryConversions(RHS.take());
7076    if (RHS.isInvalid())
7077      return QualType();
7078
7079    if (!LHS.get()->getType()->isScalarType() ||
7080        !RHS.get()->getType()->isScalarType())
7081      return InvalidOperands(Loc, LHS, RHS);
7082
7083    return Context.IntTy;
7084  }
7085
7086  // The following is safe because we only use this method for
7087  // non-overloadable operands.
7088
7089  // C++ [expr.log.and]p1
7090  // C++ [expr.log.or]p1
7091  // The operands are both contextually converted to type bool.
7092  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7093  if (LHSRes.isInvalid())
7094    return InvalidOperands(Loc, LHS, RHS);
7095  LHS = move(LHSRes);
7096
7097  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7098  if (RHSRes.isInvalid())
7099    return InvalidOperands(Loc, LHS, RHS);
7100  RHS = move(RHSRes);
7101
7102  // C++ [expr.log.and]p2
7103  // C++ [expr.log.or]p2
7104  // The result is a bool.
7105  return Context.BoolTy;
7106}
7107
7108/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7109/// is a read-only property; return true if so. A readonly property expression
7110/// depends on various declarations and thus must be treated specially.
7111///
7112static bool IsReadonlyProperty(Expr *E, Sema &S) {
7113  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7114  if (!PropExpr) return false;
7115  if (PropExpr->isImplicitProperty()) return false;
7116
7117  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7118  QualType BaseType = PropExpr->isSuperReceiver() ?
7119                            PropExpr->getSuperReceiverType() :
7120                            PropExpr->getBase()->getType();
7121
7122  if (const ObjCObjectPointerType *OPT =
7123      BaseType->getAsObjCInterfacePointerType())
7124    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7125      if (S.isPropertyReadonly(PDecl, IFace))
7126        return true;
7127  return false;
7128}
7129
7130static bool IsConstProperty(Expr *E, Sema &S) {
7131  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7132  if (!PropExpr) return false;
7133  if (PropExpr->isImplicitProperty()) return false;
7134
7135  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7136  QualType T = PDecl->getType().getNonReferenceType();
7137  return T.isConstQualified();
7138}
7139
7140static bool IsReadonlyMessage(Expr *E, Sema &S) {
7141  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7142  if (!ME) return false;
7143  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7144  ObjCMessageExpr *Base =
7145    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7146  if (!Base) return false;
7147  return Base->getMethodDecl() != 0;
7148}
7149
7150/// Is the given expression (which must be 'const') a reference to a
7151/// variable which was originally non-const, but which has become
7152/// 'const' due to being captured within a block?
7153enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7154static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7155  assert(E->isLValue() && E->getType().isConstQualified());
7156  E = E->IgnoreParens();
7157
7158  // Must be a reference to a declaration from an enclosing scope.
7159  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7160  if (!DRE) return NCCK_None;
7161  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7162
7163  // The declaration must be a variable which is not declared 'const'.
7164  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7165  if (!var) return NCCK_None;
7166  if (var->getType().isConstQualified()) return NCCK_None;
7167  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7168
7169  // Decide whether the first capture was for a block or a lambda.
7170  DeclContext *DC = S.CurContext;
7171  while (DC->getParent() != var->getDeclContext())
7172    DC = DC->getParent();
7173  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7174}
7175
7176/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7177/// emit an error and return true.  If so, return false.
7178static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7179  SourceLocation OrigLoc = Loc;
7180  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7181                                                              &Loc);
7182  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7183    IsLV = Expr::MLV_ReadonlyProperty;
7184  else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
7185    IsLV = Expr::MLV_Valid;
7186  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7187    IsLV = Expr::MLV_InvalidMessageExpression;
7188  if (IsLV == Expr::MLV_Valid)
7189    return false;
7190
7191  unsigned Diag = 0;
7192  bool NeedType = false;
7193  switch (IsLV) { // C99 6.5.16p2
7194  case Expr::MLV_ConstQualified:
7195    Diag = diag::err_typecheck_assign_const;
7196
7197    // Use a specialized diagnostic when we're assigning to an object
7198    // from an enclosing function or block.
7199    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7200      if (NCCK == NCCK_Block)
7201        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7202      else
7203        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7204      break;
7205    }
7206
7207    // In ARC, use some specialized diagnostics for occasions where we
7208    // infer 'const'.  These are always pseudo-strong variables.
7209    if (S.getLangOpts().ObjCAutoRefCount) {
7210      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7211      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7212        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7213
7214        // Use the normal diagnostic if it's pseudo-__strong but the
7215        // user actually wrote 'const'.
7216        if (var->isARCPseudoStrong() &&
7217            (!var->getTypeSourceInfo() ||
7218             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7219          // There are two pseudo-strong cases:
7220          //  - self
7221          ObjCMethodDecl *method = S.getCurMethodDecl();
7222          if (method && var == method->getSelfDecl())
7223            Diag = method->isClassMethod()
7224              ? diag::err_typecheck_arc_assign_self_class_method
7225              : diag::err_typecheck_arc_assign_self;
7226
7227          //  - fast enumeration variables
7228          else
7229            Diag = diag::err_typecheck_arr_assign_enumeration;
7230
7231          SourceRange Assign;
7232          if (Loc != OrigLoc)
7233            Assign = SourceRange(OrigLoc, OrigLoc);
7234          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7235          // We need to preserve the AST regardless, so migration tool
7236          // can do its job.
7237          return false;
7238        }
7239      }
7240    }
7241
7242    break;
7243  case Expr::MLV_ArrayType:
7244    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7245    NeedType = true;
7246    break;
7247  case Expr::MLV_NotObjectType:
7248    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7249    NeedType = true;
7250    break;
7251  case Expr::MLV_LValueCast:
7252    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7253    break;
7254  case Expr::MLV_Valid:
7255    llvm_unreachable("did not take early return for MLV_Valid");
7256  case Expr::MLV_InvalidExpression:
7257  case Expr::MLV_MemberFunction:
7258  case Expr::MLV_ClassTemporary:
7259    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7260    break;
7261  case Expr::MLV_IncompleteType:
7262  case Expr::MLV_IncompleteVoidType:
7263    return S.RequireCompleteType(Loc, E->getType(),
7264              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
7265                  << E->getSourceRange());
7266  case Expr::MLV_DuplicateVectorComponents:
7267    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7268    break;
7269  case Expr::MLV_ReadonlyProperty:
7270  case Expr::MLV_NoSetterProperty:
7271    llvm_unreachable("readonly properties should be processed differently");
7272  case Expr::MLV_InvalidMessageExpression:
7273    Diag = diag::error_readonly_message_assignment;
7274    break;
7275  case Expr::MLV_SubObjCPropertySetting:
7276    Diag = diag::error_no_subobject_property_setting;
7277    break;
7278  }
7279
7280  SourceRange Assign;
7281  if (Loc != OrigLoc)
7282    Assign = SourceRange(OrigLoc, OrigLoc);
7283  if (NeedType)
7284    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7285  else
7286    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7287  return true;
7288}
7289
7290
7291
7292// C99 6.5.16.1
7293QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7294                                       SourceLocation Loc,
7295                                       QualType CompoundType) {
7296  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7297
7298  // Verify that LHS is a modifiable lvalue, and emit error if not.
7299  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7300    return QualType();
7301
7302  QualType LHSType = LHSExpr->getType();
7303  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7304                                             CompoundType;
7305  AssignConvertType ConvTy;
7306  if (CompoundType.isNull()) {
7307    QualType LHSTy(LHSType);
7308    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7309    if (RHS.isInvalid())
7310      return QualType();
7311    // Special case of NSObject attributes on c-style pointer types.
7312    if (ConvTy == IncompatiblePointer &&
7313        ((Context.isObjCNSObjectType(LHSType) &&
7314          RHSType->isObjCObjectPointerType()) ||
7315         (Context.isObjCNSObjectType(RHSType) &&
7316          LHSType->isObjCObjectPointerType())))
7317      ConvTy = Compatible;
7318
7319    if (ConvTy == Compatible &&
7320        LHSType->isObjCObjectType())
7321        Diag(Loc, diag::err_objc_object_assignment)
7322          << LHSType;
7323
7324    // If the RHS is a unary plus or minus, check to see if they = and + are
7325    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7326    // instead of "x += 4".
7327    Expr *RHSCheck = RHS.get();
7328    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7329      RHSCheck = ICE->getSubExpr();
7330    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7331      if ((UO->getOpcode() == UO_Plus ||
7332           UO->getOpcode() == UO_Minus) &&
7333          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7334          // Only if the two operators are exactly adjacent.
7335          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7336          // And there is a space or other character before the subexpr of the
7337          // unary +/-.  We don't want to warn on "x=-1".
7338          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7339          UO->getSubExpr()->getLocStart().isFileID()) {
7340        Diag(Loc, diag::warn_not_compound_assign)
7341          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7342          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7343      }
7344    }
7345
7346    if (ConvTy == Compatible) {
7347      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7348        checkRetainCycles(LHSExpr, RHS.get());
7349      else if (getLangOpts().ObjCAutoRefCount)
7350        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7351    }
7352  } else {
7353    // Compound assignment "x += y"
7354    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7355  }
7356
7357  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7358                               RHS.get(), AA_Assigning))
7359    return QualType();
7360
7361  CheckForNullPointerDereference(*this, LHSExpr);
7362
7363  // C99 6.5.16p3: The type of an assignment expression is the type of the
7364  // left operand unless the left operand has qualified type, in which case
7365  // it is the unqualified version of the type of the left operand.
7366  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7367  // is converted to the type of the assignment expression (above).
7368  // C++ 5.17p1: the type of the assignment expression is that of its left
7369  // operand.
7370  return (getLangOpts().CPlusPlus
7371          ? LHSType : LHSType.getUnqualifiedType());
7372}
7373
7374// C99 6.5.17
7375static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7376                                   SourceLocation Loc) {
7377  S.DiagnoseUnusedExprResult(LHS.get());
7378
7379  LHS = S.CheckPlaceholderExpr(LHS.take());
7380  RHS = S.CheckPlaceholderExpr(RHS.take());
7381  if (LHS.isInvalid() || RHS.isInvalid())
7382    return QualType();
7383
7384  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7385  // operands, but not unary promotions.
7386  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7387
7388  // So we treat the LHS as a ignored value, and in C++ we allow the
7389  // containing site to determine what should be done with the RHS.
7390  LHS = S.IgnoredValueConversions(LHS.take());
7391  if (LHS.isInvalid())
7392    return QualType();
7393
7394  if (!S.getLangOpts().CPlusPlus) {
7395    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7396    if (RHS.isInvalid())
7397      return QualType();
7398    if (!RHS.get()->getType()->isVoidType())
7399      S.RequireCompleteType(Loc, RHS.get()->getType(),
7400                            diag::err_incomplete_type);
7401  }
7402
7403  return RHS.get()->getType();
7404}
7405
7406/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7407/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7408static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7409                                               ExprValueKind &VK,
7410                                               SourceLocation OpLoc,
7411                                               bool IsInc, bool IsPrefix) {
7412  if (Op->isTypeDependent())
7413    return S.Context.DependentTy;
7414
7415  QualType ResType = Op->getType();
7416  // Atomic types can be used for increment / decrement where the non-atomic
7417  // versions can, so ignore the _Atomic() specifier for the purpose of
7418  // checking.
7419  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7420    ResType = ResAtomicType->getValueType();
7421
7422  assert(!ResType.isNull() && "no type for increment/decrement expression");
7423
7424  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7425    // Decrement of bool is not allowed.
7426    if (!IsInc) {
7427      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7428      return QualType();
7429    }
7430    // Increment of bool sets it to true, but is deprecated.
7431    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7432  } else if (ResType->isRealType()) {
7433    // OK!
7434  } else if (ResType->isAnyPointerType()) {
7435    // C99 6.5.2.4p2, 6.5.6p2
7436    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7437      return QualType();
7438
7439    // Diagnose bad cases where we step over interface counts.
7440    else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7441      return QualType();
7442  } else if (ResType->isAnyComplexType()) {
7443    // C99 does not support ++/-- on complex types, we allow as an extension.
7444    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7445      << ResType << Op->getSourceRange();
7446  } else if (ResType->isPlaceholderType()) {
7447    ExprResult PR = S.CheckPlaceholderExpr(Op);
7448    if (PR.isInvalid()) return QualType();
7449    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7450                                          IsInc, IsPrefix);
7451  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7452    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7453  } else {
7454    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7455      << ResType << int(IsInc) << Op->getSourceRange();
7456    return QualType();
7457  }
7458  // At this point, we know we have a real, complex or pointer type.
7459  // Now make sure the operand is a modifiable lvalue.
7460  if (CheckForModifiableLvalue(Op, OpLoc, S))
7461    return QualType();
7462  // In C++, a prefix increment is the same type as the operand. Otherwise
7463  // (in C or with postfix), the increment is the unqualified type of the
7464  // operand.
7465  if (IsPrefix && S.getLangOpts().CPlusPlus) {
7466    VK = VK_LValue;
7467    return ResType;
7468  } else {
7469    VK = VK_RValue;
7470    return ResType.getUnqualifiedType();
7471  }
7472}
7473
7474
7475/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7476/// This routine allows us to typecheck complex/recursive expressions
7477/// where the declaration is needed for type checking. We only need to
7478/// handle cases when the expression references a function designator
7479/// or is an lvalue. Here are some examples:
7480///  - &(x) => x
7481///  - &*****f => f for f a function designator.
7482///  - &s.xx => s
7483///  - &s.zz[1].yy -> s, if zz is an array
7484///  - *(x + 1) -> x, if x is an array
7485///  - &"123"[2] -> 0
7486///  - & __real__ x -> x
7487static ValueDecl *getPrimaryDecl(Expr *E) {
7488  switch (E->getStmtClass()) {
7489  case Stmt::DeclRefExprClass:
7490    return cast<DeclRefExpr>(E)->getDecl();
7491  case Stmt::MemberExprClass:
7492    // If this is an arrow operator, the address is an offset from
7493    // the base's value, so the object the base refers to is
7494    // irrelevant.
7495    if (cast<MemberExpr>(E)->isArrow())
7496      return 0;
7497    // Otherwise, the expression refers to a part of the base
7498    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7499  case Stmt::ArraySubscriptExprClass: {
7500    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7501    // promotion of register arrays earlier.
7502    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7503    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7504      if (ICE->getSubExpr()->getType()->isArrayType())
7505        return getPrimaryDecl(ICE->getSubExpr());
7506    }
7507    return 0;
7508  }
7509  case Stmt::UnaryOperatorClass: {
7510    UnaryOperator *UO = cast<UnaryOperator>(E);
7511
7512    switch(UO->getOpcode()) {
7513    case UO_Real:
7514    case UO_Imag:
7515    case UO_Extension:
7516      return getPrimaryDecl(UO->getSubExpr());
7517    default:
7518      return 0;
7519    }
7520  }
7521  case Stmt::ParenExprClass:
7522    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7523  case Stmt::ImplicitCastExprClass:
7524    // If the result of an implicit cast is an l-value, we care about
7525    // the sub-expression; otherwise, the result here doesn't matter.
7526    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7527  default:
7528    return 0;
7529  }
7530}
7531
7532namespace {
7533  enum {
7534    AO_Bit_Field = 0,
7535    AO_Vector_Element = 1,
7536    AO_Property_Expansion = 2,
7537    AO_Register_Variable = 3,
7538    AO_No_Error = 4
7539  };
7540}
7541/// \brief Diagnose invalid operand for address of operations.
7542///
7543/// \param Type The type of operand which cannot have its address taken.
7544static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7545                                         Expr *E, unsigned Type) {
7546  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7547}
7548
7549/// CheckAddressOfOperand - The operand of & must be either a function
7550/// designator or an lvalue designating an object. If it is an lvalue, the
7551/// object cannot be declared with storage class register or be a bit field.
7552/// Note: The usual conversions are *not* applied to the operand of the &
7553/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7554/// In C++, the operand might be an overloaded function name, in which case
7555/// we allow the '&' but retain the overloaded-function type.
7556static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7557                                      SourceLocation OpLoc) {
7558  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7559    if (PTy->getKind() == BuiltinType::Overload) {
7560      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7561        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7562          << OrigOp.get()->getSourceRange();
7563        return QualType();
7564      }
7565
7566      return S.Context.OverloadTy;
7567    }
7568
7569    if (PTy->getKind() == BuiltinType::UnknownAny)
7570      return S.Context.UnknownAnyTy;
7571
7572    if (PTy->getKind() == BuiltinType::BoundMember) {
7573      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7574        << OrigOp.get()->getSourceRange();
7575      return QualType();
7576    }
7577
7578    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7579    if (OrigOp.isInvalid()) return QualType();
7580  }
7581
7582  if (OrigOp.get()->isTypeDependent())
7583    return S.Context.DependentTy;
7584
7585  assert(!OrigOp.get()->getType()->isPlaceholderType());
7586
7587  // Make sure to ignore parentheses in subsequent checks
7588  Expr *op = OrigOp.get()->IgnoreParens();
7589
7590  if (S.getLangOpts().C99) {
7591    // Implement C99-only parts of addressof rules.
7592    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7593      if (uOp->getOpcode() == UO_Deref)
7594        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7595        // (assuming the deref expression is valid).
7596        return uOp->getSubExpr()->getType();
7597    }
7598    // Technically, there should be a check for array subscript
7599    // expressions here, but the result of one is always an lvalue anyway.
7600  }
7601  ValueDecl *dcl = getPrimaryDecl(op);
7602  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7603  unsigned AddressOfError = AO_No_Error;
7604
7605  if (lval == Expr::LV_ClassTemporary) {
7606    bool sfinae = S.isSFINAEContext();
7607    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7608                         : diag::ext_typecheck_addrof_class_temporary)
7609      << op->getType() << op->getSourceRange();
7610    if (sfinae)
7611      return QualType();
7612  } else if (isa<ObjCSelectorExpr>(op)) {
7613    return S.Context.getPointerType(op->getType());
7614  } else if (lval == Expr::LV_MemberFunction) {
7615    // If it's an instance method, make a member pointer.
7616    // The expression must have exactly the form &A::foo.
7617
7618    // If the underlying expression isn't a decl ref, give up.
7619    if (!isa<DeclRefExpr>(op)) {
7620      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7621        << OrigOp.get()->getSourceRange();
7622      return QualType();
7623    }
7624    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7625    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7626
7627    // The id-expression was parenthesized.
7628    if (OrigOp.get() != DRE) {
7629      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7630        << OrigOp.get()->getSourceRange();
7631
7632    // The method was named without a qualifier.
7633    } else if (!DRE->getQualifier()) {
7634      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7635        << op->getSourceRange();
7636    }
7637
7638    return S.Context.getMemberPointerType(op->getType(),
7639              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7640  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7641    // C99 6.5.3.2p1
7642    // The operand must be either an l-value or a function designator
7643    if (!op->getType()->isFunctionType()) {
7644      // Use a special diagnostic for loads from property references.
7645      if (isa<PseudoObjectExpr>(op)) {
7646        AddressOfError = AO_Property_Expansion;
7647      } else {
7648        // FIXME: emit more specific diag...
7649        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7650          << op->getSourceRange();
7651        return QualType();
7652      }
7653    }
7654  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7655    // The operand cannot be a bit-field
7656    AddressOfError = AO_Bit_Field;
7657  } else if (op->getObjectKind() == OK_VectorComponent) {
7658    // The operand cannot be an element of a vector
7659    AddressOfError = AO_Vector_Element;
7660  } else if (dcl) { // C99 6.5.3.2p1
7661    // We have an lvalue with a decl. Make sure the decl is not declared
7662    // with the register storage-class specifier.
7663    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7664      // in C++ it is not error to take address of a register
7665      // variable (c++03 7.1.1P3)
7666      if (vd->getStorageClass() == SC_Register &&
7667          !S.getLangOpts().CPlusPlus) {
7668        AddressOfError = AO_Register_Variable;
7669      }
7670    } else if (isa<FunctionTemplateDecl>(dcl)) {
7671      return S.Context.OverloadTy;
7672    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7673      // Okay: we can take the address of a field.
7674      // Could be a pointer to member, though, if there is an explicit
7675      // scope qualifier for the class.
7676      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7677        DeclContext *Ctx = dcl->getDeclContext();
7678        if (Ctx && Ctx->isRecord()) {
7679          if (dcl->getType()->isReferenceType()) {
7680            S.Diag(OpLoc,
7681                   diag::err_cannot_form_pointer_to_member_of_reference_type)
7682              << dcl->getDeclName() << dcl->getType();
7683            return QualType();
7684          }
7685
7686          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7687            Ctx = Ctx->getParent();
7688          return S.Context.getMemberPointerType(op->getType(),
7689                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7690        }
7691      }
7692    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
7693      llvm_unreachable("Unknown/unexpected decl type");
7694  }
7695
7696  if (AddressOfError != AO_No_Error) {
7697    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
7698    return QualType();
7699  }
7700
7701  if (lval == Expr::LV_IncompleteVoidType) {
7702    // Taking the address of a void variable is technically illegal, but we
7703    // allow it in cases which are otherwise valid.
7704    // Example: "extern void x; void* y = &x;".
7705    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7706  }
7707
7708  // If the operand has type "type", the result has type "pointer to type".
7709  if (op->getType()->isObjCObjectType())
7710    return S.Context.getObjCObjectPointerType(op->getType());
7711  return S.Context.getPointerType(op->getType());
7712}
7713
7714/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7715static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7716                                        SourceLocation OpLoc) {
7717  if (Op->isTypeDependent())
7718    return S.Context.DependentTy;
7719
7720  ExprResult ConvResult = S.UsualUnaryConversions(Op);
7721  if (ConvResult.isInvalid())
7722    return QualType();
7723  Op = ConvResult.take();
7724  QualType OpTy = Op->getType();
7725  QualType Result;
7726
7727  if (isa<CXXReinterpretCastExpr>(Op)) {
7728    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7729    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7730                                     Op->getSourceRange());
7731  }
7732
7733  // Note that per both C89 and C99, indirection is always legal, even if OpTy
7734  // is an incomplete type or void.  It would be possible to warn about
7735  // dereferencing a void pointer, but it's completely well-defined, and such a
7736  // warning is unlikely to catch any mistakes.
7737  if (const PointerType *PT = OpTy->getAs<PointerType>())
7738    Result = PT->getPointeeType();
7739  else if (const ObjCObjectPointerType *OPT =
7740             OpTy->getAs<ObjCObjectPointerType>())
7741    Result = OPT->getPointeeType();
7742  else {
7743    ExprResult PR = S.CheckPlaceholderExpr(Op);
7744    if (PR.isInvalid()) return QualType();
7745    if (PR.take() != Op)
7746      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7747  }
7748
7749  if (Result.isNull()) {
7750    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7751      << OpTy << Op->getSourceRange();
7752    return QualType();
7753  }
7754
7755  // Dereferences are usually l-values...
7756  VK = VK_LValue;
7757
7758  // ...except that certain expressions are never l-values in C.
7759  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
7760    VK = VK_RValue;
7761
7762  return Result;
7763}
7764
7765static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7766  tok::TokenKind Kind) {
7767  BinaryOperatorKind Opc;
7768  switch (Kind) {
7769  default: llvm_unreachable("Unknown binop!");
7770  case tok::periodstar:           Opc = BO_PtrMemD; break;
7771  case tok::arrowstar:            Opc = BO_PtrMemI; break;
7772  case tok::star:                 Opc = BO_Mul; break;
7773  case tok::slash:                Opc = BO_Div; break;
7774  case tok::percent:              Opc = BO_Rem; break;
7775  case tok::plus:                 Opc = BO_Add; break;
7776  case tok::minus:                Opc = BO_Sub; break;
7777  case tok::lessless:             Opc = BO_Shl; break;
7778  case tok::greatergreater:       Opc = BO_Shr; break;
7779  case tok::lessequal:            Opc = BO_LE; break;
7780  case tok::less:                 Opc = BO_LT; break;
7781  case tok::greaterequal:         Opc = BO_GE; break;
7782  case tok::greater:              Opc = BO_GT; break;
7783  case tok::exclaimequal:         Opc = BO_NE; break;
7784  case tok::equalequal:           Opc = BO_EQ; break;
7785  case tok::amp:                  Opc = BO_And; break;
7786  case tok::caret:                Opc = BO_Xor; break;
7787  case tok::pipe:                 Opc = BO_Or; break;
7788  case tok::ampamp:               Opc = BO_LAnd; break;
7789  case tok::pipepipe:             Opc = BO_LOr; break;
7790  case tok::equal:                Opc = BO_Assign; break;
7791  case tok::starequal:            Opc = BO_MulAssign; break;
7792  case tok::slashequal:           Opc = BO_DivAssign; break;
7793  case tok::percentequal:         Opc = BO_RemAssign; break;
7794  case tok::plusequal:            Opc = BO_AddAssign; break;
7795  case tok::minusequal:           Opc = BO_SubAssign; break;
7796  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
7797  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
7798  case tok::ampequal:             Opc = BO_AndAssign; break;
7799  case tok::caretequal:           Opc = BO_XorAssign; break;
7800  case tok::pipeequal:            Opc = BO_OrAssign; break;
7801  case tok::comma:                Opc = BO_Comma; break;
7802  }
7803  return Opc;
7804}
7805
7806static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7807  tok::TokenKind Kind) {
7808  UnaryOperatorKind Opc;
7809  switch (Kind) {
7810  default: llvm_unreachable("Unknown unary op!");
7811  case tok::plusplus:     Opc = UO_PreInc; break;
7812  case tok::minusminus:   Opc = UO_PreDec; break;
7813  case tok::amp:          Opc = UO_AddrOf; break;
7814  case tok::star:         Opc = UO_Deref; break;
7815  case tok::plus:         Opc = UO_Plus; break;
7816  case tok::minus:        Opc = UO_Minus; break;
7817  case tok::tilde:        Opc = UO_Not; break;
7818  case tok::exclaim:      Opc = UO_LNot; break;
7819  case tok::kw___real:    Opc = UO_Real; break;
7820  case tok::kw___imag:    Opc = UO_Imag; break;
7821  case tok::kw___extension__: Opc = UO_Extension; break;
7822  }
7823  return Opc;
7824}
7825
7826/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7827/// This warning is only emitted for builtin assignment operations. It is also
7828/// suppressed in the event of macro expansions.
7829static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
7830                                   SourceLocation OpLoc) {
7831  if (!S.ActiveTemplateInstantiations.empty())
7832    return;
7833  if (OpLoc.isInvalid() || OpLoc.isMacroID())
7834    return;
7835  LHSExpr = LHSExpr->IgnoreParenImpCasts();
7836  RHSExpr = RHSExpr->IgnoreParenImpCasts();
7837  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
7838  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
7839  if (!LHSDeclRef || !RHSDeclRef ||
7840      LHSDeclRef->getLocation().isMacroID() ||
7841      RHSDeclRef->getLocation().isMacroID())
7842    return;
7843  const ValueDecl *LHSDecl =
7844    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
7845  const ValueDecl *RHSDecl =
7846    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
7847  if (LHSDecl != RHSDecl)
7848    return;
7849  if (LHSDecl->getType().isVolatileQualified())
7850    return;
7851  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
7852    if (RefTy->getPointeeType().isVolatileQualified())
7853      return;
7854
7855  S.Diag(OpLoc, diag::warn_self_assignment)
7856      << LHSDeclRef->getType()
7857      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7858}
7859
7860/// CreateBuiltinBinOp - Creates a new built-in binary operation with
7861/// operator @p Opc at location @c TokLoc. This routine only supports
7862/// built-in operations; ActOnBinOp handles overloaded operators.
7863ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7864                                    BinaryOperatorKind Opc,
7865                                    Expr *LHSExpr, Expr *RHSExpr) {
7866  if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
7867    // The syntax only allows initializer lists on the RHS of assignment,
7868    // so we don't need to worry about accepting invalid code for
7869    // non-assignment operators.
7870    // C++11 5.17p9:
7871    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
7872    //   of x = {} is x = T().
7873    InitializationKind Kind =
7874        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
7875    InitializedEntity Entity =
7876        InitializedEntity::InitializeTemporary(LHSExpr->getType());
7877    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
7878    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
7879                                      MultiExprArg(&RHSExpr, 1));
7880    if (Init.isInvalid())
7881      return Init;
7882    RHSExpr = Init.take();
7883  }
7884
7885  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
7886  QualType ResultTy;     // Result type of the binary operator.
7887  // The following two variables are used for compound assignment operators
7888  QualType CompLHSTy;    // Type of LHS after promotions for computation
7889  QualType CompResultTy; // Type of computation result
7890  ExprValueKind VK = VK_RValue;
7891  ExprObjectKind OK = OK_Ordinary;
7892
7893  switch (Opc) {
7894  case BO_Assign:
7895    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
7896    if (getLangOpts().CPlusPlus &&
7897        LHS.get()->getObjectKind() != OK_ObjCProperty) {
7898      VK = LHS.get()->getValueKind();
7899      OK = LHS.get()->getObjectKind();
7900    }
7901    if (!ResultTy.isNull())
7902      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
7903    break;
7904  case BO_PtrMemD:
7905  case BO_PtrMemI:
7906    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
7907                                            Opc == BO_PtrMemI);
7908    break;
7909  case BO_Mul:
7910  case BO_Div:
7911    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
7912                                           Opc == BO_Div);
7913    break;
7914  case BO_Rem:
7915    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
7916    break;
7917  case BO_Add:
7918    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
7919    break;
7920  case BO_Sub:
7921    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
7922    break;
7923  case BO_Shl:
7924  case BO_Shr:
7925    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
7926    break;
7927  case BO_LE:
7928  case BO_LT:
7929  case BO_GE:
7930  case BO_GT:
7931    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
7932    break;
7933  case BO_EQ:
7934  case BO_NE:
7935    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
7936    break;
7937  case BO_And:
7938  case BO_Xor:
7939  case BO_Or:
7940    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
7941    break;
7942  case BO_LAnd:
7943  case BO_LOr:
7944    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
7945    break;
7946  case BO_MulAssign:
7947  case BO_DivAssign:
7948    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
7949                                               Opc == BO_DivAssign);
7950    CompLHSTy = CompResultTy;
7951    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7952      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7953    break;
7954  case BO_RemAssign:
7955    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
7956    CompLHSTy = CompResultTy;
7957    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7958      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7959    break;
7960  case BO_AddAssign:
7961    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
7962    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7963      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7964    break;
7965  case BO_SubAssign:
7966    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
7967    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7968      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7969    break;
7970  case BO_ShlAssign:
7971  case BO_ShrAssign:
7972    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
7973    CompLHSTy = CompResultTy;
7974    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7975      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7976    break;
7977  case BO_AndAssign:
7978  case BO_XorAssign:
7979  case BO_OrAssign:
7980    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
7981    CompLHSTy = CompResultTy;
7982    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7983      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7984    break;
7985  case BO_Comma:
7986    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
7987    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
7988      VK = RHS.get()->getValueKind();
7989      OK = RHS.get()->getObjectKind();
7990    }
7991    break;
7992  }
7993  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
7994    return ExprError();
7995
7996  // Check for array bounds violations for both sides of the BinaryOperator
7997  CheckArrayAccess(LHS.get());
7998  CheckArrayAccess(RHS.get());
7999
8000  if (CompResultTy.isNull())
8001    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8002                                              ResultTy, VK, OK, OpLoc));
8003  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8004      OK_ObjCProperty) {
8005    VK = VK_LValue;
8006    OK = LHS.get()->getObjectKind();
8007  }
8008  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8009                                                    ResultTy, VK, OK, CompLHSTy,
8010                                                    CompResultTy, OpLoc));
8011}
8012
8013/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8014/// operators are mixed in a way that suggests that the programmer forgot that
8015/// comparison operators have higher precedence. The most typical example of
8016/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8017static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8018                                      SourceLocation OpLoc, Expr *LHSExpr,
8019                                      Expr *RHSExpr) {
8020  typedef BinaryOperator BinOp;
8021  BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8022                RHSopc = static_cast<BinOp::Opcode>(-1);
8023  if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8024    LHSopc = BO->getOpcode();
8025  if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8026    RHSopc = BO->getOpcode();
8027
8028  // Subs are not binary operators.
8029  if (LHSopc == -1 && RHSopc == -1)
8030    return;
8031
8032  // Bitwise operations are sometimes used as eager logical ops.
8033  // Don't diagnose this.
8034  if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8035      (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8036    return;
8037
8038  bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8039  bool isRightComp = BinOp::isComparisonOp(RHSopc);
8040  if (!isLeftComp && !isRightComp) return;
8041
8042  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8043                                                   OpLoc)
8044                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8045  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8046                                 : BinOp::getOpcodeStr(RHSopc);
8047  SourceRange ParensRange = isLeftComp ?
8048      SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8049                  RHSExpr->getLocEnd())
8050    : SourceRange(LHSExpr->getLocStart(),
8051                  cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8052
8053  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8054    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8055  SuggestParentheses(Self, OpLoc,
8056    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8057    RHSExpr->getSourceRange());
8058  SuggestParentheses(Self, OpLoc,
8059    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8060    ParensRange);
8061}
8062
8063/// \brief It accepts a '&' expr that is inside a '|' one.
8064/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8065/// in parentheses.
8066static void
8067EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8068                                       BinaryOperator *Bop) {
8069  assert(Bop->getOpcode() == BO_And);
8070  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8071      << Bop->getSourceRange() << OpLoc;
8072  SuggestParentheses(Self, Bop->getOperatorLoc(),
8073    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8074    Bop->getSourceRange());
8075}
8076
8077/// \brief It accepts a '&&' expr that is inside a '||' one.
8078/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8079/// in parentheses.
8080static void
8081EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8082                                       BinaryOperator *Bop) {
8083  assert(Bop->getOpcode() == BO_LAnd);
8084  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8085      << Bop->getSourceRange() << OpLoc;
8086  SuggestParentheses(Self, Bop->getOperatorLoc(),
8087    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8088    Bop->getSourceRange());
8089}
8090
8091/// \brief Returns true if the given expression can be evaluated as a constant
8092/// 'true'.
8093static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8094  bool Res;
8095  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8096}
8097
8098/// \brief Returns true if the given expression can be evaluated as a constant
8099/// 'false'.
8100static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8101  bool Res;
8102  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8103}
8104
8105/// \brief Look for '&&' in the left hand of a '||' expr.
8106static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8107                                             Expr *LHSExpr, Expr *RHSExpr) {
8108  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8109    if (Bop->getOpcode() == BO_LAnd) {
8110      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8111      if (EvaluatesAsFalse(S, RHSExpr))
8112        return;
8113      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8114      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8115        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8116    } else if (Bop->getOpcode() == BO_LOr) {
8117      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8118        // If it's "a || b && 1 || c" we didn't warn earlier for
8119        // "a || b && 1", but warn now.
8120        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8121          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8122      }
8123    }
8124  }
8125}
8126
8127/// \brief Look for '&&' in the right hand of a '||' expr.
8128static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8129                                             Expr *LHSExpr, Expr *RHSExpr) {
8130  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8131    if (Bop->getOpcode() == BO_LAnd) {
8132      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8133      if (EvaluatesAsFalse(S, LHSExpr))
8134        return;
8135      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8136      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8137        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8138    }
8139  }
8140}
8141
8142/// \brief Look for '&' in the left or right hand of a '|' expr.
8143static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8144                                             Expr *OrArg) {
8145  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8146    if (Bop->getOpcode() == BO_And)
8147      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8148  }
8149}
8150
8151/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8152/// precedence.
8153static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8154                                    SourceLocation OpLoc, Expr *LHSExpr,
8155                                    Expr *RHSExpr){
8156  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8157  if (BinaryOperator::isBitwiseOp(Opc))
8158    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8159
8160  // Diagnose "arg1 & arg2 | arg3"
8161  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8162    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8163    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8164  }
8165
8166  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8167  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8168  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8169    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8170    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8171  }
8172}
8173
8174// Binary Operators.  'Tok' is the token for the operator.
8175ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8176                            tok::TokenKind Kind,
8177                            Expr *LHSExpr, Expr *RHSExpr) {
8178  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8179  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8180  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8181
8182  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8183  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8184
8185  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8186}
8187
8188/// Build an overloaded binary operator expression in the given scope.
8189static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8190                                       BinaryOperatorKind Opc,
8191                                       Expr *LHS, Expr *RHS) {
8192  // Find all of the overloaded operators visible from this
8193  // point. We perform both an operator-name lookup from the local
8194  // scope and an argument-dependent lookup based on the types of
8195  // the arguments.
8196  UnresolvedSet<16> Functions;
8197  OverloadedOperatorKind OverOp
8198    = BinaryOperator::getOverloadedOperator(Opc);
8199  if (Sc && OverOp != OO_None)
8200    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8201                                   RHS->getType(), Functions);
8202
8203  // Build the (potentially-overloaded, potentially-dependent)
8204  // binary operation.
8205  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8206}
8207
8208ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8209                            BinaryOperatorKind Opc,
8210                            Expr *LHSExpr, Expr *RHSExpr) {
8211  // We want to end up calling one of checkPseudoObjectAssignment
8212  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8213  // both expressions are overloadable or either is type-dependent),
8214  // or CreateBuiltinBinOp (in any other case).  We also want to get
8215  // any placeholder types out of the way.
8216
8217  // Handle pseudo-objects in the LHS.
8218  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8219    // Assignments with a pseudo-object l-value need special analysis.
8220    if (pty->getKind() == BuiltinType::PseudoObject &&
8221        BinaryOperator::isAssignmentOp(Opc))
8222      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8223
8224    // Don't resolve overloads if the other type is overloadable.
8225    if (pty->getKind() == BuiltinType::Overload) {
8226      // We can't actually test that if we still have a placeholder,
8227      // though.  Fortunately, none of the exceptions we see in that
8228      // code below are valid when the LHS is an overload set.  Note
8229      // that an overload set can be dependently-typed, but it never
8230      // instantiates to having an overloadable type.
8231      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8232      if (resolvedRHS.isInvalid()) return ExprError();
8233      RHSExpr = resolvedRHS.take();
8234
8235      if (RHSExpr->isTypeDependent() ||
8236          RHSExpr->getType()->isOverloadableType())
8237        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8238    }
8239
8240    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8241    if (LHS.isInvalid()) return ExprError();
8242    LHSExpr = LHS.take();
8243  }
8244
8245  // Handle pseudo-objects in the RHS.
8246  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8247    // An overload in the RHS can potentially be resolved by the type
8248    // being assigned to.
8249    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8250      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8251        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8252
8253      if (LHSExpr->getType()->isOverloadableType())
8254        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8255
8256      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8257    }
8258
8259    // Don't resolve overloads if the other type is overloadable.
8260    if (pty->getKind() == BuiltinType::Overload &&
8261        LHSExpr->getType()->isOverloadableType())
8262      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8263
8264    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8265    if (!resolvedRHS.isUsable()) return ExprError();
8266    RHSExpr = resolvedRHS.take();
8267  }
8268
8269  if (getLangOpts().CPlusPlus) {
8270    // If either expression is type-dependent, always build an
8271    // overloaded op.
8272    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8273      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8274
8275    // Otherwise, build an overloaded op if either expression has an
8276    // overloadable type.
8277    if (LHSExpr->getType()->isOverloadableType() ||
8278        RHSExpr->getType()->isOverloadableType())
8279      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8280  }
8281
8282  // Build a built-in binary operation.
8283  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8284}
8285
8286ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8287                                      UnaryOperatorKind Opc,
8288                                      Expr *InputExpr) {
8289  ExprResult Input = Owned(InputExpr);
8290  ExprValueKind VK = VK_RValue;
8291  ExprObjectKind OK = OK_Ordinary;
8292  QualType resultType;
8293  switch (Opc) {
8294  case UO_PreInc:
8295  case UO_PreDec:
8296  case UO_PostInc:
8297  case UO_PostDec:
8298    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8299                                                Opc == UO_PreInc ||
8300                                                Opc == UO_PostInc,
8301                                                Opc == UO_PreInc ||
8302                                                Opc == UO_PreDec);
8303    break;
8304  case UO_AddrOf:
8305    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8306    break;
8307  case UO_Deref: {
8308    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8309    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8310    break;
8311  }
8312  case UO_Plus:
8313  case UO_Minus:
8314    Input = UsualUnaryConversions(Input.take());
8315    if (Input.isInvalid()) return ExprError();
8316    resultType = Input.get()->getType();
8317    if (resultType->isDependentType())
8318      break;
8319    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8320        resultType->isVectorType())
8321      break;
8322    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8323             resultType->isEnumeralType())
8324      break;
8325    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8326             Opc == UO_Plus &&
8327             resultType->isPointerType())
8328      break;
8329
8330    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8331      << resultType << Input.get()->getSourceRange());
8332
8333  case UO_Not: // bitwise complement
8334    Input = UsualUnaryConversions(Input.take());
8335    if (Input.isInvalid()) return ExprError();
8336    resultType = Input.get()->getType();
8337    if (resultType->isDependentType())
8338      break;
8339    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8340    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8341      // C99 does not support '~' for complex conjugation.
8342      Diag(OpLoc, diag::ext_integer_complement_complex)
8343        << resultType << Input.get()->getSourceRange();
8344    else if (resultType->hasIntegerRepresentation())
8345      break;
8346    else {
8347      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8348        << resultType << Input.get()->getSourceRange());
8349    }
8350    break;
8351
8352  case UO_LNot: // logical negation
8353    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8354    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8355    if (Input.isInvalid()) return ExprError();
8356    resultType = Input.get()->getType();
8357
8358    // Though we still have to promote half FP to float...
8359    if (resultType->isHalfType()) {
8360      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8361      resultType = Context.FloatTy;
8362    }
8363
8364    if (resultType->isDependentType())
8365      break;
8366    if (resultType->isScalarType()) {
8367      // C99 6.5.3.3p1: ok, fallthrough;
8368      if (Context.getLangOpts().CPlusPlus) {
8369        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8370        // operand contextually converted to bool.
8371        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8372                                  ScalarTypeToBooleanCastKind(resultType));
8373      }
8374    } else if (resultType->isExtVectorType()) {
8375      // Vector logical not returns the signed variant of the operand type.
8376      resultType = GetSignedVectorType(resultType);
8377      break;
8378    } else {
8379      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8380        << resultType << Input.get()->getSourceRange());
8381    }
8382
8383    // LNot always has type int. C99 6.5.3.3p5.
8384    // In C++, it's bool. C++ 5.3.1p8
8385    resultType = Context.getLogicalOperationType();
8386    break;
8387  case UO_Real:
8388  case UO_Imag:
8389    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8390    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8391    // complex l-values to ordinary l-values and all other values to r-values.
8392    if (Input.isInvalid()) return ExprError();
8393    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8394      if (Input.get()->getValueKind() != VK_RValue &&
8395          Input.get()->getObjectKind() == OK_Ordinary)
8396        VK = Input.get()->getValueKind();
8397    } else if (!getLangOpts().CPlusPlus) {
8398      // In C, a volatile scalar is read by __imag. In C++, it is not.
8399      Input = DefaultLvalueConversion(Input.take());
8400    }
8401    break;
8402  case UO_Extension:
8403    resultType = Input.get()->getType();
8404    VK = Input.get()->getValueKind();
8405    OK = Input.get()->getObjectKind();
8406    break;
8407  }
8408  if (resultType.isNull() || Input.isInvalid())
8409    return ExprError();
8410
8411  // Check for array bounds violations in the operand of the UnaryOperator,
8412  // except for the '*' and '&' operators that have to be handled specially
8413  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8414  // that are explicitly defined as valid by the standard).
8415  if (Opc != UO_AddrOf && Opc != UO_Deref)
8416    CheckArrayAccess(Input.get());
8417
8418  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8419                                           VK, OK, OpLoc));
8420}
8421
8422/// \brief Determine whether the given expression is a qualified member
8423/// access expression, of a form that could be turned into a pointer to member
8424/// with the address-of operator.
8425static bool isQualifiedMemberAccess(Expr *E) {
8426  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8427    if (!DRE->getQualifier())
8428      return false;
8429
8430    ValueDecl *VD = DRE->getDecl();
8431    if (!VD->isCXXClassMember())
8432      return false;
8433
8434    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8435      return true;
8436    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8437      return Method->isInstance();
8438
8439    return false;
8440  }
8441
8442  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8443    if (!ULE->getQualifier())
8444      return false;
8445
8446    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8447                                           DEnd = ULE->decls_end();
8448         D != DEnd; ++D) {
8449      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8450        if (Method->isInstance())
8451          return true;
8452      } else {
8453        // Overload set does not contain methods.
8454        break;
8455      }
8456    }
8457
8458    return false;
8459  }
8460
8461  return false;
8462}
8463
8464ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8465                              UnaryOperatorKind Opc, Expr *Input) {
8466  // First things first: handle placeholders so that the
8467  // overloaded-operator check considers the right type.
8468  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8469    // Increment and decrement of pseudo-object references.
8470    if (pty->getKind() == BuiltinType::PseudoObject &&
8471        UnaryOperator::isIncrementDecrementOp(Opc))
8472      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8473
8474    // extension is always a builtin operator.
8475    if (Opc == UO_Extension)
8476      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8477
8478    // & gets special logic for several kinds of placeholder.
8479    // The builtin code knows what to do.
8480    if (Opc == UO_AddrOf &&
8481        (pty->getKind() == BuiltinType::Overload ||
8482         pty->getKind() == BuiltinType::UnknownAny ||
8483         pty->getKind() == BuiltinType::BoundMember))
8484      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8485
8486    // Anything else needs to be handled now.
8487    ExprResult Result = CheckPlaceholderExpr(Input);
8488    if (Result.isInvalid()) return ExprError();
8489    Input = Result.take();
8490  }
8491
8492  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8493      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8494      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8495    // Find all of the overloaded operators visible from this
8496    // point. We perform both an operator-name lookup from the local
8497    // scope and an argument-dependent lookup based on the types of
8498    // the arguments.
8499    UnresolvedSet<16> Functions;
8500    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8501    if (S && OverOp != OO_None)
8502      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8503                                   Functions);
8504
8505    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8506  }
8507
8508  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8509}
8510
8511// Unary Operators.  'Tok' is the token for the operator.
8512ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8513                              tok::TokenKind Op, Expr *Input) {
8514  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8515}
8516
8517/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8518ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8519                                LabelDecl *TheDecl) {
8520  TheDecl->setUsed();
8521  // Create the AST node.  The address of a label always has type 'void*'.
8522  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8523                                       Context.getPointerType(Context.VoidTy)));
8524}
8525
8526/// Given the last statement in a statement-expression, check whether
8527/// the result is a producing expression (like a call to an
8528/// ns_returns_retained function) and, if so, rebuild it to hoist the
8529/// release out of the full-expression.  Otherwise, return null.
8530/// Cannot fail.
8531static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8532  // Should always be wrapped with one of these.
8533  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8534  if (!cleanups) return 0;
8535
8536  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8537  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8538    return 0;
8539
8540  // Splice out the cast.  This shouldn't modify any interesting
8541  // features of the statement.
8542  Expr *producer = cast->getSubExpr();
8543  assert(producer->getType() == cast->getType());
8544  assert(producer->getValueKind() == cast->getValueKind());
8545  cleanups->setSubExpr(producer);
8546  return cleanups;
8547}
8548
8549void Sema::ActOnStartStmtExpr() {
8550  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8551}
8552
8553void Sema::ActOnStmtExprError() {
8554  DiscardCleanupsInEvaluationContext();
8555  PopExpressionEvaluationContext();
8556}
8557
8558ExprResult
8559Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8560                    SourceLocation RPLoc) { // "({..})"
8561  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8562  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8563
8564  if (hasAnyUnrecoverableErrorsInThisFunction())
8565    DiscardCleanupsInEvaluationContext();
8566  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8567  PopExpressionEvaluationContext();
8568
8569  bool isFileScope
8570    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8571  if (isFileScope)
8572    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8573
8574  // FIXME: there are a variety of strange constraints to enforce here, for
8575  // example, it is not possible to goto into a stmt expression apparently.
8576  // More semantic analysis is needed.
8577
8578  // If there are sub stmts in the compound stmt, take the type of the last one
8579  // as the type of the stmtexpr.
8580  QualType Ty = Context.VoidTy;
8581  bool StmtExprMayBindToTemp = false;
8582  if (!Compound->body_empty()) {
8583    Stmt *LastStmt = Compound->body_back();
8584    LabelStmt *LastLabelStmt = 0;
8585    // If LastStmt is a label, skip down through into the body.
8586    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8587      LastLabelStmt = Label;
8588      LastStmt = Label->getSubStmt();
8589    }
8590
8591    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8592      // Do function/array conversion on the last expression, but not
8593      // lvalue-to-rvalue.  However, initialize an unqualified type.
8594      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8595      if (LastExpr.isInvalid())
8596        return ExprError();
8597      Ty = LastExpr.get()->getType().getUnqualifiedType();
8598
8599      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8600        // In ARC, if the final expression ends in a consume, splice
8601        // the consume out and bind it later.  In the alternate case
8602        // (when dealing with a retainable type), the result
8603        // initialization will create a produce.  In both cases the
8604        // result will be +1, and we'll need to balance that out with
8605        // a bind.
8606        if (Expr *rebuiltLastStmt
8607              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8608          LastExpr = rebuiltLastStmt;
8609        } else {
8610          LastExpr = PerformCopyInitialization(
8611                            InitializedEntity::InitializeResult(LPLoc,
8612                                                                Ty,
8613                                                                false),
8614                                                   SourceLocation(),
8615                                               LastExpr);
8616        }
8617
8618        if (LastExpr.isInvalid())
8619          return ExprError();
8620        if (LastExpr.get() != 0) {
8621          if (!LastLabelStmt)
8622            Compound->setLastStmt(LastExpr.take());
8623          else
8624            LastLabelStmt->setSubStmt(LastExpr.take());
8625          StmtExprMayBindToTemp = true;
8626        }
8627      }
8628    }
8629  }
8630
8631  // FIXME: Check that expression type is complete/non-abstract; statement
8632  // expressions are not lvalues.
8633  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8634  if (StmtExprMayBindToTemp)
8635    return MaybeBindToTemporary(ResStmtExpr);
8636  return Owned(ResStmtExpr);
8637}
8638
8639ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8640                                      TypeSourceInfo *TInfo,
8641                                      OffsetOfComponent *CompPtr,
8642                                      unsigned NumComponents,
8643                                      SourceLocation RParenLoc) {
8644  QualType ArgTy = TInfo->getType();
8645  bool Dependent = ArgTy->isDependentType();
8646  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8647
8648  // We must have at least one component that refers to the type, and the first
8649  // one is known to be a field designator.  Verify that the ArgTy represents
8650  // a struct/union/class.
8651  if (!Dependent && !ArgTy->isRecordType())
8652    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8653                       << ArgTy << TypeRange);
8654
8655  // Type must be complete per C99 7.17p3 because a declaring a variable
8656  // with an incomplete type would be ill-formed.
8657  if (!Dependent
8658      && RequireCompleteType(BuiltinLoc, ArgTy,
8659                             PDiag(diag::err_offsetof_incomplete_type)
8660                               << TypeRange))
8661    return ExprError();
8662
8663  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8664  // GCC extension, diagnose them.
8665  // FIXME: This diagnostic isn't actually visible because the location is in
8666  // a system header!
8667  if (NumComponents != 1)
8668    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8669      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8670
8671  bool DidWarnAboutNonPOD = false;
8672  QualType CurrentType = ArgTy;
8673  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8674  SmallVector<OffsetOfNode, 4> Comps;
8675  SmallVector<Expr*, 4> Exprs;
8676  for (unsigned i = 0; i != NumComponents; ++i) {
8677    const OffsetOfComponent &OC = CompPtr[i];
8678    if (OC.isBrackets) {
8679      // Offset of an array sub-field.  TODO: Should we allow vector elements?
8680      if (!CurrentType->isDependentType()) {
8681        const ArrayType *AT = Context.getAsArrayType(CurrentType);
8682        if(!AT)
8683          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8684                           << CurrentType);
8685        CurrentType = AT->getElementType();
8686      } else
8687        CurrentType = Context.DependentTy;
8688
8689      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
8690      if (IdxRval.isInvalid())
8691        return ExprError();
8692      Expr *Idx = IdxRval.take();
8693
8694      // The expression must be an integral expression.
8695      // FIXME: An integral constant expression?
8696      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8697          !Idx->getType()->isIntegerType())
8698        return ExprError(Diag(Idx->getLocStart(),
8699                              diag::err_typecheck_subscript_not_integer)
8700                         << Idx->getSourceRange());
8701
8702      // Record this array index.
8703      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8704      Exprs.push_back(Idx);
8705      continue;
8706    }
8707
8708    // Offset of a field.
8709    if (CurrentType->isDependentType()) {
8710      // We have the offset of a field, but we can't look into the dependent
8711      // type. Just record the identifier of the field.
8712      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8713      CurrentType = Context.DependentTy;
8714      continue;
8715    }
8716
8717    // We need to have a complete type to look into.
8718    if (RequireCompleteType(OC.LocStart, CurrentType,
8719                            diag::err_offsetof_incomplete_type))
8720      return ExprError();
8721
8722    // Look for the designated field.
8723    const RecordType *RC = CurrentType->getAs<RecordType>();
8724    if (!RC)
8725      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8726                       << CurrentType);
8727    RecordDecl *RD = RC->getDecl();
8728
8729    // C++ [lib.support.types]p5:
8730    //   The macro offsetof accepts a restricted set of type arguments in this
8731    //   International Standard. type shall be a POD structure or a POD union
8732    //   (clause 9).
8733    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8734      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
8735          DiagRuntimeBehavior(BuiltinLoc, 0,
8736                              PDiag(diag::warn_offsetof_non_pod_type)
8737                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8738                              << CurrentType))
8739        DidWarnAboutNonPOD = true;
8740    }
8741
8742    // Look for the field.
8743    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8744    LookupQualifiedName(R, RD);
8745    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8746    IndirectFieldDecl *IndirectMemberDecl = 0;
8747    if (!MemberDecl) {
8748      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8749        MemberDecl = IndirectMemberDecl->getAnonField();
8750    }
8751
8752    if (!MemberDecl)
8753      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8754                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8755                                                              OC.LocEnd));
8756
8757    // C99 7.17p3:
8758    //   (If the specified member is a bit-field, the behavior is undefined.)
8759    //
8760    // We diagnose this as an error.
8761    if (MemberDecl->isBitField()) {
8762      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8763        << MemberDecl->getDeclName()
8764        << SourceRange(BuiltinLoc, RParenLoc);
8765      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8766      return ExprError();
8767    }
8768
8769    RecordDecl *Parent = MemberDecl->getParent();
8770    if (IndirectMemberDecl)
8771      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8772
8773    // If the member was found in a base class, introduce OffsetOfNodes for
8774    // the base class indirections.
8775    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8776                       /*DetectVirtual=*/false);
8777    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8778      CXXBasePath &Path = Paths.front();
8779      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8780           B != BEnd; ++B)
8781        Comps.push_back(OffsetOfNode(B->Base));
8782    }
8783
8784    if (IndirectMemberDecl) {
8785      for (IndirectFieldDecl::chain_iterator FI =
8786           IndirectMemberDecl->chain_begin(),
8787           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8788        assert(isa<FieldDecl>(*FI));
8789        Comps.push_back(OffsetOfNode(OC.LocStart,
8790                                     cast<FieldDecl>(*FI), OC.LocEnd));
8791      }
8792    } else
8793      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8794
8795    CurrentType = MemberDecl->getType().getNonReferenceType();
8796  }
8797
8798  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8799                                    TInfo, Comps.data(), Comps.size(),
8800                                    Exprs.data(), Exprs.size(), RParenLoc));
8801}
8802
8803ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8804                                      SourceLocation BuiltinLoc,
8805                                      SourceLocation TypeLoc,
8806                                      ParsedType ParsedArgTy,
8807                                      OffsetOfComponent *CompPtr,
8808                                      unsigned NumComponents,
8809                                      SourceLocation RParenLoc) {
8810
8811  TypeSourceInfo *ArgTInfo;
8812  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
8813  if (ArgTy.isNull())
8814    return ExprError();
8815
8816  if (!ArgTInfo)
8817    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8818
8819  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8820                              RParenLoc);
8821}
8822
8823
8824ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8825                                 Expr *CondExpr,
8826                                 Expr *LHSExpr, Expr *RHSExpr,
8827                                 SourceLocation RPLoc) {
8828  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8829
8830  ExprValueKind VK = VK_RValue;
8831  ExprObjectKind OK = OK_Ordinary;
8832  QualType resType;
8833  bool ValueDependent = false;
8834  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8835    resType = Context.DependentTy;
8836    ValueDependent = true;
8837  } else {
8838    // The conditional expression is required to be a constant expression.
8839    llvm::APSInt condEval(32);
8840    ExprResult CondICE = VerifyIntegerConstantExpression(CondExpr, &condEval,
8841      PDiag(diag::err_typecheck_choose_expr_requires_constant), false);
8842    if (CondICE.isInvalid())
8843      return ExprError();
8844    CondExpr = CondICE.take();
8845
8846    // If the condition is > zero, then the AST type is the same as the LSHExpr.
8847    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8848
8849    resType = ActiveExpr->getType();
8850    ValueDependent = ActiveExpr->isValueDependent();
8851    VK = ActiveExpr->getValueKind();
8852    OK = ActiveExpr->getObjectKind();
8853  }
8854
8855  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8856                                        resType, VK, OK, RPLoc,
8857                                        resType->isDependentType(),
8858                                        ValueDependent));
8859}
8860
8861//===----------------------------------------------------------------------===//
8862// Clang Extensions.
8863//===----------------------------------------------------------------------===//
8864
8865/// ActOnBlockStart - This callback is invoked when a block literal is started.
8866void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
8867  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8868  PushBlockScope(CurScope, Block);
8869  CurContext->addDecl(Block);
8870  if (CurScope)
8871    PushDeclContext(CurScope, Block);
8872  else
8873    CurContext = Block;
8874
8875  getCurBlock()->HasImplicitReturnType = true;
8876
8877  // Enter a new evaluation context to insulate the block from any
8878  // cleanups from the enclosing full-expression.
8879  PushExpressionEvaluationContext(PotentiallyEvaluated);
8880}
8881
8882void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8883  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8884  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8885  BlockScopeInfo *CurBlock = getCurBlock();
8886
8887  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8888  QualType T = Sig->getType();
8889
8890  // GetTypeForDeclarator always produces a function type for a block
8891  // literal signature.  Furthermore, it is always a FunctionProtoType
8892  // unless the function was written with a typedef.
8893  assert(T->isFunctionType() &&
8894         "GetTypeForDeclarator made a non-function block signature");
8895
8896  // Look for an explicit signature in that function type.
8897  FunctionProtoTypeLoc ExplicitSignature;
8898
8899  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8900  if (isa<FunctionProtoTypeLoc>(tmp)) {
8901    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8902
8903    // Check whether that explicit signature was synthesized by
8904    // GetTypeForDeclarator.  If so, don't save that as part of the
8905    // written signature.
8906    if (ExplicitSignature.getLocalRangeBegin() ==
8907        ExplicitSignature.getLocalRangeEnd()) {
8908      // This would be much cheaper if we stored TypeLocs instead of
8909      // TypeSourceInfos.
8910      TypeLoc Result = ExplicitSignature.getResultLoc();
8911      unsigned Size = Result.getFullDataSize();
8912      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8913      Sig->getTypeLoc().initializeFullCopy(Result, Size);
8914
8915      ExplicitSignature = FunctionProtoTypeLoc();
8916    }
8917  }
8918
8919  CurBlock->TheDecl->setSignatureAsWritten(Sig);
8920  CurBlock->FunctionType = T;
8921
8922  const FunctionType *Fn = T->getAs<FunctionType>();
8923  QualType RetTy = Fn->getResultType();
8924  bool isVariadic =
8925    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8926
8927  CurBlock->TheDecl->setIsVariadic(isVariadic);
8928
8929  // Don't allow returning a objc interface by value.
8930  if (RetTy->isObjCObjectType()) {
8931    Diag(ParamInfo.getLocStart(),
8932         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8933    return;
8934  }
8935
8936  // Context.DependentTy is used as a placeholder for a missing block
8937  // return type.  TODO:  what should we do with declarators like:
8938  //   ^ * { ... }
8939  // If the answer is "apply template argument deduction"....
8940  if (RetTy != Context.DependentTy) {
8941    CurBlock->ReturnType = RetTy;
8942    CurBlock->TheDecl->setBlockMissingReturnType(false);
8943    CurBlock->HasImplicitReturnType = false;
8944  }
8945
8946  // Push block parameters from the declarator if we had them.
8947  SmallVector<ParmVarDecl*, 8> Params;
8948  if (ExplicitSignature) {
8949    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8950      ParmVarDecl *Param = ExplicitSignature.getArg(I);
8951      if (Param->getIdentifier() == 0 &&
8952          !Param->isImplicit() &&
8953          !Param->isInvalidDecl() &&
8954          !getLangOpts().CPlusPlus)
8955        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8956      Params.push_back(Param);
8957    }
8958
8959  // Fake up parameter variables if we have a typedef, like
8960  //   ^ fntype { ... }
8961  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8962    for (FunctionProtoType::arg_type_iterator
8963           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8964      ParmVarDecl *Param =
8965        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8966                                   ParamInfo.getLocStart(),
8967                                   *I);
8968      Params.push_back(Param);
8969    }
8970  }
8971
8972  // Set the parameters on the block decl.
8973  if (!Params.empty()) {
8974    CurBlock->TheDecl->setParams(Params);
8975    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
8976                             CurBlock->TheDecl->param_end(),
8977                             /*CheckParameterNames=*/false);
8978  }
8979
8980  // Finally we can process decl attributes.
8981  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
8982
8983  // Put the parameter variables in scope.  We can bail out immediately
8984  // if we don't have any.
8985  if (Params.empty())
8986    return;
8987
8988  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
8989         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
8990    (*AI)->setOwningFunction(CurBlock->TheDecl);
8991
8992    // If this has an identifier, add it to the scope stack.
8993    if ((*AI)->getIdentifier()) {
8994      CheckShadow(CurBlock->TheScope, *AI);
8995
8996      PushOnScopeChains(*AI, CurBlock->TheScope);
8997    }
8998  }
8999}
9000
9001/// ActOnBlockError - If there is an error parsing a block, this callback
9002/// is invoked to pop the information about the block from the action impl.
9003void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9004  // Leave the expression-evaluation context.
9005  DiscardCleanupsInEvaluationContext();
9006  PopExpressionEvaluationContext();
9007
9008  // Pop off CurBlock, handle nested blocks.
9009  PopDeclContext();
9010  PopFunctionScopeInfo();
9011}
9012
9013/// ActOnBlockStmtExpr - This is called when the body of a block statement
9014/// literal was successfully completed.  ^(int x){...}
9015ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9016                                    Stmt *Body, Scope *CurScope) {
9017  // If blocks are disabled, emit an error.
9018  if (!LangOpts.Blocks)
9019    Diag(CaretLoc, diag::err_blocks_disable);
9020
9021  // Leave the expression-evaluation context.
9022  if (hasAnyUnrecoverableErrorsInThisFunction())
9023    DiscardCleanupsInEvaluationContext();
9024  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9025  PopExpressionEvaluationContext();
9026
9027  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9028
9029  PopDeclContext();
9030
9031  QualType RetTy = Context.VoidTy;
9032  if (!BSI->ReturnType.isNull())
9033    RetTy = BSI->ReturnType;
9034
9035  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9036  QualType BlockTy;
9037
9038  // Set the captured variables on the block.
9039  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9040  SmallVector<BlockDecl::Capture, 4> Captures;
9041  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9042    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9043    if (Cap.isThisCapture())
9044      continue;
9045    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9046                              Cap.isNested(), Cap.getCopyExpr());
9047    Captures.push_back(NewCap);
9048  }
9049  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9050                            BSI->CXXThisCaptureIndex != 0);
9051
9052  // If the user wrote a function type in some form, try to use that.
9053  if (!BSI->FunctionType.isNull()) {
9054    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9055
9056    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9057    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9058
9059    // Turn protoless block types into nullary block types.
9060    if (isa<FunctionNoProtoType>(FTy)) {
9061      FunctionProtoType::ExtProtoInfo EPI;
9062      EPI.ExtInfo = Ext;
9063      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9064
9065    // Otherwise, if we don't need to change anything about the function type,
9066    // preserve its sugar structure.
9067    } else if (FTy->getResultType() == RetTy &&
9068               (!NoReturn || FTy->getNoReturnAttr())) {
9069      BlockTy = BSI->FunctionType;
9070
9071    // Otherwise, make the minimal modifications to the function type.
9072    } else {
9073      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9074      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9075      EPI.TypeQuals = 0; // FIXME: silently?
9076      EPI.ExtInfo = Ext;
9077      BlockTy = Context.getFunctionType(RetTy,
9078                                        FPT->arg_type_begin(),
9079                                        FPT->getNumArgs(),
9080                                        EPI);
9081    }
9082
9083  // If we don't have a function type, just build one from nothing.
9084  } else {
9085    FunctionProtoType::ExtProtoInfo EPI;
9086    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9087    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9088  }
9089
9090  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9091                           BSI->TheDecl->param_end());
9092  BlockTy = Context.getBlockPointerType(BlockTy);
9093
9094  // If needed, diagnose invalid gotos and switches in the block.
9095  if (getCurFunction()->NeedsScopeChecking() &&
9096      !hasAnyUnrecoverableErrorsInThisFunction())
9097    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9098
9099  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9100
9101  for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
9102       ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
9103    const VarDecl *variable = ci->getVariable();
9104    QualType T = variable->getType();
9105    QualType::DestructionKind destructKind = T.isDestructedType();
9106    if (destructKind != QualType::DK_none)
9107      getCurFunction()->setHasBranchProtectedScope();
9108  }
9109
9110  computeNRVO(Body, getCurBlock());
9111
9112  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9113  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9114  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9115
9116  // If the block isn't obviously global, i.e. it captures anything at
9117  // all, mark this full-expression as needing a cleanup.
9118  if (Result->getBlockDecl()->hasCaptures()) {
9119    ExprCleanupObjects.push_back(Result->getBlockDecl());
9120    ExprNeedsCleanups = true;
9121  }
9122
9123  return Owned(Result);
9124}
9125
9126ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9127                                        Expr *E, ParsedType Ty,
9128                                        SourceLocation RPLoc) {
9129  TypeSourceInfo *TInfo;
9130  GetTypeFromParser(Ty, &TInfo);
9131  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9132}
9133
9134ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9135                                Expr *E, TypeSourceInfo *TInfo,
9136                                SourceLocation RPLoc) {
9137  Expr *OrigExpr = E;
9138
9139  // Get the va_list type
9140  QualType VaListType = Context.getBuiltinVaListType();
9141  if (VaListType->isArrayType()) {
9142    // Deal with implicit array decay; for example, on x86-64,
9143    // va_list is an array, but it's supposed to decay to
9144    // a pointer for va_arg.
9145    VaListType = Context.getArrayDecayedType(VaListType);
9146    // Make sure the input expression also decays appropriately.
9147    ExprResult Result = UsualUnaryConversions(E);
9148    if (Result.isInvalid())
9149      return ExprError();
9150    E = Result.take();
9151  } else {
9152    // Otherwise, the va_list argument must be an l-value because
9153    // it is modified by va_arg.
9154    if (!E->isTypeDependent() &&
9155        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9156      return ExprError();
9157  }
9158
9159  if (!E->isTypeDependent() &&
9160      !Context.hasSameType(VaListType, E->getType())) {
9161    return ExprError(Diag(E->getLocStart(),
9162                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9163      << OrigExpr->getType() << E->getSourceRange());
9164  }
9165
9166  if (!TInfo->getType()->isDependentType()) {
9167    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9168          PDiag(diag::err_second_parameter_to_va_arg_incomplete)
9169          << TInfo->getTypeLoc().getSourceRange()))
9170      return ExprError();
9171
9172    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9173          TInfo->getType(),
9174          PDiag(diag::err_second_parameter_to_va_arg_abstract)
9175          << TInfo->getTypeLoc().getSourceRange()))
9176      return ExprError();
9177
9178    if (!TInfo->getType().isPODType(Context)) {
9179      Diag(TInfo->getTypeLoc().getBeginLoc(),
9180           TInfo->getType()->isObjCLifetimeType()
9181             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9182             : diag::warn_second_parameter_to_va_arg_not_pod)
9183        << TInfo->getType()
9184        << TInfo->getTypeLoc().getSourceRange();
9185    }
9186
9187    // Check for va_arg where arguments of the given type will be promoted
9188    // (i.e. this va_arg is guaranteed to have undefined behavior).
9189    QualType PromoteType;
9190    if (TInfo->getType()->isPromotableIntegerType()) {
9191      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9192      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9193        PromoteType = QualType();
9194    }
9195    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9196      PromoteType = Context.DoubleTy;
9197    if (!PromoteType.isNull())
9198      Diag(TInfo->getTypeLoc().getBeginLoc(),
9199          diag::warn_second_parameter_to_va_arg_never_compatible)
9200        << TInfo->getType()
9201        << PromoteType
9202        << TInfo->getTypeLoc().getSourceRange();
9203  }
9204
9205  QualType T = TInfo->getType().getNonLValueExprType(Context);
9206  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9207}
9208
9209ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9210  // The type of __null will be int or long, depending on the size of
9211  // pointers on the target.
9212  QualType Ty;
9213  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9214  if (pw == Context.getTargetInfo().getIntWidth())
9215    Ty = Context.IntTy;
9216  else if (pw == Context.getTargetInfo().getLongWidth())
9217    Ty = Context.LongTy;
9218  else if (pw == Context.getTargetInfo().getLongLongWidth())
9219    Ty = Context.LongLongTy;
9220  else {
9221    llvm_unreachable("I don't know size of pointer!");
9222  }
9223
9224  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9225}
9226
9227static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9228                                           Expr *SrcExpr, FixItHint &Hint) {
9229  if (!SemaRef.getLangOpts().ObjC1)
9230    return;
9231
9232  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9233  if (!PT)
9234    return;
9235
9236  // Check if the destination is of type 'id'.
9237  if (!PT->isObjCIdType()) {
9238    // Check if the destination is the 'NSString' interface.
9239    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9240    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9241      return;
9242  }
9243
9244  // Ignore any parens, implicit casts (should only be
9245  // array-to-pointer decays), and not-so-opaque values.  The last is
9246  // important for making this trigger for property assignments.
9247  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9248  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9249    if (OV->getSourceExpr())
9250      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9251
9252  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9253  if (!SL || !SL->isAscii())
9254    return;
9255
9256  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9257}
9258
9259bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9260                                    SourceLocation Loc,
9261                                    QualType DstType, QualType SrcType,
9262                                    Expr *SrcExpr, AssignmentAction Action,
9263                                    bool *Complained) {
9264  if (Complained)
9265    *Complained = false;
9266
9267  // Decode the result (notice that AST's are still created for extensions).
9268  bool CheckInferredResultType = false;
9269  bool isInvalid = false;
9270  unsigned DiagKind = 0;
9271  FixItHint Hint;
9272  ConversionFixItGenerator ConvHints;
9273  bool MayHaveConvFixit = false;
9274  bool MayHaveFunctionDiff = false;
9275
9276  switch (ConvTy) {
9277  case Compatible: return false;
9278  case PointerToInt:
9279    DiagKind = diag::ext_typecheck_convert_pointer_int;
9280    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9281    MayHaveConvFixit = true;
9282    break;
9283  case IntToPointer:
9284    DiagKind = diag::ext_typecheck_convert_int_pointer;
9285    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9286    MayHaveConvFixit = true;
9287    break;
9288  case IncompatiblePointer:
9289    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9290    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9291    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9292      SrcType->isObjCObjectPointerType();
9293    if (Hint.isNull() && !CheckInferredResultType) {
9294      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9295    }
9296    MayHaveConvFixit = true;
9297    break;
9298  case IncompatiblePointerSign:
9299    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9300    break;
9301  case FunctionVoidPointer:
9302    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9303    break;
9304  case IncompatiblePointerDiscardsQualifiers: {
9305    // Perform array-to-pointer decay if necessary.
9306    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9307
9308    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9309    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9310    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9311      DiagKind = diag::err_typecheck_incompatible_address_space;
9312      break;
9313
9314
9315    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9316      DiagKind = diag::err_typecheck_incompatible_ownership;
9317      break;
9318    }
9319
9320    llvm_unreachable("unknown error case for discarding qualifiers!");
9321    // fallthrough
9322  }
9323  case CompatiblePointerDiscardsQualifiers:
9324    // If the qualifiers lost were because we were applying the
9325    // (deprecated) C++ conversion from a string literal to a char*
9326    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9327    // Ideally, this check would be performed in
9328    // checkPointerTypesForAssignment. However, that would require a
9329    // bit of refactoring (so that the second argument is an
9330    // expression, rather than a type), which should be done as part
9331    // of a larger effort to fix checkPointerTypesForAssignment for
9332    // C++ semantics.
9333    if (getLangOpts().CPlusPlus &&
9334        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9335      return false;
9336    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9337    break;
9338  case IncompatibleNestedPointerQualifiers:
9339    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9340    break;
9341  case IntToBlockPointer:
9342    DiagKind = diag::err_int_to_block_pointer;
9343    break;
9344  case IncompatibleBlockPointer:
9345    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9346    break;
9347  case IncompatibleObjCQualifiedId:
9348    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9349    // it can give a more specific diagnostic.
9350    DiagKind = diag::warn_incompatible_qualified_id;
9351    break;
9352  case IncompatibleVectors:
9353    DiagKind = diag::warn_incompatible_vectors;
9354    break;
9355  case IncompatibleObjCWeakRef:
9356    DiagKind = diag::err_arc_weak_unavailable_assign;
9357    break;
9358  case Incompatible:
9359    DiagKind = diag::err_typecheck_convert_incompatible;
9360    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9361    MayHaveConvFixit = true;
9362    isInvalid = true;
9363    MayHaveFunctionDiff = true;
9364    break;
9365  }
9366
9367  QualType FirstType, SecondType;
9368  switch (Action) {
9369  case AA_Assigning:
9370  case AA_Initializing:
9371    // The destination type comes first.
9372    FirstType = DstType;
9373    SecondType = SrcType;
9374    break;
9375
9376  case AA_Returning:
9377  case AA_Passing:
9378  case AA_Converting:
9379  case AA_Sending:
9380  case AA_Casting:
9381    // The source type comes first.
9382    FirstType = SrcType;
9383    SecondType = DstType;
9384    break;
9385  }
9386
9387  PartialDiagnostic FDiag = PDiag(DiagKind);
9388  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9389
9390  // If we can fix the conversion, suggest the FixIts.
9391  assert(ConvHints.isNull() || Hint.isNull());
9392  if (!ConvHints.isNull()) {
9393    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9394         HE = ConvHints.Hints.end(); HI != HE; ++HI)
9395      FDiag << *HI;
9396  } else {
9397    FDiag << Hint;
9398  }
9399  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9400
9401  if (MayHaveFunctionDiff)
9402    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9403
9404  Diag(Loc, FDiag);
9405
9406  if (SecondType == Context.OverloadTy)
9407    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9408                              FirstType);
9409
9410  if (CheckInferredResultType)
9411    EmitRelatedResultTypeNote(SrcExpr);
9412
9413  if (Complained)
9414    *Complained = true;
9415  return isInvalid;
9416}
9417
9418ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9419                                                 llvm::APSInt *Result) {
9420  return VerifyIntegerConstantExpression(E, Result,
9421      PDiag(diag::err_expr_not_ice) << LangOpts.CPlusPlus);
9422}
9423
9424ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9425                                                 PartialDiagnostic NotIceDiag,
9426                                                 bool AllowFold,
9427                                                 PartialDiagnostic FoldDiag) {
9428  SourceLocation DiagLoc = E->getLocStart();
9429
9430  if (getLangOpts().CPlusPlus0x) {
9431    // C++11 [expr.const]p5:
9432    //   If an expression of literal class type is used in a context where an
9433    //   integral constant expression is required, then that class type shall
9434    //   have a single non-explicit conversion function to an integral or
9435    //   unscoped enumeration type
9436    ExprResult Converted;
9437    if (NotIceDiag.getDiagID()) {
9438      Converted = ConvertToIntegralOrEnumerationType(
9439        DiagLoc, E,
9440        PDiag(diag::err_ice_not_integral),
9441        PDiag(diag::err_ice_incomplete_type),
9442        PDiag(diag::err_ice_explicit_conversion),
9443        PDiag(diag::note_ice_conversion_here),
9444        PDiag(diag::err_ice_ambiguous_conversion),
9445        PDiag(diag::note_ice_conversion_here),
9446        PDiag(0),
9447        /*AllowScopedEnumerations*/ false);
9448    } else {
9449      // The caller wants to silently enquire whether this is an ICE. Don't
9450      // produce any diagnostics if it isn't.
9451      Converted = ConvertToIntegralOrEnumerationType(
9452        DiagLoc, E, PDiag(), PDiag(), PDiag(), PDiag(),
9453        PDiag(), PDiag(), PDiag(), false);
9454    }
9455    if (Converted.isInvalid())
9456      return Converted;
9457    E = Converted.take();
9458    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9459      return ExprError();
9460  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9461    // An ICE must be of integral or unscoped enumeration type.
9462    if (NotIceDiag.getDiagID())
9463      Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
9464    return ExprError();
9465  }
9466
9467  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9468  // in the non-ICE case.
9469  if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9470    if (Result)
9471      *Result = E->EvaluateKnownConstInt(Context);
9472    return Owned(E);
9473  }
9474
9475  Expr::EvalResult EvalResult;
9476  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9477  EvalResult.Diag = &Notes;
9478
9479  // Try to evaluate the expression, and produce diagnostics explaining why it's
9480  // not a constant expression as a side-effect.
9481  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9482                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9483
9484  // In C++11, we can rely on diagnostics being produced for any expression
9485  // which is not a constant expression. If no diagnostics were produced, then
9486  // this is a constant expression.
9487  if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9488    if (Result)
9489      *Result = EvalResult.Val.getInt();
9490    return Owned(E);
9491  }
9492
9493  // If our only note is the usual "invalid subexpression" note, just point
9494  // the caret at its location rather than producing an essentially
9495  // redundant note.
9496  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9497        diag::note_invalid_subexpr_in_const_expr) {
9498    DiagLoc = Notes[0].first;
9499    Notes.clear();
9500  }
9501
9502  if (!Folded || !AllowFold) {
9503    if (NotIceDiag.getDiagID()) {
9504      Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
9505      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9506        Diag(Notes[I].first, Notes[I].second);
9507    }
9508
9509    return ExprError();
9510  }
9511
9512  if (FoldDiag.getDiagID())
9513    Diag(DiagLoc, FoldDiag) << E->getSourceRange();
9514  else
9515    Diag(DiagLoc, diag::ext_expr_not_ice)
9516      << E->getSourceRange() << LangOpts.CPlusPlus;
9517  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9518    Diag(Notes[I].first, Notes[I].second);
9519
9520  if (Result)
9521    *Result = EvalResult.Val.getInt();
9522  return Owned(E);
9523}
9524
9525namespace {
9526  // Handle the case where we conclude a expression which we speculatively
9527  // considered to be unevaluated is actually evaluated.
9528  class TransformToPE : public TreeTransform<TransformToPE> {
9529    typedef TreeTransform<TransformToPE> BaseTransform;
9530
9531  public:
9532    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
9533
9534    // Make sure we redo semantic analysis
9535    bool AlwaysRebuild() { return true; }
9536
9537    // Make sure we handle LabelStmts correctly.
9538    // FIXME: This does the right thing, but maybe we need a more general
9539    // fix to TreeTransform?
9540    StmtResult TransformLabelStmt(LabelStmt *S) {
9541      S->getDecl()->setStmt(0);
9542      return BaseTransform::TransformLabelStmt(S);
9543    }
9544
9545    // We need to special-case DeclRefExprs referring to FieldDecls which
9546    // are not part of a member pointer formation; normal TreeTransforming
9547    // doesn't catch this case because of the way we represent them in the AST.
9548    // FIXME: This is a bit ugly; is it really the best way to handle this
9549    // case?
9550    //
9551    // Error on DeclRefExprs referring to FieldDecls.
9552    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
9553      if (isa<FieldDecl>(E->getDecl()) &&
9554          SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
9555        return SemaRef.Diag(E->getLocation(),
9556                            diag::err_invalid_non_static_member_use)
9557            << E->getDecl() << E->getSourceRange();
9558
9559      return BaseTransform::TransformDeclRefExpr(E);
9560    }
9561
9562    // Exception: filter out member pointer formation
9563    ExprResult TransformUnaryOperator(UnaryOperator *E) {
9564      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
9565        return E;
9566
9567      return BaseTransform::TransformUnaryOperator(E);
9568    }
9569
9570    ExprResult TransformLambdaExpr(LambdaExpr *E) {
9571      // Lambdas never need to be transformed.
9572      return E;
9573    }
9574  };
9575}
9576
9577ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
9578  assert(ExprEvalContexts.back().Context == Unevaluated &&
9579         "Should only transform unevaluated expressions");
9580  ExprEvalContexts.back().Context =
9581      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
9582  if (ExprEvalContexts.back().Context == Unevaluated)
9583    return E;
9584  return TransformToPE(*this).TransformExpr(E);
9585}
9586
9587void
9588Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
9589                                      Decl *LambdaContextDecl,
9590                                      bool IsDecltype) {
9591  ExprEvalContexts.push_back(
9592             ExpressionEvaluationContextRecord(NewContext,
9593                                               ExprCleanupObjects.size(),
9594                                               ExprNeedsCleanups,
9595                                               LambdaContextDecl,
9596                                               IsDecltype));
9597  ExprNeedsCleanups = false;
9598  if (!MaybeODRUseExprs.empty())
9599    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
9600}
9601
9602void Sema::PopExpressionEvaluationContext() {
9603  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
9604
9605  if (!Rec.Lambdas.empty()) {
9606    if (Rec.Context == Unevaluated) {
9607      // C++11 [expr.prim.lambda]p2:
9608      //   A lambda-expression shall not appear in an unevaluated operand
9609      //   (Clause 5).
9610      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
9611        Diag(Rec.Lambdas[I]->getLocStart(),
9612             diag::err_lambda_unevaluated_operand);
9613    } else {
9614      // Mark the capture expressions odr-used. This was deferred
9615      // during lambda expression creation.
9616      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
9617        LambdaExpr *Lambda = Rec.Lambdas[I];
9618        for (LambdaExpr::capture_init_iterator
9619                  C = Lambda->capture_init_begin(),
9620               CEnd = Lambda->capture_init_end();
9621             C != CEnd; ++C) {
9622          MarkDeclarationsReferencedInExpr(*C);
9623        }
9624      }
9625    }
9626  }
9627
9628  // When are coming out of an unevaluated context, clear out any
9629  // temporaries that we may have created as part of the evaluation of
9630  // the expression in that context: they aren't relevant because they
9631  // will never be constructed.
9632  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
9633    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
9634                             ExprCleanupObjects.end());
9635    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
9636    CleanupVarDeclMarking();
9637    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
9638  // Otherwise, merge the contexts together.
9639  } else {
9640    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
9641    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
9642                            Rec.SavedMaybeODRUseExprs.end());
9643  }
9644
9645  // Pop the current expression evaluation context off the stack.
9646  ExprEvalContexts.pop_back();
9647}
9648
9649void Sema::DiscardCleanupsInEvaluationContext() {
9650  ExprCleanupObjects.erase(
9651         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
9652         ExprCleanupObjects.end());
9653  ExprNeedsCleanups = false;
9654  MaybeODRUseExprs.clear();
9655}
9656
9657ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
9658  if (!E->getType()->isVariablyModifiedType())
9659    return E;
9660  return TranformToPotentiallyEvaluated(E);
9661}
9662
9663static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
9664  // Do not mark anything as "used" within a dependent context; wait for
9665  // an instantiation.
9666  if (SemaRef.CurContext->isDependentContext())
9667    return false;
9668
9669  switch (SemaRef.ExprEvalContexts.back().Context) {
9670    case Sema::Unevaluated:
9671      // We are in an expression that is not potentially evaluated; do nothing.
9672      // (Depending on how you read the standard, we actually do need to do
9673      // something here for null pointer constants, but the standard's
9674      // definition of a null pointer constant is completely crazy.)
9675      return false;
9676
9677    case Sema::ConstantEvaluated:
9678    case Sema::PotentiallyEvaluated:
9679      // We are in a potentially evaluated expression (or a constant-expression
9680      // in C++03); we need to do implicit template instantiation, implicitly
9681      // define class members, and mark most declarations as used.
9682      return true;
9683
9684    case Sema::PotentiallyEvaluatedIfUsed:
9685      // Referenced declarations will only be used if the construct in the
9686      // containing expression is used.
9687      return false;
9688  }
9689  llvm_unreachable("Invalid context");
9690}
9691
9692/// \brief Mark a function referenced, and check whether it is odr-used
9693/// (C++ [basic.def.odr]p2, C99 6.9p3)
9694void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
9695  assert(Func && "No function?");
9696
9697  Func->setReferenced();
9698
9699  // Don't mark this function as used multiple times, unless it's a constexpr
9700  // function which we need to instantiate.
9701  if (Func->isUsed(false) &&
9702      !(Func->isConstexpr() && !Func->getBody() &&
9703        Func->isImplicitlyInstantiable()))
9704    return;
9705
9706  if (!IsPotentiallyEvaluatedContext(*this))
9707    return;
9708
9709  // Note that this declaration has been used.
9710  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
9711    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
9712      if (Constructor->isDefaultConstructor()) {
9713        if (Constructor->isTrivial())
9714          return;
9715        if (!Constructor->isUsed(false))
9716          DefineImplicitDefaultConstructor(Loc, Constructor);
9717      } else if (Constructor->isCopyConstructor()) {
9718        if (!Constructor->isUsed(false))
9719          DefineImplicitCopyConstructor(Loc, Constructor);
9720      } else if (Constructor->isMoveConstructor()) {
9721        if (!Constructor->isUsed(false))
9722          DefineImplicitMoveConstructor(Loc, Constructor);
9723      }
9724    }
9725
9726    MarkVTableUsed(Loc, Constructor->getParent());
9727  } else if (CXXDestructorDecl *Destructor =
9728                 dyn_cast<CXXDestructorDecl>(Func)) {
9729    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
9730        !Destructor->isUsed(false))
9731      DefineImplicitDestructor(Loc, Destructor);
9732    if (Destructor->isVirtual())
9733      MarkVTableUsed(Loc, Destructor->getParent());
9734  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
9735    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
9736        MethodDecl->isOverloadedOperator() &&
9737        MethodDecl->getOverloadedOperator() == OO_Equal) {
9738      if (!MethodDecl->isUsed(false)) {
9739        if (MethodDecl->isCopyAssignmentOperator())
9740          DefineImplicitCopyAssignment(Loc, MethodDecl);
9741        else
9742          DefineImplicitMoveAssignment(Loc, MethodDecl);
9743      }
9744    } else if (isa<CXXConversionDecl>(MethodDecl) &&
9745               MethodDecl->getParent()->isLambda()) {
9746      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
9747      if (Conversion->isLambdaToBlockPointerConversion())
9748        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
9749      else
9750        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
9751    } else if (MethodDecl->isVirtual())
9752      MarkVTableUsed(Loc, MethodDecl->getParent());
9753  }
9754
9755  // Recursive functions should be marked when used from another function.
9756  // FIXME: Is this really right?
9757  if (CurContext == Func) return;
9758
9759  // Implicit instantiation of function templates and member functions of
9760  // class templates.
9761  if (Func->isImplicitlyInstantiable()) {
9762    bool AlreadyInstantiated = false;
9763    SourceLocation PointOfInstantiation = Loc;
9764    if (FunctionTemplateSpecializationInfo *SpecInfo
9765                              = Func->getTemplateSpecializationInfo()) {
9766      if (SpecInfo->getPointOfInstantiation().isInvalid())
9767        SpecInfo->setPointOfInstantiation(Loc);
9768      else if (SpecInfo->getTemplateSpecializationKind()
9769                 == TSK_ImplicitInstantiation) {
9770        AlreadyInstantiated = true;
9771        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
9772      }
9773    } else if (MemberSpecializationInfo *MSInfo
9774                                = Func->getMemberSpecializationInfo()) {
9775      if (MSInfo->getPointOfInstantiation().isInvalid())
9776        MSInfo->setPointOfInstantiation(Loc);
9777      else if (MSInfo->getTemplateSpecializationKind()
9778                 == TSK_ImplicitInstantiation) {
9779        AlreadyInstantiated = true;
9780        PointOfInstantiation = MSInfo->getPointOfInstantiation();
9781      }
9782    }
9783
9784    if (!AlreadyInstantiated || Func->isConstexpr()) {
9785      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
9786          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
9787        PendingLocalImplicitInstantiations.push_back(
9788            std::make_pair(Func, PointOfInstantiation));
9789      else if (Func->isConstexpr())
9790        // Do not defer instantiations of constexpr functions, to avoid the
9791        // expression evaluator needing to call back into Sema if it sees a
9792        // call to such a function.
9793        InstantiateFunctionDefinition(PointOfInstantiation, Func);
9794      else {
9795        PendingInstantiations.push_back(std::make_pair(Func,
9796                                                       PointOfInstantiation));
9797        // Notify the consumer that a function was implicitly instantiated.
9798        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
9799      }
9800    }
9801  } else {
9802    // Walk redefinitions, as some of them may be instantiable.
9803    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
9804         e(Func->redecls_end()); i != e; ++i) {
9805      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
9806        MarkFunctionReferenced(Loc, *i);
9807    }
9808  }
9809
9810  // Keep track of used but undefined functions.
9811  if (!Func->isPure() && !Func->hasBody() &&
9812      Func->getLinkage() != ExternalLinkage) {
9813    SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
9814    if (old.isInvalid()) old = Loc;
9815  }
9816
9817  Func->setUsed(true);
9818}
9819
9820static void
9821diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
9822                                   VarDecl *var, DeclContext *DC) {
9823  DeclContext *VarDC = var->getDeclContext();
9824
9825  //  If the parameter still belongs to the translation unit, then
9826  //  we're actually just using one parameter in the declaration of
9827  //  the next.
9828  if (isa<ParmVarDecl>(var) &&
9829      isa<TranslationUnitDecl>(VarDC))
9830    return;
9831
9832  // For C code, don't diagnose about capture if we're not actually in code
9833  // right now; it's impossible to write a non-constant expression outside of
9834  // function context, so we'll get other (more useful) diagnostics later.
9835  //
9836  // For C++, things get a bit more nasty... it would be nice to suppress this
9837  // diagnostic for certain cases like using a local variable in an array bound
9838  // for a member of a local class, but the correct predicate is not obvious.
9839  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
9840    return;
9841
9842  if (isa<CXXMethodDecl>(VarDC) &&
9843      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
9844    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
9845      << var->getIdentifier();
9846  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
9847    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
9848      << var->getIdentifier() << fn->getDeclName();
9849  } else if (isa<BlockDecl>(VarDC)) {
9850    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
9851      << var->getIdentifier();
9852  } else {
9853    // FIXME: Is there any other context where a local variable can be
9854    // declared?
9855    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
9856      << var->getIdentifier();
9857  }
9858
9859  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
9860    << var->getIdentifier();
9861
9862  // FIXME: Add additional diagnostic info about class etc. which prevents
9863  // capture.
9864}
9865
9866/// \brief Capture the given variable in the given lambda expression.
9867static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
9868                                  VarDecl *Var, QualType FieldType,
9869                                  QualType DeclRefType,
9870                                  SourceLocation Loc) {
9871  CXXRecordDecl *Lambda = LSI->Lambda;
9872
9873  // Build the non-static data member.
9874  FieldDecl *Field
9875    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
9876                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
9877                        0, false, false);
9878  Field->setImplicit(true);
9879  Field->setAccess(AS_private);
9880  Lambda->addDecl(Field);
9881
9882  // C++11 [expr.prim.lambda]p21:
9883  //   When the lambda-expression is evaluated, the entities that
9884  //   are captured by copy are used to direct-initialize each
9885  //   corresponding non-static data member of the resulting closure
9886  //   object. (For array members, the array elements are
9887  //   direct-initialized in increasing subscript order.) These
9888  //   initializations are performed in the (unspecified) order in
9889  //   which the non-static data members are declared.
9890
9891  // Introduce a new evaluation context for the initialization, so
9892  // that temporaries introduced as part of the capture are retained
9893  // to be re-"exported" from the lambda expression itself.
9894  S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
9895
9896  // C++ [expr.prim.labda]p12:
9897  //   An entity captured by a lambda-expression is odr-used (3.2) in
9898  //   the scope containing the lambda-expression.
9899  Expr *Ref = new (S.Context) DeclRefExpr(Var, false, DeclRefType,
9900                                          VK_LValue, Loc);
9901  Var->setReferenced(true);
9902  Var->setUsed(true);
9903
9904  // When the field has array type, create index variables for each
9905  // dimension of the array. We use these index variables to subscript
9906  // the source array, and other clients (e.g., CodeGen) will perform
9907  // the necessary iteration with these index variables.
9908  SmallVector<VarDecl *, 4> IndexVariables;
9909  QualType BaseType = FieldType;
9910  QualType SizeType = S.Context.getSizeType();
9911  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
9912  while (const ConstantArrayType *Array
9913                        = S.Context.getAsConstantArrayType(BaseType)) {
9914    // Create the iteration variable for this array index.
9915    IdentifierInfo *IterationVarName = 0;
9916    {
9917      SmallString<8> Str;
9918      llvm::raw_svector_ostream OS(Str);
9919      OS << "__i" << IndexVariables.size();
9920      IterationVarName = &S.Context.Idents.get(OS.str());
9921    }
9922    VarDecl *IterationVar
9923      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9924                        IterationVarName, SizeType,
9925                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9926                        SC_None, SC_None);
9927    IndexVariables.push_back(IterationVar);
9928    LSI->ArrayIndexVars.push_back(IterationVar);
9929
9930    // Create a reference to the iteration variable.
9931    ExprResult IterationVarRef
9932      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
9933    assert(!IterationVarRef.isInvalid() &&
9934           "Reference to invented variable cannot fail!");
9935    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
9936    assert(!IterationVarRef.isInvalid() &&
9937           "Conversion of invented variable cannot fail!");
9938
9939    // Subscript the array with this iteration variable.
9940    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
9941                             Ref, Loc, IterationVarRef.take(), Loc);
9942    if (Subscript.isInvalid()) {
9943      S.CleanupVarDeclMarking();
9944      S.DiscardCleanupsInEvaluationContext();
9945      S.PopExpressionEvaluationContext();
9946      return ExprError();
9947    }
9948
9949    Ref = Subscript.take();
9950    BaseType = Array->getElementType();
9951  }
9952
9953  // Construct the entity that we will be initializing. For an array, this
9954  // will be first element in the array, which may require several levels
9955  // of array-subscript entities.
9956  SmallVector<InitializedEntity, 4> Entities;
9957  Entities.reserve(1 + IndexVariables.size());
9958  Entities.push_back(
9959    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
9960  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
9961    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
9962                                                            0,
9963                                                            Entities.back()));
9964
9965  InitializationKind InitKind
9966    = InitializationKind::CreateDirect(Loc, Loc, Loc);
9967  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
9968  ExprResult Result(true);
9969  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
9970    Result = Init.Perform(S, Entities.back(), InitKind,
9971                          MultiExprArg(S, &Ref, 1));
9972
9973  // If this initialization requires any cleanups (e.g., due to a
9974  // default argument to a copy constructor), note that for the
9975  // lambda.
9976  if (S.ExprNeedsCleanups)
9977    LSI->ExprNeedsCleanups = true;
9978
9979  // Exit the expression evaluation context used for the capture.
9980  S.CleanupVarDeclMarking();
9981  S.DiscardCleanupsInEvaluationContext();
9982  S.PopExpressionEvaluationContext();
9983  return Result;
9984}
9985
9986bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
9987                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
9988                              bool BuildAndDiagnose,
9989                              QualType &CaptureType,
9990                              QualType &DeclRefType) {
9991  bool Nested = false;
9992
9993  DeclContext *DC = CurContext;
9994  if (Var->getDeclContext() == DC) return true;
9995  if (!Var->hasLocalStorage()) return true;
9996
9997  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
9998
9999  // Walk up the stack to determine whether we can capture the variable,
10000  // performing the "simple" checks that don't depend on type. We stop when
10001  // we've either hit the declared scope of the variable or find an existing
10002  // capture of that variable.
10003  CaptureType = Var->getType();
10004  DeclRefType = CaptureType.getNonReferenceType();
10005  bool Explicit = (Kind != TryCapture_Implicit);
10006  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10007  do {
10008    // Only block literals and lambda expressions can capture; other
10009    // scopes don't work.
10010    DeclContext *ParentDC;
10011    if (isa<BlockDecl>(DC))
10012      ParentDC = DC->getParent();
10013    else if (isa<CXXMethodDecl>(DC) &&
10014             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10015             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10016      ParentDC = DC->getParent()->getParent();
10017    else {
10018      if (BuildAndDiagnose)
10019        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10020      return true;
10021    }
10022
10023    CapturingScopeInfo *CSI =
10024      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10025
10026    // Check whether we've already captured it.
10027    if (CSI->CaptureMap.count(Var)) {
10028      // If we found a capture, any subcaptures are nested.
10029      Nested = true;
10030
10031      // Retrieve the capture type for this variable.
10032      CaptureType = CSI->getCapture(Var).getCaptureType();
10033
10034      // Compute the type of an expression that refers to this variable.
10035      DeclRefType = CaptureType.getNonReferenceType();
10036
10037      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10038      if (Cap.isCopyCapture() &&
10039          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10040        DeclRefType.addConst();
10041      break;
10042    }
10043
10044    bool IsBlock = isa<BlockScopeInfo>(CSI);
10045    bool IsLambda = !IsBlock;
10046
10047    // Lambdas are not allowed to capture unnamed variables
10048    // (e.g. anonymous unions).
10049    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10050    // assuming that's the intent.
10051    if (IsLambda && !Var->getDeclName()) {
10052      if (BuildAndDiagnose) {
10053        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10054        Diag(Var->getLocation(), diag::note_declared_at);
10055      }
10056      return true;
10057    }
10058
10059    // Prohibit variably-modified types; they're difficult to deal with.
10060    if (Var->getType()->isVariablyModifiedType()) {
10061      if (BuildAndDiagnose) {
10062        if (IsBlock)
10063          Diag(Loc, diag::err_ref_vm_type);
10064        else
10065          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10066        Diag(Var->getLocation(), diag::note_previous_decl)
10067          << Var->getDeclName();
10068      }
10069      return true;
10070    }
10071
10072    // Lambdas are not allowed to capture __block variables; they don't
10073    // support the expected semantics.
10074    if (IsLambda && HasBlocksAttr) {
10075      if (BuildAndDiagnose) {
10076        Diag(Loc, diag::err_lambda_capture_block)
10077          << Var->getDeclName();
10078        Diag(Var->getLocation(), diag::note_previous_decl)
10079          << Var->getDeclName();
10080      }
10081      return true;
10082    }
10083
10084    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10085      // No capture-default
10086      if (BuildAndDiagnose) {
10087        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10088        Diag(Var->getLocation(), diag::note_previous_decl)
10089          << Var->getDeclName();
10090        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10091             diag::note_lambda_decl);
10092      }
10093      return true;
10094    }
10095
10096    FunctionScopesIndex--;
10097    DC = ParentDC;
10098    Explicit = false;
10099  } while (!Var->getDeclContext()->Equals(DC));
10100
10101  // Walk back down the scope stack, computing the type of the capture at
10102  // each step, checking type-specific requirements, and adding captures if
10103  // requested.
10104  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10105       ++I) {
10106    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10107
10108    // Compute the type of the capture and of a reference to the capture within
10109    // this scope.
10110    if (isa<BlockScopeInfo>(CSI)) {
10111      Expr *CopyExpr = 0;
10112      bool ByRef = false;
10113
10114      // Blocks are not allowed to capture arrays.
10115      if (CaptureType->isArrayType()) {
10116        if (BuildAndDiagnose) {
10117          Diag(Loc, diag::err_ref_array_type);
10118          Diag(Var->getLocation(), diag::note_previous_decl)
10119          << Var->getDeclName();
10120        }
10121        return true;
10122      }
10123
10124      // Forbid the block-capture of autoreleasing variables.
10125      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10126        if (BuildAndDiagnose) {
10127          Diag(Loc, diag::err_arc_autoreleasing_capture)
10128            << /*block*/ 0;
10129          Diag(Var->getLocation(), diag::note_previous_decl)
10130            << Var->getDeclName();
10131        }
10132        return true;
10133      }
10134
10135      if (HasBlocksAttr || CaptureType->isReferenceType()) {
10136        // Block capture by reference does not change the capture or
10137        // declaration reference types.
10138        ByRef = true;
10139      } else {
10140        // Block capture by copy introduces 'const'.
10141        CaptureType = CaptureType.getNonReferenceType().withConst();
10142        DeclRefType = CaptureType;
10143
10144        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10145          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10146            // The capture logic needs the destructor, so make sure we mark it.
10147            // Usually this is unnecessary because most local variables have
10148            // their destructors marked at declaration time, but parameters are
10149            // an exception because it's technically only the call site that
10150            // actually requires the destructor.
10151            if (isa<ParmVarDecl>(Var))
10152              FinalizeVarWithDestructor(Var, Record);
10153
10154            // According to the blocks spec, the capture of a variable from
10155            // the stack requires a const copy constructor.  This is not true
10156            // of the copy/move done to move a __block variable to the heap.
10157            Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10158                                                      DeclRefType.withConst(),
10159                                                      VK_LValue, Loc);
10160            ExprResult Result
10161              = PerformCopyInitialization(
10162                  InitializedEntity::InitializeBlock(Var->getLocation(),
10163                                                     CaptureType, false),
10164                  Loc, Owned(DeclRef));
10165
10166            // Build a full-expression copy expression if initialization
10167            // succeeded and used a non-trivial constructor.  Recover from
10168            // errors by pretending that the copy isn't necessary.
10169            if (!Result.isInvalid() &&
10170                !cast<CXXConstructExpr>(Result.get())->getConstructor()
10171                   ->isTrivial()) {
10172              Result = MaybeCreateExprWithCleanups(Result);
10173              CopyExpr = Result.take();
10174            }
10175          }
10176        }
10177      }
10178
10179      // Actually capture the variable.
10180      if (BuildAndDiagnose)
10181        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10182                        SourceLocation(), CaptureType, CopyExpr);
10183      Nested = true;
10184      continue;
10185    }
10186
10187    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10188
10189    // Determine whether we are capturing by reference or by value.
10190    bool ByRef = false;
10191    if (I == N - 1 && Kind != TryCapture_Implicit) {
10192      ByRef = (Kind == TryCapture_ExplicitByRef);
10193    } else {
10194      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10195    }
10196
10197    // Compute the type of the field that will capture this variable.
10198    if (ByRef) {
10199      // C++11 [expr.prim.lambda]p15:
10200      //   An entity is captured by reference if it is implicitly or
10201      //   explicitly captured but not captured by copy. It is
10202      //   unspecified whether additional unnamed non-static data
10203      //   members are declared in the closure type for entities
10204      //   captured by reference.
10205      //
10206      // FIXME: It is not clear whether we want to build an lvalue reference
10207      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10208      // to do the former, while EDG does the latter. Core issue 1249 will
10209      // clarify, but for now we follow GCC because it's a more permissive and
10210      // easily defensible position.
10211      CaptureType = Context.getLValueReferenceType(DeclRefType);
10212    } else {
10213      // C++11 [expr.prim.lambda]p14:
10214      //   For each entity captured by copy, an unnamed non-static
10215      //   data member is declared in the closure type. The
10216      //   declaration order of these members is unspecified. The type
10217      //   of such a data member is the type of the corresponding
10218      //   captured entity if the entity is not a reference to an
10219      //   object, or the referenced type otherwise. [Note: If the
10220      //   captured entity is a reference to a function, the
10221      //   corresponding data member is also a reference to a
10222      //   function. - end note ]
10223      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10224        if (!RefType->getPointeeType()->isFunctionType())
10225          CaptureType = RefType->getPointeeType();
10226      }
10227
10228      // Forbid the lambda copy-capture of autoreleasing variables.
10229      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10230        if (BuildAndDiagnose) {
10231          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10232          Diag(Var->getLocation(), diag::note_previous_decl)
10233            << Var->getDeclName();
10234        }
10235        return true;
10236      }
10237    }
10238
10239    // Capture this variable in the lambda.
10240    Expr *CopyExpr = 0;
10241    if (BuildAndDiagnose) {
10242      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10243                                          DeclRefType, Loc);
10244      if (!Result.isInvalid())
10245        CopyExpr = Result.take();
10246    }
10247
10248    // Compute the type of a reference to this captured variable.
10249    if (ByRef)
10250      DeclRefType = CaptureType.getNonReferenceType();
10251    else {
10252      // C++ [expr.prim.lambda]p5:
10253      //   The closure type for a lambda-expression has a public inline
10254      //   function call operator [...]. This function call operator is
10255      //   declared const (9.3.1) if and only if the lambda-expression’s
10256      //   parameter-declaration-clause is not followed by mutable.
10257      DeclRefType = CaptureType.getNonReferenceType();
10258      if (!LSI->Mutable && !CaptureType->isReferenceType())
10259        DeclRefType.addConst();
10260    }
10261
10262    // Add the capture.
10263    if (BuildAndDiagnose)
10264      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10265                      EllipsisLoc, CaptureType, CopyExpr);
10266    Nested = true;
10267  }
10268
10269  return false;
10270}
10271
10272bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10273                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10274  QualType CaptureType;
10275  QualType DeclRefType;
10276  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10277                            /*BuildAndDiagnose=*/true, CaptureType,
10278                            DeclRefType);
10279}
10280
10281QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10282  QualType CaptureType;
10283  QualType DeclRefType;
10284
10285  // Determine whether we can capture this variable.
10286  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10287                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10288    return QualType();
10289
10290  return DeclRefType;
10291}
10292
10293static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10294                               SourceLocation Loc) {
10295  // Keep track of used but undefined variables.
10296  // FIXME: We shouldn't suppress this warning for static data members.
10297  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10298      Var->getLinkage() != ExternalLinkage &&
10299      !(Var->isStaticDataMember() && Var->hasInit())) {
10300    SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10301    if (old.isInvalid()) old = Loc;
10302  }
10303
10304  SemaRef.tryCaptureVariable(Var, Loc);
10305
10306  Var->setUsed(true);
10307}
10308
10309void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10310  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10311  // an object that satisfies the requirements for appearing in a
10312  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10313  // is immediately applied."  This function handles the lvalue-to-rvalue
10314  // conversion part.
10315  MaybeODRUseExprs.erase(E->IgnoreParens());
10316}
10317
10318ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10319  if (!Res.isUsable())
10320    return Res;
10321
10322  // If a constant-expression is a reference to a variable where we delay
10323  // deciding whether it is an odr-use, just assume we will apply the
10324  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10325  // (a non-type template argument), we have special handling anyway.
10326  UpdateMarkingForLValueToRValue(Res.get());
10327  return Res;
10328}
10329
10330void Sema::CleanupVarDeclMarking() {
10331  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10332                                        e = MaybeODRUseExprs.end();
10333       i != e; ++i) {
10334    VarDecl *Var;
10335    SourceLocation Loc;
10336    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10337      Var = cast<VarDecl>(DRE->getDecl());
10338      Loc = DRE->getLocation();
10339    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10340      Var = cast<VarDecl>(ME->getMemberDecl());
10341      Loc = ME->getMemberLoc();
10342    } else {
10343      llvm_unreachable("Unexpcted expression");
10344    }
10345
10346    MarkVarDeclODRUsed(*this, Var, Loc);
10347  }
10348
10349  MaybeODRUseExprs.clear();
10350}
10351
10352// Mark a VarDecl referenced, and perform the necessary handling to compute
10353// odr-uses.
10354static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10355                                    VarDecl *Var, Expr *E) {
10356  Var->setReferenced();
10357
10358  if (!IsPotentiallyEvaluatedContext(SemaRef))
10359    return;
10360
10361  // Implicit instantiation of static data members of class templates.
10362  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10363    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10364    assert(MSInfo && "Missing member specialization information?");
10365    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10366    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10367        (!AlreadyInstantiated ||
10368         Var->isUsableInConstantExpressions(SemaRef.Context))) {
10369      if (!AlreadyInstantiated) {
10370        // This is a modification of an existing AST node. Notify listeners.
10371        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10372          L->StaticDataMemberInstantiated(Var);
10373        MSInfo->setPointOfInstantiation(Loc);
10374      }
10375      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10376      if (Var->isUsableInConstantExpressions(SemaRef.Context))
10377        // Do not defer instantiations of variables which could be used in a
10378        // constant expression.
10379        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10380      else
10381        SemaRef.PendingInstantiations.push_back(
10382            std::make_pair(Var, PointOfInstantiation));
10383    }
10384  }
10385
10386  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10387  // an object that satisfies the requirements for appearing in a
10388  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10389  // is immediately applied."  We check the first part here, and
10390  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10391  // Note that we use the C++11 definition everywhere because nothing in
10392  // C++03 depends on whether we get the C++03 version correct. This does not
10393  // apply to references, since they are not objects.
10394  const VarDecl *DefVD;
10395  if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10396      Var->isUsableInConstantExpressions(SemaRef.Context) &&
10397      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10398    SemaRef.MaybeODRUseExprs.insert(E);
10399  else
10400    MarkVarDeclODRUsed(SemaRef, Var, Loc);
10401}
10402
10403/// \brief Mark a variable referenced, and check whether it is odr-used
10404/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10405/// used directly for normal expressions referring to VarDecl.
10406void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10407  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10408}
10409
10410static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10411                               Decl *D, Expr *E) {
10412  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10413    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10414    return;
10415  }
10416
10417  SemaRef.MarkAnyDeclReferenced(Loc, D);
10418}
10419
10420/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
10421void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10422  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10423}
10424
10425/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
10426void Sema::MarkMemberReferenced(MemberExpr *E) {
10427  MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10428}
10429
10430/// \brief Perform marking for a reference to an arbitrary declaration.  It
10431/// marks the declaration referenced, and performs odr-use checking for functions
10432/// and variables. This method should not be used when building an normal
10433/// expression which refers to a variable.
10434void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10435  if (VarDecl *VD = dyn_cast<VarDecl>(D))
10436    MarkVariableReferenced(Loc, VD);
10437  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10438    MarkFunctionReferenced(Loc, FD);
10439  else
10440    D->setReferenced();
10441}
10442
10443namespace {
10444  // Mark all of the declarations referenced
10445  // FIXME: Not fully implemented yet! We need to have a better understanding
10446  // of when we're entering
10447  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10448    Sema &S;
10449    SourceLocation Loc;
10450
10451  public:
10452    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10453
10454    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10455
10456    bool TraverseTemplateArgument(const TemplateArgument &Arg);
10457    bool TraverseRecordType(RecordType *T);
10458  };
10459}
10460
10461bool MarkReferencedDecls::TraverseTemplateArgument(
10462  const TemplateArgument &Arg) {
10463  if (Arg.getKind() == TemplateArgument::Declaration) {
10464    S.MarkAnyDeclReferenced(Loc, Arg.getAsDecl());
10465  }
10466
10467  return Inherited::TraverseTemplateArgument(Arg);
10468}
10469
10470bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10471  if (ClassTemplateSpecializationDecl *Spec
10472                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10473    const TemplateArgumentList &Args = Spec->getTemplateArgs();
10474    return TraverseTemplateArguments(Args.data(), Args.size());
10475  }
10476
10477  return true;
10478}
10479
10480void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
10481  MarkReferencedDecls Marker(*this, Loc);
10482  Marker.TraverseType(Context.getCanonicalType(T));
10483}
10484
10485namespace {
10486  /// \brief Helper class that marks all of the declarations referenced by
10487  /// potentially-evaluated subexpressions as "referenced".
10488  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
10489    Sema &S;
10490    bool SkipLocalVariables;
10491
10492  public:
10493    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
10494
10495    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
10496      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
10497
10498    void VisitDeclRefExpr(DeclRefExpr *E) {
10499      // If we were asked not to visit local variables, don't.
10500      if (SkipLocalVariables) {
10501        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
10502          if (VD->hasLocalStorage())
10503            return;
10504      }
10505
10506      S.MarkDeclRefReferenced(E);
10507    }
10508
10509    void VisitMemberExpr(MemberExpr *E) {
10510      S.MarkMemberReferenced(E);
10511      Inherited::VisitMemberExpr(E);
10512    }
10513
10514    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
10515      S.MarkFunctionReferenced(E->getLocStart(),
10516            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
10517      Visit(E->getSubExpr());
10518    }
10519
10520    void VisitCXXNewExpr(CXXNewExpr *E) {
10521      if (E->getOperatorNew())
10522        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
10523      if (E->getOperatorDelete())
10524        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10525      Inherited::VisitCXXNewExpr(E);
10526    }
10527
10528    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
10529      if (E->getOperatorDelete())
10530        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10531      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
10532      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
10533        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
10534        S.MarkFunctionReferenced(E->getLocStart(),
10535                                    S.LookupDestructor(Record));
10536      }
10537
10538      Inherited::VisitCXXDeleteExpr(E);
10539    }
10540
10541    void VisitCXXConstructExpr(CXXConstructExpr *E) {
10542      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
10543      Inherited::VisitCXXConstructExpr(E);
10544    }
10545
10546    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
10547      Visit(E->getExpr());
10548    }
10549
10550    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10551      Inherited::VisitImplicitCastExpr(E);
10552
10553      if (E->getCastKind() == CK_LValueToRValue)
10554        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
10555    }
10556  };
10557}
10558
10559/// \brief Mark any declarations that appear within this expression or any
10560/// potentially-evaluated subexpressions as "referenced".
10561///
10562/// \param SkipLocalVariables If true, don't mark local variables as
10563/// 'referenced'.
10564void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
10565                                            bool SkipLocalVariables) {
10566  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
10567}
10568
10569/// \brief Emit a diagnostic that describes an effect on the run-time behavior
10570/// of the program being compiled.
10571///
10572/// This routine emits the given diagnostic when the code currently being
10573/// type-checked is "potentially evaluated", meaning that there is a
10574/// possibility that the code will actually be executable. Code in sizeof()
10575/// expressions, code used only during overload resolution, etc., are not
10576/// potentially evaluated. This routine will suppress such diagnostics or,
10577/// in the absolutely nutty case of potentially potentially evaluated
10578/// expressions (C++ typeid), queue the diagnostic to potentially emit it
10579/// later.
10580///
10581/// This routine should be used for all diagnostics that describe the run-time
10582/// behavior of a program, such as passing a non-POD value through an ellipsis.
10583/// Failure to do so will likely result in spurious diagnostics or failures
10584/// during overload resolution or within sizeof/alignof/typeof/typeid.
10585bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
10586                               const PartialDiagnostic &PD) {
10587  switch (ExprEvalContexts.back().Context) {
10588  case Unevaluated:
10589    // The argument will never be evaluated, so don't complain.
10590    break;
10591
10592  case ConstantEvaluated:
10593    // Relevant diagnostics should be produced by constant evaluation.
10594    break;
10595
10596  case PotentiallyEvaluated:
10597  case PotentiallyEvaluatedIfUsed:
10598    if (Statement && getCurFunctionOrMethodDecl()) {
10599      FunctionScopes.back()->PossiblyUnreachableDiags.
10600        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
10601    }
10602    else
10603      Diag(Loc, PD);
10604
10605    return true;
10606  }
10607
10608  return false;
10609}
10610
10611bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
10612                               CallExpr *CE, FunctionDecl *FD) {
10613  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
10614    return false;
10615
10616  // If we're inside a decltype's expression, don't check for a valid return
10617  // type or construct temporaries until we know whether this is the last call.
10618  if (ExprEvalContexts.back().IsDecltype) {
10619    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
10620    return false;
10621  }
10622
10623  PartialDiagnostic Note =
10624    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
10625    << FD->getDeclName() : PDiag();
10626  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
10627
10628  if (RequireCompleteType(Loc, ReturnType,
10629                          FD ?
10630                          PDiag(diag::err_call_function_incomplete_return)
10631                            << CE->getSourceRange() << FD->getDeclName() :
10632                          PDiag(diag::err_call_incomplete_return)
10633                            << CE->getSourceRange(),
10634                          std::make_pair(NoteLoc, Note)))
10635    return true;
10636
10637  return false;
10638}
10639
10640// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
10641// will prevent this condition from triggering, which is what we want.
10642void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
10643  SourceLocation Loc;
10644
10645  unsigned diagnostic = diag::warn_condition_is_assignment;
10646  bool IsOrAssign = false;
10647
10648  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
10649    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
10650      return;
10651
10652    IsOrAssign = Op->getOpcode() == BO_OrAssign;
10653
10654    // Greylist some idioms by putting them into a warning subcategory.
10655    if (ObjCMessageExpr *ME
10656          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
10657      Selector Sel = ME->getSelector();
10658
10659      // self = [<foo> init...]
10660      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
10661        diagnostic = diag::warn_condition_is_idiomatic_assignment;
10662
10663      // <foo> = [<bar> nextObject]
10664      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
10665        diagnostic = diag::warn_condition_is_idiomatic_assignment;
10666    }
10667
10668    Loc = Op->getOperatorLoc();
10669  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
10670    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
10671      return;
10672
10673    IsOrAssign = Op->getOperator() == OO_PipeEqual;
10674    Loc = Op->getOperatorLoc();
10675  } else {
10676    // Not an assignment.
10677    return;
10678  }
10679
10680  Diag(Loc, diagnostic) << E->getSourceRange();
10681
10682  SourceLocation Open = E->getLocStart();
10683  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
10684  Diag(Loc, diag::note_condition_assign_silence)
10685        << FixItHint::CreateInsertion(Open, "(")
10686        << FixItHint::CreateInsertion(Close, ")");
10687
10688  if (IsOrAssign)
10689    Diag(Loc, diag::note_condition_or_assign_to_comparison)
10690      << FixItHint::CreateReplacement(Loc, "!=");
10691  else
10692    Diag(Loc, diag::note_condition_assign_to_comparison)
10693      << FixItHint::CreateReplacement(Loc, "==");
10694}
10695
10696/// \brief Redundant parentheses over an equality comparison can indicate
10697/// that the user intended an assignment used as condition.
10698void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
10699  // Don't warn if the parens came from a macro.
10700  SourceLocation parenLoc = ParenE->getLocStart();
10701  if (parenLoc.isInvalid() || parenLoc.isMacroID())
10702    return;
10703  // Don't warn for dependent expressions.
10704  if (ParenE->isTypeDependent())
10705    return;
10706
10707  Expr *E = ParenE->IgnoreParens();
10708
10709  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
10710    if (opE->getOpcode() == BO_EQ &&
10711        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
10712                                                           == Expr::MLV_Valid) {
10713      SourceLocation Loc = opE->getOperatorLoc();
10714
10715      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
10716      SourceRange ParenERange = ParenE->getSourceRange();
10717      Diag(Loc, diag::note_equality_comparison_silence)
10718        << FixItHint::CreateRemoval(ParenERange.getBegin())
10719        << FixItHint::CreateRemoval(ParenERange.getEnd());
10720      Diag(Loc, diag::note_equality_comparison_to_assign)
10721        << FixItHint::CreateReplacement(Loc, "=");
10722    }
10723}
10724
10725ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
10726  DiagnoseAssignmentAsCondition(E);
10727  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
10728    DiagnoseEqualityWithExtraParens(parenE);
10729
10730  ExprResult result = CheckPlaceholderExpr(E);
10731  if (result.isInvalid()) return ExprError();
10732  E = result.take();
10733
10734  if (!E->isTypeDependent()) {
10735    if (getLangOpts().CPlusPlus)
10736      return CheckCXXBooleanCondition(E); // C++ 6.4p4
10737
10738    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
10739    if (ERes.isInvalid())
10740      return ExprError();
10741    E = ERes.take();
10742
10743    QualType T = E->getType();
10744    if (!T->isScalarType()) { // C99 6.8.4.1p1
10745      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
10746        << T << E->getSourceRange();
10747      return ExprError();
10748    }
10749  }
10750
10751  return Owned(E);
10752}
10753
10754ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
10755                                       Expr *SubExpr) {
10756  if (!SubExpr)
10757    return ExprError();
10758
10759  return CheckBooleanCondition(SubExpr, Loc);
10760}
10761
10762namespace {
10763  /// A visitor for rebuilding a call to an __unknown_any expression
10764  /// to have an appropriate type.
10765  struct RebuildUnknownAnyFunction
10766    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
10767
10768    Sema &S;
10769
10770    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
10771
10772    ExprResult VisitStmt(Stmt *S) {
10773      llvm_unreachable("unexpected statement!");
10774    }
10775
10776    ExprResult VisitExpr(Expr *E) {
10777      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
10778        << E->getSourceRange();
10779      return ExprError();
10780    }
10781
10782    /// Rebuild an expression which simply semantically wraps another
10783    /// expression which it shares the type and value kind of.
10784    template <class T> ExprResult rebuildSugarExpr(T *E) {
10785      ExprResult SubResult = Visit(E->getSubExpr());
10786      if (SubResult.isInvalid()) return ExprError();
10787
10788      Expr *SubExpr = SubResult.take();
10789      E->setSubExpr(SubExpr);
10790      E->setType(SubExpr->getType());
10791      E->setValueKind(SubExpr->getValueKind());
10792      assert(E->getObjectKind() == OK_Ordinary);
10793      return E;
10794    }
10795
10796    ExprResult VisitParenExpr(ParenExpr *E) {
10797      return rebuildSugarExpr(E);
10798    }
10799
10800    ExprResult VisitUnaryExtension(UnaryOperator *E) {
10801      return rebuildSugarExpr(E);
10802    }
10803
10804    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10805      ExprResult SubResult = Visit(E->getSubExpr());
10806      if (SubResult.isInvalid()) return ExprError();
10807
10808      Expr *SubExpr = SubResult.take();
10809      E->setSubExpr(SubExpr);
10810      E->setType(S.Context.getPointerType(SubExpr->getType()));
10811      assert(E->getValueKind() == VK_RValue);
10812      assert(E->getObjectKind() == OK_Ordinary);
10813      return E;
10814    }
10815
10816    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
10817      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
10818
10819      E->setType(VD->getType());
10820
10821      assert(E->getValueKind() == VK_RValue);
10822      if (S.getLangOpts().CPlusPlus &&
10823          !(isa<CXXMethodDecl>(VD) &&
10824            cast<CXXMethodDecl>(VD)->isInstance()))
10825        E->setValueKind(VK_LValue);
10826
10827      return E;
10828    }
10829
10830    ExprResult VisitMemberExpr(MemberExpr *E) {
10831      return resolveDecl(E, E->getMemberDecl());
10832    }
10833
10834    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10835      return resolveDecl(E, E->getDecl());
10836    }
10837  };
10838}
10839
10840/// Given a function expression of unknown-any type, try to rebuild it
10841/// to have a function type.
10842static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
10843  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
10844  if (Result.isInvalid()) return ExprError();
10845  return S.DefaultFunctionArrayConversion(Result.take());
10846}
10847
10848namespace {
10849  /// A visitor for rebuilding an expression of type __unknown_anytype
10850  /// into one which resolves the type directly on the referring
10851  /// expression.  Strict preservation of the original source
10852  /// structure is not a goal.
10853  struct RebuildUnknownAnyExpr
10854    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
10855
10856    Sema &S;
10857
10858    /// The current destination type.
10859    QualType DestType;
10860
10861    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
10862      : S(S), DestType(CastType) {}
10863
10864    ExprResult VisitStmt(Stmt *S) {
10865      llvm_unreachable("unexpected statement!");
10866    }
10867
10868    ExprResult VisitExpr(Expr *E) {
10869      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
10870        << E->getSourceRange();
10871      return ExprError();
10872    }
10873
10874    ExprResult VisitCallExpr(CallExpr *E);
10875    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
10876
10877    /// Rebuild an expression which simply semantically wraps another
10878    /// expression which it shares the type and value kind of.
10879    template <class T> ExprResult rebuildSugarExpr(T *E) {
10880      ExprResult SubResult = Visit(E->getSubExpr());
10881      if (SubResult.isInvalid()) return ExprError();
10882      Expr *SubExpr = SubResult.take();
10883      E->setSubExpr(SubExpr);
10884      E->setType(SubExpr->getType());
10885      E->setValueKind(SubExpr->getValueKind());
10886      assert(E->getObjectKind() == OK_Ordinary);
10887      return E;
10888    }
10889
10890    ExprResult VisitParenExpr(ParenExpr *E) {
10891      return rebuildSugarExpr(E);
10892    }
10893
10894    ExprResult VisitUnaryExtension(UnaryOperator *E) {
10895      return rebuildSugarExpr(E);
10896    }
10897
10898    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10899      const PointerType *Ptr = DestType->getAs<PointerType>();
10900      if (!Ptr) {
10901        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
10902          << E->getSourceRange();
10903        return ExprError();
10904      }
10905      assert(E->getValueKind() == VK_RValue);
10906      assert(E->getObjectKind() == OK_Ordinary);
10907      E->setType(DestType);
10908
10909      // Build the sub-expression as if it were an object of the pointee type.
10910      DestType = Ptr->getPointeeType();
10911      ExprResult SubResult = Visit(E->getSubExpr());
10912      if (SubResult.isInvalid()) return ExprError();
10913      E->setSubExpr(SubResult.take());
10914      return E;
10915    }
10916
10917    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
10918
10919    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
10920
10921    ExprResult VisitMemberExpr(MemberExpr *E) {
10922      return resolveDecl(E, E->getMemberDecl());
10923    }
10924
10925    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
10926      return resolveDecl(E, E->getDecl());
10927    }
10928  };
10929}
10930
10931/// Rebuilds a call expression which yielded __unknown_anytype.
10932ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
10933  Expr *CalleeExpr = E->getCallee();
10934
10935  enum FnKind {
10936    FK_MemberFunction,
10937    FK_FunctionPointer,
10938    FK_BlockPointer
10939  };
10940
10941  FnKind Kind;
10942  QualType CalleeType = CalleeExpr->getType();
10943  if (CalleeType == S.Context.BoundMemberTy) {
10944    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
10945    Kind = FK_MemberFunction;
10946    CalleeType = Expr::findBoundMemberType(CalleeExpr);
10947  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
10948    CalleeType = Ptr->getPointeeType();
10949    Kind = FK_FunctionPointer;
10950  } else {
10951    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
10952    Kind = FK_BlockPointer;
10953  }
10954  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
10955
10956  // Verify that this is a legal result type of a function.
10957  if (DestType->isArrayType() || DestType->isFunctionType()) {
10958    unsigned diagID = diag::err_func_returning_array_function;
10959    if (Kind == FK_BlockPointer)
10960      diagID = diag::err_block_returning_array_function;
10961
10962    S.Diag(E->getExprLoc(), diagID)
10963      << DestType->isFunctionType() << DestType;
10964    return ExprError();
10965  }
10966
10967  // Otherwise, go ahead and set DestType as the call's result.
10968  E->setType(DestType.getNonLValueExprType(S.Context));
10969  E->setValueKind(Expr::getValueKindForType(DestType));
10970  assert(E->getObjectKind() == OK_Ordinary);
10971
10972  // Rebuild the function type, replacing the result type with DestType.
10973  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
10974    DestType = S.Context.getFunctionType(DestType,
10975                                         Proto->arg_type_begin(),
10976                                         Proto->getNumArgs(),
10977                                         Proto->getExtProtoInfo());
10978  else
10979    DestType = S.Context.getFunctionNoProtoType(DestType,
10980                                                FnType->getExtInfo());
10981
10982  // Rebuild the appropriate pointer-to-function type.
10983  switch (Kind) {
10984  case FK_MemberFunction:
10985    // Nothing to do.
10986    break;
10987
10988  case FK_FunctionPointer:
10989    DestType = S.Context.getPointerType(DestType);
10990    break;
10991
10992  case FK_BlockPointer:
10993    DestType = S.Context.getBlockPointerType(DestType);
10994    break;
10995  }
10996
10997  // Finally, we can recurse.
10998  ExprResult CalleeResult = Visit(CalleeExpr);
10999  if (!CalleeResult.isUsable()) return ExprError();
11000  E->setCallee(CalleeResult.take());
11001
11002  // Bind a temporary if necessary.
11003  return S.MaybeBindToTemporary(E);
11004}
11005
11006ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11007  // Verify that this is a legal result type of a call.
11008  if (DestType->isArrayType() || DestType->isFunctionType()) {
11009    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11010      << DestType->isFunctionType() << DestType;
11011    return ExprError();
11012  }
11013
11014  // Rewrite the method result type if available.
11015  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11016    assert(Method->getResultType() == S.Context.UnknownAnyTy);
11017    Method->setResultType(DestType);
11018  }
11019
11020  // Change the type of the message.
11021  E->setType(DestType.getNonReferenceType());
11022  E->setValueKind(Expr::getValueKindForType(DestType));
11023
11024  return S.MaybeBindToTemporary(E);
11025}
11026
11027ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11028  // The only case we should ever see here is a function-to-pointer decay.
11029  if (E->getCastKind() == CK_FunctionToPointerDecay) {
11030    assert(E->getValueKind() == VK_RValue);
11031    assert(E->getObjectKind() == OK_Ordinary);
11032
11033    E->setType(DestType);
11034
11035    // Rebuild the sub-expression as the pointee (function) type.
11036    DestType = DestType->castAs<PointerType>()->getPointeeType();
11037
11038    ExprResult Result = Visit(E->getSubExpr());
11039    if (!Result.isUsable()) return ExprError();
11040
11041    E->setSubExpr(Result.take());
11042    return S.Owned(E);
11043  } else if (E->getCastKind() == CK_LValueToRValue) {
11044    assert(E->getValueKind() == VK_RValue);
11045    assert(E->getObjectKind() == OK_Ordinary);
11046
11047    assert(isa<BlockPointerType>(E->getType()));
11048
11049    E->setType(DestType);
11050
11051    // The sub-expression has to be a lvalue reference, so rebuild it as such.
11052    DestType = S.Context.getLValueReferenceType(DestType);
11053
11054    ExprResult Result = Visit(E->getSubExpr());
11055    if (!Result.isUsable()) return ExprError();
11056
11057    E->setSubExpr(Result.take());
11058    return S.Owned(E);
11059  } else {
11060    llvm_unreachable("Unhandled cast type!");
11061  }
11062}
11063
11064ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11065  ExprValueKind ValueKind = VK_LValue;
11066  QualType Type = DestType;
11067
11068  // We know how to make this work for certain kinds of decls:
11069
11070  //  - functions
11071  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11072    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11073      DestType = Ptr->getPointeeType();
11074      ExprResult Result = resolveDecl(E, VD);
11075      if (Result.isInvalid()) return ExprError();
11076      return S.ImpCastExprToType(Result.take(), Type,
11077                                 CK_FunctionToPointerDecay, VK_RValue);
11078    }
11079
11080    if (!Type->isFunctionType()) {
11081      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11082        << VD << E->getSourceRange();
11083      return ExprError();
11084    }
11085
11086    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11087      if (MD->isInstance()) {
11088        ValueKind = VK_RValue;
11089        Type = S.Context.BoundMemberTy;
11090      }
11091
11092    // Function references aren't l-values in C.
11093    if (!S.getLangOpts().CPlusPlus)
11094      ValueKind = VK_RValue;
11095
11096  //  - variables
11097  } else if (isa<VarDecl>(VD)) {
11098    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11099      Type = RefTy->getPointeeType();
11100    } else if (Type->isFunctionType()) {
11101      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11102        << VD << E->getSourceRange();
11103      return ExprError();
11104    }
11105
11106  //  - nothing else
11107  } else {
11108    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11109      << VD << E->getSourceRange();
11110    return ExprError();
11111  }
11112
11113  VD->setType(DestType);
11114  E->setType(Type);
11115  E->setValueKind(ValueKind);
11116  return S.Owned(E);
11117}
11118
11119/// Check a cast of an unknown-any type.  We intentionally only
11120/// trigger this for C-style casts.
11121ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11122                                     Expr *CastExpr, CastKind &CastKind,
11123                                     ExprValueKind &VK, CXXCastPath &Path) {
11124  // Rewrite the casted expression from scratch.
11125  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11126  if (!result.isUsable()) return ExprError();
11127
11128  CastExpr = result.take();
11129  VK = CastExpr->getValueKind();
11130  CastKind = CK_NoOp;
11131
11132  return CastExpr;
11133}
11134
11135ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11136  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11137}
11138
11139static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11140  Expr *orig = E;
11141  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11142  while (true) {
11143    E = E->IgnoreParenImpCasts();
11144    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11145      E = call->getCallee();
11146      diagID = diag::err_uncasted_call_of_unknown_any;
11147    } else {
11148      break;
11149    }
11150  }
11151
11152  SourceLocation loc;
11153  NamedDecl *d;
11154  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11155    loc = ref->getLocation();
11156    d = ref->getDecl();
11157  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11158    loc = mem->getMemberLoc();
11159    d = mem->getMemberDecl();
11160  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11161    diagID = diag::err_uncasted_call_of_unknown_any;
11162    loc = msg->getSelectorStartLoc();
11163    d = msg->getMethodDecl();
11164    if (!d) {
11165      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11166        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11167        << orig->getSourceRange();
11168      return ExprError();
11169    }
11170  } else {
11171    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11172      << E->getSourceRange();
11173    return ExprError();
11174  }
11175
11176  S.Diag(loc, diagID) << d << orig->getSourceRange();
11177
11178  // Never recoverable.
11179  return ExprError();
11180}
11181
11182/// Check for operands with placeholder types and complain if found.
11183/// Returns true if there was an error and no recovery was possible.
11184ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11185  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11186  if (!placeholderType) return Owned(E);
11187
11188  switch (placeholderType->getKind()) {
11189
11190  // Overloaded expressions.
11191  case BuiltinType::Overload: {
11192    // Try to resolve a single function template specialization.
11193    // This is obligatory.
11194    ExprResult result = Owned(E);
11195    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11196      return result;
11197
11198    // If that failed, try to recover with a call.
11199    } else {
11200      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11201                           /*complain*/ true);
11202      return result;
11203    }
11204  }
11205
11206  // Bound member functions.
11207  case BuiltinType::BoundMember: {
11208    ExprResult result = Owned(E);
11209    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11210                         /*complain*/ true);
11211    return result;
11212  }
11213
11214  // ARC unbridged casts.
11215  case BuiltinType::ARCUnbridgedCast: {
11216    Expr *realCast = stripARCUnbridgedCast(E);
11217    diagnoseARCUnbridgedCast(realCast);
11218    return Owned(realCast);
11219  }
11220
11221  // Expressions of unknown type.
11222  case BuiltinType::UnknownAny:
11223    return diagnoseUnknownAnyExpr(*this, E);
11224
11225  // Pseudo-objects.
11226  case BuiltinType::PseudoObject:
11227    return checkPseudoObjectRValue(E);
11228
11229  // Everything else should be impossible.
11230#define BUILTIN_TYPE(Id, SingletonId) \
11231  case BuiltinType::Id:
11232#define PLACEHOLDER_TYPE(Id, SingletonId)
11233#include "clang/AST/BuiltinTypes.def"
11234    break;
11235  }
11236
11237  llvm_unreachable("invalid placeholder type!");
11238}
11239
11240bool Sema::CheckCaseExpression(Expr *E) {
11241  if (E->isTypeDependent())
11242    return true;
11243  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11244    return E->getType()->isIntegralOrEnumerationType();
11245  return false;
11246}
11247
11248/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11249ExprResult
11250Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11251  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11252         "Unknown Objective-C Boolean value!");
11253  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11254                                        Context.ObjCBuiltinBoolTy, OpLoc));
11255}
11256