SemaExpr.cpp revision 75eb67174b6c9ecf5f586e54025b76a1ce36b0e4
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/LiteralSupport.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/Designator.h"
30#include "clang/Parse/Scope.h"
31#include "clang/Parse/Template.h"
32using namespace clang;
33
34
35/// \brief Determine whether the use of this declaration is valid, and
36/// emit any corresponding diagnostics.
37///
38/// This routine diagnoses various problems with referencing
39/// declarations that can occur when using a declaration. For example,
40/// it might warn if a deprecated or unavailable declaration is being
41/// used, or produce an error (and return true) if a C++0x deleted
42/// function is being used.
43///
44/// If IgnoreDeprecated is set to true, this should not want about deprecated
45/// decls.
46///
47/// \returns true if there was an error (this declaration cannot be
48/// referenced), false otherwise.
49///
50bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
51  // See if the decl is deprecated.
52  if (D->getAttr<DeprecatedAttr>()) {
53    EmitDeprecationWarning(D, Loc);
54  }
55
56  // See if the decl is unavailable
57  if (D->getAttr<UnavailableAttr>()) {
58    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
59    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
60  }
61
62  // See if this is a deleted function.
63  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64    if (FD->isDeleted()) {
65      Diag(Loc, diag::err_deleted_function_use);
66      Diag(D->getLocation(), diag::note_unavailable_here) << true;
67      return true;
68    }
69  }
70
71  return false;
72}
73
74/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
75/// (and other functions in future), which have been declared with sentinel
76/// attribute. It warns if call does not have the sentinel argument.
77///
78void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
79                                 Expr **Args, unsigned NumArgs) {
80  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
81  if (!attr)
82    return;
83  int sentinelPos = attr->getSentinel();
84  int nullPos = attr->getNullPos();
85
86  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
87  // base class. Then we won't be needing two versions of the same code.
88  unsigned int i = 0;
89  bool warnNotEnoughArgs = false;
90  int isMethod = 0;
91  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
92    // skip over named parameters.
93    ObjCMethodDecl::param_iterator P, E = MD->param_end();
94    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
95      if (nullPos)
96        --nullPos;
97      else
98        ++i;
99    }
100    warnNotEnoughArgs = (P != E || i >= NumArgs);
101    isMethod = 1;
102  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = FD->param_end();
105    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
113    // block or function pointer call.
114    QualType Ty = V->getType();
115    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
116      const FunctionType *FT = Ty->isFunctionPointerType()
117      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
118      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
119      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
120        unsigned NumArgsInProto = Proto->getNumArgs();
121        unsigned k;
122        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
123          if (nullPos)
124            --nullPos;
125          else
126            ++i;
127        }
128        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
129      }
130      if (Ty->isBlockPointerType())
131        isMethod = 2;
132    } else
133      return;
134  } else
135    return;
136
137  if (warnNotEnoughArgs) {
138    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
139    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
140    return;
141  }
142  int sentinel = i;
143  while (sentinelPos > 0 && i < NumArgs-1) {
144    --sentinelPos;
145    ++i;
146  }
147  if (sentinelPos > 0) {
148    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
149    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
150    return;
151  }
152  while (i < NumArgs-1) {
153    ++i;
154    ++sentinel;
155  }
156  Expr *sentinelExpr = Args[sentinel];
157  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
158                       (!sentinelExpr->getType()->isPointerType() ||
159                        !sentinelExpr->isNullPointerConstant(Context,
160                                            Expr::NPC_ValueDependentIsNull)))) {
161    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
162    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
163  }
164  return;
165}
166
167SourceRange Sema::getExprRange(ExprTy *E) const {
168  Expr *Ex = (Expr *)E;
169  return Ex? Ex->getSourceRange() : SourceRange();
170}
171
172//===----------------------------------------------------------------------===//
173//  Standard Promotions and Conversions
174//===----------------------------------------------------------------------===//
175
176/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
177void Sema::DefaultFunctionArrayConversion(Expr *&E) {
178  QualType Ty = E->getType();
179  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
180
181  if (Ty->isFunctionType())
182    ImpCastExprToType(E, Context.getPointerType(Ty),
183                      CastExpr::CK_FunctionToPointerDecay);
184  else if (Ty->isArrayType()) {
185    // In C90 mode, arrays only promote to pointers if the array expression is
186    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
187    // type 'array of type' is converted to an expression that has type 'pointer
188    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
189    // that has type 'array of type' ...".  The relevant change is "an lvalue"
190    // (C90) to "an expression" (C99).
191    //
192    // C++ 4.2p1:
193    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
194    // T" can be converted to an rvalue of type "pointer to T".
195    //
196    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
197        E->isLvalue(Context) == Expr::LV_Valid)
198      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
199                        CastExpr::CK_ArrayToPointerDecay);
200  }
201}
202
203void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
204  DefaultFunctionArrayConversion(E);
205
206  QualType Ty = E->getType();
207  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
208  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
209      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
210      E->isLvalue(Context) == Expr::LV_Valid) {
211    // C++ [conv.lval]p1:
212    //   [...] If T is a non-class type, the type of the rvalue is the
213    //   cv-unqualified version of T. Otherwise, the type of the
214    //   rvalue is T
215    //
216    // C99 6.3.2.1p2:
217    //   If the lvalue has qualified type, the value has the unqualified
218    //   version of the type of the lvalue; otherwise, the value has the
219    //   type of the lvalue.
220    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
221  }
222}
223
224
225/// UsualUnaryConversions - Performs various conversions that are common to most
226/// operators (C99 6.3). The conversions of array and function types are
227/// sometimes surpressed. For example, the array->pointer conversion doesn't
228/// apply if the array is an argument to the sizeof or address (&) operators.
229/// In these instances, this routine should *not* be called.
230Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
231  QualType Ty = Expr->getType();
232  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
233
234  // C99 6.3.1.1p2:
235  //
236  //   The following may be used in an expression wherever an int or
237  //   unsigned int may be used:
238  //     - an object or expression with an integer type whose integer
239  //       conversion rank is less than or equal to the rank of int
240  //       and unsigned int.
241  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
242  //
243  //   If an int can represent all values of the original type, the
244  //   value is converted to an int; otherwise, it is converted to an
245  //   unsigned int. These are called the integer promotions. All
246  //   other types are unchanged by the integer promotions.
247  QualType PTy = Context.isPromotableBitField(Expr);
248  if (!PTy.isNull()) {
249    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
250    return Expr;
251  }
252  if (Ty->isPromotableIntegerType()) {
253    QualType PT = Context.getPromotedIntegerType(Ty);
254    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
255    return Expr;
256  }
257
258  DefaultFunctionArrayLvalueConversion(Expr);
259  return Expr;
260}
261
262/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
263/// do not have a prototype. Arguments that have type float are promoted to
264/// double. All other argument types are converted by UsualUnaryConversions().
265void Sema::DefaultArgumentPromotion(Expr *&Expr) {
266  QualType Ty = Expr->getType();
267  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
268
269  // If this is a 'float' (CVR qualified or typedef) promote to double.
270  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
271    if (BT->getKind() == BuiltinType::Float)
272      return ImpCastExprToType(Expr, Context.DoubleTy,
273                               CastExpr::CK_FloatingCast);
274
275  UsualUnaryConversions(Expr);
276}
277
278/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
279/// will warn if the resulting type is not a POD type, and rejects ObjC
280/// interfaces passed by value.  This returns true if the argument type is
281/// completely illegal.
282bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
283  DefaultArgumentPromotion(Expr);
284
285  if (Expr->getType()->isObjCInterfaceType() &&
286      DiagRuntimeBehavior(Expr->getLocStart(),
287        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
288          << Expr->getType() << CT))
289    return true;
290
291  if (!Expr->getType()->isPODType() &&
292      DiagRuntimeBehavior(Expr->getLocStart(),
293                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
294                            << Expr->getType() << CT))
295    return true;
296
297  return false;
298}
299
300
301/// UsualArithmeticConversions - Performs various conversions that are common to
302/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
303/// routine returns the first non-arithmetic type found. The client is
304/// responsible for emitting appropriate error diagnostics.
305/// FIXME: verify the conversion rules for "complex int" are consistent with
306/// GCC.
307QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
308                                          bool isCompAssign) {
309  if (!isCompAssign)
310    UsualUnaryConversions(lhsExpr);
311
312  UsualUnaryConversions(rhsExpr);
313
314  // For conversion purposes, we ignore any qualifiers.
315  // For example, "const float" and "float" are equivalent.
316  QualType lhs =
317    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
318  QualType rhs =
319    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
320
321  // If both types are identical, no conversion is needed.
322  if (lhs == rhs)
323    return lhs;
324
325  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
326  // The caller can deal with this (e.g. pointer + int).
327  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
328    return lhs;
329
330  // Perform bitfield promotions.
331  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
332  if (!LHSBitfieldPromoteTy.isNull())
333    lhs = LHSBitfieldPromoteTy;
334  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
335  if (!RHSBitfieldPromoteTy.isNull())
336    rhs = RHSBitfieldPromoteTy;
337
338  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
339  if (!isCompAssign)
340    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
341  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus)
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
397/// up-to-date.
398///
399static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    if (!Var->hasLocalStorage())
415      return false;
416
417  // Blocks that have these can't be constant.
418  CurBlock->hasBlockDeclRefExprs = true;
419
420  // If we have nested blocks, the decl may be declared in an outer block (in
421  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
422  // be defined outside all of the current blocks (in which case the blocks do
423  // all get the bit).  Walk the nesting chain.
424  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
425       NextBlock = NextBlock->PrevBlockInfo) {
426    // If we found the defining block for the variable, don't mark the block as
427    // having a reference outside it.
428    if (NextBlock->TheDecl == VD->getDeclContext())
429      break;
430
431    // Otherwise, the DeclRef from the inner block causes the outer one to need
432    // a snapshot as well.
433    NextBlock->hasBlockDeclRefExprs = true;
434  }
435
436  return true;
437}
438
439
440
441/// BuildDeclRefExpr - Build a DeclRefExpr.
442Sema::OwningExprResult
443Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
444                       const CXXScopeSpec *SS) {
445  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
446    Diag(Loc,
447         diag::err_auto_variable_cannot_appear_in_own_initializer)
448      << D->getDeclName();
449    return ExprError();
450  }
451
452  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
453    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
454      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
455        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
456          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
457            << D->getIdentifier() << FD->getDeclName();
458          Diag(D->getLocation(), diag::note_local_variable_declared_here)
459            << D->getIdentifier();
460          return ExprError();
461        }
462      }
463    }
464  }
465
466  MarkDeclarationReferenced(Loc, D);
467
468  return Owned(DeclRefExpr::Create(Context,
469                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
470                                   SS? SS->getRange() : SourceRange(),
471                                   D, Loc, Ty));
472}
473
474/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
475/// variable corresponding to the anonymous union or struct whose type
476/// is Record.
477static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
478                                             RecordDecl *Record) {
479  assert(Record->isAnonymousStructOrUnion() &&
480         "Record must be an anonymous struct or union!");
481
482  // FIXME: Once Decls are directly linked together, this will be an O(1)
483  // operation rather than a slow walk through DeclContext's vector (which
484  // itself will be eliminated). DeclGroups might make this even better.
485  DeclContext *Ctx = Record->getDeclContext();
486  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
487                               DEnd = Ctx->decls_end();
488       D != DEnd; ++D) {
489    if (*D == Record) {
490      // The object for the anonymous struct/union directly
491      // follows its type in the list of declarations.
492      ++D;
493      assert(D != DEnd && "Missing object for anonymous record");
494      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
495      return *D;
496    }
497  }
498
499  assert(false && "Missing object for anonymous record");
500  return 0;
501}
502
503/// \brief Given a field that represents a member of an anonymous
504/// struct/union, build the path from that field's context to the
505/// actual member.
506///
507/// Construct the sequence of field member references we'll have to
508/// perform to get to the field in the anonymous union/struct. The
509/// list of members is built from the field outward, so traverse it
510/// backwards to go from an object in the current context to the field
511/// we found.
512///
513/// \returns The variable from which the field access should begin,
514/// for an anonymous struct/union that is not a member of another
515/// class. Otherwise, returns NULL.
516VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
517                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
518  assert(Field->getDeclContext()->isRecord() &&
519         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
520         && "Field must be stored inside an anonymous struct or union");
521
522  Path.push_back(Field);
523  VarDecl *BaseObject = 0;
524  DeclContext *Ctx = Field->getDeclContext();
525  do {
526    RecordDecl *Record = cast<RecordDecl>(Ctx);
527    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
528    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
529      Path.push_back(AnonField);
530    else {
531      BaseObject = cast<VarDecl>(AnonObject);
532      break;
533    }
534    Ctx = Ctx->getParent();
535  } while (Ctx->isRecord() &&
536           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
537
538  return BaseObject;
539}
540
541Sema::OwningExprResult
542Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
543                                               FieldDecl *Field,
544                                               Expr *BaseObjectExpr,
545                                               SourceLocation OpLoc) {
546  llvm::SmallVector<FieldDecl *, 4> AnonFields;
547  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
548                                                            AnonFields);
549
550  // Build the expression that refers to the base object, from
551  // which we will build a sequence of member references to each
552  // of the anonymous union objects and, eventually, the field we
553  // found via name lookup.
554  bool BaseObjectIsPointer = false;
555  Qualifiers BaseQuals;
556  if (BaseObject) {
557    // BaseObject is an anonymous struct/union variable (and is,
558    // therefore, not part of another non-anonymous record).
559    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
560    MarkDeclarationReferenced(Loc, BaseObject);
561    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
562                                               SourceLocation());
563    BaseQuals
564      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
565  } else if (BaseObjectExpr) {
566    // The caller provided the base object expression. Determine
567    // whether its a pointer and whether it adds any qualifiers to the
568    // anonymous struct/union fields we're looking into.
569    QualType ObjectType = BaseObjectExpr->getType();
570    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
571      BaseObjectIsPointer = true;
572      ObjectType = ObjectPtr->getPointeeType();
573    }
574    BaseQuals
575      = Context.getCanonicalType(ObjectType).getQualifiers();
576  } else {
577    // We've found a member of an anonymous struct/union that is
578    // inside a non-anonymous struct/union, so in a well-formed
579    // program our base object expression is "this".
580    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
581      if (!MD->isStatic()) {
582        QualType AnonFieldType
583          = Context.getTagDeclType(
584                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
585        QualType ThisType = Context.getTagDeclType(MD->getParent());
586        if ((Context.getCanonicalType(AnonFieldType)
587               == Context.getCanonicalType(ThisType)) ||
588            IsDerivedFrom(ThisType, AnonFieldType)) {
589          // Our base object expression is "this".
590          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
591                                                     MD->getThisType(Context),
592                                                     /*isImplicit=*/true);
593          BaseObjectIsPointer = true;
594        }
595      } else {
596        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
597          << Field->getDeclName());
598      }
599      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
600    }
601
602    if (!BaseObjectExpr)
603      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
604        << Field->getDeclName());
605  }
606
607  // Build the implicit member references to the field of the
608  // anonymous struct/union.
609  Expr *Result = BaseObjectExpr;
610  Qualifiers ResultQuals = BaseQuals;
611  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
612         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
613       FI != FIEnd; ++FI) {
614    QualType MemberType = (*FI)->getType();
615    Qualifiers MemberTypeQuals =
616      Context.getCanonicalType(MemberType).getQualifiers();
617
618    // CVR attributes from the base are picked up by members,
619    // except that 'mutable' members don't pick up 'const'.
620    if ((*FI)->isMutable())
621      ResultQuals.removeConst();
622
623    // GC attributes are never picked up by members.
624    ResultQuals.removeObjCGCAttr();
625
626    // TR 18037 does not allow fields to be declared with address spaces.
627    assert(!MemberTypeQuals.hasAddressSpace());
628
629    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
630    if (NewQuals != MemberTypeQuals)
631      MemberType = Context.getQualifiedType(MemberType, NewQuals);
632
633    MarkDeclarationReferenced(Loc, *FI);
634    PerformObjectMemberConversion(Result, *FI);
635    // FIXME: Might this end up being a qualified name?
636    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
637                                      OpLoc, MemberType);
638    BaseObjectIsPointer = false;
639    ResultQuals = NewQuals;
640  }
641
642  return Owned(Result);
643}
644
645/// Decomposes the given name into a DeclarationName, its location, and
646/// possibly a list of template arguments.
647///
648/// If this produces template arguments, it is permitted to call
649/// DecomposeTemplateName.
650///
651/// This actually loses a lot of source location information for
652/// non-standard name kinds; we should consider preserving that in
653/// some way.
654static void DecomposeUnqualifiedId(Sema &SemaRef,
655                                   const UnqualifiedId &Id,
656                                   TemplateArgumentListInfo &Buffer,
657                                   DeclarationName &Name,
658                                   SourceLocation &NameLoc,
659                             const TemplateArgumentListInfo *&TemplateArgs) {
660  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
661    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
662    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
663
664    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
665                                       Id.TemplateId->getTemplateArgs(),
666                                       Id.TemplateId->NumArgs);
667    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
668    TemplateArgsPtr.release();
669
670    TemplateName TName =
671      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
672
673    Name = SemaRef.Context.getNameForTemplate(TName);
674    NameLoc = Id.TemplateId->TemplateNameLoc;
675    TemplateArgs = &Buffer;
676  } else {
677    Name = SemaRef.GetNameFromUnqualifiedId(Id);
678    NameLoc = Id.StartLocation;
679    TemplateArgs = 0;
680  }
681}
682
683/// Decompose the given template name into a list of lookup results.
684///
685/// The unqualified ID must name a non-dependent template, which can
686/// be more easily tested by checking whether DecomposeUnqualifiedId
687/// found template arguments.
688static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
689  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
690  TemplateName TName =
691    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
692
693  if (TemplateDecl *TD = TName.getAsTemplateDecl())
694    R.addDecl(TD);
695  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
696    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
697           I != E; ++I)
698      R.addDecl(*I);
699
700  R.resolveKind();
701}
702
703static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
704  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
705         E = Record->bases_end(); I != E; ++I) {
706    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
707    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
708    if (!BaseRT) return false;
709
710    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
711    if (!BaseRecord->isDefinition() ||
712        !IsFullyFormedScope(SemaRef, BaseRecord))
713      return false;
714  }
715
716  return true;
717}
718
719/// Determines whether we can lookup this id-expression now or whether
720/// we have to wait until template instantiation is complete.
721static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
722  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
723
724  // If the qualifier scope isn't computable, it's definitely dependent.
725  if (!DC) return true;
726
727  // If the qualifier scope doesn't name a record, we can always look into it.
728  if (!isa<CXXRecordDecl>(DC)) return false;
729
730  // We can't look into record types unless they're fully-formed.
731  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
732
733  return false;
734}
735
736/// Determines if the given class is provably not derived from all of
737/// the prospective base classes.
738static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
739                                     CXXRecordDecl *Record,
740                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
741  if (Bases.count(Record->getCanonicalDecl()))
742    return false;
743
744  RecordDecl *RD = Record->getDefinition(SemaRef.Context);
745  if (!RD) return false;
746  Record = cast<CXXRecordDecl>(RD);
747
748  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
749         E = Record->bases_end(); I != E; ++I) {
750    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
751    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
752    if (!BaseRT) return false;
753
754    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
755    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
756      return false;
757  }
758
759  return true;
760}
761
762/// Determines if this is an instance member of a class.
763static bool IsInstanceMember(NamedDecl *D) {
764  assert(D->isCXXClassMember() &&
765         "checking whether non-member is instance member");
766
767  if (isa<FieldDecl>(D)) return true;
768
769  if (isa<CXXMethodDecl>(D))
770    return !cast<CXXMethodDecl>(D)->isStatic();
771
772  if (isa<FunctionTemplateDecl>(D)) {
773    D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
774    return !cast<CXXMethodDecl>(D)->isStatic();
775  }
776
777  return false;
778}
779
780enum IMAKind {
781  /// The reference is definitely not an instance member access.
782  IMA_Static,
783
784  /// The reference may be an implicit instance member access.
785  IMA_Mixed,
786
787  /// The reference may be to an instance member, but it is invalid if
788  /// so, because the context is not an instance method.
789  IMA_Mixed_StaticContext,
790
791  /// The reference may be to an instance member, but it is invalid if
792  /// so, because the context is from an unrelated class.
793  IMA_Mixed_Unrelated,
794
795  /// The reference is definitely an implicit instance member access.
796  IMA_Instance,
797
798  /// The reference may be to an unresolved using declaration.
799  IMA_Unresolved,
800
801  /// The reference may be to an unresolved using declaration and the
802  /// context is not an instance method.
803  IMA_Unresolved_StaticContext,
804
805  /// The reference is to a member of an anonymous structure in a
806  /// non-class context.
807  IMA_AnonymousMember,
808
809  /// All possible referrents are instance members and the current
810  /// context is not an instance method.
811  IMA_Error_StaticContext,
812
813  /// All possible referrents are instance members of an unrelated
814  /// class.
815  IMA_Error_Unrelated
816};
817
818/// The given lookup names class member(s) and is not being used for
819/// an address-of-member expression.  Classify the type of access
820/// according to whether it's possible that this reference names an
821/// instance member.  This is best-effort; it is okay to
822/// conservatively answer "yes", in which case some errors will simply
823/// not be caught until template-instantiation.
824static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
825                                            const LookupResult &R) {
826  assert(!R.empty() && (*R.begin())->isCXXClassMember());
827
828  bool isStaticContext =
829    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
830     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
831
832  if (R.isUnresolvableResult())
833    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
834
835  // Collect all the declaring classes of instance members we find.
836  bool hasNonInstance = false;
837  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
838  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
839    NamedDecl *D = (*I)->getUnderlyingDecl();
840    if (IsInstanceMember(D)) {
841      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
842
843      // If this is a member of an anonymous record, move out to the
844      // innermost non-anonymous struct or union.  If there isn't one,
845      // that's a special case.
846      while (R->isAnonymousStructOrUnion()) {
847        R = dyn_cast<CXXRecordDecl>(R->getParent());
848        if (!R) return IMA_AnonymousMember;
849      }
850      Classes.insert(R->getCanonicalDecl());
851    }
852    else
853      hasNonInstance = true;
854  }
855
856  // If we didn't find any instance members, it can't be an implicit
857  // member reference.
858  if (Classes.empty())
859    return IMA_Static;
860
861  // If the current context is not an instance method, it can't be
862  // an implicit member reference.
863  if (isStaticContext)
864    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
865
866  // If we can prove that the current context is unrelated to all the
867  // declaring classes, it can't be an implicit member reference (in
868  // which case it's an error if any of those members are selected).
869  if (IsProvablyNotDerivedFrom(SemaRef,
870                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
871                               Classes))
872    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
873
874  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
875}
876
877/// Diagnose a reference to a field with no object available.
878static void DiagnoseInstanceReference(Sema &SemaRef,
879                                      const CXXScopeSpec &SS,
880                                      const LookupResult &R) {
881  SourceLocation Loc = R.getNameLoc();
882  SourceRange Range(Loc);
883  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
884
885  if (R.getAsSingle<FieldDecl>()) {
886    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
887      if (MD->isStatic()) {
888        // "invalid use of member 'x' in static member function"
889        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
890          << Range << R.getLookupName();
891        return;
892      }
893    }
894
895    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
896      << R.getLookupName() << Range;
897    return;
898  }
899
900  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
901}
902
903/// Diagnose an empty lookup.
904///
905/// \return false if new lookup candidates were found
906bool Sema::DiagnoseEmptyLookup(Scope *S, const CXXScopeSpec &SS,
907                               LookupResult &R) {
908  DeclarationName Name = R.getLookupName();
909
910  unsigned diagnostic = diag::err_undeclared_var_use;
911  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
912  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
913      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
914      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
915    diagnostic = diag::err_undeclared_use;
916    diagnostic_suggest = diag::err_undeclared_use_suggest;
917  }
918
919  // If the original lookup was an unqualified lookup, fake an
920  // unqualified lookup.  This is useful when (for example) the
921  // original lookup would not have found something because it was a
922  // dependent name.
923  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
924       DC; DC = DC->getParent()) {
925    if (isa<CXXRecordDecl>(DC)) {
926      LookupQualifiedName(R, DC);
927
928      if (!R.empty()) {
929        // Don't give errors about ambiguities in this lookup.
930        R.suppressDiagnostics();
931
932        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
933        bool isInstance = CurMethod &&
934                          CurMethod->isInstance() &&
935                          DC == CurMethod->getParent();
936
937        // Give a code modification hint to insert 'this->'.
938        // TODO: fixit for inserting 'Base<T>::' in the other cases.
939        // Actually quite difficult!
940        if (isInstance)
941          Diag(R.getNameLoc(), diagnostic) << Name
942            << CodeModificationHint::CreateInsertion(R.getNameLoc(),
943                                                     "this->");
944        else
945          Diag(R.getNameLoc(), diagnostic) << Name;
946
947        // Do we really want to note all of these?
948        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
949          Diag((*I)->getLocation(), diag::note_dependent_var_use);
950
951        // Tell the callee to try to recover.
952        return false;
953      }
954    }
955  }
956
957  // We didn't find anything, so try to correct for a typo.
958  if (S && CorrectTypo(R, S, &SS)) {
959    if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
960      if (SS.isEmpty())
961        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
962          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
963                                              R.getLookupName().getAsString());
964      else
965        Diag(R.getNameLoc(), diag::err_no_member_suggest)
966          << Name << computeDeclContext(SS, false) << R.getLookupName()
967          << SS.getRange()
968          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
969                                              R.getLookupName().getAsString());
970      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
971        Diag(ND->getLocation(), diag::note_previous_decl)
972          << ND->getDeclName();
973
974      // Tell the callee to try to recover.
975      return false;
976    }
977
978    if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
979      // FIXME: If we ended up with a typo for a type name or
980      // Objective-C class name, we're in trouble because the parser
981      // is in the wrong place to recover. Suggest the typo
982      // correction, but don't make it a fix-it since we're not going
983      // to recover well anyway.
984      if (SS.isEmpty())
985        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
986      else
987        Diag(R.getNameLoc(), diag::err_no_member_suggest)
988          << Name << computeDeclContext(SS, false) << R.getLookupName()
989          << SS.getRange();
990
991      // Don't try to recover; it won't work.
992      return true;
993    }
994
995    R.clear();
996  }
997
998  // Emit a special diagnostic for failed member lookups.
999  // FIXME: computing the declaration context might fail here (?)
1000  if (!SS.isEmpty()) {
1001    Diag(R.getNameLoc(), diag::err_no_member)
1002      << Name << computeDeclContext(SS, false)
1003      << SS.getRange();
1004    return true;
1005  }
1006
1007  // Give up, we can't recover.
1008  Diag(R.getNameLoc(), diagnostic) << Name;
1009  return true;
1010}
1011
1012Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1013                                               const CXXScopeSpec &SS,
1014                                               UnqualifiedId &Id,
1015                                               bool HasTrailingLParen,
1016                                               bool isAddressOfOperand) {
1017  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1018         "cannot be direct & operand and have a trailing lparen");
1019
1020  if (SS.isInvalid())
1021    return ExprError();
1022
1023  TemplateArgumentListInfo TemplateArgsBuffer;
1024
1025  // Decompose the UnqualifiedId into the following data.
1026  DeclarationName Name;
1027  SourceLocation NameLoc;
1028  const TemplateArgumentListInfo *TemplateArgs;
1029  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1030                         Name, NameLoc, TemplateArgs);
1031
1032  IdentifierInfo *II = Name.getAsIdentifierInfo();
1033
1034  // C++ [temp.dep.expr]p3:
1035  //   An id-expression is type-dependent if it contains:
1036  //     -- an identifier that was declared with a dependent type,
1037  //        (note: handled after lookup)
1038  //     -- a template-id that is dependent,
1039  //        (note: handled in BuildTemplateIdExpr)
1040  //     -- a conversion-function-id that specifies a dependent type,
1041  //     -- a nested-name-specifier that contains a class-name that
1042  //        names a dependent type.
1043  // Determine whether this is a member of an unknown specialization;
1044  // we need to handle these differently.
1045  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1046       Name.getCXXNameType()->isDependentType()) ||
1047      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1048    return ActOnDependentIdExpression(SS, Name, NameLoc,
1049                                      isAddressOfOperand,
1050                                      TemplateArgs);
1051  }
1052
1053  // Perform the required lookup.
1054  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1055  if (TemplateArgs) {
1056    // Just re-use the lookup done by isTemplateName.
1057    DecomposeTemplateName(R, Id);
1058  } else {
1059    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1060    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1061
1062    // If this reference is in an Objective-C method, then we need to do
1063    // some special Objective-C lookup, too.
1064    if (IvarLookupFollowUp) {
1065      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1066      if (E.isInvalid())
1067        return ExprError();
1068
1069      Expr *Ex = E.takeAs<Expr>();
1070      if (Ex) return Owned(Ex);
1071    }
1072  }
1073
1074  if (R.isAmbiguous())
1075    return ExprError();
1076
1077  // Determine whether this name might be a candidate for
1078  // argument-dependent lookup.
1079  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1080
1081  if (R.empty() && !ADL) {
1082    // Otherwise, this could be an implicitly declared function reference (legal
1083    // in C90, extension in C99, forbidden in C++).
1084    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1085      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1086      if (D) R.addDecl(D);
1087    }
1088
1089    // If this name wasn't predeclared and if this is not a function
1090    // call, diagnose the problem.
1091    if (R.empty()) {
1092      if (DiagnoseEmptyLookup(S, SS, R))
1093        return ExprError();
1094
1095      assert(!R.empty() &&
1096             "DiagnoseEmptyLookup returned false but added no results");
1097
1098      // If we found an Objective-C instance variable, let
1099      // LookupInObjCMethod build the appropriate expression to
1100      // reference the ivar.
1101      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1102        R.clear();
1103        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1104        assert(E.isInvalid() || E.get());
1105        return move(E);
1106      }
1107    }
1108  }
1109
1110  // This is guaranteed from this point on.
1111  assert(!R.empty() || ADL);
1112
1113  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1114    // Warn about constructs like:
1115    //   if (void *X = foo()) { ... } else { X }.
1116    // In the else block, the pointer is always false.
1117
1118    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1119      Scope *CheckS = S;
1120      while (CheckS && CheckS->getControlParent()) {
1121        if (CheckS->isWithinElse() &&
1122            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1123          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1124            << Var->getDeclName()
1125            << (Var->getType()->isPointerType()? 2 :
1126                Var->getType()->isBooleanType()? 1 : 0));
1127          break;
1128        }
1129
1130        // Move to the parent of this scope.
1131        CheckS = CheckS->getParent();
1132      }
1133    }
1134  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1135    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1136      // C99 DR 316 says that, if a function type comes from a
1137      // function definition (without a prototype), that type is only
1138      // used for checking compatibility. Therefore, when referencing
1139      // the function, we pretend that we don't have the full function
1140      // type.
1141      if (DiagnoseUseOfDecl(Func, NameLoc))
1142        return ExprError();
1143
1144      QualType T = Func->getType();
1145      QualType NoProtoType = T;
1146      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1147        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1148      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1149    }
1150  }
1151
1152  // Check whether this might be a C++ implicit instance member access.
1153  // C++ [expr.prim.general]p6:
1154  //   Within the definition of a non-static member function, an
1155  //   identifier that names a non-static member is transformed to a
1156  //   class member access expression.
1157  // But note that &SomeClass::foo is grammatically distinct, even
1158  // though we don't parse it that way.
1159  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1160    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1161    if (!isAbstractMemberPointer)
1162      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1163  }
1164
1165  if (TemplateArgs)
1166    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1167
1168  return BuildDeclarationNameExpr(SS, R, ADL);
1169}
1170
1171/// Builds an expression which might be an implicit member expression.
1172Sema::OwningExprResult
1173Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1174                                      LookupResult &R,
1175                                const TemplateArgumentListInfo *TemplateArgs) {
1176  switch (ClassifyImplicitMemberAccess(*this, R)) {
1177  case IMA_Instance:
1178    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1179
1180  case IMA_AnonymousMember:
1181    assert(R.isSingleResult());
1182    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1183                                                    R.getAsSingle<FieldDecl>());
1184
1185  case IMA_Mixed:
1186  case IMA_Mixed_Unrelated:
1187  case IMA_Unresolved:
1188    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1189
1190  case IMA_Static:
1191  case IMA_Mixed_StaticContext:
1192  case IMA_Unresolved_StaticContext:
1193    if (TemplateArgs)
1194      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1195    return BuildDeclarationNameExpr(SS, R, false);
1196
1197  case IMA_Error_StaticContext:
1198  case IMA_Error_Unrelated:
1199    DiagnoseInstanceReference(*this, SS, R);
1200    return ExprError();
1201  }
1202
1203  llvm_unreachable("unexpected instance member access kind");
1204  return ExprError();
1205}
1206
1207/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1208/// declaration name, generally during template instantiation.
1209/// There's a large number of things which don't need to be done along
1210/// this path.
1211Sema::OwningExprResult
1212Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
1213                                        DeclarationName Name,
1214                                        SourceLocation NameLoc) {
1215  DeclContext *DC;
1216  if (!(DC = computeDeclContext(SS, false)) ||
1217      DC->isDependentContext() ||
1218      RequireCompleteDeclContext(SS))
1219    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1220
1221  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1222  LookupQualifiedName(R, DC);
1223
1224  if (R.isAmbiguous())
1225    return ExprError();
1226
1227  if (R.empty()) {
1228    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1229    return ExprError();
1230  }
1231
1232  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1233}
1234
1235/// LookupInObjCMethod - The parser has read a name in, and Sema has
1236/// detected that we're currently inside an ObjC method.  Perform some
1237/// additional lookup.
1238///
1239/// Ideally, most of this would be done by lookup, but there's
1240/// actually quite a lot of extra work involved.
1241///
1242/// Returns a null sentinel to indicate trivial success.
1243Sema::OwningExprResult
1244Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1245                         IdentifierInfo *II,
1246                         bool AllowBuiltinCreation) {
1247  SourceLocation Loc = Lookup.getNameLoc();
1248
1249  // There are two cases to handle here.  1) scoped lookup could have failed,
1250  // in which case we should look for an ivar.  2) scoped lookup could have
1251  // found a decl, but that decl is outside the current instance method (i.e.
1252  // a global variable).  In these two cases, we do a lookup for an ivar with
1253  // this name, if the lookup sucedes, we replace it our current decl.
1254
1255  // If we're in a class method, we don't normally want to look for
1256  // ivars.  But if we don't find anything else, and there's an
1257  // ivar, that's an error.
1258  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
1259
1260  bool LookForIvars;
1261  if (Lookup.empty())
1262    LookForIvars = true;
1263  else if (IsClassMethod)
1264    LookForIvars = false;
1265  else
1266    LookForIvars = (Lookup.isSingleResult() &&
1267                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1268
1269  if (LookForIvars) {
1270    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1271    ObjCInterfaceDecl *ClassDeclared;
1272    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1273      // Diagnose using an ivar in a class method.
1274      if (IsClassMethod)
1275        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1276                         << IV->getDeclName());
1277
1278      // If we're referencing an invalid decl, just return this as a silent
1279      // error node.  The error diagnostic was already emitted on the decl.
1280      if (IV->isInvalidDecl())
1281        return ExprError();
1282
1283      // Check if referencing a field with __attribute__((deprecated)).
1284      if (DiagnoseUseOfDecl(IV, Loc))
1285        return ExprError();
1286
1287      // Diagnose the use of an ivar outside of the declaring class.
1288      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1289          ClassDeclared != IFace)
1290        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1291
1292      // FIXME: This should use a new expr for a direct reference, don't
1293      // turn this into Self->ivar, just return a BareIVarExpr or something.
1294      IdentifierInfo &II = Context.Idents.get("self");
1295      UnqualifiedId SelfName;
1296      SelfName.setIdentifier(&II, SourceLocation());
1297      CXXScopeSpec SelfScopeSpec;
1298      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1299                                                    SelfName, false, false);
1300      MarkDeclarationReferenced(Loc, IV);
1301      return Owned(new (Context)
1302                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1303                                   SelfExpr.takeAs<Expr>(), true, true));
1304    }
1305  } else if (getCurMethodDecl()->isInstanceMethod()) {
1306    // We should warn if a local variable hides an ivar.
1307    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1308    ObjCInterfaceDecl *ClassDeclared;
1309    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1310      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1311          IFace == ClassDeclared)
1312        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1313    }
1314  }
1315
1316  // Needed to implement property "super.method" notation.
1317  if (Lookup.empty() && II->isStr("super")) {
1318    QualType T;
1319
1320    if (getCurMethodDecl()->isInstanceMethod())
1321      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
1322                                    getCurMethodDecl()->getClassInterface()));
1323    else
1324      T = Context.getObjCClassType();
1325    return Owned(new (Context) ObjCSuperExpr(Loc, T));
1326  }
1327  if (Lookup.empty() && II && AllowBuiltinCreation) {
1328    // FIXME. Consolidate this with similar code in LookupName.
1329    if (unsigned BuiltinID = II->getBuiltinID()) {
1330      if (!(getLangOptions().CPlusPlus &&
1331            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1332        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1333                                           S, Lookup.isForRedeclaration(),
1334                                           Lookup.getNameLoc());
1335        if (D) Lookup.addDecl(D);
1336      }
1337    }
1338  }
1339  // Sentinel value saying that we didn't do anything special.
1340  return Owned((Expr*) 0);
1341}
1342
1343/// \brief Cast member's object to its own class if necessary.
1344bool
1345Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
1346  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
1347    if (CXXRecordDecl *RD =
1348        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
1349      QualType DestType =
1350        Context.getCanonicalType(Context.getTypeDeclType(RD));
1351      if (DestType->isDependentType() || From->getType()->isDependentType())
1352        return false;
1353      QualType FromRecordType = From->getType();
1354      QualType DestRecordType = DestType;
1355      if (FromRecordType->getAs<PointerType>()) {
1356        DestType = Context.getPointerType(DestType);
1357        FromRecordType = FromRecordType->getPointeeType();
1358      }
1359      if (!Context.hasSameUnqualifiedType(FromRecordType, DestRecordType) &&
1360          CheckDerivedToBaseConversion(FromRecordType,
1361                                       DestRecordType,
1362                                       From->getSourceRange().getBegin(),
1363                                       From->getSourceRange()))
1364        return true;
1365      ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
1366                        /*isLvalue=*/true);
1367    }
1368  return false;
1369}
1370
1371/// \brief Build a MemberExpr AST node.
1372static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1373                                   const CXXScopeSpec &SS, ValueDecl *Member,
1374                                   SourceLocation Loc, QualType Ty,
1375                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1376  NestedNameSpecifier *Qualifier = 0;
1377  SourceRange QualifierRange;
1378  if (SS.isSet()) {
1379    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1380    QualifierRange = SS.getRange();
1381  }
1382
1383  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1384                            Member, Loc, TemplateArgs, Ty);
1385}
1386
1387/// Builds an implicit member access expression.  The current context
1388/// is known to be an instance method, and the given unqualified lookup
1389/// set is known to contain only instance members, at least one of which
1390/// is from an appropriate type.
1391Sema::OwningExprResult
1392Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1393                              LookupResult &R,
1394                              const TemplateArgumentListInfo *TemplateArgs,
1395                              bool IsKnownInstance) {
1396  assert(!R.empty() && !R.isAmbiguous());
1397
1398  SourceLocation Loc = R.getNameLoc();
1399
1400  // We may have found a field within an anonymous union or struct
1401  // (C++ [class.union]).
1402  // FIXME: This needs to happen post-isImplicitMemberReference?
1403  // FIXME: template-ids inside anonymous structs?
1404  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1405    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1406      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1407
1408  // If this is known to be an instance access, go ahead and build a
1409  // 'this' expression now.
1410  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
1411  Expr *This = 0; // null signifies implicit access
1412  if (IsKnownInstance) {
1413    SourceLocation Loc = R.getNameLoc();
1414    if (SS.getRange().isValid())
1415      Loc = SS.getRange().getBegin();
1416    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1417  }
1418
1419  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1420                                  /*OpLoc*/ SourceLocation(),
1421                                  /*IsArrow*/ true,
1422                                  SS,
1423                                  /*FirstQualifierInScope*/ 0,
1424                                  R, TemplateArgs);
1425}
1426
1427bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1428                                      const LookupResult &R,
1429                                      bool HasTrailingLParen) {
1430  // Only when used directly as the postfix-expression of a call.
1431  if (!HasTrailingLParen)
1432    return false;
1433
1434  // Never if a scope specifier was provided.
1435  if (SS.isSet())
1436    return false;
1437
1438  // Only in C++ or ObjC++.
1439  if (!getLangOptions().CPlusPlus)
1440    return false;
1441
1442  // Turn off ADL when we find certain kinds of declarations during
1443  // normal lookup:
1444  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1445    NamedDecl *D = *I;
1446
1447    // C++0x [basic.lookup.argdep]p3:
1448    //     -- a declaration of a class member
1449    // Since using decls preserve this property, we check this on the
1450    // original decl.
1451    if (D->isCXXClassMember())
1452      return false;
1453
1454    // C++0x [basic.lookup.argdep]p3:
1455    //     -- a block-scope function declaration that is not a
1456    //        using-declaration
1457    // NOTE: we also trigger this for function templates (in fact, we
1458    // don't check the decl type at all, since all other decl types
1459    // turn off ADL anyway).
1460    if (isa<UsingShadowDecl>(D))
1461      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1462    else if (D->getDeclContext()->isFunctionOrMethod())
1463      return false;
1464
1465    // C++0x [basic.lookup.argdep]p3:
1466    //     -- a declaration that is neither a function or a function
1467    //        template
1468    // And also for builtin functions.
1469    if (isa<FunctionDecl>(D)) {
1470      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1471
1472      // But also builtin functions.
1473      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1474        return false;
1475    } else if (!isa<FunctionTemplateDecl>(D))
1476      return false;
1477  }
1478
1479  return true;
1480}
1481
1482
1483/// Diagnoses obvious problems with the use of the given declaration
1484/// as an expression.  This is only actually called for lookups that
1485/// were not overloaded, and it doesn't promise that the declaration
1486/// will in fact be used.
1487static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1488  if (isa<TypedefDecl>(D)) {
1489    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1490    return true;
1491  }
1492
1493  if (isa<ObjCInterfaceDecl>(D)) {
1494    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1495    return true;
1496  }
1497
1498  if (isa<NamespaceDecl>(D)) {
1499    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1500    return true;
1501  }
1502
1503  return false;
1504}
1505
1506Sema::OwningExprResult
1507Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1508                               LookupResult &R,
1509                               bool NeedsADL) {
1510  // If this is a single, fully-resolved result and we don't need ADL,
1511  // just build an ordinary singleton decl ref.
1512  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1513    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1514
1515  // We only need to check the declaration if there's exactly one
1516  // result, because in the overloaded case the results can only be
1517  // functions and function templates.
1518  if (R.isSingleResult() &&
1519      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1520    return ExprError();
1521
1522  // Otherwise, just build an unresolved lookup expression.  Suppress
1523  // any lookup-related diagnostics; we'll hash these out later, when
1524  // we've picked a target.
1525  R.suppressDiagnostics();
1526
1527  bool Dependent
1528    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1529  UnresolvedLookupExpr *ULE
1530    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1531                                   (NestedNameSpecifier*) SS.getScopeRep(),
1532                                   SS.getRange(),
1533                                   R.getLookupName(), R.getNameLoc(),
1534                                   NeedsADL, R.isOverloadedResult());
1535  ULE->addDecls(R.begin(), R.end());
1536
1537  return Owned(ULE);
1538}
1539
1540
1541/// \brief Complete semantic analysis for a reference to the given declaration.
1542Sema::OwningExprResult
1543Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1544                               SourceLocation Loc, NamedDecl *D) {
1545  assert(D && "Cannot refer to a NULL declaration");
1546  assert(!isa<FunctionTemplateDecl>(D) &&
1547         "Cannot refer unambiguously to a function template");
1548
1549  if (CheckDeclInExpr(*this, Loc, D))
1550    return ExprError();
1551
1552  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1553    // Specifically diagnose references to class templates that are missing
1554    // a template argument list.
1555    Diag(Loc, diag::err_template_decl_ref)
1556      << Template << SS.getRange();
1557    Diag(Template->getLocation(), diag::note_template_decl_here);
1558    return ExprError();
1559  }
1560
1561  // Make sure that we're referring to a value.
1562  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1563  if (!VD) {
1564    Diag(Loc, diag::err_ref_non_value)
1565      << D << SS.getRange();
1566    Diag(D->getLocation(), diag::note_declared_at);
1567    return ExprError();
1568  }
1569
1570  // Check whether this declaration can be used. Note that we suppress
1571  // this check when we're going to perform argument-dependent lookup
1572  // on this function name, because this might not be the function
1573  // that overload resolution actually selects.
1574  if (DiagnoseUseOfDecl(VD, Loc))
1575    return ExprError();
1576
1577  // Only create DeclRefExpr's for valid Decl's.
1578  if (VD->isInvalidDecl())
1579    return ExprError();
1580
1581  // If the identifier reference is inside a block, and it refers to a value
1582  // that is outside the block, create a BlockDeclRefExpr instead of a
1583  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1584  // the block is formed.
1585  //
1586  // We do not do this for things like enum constants, global variables, etc,
1587  // as they do not get snapshotted.
1588  //
1589  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1590    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1591      Diag(Loc, diag::err_ref_vm_type);
1592      Diag(D->getLocation(), diag::note_declared_at);
1593      return ExprError();
1594    }
1595
1596    if (VD->getType()->isArrayType()) {
1597      Diag(Loc, diag::err_ref_array_type);
1598      Diag(D->getLocation(), diag::note_declared_at);
1599      return ExprError();
1600    }
1601
1602    MarkDeclarationReferenced(Loc, VD);
1603    QualType ExprTy = VD->getType().getNonReferenceType();
1604    // The BlocksAttr indicates the variable is bound by-reference.
1605    if (VD->getAttr<BlocksAttr>())
1606      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1607    // This is to record that a 'const' was actually synthesize and added.
1608    bool constAdded = !ExprTy.isConstQualified();
1609    // Variable will be bound by-copy, make it const within the closure.
1610
1611    ExprTy.addConst();
1612    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1613                                                constAdded));
1614  }
1615  // If this reference is not in a block or if the referenced variable is
1616  // within the block, create a normal DeclRefExpr.
1617
1618  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1619}
1620
1621Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1622                                                 tok::TokenKind Kind) {
1623  PredefinedExpr::IdentType IT;
1624
1625  switch (Kind) {
1626  default: assert(0 && "Unknown simple primary expr!");
1627  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1628  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1629  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1630  }
1631
1632  // Pre-defined identifiers are of type char[x], where x is the length of the
1633  // string.
1634
1635  Decl *currentDecl = getCurFunctionOrMethodDecl();
1636  if (!currentDecl) {
1637    Diag(Loc, diag::ext_predef_outside_function);
1638    currentDecl = Context.getTranslationUnitDecl();
1639  }
1640
1641  QualType ResTy;
1642  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1643    ResTy = Context.DependentTy;
1644  } else {
1645    unsigned Length =
1646      PredefinedExpr::ComputeName(Context, IT, currentDecl).length();
1647
1648    llvm::APInt LengthI(32, Length + 1);
1649    ResTy = Context.CharTy.withConst();
1650    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1651  }
1652  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1653}
1654
1655Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1656  llvm::SmallString<16> CharBuffer;
1657  CharBuffer.resize(Tok.getLength());
1658  const char *ThisTokBegin = &CharBuffer[0];
1659  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1660
1661  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1662                            Tok.getLocation(), PP);
1663  if (Literal.hadError())
1664    return ExprError();
1665
1666  QualType Ty;
1667  if (!getLangOptions().CPlusPlus)
1668    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1669  else if (Literal.isWide())
1670    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1671  else if (Literal.isMultiChar())
1672    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1673  else
1674    Ty = Context.CharTy;  // 'x' -> char in C++
1675
1676  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1677                                              Literal.isWide(),
1678                                              Ty, Tok.getLocation()));
1679}
1680
1681Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1682  // Fast path for a single digit (which is quite common).  A single digit
1683  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1684  if (Tok.getLength() == 1) {
1685    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1686    unsigned IntSize = Context.Target.getIntWidth();
1687    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1688                    Context.IntTy, Tok.getLocation()));
1689  }
1690
1691  llvm::SmallString<512> IntegerBuffer;
1692  // Add padding so that NumericLiteralParser can overread by one character.
1693  IntegerBuffer.resize(Tok.getLength()+1);
1694  const char *ThisTokBegin = &IntegerBuffer[0];
1695
1696  // Get the spelling of the token, which eliminates trigraphs, etc.
1697  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1698
1699  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1700                               Tok.getLocation(), PP);
1701  if (Literal.hadError)
1702    return ExprError();
1703
1704  Expr *Res;
1705
1706  if (Literal.isFloatingLiteral()) {
1707    QualType Ty;
1708    if (Literal.isFloat)
1709      Ty = Context.FloatTy;
1710    else if (!Literal.isLong)
1711      Ty = Context.DoubleTy;
1712    else
1713      Ty = Context.LongDoubleTy;
1714
1715    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1716
1717    using llvm::APFloat;
1718    APFloat Val(Format);
1719
1720    APFloat::opStatus result = Literal.GetFloatValue(Val);
1721
1722    // Overflow is always an error, but underflow is only an error if
1723    // we underflowed to zero (APFloat reports denormals as underflow).
1724    if ((result & APFloat::opOverflow) ||
1725        ((result & APFloat::opUnderflow) && Val.isZero())) {
1726      unsigned diagnostic;
1727      llvm::SmallVector<char, 20> buffer;
1728      if (result & APFloat::opOverflow) {
1729        diagnostic = diag::err_float_overflow;
1730        APFloat::getLargest(Format).toString(buffer);
1731      } else {
1732        diagnostic = diag::err_float_underflow;
1733        APFloat::getSmallest(Format).toString(buffer);
1734      }
1735
1736      Diag(Tok.getLocation(), diagnostic)
1737        << Ty
1738        << llvm::StringRef(buffer.data(), buffer.size());
1739    }
1740
1741    bool isExact = (result == APFloat::opOK);
1742    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1743
1744  } else if (!Literal.isIntegerLiteral()) {
1745    return ExprError();
1746  } else {
1747    QualType Ty;
1748
1749    // long long is a C99 feature.
1750    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1751        Literal.isLongLong)
1752      Diag(Tok.getLocation(), diag::ext_longlong);
1753
1754    // Get the value in the widest-possible width.
1755    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1756
1757    if (Literal.GetIntegerValue(ResultVal)) {
1758      // If this value didn't fit into uintmax_t, warn and force to ull.
1759      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1760      Ty = Context.UnsignedLongLongTy;
1761      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1762             "long long is not intmax_t?");
1763    } else {
1764      // If this value fits into a ULL, try to figure out what else it fits into
1765      // according to the rules of C99 6.4.4.1p5.
1766
1767      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1768      // be an unsigned int.
1769      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1770
1771      // Check from smallest to largest, picking the smallest type we can.
1772      unsigned Width = 0;
1773      if (!Literal.isLong && !Literal.isLongLong) {
1774        // Are int/unsigned possibilities?
1775        unsigned IntSize = Context.Target.getIntWidth();
1776
1777        // Does it fit in a unsigned int?
1778        if (ResultVal.isIntN(IntSize)) {
1779          // Does it fit in a signed int?
1780          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1781            Ty = Context.IntTy;
1782          else if (AllowUnsigned)
1783            Ty = Context.UnsignedIntTy;
1784          Width = IntSize;
1785        }
1786      }
1787
1788      // Are long/unsigned long possibilities?
1789      if (Ty.isNull() && !Literal.isLongLong) {
1790        unsigned LongSize = Context.Target.getLongWidth();
1791
1792        // Does it fit in a unsigned long?
1793        if (ResultVal.isIntN(LongSize)) {
1794          // Does it fit in a signed long?
1795          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1796            Ty = Context.LongTy;
1797          else if (AllowUnsigned)
1798            Ty = Context.UnsignedLongTy;
1799          Width = LongSize;
1800        }
1801      }
1802
1803      // Finally, check long long if needed.
1804      if (Ty.isNull()) {
1805        unsigned LongLongSize = Context.Target.getLongLongWidth();
1806
1807        // Does it fit in a unsigned long long?
1808        if (ResultVal.isIntN(LongLongSize)) {
1809          // Does it fit in a signed long long?
1810          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1811            Ty = Context.LongLongTy;
1812          else if (AllowUnsigned)
1813            Ty = Context.UnsignedLongLongTy;
1814          Width = LongLongSize;
1815        }
1816      }
1817
1818      // If we still couldn't decide a type, we probably have something that
1819      // does not fit in a signed long long, but has no U suffix.
1820      if (Ty.isNull()) {
1821        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1822        Ty = Context.UnsignedLongLongTy;
1823        Width = Context.Target.getLongLongWidth();
1824      }
1825
1826      if (ResultVal.getBitWidth() != Width)
1827        ResultVal.trunc(Width);
1828    }
1829    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1830  }
1831
1832  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1833  if (Literal.isImaginary)
1834    Res = new (Context) ImaginaryLiteral(Res,
1835                                        Context.getComplexType(Res->getType()));
1836
1837  return Owned(Res);
1838}
1839
1840Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1841                                              SourceLocation R, ExprArg Val) {
1842  Expr *E = Val.takeAs<Expr>();
1843  assert((E != 0) && "ActOnParenExpr() missing expr");
1844  return Owned(new (Context) ParenExpr(L, R, E));
1845}
1846
1847/// The UsualUnaryConversions() function is *not* called by this routine.
1848/// See C99 6.3.2.1p[2-4] for more details.
1849bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1850                                     SourceLocation OpLoc,
1851                                     const SourceRange &ExprRange,
1852                                     bool isSizeof) {
1853  if (exprType->isDependentType())
1854    return false;
1855
1856  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
1857  //   the result is the size of the referenced type."
1858  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
1859  //   result shall be the alignment of the referenced type."
1860  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
1861    exprType = Ref->getPointeeType();
1862
1863  // C99 6.5.3.4p1:
1864  if (exprType->isFunctionType()) {
1865    // alignof(function) is allowed as an extension.
1866    if (isSizeof)
1867      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1868    return false;
1869  }
1870
1871  // Allow sizeof(void)/alignof(void) as an extension.
1872  if (exprType->isVoidType()) {
1873    Diag(OpLoc, diag::ext_sizeof_void_type)
1874      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1875    return false;
1876  }
1877
1878  if (RequireCompleteType(OpLoc, exprType,
1879                          PDiag(diag::err_sizeof_alignof_incomplete_type)
1880                          << int(!isSizeof) << ExprRange))
1881    return true;
1882
1883  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1884  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1885    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1886      << exprType << isSizeof << ExprRange;
1887    return true;
1888  }
1889
1890  return false;
1891}
1892
1893bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1894                            const SourceRange &ExprRange) {
1895  E = E->IgnoreParens();
1896
1897  // alignof decl is always ok.
1898  if (isa<DeclRefExpr>(E))
1899    return false;
1900
1901  // Cannot know anything else if the expression is dependent.
1902  if (E->isTypeDependent())
1903    return false;
1904
1905  if (E->getBitField()) {
1906    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1907    return true;
1908  }
1909
1910  // Alignment of a field access is always okay, so long as it isn't a
1911  // bit-field.
1912  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1913    if (isa<FieldDecl>(ME->getMemberDecl()))
1914      return false;
1915
1916  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1917}
1918
1919/// \brief Build a sizeof or alignof expression given a type operand.
1920Action::OwningExprResult
1921Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
1922                              SourceLocation OpLoc,
1923                              bool isSizeOf, SourceRange R) {
1924  if (!TInfo)
1925    return ExprError();
1926
1927  QualType T = TInfo->getType();
1928
1929  if (!T->isDependentType() &&
1930      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1931    return ExprError();
1932
1933  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1934  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
1935                                               Context.getSizeType(), OpLoc,
1936                                               R.getEnd()));
1937}
1938
1939/// \brief Build a sizeof or alignof expression given an expression
1940/// operand.
1941Action::OwningExprResult
1942Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1943                              bool isSizeOf, SourceRange R) {
1944  // Verify that the operand is valid.
1945  bool isInvalid = false;
1946  if (E->isTypeDependent()) {
1947    // Delay type-checking for type-dependent expressions.
1948  } else if (!isSizeOf) {
1949    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1950  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1951    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1952    isInvalid = true;
1953  } else {
1954    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1955  }
1956
1957  if (isInvalid)
1958    return ExprError();
1959
1960  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1961  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1962                                               Context.getSizeType(), OpLoc,
1963                                               R.getEnd()));
1964}
1965
1966/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1967/// the same for @c alignof and @c __alignof
1968/// Note that the ArgRange is invalid if isType is false.
1969Action::OwningExprResult
1970Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1971                             void *TyOrEx, const SourceRange &ArgRange) {
1972  // If error parsing type, ignore.
1973  if (TyOrEx == 0) return ExprError();
1974
1975  if (isType) {
1976    TypeSourceInfo *TInfo;
1977    (void) GetTypeFromParser(TyOrEx, &TInfo);
1978    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
1979  }
1980
1981  Expr *ArgEx = (Expr *)TyOrEx;
1982  Action::OwningExprResult Result
1983    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1984
1985  if (Result.isInvalid())
1986    DeleteExpr(ArgEx);
1987
1988  return move(Result);
1989}
1990
1991QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1992  if (V->isTypeDependent())
1993    return Context.DependentTy;
1994
1995  // These operators return the element type of a complex type.
1996  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
1997    return CT->getElementType();
1998
1999  // Otherwise they pass through real integer and floating point types here.
2000  if (V->getType()->isArithmeticType())
2001    return V->getType();
2002
2003  // Reject anything else.
2004  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2005    << (isReal ? "__real" : "__imag");
2006  return QualType();
2007}
2008
2009
2010
2011Action::OwningExprResult
2012Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2013                          tok::TokenKind Kind, ExprArg Input) {
2014  UnaryOperator::Opcode Opc;
2015  switch (Kind) {
2016  default: assert(0 && "Unknown unary op!");
2017  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2018  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2019  }
2020
2021  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2022}
2023
2024Action::OwningExprResult
2025Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2026                              ExprArg Idx, SourceLocation RLoc) {
2027  // Since this might be a postfix expression, get rid of ParenListExprs.
2028  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2029
2030  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2031       *RHSExp = static_cast<Expr*>(Idx.get());
2032
2033  if (getLangOptions().CPlusPlus &&
2034      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2035    Base.release();
2036    Idx.release();
2037    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2038                                                  Context.DependentTy, RLoc));
2039  }
2040
2041  if (getLangOptions().CPlusPlus &&
2042      (LHSExp->getType()->isRecordType() ||
2043       LHSExp->getType()->isEnumeralType() ||
2044       RHSExp->getType()->isRecordType() ||
2045       RHSExp->getType()->isEnumeralType())) {
2046    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2047  }
2048
2049  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2050}
2051
2052
2053Action::OwningExprResult
2054Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2055                                     ExprArg Idx, SourceLocation RLoc) {
2056  Expr *LHSExp = static_cast<Expr*>(Base.get());
2057  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2058
2059  // Perform default conversions.
2060  if (!LHSExp->getType()->getAs<VectorType>())
2061      DefaultFunctionArrayLvalueConversion(LHSExp);
2062  DefaultFunctionArrayLvalueConversion(RHSExp);
2063
2064  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2065
2066  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2067  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2068  // in the subscript position. As a result, we need to derive the array base
2069  // and index from the expression types.
2070  Expr *BaseExpr, *IndexExpr;
2071  QualType ResultType;
2072  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2073    BaseExpr = LHSExp;
2074    IndexExpr = RHSExp;
2075    ResultType = Context.DependentTy;
2076  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2077    BaseExpr = LHSExp;
2078    IndexExpr = RHSExp;
2079    ResultType = PTy->getPointeeType();
2080  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2081     // Handle the uncommon case of "123[Ptr]".
2082    BaseExpr = RHSExp;
2083    IndexExpr = LHSExp;
2084    ResultType = PTy->getPointeeType();
2085  } else if (const ObjCObjectPointerType *PTy =
2086               LHSTy->getAs<ObjCObjectPointerType>()) {
2087    BaseExpr = LHSExp;
2088    IndexExpr = RHSExp;
2089    ResultType = PTy->getPointeeType();
2090  } else if (const ObjCObjectPointerType *PTy =
2091               RHSTy->getAs<ObjCObjectPointerType>()) {
2092     // Handle the uncommon case of "123[Ptr]".
2093    BaseExpr = RHSExp;
2094    IndexExpr = LHSExp;
2095    ResultType = PTy->getPointeeType();
2096  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2097    BaseExpr = LHSExp;    // vectors: V[123]
2098    IndexExpr = RHSExp;
2099
2100    // FIXME: need to deal with const...
2101    ResultType = VTy->getElementType();
2102  } else if (LHSTy->isArrayType()) {
2103    // If we see an array that wasn't promoted by
2104    // DefaultFunctionArrayLvalueConversion, it must be an array that
2105    // wasn't promoted because of the C90 rule that doesn't
2106    // allow promoting non-lvalue arrays.  Warn, then
2107    // force the promotion here.
2108    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2109        LHSExp->getSourceRange();
2110    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2111                      CastExpr::CK_ArrayToPointerDecay);
2112    LHSTy = LHSExp->getType();
2113
2114    BaseExpr = LHSExp;
2115    IndexExpr = RHSExp;
2116    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2117  } else if (RHSTy->isArrayType()) {
2118    // Same as previous, except for 123[f().a] case
2119    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2120        RHSExp->getSourceRange();
2121    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2122                      CastExpr::CK_ArrayToPointerDecay);
2123    RHSTy = RHSExp->getType();
2124
2125    BaseExpr = RHSExp;
2126    IndexExpr = LHSExp;
2127    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2128  } else {
2129    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2130       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2131  }
2132  // C99 6.5.2.1p1
2133  if (!(IndexExpr->getType()->isIntegerType() &&
2134        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2135    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2136                     << IndexExpr->getSourceRange());
2137
2138  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2139       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2140         && !IndexExpr->isTypeDependent())
2141    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2142
2143  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2144  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2145  // type. Note that Functions are not objects, and that (in C99 parlance)
2146  // incomplete types are not object types.
2147  if (ResultType->isFunctionType()) {
2148    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2149      << ResultType << BaseExpr->getSourceRange();
2150    return ExprError();
2151  }
2152
2153  if (!ResultType->isDependentType() &&
2154      RequireCompleteType(LLoc, ResultType,
2155                          PDiag(diag::err_subscript_incomplete_type)
2156                            << BaseExpr->getSourceRange()))
2157    return ExprError();
2158
2159  // Diagnose bad cases where we step over interface counts.
2160  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
2161    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2162      << ResultType << BaseExpr->getSourceRange();
2163    return ExprError();
2164  }
2165
2166  Base.release();
2167  Idx.release();
2168  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2169                                                ResultType, RLoc));
2170}
2171
2172QualType Sema::
2173CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2174                        const IdentifierInfo *CompName,
2175                        SourceLocation CompLoc) {
2176  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2177  // see FIXME there.
2178  //
2179  // FIXME: This logic can be greatly simplified by splitting it along
2180  // halving/not halving and reworking the component checking.
2181  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2182
2183  // The vector accessor can't exceed the number of elements.
2184  const char *compStr = CompName->getNameStart();
2185
2186  // This flag determines whether or not the component is one of the four
2187  // special names that indicate a subset of exactly half the elements are
2188  // to be selected.
2189  bool HalvingSwizzle = false;
2190
2191  // This flag determines whether or not CompName has an 's' char prefix,
2192  // indicating that it is a string of hex values to be used as vector indices.
2193  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2194
2195  // Check that we've found one of the special components, or that the component
2196  // names must come from the same set.
2197  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2198      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2199    HalvingSwizzle = true;
2200  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2201    do
2202      compStr++;
2203    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2204  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2205    do
2206      compStr++;
2207    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2208  }
2209
2210  if (!HalvingSwizzle && *compStr) {
2211    // We didn't get to the end of the string. This means the component names
2212    // didn't come from the same set *or* we encountered an illegal name.
2213    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2214      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2215    return QualType();
2216  }
2217
2218  // Ensure no component accessor exceeds the width of the vector type it
2219  // operates on.
2220  if (!HalvingSwizzle) {
2221    compStr = CompName->getNameStart();
2222
2223    if (HexSwizzle)
2224      compStr++;
2225
2226    while (*compStr) {
2227      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2228        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2229          << baseType << SourceRange(CompLoc);
2230        return QualType();
2231      }
2232    }
2233  }
2234
2235  // The component accessor looks fine - now we need to compute the actual type.
2236  // The vector type is implied by the component accessor. For example,
2237  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2238  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2239  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2240  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2241                                     : CompName->getLength();
2242  if (HexSwizzle)
2243    CompSize--;
2244
2245  if (CompSize == 1)
2246    return vecType->getElementType();
2247
2248  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2249  // Now look up the TypeDefDecl from the vector type. Without this,
2250  // diagostics look bad. We want extended vector types to appear built-in.
2251  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2252    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2253      return Context.getTypedefType(ExtVectorDecls[i]);
2254  }
2255  return VT; // should never get here (a typedef type should always be found).
2256}
2257
2258static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2259                                                IdentifierInfo *Member,
2260                                                const Selector &Sel,
2261                                                ASTContext &Context) {
2262
2263  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2264    return PD;
2265  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2266    return OMD;
2267
2268  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2269       E = PDecl->protocol_end(); I != E; ++I) {
2270    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2271                                                     Context))
2272      return D;
2273  }
2274  return 0;
2275}
2276
2277static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2278                                IdentifierInfo *Member,
2279                                const Selector &Sel,
2280                                ASTContext &Context) {
2281  // Check protocols on qualified interfaces.
2282  Decl *GDecl = 0;
2283  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2284       E = QIdTy->qual_end(); I != E; ++I) {
2285    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2286      GDecl = PD;
2287      break;
2288    }
2289    // Also must look for a getter name which uses property syntax.
2290    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2291      GDecl = OMD;
2292      break;
2293    }
2294  }
2295  if (!GDecl) {
2296    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2297         E = QIdTy->qual_end(); I != E; ++I) {
2298      // Search in the protocol-qualifier list of current protocol.
2299      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2300      if (GDecl)
2301        return GDecl;
2302    }
2303  }
2304  return GDecl;
2305}
2306
2307Sema::OwningExprResult
2308Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2309                               bool IsArrow, SourceLocation OpLoc,
2310                               const CXXScopeSpec &SS,
2311                               NamedDecl *FirstQualifierInScope,
2312                               DeclarationName Name, SourceLocation NameLoc,
2313                               const TemplateArgumentListInfo *TemplateArgs) {
2314  Expr *BaseExpr = Base.takeAs<Expr>();
2315
2316  // Even in dependent contexts, try to diagnose base expressions with
2317  // obviously wrong types, e.g.:
2318  //
2319  // T* t;
2320  // t.f;
2321  //
2322  // In Obj-C++, however, the above expression is valid, since it could be
2323  // accessing the 'f' property if T is an Obj-C interface. The extra check
2324  // allows this, while still reporting an error if T is a struct pointer.
2325  if (!IsArrow) {
2326    const PointerType *PT = BaseType->getAs<PointerType>();
2327    if (PT && (!getLangOptions().ObjC1 ||
2328               PT->getPointeeType()->isRecordType())) {
2329      assert(BaseExpr && "cannot happen with implicit member accesses");
2330      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2331        << BaseType << BaseExpr->getSourceRange();
2332      return ExprError();
2333    }
2334  }
2335
2336  assert(BaseType->isDependentType() || Name.isDependentName());
2337
2338  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2339  // must have pointer type, and the accessed type is the pointee.
2340  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2341                                                   IsArrow, OpLoc,
2342                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2343                                                   SS.getRange(),
2344                                                   FirstQualifierInScope,
2345                                                   Name, NameLoc,
2346                                                   TemplateArgs));
2347}
2348
2349/// We know that the given qualified member reference points only to
2350/// declarations which do not belong to the static type of the base
2351/// expression.  Diagnose the problem.
2352static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2353                                             Expr *BaseExpr,
2354                                             QualType BaseType,
2355                                             const CXXScopeSpec &SS,
2356                                             const LookupResult &R) {
2357  // If this is an implicit member access, use a different set of
2358  // diagnostics.
2359  if (!BaseExpr)
2360    return DiagnoseInstanceReference(SemaRef, SS, R);
2361
2362  // FIXME: this is an exceedingly lame diagnostic for some of the more
2363  // complicated cases here.
2364  DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
2365  SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
2366    << SS.getRange() << DC << BaseType;
2367}
2368
2369// Check whether the declarations we found through a nested-name
2370// specifier in a member expression are actually members of the base
2371// type.  The restriction here is:
2372//
2373//   C++ [expr.ref]p2:
2374//     ... In these cases, the id-expression shall name a
2375//     member of the class or of one of its base classes.
2376//
2377// So it's perfectly legitimate for the nested-name specifier to name
2378// an unrelated class, and for us to find an overload set including
2379// decls from classes which are not superclasses, as long as the decl
2380// we actually pick through overload resolution is from a superclass.
2381bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2382                                         QualType BaseType,
2383                                         const CXXScopeSpec &SS,
2384                                         const LookupResult &R) {
2385  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2386  if (!BaseRT) {
2387    // We can't check this yet because the base type is still
2388    // dependent.
2389    assert(BaseType->isDependentType());
2390    return false;
2391  }
2392  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2393
2394  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2395    // If this is an implicit member reference and we find a
2396    // non-instance member, it's not an error.
2397    if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
2398      return false;
2399
2400    // Note that we use the DC of the decl, not the underlying decl.
2401    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2402    while (RecordD->isAnonymousStructOrUnion())
2403      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2404
2405    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2406    MemberRecord.insert(RecordD->getCanonicalDecl());
2407
2408    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2409      return false;
2410  }
2411
2412  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2413  return true;
2414}
2415
2416static bool
2417LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2418                         SourceRange BaseRange, const RecordType *RTy,
2419                         SourceLocation OpLoc, const CXXScopeSpec &SS) {
2420  RecordDecl *RDecl = RTy->getDecl();
2421  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2422                                  PDiag(diag::err_typecheck_incomplete_tag)
2423                                    << BaseRange))
2424    return true;
2425
2426  DeclContext *DC = RDecl;
2427  if (SS.isSet()) {
2428    // If the member name was a qualified-id, look into the
2429    // nested-name-specifier.
2430    DC = SemaRef.computeDeclContext(SS, false);
2431
2432    if (SemaRef.RequireCompleteDeclContext(SS)) {
2433      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2434        << SS.getRange() << DC;
2435      return true;
2436    }
2437
2438    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2439
2440    if (!isa<TypeDecl>(DC)) {
2441      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2442        << DC << SS.getRange();
2443      return true;
2444    }
2445  }
2446
2447  // The record definition is complete, now look up the member.
2448  SemaRef.LookupQualifiedName(R, DC);
2449
2450  if (!R.empty())
2451    return false;
2452
2453  // We didn't find anything with the given name, so try to correct
2454  // for typos.
2455  DeclarationName Name = R.getLookupName();
2456  if (SemaRef.CorrectTypo(R, 0, &SS, DC) &&
2457      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2458    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2459      << Name << DC << R.getLookupName() << SS.getRange()
2460      << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2461                                         R.getLookupName().getAsString());
2462    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2463      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2464        << ND->getDeclName();
2465    return false;
2466  } else {
2467    R.clear();
2468  }
2469
2470  return false;
2471}
2472
2473Sema::OwningExprResult
2474Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2475                               SourceLocation OpLoc, bool IsArrow,
2476                               const CXXScopeSpec &SS,
2477                               NamedDecl *FirstQualifierInScope,
2478                               DeclarationName Name, SourceLocation NameLoc,
2479                               const TemplateArgumentListInfo *TemplateArgs) {
2480  Expr *Base = BaseArg.takeAs<Expr>();
2481
2482  if (BaseType->isDependentType() ||
2483      (SS.isSet() && isDependentScopeSpecifier(SS)))
2484    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2485                                    IsArrow, OpLoc,
2486                                    SS, FirstQualifierInScope,
2487                                    Name, NameLoc,
2488                                    TemplateArgs);
2489
2490  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2491
2492  // Implicit member accesses.
2493  if (!Base) {
2494    QualType RecordTy = BaseType;
2495    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2496    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2497                                 RecordTy->getAs<RecordType>(),
2498                                 OpLoc, SS))
2499      return ExprError();
2500
2501  // Explicit member accesses.
2502  } else {
2503    OwningExprResult Result =
2504      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2505                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2506
2507    if (Result.isInvalid()) {
2508      Owned(Base);
2509      return ExprError();
2510    }
2511
2512    if (Result.get())
2513      return move(Result);
2514  }
2515
2516  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2517                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2518                                  R, TemplateArgs);
2519}
2520
2521Sema::OwningExprResult
2522Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2523                               SourceLocation OpLoc, bool IsArrow,
2524                               const CXXScopeSpec &SS,
2525                               NamedDecl *FirstQualifierInScope,
2526                               LookupResult &R,
2527                         const TemplateArgumentListInfo *TemplateArgs) {
2528  Expr *BaseExpr = Base.takeAs<Expr>();
2529  QualType BaseType = BaseExprType;
2530  if (IsArrow) {
2531    assert(BaseType->isPointerType());
2532    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2533  }
2534
2535  NestedNameSpecifier *Qualifier =
2536    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2537  DeclarationName MemberName = R.getLookupName();
2538  SourceLocation MemberLoc = R.getNameLoc();
2539
2540  if (R.isAmbiguous())
2541    return ExprError();
2542
2543  if (R.empty()) {
2544    // Rederive where we looked up.
2545    DeclContext *DC = (SS.isSet()
2546                       ? computeDeclContext(SS, false)
2547                       : BaseType->getAs<RecordType>()->getDecl());
2548
2549    Diag(R.getNameLoc(), diag::err_no_member)
2550      << MemberName << DC
2551      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2552    return ExprError();
2553  }
2554
2555  // Diagnose lookups that find only declarations from a non-base
2556  // type.  This is possible for either qualified lookups (which may
2557  // have been qualified with an unrelated type) or implicit member
2558  // expressions (which were found with unqualified lookup and thus
2559  // may have come from an enclosing scope).  Note that it's okay for
2560  // lookup to find declarations from a non-base type as long as those
2561  // aren't the ones picked by overload resolution.
2562  if ((SS.isSet() || !BaseExpr ||
2563       (isa<CXXThisExpr>(BaseExpr) &&
2564        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2565      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2566    return ExprError();
2567
2568  // Construct an unresolved result if we in fact got an unresolved
2569  // result.
2570  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2571    bool Dependent =
2572      BaseExprType->isDependentType() ||
2573      R.isUnresolvableResult() ||
2574      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2575
2576    // Suppress any lookup-related diagnostics; we'll do these when we
2577    // pick a member.
2578    R.suppressDiagnostics();
2579
2580    UnresolvedMemberExpr *MemExpr
2581      = UnresolvedMemberExpr::Create(Context, Dependent,
2582                                     R.isUnresolvableResult(),
2583                                     BaseExpr, BaseExprType,
2584                                     IsArrow, OpLoc,
2585                                     Qualifier, SS.getRange(),
2586                                     MemberName, MemberLoc,
2587                                     TemplateArgs);
2588    MemExpr->addDecls(R.begin(), R.end());
2589
2590    return Owned(MemExpr);
2591  }
2592
2593  assert(R.isSingleResult());
2594  NamedDecl *MemberDecl = R.getFoundDecl();
2595
2596  // FIXME: diagnose the presence of template arguments now.
2597
2598  // If the decl being referenced had an error, return an error for this
2599  // sub-expr without emitting another error, in order to avoid cascading
2600  // error cases.
2601  if (MemberDecl->isInvalidDecl())
2602    return ExprError();
2603
2604  // Handle the implicit-member-access case.
2605  if (!BaseExpr) {
2606    // If this is not an instance member, convert to a non-member access.
2607    if (!IsInstanceMember(MemberDecl))
2608      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2609
2610    SourceLocation Loc = R.getNameLoc();
2611    if (SS.getRange().isValid())
2612      Loc = SS.getRange().getBegin();
2613    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2614  }
2615
2616  bool ShouldCheckUse = true;
2617  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2618    // Don't diagnose the use of a virtual member function unless it's
2619    // explicitly qualified.
2620    if (MD->isVirtual() && !SS.isSet())
2621      ShouldCheckUse = false;
2622  }
2623
2624  // Check the use of this member.
2625  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2626    Owned(BaseExpr);
2627    return ExprError();
2628  }
2629
2630  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2631    // We may have found a field within an anonymous union or struct
2632    // (C++ [class.union]).
2633    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2634        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2635      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2636                                                      BaseExpr, OpLoc);
2637
2638    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2639    QualType MemberType = FD->getType();
2640    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2641      MemberType = Ref->getPointeeType();
2642    else {
2643      Qualifiers BaseQuals = BaseType.getQualifiers();
2644      BaseQuals.removeObjCGCAttr();
2645      if (FD->isMutable()) BaseQuals.removeConst();
2646
2647      Qualifiers MemberQuals
2648        = Context.getCanonicalType(MemberType).getQualifiers();
2649
2650      Qualifiers Combined = BaseQuals + MemberQuals;
2651      if (Combined != MemberQuals)
2652        MemberType = Context.getQualifiedType(MemberType, Combined);
2653    }
2654
2655    MarkDeclarationReferenced(MemberLoc, FD);
2656    if (PerformObjectMemberConversion(BaseExpr, FD))
2657      return ExprError();
2658    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2659                                 FD, MemberLoc, MemberType));
2660  }
2661
2662  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2663    MarkDeclarationReferenced(MemberLoc, Var);
2664    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2665                                 Var, MemberLoc,
2666                                 Var->getType().getNonReferenceType()));
2667  }
2668
2669  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2670    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2671    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2672                                 MemberFn, MemberLoc,
2673                                 MemberFn->getType()));
2674  }
2675
2676  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2677    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2678    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2679                                 Enum, MemberLoc, Enum->getType()));
2680  }
2681
2682  Owned(BaseExpr);
2683
2684  if (isa<TypeDecl>(MemberDecl))
2685    return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2686                     << MemberName << int(IsArrow));
2687
2688  // We found a declaration kind that we didn't expect. This is a
2689  // generic error message that tells the user that she can't refer
2690  // to this member with '.' or '->'.
2691  return ExprError(Diag(MemberLoc,
2692                        diag::err_typecheck_member_reference_unknown)
2693      << MemberName << int(IsArrow));
2694}
2695
2696/// Look up the given member of the given non-type-dependent
2697/// expression.  This can return in one of two ways:
2698///  * If it returns a sentinel null-but-valid result, the caller will
2699///    assume that lookup was performed and the results written into
2700///    the provided structure.  It will take over from there.
2701///  * Otherwise, the returned expression will be produced in place of
2702///    an ordinary member expression.
2703///
2704/// The ObjCImpDecl bit is a gross hack that will need to be properly
2705/// fixed for ObjC++.
2706Sema::OwningExprResult
2707Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2708                       bool &IsArrow, SourceLocation OpLoc,
2709                       const CXXScopeSpec &SS,
2710                       DeclPtrTy ObjCImpDecl) {
2711  assert(BaseExpr && "no base expression");
2712
2713  // Perform default conversions.
2714  DefaultFunctionArrayConversion(BaseExpr);
2715
2716  QualType BaseType = BaseExpr->getType();
2717  assert(!BaseType->isDependentType());
2718
2719  DeclarationName MemberName = R.getLookupName();
2720  SourceLocation MemberLoc = R.getNameLoc();
2721
2722  // If the user is trying to apply -> or . to a function pointer
2723  // type, it's probably because they forgot parentheses to call that
2724  // function. Suggest the addition of those parentheses, build the
2725  // call, and continue on.
2726  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2727    if (const FunctionProtoType *Fun
2728          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2729      QualType ResultTy = Fun->getResultType();
2730      if (Fun->getNumArgs() == 0 &&
2731          ((!IsArrow && ResultTy->isRecordType()) ||
2732           (IsArrow && ResultTy->isPointerType() &&
2733            ResultTy->getAs<PointerType>()->getPointeeType()
2734                                                          ->isRecordType()))) {
2735        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2736        Diag(Loc, diag::err_member_reference_needs_call)
2737          << QualType(Fun, 0)
2738          << CodeModificationHint::CreateInsertion(Loc, "()");
2739
2740        OwningExprResult NewBase
2741          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2742                          MultiExprArg(*this, 0, 0), 0, Loc);
2743        if (NewBase.isInvalid())
2744          return ExprError();
2745
2746        BaseExpr = NewBase.takeAs<Expr>();
2747        DefaultFunctionArrayConversion(BaseExpr);
2748        BaseType = BaseExpr->getType();
2749      }
2750    }
2751  }
2752
2753  // If this is an Objective-C pseudo-builtin and a definition is provided then
2754  // use that.
2755  if (BaseType->isObjCIdType()) {
2756    if (IsArrow) {
2757      // Handle the following exceptional case PObj->isa.
2758      if (const ObjCObjectPointerType *OPT =
2759          BaseType->getAs<ObjCObjectPointerType>()) {
2760        if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2761            MemberName.getAsIdentifierInfo()->isStr("isa"))
2762          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2763                                                 Context.getObjCClassType()));
2764      }
2765    }
2766    // We have an 'id' type. Rather than fall through, we check if this
2767    // is a reference to 'isa'.
2768    if (BaseType != Context.ObjCIdRedefinitionType) {
2769      BaseType = Context.ObjCIdRedefinitionType;
2770      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2771    }
2772  }
2773
2774  // If this is an Objective-C pseudo-builtin and a definition is provided then
2775  // use that.
2776  if (Context.isObjCSelType(BaseType)) {
2777    // We have an 'SEL' type. Rather than fall through, we check if this
2778    // is a reference to 'sel_id'.
2779    if (BaseType != Context.ObjCSelRedefinitionType) {
2780      BaseType = Context.ObjCSelRedefinitionType;
2781      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2782    }
2783  }
2784
2785  assert(!BaseType.isNull() && "no type for member expression");
2786
2787  // Handle properties on ObjC 'Class' types.
2788  if (!IsArrow && BaseType->isObjCClassType()) {
2789    // Also must look for a getter name which uses property syntax.
2790    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2791    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2792    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2793      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2794      ObjCMethodDecl *Getter;
2795      // FIXME: need to also look locally in the implementation.
2796      if ((Getter = IFace->lookupClassMethod(Sel))) {
2797        // Check the use of this method.
2798        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2799          return ExprError();
2800      }
2801      // If we found a getter then this may be a valid dot-reference, we
2802      // will look for the matching setter, in case it is needed.
2803      Selector SetterSel =
2804      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2805                                         PP.getSelectorTable(), Member);
2806      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2807      if (!Setter) {
2808        // If this reference is in an @implementation, also check for 'private'
2809        // methods.
2810        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2811      }
2812      // Look through local category implementations associated with the class.
2813      if (!Setter)
2814        Setter = IFace->getCategoryClassMethod(SetterSel);
2815
2816      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2817        return ExprError();
2818
2819      if (Getter || Setter) {
2820        QualType PType;
2821
2822        if (Getter)
2823          PType = Getter->getResultType();
2824        else
2825          // Get the expression type from Setter's incoming parameter.
2826          PType = (*(Setter->param_end() -1))->getType();
2827        // FIXME: we must check that the setter has property type.
2828        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2829                                                  PType,
2830                                                  Setter, MemberLoc, BaseExpr));
2831      }
2832      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2833                       << MemberName << BaseType);
2834    }
2835  }
2836
2837  if (BaseType->isObjCClassType() &&
2838      BaseType != Context.ObjCClassRedefinitionType) {
2839    BaseType = Context.ObjCClassRedefinitionType;
2840    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2841  }
2842
2843  if (IsArrow) {
2844    if (const PointerType *PT = BaseType->getAs<PointerType>())
2845      BaseType = PT->getPointeeType();
2846    else if (BaseType->isObjCObjectPointerType())
2847      ;
2848    else if (BaseType->isRecordType()) {
2849      // Recover from arrow accesses to records, e.g.:
2850      //   struct MyRecord foo;
2851      //   foo->bar
2852      // This is actually well-formed in C++ if MyRecord has an
2853      // overloaded operator->, but that should have been dealt with
2854      // by now.
2855      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2856        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2857        << CodeModificationHint::CreateReplacement(OpLoc, ".");
2858      IsArrow = false;
2859    } else {
2860      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
2861        << BaseType << BaseExpr->getSourceRange();
2862      return ExprError();
2863    }
2864  } else {
2865    // Recover from dot accesses to pointers, e.g.:
2866    //   type *foo;
2867    //   foo.bar
2868    // This is actually well-formed in two cases:
2869    //   - 'type' is an Objective C type
2870    //   - 'bar' is a pseudo-destructor name which happens to refer to
2871    //     the appropriate pointer type
2872    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
2873      const PointerType *PT = BaseType->getAs<PointerType>();
2874      if (PT && PT->getPointeeType()->isRecordType()) {
2875        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
2876          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
2877          << CodeModificationHint::CreateReplacement(OpLoc, "->");
2878        BaseType = PT->getPointeeType();
2879        IsArrow = true;
2880      }
2881    }
2882  }
2883
2884  // Handle field access to simple records.  This also handles access
2885  // to fields of the ObjC 'id' struct.
2886  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
2887    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
2888                                 RTy, OpLoc, SS))
2889      return ExprError();
2890    return Owned((Expr*) 0);
2891  }
2892
2893  // Handle pseudo-destructors (C++ [expr.pseudo]). Since anything referring
2894  // into a record type was handled above, any destructor we see here is a
2895  // pseudo-destructor.
2896  if (MemberName.getNameKind() == DeclarationName::CXXDestructorName) {
2897    // C++ [expr.pseudo]p2:
2898    //   The left hand side of the dot operator shall be of scalar type. The
2899    //   left hand side of the arrow operator shall be of pointer to scalar
2900    //   type.
2901    if (!BaseType->isScalarType())
2902      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
2903                     << BaseType << BaseExpr->getSourceRange());
2904
2905    //   [...] The type designated by the pseudo-destructor-name shall be the
2906    //   same as the object type.
2907    if (!MemberName.getCXXNameType()->isDependentType() &&
2908        !Context.hasSameUnqualifiedType(BaseType, MemberName.getCXXNameType()))
2909      return Owned(Diag(OpLoc, diag::err_pseudo_dtor_type_mismatch)
2910                     << BaseType << MemberName.getCXXNameType()
2911                     << BaseExpr->getSourceRange() << SourceRange(MemberLoc));
2912
2913    //   [...] Furthermore, the two type-names in a pseudo-destructor-name of
2914    //   the form
2915    //
2916    //       ::[opt] nested-name-specifier[opt] type-name ::  ̃ type-name
2917    //
2918    //   shall designate the same scalar type.
2919    //
2920    // FIXME: DPG can't see any way to trigger this particular clause, so it
2921    // isn't checked here.
2922
2923    // FIXME: We've lost the precise spelling of the type by going through
2924    // DeclarationName. Can we do better?
2925    return Owned(new (Context) CXXPseudoDestructorExpr(Context, BaseExpr,
2926                                                       IsArrow, OpLoc,
2927                               (NestedNameSpecifier *) SS.getScopeRep(),
2928                                                       SS.getRange(),
2929                                                   MemberName.getCXXNameType(),
2930                                                       MemberLoc));
2931  }
2932
2933  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2934  // (*Obj).ivar.
2935  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
2936      (!IsArrow && BaseType->isObjCInterfaceType())) {
2937    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
2938    const ObjCInterfaceType *IFaceT =
2939      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
2940    if (IFaceT) {
2941      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2942
2943      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2944      ObjCInterfaceDecl *ClassDeclared;
2945      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
2946
2947      if (!IV) {
2948        // Attempt to correct for typos in ivar names.
2949        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
2950                         LookupMemberName);
2951        if (CorrectTypo(Res, 0, 0, IDecl) &&
2952            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
2953          Diag(R.getNameLoc(),
2954               diag::err_typecheck_member_reference_ivar_suggest)
2955            << IDecl->getDeclName() << MemberName << IV->getDeclName()
2956            << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2957                                                       IV->getNameAsString());
2958          Diag(IV->getLocation(), diag::note_previous_decl)
2959            << IV->getDeclName();
2960        }
2961      }
2962
2963      if (IV) {
2964        // If the decl being referenced had an error, return an error for this
2965        // sub-expr without emitting another error, in order to avoid cascading
2966        // error cases.
2967        if (IV->isInvalidDecl())
2968          return ExprError();
2969
2970        // Check whether we can reference this field.
2971        if (DiagnoseUseOfDecl(IV, MemberLoc))
2972          return ExprError();
2973        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2974            IV->getAccessControl() != ObjCIvarDecl::Package) {
2975          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2976          if (ObjCMethodDecl *MD = getCurMethodDecl())
2977            ClassOfMethodDecl =  MD->getClassInterface();
2978          else if (ObjCImpDecl && getCurFunctionDecl()) {
2979            // Case of a c-function declared inside an objc implementation.
2980            // FIXME: For a c-style function nested inside an objc implementation
2981            // class, there is no implementation context available, so we pass
2982            // down the context as argument to this routine. Ideally, this context
2983            // need be passed down in the AST node and somehow calculated from the
2984            // AST for a function decl.
2985            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2986            if (ObjCImplementationDecl *IMPD =
2987                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2988              ClassOfMethodDecl = IMPD->getClassInterface();
2989            else if (ObjCCategoryImplDecl* CatImplClass =
2990                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2991              ClassOfMethodDecl = CatImplClass->getClassInterface();
2992          }
2993
2994          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2995            if (ClassDeclared != IDecl ||
2996                ClassOfMethodDecl != ClassDeclared)
2997              Diag(MemberLoc, diag::error_private_ivar_access)
2998                << IV->getDeclName();
2999          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3000            // @protected
3001            Diag(MemberLoc, diag::error_protected_ivar_access)
3002              << IV->getDeclName();
3003        }
3004
3005        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3006                                                   MemberLoc, BaseExpr,
3007                                                   IsArrow));
3008      }
3009      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3010                         << IDecl->getDeclName() << MemberName
3011                         << BaseExpr->getSourceRange());
3012    }
3013  }
3014  // Handle properties on 'id' and qualified "id".
3015  if (!IsArrow && (BaseType->isObjCIdType() ||
3016                   BaseType->isObjCQualifiedIdType())) {
3017    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3018    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3019
3020    // Check protocols on qualified interfaces.
3021    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3022    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3023      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3024        // Check the use of this declaration
3025        if (DiagnoseUseOfDecl(PD, MemberLoc))
3026          return ExprError();
3027
3028        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3029                                                       MemberLoc, BaseExpr));
3030      }
3031      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3032        // Check the use of this method.
3033        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3034          return ExprError();
3035
3036        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
3037                                                   OMD->getResultType(),
3038                                                   OMD, OpLoc, MemberLoc,
3039                                                   NULL, 0));
3040      }
3041    }
3042
3043    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3044                       << MemberName << BaseType);
3045  }
3046  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3047  // pointer to a (potentially qualified) interface type.
3048  const ObjCObjectPointerType *OPT;
3049  if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
3050    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
3051    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
3052    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3053
3054    // Search for a declared property first.
3055    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
3056      // Check whether we can reference this property.
3057      if (DiagnoseUseOfDecl(PD, MemberLoc))
3058        return ExprError();
3059      QualType ResTy = PD->getType();
3060      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3061      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3062      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
3063        ResTy = Getter->getResultType();
3064      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
3065                                                     MemberLoc, BaseExpr));
3066    }
3067    // Check protocols on qualified interfaces.
3068    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3069         E = OPT->qual_end(); I != E; ++I)
3070      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3071        // Check whether we can reference this property.
3072        if (DiagnoseUseOfDecl(PD, MemberLoc))
3073          return ExprError();
3074
3075        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3076                                                       MemberLoc, BaseExpr));
3077      }
3078    // If that failed, look for an "implicit" property by seeing if the nullary
3079    // selector is implemented.
3080
3081    // FIXME: The logic for looking up nullary and unary selectors should be
3082    // shared with the code in ActOnInstanceMessage.
3083
3084    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3085    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3086
3087    // If this reference is in an @implementation, check for 'private' methods.
3088    if (!Getter)
3089      Getter = IFace->lookupPrivateInstanceMethod(Sel);
3090
3091    // Look through local category implementations associated with the class.
3092    if (!Getter)
3093      Getter = IFace->getCategoryInstanceMethod(Sel);
3094    if (Getter) {
3095      // Check if we can reference this property.
3096      if (DiagnoseUseOfDecl(Getter, MemberLoc))
3097        return ExprError();
3098    }
3099    // If we found a getter then this may be a valid dot-reference, we
3100    // will look for the matching setter, in case it is needed.
3101    Selector SetterSel =
3102      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3103                                         PP.getSelectorTable(), Member);
3104    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
3105    if (!Setter) {
3106      // If this reference is in an @implementation, also check for 'private'
3107      // methods.
3108      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3109    }
3110    // Look through local category implementations associated with the class.
3111    if (!Setter)
3112      Setter = IFace->getCategoryInstanceMethod(SetterSel);
3113
3114    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3115      return ExprError();
3116
3117    if (Getter) {
3118      QualType PType;
3119      PType = Getter->getResultType();
3120      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
3121                                      Setter, MemberLoc, BaseExpr));
3122    }
3123
3124    // Attempt to correct for typos in property names.
3125    LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3126                     LookupOrdinaryName);
3127    if (CorrectTypo(Res, 0, 0, IFace, false, OPT) &&
3128        Res.getAsSingle<ObjCPropertyDecl>()) {
3129      Diag(R.getNameLoc(), diag::err_property_not_found_suggest)
3130        << MemberName << BaseType << Res.getLookupName()
3131        << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3132                                           Res.getLookupName().getAsString());
3133      ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
3134      Diag(Property->getLocation(), diag::note_previous_decl)
3135        << Property->getDeclName();
3136
3137      return LookupMemberExpr(Res, BaseExpr, IsArrow, OpLoc, SS,
3138                              ObjCImpDecl);
3139    }
3140
3141    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3142      << MemberName << BaseType);
3143  }
3144
3145  // Handle the following exceptional case (*Obj).isa.
3146  if (!IsArrow &&
3147      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
3148      MemberName.getAsIdentifierInfo()->isStr("isa"))
3149    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3150                                           Context.getObjCClassType()));
3151
3152  // Handle 'field access' to vectors, such as 'V.xx'.
3153  if (BaseType->isExtVectorType()) {
3154    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3155    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3156    if (ret.isNull())
3157      return ExprError();
3158    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3159                                                    MemberLoc));
3160  }
3161
3162  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3163    << BaseType << BaseExpr->getSourceRange();
3164
3165  return ExprError();
3166}
3167
3168static Sema::OwningExprResult DiagnoseDtorReference(Sema &SemaRef,
3169                                                    SourceLocation NameLoc,
3170                                                    Sema::ExprArg MemExpr) {
3171  Expr *E = (Expr *) MemExpr.get();
3172  SourceLocation ExpectedLParenLoc = SemaRef.PP.getLocForEndOfToken(NameLoc);
3173  SemaRef.Diag(E->getLocStart(), diag::err_dtor_expr_without_call)
3174    << isa<CXXPseudoDestructorExpr>(E)
3175    << CodeModificationHint::CreateInsertion(ExpectedLParenLoc, "()");
3176
3177  return SemaRef.ActOnCallExpr(/*Scope*/ 0,
3178                               move(MemExpr),
3179                               /*LPLoc*/ ExpectedLParenLoc,
3180                               Sema::MultiExprArg(SemaRef, 0, 0),
3181                               /*CommaLocs*/ 0,
3182                               /*RPLoc*/ ExpectedLParenLoc);
3183}
3184
3185/// The main callback when the parser finds something like
3186///   expression . [nested-name-specifier] identifier
3187///   expression -> [nested-name-specifier] identifier
3188/// where 'identifier' encompasses a fairly broad spectrum of
3189/// possibilities, including destructor and operator references.
3190///
3191/// \param OpKind either tok::arrow or tok::period
3192/// \param HasTrailingLParen whether the next token is '(', which
3193///   is used to diagnose mis-uses of special members that can
3194///   only be called
3195/// \param ObjCImpDecl the current ObjC @implementation decl;
3196///   this is an ugly hack around the fact that ObjC @implementations
3197///   aren't properly put in the context chain
3198Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3199                                                   SourceLocation OpLoc,
3200                                                   tok::TokenKind OpKind,
3201                                                   const CXXScopeSpec &SS,
3202                                                   UnqualifiedId &Id,
3203                                                   DeclPtrTy ObjCImpDecl,
3204                                                   bool HasTrailingLParen) {
3205  if (SS.isSet() && SS.isInvalid())
3206    return ExprError();
3207
3208  TemplateArgumentListInfo TemplateArgsBuffer;
3209
3210  // Decompose the name into its component parts.
3211  DeclarationName Name;
3212  SourceLocation NameLoc;
3213  const TemplateArgumentListInfo *TemplateArgs;
3214  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3215                         Name, NameLoc, TemplateArgs);
3216
3217  bool IsArrow = (OpKind == tok::arrow);
3218
3219  NamedDecl *FirstQualifierInScope
3220    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3221                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3222
3223  // This is a postfix expression, so get rid of ParenListExprs.
3224  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3225
3226  Expr *Base = BaseArg.takeAs<Expr>();
3227  OwningExprResult Result(*this);
3228  if (Base->getType()->isDependentType() || Name.isDependentName()) {
3229    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3230                                      IsArrow, OpLoc,
3231                                      SS, FirstQualifierInScope,
3232                                      Name, NameLoc,
3233                                      TemplateArgs);
3234  } else {
3235    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3236    if (TemplateArgs) {
3237      // Re-use the lookup done for the template name.
3238      DecomposeTemplateName(R, Id);
3239    } else {
3240      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3241                                SS, ObjCImpDecl);
3242
3243      if (Result.isInvalid()) {
3244        Owned(Base);
3245        return ExprError();
3246      }
3247
3248      if (Result.get()) {
3249        // The only way a reference to a destructor can be used is to
3250        // immediately call it, which falls into this case.  If the
3251        // next token is not a '(', produce a diagnostic and build the
3252        // call now.
3253        if (!HasTrailingLParen &&
3254            Id.getKind() == UnqualifiedId::IK_DestructorName)
3255          return DiagnoseDtorReference(*this, NameLoc, move(Result));
3256
3257        return move(Result);
3258      }
3259    }
3260
3261    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3262                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3263                                      R, TemplateArgs);
3264  }
3265
3266  return move(Result);
3267}
3268
3269Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3270                                                    FunctionDecl *FD,
3271                                                    ParmVarDecl *Param) {
3272  if (Param->hasUnparsedDefaultArg()) {
3273    Diag (CallLoc,
3274          diag::err_use_of_default_argument_to_function_declared_later) <<
3275      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3276    Diag(UnparsedDefaultArgLocs[Param],
3277          diag::note_default_argument_declared_here);
3278  } else {
3279    if (Param->hasUninstantiatedDefaultArg()) {
3280      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3281
3282      // Instantiate the expression.
3283      MultiLevelTemplateArgumentList ArgList = getTemplateInstantiationArgs(FD);
3284
3285      InstantiatingTemplate Inst(*this, CallLoc, Param,
3286                                 ArgList.getInnermost().getFlatArgumentList(),
3287                                 ArgList.getInnermost().flat_size());
3288
3289      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3290      if (Result.isInvalid())
3291        return ExprError();
3292
3293      // Check the expression as an initializer for the parameter.
3294      InitializedEntity Entity
3295        = InitializedEntity::InitializeParameter(Param);
3296      InitializationKind Kind
3297        = InitializationKind::CreateCopy(Param->getLocation(),
3298               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3299      Expr *ResultE = Result.takeAs<Expr>();
3300
3301      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3302      Result = InitSeq.Perform(*this, Entity, Kind,
3303                               MultiExprArg(*this, (void**)&ResultE, 1));
3304      if (Result.isInvalid())
3305        return ExprError();
3306
3307      // Build the default argument expression.
3308      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3309                                             Result.takeAs<Expr>()));
3310    }
3311
3312    // If the default expression creates temporaries, we need to
3313    // push them to the current stack of expression temporaries so they'll
3314    // be properly destroyed.
3315    // FIXME: We should really be rebuilding the default argument with new
3316    // bound temporaries; see the comment in PR5810.
3317    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3318      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3319  }
3320
3321  // We already type-checked the argument, so we know it works.
3322  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3323}
3324
3325/// ConvertArgumentsForCall - Converts the arguments specified in
3326/// Args/NumArgs to the parameter types of the function FDecl with
3327/// function prototype Proto. Call is the call expression itself, and
3328/// Fn is the function expression. For a C++ member function, this
3329/// routine does not attempt to convert the object argument. Returns
3330/// true if the call is ill-formed.
3331bool
3332Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3333                              FunctionDecl *FDecl,
3334                              const FunctionProtoType *Proto,
3335                              Expr **Args, unsigned NumArgs,
3336                              SourceLocation RParenLoc) {
3337  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3338  // assignment, to the types of the corresponding parameter, ...
3339  unsigned NumArgsInProto = Proto->getNumArgs();
3340  bool Invalid = false;
3341
3342  // If too few arguments are available (and we don't have default
3343  // arguments for the remaining parameters), don't make the call.
3344  if (NumArgs < NumArgsInProto) {
3345    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3346      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3347        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
3348    Call->setNumArgs(Context, NumArgsInProto);
3349  }
3350
3351  // If too many are passed and not variadic, error on the extras and drop
3352  // them.
3353  if (NumArgs > NumArgsInProto) {
3354    if (!Proto->isVariadic()) {
3355      Diag(Args[NumArgsInProto]->getLocStart(),
3356           diag::err_typecheck_call_too_many_args)
3357        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
3358        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3359                       Args[NumArgs-1]->getLocEnd());
3360      // This deletes the extra arguments.
3361      Call->setNumArgs(Context, NumArgsInProto);
3362      return true;
3363    }
3364  }
3365  llvm::SmallVector<Expr *, 8> AllArgs;
3366  VariadicCallType CallType =
3367    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3368  if (Fn->getType()->isBlockPointerType())
3369    CallType = VariadicBlock; // Block
3370  else if (isa<MemberExpr>(Fn))
3371    CallType = VariadicMethod;
3372  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3373                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3374  if (Invalid)
3375    return true;
3376  unsigned TotalNumArgs = AllArgs.size();
3377  for (unsigned i = 0; i < TotalNumArgs; ++i)
3378    Call->setArg(i, AllArgs[i]);
3379
3380  return false;
3381}
3382
3383bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3384                                  FunctionDecl *FDecl,
3385                                  const FunctionProtoType *Proto,
3386                                  unsigned FirstProtoArg,
3387                                  Expr **Args, unsigned NumArgs,
3388                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3389                                  VariadicCallType CallType) {
3390  unsigned NumArgsInProto = Proto->getNumArgs();
3391  unsigned NumArgsToCheck = NumArgs;
3392  bool Invalid = false;
3393  if (NumArgs != NumArgsInProto)
3394    // Use default arguments for missing arguments
3395    NumArgsToCheck = NumArgsInProto;
3396  unsigned ArgIx = 0;
3397  // Continue to check argument types (even if we have too few/many args).
3398  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3399    QualType ProtoArgType = Proto->getArgType(i);
3400
3401    Expr *Arg;
3402    if (ArgIx < NumArgs) {
3403      Arg = Args[ArgIx++];
3404
3405      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3406                              ProtoArgType,
3407                              PDiag(diag::err_call_incomplete_argument)
3408                              << Arg->getSourceRange()))
3409        return true;
3410
3411      // Pass the argument
3412      ParmVarDecl *Param = 0;
3413      if (FDecl && i < FDecl->getNumParams())
3414        Param = FDecl->getParamDecl(i);
3415
3416
3417      InitializedEntity Entity =
3418        Param? InitializedEntity::InitializeParameter(Param)
3419             : InitializedEntity::InitializeParameter(ProtoArgType);
3420      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3421                                                        SourceLocation(),
3422                                                        Owned(Arg));
3423      if (ArgE.isInvalid())
3424        return true;
3425
3426      Arg = ArgE.takeAs<Expr>();
3427    } else {
3428      ParmVarDecl *Param = FDecl->getParamDecl(i);
3429
3430      OwningExprResult ArgExpr =
3431        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3432      if (ArgExpr.isInvalid())
3433        return true;
3434
3435      Arg = ArgExpr.takeAs<Expr>();
3436    }
3437    AllArgs.push_back(Arg);
3438  }
3439
3440  // If this is a variadic call, handle args passed through "...".
3441  if (CallType != VariadicDoesNotApply) {
3442    // Promote the arguments (C99 6.5.2.2p7).
3443    for (unsigned i = ArgIx; i < NumArgs; i++) {
3444      Expr *Arg = Args[i];
3445      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
3446      AllArgs.push_back(Arg);
3447    }
3448  }
3449  return Invalid;
3450}
3451
3452/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3453/// This provides the location of the left/right parens and a list of comma
3454/// locations.
3455Action::OwningExprResult
3456Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3457                    MultiExprArg args,
3458                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3459  unsigned NumArgs = args.size();
3460
3461  // Since this might be a postfix expression, get rid of ParenListExprs.
3462  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3463
3464  Expr *Fn = fn.takeAs<Expr>();
3465  Expr **Args = reinterpret_cast<Expr**>(args.release());
3466  assert(Fn && "no function call expression");
3467
3468  if (getLangOptions().CPlusPlus) {
3469    // If this is a pseudo-destructor expression, build the call immediately.
3470    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3471      if (NumArgs > 0) {
3472        // Pseudo-destructor calls should not have any arguments.
3473        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3474          << CodeModificationHint::CreateRemoval(
3475                                    SourceRange(Args[0]->getLocStart(),
3476                                                Args[NumArgs-1]->getLocEnd()));
3477
3478        for (unsigned I = 0; I != NumArgs; ++I)
3479          Args[I]->Destroy(Context);
3480
3481        NumArgs = 0;
3482      }
3483
3484      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3485                                          RParenLoc));
3486    }
3487
3488    // Determine whether this is a dependent call inside a C++ template,
3489    // in which case we won't do any semantic analysis now.
3490    // FIXME: Will need to cache the results of name lookup (including ADL) in
3491    // Fn.
3492    bool Dependent = false;
3493    if (Fn->isTypeDependent())
3494      Dependent = true;
3495    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3496      Dependent = true;
3497
3498    if (Dependent)
3499      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3500                                          Context.DependentTy, RParenLoc));
3501
3502    // Determine whether this is a call to an object (C++ [over.call.object]).
3503    if (Fn->getType()->isRecordType())
3504      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3505                                                CommaLocs, RParenLoc));
3506
3507    Expr *NakedFn = Fn->IgnoreParens();
3508
3509    // Determine whether this is a call to an unresolved member function.
3510    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3511      // If lookup was unresolved but not dependent (i.e. didn't find
3512      // an unresolved using declaration), it has to be an overloaded
3513      // function set, which means it must contain either multiple
3514      // declarations (all methods or method templates) or a single
3515      // method template.
3516      assert((MemE->getNumDecls() > 1) ||
3517             isa<FunctionTemplateDecl>(*MemE->decls_begin()));
3518      (void)MemE;
3519
3520      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3521                                       CommaLocs, RParenLoc);
3522    }
3523
3524    // Determine whether this is a call to a member function.
3525    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3526      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3527      if (isa<CXXMethodDecl>(MemDecl))
3528        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3529                                         CommaLocs, RParenLoc);
3530    }
3531
3532    // Determine whether this is a call to a pointer-to-member function.
3533    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3534      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3535          BO->getOpcode() == BinaryOperator::PtrMemI) {
3536        if (const FunctionProtoType *FPT =
3537              dyn_cast<FunctionProtoType>(BO->getType())) {
3538          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3539
3540          ExprOwningPtr<CXXMemberCallExpr>
3541            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3542                                                          NumArgs, ResultTy,
3543                                                          RParenLoc));
3544
3545          if (CheckCallReturnType(FPT->getResultType(),
3546                                  BO->getRHS()->getSourceRange().getBegin(),
3547                                  TheCall.get(), 0))
3548            return ExprError();
3549
3550          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3551                                      RParenLoc))
3552            return ExprError();
3553
3554          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3555        }
3556        return ExprError(Diag(Fn->getLocStart(),
3557                              diag::err_typecheck_call_not_function)
3558                              << Fn->getType() << Fn->getSourceRange());
3559      }
3560    }
3561  }
3562
3563  // If we're directly calling a function, get the appropriate declaration.
3564  // Also, in C++, keep track of whether we should perform argument-dependent
3565  // lookup and whether there were any explicitly-specified template arguments.
3566
3567  Expr *NakedFn = Fn->IgnoreParens();
3568  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3569    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3570    return BuildOverloadedCallExpr(Fn, ULE, LParenLoc, Args, NumArgs,
3571                                   CommaLocs, RParenLoc);
3572  }
3573
3574  NamedDecl *NDecl = 0;
3575  if (isa<DeclRefExpr>(NakedFn))
3576    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3577
3578  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3579}
3580
3581/// BuildResolvedCallExpr - Build a call to a resolved expression,
3582/// i.e. an expression not of \p OverloadTy.  The expression should
3583/// unary-convert to an expression of function-pointer or
3584/// block-pointer type.
3585///
3586/// \param NDecl the declaration being called, if available
3587Sema::OwningExprResult
3588Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3589                            SourceLocation LParenLoc,
3590                            Expr **Args, unsigned NumArgs,
3591                            SourceLocation RParenLoc) {
3592  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3593
3594  // Promote the function operand.
3595  UsualUnaryConversions(Fn);
3596
3597  // Make the call expr early, before semantic checks.  This guarantees cleanup
3598  // of arguments and function on error.
3599  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3600                                                               Args, NumArgs,
3601                                                               Context.BoolTy,
3602                                                               RParenLoc));
3603
3604  const FunctionType *FuncT;
3605  if (!Fn->getType()->isBlockPointerType()) {
3606    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3607    // have type pointer to function".
3608    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3609    if (PT == 0)
3610      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3611        << Fn->getType() << Fn->getSourceRange());
3612    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3613  } else { // This is a block call.
3614    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3615                getAs<FunctionType>();
3616  }
3617  if (FuncT == 0)
3618    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3619      << Fn->getType() << Fn->getSourceRange());
3620
3621  // Check for a valid return type
3622  if (CheckCallReturnType(FuncT->getResultType(),
3623                          Fn->getSourceRange().getBegin(), TheCall.get(),
3624                          FDecl))
3625    return ExprError();
3626
3627  // We know the result type of the call, set it.
3628  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3629
3630  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3631    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3632                                RParenLoc))
3633      return ExprError();
3634  } else {
3635    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3636
3637    if (FDecl) {
3638      // Check if we have too few/too many template arguments, based
3639      // on our knowledge of the function definition.
3640      const FunctionDecl *Def = 0;
3641      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3642        const FunctionProtoType *Proto =
3643            Def->getType()->getAs<FunctionProtoType>();
3644        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3645          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3646            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3647        }
3648      }
3649    }
3650
3651    // Promote the arguments (C99 6.5.2.2p6).
3652    for (unsigned i = 0; i != NumArgs; i++) {
3653      Expr *Arg = Args[i];
3654      DefaultArgumentPromotion(Arg);
3655      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3656                              Arg->getType(),
3657                              PDiag(diag::err_call_incomplete_argument)
3658                                << Arg->getSourceRange()))
3659        return ExprError();
3660      TheCall->setArg(i, Arg);
3661    }
3662  }
3663
3664  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3665    if (!Method->isStatic())
3666      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3667        << Fn->getSourceRange());
3668
3669  // Check for sentinels
3670  if (NDecl)
3671    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3672
3673  // Do special checking on direct calls to functions.
3674  if (FDecl) {
3675    if (CheckFunctionCall(FDecl, TheCall.get()))
3676      return ExprError();
3677
3678    if (unsigned BuiltinID = FDecl->getBuiltinID())
3679      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3680  } else if (NDecl) {
3681    if (CheckBlockCall(NDecl, TheCall.get()))
3682      return ExprError();
3683  }
3684
3685  return MaybeBindToTemporary(TheCall.take());
3686}
3687
3688Action::OwningExprResult
3689Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3690                           SourceLocation RParenLoc, ExprArg InitExpr) {
3691  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3692  // FIXME: put back this assert when initializers are worked out.
3693  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3694
3695  TypeSourceInfo *TInfo;
3696  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3697  if (!TInfo)
3698    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3699
3700  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3701}
3702
3703Action::OwningExprResult
3704Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3705                               SourceLocation RParenLoc, ExprArg InitExpr) {
3706  QualType literalType = TInfo->getType();
3707  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3708
3709  if (literalType->isArrayType()) {
3710    if (literalType->isVariableArrayType())
3711      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3712        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3713  } else if (!literalType->isDependentType() &&
3714             RequireCompleteType(LParenLoc, literalType,
3715                      PDiag(diag::err_typecheck_decl_incomplete_type)
3716                        << SourceRange(LParenLoc,
3717                                       literalExpr->getSourceRange().getEnd())))
3718    return ExprError();
3719
3720  InitializedEntity Entity
3721    = InitializedEntity::InitializeTemporary(literalType);
3722  InitializationKind Kind
3723    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3724                                     /*IsCStyleCast=*/true);
3725  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3726  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3727                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3728                                            &literalType);
3729  if (Result.isInvalid())
3730    return ExprError();
3731  InitExpr.release();
3732  literalExpr = static_cast<Expr*>(Result.get());
3733
3734  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3735  if (isFileScope) { // 6.5.2.5p3
3736    if (CheckForConstantInitializer(literalExpr, literalType))
3737      return ExprError();
3738  }
3739
3740  Result.release();
3741
3742  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3743                                                 literalExpr, isFileScope));
3744}
3745
3746Action::OwningExprResult
3747Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3748                    SourceLocation RBraceLoc) {
3749  unsigned NumInit = initlist.size();
3750  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3751
3752  // Semantic analysis for initializers is done by ActOnDeclarator() and
3753  // CheckInitializer() - it requires knowledge of the object being intialized.
3754
3755  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3756                                               RBraceLoc);
3757  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3758  return Owned(E);
3759}
3760
3761static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3762                                            QualType SrcTy, QualType DestTy) {
3763  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3764    return CastExpr::CK_NoOp;
3765
3766  if (SrcTy->hasPointerRepresentation()) {
3767    if (DestTy->hasPointerRepresentation())
3768      return DestTy->isObjCObjectPointerType() ?
3769                CastExpr::CK_AnyPointerToObjCPointerCast :
3770                CastExpr::CK_BitCast;
3771    if (DestTy->isIntegerType())
3772      return CastExpr::CK_PointerToIntegral;
3773  }
3774
3775  if (SrcTy->isIntegerType()) {
3776    if (DestTy->isIntegerType())
3777      return CastExpr::CK_IntegralCast;
3778    if (DestTy->hasPointerRepresentation())
3779      return CastExpr::CK_IntegralToPointer;
3780    if (DestTy->isRealFloatingType())
3781      return CastExpr::CK_IntegralToFloating;
3782  }
3783
3784  if (SrcTy->isRealFloatingType()) {
3785    if (DestTy->isRealFloatingType())
3786      return CastExpr::CK_FloatingCast;
3787    if (DestTy->isIntegerType())
3788      return CastExpr::CK_FloatingToIntegral;
3789  }
3790
3791  // FIXME: Assert here.
3792  // assert(false && "Unhandled cast combination!");
3793  return CastExpr::CK_Unknown;
3794}
3795
3796/// CheckCastTypes - Check type constraints for casting between types.
3797bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3798                          CastExpr::CastKind& Kind,
3799                          CXXMethodDecl *& ConversionDecl,
3800                          bool FunctionalStyle) {
3801  if (getLangOptions().CPlusPlus)
3802    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3803                              ConversionDecl);
3804
3805  DefaultFunctionArrayLvalueConversion(castExpr);
3806
3807  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3808  // type needs to be scalar.
3809  if (castType->isVoidType()) {
3810    // Cast to void allows any expr type.
3811    Kind = CastExpr::CK_ToVoid;
3812    return false;
3813  }
3814
3815  if (!castType->isScalarType() && !castType->isVectorType()) {
3816    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3817        (castType->isStructureType() || castType->isUnionType())) {
3818      // GCC struct/union extension: allow cast to self.
3819      // FIXME: Check that the cast destination type is complete.
3820      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3821        << castType << castExpr->getSourceRange();
3822      Kind = CastExpr::CK_NoOp;
3823      return false;
3824    }
3825
3826    if (castType->isUnionType()) {
3827      // GCC cast to union extension
3828      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3829      RecordDecl::field_iterator Field, FieldEnd;
3830      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3831           Field != FieldEnd; ++Field) {
3832        if (Context.hasSameUnqualifiedType(Field->getType(),
3833                                           castExpr->getType())) {
3834          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3835            << castExpr->getSourceRange();
3836          break;
3837        }
3838      }
3839      if (Field == FieldEnd)
3840        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3841          << castExpr->getType() << castExpr->getSourceRange();
3842      Kind = CastExpr::CK_ToUnion;
3843      return false;
3844    }
3845
3846    // Reject any other conversions to non-scalar types.
3847    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3848      << castType << castExpr->getSourceRange();
3849  }
3850
3851  if (!castExpr->getType()->isScalarType() &&
3852      !castExpr->getType()->isVectorType()) {
3853    return Diag(castExpr->getLocStart(),
3854                diag::err_typecheck_expect_scalar_operand)
3855      << castExpr->getType() << castExpr->getSourceRange();
3856  }
3857
3858  if (castType->isExtVectorType())
3859    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3860
3861  if (castType->isVectorType())
3862    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3863  if (castExpr->getType()->isVectorType())
3864    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3865
3866  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3867    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3868
3869  if (isa<ObjCSelectorExpr>(castExpr))
3870    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3871
3872  if (!castType->isArithmeticType()) {
3873    QualType castExprType = castExpr->getType();
3874    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3875      return Diag(castExpr->getLocStart(),
3876                  diag::err_cast_pointer_from_non_pointer_int)
3877        << castExprType << castExpr->getSourceRange();
3878  } else if (!castExpr->getType()->isArithmeticType()) {
3879    if (!castType->isIntegralType() && castType->isArithmeticType())
3880      return Diag(castExpr->getLocStart(),
3881                  diag::err_cast_pointer_to_non_pointer_int)
3882        << castType << castExpr->getSourceRange();
3883  }
3884
3885  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3886  return false;
3887}
3888
3889bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3890                           CastExpr::CastKind &Kind) {
3891  assert(VectorTy->isVectorType() && "Not a vector type!");
3892
3893  if (Ty->isVectorType() || Ty->isIntegerType()) {
3894    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3895      return Diag(R.getBegin(),
3896                  Ty->isVectorType() ?
3897                  diag::err_invalid_conversion_between_vectors :
3898                  diag::err_invalid_conversion_between_vector_and_integer)
3899        << VectorTy << Ty << R;
3900  } else
3901    return Diag(R.getBegin(),
3902                diag::err_invalid_conversion_between_vector_and_scalar)
3903      << VectorTy << Ty << R;
3904
3905  Kind = CastExpr::CK_BitCast;
3906  return false;
3907}
3908
3909bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
3910                              CastExpr::CastKind &Kind) {
3911  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3912
3913  QualType SrcTy = CastExpr->getType();
3914
3915  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3916  // an ExtVectorType.
3917  if (SrcTy->isVectorType()) {
3918    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3919      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3920        << DestTy << SrcTy << R;
3921    Kind = CastExpr::CK_BitCast;
3922    return false;
3923  }
3924
3925  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3926  // conversion will take place first from scalar to elt type, and then
3927  // splat from elt type to vector.
3928  if (SrcTy->isPointerType())
3929    return Diag(R.getBegin(),
3930                diag::err_invalid_conversion_between_vector_and_scalar)
3931      << DestTy << SrcTy << R;
3932
3933  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
3934  ImpCastExprToType(CastExpr, DestElemTy,
3935                    getScalarCastKind(Context, SrcTy, DestElemTy));
3936
3937  Kind = CastExpr::CK_VectorSplat;
3938  return false;
3939}
3940
3941Action::OwningExprResult
3942Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
3943                    SourceLocation RParenLoc, ExprArg Op) {
3944  assert((Ty != 0) && (Op.get() != 0) &&
3945         "ActOnCastExpr(): missing type or expr");
3946
3947  TypeSourceInfo *castTInfo;
3948  QualType castType = GetTypeFromParser(Ty, &castTInfo);
3949  if (!castTInfo)
3950    castTInfo = Context.getTrivialTypeSourceInfo(castType);
3951
3952  // If the Expr being casted is a ParenListExpr, handle it specially.
3953  Expr *castExpr = (Expr *)Op.get();
3954  if (isa<ParenListExpr>(castExpr))
3955    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
3956                                    castTInfo);
3957
3958  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
3959}
3960
3961Action::OwningExprResult
3962Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
3963                          SourceLocation RParenLoc, ExprArg Op) {
3964  Expr *castExpr = static_cast<Expr*>(Op.get());
3965
3966  CXXMethodDecl *Method = 0;
3967  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
3968  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
3969                     Kind, Method))
3970    return ExprError();
3971
3972  if (Method) {
3973    // FIXME: preserve type source info here
3974    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, Ty->getType(),
3975                                                    Kind, Method, move(Op));
3976
3977    if (CastArg.isInvalid())
3978      return ExprError();
3979
3980    castExpr = CastArg.takeAs<Expr>();
3981  } else {
3982    Op.release();
3983  }
3984
3985  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
3986                                            Kind, castExpr, Ty,
3987                                            LParenLoc, RParenLoc));
3988}
3989
3990/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
3991/// of comma binary operators.
3992Action::OwningExprResult
3993Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
3994  Expr *expr = EA.takeAs<Expr>();
3995  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
3996  if (!E)
3997    return Owned(expr);
3998
3999  OwningExprResult Result(*this, E->getExpr(0));
4000
4001  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4002    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4003                        Owned(E->getExpr(i)));
4004
4005  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4006}
4007
4008Action::OwningExprResult
4009Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4010                               SourceLocation RParenLoc, ExprArg Op,
4011                               TypeSourceInfo *TInfo) {
4012  ParenListExpr *PE = (ParenListExpr *)Op.get();
4013  QualType Ty = TInfo->getType();
4014
4015  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4016  // then handle it as such.
4017  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4018    if (PE->getNumExprs() == 0) {
4019      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4020      return ExprError();
4021    }
4022
4023    llvm::SmallVector<Expr *, 8> initExprs;
4024    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4025      initExprs.push_back(PE->getExpr(i));
4026
4027    // FIXME: This means that pretty-printing the final AST will produce curly
4028    // braces instead of the original commas.
4029    Op.release();
4030    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
4031                                                 initExprs.size(), RParenLoc);
4032    E->setType(Ty);
4033    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4034  } else {
4035    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4036    // sequence of BinOp comma operators.
4037    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4038    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4039  }
4040}
4041
4042Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4043                                                  SourceLocation R,
4044                                                  MultiExprArg Val,
4045                                                  TypeTy *TypeOfCast) {
4046  unsigned nexprs = Val.size();
4047  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4048  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4049  Expr *expr;
4050  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4051    expr = new (Context) ParenExpr(L, R, exprs[0]);
4052  else
4053    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4054  return Owned(expr);
4055}
4056
4057/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4058/// In that case, lhs = cond.
4059/// C99 6.5.15
4060QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4061                                        SourceLocation QuestionLoc) {
4062  // C++ is sufficiently different to merit its own checker.
4063  if (getLangOptions().CPlusPlus)
4064    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4065
4066  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
4067
4068  UsualUnaryConversions(Cond);
4069  UsualUnaryConversions(LHS);
4070  UsualUnaryConversions(RHS);
4071  QualType CondTy = Cond->getType();
4072  QualType LHSTy = LHS->getType();
4073  QualType RHSTy = RHS->getType();
4074
4075  // first, check the condition.
4076  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4077    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4078      << CondTy;
4079    return QualType();
4080  }
4081
4082  // Now check the two expressions.
4083  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4084    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4085
4086  // If both operands have arithmetic type, do the usual arithmetic conversions
4087  // to find a common type: C99 6.5.15p3,5.
4088  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4089    UsualArithmeticConversions(LHS, RHS);
4090    return LHS->getType();
4091  }
4092
4093  // If both operands are the same structure or union type, the result is that
4094  // type.
4095  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4096    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4097      if (LHSRT->getDecl() == RHSRT->getDecl())
4098        // "If both the operands have structure or union type, the result has
4099        // that type."  This implies that CV qualifiers are dropped.
4100        return LHSTy.getUnqualifiedType();
4101    // FIXME: Type of conditional expression must be complete in C mode.
4102  }
4103
4104  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4105  // The following || allows only one side to be void (a GCC-ism).
4106  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4107    if (!LHSTy->isVoidType())
4108      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4109        << RHS->getSourceRange();
4110    if (!RHSTy->isVoidType())
4111      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4112        << LHS->getSourceRange();
4113    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4114    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4115    return Context.VoidTy;
4116  }
4117  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4118  // the type of the other operand."
4119  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4120      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4121    // promote the null to a pointer.
4122    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4123    return LHSTy;
4124  }
4125  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4126      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4127    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4128    return RHSTy;
4129  }
4130
4131  // All objective-c pointer type analysis is done here.
4132  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4133                                                        QuestionLoc);
4134  if (!compositeType.isNull())
4135    return compositeType;
4136
4137
4138  // Handle block pointer types.
4139  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4140    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4141      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4142        QualType destType = Context.getPointerType(Context.VoidTy);
4143        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4144        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4145        return destType;
4146      }
4147      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4148      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4149      return QualType();
4150    }
4151    // We have 2 block pointer types.
4152    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4153      // Two identical block pointer types are always compatible.
4154      return LHSTy;
4155    }
4156    // The block pointer types aren't identical, continue checking.
4157    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4158    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4159
4160    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4161                                    rhptee.getUnqualifiedType())) {
4162      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4163      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4164      // In this situation, we assume void* type. No especially good
4165      // reason, but this is what gcc does, and we do have to pick
4166      // to get a consistent AST.
4167      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4168      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4169      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4170      return incompatTy;
4171    }
4172    // The block pointer types are compatible.
4173    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4174    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4175    return LHSTy;
4176  }
4177
4178  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4179  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4180    // get the "pointed to" types
4181    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4182    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4183
4184    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4185    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4186      // Figure out necessary qualifiers (C99 6.5.15p6)
4187      QualType destPointee
4188        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4189      QualType destType = Context.getPointerType(destPointee);
4190      // Add qualifiers if necessary.
4191      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4192      // Promote to void*.
4193      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4194      return destType;
4195    }
4196    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4197      QualType destPointee
4198        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4199      QualType destType = Context.getPointerType(destPointee);
4200      // Add qualifiers if necessary.
4201      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4202      // Promote to void*.
4203      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4204      return destType;
4205    }
4206
4207    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4208      // Two identical pointer types are always compatible.
4209      return LHSTy;
4210    }
4211    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4212                                    rhptee.getUnqualifiedType())) {
4213      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4214        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4215      // In this situation, we assume void* type. No especially good
4216      // reason, but this is what gcc does, and we do have to pick
4217      // to get a consistent AST.
4218      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4219      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4220      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4221      return incompatTy;
4222    }
4223    // The pointer types are compatible.
4224    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4225    // differently qualified versions of compatible types, the result type is
4226    // a pointer to an appropriately qualified version of the *composite*
4227    // type.
4228    // FIXME: Need to calculate the composite type.
4229    // FIXME: Need to add qualifiers
4230    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4231    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4232    return LHSTy;
4233  }
4234
4235  // GCC compatibility: soften pointer/integer mismatch.
4236  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4237    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4238      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4239    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4240    return RHSTy;
4241  }
4242  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4243    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4244      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4245    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4246    return LHSTy;
4247  }
4248
4249  // Otherwise, the operands are not compatible.
4250  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4251    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4252  return QualType();
4253}
4254
4255/// FindCompositeObjCPointerType - Helper method to find composite type of
4256/// two objective-c pointer types of the two input expressions.
4257QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4258                                        SourceLocation QuestionLoc) {
4259  QualType LHSTy = LHS->getType();
4260  QualType RHSTy = RHS->getType();
4261
4262  // Handle things like Class and struct objc_class*.  Here we case the result
4263  // to the pseudo-builtin, because that will be implicitly cast back to the
4264  // redefinition type if an attempt is made to access its fields.
4265  if (LHSTy->isObjCClassType() &&
4266      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4267    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4268    return LHSTy;
4269  }
4270  if (RHSTy->isObjCClassType() &&
4271      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4272    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4273    return RHSTy;
4274  }
4275  // And the same for struct objc_object* / id
4276  if (LHSTy->isObjCIdType() &&
4277      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4278    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4279    return LHSTy;
4280  }
4281  if (RHSTy->isObjCIdType() &&
4282      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4283    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4284    return RHSTy;
4285  }
4286  // And the same for struct objc_selector* / SEL
4287  if (Context.isObjCSelType(LHSTy) &&
4288      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4289    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4290    return LHSTy;
4291  }
4292  if (Context.isObjCSelType(RHSTy) &&
4293      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4294    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4295    return RHSTy;
4296  }
4297  // Check constraints for Objective-C object pointers types.
4298  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4299
4300    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4301      // Two identical object pointer types are always compatible.
4302      return LHSTy;
4303    }
4304    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4305    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4306    QualType compositeType = LHSTy;
4307
4308    // If both operands are interfaces and either operand can be
4309    // assigned to the other, use that type as the composite
4310    // type. This allows
4311    //   xxx ? (A*) a : (B*) b
4312    // where B is a subclass of A.
4313    //
4314    // Additionally, as for assignment, if either type is 'id'
4315    // allow silent coercion. Finally, if the types are
4316    // incompatible then make sure to use 'id' as the composite
4317    // type so the result is acceptable for sending messages to.
4318
4319    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4320    // It could return the composite type.
4321    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4322      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4323    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4324      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4325    } else if ((LHSTy->isObjCQualifiedIdType() ||
4326                RHSTy->isObjCQualifiedIdType()) &&
4327               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4328      // Need to handle "id<xx>" explicitly.
4329      // GCC allows qualified id and any Objective-C type to devolve to
4330      // id. Currently localizing to here until clear this should be
4331      // part of ObjCQualifiedIdTypesAreCompatible.
4332      compositeType = Context.getObjCIdType();
4333    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4334      compositeType = Context.getObjCIdType();
4335    } else if (!(compositeType =
4336                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4337      ;
4338    else {
4339      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4340      << LHSTy << RHSTy
4341      << LHS->getSourceRange() << RHS->getSourceRange();
4342      QualType incompatTy = Context.getObjCIdType();
4343      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4344      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4345      return incompatTy;
4346    }
4347    // The object pointer types are compatible.
4348    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4349    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4350    return compositeType;
4351  }
4352  // Check Objective-C object pointer types and 'void *'
4353  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4354    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4355    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4356    QualType destPointee
4357    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4358    QualType destType = Context.getPointerType(destPointee);
4359    // Add qualifiers if necessary.
4360    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4361    // Promote to void*.
4362    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4363    return destType;
4364  }
4365  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4366    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4367    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4368    QualType destPointee
4369    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4370    QualType destType = Context.getPointerType(destPointee);
4371    // Add qualifiers if necessary.
4372    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4373    // Promote to void*.
4374    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4375    return destType;
4376  }
4377  return QualType();
4378}
4379
4380/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4381/// in the case of a the GNU conditional expr extension.
4382Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4383                                                  SourceLocation ColonLoc,
4384                                                  ExprArg Cond, ExprArg LHS,
4385                                                  ExprArg RHS) {
4386  Expr *CondExpr = (Expr *) Cond.get();
4387  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4388
4389  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4390  // was the condition.
4391  bool isLHSNull = LHSExpr == 0;
4392  if (isLHSNull)
4393    LHSExpr = CondExpr;
4394
4395  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4396                                             RHSExpr, QuestionLoc);
4397  if (result.isNull())
4398    return ExprError();
4399
4400  Cond.release();
4401  LHS.release();
4402  RHS.release();
4403  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4404                                                 isLHSNull ? 0 : LHSExpr,
4405                                                 ColonLoc, RHSExpr, result));
4406}
4407
4408// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4409// being closely modeled after the C99 spec:-). The odd characteristic of this
4410// routine is it effectively iqnores the qualifiers on the top level pointee.
4411// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4412// FIXME: add a couple examples in this comment.
4413Sema::AssignConvertType
4414Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4415  QualType lhptee, rhptee;
4416
4417  if ((lhsType->isObjCClassType() &&
4418       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4419     (rhsType->isObjCClassType() &&
4420       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4421      return Compatible;
4422  }
4423
4424  // get the "pointed to" type (ignoring qualifiers at the top level)
4425  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4426  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4427
4428  // make sure we operate on the canonical type
4429  lhptee = Context.getCanonicalType(lhptee);
4430  rhptee = Context.getCanonicalType(rhptee);
4431
4432  AssignConvertType ConvTy = Compatible;
4433
4434  // C99 6.5.16.1p1: This following citation is common to constraints
4435  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4436  // qualifiers of the type *pointed to* by the right;
4437  // FIXME: Handle ExtQualType
4438  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4439    ConvTy = CompatiblePointerDiscardsQualifiers;
4440
4441  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4442  // incomplete type and the other is a pointer to a qualified or unqualified
4443  // version of void...
4444  if (lhptee->isVoidType()) {
4445    if (rhptee->isIncompleteOrObjectType())
4446      return ConvTy;
4447
4448    // As an extension, we allow cast to/from void* to function pointer.
4449    assert(rhptee->isFunctionType());
4450    return FunctionVoidPointer;
4451  }
4452
4453  if (rhptee->isVoidType()) {
4454    if (lhptee->isIncompleteOrObjectType())
4455      return ConvTy;
4456
4457    // As an extension, we allow cast to/from void* to function pointer.
4458    assert(lhptee->isFunctionType());
4459    return FunctionVoidPointer;
4460  }
4461  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4462  // unqualified versions of compatible types, ...
4463  lhptee = lhptee.getUnqualifiedType();
4464  rhptee = rhptee.getUnqualifiedType();
4465  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4466    // Check if the pointee types are compatible ignoring the sign.
4467    // We explicitly check for char so that we catch "char" vs
4468    // "unsigned char" on systems where "char" is unsigned.
4469    if (lhptee->isCharType())
4470      lhptee = Context.UnsignedCharTy;
4471    else if (lhptee->isSignedIntegerType())
4472      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4473
4474    if (rhptee->isCharType())
4475      rhptee = Context.UnsignedCharTy;
4476    else if (rhptee->isSignedIntegerType())
4477      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4478
4479    if (lhptee == rhptee) {
4480      // Types are compatible ignoring the sign. Qualifier incompatibility
4481      // takes priority over sign incompatibility because the sign
4482      // warning can be disabled.
4483      if (ConvTy != Compatible)
4484        return ConvTy;
4485      return IncompatiblePointerSign;
4486    }
4487
4488    // If we are a multi-level pointer, it's possible that our issue is simply
4489    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4490    // the eventual target type is the same and the pointers have the same
4491    // level of indirection, this must be the issue.
4492    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4493      do {
4494        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4495        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4496
4497        lhptee = Context.getCanonicalType(lhptee);
4498        rhptee = Context.getCanonicalType(rhptee);
4499      } while (lhptee->isPointerType() && rhptee->isPointerType());
4500
4501      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4502        return IncompatibleNestedPointerQualifiers;
4503    }
4504
4505    // General pointer incompatibility takes priority over qualifiers.
4506    return IncompatiblePointer;
4507  }
4508  return ConvTy;
4509}
4510
4511/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4512/// block pointer types are compatible or whether a block and normal pointer
4513/// are compatible. It is more restrict than comparing two function pointer
4514// types.
4515Sema::AssignConvertType
4516Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4517                                          QualType rhsType) {
4518  QualType lhptee, rhptee;
4519
4520  // get the "pointed to" type (ignoring qualifiers at the top level)
4521  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4522  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4523
4524  // make sure we operate on the canonical type
4525  lhptee = Context.getCanonicalType(lhptee);
4526  rhptee = Context.getCanonicalType(rhptee);
4527
4528  AssignConvertType ConvTy = Compatible;
4529
4530  // For blocks we enforce that qualifiers are identical.
4531  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4532    ConvTy = CompatiblePointerDiscardsQualifiers;
4533
4534  if (!Context.typesAreCompatible(lhptee, rhptee))
4535    return IncompatibleBlockPointer;
4536  return ConvTy;
4537}
4538
4539/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4540/// for assignment compatibility.
4541Sema::AssignConvertType
4542Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4543  if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
4544    return Compatible;
4545  QualType lhptee =
4546  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4547  QualType rhptee =
4548  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4549  // make sure we operate on the canonical type
4550  lhptee = Context.getCanonicalType(lhptee);
4551  rhptee = Context.getCanonicalType(rhptee);
4552  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4553    return CompatiblePointerDiscardsQualifiers;
4554
4555  if (Context.typesAreCompatible(lhsType, rhsType))
4556    return Compatible;
4557  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4558    return IncompatibleObjCQualifiedId;
4559  return IncompatiblePointer;
4560}
4561
4562/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4563/// has code to accommodate several GCC extensions when type checking
4564/// pointers. Here are some objectionable examples that GCC considers warnings:
4565///
4566///  int a, *pint;
4567///  short *pshort;
4568///  struct foo *pfoo;
4569///
4570///  pint = pshort; // warning: assignment from incompatible pointer type
4571///  a = pint; // warning: assignment makes integer from pointer without a cast
4572///  pint = a; // warning: assignment makes pointer from integer without a cast
4573///  pint = pfoo; // warning: assignment from incompatible pointer type
4574///
4575/// As a result, the code for dealing with pointers is more complex than the
4576/// C99 spec dictates.
4577///
4578Sema::AssignConvertType
4579Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4580  // Get canonical types.  We're not formatting these types, just comparing
4581  // them.
4582  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4583  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4584
4585  if (lhsType == rhsType)
4586    return Compatible; // Common case: fast path an exact match.
4587
4588  if ((lhsType->isObjCClassType() &&
4589       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4590     (rhsType->isObjCClassType() &&
4591       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4592      return Compatible;
4593  }
4594
4595  // If the left-hand side is a reference type, then we are in a
4596  // (rare!) case where we've allowed the use of references in C,
4597  // e.g., as a parameter type in a built-in function. In this case,
4598  // just make sure that the type referenced is compatible with the
4599  // right-hand side type. The caller is responsible for adjusting
4600  // lhsType so that the resulting expression does not have reference
4601  // type.
4602  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4603    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4604      return Compatible;
4605    return Incompatible;
4606  }
4607  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4608  // to the same ExtVector type.
4609  if (lhsType->isExtVectorType()) {
4610    if (rhsType->isExtVectorType())
4611      return lhsType == rhsType ? Compatible : Incompatible;
4612    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4613      return Compatible;
4614  }
4615
4616  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4617    // If we are allowing lax vector conversions, and LHS and RHS are both
4618    // vectors, the total size only needs to be the same. This is a bitcast;
4619    // no bits are changed but the result type is different.
4620    if (getLangOptions().LaxVectorConversions &&
4621        lhsType->isVectorType() && rhsType->isVectorType()) {
4622      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4623        return IncompatibleVectors;
4624    }
4625    return Incompatible;
4626  }
4627
4628  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4629    return Compatible;
4630
4631  if (isa<PointerType>(lhsType)) {
4632    if (rhsType->isIntegerType())
4633      return IntToPointer;
4634
4635    if (isa<PointerType>(rhsType))
4636      return CheckPointerTypesForAssignment(lhsType, rhsType);
4637
4638    // In general, C pointers are not compatible with ObjC object pointers.
4639    if (isa<ObjCObjectPointerType>(rhsType)) {
4640      if (lhsType->isVoidPointerType()) // an exception to the rule.
4641        return Compatible;
4642      return IncompatiblePointer;
4643    }
4644    if (rhsType->getAs<BlockPointerType>()) {
4645      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4646        return Compatible;
4647
4648      // Treat block pointers as objects.
4649      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4650        return Compatible;
4651    }
4652    return Incompatible;
4653  }
4654
4655  if (isa<BlockPointerType>(lhsType)) {
4656    if (rhsType->isIntegerType())
4657      return IntToBlockPointer;
4658
4659    // Treat block pointers as objects.
4660    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4661      return Compatible;
4662
4663    if (rhsType->isBlockPointerType())
4664      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4665
4666    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4667      if (RHSPT->getPointeeType()->isVoidType())
4668        return Compatible;
4669    }
4670    return Incompatible;
4671  }
4672
4673  if (isa<ObjCObjectPointerType>(lhsType)) {
4674    if (rhsType->isIntegerType())
4675      return IntToPointer;
4676
4677    // In general, C pointers are not compatible with ObjC object pointers.
4678    if (isa<PointerType>(rhsType)) {
4679      if (rhsType->isVoidPointerType()) // an exception to the rule.
4680        return Compatible;
4681      return IncompatiblePointer;
4682    }
4683    if (rhsType->isObjCObjectPointerType()) {
4684      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4685    }
4686    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4687      if (RHSPT->getPointeeType()->isVoidType())
4688        return Compatible;
4689    }
4690    // Treat block pointers as objects.
4691    if (rhsType->isBlockPointerType())
4692      return Compatible;
4693    return Incompatible;
4694  }
4695  if (isa<PointerType>(rhsType)) {
4696    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4697    if (lhsType == Context.BoolTy)
4698      return Compatible;
4699
4700    if (lhsType->isIntegerType())
4701      return PointerToInt;
4702
4703    if (isa<PointerType>(lhsType))
4704      return CheckPointerTypesForAssignment(lhsType, rhsType);
4705
4706    if (isa<BlockPointerType>(lhsType) &&
4707        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4708      return Compatible;
4709    return Incompatible;
4710  }
4711  if (isa<ObjCObjectPointerType>(rhsType)) {
4712    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4713    if (lhsType == Context.BoolTy)
4714      return Compatible;
4715
4716    if (lhsType->isIntegerType())
4717      return PointerToInt;
4718
4719    // In general, C pointers are not compatible with ObjC object pointers.
4720    if (isa<PointerType>(lhsType)) {
4721      if (lhsType->isVoidPointerType()) // an exception to the rule.
4722        return Compatible;
4723      return IncompatiblePointer;
4724    }
4725    if (isa<BlockPointerType>(lhsType) &&
4726        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4727      return Compatible;
4728    return Incompatible;
4729  }
4730
4731  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4732    if (Context.typesAreCompatible(lhsType, rhsType))
4733      return Compatible;
4734  }
4735  return Incompatible;
4736}
4737
4738/// \brief Constructs a transparent union from an expression that is
4739/// used to initialize the transparent union.
4740static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4741                                      QualType UnionType, FieldDecl *Field) {
4742  // Build an initializer list that designates the appropriate member
4743  // of the transparent union.
4744  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
4745                                                   &E, 1,
4746                                                   SourceLocation());
4747  Initializer->setType(UnionType);
4748  Initializer->setInitializedFieldInUnion(Field);
4749
4750  // Build a compound literal constructing a value of the transparent
4751  // union type from this initializer list.
4752  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4753  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4754                                  Initializer, false);
4755}
4756
4757Sema::AssignConvertType
4758Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4759  QualType FromType = rExpr->getType();
4760
4761  // If the ArgType is a Union type, we want to handle a potential
4762  // transparent_union GCC extension.
4763  const RecordType *UT = ArgType->getAsUnionType();
4764  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4765    return Incompatible;
4766
4767  // The field to initialize within the transparent union.
4768  RecordDecl *UD = UT->getDecl();
4769  FieldDecl *InitField = 0;
4770  // It's compatible if the expression matches any of the fields.
4771  for (RecordDecl::field_iterator it = UD->field_begin(),
4772         itend = UD->field_end();
4773       it != itend; ++it) {
4774    if (it->getType()->isPointerType()) {
4775      // If the transparent union contains a pointer type, we allow:
4776      // 1) void pointer
4777      // 2) null pointer constant
4778      if (FromType->isPointerType())
4779        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4780          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4781          InitField = *it;
4782          break;
4783        }
4784
4785      if (rExpr->isNullPointerConstant(Context,
4786                                       Expr::NPC_ValueDependentIsNull)) {
4787        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4788        InitField = *it;
4789        break;
4790      }
4791    }
4792
4793    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4794          == Compatible) {
4795      InitField = *it;
4796      break;
4797    }
4798  }
4799
4800  if (!InitField)
4801    return Incompatible;
4802
4803  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4804  return Compatible;
4805}
4806
4807Sema::AssignConvertType
4808Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4809  if (getLangOptions().CPlusPlus) {
4810    if (!lhsType->isRecordType()) {
4811      // C++ 5.17p3: If the left operand is not of class type, the
4812      // expression is implicitly converted (C++ 4) to the
4813      // cv-unqualified type of the left operand.
4814      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4815                                    AA_Assigning))
4816        return Incompatible;
4817      return Compatible;
4818    }
4819
4820    // FIXME: Currently, we fall through and treat C++ classes like C
4821    // structures.
4822  }
4823
4824  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4825  // a null pointer constant.
4826  if ((lhsType->isPointerType() ||
4827       lhsType->isObjCObjectPointerType() ||
4828       lhsType->isBlockPointerType())
4829      && rExpr->isNullPointerConstant(Context,
4830                                      Expr::NPC_ValueDependentIsNull)) {
4831    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4832    return Compatible;
4833  }
4834
4835  // This check seems unnatural, however it is necessary to ensure the proper
4836  // conversion of functions/arrays. If the conversion were done for all
4837  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4838  // expressions that surpress this implicit conversion (&, sizeof).
4839  //
4840  // Suppress this for references: C++ 8.5.3p5.
4841  if (!lhsType->isReferenceType())
4842    DefaultFunctionArrayLvalueConversion(rExpr);
4843
4844  Sema::AssignConvertType result =
4845    CheckAssignmentConstraints(lhsType, rExpr->getType());
4846
4847  // C99 6.5.16.1p2: The value of the right operand is converted to the
4848  // type of the assignment expression.
4849  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4850  // so that we can use references in built-in functions even in C.
4851  // The getNonReferenceType() call makes sure that the resulting expression
4852  // does not have reference type.
4853  if (result != Incompatible && rExpr->getType() != lhsType)
4854    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4855                      CastExpr::CK_Unknown);
4856  return result;
4857}
4858
4859QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4860  Diag(Loc, diag::err_typecheck_invalid_operands)
4861    << lex->getType() << rex->getType()
4862    << lex->getSourceRange() << rex->getSourceRange();
4863  return QualType();
4864}
4865
4866QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4867  // For conversion purposes, we ignore any qualifiers.
4868  // For example, "const float" and "float" are equivalent.
4869  QualType lhsType =
4870    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4871  QualType rhsType =
4872    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4873
4874  // If the vector types are identical, return.
4875  if (lhsType == rhsType)
4876    return lhsType;
4877
4878  // Handle the case of a vector & extvector type of the same size and element
4879  // type.  It would be nice if we only had one vector type someday.
4880  if (getLangOptions().LaxVectorConversions) {
4881    // FIXME: Should we warn here?
4882    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
4883      if (const VectorType *RV = rhsType->getAs<VectorType>())
4884        if (LV->getElementType() == RV->getElementType() &&
4885            LV->getNumElements() == RV->getNumElements()) {
4886          return lhsType->isExtVectorType() ? lhsType : rhsType;
4887        }
4888    }
4889  }
4890
4891  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
4892  // swap back (so that we don't reverse the inputs to a subtract, for instance.
4893  bool swapped = false;
4894  if (rhsType->isExtVectorType()) {
4895    swapped = true;
4896    std::swap(rex, lex);
4897    std::swap(rhsType, lhsType);
4898  }
4899
4900  // Handle the case of an ext vector and scalar.
4901  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
4902    QualType EltTy = LV->getElementType();
4903    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
4904      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
4905        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
4906        if (swapped) std::swap(rex, lex);
4907        return lhsType;
4908      }
4909    }
4910    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
4911        rhsType->isRealFloatingType()) {
4912      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
4913        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
4914        if (swapped) std::swap(rex, lex);
4915        return lhsType;
4916      }
4917    }
4918  }
4919
4920  // Vectors of different size or scalar and non-ext-vector are errors.
4921  Diag(Loc, diag::err_typecheck_vector_not_convertable)
4922    << lex->getType() << rex->getType()
4923    << lex->getSourceRange() << rex->getSourceRange();
4924  return QualType();
4925}
4926
4927QualType Sema::CheckMultiplyDivideOperands(
4928  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
4929  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4930    return CheckVectorOperands(Loc, lex, rex);
4931
4932  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4933
4934  if (!lex->getType()->isArithmeticType() ||
4935      !rex->getType()->isArithmeticType())
4936    return InvalidOperands(Loc, lex, rex);
4937
4938  // Check for division by zero.
4939  if (isDiv &&
4940      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4941    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
4942                                     << rex->getSourceRange());
4943
4944  return compType;
4945}
4946
4947QualType Sema::CheckRemainderOperands(
4948  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
4949  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4950    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4951      return CheckVectorOperands(Loc, lex, rex);
4952    return InvalidOperands(Loc, lex, rex);
4953  }
4954
4955  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4956
4957  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4958    return InvalidOperands(Loc, lex, rex);
4959
4960  // Check for remainder by zero.
4961  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
4962    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
4963                                 << rex->getSourceRange());
4964
4965  return compType;
4966}
4967
4968QualType Sema::CheckAdditionOperands( // C99 6.5.6
4969  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
4970  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
4971    QualType compType = CheckVectorOperands(Loc, lex, rex);
4972    if (CompLHSTy) *CompLHSTy = compType;
4973    return compType;
4974  }
4975
4976  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
4977
4978  // handle the common case first (both operands are arithmetic).
4979  if (lex->getType()->isArithmeticType() &&
4980      rex->getType()->isArithmeticType()) {
4981    if (CompLHSTy) *CompLHSTy = compType;
4982    return compType;
4983  }
4984
4985  // Put any potential pointer into PExp
4986  Expr* PExp = lex, *IExp = rex;
4987  if (IExp->getType()->isAnyPointerType())
4988    std::swap(PExp, IExp);
4989
4990  if (PExp->getType()->isAnyPointerType()) {
4991
4992    if (IExp->getType()->isIntegerType()) {
4993      QualType PointeeTy = PExp->getType()->getPointeeType();
4994
4995      // Check for arithmetic on pointers to incomplete types.
4996      if (PointeeTy->isVoidType()) {
4997        if (getLangOptions().CPlusPlus) {
4998          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4999            << lex->getSourceRange() << rex->getSourceRange();
5000          return QualType();
5001        }
5002
5003        // GNU extension: arithmetic on pointer to void
5004        Diag(Loc, diag::ext_gnu_void_ptr)
5005          << lex->getSourceRange() << rex->getSourceRange();
5006      } else if (PointeeTy->isFunctionType()) {
5007        if (getLangOptions().CPlusPlus) {
5008          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5009            << lex->getType() << lex->getSourceRange();
5010          return QualType();
5011        }
5012
5013        // GNU extension: arithmetic on pointer to function
5014        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5015          << lex->getType() << lex->getSourceRange();
5016      } else {
5017        // Check if we require a complete type.
5018        if (((PExp->getType()->isPointerType() &&
5019              !PExp->getType()->isDependentType()) ||
5020              PExp->getType()->isObjCObjectPointerType()) &&
5021             RequireCompleteType(Loc, PointeeTy,
5022                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5023                             << PExp->getSourceRange()
5024                             << PExp->getType()))
5025          return QualType();
5026      }
5027      // Diagnose bad cases where we step over interface counts.
5028      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5029        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5030          << PointeeTy << PExp->getSourceRange();
5031        return QualType();
5032      }
5033
5034      if (CompLHSTy) {
5035        QualType LHSTy = Context.isPromotableBitField(lex);
5036        if (LHSTy.isNull()) {
5037          LHSTy = lex->getType();
5038          if (LHSTy->isPromotableIntegerType())
5039            LHSTy = Context.getPromotedIntegerType(LHSTy);
5040        }
5041        *CompLHSTy = LHSTy;
5042      }
5043      return PExp->getType();
5044    }
5045  }
5046
5047  return InvalidOperands(Loc, lex, rex);
5048}
5049
5050// C99 6.5.6
5051QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5052                                        SourceLocation Loc, QualType* CompLHSTy) {
5053  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5054    QualType compType = CheckVectorOperands(Loc, lex, rex);
5055    if (CompLHSTy) *CompLHSTy = compType;
5056    return compType;
5057  }
5058
5059  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5060
5061  // Enforce type constraints: C99 6.5.6p3.
5062
5063  // Handle the common case first (both operands are arithmetic).
5064  if (lex->getType()->isArithmeticType()
5065      && rex->getType()->isArithmeticType()) {
5066    if (CompLHSTy) *CompLHSTy = compType;
5067    return compType;
5068  }
5069
5070  // Either ptr - int   or   ptr - ptr.
5071  if (lex->getType()->isAnyPointerType()) {
5072    QualType lpointee = lex->getType()->getPointeeType();
5073
5074    // The LHS must be an completely-defined object type.
5075
5076    bool ComplainAboutVoid = false;
5077    Expr *ComplainAboutFunc = 0;
5078    if (lpointee->isVoidType()) {
5079      if (getLangOptions().CPlusPlus) {
5080        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5081          << lex->getSourceRange() << rex->getSourceRange();
5082        return QualType();
5083      }
5084
5085      // GNU C extension: arithmetic on pointer to void
5086      ComplainAboutVoid = true;
5087    } else if (lpointee->isFunctionType()) {
5088      if (getLangOptions().CPlusPlus) {
5089        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5090          << lex->getType() << lex->getSourceRange();
5091        return QualType();
5092      }
5093
5094      // GNU C extension: arithmetic on pointer to function
5095      ComplainAboutFunc = lex;
5096    } else if (!lpointee->isDependentType() &&
5097               RequireCompleteType(Loc, lpointee,
5098                                   PDiag(diag::err_typecheck_sub_ptr_object)
5099                                     << lex->getSourceRange()
5100                                     << lex->getType()))
5101      return QualType();
5102
5103    // Diagnose bad cases where we step over interface counts.
5104    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5105      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5106        << lpointee << lex->getSourceRange();
5107      return QualType();
5108    }
5109
5110    // The result type of a pointer-int computation is the pointer type.
5111    if (rex->getType()->isIntegerType()) {
5112      if (ComplainAboutVoid)
5113        Diag(Loc, diag::ext_gnu_void_ptr)
5114          << lex->getSourceRange() << rex->getSourceRange();
5115      if (ComplainAboutFunc)
5116        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5117          << ComplainAboutFunc->getType()
5118          << ComplainAboutFunc->getSourceRange();
5119
5120      if (CompLHSTy) *CompLHSTy = lex->getType();
5121      return lex->getType();
5122    }
5123
5124    // Handle pointer-pointer subtractions.
5125    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5126      QualType rpointee = RHSPTy->getPointeeType();
5127
5128      // RHS must be a completely-type object type.
5129      // Handle the GNU void* extension.
5130      if (rpointee->isVoidType()) {
5131        if (getLangOptions().CPlusPlus) {
5132          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5133            << lex->getSourceRange() << rex->getSourceRange();
5134          return QualType();
5135        }
5136
5137        ComplainAboutVoid = true;
5138      } else if (rpointee->isFunctionType()) {
5139        if (getLangOptions().CPlusPlus) {
5140          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5141            << rex->getType() << rex->getSourceRange();
5142          return QualType();
5143        }
5144
5145        // GNU extension: arithmetic on pointer to function
5146        if (!ComplainAboutFunc)
5147          ComplainAboutFunc = rex;
5148      } else if (!rpointee->isDependentType() &&
5149                 RequireCompleteType(Loc, rpointee,
5150                                     PDiag(diag::err_typecheck_sub_ptr_object)
5151                                       << rex->getSourceRange()
5152                                       << rex->getType()))
5153        return QualType();
5154
5155      if (getLangOptions().CPlusPlus) {
5156        // Pointee types must be the same: C++ [expr.add]
5157        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5158          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5159            << lex->getType() << rex->getType()
5160            << lex->getSourceRange() << rex->getSourceRange();
5161          return QualType();
5162        }
5163      } else {
5164        // Pointee types must be compatible C99 6.5.6p3
5165        if (!Context.typesAreCompatible(
5166                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5167                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5168          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5169            << lex->getType() << rex->getType()
5170            << lex->getSourceRange() << rex->getSourceRange();
5171          return QualType();
5172        }
5173      }
5174
5175      if (ComplainAboutVoid)
5176        Diag(Loc, diag::ext_gnu_void_ptr)
5177          << lex->getSourceRange() << rex->getSourceRange();
5178      if (ComplainAboutFunc)
5179        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5180          << ComplainAboutFunc->getType()
5181          << ComplainAboutFunc->getSourceRange();
5182
5183      if (CompLHSTy) *CompLHSTy = lex->getType();
5184      return Context.getPointerDiffType();
5185    }
5186  }
5187
5188  return InvalidOperands(Loc, lex, rex);
5189}
5190
5191// C99 6.5.7
5192QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5193                                  bool isCompAssign) {
5194  // C99 6.5.7p2: Each of the operands shall have integer type.
5195  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5196    return InvalidOperands(Loc, lex, rex);
5197
5198  // Vector shifts promote their scalar inputs to vector type.
5199  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5200    return CheckVectorOperands(Loc, lex, rex);
5201
5202  // Shifts don't perform usual arithmetic conversions, they just do integer
5203  // promotions on each operand. C99 6.5.7p3
5204  QualType LHSTy = Context.isPromotableBitField(lex);
5205  if (LHSTy.isNull()) {
5206    LHSTy = lex->getType();
5207    if (LHSTy->isPromotableIntegerType())
5208      LHSTy = Context.getPromotedIntegerType(LHSTy);
5209  }
5210  if (!isCompAssign)
5211    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5212
5213  UsualUnaryConversions(rex);
5214
5215  // Sanity-check shift operands
5216  llvm::APSInt Right;
5217  // Check right/shifter operand
5218  if (!rex->isValueDependent() &&
5219      rex->isIntegerConstantExpr(Right, Context)) {
5220    if (Right.isNegative())
5221      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5222    else {
5223      llvm::APInt LeftBits(Right.getBitWidth(),
5224                          Context.getTypeSize(lex->getType()));
5225      if (Right.uge(LeftBits))
5226        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5227    }
5228  }
5229
5230  // "The type of the result is that of the promoted left operand."
5231  return LHSTy;
5232}
5233
5234// C99 6.5.8, C++ [expr.rel]
5235QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5236                                    unsigned OpaqueOpc, bool isRelational) {
5237  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5238
5239  // Handle vector comparisons separately.
5240  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5241    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5242
5243  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
5244                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));
5245
5246  // C99 6.5.8p3 / C99 6.5.9p4
5247  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5248    UsualArithmeticConversions(lex, rex);
5249  else {
5250    UsualUnaryConversions(lex);
5251    UsualUnaryConversions(rex);
5252  }
5253  QualType lType = lex->getType();
5254  QualType rType = rex->getType();
5255
5256  if (!lType->isFloatingType()
5257      && !(lType->isBlockPointerType() && isRelational)) {
5258    // For non-floating point types, check for self-comparisons of the form
5259    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5260    // often indicate logic errors in the program.
5261    // NOTE: Don't warn about comparisons of enum constants. These can arise
5262    //  from macro expansions, and are usually quite deliberate.
5263    Expr *LHSStripped = lex->IgnoreParens();
5264    Expr *RHSStripped = rex->IgnoreParens();
5265    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5266      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5267        if (DRL->getDecl() == DRR->getDecl() &&
5268            !isa<EnumConstantDecl>(DRL->getDecl()))
5269          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5270
5271    if (isa<CastExpr>(LHSStripped))
5272      LHSStripped = LHSStripped->IgnoreParenCasts();
5273    if (isa<CastExpr>(RHSStripped))
5274      RHSStripped = RHSStripped->IgnoreParenCasts();
5275
5276    // Warn about comparisons against a string constant (unless the other
5277    // operand is null), the user probably wants strcmp.
5278    Expr *literalString = 0;
5279    Expr *literalStringStripped = 0;
5280    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5281        !RHSStripped->isNullPointerConstant(Context,
5282                                            Expr::NPC_ValueDependentIsNull)) {
5283      literalString = lex;
5284      literalStringStripped = LHSStripped;
5285    } else if ((isa<StringLiteral>(RHSStripped) ||
5286                isa<ObjCEncodeExpr>(RHSStripped)) &&
5287               !LHSStripped->isNullPointerConstant(Context,
5288                                            Expr::NPC_ValueDependentIsNull)) {
5289      literalString = rex;
5290      literalStringStripped = RHSStripped;
5291    }
5292
5293    if (literalString) {
5294      std::string resultComparison;
5295      switch (Opc) {
5296      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5297      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5298      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5299      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5300      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5301      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5302      default: assert(false && "Invalid comparison operator");
5303      }
5304
5305      DiagRuntimeBehavior(Loc,
5306        PDiag(diag::warn_stringcompare)
5307          << isa<ObjCEncodeExpr>(literalStringStripped)
5308          << literalString->getSourceRange()
5309          << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
5310          << CodeModificationHint::CreateInsertion(lex->getLocStart(),
5311                                                   "strcmp(")
5312          << CodeModificationHint::CreateInsertion(
5313                                         PP.getLocForEndOfToken(rex->getLocEnd()),
5314                                         resultComparison));
5315    }
5316  }
5317
5318  // The result of comparisons is 'bool' in C++, 'int' in C.
5319  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5320
5321  if (isRelational) {
5322    if (lType->isRealType() && rType->isRealType())
5323      return ResultTy;
5324  } else {
5325    // Check for comparisons of floating point operands using != and ==.
5326    if (lType->isFloatingType() && rType->isFloatingType())
5327      CheckFloatComparison(Loc,lex,rex);
5328
5329    if (lType->isArithmeticType() && rType->isArithmeticType())
5330      return ResultTy;
5331  }
5332
5333  bool LHSIsNull = lex->isNullPointerConstant(Context,
5334                                              Expr::NPC_ValueDependentIsNull);
5335  bool RHSIsNull = rex->isNullPointerConstant(Context,
5336                                              Expr::NPC_ValueDependentIsNull);
5337
5338  // All of the following pointer related warnings are GCC extensions, except
5339  // when handling null pointer constants. One day, we can consider making them
5340  // errors (when -pedantic-errors is enabled).
5341  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5342    QualType LCanPointeeTy =
5343      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5344    QualType RCanPointeeTy =
5345      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5346
5347    if (getLangOptions().CPlusPlus) {
5348      if (LCanPointeeTy == RCanPointeeTy)
5349        return ResultTy;
5350      if (!isRelational &&
5351          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5352        // Valid unless comparison between non-null pointer and function pointer
5353        // This is a gcc extension compatibility comparison.
5354        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5355            && !LHSIsNull && !RHSIsNull) {
5356          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5357            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5358          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5359          return ResultTy;
5360        }
5361      }
5362      // C++ [expr.rel]p2:
5363      //   [...] Pointer conversions (4.10) and qualification
5364      //   conversions (4.4) are performed on pointer operands (or on
5365      //   a pointer operand and a null pointer constant) to bring
5366      //   them to their composite pointer type. [...]
5367      //
5368      // C++ [expr.eq]p1 uses the same notion for (in)equality
5369      // comparisons of pointers.
5370      QualType T = FindCompositePointerType(lex, rex);
5371      if (T.isNull()) {
5372        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5373          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5374        return QualType();
5375      }
5376
5377      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5378      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5379      return ResultTy;
5380    }
5381    // C99 6.5.9p2 and C99 6.5.8p2
5382    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5383                                   RCanPointeeTy.getUnqualifiedType())) {
5384      // Valid unless a relational comparison of function pointers
5385      if (isRelational && LCanPointeeTy->isFunctionType()) {
5386        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5387          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5388      }
5389    } else if (!isRelational &&
5390               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5391      // Valid unless comparison between non-null pointer and function pointer
5392      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5393          && !LHSIsNull && !RHSIsNull) {
5394        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5395          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5396      }
5397    } else {
5398      // Invalid
5399      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5400        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5401    }
5402    if (LCanPointeeTy != RCanPointeeTy)
5403      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5404    return ResultTy;
5405  }
5406
5407  if (getLangOptions().CPlusPlus) {
5408    // Comparison of pointers with null pointer constants and equality
5409    // comparisons of member pointers to null pointer constants.
5410    if (RHSIsNull &&
5411        (lType->isPointerType() ||
5412         (!isRelational && lType->isMemberPointerType()))) {
5413      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5414      return ResultTy;
5415    }
5416    if (LHSIsNull &&
5417        (rType->isPointerType() ||
5418         (!isRelational && rType->isMemberPointerType()))) {
5419      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5420      return ResultTy;
5421    }
5422
5423    // Comparison of member pointers.
5424    if (!isRelational &&
5425        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5426      // C++ [expr.eq]p2:
5427      //   In addition, pointers to members can be compared, or a pointer to
5428      //   member and a null pointer constant. Pointer to member conversions
5429      //   (4.11) and qualification conversions (4.4) are performed to bring
5430      //   them to a common type. If one operand is a null pointer constant,
5431      //   the common type is the type of the other operand. Otherwise, the
5432      //   common type is a pointer to member type similar (4.4) to the type
5433      //   of one of the operands, with a cv-qualification signature (4.4)
5434      //   that is the union of the cv-qualification signatures of the operand
5435      //   types.
5436      QualType T = FindCompositePointerType(lex, rex);
5437      if (T.isNull()) {
5438        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5439        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5440        return QualType();
5441      }
5442
5443      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5444      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5445      return ResultTy;
5446    }
5447
5448    // Comparison of nullptr_t with itself.
5449    if (lType->isNullPtrType() && rType->isNullPtrType())
5450      return ResultTy;
5451  }
5452
5453  // Handle block pointer types.
5454  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5455    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5456    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5457
5458    if (!LHSIsNull && !RHSIsNull &&
5459        !Context.typesAreCompatible(lpointee, rpointee)) {
5460      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5461        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5462    }
5463    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5464    return ResultTy;
5465  }
5466  // Allow block pointers to be compared with null pointer constants.
5467  if (!isRelational
5468      && ((lType->isBlockPointerType() && rType->isPointerType())
5469          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5470    if (!LHSIsNull && !RHSIsNull) {
5471      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5472             ->getPointeeType()->isVoidType())
5473            || (lType->isPointerType() && lType->getAs<PointerType>()
5474                ->getPointeeType()->isVoidType())))
5475        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5476          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5477    }
5478    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5479    return ResultTy;
5480  }
5481
5482  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5483    if (lType->isPointerType() || rType->isPointerType()) {
5484      const PointerType *LPT = lType->getAs<PointerType>();
5485      const PointerType *RPT = rType->getAs<PointerType>();
5486      bool LPtrToVoid = LPT ?
5487        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5488      bool RPtrToVoid = RPT ?
5489        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5490
5491      if (!LPtrToVoid && !RPtrToVoid &&
5492          !Context.typesAreCompatible(lType, rType)) {
5493        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5494          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5495      }
5496      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5497      return ResultTy;
5498    }
5499    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5500      if (!Context.areComparableObjCPointerTypes(lType, rType))
5501        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5502          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5503      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5504      return ResultTy;
5505    }
5506  }
5507  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5508    unsigned DiagID = 0;
5509    if (RHSIsNull) {
5510      if (isRelational)
5511        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5512    } else if (isRelational)
5513      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5514    else
5515      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5516
5517    if (DiagID) {
5518      Diag(Loc, DiagID)
5519        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5520    }
5521    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5522    return ResultTy;
5523  }
5524  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5525    unsigned DiagID = 0;
5526    if (LHSIsNull) {
5527      if (isRelational)
5528        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5529    } else if (isRelational)
5530      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5531    else
5532      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5533
5534    if (DiagID) {
5535      Diag(Loc, DiagID)
5536        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5537    }
5538    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5539    return ResultTy;
5540  }
5541  // Handle block pointers.
5542  if (!isRelational && RHSIsNull
5543      && lType->isBlockPointerType() && rType->isIntegerType()) {
5544    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5545    return ResultTy;
5546  }
5547  if (!isRelational && LHSIsNull
5548      && lType->isIntegerType() && rType->isBlockPointerType()) {
5549    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5550    return ResultTy;
5551  }
5552  return InvalidOperands(Loc, lex, rex);
5553}
5554
5555/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5556/// operates on extended vector types.  Instead of producing an IntTy result,
5557/// like a scalar comparison, a vector comparison produces a vector of integer
5558/// types.
5559QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5560                                          SourceLocation Loc,
5561                                          bool isRelational) {
5562  // Check to make sure we're operating on vectors of the same type and width,
5563  // Allowing one side to be a scalar of element type.
5564  QualType vType = CheckVectorOperands(Loc, lex, rex);
5565  if (vType.isNull())
5566    return vType;
5567
5568  QualType lType = lex->getType();
5569  QualType rType = rex->getType();
5570
5571  // For non-floating point types, check for self-comparisons of the form
5572  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5573  // often indicate logic errors in the program.
5574  if (!lType->isFloatingType()) {
5575    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5576      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5577        if (DRL->getDecl() == DRR->getDecl())
5578          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5579  }
5580
5581  // Check for comparisons of floating point operands using != and ==.
5582  if (!isRelational && lType->isFloatingType()) {
5583    assert (rType->isFloatingType());
5584    CheckFloatComparison(Loc,lex,rex);
5585  }
5586
5587  // Return the type for the comparison, which is the same as vector type for
5588  // integer vectors, or an integer type of identical size and number of
5589  // elements for floating point vectors.
5590  if (lType->isIntegerType())
5591    return lType;
5592
5593  const VectorType *VTy = lType->getAs<VectorType>();
5594  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5595  if (TypeSize == Context.getTypeSize(Context.IntTy))
5596    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5597  if (TypeSize == Context.getTypeSize(Context.LongTy))
5598    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5599
5600  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5601         "Unhandled vector element size in vector compare");
5602  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5603}
5604
5605inline QualType Sema::CheckBitwiseOperands(
5606  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5607  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5608    return CheckVectorOperands(Loc, lex, rex);
5609
5610  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5611
5612  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5613    return compType;
5614  return InvalidOperands(Loc, lex, rex);
5615}
5616
5617inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5618  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5619  if (!Context.getLangOptions().CPlusPlus) {
5620    UsualUnaryConversions(lex);
5621    UsualUnaryConversions(rex);
5622
5623    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5624      return InvalidOperands(Loc, lex, rex);
5625
5626    return Context.IntTy;
5627  }
5628
5629  // C++ [expr.log.and]p1
5630  // C++ [expr.log.or]p1
5631  // The operands are both implicitly converted to type bool (clause 4).
5632  StandardConversionSequence LHS;
5633  if (!IsStandardConversion(lex, Context.BoolTy,
5634                            /*InOverloadResolution=*/false, LHS))
5635    return InvalidOperands(Loc, lex, rex);
5636
5637  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5638                                AA_Passing, /*IgnoreBaseAccess=*/false))
5639    return InvalidOperands(Loc, lex, rex);
5640
5641  StandardConversionSequence RHS;
5642  if (!IsStandardConversion(rex, Context.BoolTy,
5643                            /*InOverloadResolution=*/false, RHS))
5644    return InvalidOperands(Loc, lex, rex);
5645
5646  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5647                                AA_Passing, /*IgnoreBaseAccess=*/false))
5648    return InvalidOperands(Loc, lex, rex);
5649
5650  // C++ [expr.log.and]p2
5651  // C++ [expr.log.or]p2
5652  // The result is a bool.
5653  return Context.BoolTy;
5654}
5655
5656/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5657/// is a read-only property; return true if so. A readonly property expression
5658/// depends on various declarations and thus must be treated specially.
5659///
5660static bool IsReadonlyProperty(Expr *E, Sema &S) {
5661  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5662    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5663    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5664      QualType BaseType = PropExpr->getBase()->getType();
5665      if (const ObjCObjectPointerType *OPT =
5666            BaseType->getAsObjCInterfacePointerType())
5667        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5668          if (S.isPropertyReadonly(PDecl, IFace))
5669            return true;
5670    }
5671  }
5672  return false;
5673}
5674
5675/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5676/// emit an error and return true.  If so, return false.
5677static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5678  SourceLocation OrigLoc = Loc;
5679  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5680                                                              &Loc);
5681  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5682    IsLV = Expr::MLV_ReadonlyProperty;
5683  if (IsLV == Expr::MLV_Valid)
5684    return false;
5685
5686  unsigned Diag = 0;
5687  bool NeedType = false;
5688  switch (IsLV) { // C99 6.5.16p2
5689  default: assert(0 && "Unknown result from isModifiableLvalue!");
5690  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5691  case Expr::MLV_ArrayType:
5692    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5693    NeedType = true;
5694    break;
5695  case Expr::MLV_NotObjectType:
5696    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5697    NeedType = true;
5698    break;
5699  case Expr::MLV_LValueCast:
5700    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5701    break;
5702  case Expr::MLV_InvalidExpression:
5703    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5704    break;
5705  case Expr::MLV_IncompleteType:
5706  case Expr::MLV_IncompleteVoidType:
5707    return S.RequireCompleteType(Loc, E->getType(),
5708                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5709                  << E->getSourceRange());
5710  case Expr::MLV_DuplicateVectorComponents:
5711    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5712    break;
5713  case Expr::MLV_NotBlockQualified:
5714    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5715    break;
5716  case Expr::MLV_ReadonlyProperty:
5717    Diag = diag::error_readonly_property_assignment;
5718    break;
5719  case Expr::MLV_NoSetterProperty:
5720    Diag = diag::error_nosetter_property_assignment;
5721    break;
5722  case Expr::MLV_SubObjCPropertySetting:
5723    Diag = diag::error_no_subobject_property_setting;
5724    break;
5725  }
5726
5727  SourceRange Assign;
5728  if (Loc != OrigLoc)
5729    Assign = SourceRange(OrigLoc, OrigLoc);
5730  if (NeedType)
5731    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5732  else
5733    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5734  return true;
5735}
5736
5737
5738
5739// C99 6.5.16.1
5740QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5741                                       SourceLocation Loc,
5742                                       QualType CompoundType) {
5743  // Verify that LHS is a modifiable lvalue, and emit error if not.
5744  if (CheckForModifiableLvalue(LHS, Loc, *this))
5745    return QualType();
5746
5747  QualType LHSType = LHS->getType();
5748  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5749
5750  AssignConvertType ConvTy;
5751  if (CompoundType.isNull()) {
5752    // Simple assignment "x = y".
5753    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5754    // Special case of NSObject attributes on c-style pointer types.
5755    if (ConvTy == IncompatiblePointer &&
5756        ((Context.isObjCNSObjectType(LHSType) &&
5757          RHSType->isObjCObjectPointerType()) ||
5758         (Context.isObjCNSObjectType(RHSType) &&
5759          LHSType->isObjCObjectPointerType())))
5760      ConvTy = Compatible;
5761
5762    // If the RHS is a unary plus or minus, check to see if they = and + are
5763    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5764    // instead of "x += 4".
5765    Expr *RHSCheck = RHS;
5766    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5767      RHSCheck = ICE->getSubExpr();
5768    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5769      if ((UO->getOpcode() == UnaryOperator::Plus ||
5770           UO->getOpcode() == UnaryOperator::Minus) &&
5771          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5772          // Only if the two operators are exactly adjacent.
5773          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5774          // And there is a space or other character before the subexpr of the
5775          // unary +/-.  We don't want to warn on "x=-1".
5776          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5777          UO->getSubExpr()->getLocStart().isFileID()) {
5778        Diag(Loc, diag::warn_not_compound_assign)
5779          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5780          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5781      }
5782    }
5783  } else {
5784    // Compound assignment "x += y"
5785    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5786  }
5787
5788  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5789                               RHS, AA_Assigning))
5790    return QualType();
5791
5792  // C99 6.5.16p3: The type of an assignment expression is the type of the
5793  // left operand unless the left operand has qualified type, in which case
5794  // it is the unqualified version of the type of the left operand.
5795  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5796  // is converted to the type of the assignment expression (above).
5797  // C++ 5.17p1: the type of the assignment expression is that of its left
5798  // operand.
5799  return LHSType.getUnqualifiedType();
5800}
5801
5802// C99 6.5.17
5803QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5804  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5805  // C++ does not perform this conversion (C++ [expr.comma]p1).
5806  if (!getLangOptions().CPlusPlus)
5807    DefaultFunctionArrayLvalueConversion(RHS);
5808
5809  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5810  // incomplete in C++).
5811
5812  return RHS->getType();
5813}
5814
5815/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5816/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5817QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5818                                              bool isInc) {
5819  if (Op->isTypeDependent())
5820    return Context.DependentTy;
5821
5822  QualType ResType = Op->getType();
5823  assert(!ResType.isNull() && "no type for increment/decrement expression");
5824
5825  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5826    // Decrement of bool is not allowed.
5827    if (!isInc) {
5828      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5829      return QualType();
5830    }
5831    // Increment of bool sets it to true, but is deprecated.
5832    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5833  } else if (ResType->isRealType()) {
5834    // OK!
5835  } else if (ResType->isAnyPointerType()) {
5836    QualType PointeeTy = ResType->getPointeeType();
5837
5838    // C99 6.5.2.4p2, 6.5.6p2
5839    if (PointeeTy->isVoidType()) {
5840      if (getLangOptions().CPlusPlus) {
5841        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5842          << Op->getSourceRange();
5843        return QualType();
5844      }
5845
5846      // Pointer to void is a GNU extension in C.
5847      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5848    } else if (PointeeTy->isFunctionType()) {
5849      if (getLangOptions().CPlusPlus) {
5850        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5851          << Op->getType() << Op->getSourceRange();
5852        return QualType();
5853      }
5854
5855      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5856        << ResType << Op->getSourceRange();
5857    } else if (RequireCompleteType(OpLoc, PointeeTy,
5858                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5859                             << Op->getSourceRange()
5860                             << ResType))
5861      return QualType();
5862    // Diagnose bad cases where we step over interface counts.
5863    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5864      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
5865        << PointeeTy << Op->getSourceRange();
5866      return QualType();
5867    }
5868  } else if (ResType->isAnyComplexType()) {
5869    // C99 does not support ++/-- on complex types, we allow as an extension.
5870    Diag(OpLoc, diag::ext_integer_increment_complex)
5871      << ResType << Op->getSourceRange();
5872  } else {
5873    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
5874      << ResType << int(isInc) << Op->getSourceRange();
5875    return QualType();
5876  }
5877  // At this point, we know we have a real, complex or pointer type.
5878  // Now make sure the operand is a modifiable lvalue.
5879  if (CheckForModifiableLvalue(Op, OpLoc, *this))
5880    return QualType();
5881  return ResType;
5882}
5883
5884/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
5885/// This routine allows us to typecheck complex/recursive expressions
5886/// where the declaration is needed for type checking. We only need to
5887/// handle cases when the expression references a function designator
5888/// or is an lvalue. Here are some examples:
5889///  - &(x) => x
5890///  - &*****f => f for f a function designator.
5891///  - &s.xx => s
5892///  - &s.zz[1].yy -> s, if zz is an array
5893///  - *(x + 1) -> x, if x is an array
5894///  - &"123"[2] -> 0
5895///  - & __real__ x -> x
5896static NamedDecl *getPrimaryDecl(Expr *E) {
5897  switch (E->getStmtClass()) {
5898  case Stmt::DeclRefExprClass:
5899    return cast<DeclRefExpr>(E)->getDecl();
5900  case Stmt::MemberExprClass:
5901    // If this is an arrow operator, the address is an offset from
5902    // the base's value, so the object the base refers to is
5903    // irrelevant.
5904    if (cast<MemberExpr>(E)->isArrow())
5905      return 0;
5906    // Otherwise, the expression refers to a part of the base
5907    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
5908  case Stmt::ArraySubscriptExprClass: {
5909    // FIXME: This code shouldn't be necessary!  We should catch the implicit
5910    // promotion of register arrays earlier.
5911    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
5912    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
5913      if (ICE->getSubExpr()->getType()->isArrayType())
5914        return getPrimaryDecl(ICE->getSubExpr());
5915    }
5916    return 0;
5917  }
5918  case Stmt::UnaryOperatorClass: {
5919    UnaryOperator *UO = cast<UnaryOperator>(E);
5920
5921    switch(UO->getOpcode()) {
5922    case UnaryOperator::Real:
5923    case UnaryOperator::Imag:
5924    case UnaryOperator::Extension:
5925      return getPrimaryDecl(UO->getSubExpr());
5926    default:
5927      return 0;
5928    }
5929  }
5930  case Stmt::ParenExprClass:
5931    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
5932  case Stmt::ImplicitCastExprClass:
5933    // If the result of an implicit cast is an l-value, we care about
5934    // the sub-expression; otherwise, the result here doesn't matter.
5935    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
5936  default:
5937    return 0;
5938  }
5939}
5940
5941/// CheckAddressOfOperand - The operand of & must be either a function
5942/// designator or an lvalue designating an object. If it is an lvalue, the
5943/// object cannot be declared with storage class register or be a bit field.
5944/// Note: The usual conversions are *not* applied to the operand of the &
5945/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
5946/// In C++, the operand might be an overloaded function name, in which case
5947/// we allow the '&' but retain the overloaded-function type.
5948QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
5949  // Make sure to ignore parentheses in subsequent checks
5950  op = op->IgnoreParens();
5951
5952  if (op->isTypeDependent())
5953    return Context.DependentTy;
5954
5955  if (getLangOptions().C99) {
5956    // Implement C99-only parts of addressof rules.
5957    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
5958      if (uOp->getOpcode() == UnaryOperator::Deref)
5959        // Per C99 6.5.3.2, the address of a deref always returns a valid result
5960        // (assuming the deref expression is valid).
5961        return uOp->getSubExpr()->getType();
5962    }
5963    // Technically, there should be a check for array subscript
5964    // expressions here, but the result of one is always an lvalue anyway.
5965  }
5966  NamedDecl *dcl = getPrimaryDecl(op);
5967  Expr::isLvalueResult lval = op->isLvalue(Context);
5968
5969  MemberExpr *ME = dyn_cast<MemberExpr>(op);
5970  if (lval == Expr::LV_MemberFunction && ME &&
5971      isa<CXXMethodDecl>(ME->getMemberDecl())) {
5972    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
5973    // &f where f is a member of the current object, or &o.f, or &p->f
5974    // All these are not allowed, and we need to catch them before the dcl
5975    // branch of the if, below.
5976    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
5977        << dcl;
5978    // FIXME: Improve this diagnostic and provide a fixit.
5979
5980    // Now recover by acting as if the function had been accessed qualified.
5981    return Context.getMemberPointerType(op->getType(),
5982                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
5983                       .getTypePtr());
5984  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
5985    // C99 6.5.3.2p1
5986    // The operand must be either an l-value or a function designator
5987    if (!op->getType()->isFunctionType()) {
5988      // FIXME: emit more specific diag...
5989      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
5990        << op->getSourceRange();
5991      return QualType();
5992    }
5993  } else if (op->getBitField()) { // C99 6.5.3.2p1
5994    // The operand cannot be a bit-field
5995    Diag(OpLoc, diag::err_typecheck_address_of)
5996      << "bit-field" << op->getSourceRange();
5997        return QualType();
5998  } else if (op->refersToVectorElement()) {
5999    // The operand cannot be an element of a vector
6000    Diag(OpLoc, diag::err_typecheck_address_of)
6001      << "vector element" << op->getSourceRange();
6002    return QualType();
6003  } else if (isa<ObjCPropertyRefExpr>(op)) {
6004    // cannot take address of a property expression.
6005    Diag(OpLoc, diag::err_typecheck_address_of)
6006      << "property expression" << op->getSourceRange();
6007    return QualType();
6008  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6009    // FIXME: Can LHS ever be null here?
6010    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6011      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6012  } else if (isa<UnresolvedLookupExpr>(op)) {
6013    return Context.OverloadTy;
6014  } else if (dcl) { // C99 6.5.3.2p1
6015    // We have an lvalue with a decl. Make sure the decl is not declared
6016    // with the register storage-class specifier.
6017    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6018      if (vd->getStorageClass() == VarDecl::Register) {
6019        Diag(OpLoc, diag::err_typecheck_address_of)
6020          << "register variable" << op->getSourceRange();
6021        return QualType();
6022      }
6023    } else if (isa<FunctionTemplateDecl>(dcl)) {
6024      return Context.OverloadTy;
6025    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6026      // Okay: we can take the address of a field.
6027      // Could be a pointer to member, though, if there is an explicit
6028      // scope qualifier for the class.
6029      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6030        DeclContext *Ctx = dcl->getDeclContext();
6031        if (Ctx && Ctx->isRecord()) {
6032          if (FD->getType()->isReferenceType()) {
6033            Diag(OpLoc,
6034                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6035              << FD->getDeclName() << FD->getType();
6036            return QualType();
6037          }
6038
6039          return Context.getMemberPointerType(op->getType(),
6040                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6041        }
6042      }
6043    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6044      // Okay: we can take the address of a function.
6045      // As above.
6046      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6047          MD->isInstance())
6048        return Context.getMemberPointerType(op->getType(),
6049              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6050    } else if (!isa<FunctionDecl>(dcl))
6051      assert(0 && "Unknown/unexpected decl type");
6052  }
6053
6054  if (lval == Expr::LV_IncompleteVoidType) {
6055    // Taking the address of a void variable is technically illegal, but we
6056    // allow it in cases which are otherwise valid.
6057    // Example: "extern void x; void* y = &x;".
6058    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6059  }
6060
6061  // If the operand has type "type", the result has type "pointer to type".
6062  return Context.getPointerType(op->getType());
6063}
6064
6065QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6066  if (Op->isTypeDependent())
6067    return Context.DependentTy;
6068
6069  UsualUnaryConversions(Op);
6070  QualType Ty = Op->getType();
6071
6072  // Note that per both C89 and C99, this is always legal, even if ptype is an
6073  // incomplete type or void.  It would be possible to warn about dereferencing
6074  // a void pointer, but it's completely well-defined, and such a warning is
6075  // unlikely to catch any mistakes.
6076  if (const PointerType *PT = Ty->getAs<PointerType>())
6077    return PT->getPointeeType();
6078
6079  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6080    return OPT->getPointeeType();
6081
6082  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6083    << Ty << Op->getSourceRange();
6084  return QualType();
6085}
6086
6087static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6088  tok::TokenKind Kind) {
6089  BinaryOperator::Opcode Opc;
6090  switch (Kind) {
6091  default: assert(0 && "Unknown binop!");
6092  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6093  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6094  case tok::star:                 Opc = BinaryOperator::Mul; break;
6095  case tok::slash:                Opc = BinaryOperator::Div; break;
6096  case tok::percent:              Opc = BinaryOperator::Rem; break;
6097  case tok::plus:                 Opc = BinaryOperator::Add; break;
6098  case tok::minus:                Opc = BinaryOperator::Sub; break;
6099  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6100  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6101  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6102  case tok::less:                 Opc = BinaryOperator::LT; break;
6103  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6104  case tok::greater:              Opc = BinaryOperator::GT; break;
6105  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6106  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6107  case tok::amp:                  Opc = BinaryOperator::And; break;
6108  case tok::caret:                Opc = BinaryOperator::Xor; break;
6109  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6110  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6111  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6112  case tok::equal:                Opc = BinaryOperator::Assign; break;
6113  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6114  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6115  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6116  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6117  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6118  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6119  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6120  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6121  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6122  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6123  case tok::comma:                Opc = BinaryOperator::Comma; break;
6124  }
6125  return Opc;
6126}
6127
6128static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6129  tok::TokenKind Kind) {
6130  UnaryOperator::Opcode Opc;
6131  switch (Kind) {
6132  default: assert(0 && "Unknown unary op!");
6133  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6134  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6135  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6136  case tok::star:         Opc = UnaryOperator::Deref; break;
6137  case tok::plus:         Opc = UnaryOperator::Plus; break;
6138  case tok::minus:        Opc = UnaryOperator::Minus; break;
6139  case tok::tilde:        Opc = UnaryOperator::Not; break;
6140  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6141  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6142  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6143  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6144  }
6145  return Opc;
6146}
6147
6148/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6149/// operator @p Opc at location @c TokLoc. This routine only supports
6150/// built-in operations; ActOnBinOp handles overloaded operators.
6151Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6152                                                  unsigned Op,
6153                                                  Expr *lhs, Expr *rhs) {
6154  QualType ResultTy;     // Result type of the binary operator.
6155  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6156  // The following two variables are used for compound assignment operators
6157  QualType CompLHSTy;    // Type of LHS after promotions for computation
6158  QualType CompResultTy; // Type of computation result
6159
6160  switch (Opc) {
6161  case BinaryOperator::Assign:
6162    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6163    break;
6164  case BinaryOperator::PtrMemD:
6165  case BinaryOperator::PtrMemI:
6166    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6167                                            Opc == BinaryOperator::PtrMemI);
6168    break;
6169  case BinaryOperator::Mul:
6170  case BinaryOperator::Div:
6171    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6172                                           Opc == BinaryOperator::Div);
6173    break;
6174  case BinaryOperator::Rem:
6175    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6176    break;
6177  case BinaryOperator::Add:
6178    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6179    break;
6180  case BinaryOperator::Sub:
6181    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6182    break;
6183  case BinaryOperator::Shl:
6184  case BinaryOperator::Shr:
6185    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6186    break;
6187  case BinaryOperator::LE:
6188  case BinaryOperator::LT:
6189  case BinaryOperator::GE:
6190  case BinaryOperator::GT:
6191    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6192    break;
6193  case BinaryOperator::EQ:
6194  case BinaryOperator::NE:
6195    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6196    break;
6197  case BinaryOperator::And:
6198  case BinaryOperator::Xor:
6199  case BinaryOperator::Or:
6200    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6201    break;
6202  case BinaryOperator::LAnd:
6203  case BinaryOperator::LOr:
6204    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6205    break;
6206  case BinaryOperator::MulAssign:
6207  case BinaryOperator::DivAssign:
6208    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6209                                              Opc == BinaryOperator::DivAssign);
6210    CompLHSTy = CompResultTy;
6211    if (!CompResultTy.isNull())
6212      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6213    break;
6214  case BinaryOperator::RemAssign:
6215    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6216    CompLHSTy = CompResultTy;
6217    if (!CompResultTy.isNull())
6218      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6219    break;
6220  case BinaryOperator::AddAssign:
6221    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6222    if (!CompResultTy.isNull())
6223      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6224    break;
6225  case BinaryOperator::SubAssign:
6226    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6227    if (!CompResultTy.isNull())
6228      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6229    break;
6230  case BinaryOperator::ShlAssign:
6231  case BinaryOperator::ShrAssign:
6232    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6233    CompLHSTy = CompResultTy;
6234    if (!CompResultTy.isNull())
6235      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6236    break;
6237  case BinaryOperator::AndAssign:
6238  case BinaryOperator::XorAssign:
6239  case BinaryOperator::OrAssign:
6240    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6241    CompLHSTy = CompResultTy;
6242    if (!CompResultTy.isNull())
6243      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6244    break;
6245  case BinaryOperator::Comma:
6246    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6247    break;
6248  }
6249  if (ResultTy.isNull())
6250    return ExprError();
6251  if (CompResultTy.isNull())
6252    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6253  else
6254    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6255                                                      CompLHSTy, CompResultTy,
6256                                                      OpLoc));
6257}
6258
6259/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6260/// ParenRange in parentheses.
6261static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6262                               const PartialDiagnostic &PD,
6263                               SourceRange ParenRange,
6264                      const PartialDiagnostic &SecondPD = PartialDiagnostic(0),
6265                               SourceRange SecondParenRange = SourceRange()) {
6266  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6267  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6268    // We can't display the parentheses, so just dig the
6269    // warning/error and return.
6270    Self.Diag(Loc, PD);
6271    return;
6272  }
6273
6274  Self.Diag(Loc, PD)
6275    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
6276    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6277
6278  if (!SecondPD.getDiagID())
6279    return;
6280
6281  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6282  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6283    // We can't display the parentheses, so just dig the
6284    // warning/error and return.
6285    Self.Diag(Loc, SecondPD);
6286    return;
6287  }
6288
6289  Self.Diag(Loc, SecondPD)
6290    << CodeModificationHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6291    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6292}
6293
6294/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6295/// operators are mixed in a way that suggests that the programmer forgot that
6296/// comparison operators have higher precedence. The most typical example of
6297/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6298static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6299                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6300  typedef BinaryOperator BinOp;
6301  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6302                rhsopc = static_cast<BinOp::Opcode>(-1);
6303  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6304    lhsopc = BO->getOpcode();
6305  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6306    rhsopc = BO->getOpcode();
6307
6308  // Subs are not binary operators.
6309  if (lhsopc == -1 && rhsopc == -1)
6310    return;
6311
6312  // Bitwise operations are sometimes used as eager logical ops.
6313  // Don't diagnose this.
6314  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6315      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6316    return;
6317
6318  if (BinOp::isComparisonOp(lhsopc))
6319    SuggestParentheses(Self, OpLoc,
6320      PDiag(diag::warn_precedence_bitwise_rel)
6321          << SourceRange(lhs->getLocStart(), OpLoc)
6322          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6323      lhs->getSourceRange(),
6324      PDiag(diag::note_precedence_bitwise_first)
6325          << BinOp::getOpcodeStr(Opc),
6326      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
6327  else if (BinOp::isComparisonOp(rhsopc))
6328    SuggestParentheses(Self, OpLoc,
6329      PDiag(diag::warn_precedence_bitwise_rel)
6330          << SourceRange(OpLoc, rhs->getLocEnd())
6331          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6332      rhs->getSourceRange(),
6333      PDiag(diag::note_precedence_bitwise_first)
6334        << BinOp::getOpcodeStr(Opc),
6335      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
6336}
6337
6338/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6339/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6340/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6341static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6342                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6343  if (BinaryOperator::isBitwiseOp(Opc))
6344    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6345}
6346
6347// Binary Operators.  'Tok' is the token for the operator.
6348Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6349                                          tok::TokenKind Kind,
6350                                          ExprArg LHS, ExprArg RHS) {
6351  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6352  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6353
6354  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6355  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6356
6357  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6358  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6359
6360  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6361}
6362
6363Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6364                                          BinaryOperator::Opcode Opc,
6365                                          Expr *lhs, Expr *rhs) {
6366  if (getLangOptions().CPlusPlus &&
6367      (lhs->getType()->isOverloadableType() ||
6368       rhs->getType()->isOverloadableType())) {
6369    // Find all of the overloaded operators visible from this
6370    // point. We perform both an operator-name lookup from the local
6371    // scope and an argument-dependent lookup based on the types of
6372    // the arguments.
6373    UnresolvedSet<16> Functions;
6374    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6375    if (S && OverOp != OO_None)
6376      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6377                                   Functions);
6378
6379    // Build the (potentially-overloaded, potentially-dependent)
6380    // binary operation.
6381    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6382  }
6383
6384  // Build a built-in binary operation.
6385  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6386}
6387
6388Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6389                                                    unsigned OpcIn,
6390                                                    ExprArg InputArg) {
6391  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6392
6393  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6394  Expr *Input = (Expr *)InputArg.get();
6395  QualType resultType;
6396  switch (Opc) {
6397  case UnaryOperator::OffsetOf:
6398    assert(false && "Invalid unary operator");
6399    break;
6400
6401  case UnaryOperator::PreInc:
6402  case UnaryOperator::PreDec:
6403  case UnaryOperator::PostInc:
6404  case UnaryOperator::PostDec:
6405    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6406                                                Opc == UnaryOperator::PreInc ||
6407                                                Opc == UnaryOperator::PostInc);
6408    break;
6409  case UnaryOperator::AddrOf:
6410    resultType = CheckAddressOfOperand(Input, OpLoc);
6411    break;
6412  case UnaryOperator::Deref:
6413    DefaultFunctionArrayLvalueConversion(Input);
6414    resultType = CheckIndirectionOperand(Input, OpLoc);
6415    break;
6416  case UnaryOperator::Plus:
6417  case UnaryOperator::Minus:
6418    UsualUnaryConversions(Input);
6419    resultType = Input->getType();
6420    if (resultType->isDependentType())
6421      break;
6422    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6423      break;
6424    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6425             resultType->isEnumeralType())
6426      break;
6427    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6428             Opc == UnaryOperator::Plus &&
6429             resultType->isPointerType())
6430      break;
6431
6432    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6433      << resultType << Input->getSourceRange());
6434  case UnaryOperator::Not: // bitwise complement
6435    UsualUnaryConversions(Input);
6436    resultType = Input->getType();
6437    if (resultType->isDependentType())
6438      break;
6439    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6440    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6441      // C99 does not support '~' for complex conjugation.
6442      Diag(OpLoc, diag::ext_integer_complement_complex)
6443        << resultType << Input->getSourceRange();
6444    else if (!resultType->isIntegerType())
6445      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6446        << resultType << Input->getSourceRange());
6447    break;
6448  case UnaryOperator::LNot: // logical negation
6449    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6450    DefaultFunctionArrayLvalueConversion(Input);
6451    resultType = Input->getType();
6452    if (resultType->isDependentType())
6453      break;
6454    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6455      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6456        << resultType << Input->getSourceRange());
6457    // LNot always has type int. C99 6.5.3.3p5.
6458    // In C++, it's bool. C++ 5.3.1p8
6459    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6460    break;
6461  case UnaryOperator::Real:
6462  case UnaryOperator::Imag:
6463    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6464    break;
6465  case UnaryOperator::Extension:
6466    resultType = Input->getType();
6467    break;
6468  }
6469  if (resultType.isNull())
6470    return ExprError();
6471
6472  InputArg.release();
6473  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6474}
6475
6476Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6477                                            UnaryOperator::Opcode Opc,
6478                                            ExprArg input) {
6479  Expr *Input = (Expr*)input.get();
6480  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6481      Opc != UnaryOperator::Extension) {
6482    // Find all of the overloaded operators visible from this
6483    // point. We perform both an operator-name lookup from the local
6484    // scope and an argument-dependent lookup based on the types of
6485    // the arguments.
6486    UnresolvedSet<16> Functions;
6487    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6488    if (S && OverOp != OO_None)
6489      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6490                                   Functions);
6491
6492    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6493  }
6494
6495  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6496}
6497
6498// Unary Operators.  'Tok' is the token for the operator.
6499Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6500                                            tok::TokenKind Op, ExprArg input) {
6501  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6502}
6503
6504/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6505Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6506                                            SourceLocation LabLoc,
6507                                            IdentifierInfo *LabelII) {
6508  // Look up the record for this label identifier.
6509  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6510
6511  // If we haven't seen this label yet, create a forward reference. It
6512  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6513  if (LabelDecl == 0)
6514    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6515
6516  // Create the AST node.  The address of a label always has type 'void*'.
6517  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6518                                       Context.getPointerType(Context.VoidTy)));
6519}
6520
6521Sema::OwningExprResult
6522Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6523                    SourceLocation RPLoc) { // "({..})"
6524  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6525  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6526  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6527
6528  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
6529  if (isFileScope)
6530    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6531
6532  // FIXME: there are a variety of strange constraints to enforce here, for
6533  // example, it is not possible to goto into a stmt expression apparently.
6534  // More semantic analysis is needed.
6535
6536  // If there are sub stmts in the compound stmt, take the type of the last one
6537  // as the type of the stmtexpr.
6538  QualType Ty = Context.VoidTy;
6539
6540  if (!Compound->body_empty()) {
6541    Stmt *LastStmt = Compound->body_back();
6542    // If LastStmt is a label, skip down through into the body.
6543    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6544      LastStmt = Label->getSubStmt();
6545
6546    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6547      Ty = LastExpr->getType();
6548  }
6549
6550  // FIXME: Check that expression type is complete/non-abstract; statement
6551  // expressions are not lvalues.
6552
6553  substmt.release();
6554  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6555}
6556
6557Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6558                                                  SourceLocation BuiltinLoc,
6559                                                  SourceLocation TypeLoc,
6560                                                  TypeTy *argty,
6561                                                  OffsetOfComponent *CompPtr,
6562                                                  unsigned NumComponents,
6563                                                  SourceLocation RPLoc) {
6564  // FIXME: This function leaks all expressions in the offset components on
6565  // error.
6566  // FIXME: Preserve type source info.
6567  QualType ArgTy = GetTypeFromParser(argty);
6568  assert(!ArgTy.isNull() && "Missing type argument!");
6569
6570  bool Dependent = ArgTy->isDependentType();
6571
6572  // We must have at least one component that refers to the type, and the first
6573  // one is known to be a field designator.  Verify that the ArgTy represents
6574  // a struct/union/class.
6575  if (!Dependent && !ArgTy->isRecordType())
6576    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6577
6578  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6579  // with an incomplete type would be illegal.
6580
6581  // Otherwise, create a null pointer as the base, and iteratively process
6582  // the offsetof designators.
6583  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6584  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6585  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6586                                    ArgTy, SourceLocation());
6587
6588  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6589  // GCC extension, diagnose them.
6590  // FIXME: This diagnostic isn't actually visible because the location is in
6591  // a system header!
6592  if (NumComponents != 1)
6593    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6594      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6595
6596  if (!Dependent) {
6597    bool DidWarnAboutNonPOD = false;
6598
6599    if (RequireCompleteType(TypeLoc, Res->getType(),
6600                            diag::err_offsetof_incomplete_type))
6601      return ExprError();
6602
6603    // FIXME: Dependent case loses a lot of information here. And probably
6604    // leaks like a sieve.
6605    for (unsigned i = 0; i != NumComponents; ++i) {
6606      const OffsetOfComponent &OC = CompPtr[i];
6607      if (OC.isBrackets) {
6608        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6609        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6610        if (!AT) {
6611          Res->Destroy(Context);
6612          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6613            << Res->getType());
6614        }
6615
6616        // FIXME: C++: Verify that operator[] isn't overloaded.
6617
6618        // Promote the array so it looks more like a normal array subscript
6619        // expression.
6620        DefaultFunctionArrayLvalueConversion(Res);
6621
6622        // C99 6.5.2.1p1
6623        Expr *Idx = static_cast<Expr*>(OC.U.E);
6624        // FIXME: Leaks Res
6625        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6626          return ExprError(Diag(Idx->getLocStart(),
6627                                diag::err_typecheck_subscript_not_integer)
6628            << Idx->getSourceRange());
6629
6630        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6631                                               OC.LocEnd);
6632        continue;
6633      }
6634
6635      const RecordType *RC = Res->getType()->getAs<RecordType>();
6636      if (!RC) {
6637        Res->Destroy(Context);
6638        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6639          << Res->getType());
6640      }
6641
6642      // Get the decl corresponding to this.
6643      RecordDecl *RD = RC->getDecl();
6644      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6645        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6646            DiagRuntimeBehavior(BuiltinLoc,
6647                                PDiag(diag::warn_offsetof_non_pod_type)
6648                                  << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6649                                  << Res->getType()))
6650          DidWarnAboutNonPOD = true;
6651      }
6652
6653      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6654      LookupQualifiedName(R, RD);
6655
6656      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6657      // FIXME: Leaks Res
6658      if (!MemberDecl)
6659        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6660         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6661
6662      // FIXME: C++: Verify that MemberDecl isn't a static field.
6663      // FIXME: Verify that MemberDecl isn't a bitfield.
6664      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6665        Res = BuildAnonymousStructUnionMemberReference(
6666            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6667      } else {
6668        PerformObjectMemberConversion(Res, MemberDecl);
6669        // MemberDecl->getType() doesn't get the right qualifiers, but it
6670        // doesn't matter here.
6671        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6672                MemberDecl->getType().getNonReferenceType());
6673      }
6674    }
6675  }
6676
6677  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6678                                           Context.getSizeType(), BuiltinLoc));
6679}
6680
6681
6682Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6683                                                      TypeTy *arg1,TypeTy *arg2,
6684                                                      SourceLocation RPLoc) {
6685  // FIXME: Preserve type source info.
6686  QualType argT1 = GetTypeFromParser(arg1);
6687  QualType argT2 = GetTypeFromParser(arg2);
6688
6689  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6690
6691  if (getLangOptions().CPlusPlus) {
6692    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6693      << SourceRange(BuiltinLoc, RPLoc);
6694    return ExprError();
6695  }
6696
6697  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6698                                                 argT1, argT2, RPLoc));
6699}
6700
6701Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6702                                             ExprArg cond,
6703                                             ExprArg expr1, ExprArg expr2,
6704                                             SourceLocation RPLoc) {
6705  Expr *CondExpr = static_cast<Expr*>(cond.get());
6706  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6707  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6708
6709  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6710
6711  QualType resType;
6712  bool ValueDependent = false;
6713  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6714    resType = Context.DependentTy;
6715    ValueDependent = true;
6716  } else {
6717    // The conditional expression is required to be a constant expression.
6718    llvm::APSInt condEval(32);
6719    SourceLocation ExpLoc;
6720    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6721      return ExprError(Diag(ExpLoc,
6722                       diag::err_typecheck_choose_expr_requires_constant)
6723        << CondExpr->getSourceRange());
6724
6725    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6726    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6727    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6728                                             : RHSExpr->isValueDependent();
6729  }
6730
6731  cond.release(); expr1.release(); expr2.release();
6732  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6733                                        resType, RPLoc,
6734                                        resType->isDependentType(),
6735                                        ValueDependent));
6736}
6737
6738//===----------------------------------------------------------------------===//
6739// Clang Extensions.
6740//===----------------------------------------------------------------------===//
6741
6742/// ActOnBlockStart - This callback is invoked when a block literal is started.
6743void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6744  // Analyze block parameters.
6745  BlockSemaInfo *BSI = new BlockSemaInfo();
6746
6747  // Add BSI to CurBlock.
6748  BSI->PrevBlockInfo = CurBlock;
6749  CurBlock = BSI;
6750
6751  BSI->ReturnType = QualType();
6752  BSI->TheScope = BlockScope;
6753  BSI->hasBlockDeclRefExprs = false;
6754  BSI->hasPrototype = false;
6755  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
6756  CurFunctionNeedsScopeChecking = false;
6757
6758  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
6759  CurContext->addDecl(BSI->TheDecl);
6760  PushDeclContext(BlockScope, BSI->TheDecl);
6761}
6762
6763void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6764  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6765
6766  if (ParamInfo.getNumTypeObjects() == 0
6767      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6768    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6769    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6770
6771    if (T->isArrayType()) {
6772      Diag(ParamInfo.getSourceRange().getBegin(),
6773           diag::err_block_returns_array);
6774      return;
6775    }
6776
6777    // The parameter list is optional, if there was none, assume ().
6778    if (!T->isFunctionType())
6779      T = Context.getFunctionType(T, NULL, 0, 0, 0);
6780
6781    CurBlock->hasPrototype = true;
6782    CurBlock->isVariadic = false;
6783    // Check for a valid sentinel attribute on this block.
6784    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6785      Diag(ParamInfo.getAttributes()->getLoc(),
6786           diag::warn_attribute_sentinel_not_variadic) << 1;
6787      // FIXME: remove the attribute.
6788    }
6789    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6790
6791    // Do not allow returning a objc interface by-value.
6792    if (RetTy->isObjCInterfaceType()) {
6793      Diag(ParamInfo.getSourceRange().getBegin(),
6794           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6795      return;
6796    }
6797
6798    CurBlock->ReturnType = RetTy;
6799    return;
6800  }
6801
6802  // Analyze arguments to block.
6803  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6804         "Not a function declarator!");
6805  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6806
6807  CurBlock->hasPrototype = FTI.hasPrototype;
6808  CurBlock->isVariadic = true;
6809
6810  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6811  // no arguments, not a function that takes a single void argument.
6812  if (FTI.hasPrototype &&
6813      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6814     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6815        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6816    // empty arg list, don't push any params.
6817    CurBlock->isVariadic = false;
6818  } else if (FTI.hasPrototype) {
6819    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
6820      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
6821    CurBlock->isVariadic = FTI.isVariadic;
6822  }
6823  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
6824                               CurBlock->Params.size());
6825  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6826  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6827  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6828         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
6829    (*AI)->setOwningFunction(CurBlock->TheDecl);
6830
6831    // If this has an identifier, add it to the scope stack.
6832    if ((*AI)->getIdentifier())
6833      PushOnScopeChains(*AI, CurBlock->TheScope);
6834  }
6835
6836  // Check for a valid sentinel attribute on this block.
6837  if (!CurBlock->isVariadic &&
6838      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6839    Diag(ParamInfo.getAttributes()->getLoc(),
6840         diag::warn_attribute_sentinel_not_variadic) << 1;
6841    // FIXME: remove the attribute.
6842  }
6843
6844  // Analyze the return type.
6845  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6846  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6847
6848  // Do not allow returning a objc interface by-value.
6849  if (RetTy->isObjCInterfaceType()) {
6850    Diag(ParamInfo.getSourceRange().getBegin(),
6851         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6852  } else if (!RetTy->isDependentType())
6853    CurBlock->ReturnType = RetTy;
6854}
6855
6856/// ActOnBlockError - If there is an error parsing a block, this callback
6857/// is invoked to pop the information about the block from the action impl.
6858void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
6859  // Ensure that CurBlock is deleted.
6860  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
6861
6862  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
6863
6864  // Pop off CurBlock, handle nested blocks.
6865  PopDeclContext();
6866  CurBlock = CurBlock->PrevBlockInfo;
6867  // FIXME: Delete the ParmVarDecl objects as well???
6868}
6869
6870/// ActOnBlockStmtExpr - This is called when the body of a block statement
6871/// literal was successfully completed.  ^(int x){...}
6872Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
6873                                                StmtArg body, Scope *CurScope) {
6874  // If blocks are disabled, emit an error.
6875  if (!LangOpts.Blocks)
6876    Diag(CaretLoc, diag::err_blocks_disable);
6877
6878  // Ensure that CurBlock is deleted.
6879  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
6880
6881  PopDeclContext();
6882
6883  // Pop off CurBlock, handle nested blocks.
6884  CurBlock = CurBlock->PrevBlockInfo;
6885
6886  QualType RetTy = Context.VoidTy;
6887  if (!BSI->ReturnType.isNull())
6888    RetTy = BSI->ReturnType;
6889
6890  llvm::SmallVector<QualType, 8> ArgTypes;
6891  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
6892    ArgTypes.push_back(BSI->Params[i]->getType());
6893
6894  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
6895  QualType BlockTy;
6896  if (!BSI->hasPrototype)
6897    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
6898                                      NoReturn);
6899  else
6900    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
6901                                      BSI->isVariadic, 0, false, false, 0, 0,
6902                                      NoReturn);
6903
6904  // FIXME: Check that return/parameter types are complete/non-abstract
6905  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
6906  BlockTy = Context.getBlockPointerType(BlockTy);
6907
6908  // If needed, diagnose invalid gotos and switches in the block.
6909  if (CurFunctionNeedsScopeChecking)
6910    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
6911  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
6912
6913  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
6914
6915  bool Good = true;
6916  // Check goto/label use.
6917  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
6918         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
6919    LabelStmt *L = I->second;
6920
6921    // Verify that we have no forward references left.  If so, there was a goto
6922    // or address of a label taken, but no definition of it.
6923    if (L->getSubStmt() != 0)
6924      continue;
6925
6926    // Emit error.
6927    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
6928    Good = false;
6929  }
6930  BSI->LabelMap.clear();
6931  if (!Good)
6932    return ExprError();
6933
6934  AnalysisContext AC(BSI->TheDecl);
6935  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody(), AC);
6936  CheckUnreachable(AC);
6937  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
6938                                       BSI->hasBlockDeclRefExprs));
6939}
6940
6941Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
6942                                        ExprArg expr, TypeTy *type,
6943                                        SourceLocation RPLoc) {
6944  QualType T = GetTypeFromParser(type);
6945  Expr *E = static_cast<Expr*>(expr.get());
6946  Expr *OrigExpr = E;
6947
6948  InitBuiltinVaListType();
6949
6950  // Get the va_list type
6951  QualType VaListType = Context.getBuiltinVaListType();
6952  if (VaListType->isArrayType()) {
6953    // Deal with implicit array decay; for example, on x86-64,
6954    // va_list is an array, but it's supposed to decay to
6955    // a pointer for va_arg.
6956    VaListType = Context.getArrayDecayedType(VaListType);
6957    // Make sure the input expression also decays appropriately.
6958    UsualUnaryConversions(E);
6959  } else {
6960    // Otherwise, the va_list argument must be an l-value because
6961    // it is modified by va_arg.
6962    if (!E->isTypeDependent() &&
6963        CheckForModifiableLvalue(E, BuiltinLoc, *this))
6964      return ExprError();
6965  }
6966
6967  if (!E->isTypeDependent() &&
6968      !Context.hasSameType(VaListType, E->getType())) {
6969    return ExprError(Diag(E->getLocStart(),
6970                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
6971      << OrigExpr->getType() << E->getSourceRange());
6972  }
6973
6974  // FIXME: Check that type is complete/non-abstract
6975  // FIXME: Warn if a non-POD type is passed in.
6976
6977  expr.release();
6978  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
6979                                       RPLoc));
6980}
6981
6982Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
6983  // The type of __null will be int or long, depending on the size of
6984  // pointers on the target.
6985  QualType Ty;
6986  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
6987    Ty = Context.IntTy;
6988  else
6989    Ty = Context.LongTy;
6990
6991  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
6992}
6993
6994static void
6995MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
6996                                          QualType DstType,
6997                                          Expr *SrcExpr,
6998                                          CodeModificationHint &Hint) {
6999  if (!SemaRef.getLangOptions().ObjC1)
7000    return;
7001
7002  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7003  if (!PT)
7004    return;
7005
7006  // Check if the destination is of type 'id'.
7007  if (!PT->isObjCIdType()) {
7008    // Check if the destination is the 'NSString' interface.
7009    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7010    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7011      return;
7012  }
7013
7014  // Strip off any parens and casts.
7015  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7016  if (!SL || SL->isWide())
7017    return;
7018
7019  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
7020}
7021
7022bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7023                                    SourceLocation Loc,
7024                                    QualType DstType, QualType SrcType,
7025                                    Expr *SrcExpr, AssignmentAction Action) {
7026  // Decode the result (notice that AST's are still created for extensions).
7027  bool isInvalid = false;
7028  unsigned DiagKind;
7029  CodeModificationHint Hint;
7030
7031  switch (ConvTy) {
7032  default: assert(0 && "Unknown conversion type");
7033  case Compatible: return false;
7034  case PointerToInt:
7035    DiagKind = diag::ext_typecheck_convert_pointer_int;
7036    break;
7037  case IntToPointer:
7038    DiagKind = diag::ext_typecheck_convert_int_pointer;
7039    break;
7040  case IncompatiblePointer:
7041    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
7042    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7043    break;
7044  case IncompatiblePointerSign:
7045    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7046    break;
7047  case FunctionVoidPointer:
7048    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7049    break;
7050  case CompatiblePointerDiscardsQualifiers:
7051    // If the qualifiers lost were because we were applying the
7052    // (deprecated) C++ conversion from a string literal to a char*
7053    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7054    // Ideally, this check would be performed in
7055    // CheckPointerTypesForAssignment. However, that would require a
7056    // bit of refactoring (so that the second argument is an
7057    // expression, rather than a type), which should be done as part
7058    // of a larger effort to fix CheckPointerTypesForAssignment for
7059    // C++ semantics.
7060    if (getLangOptions().CPlusPlus &&
7061        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7062      return false;
7063    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7064    break;
7065  case IncompatibleNestedPointerQualifiers:
7066    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7067    break;
7068  case IntToBlockPointer:
7069    DiagKind = diag::err_int_to_block_pointer;
7070    break;
7071  case IncompatibleBlockPointer:
7072    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7073    break;
7074  case IncompatibleObjCQualifiedId:
7075    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7076    // it can give a more specific diagnostic.
7077    DiagKind = diag::warn_incompatible_qualified_id;
7078    break;
7079  case IncompatibleVectors:
7080    DiagKind = diag::warn_incompatible_vectors;
7081    break;
7082  case Incompatible:
7083    DiagKind = diag::err_typecheck_convert_incompatible;
7084    isInvalid = true;
7085    break;
7086  }
7087
7088  Diag(Loc, DiagKind) << DstType << SrcType << Action
7089    << SrcExpr->getSourceRange() << Hint;
7090  return isInvalid;
7091}
7092
7093bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7094  llvm::APSInt ICEResult;
7095  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7096    if (Result)
7097      *Result = ICEResult;
7098    return false;
7099  }
7100
7101  Expr::EvalResult EvalResult;
7102
7103  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7104      EvalResult.HasSideEffects) {
7105    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7106
7107    if (EvalResult.Diag) {
7108      // We only show the note if it's not the usual "invalid subexpression"
7109      // or if it's actually in a subexpression.
7110      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7111          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7112        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7113    }
7114
7115    return true;
7116  }
7117
7118  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7119    E->getSourceRange();
7120
7121  if (EvalResult.Diag &&
7122      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7123    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7124
7125  if (Result)
7126    *Result = EvalResult.Val.getInt();
7127  return false;
7128}
7129
7130void
7131Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7132  ExprEvalContexts.push_back(
7133        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7134}
7135
7136void
7137Sema::PopExpressionEvaluationContext() {
7138  // Pop the current expression evaluation context off the stack.
7139  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7140  ExprEvalContexts.pop_back();
7141
7142  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7143    if (Rec.PotentiallyReferenced) {
7144      // Mark any remaining declarations in the current position of the stack
7145      // as "referenced". If they were not meant to be referenced, semantic
7146      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7147      for (PotentiallyReferencedDecls::iterator
7148             I = Rec.PotentiallyReferenced->begin(),
7149             IEnd = Rec.PotentiallyReferenced->end();
7150           I != IEnd; ++I)
7151        MarkDeclarationReferenced(I->first, I->second);
7152    }
7153
7154    if (Rec.PotentiallyDiagnosed) {
7155      // Emit any pending diagnostics.
7156      for (PotentiallyEmittedDiagnostics::iterator
7157                I = Rec.PotentiallyDiagnosed->begin(),
7158             IEnd = Rec.PotentiallyDiagnosed->end();
7159           I != IEnd; ++I)
7160        Diag(I->first, I->second);
7161    }
7162  }
7163
7164  // When are coming out of an unevaluated context, clear out any
7165  // temporaries that we may have created as part of the evaluation of
7166  // the expression in that context: they aren't relevant because they
7167  // will never be constructed.
7168  if (Rec.Context == Unevaluated &&
7169      ExprTemporaries.size() > Rec.NumTemporaries)
7170    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7171                          ExprTemporaries.end());
7172
7173  // Destroy the popped expression evaluation record.
7174  Rec.Destroy();
7175}
7176
7177/// \brief Note that the given declaration was referenced in the source code.
7178///
7179/// This routine should be invoke whenever a given declaration is referenced
7180/// in the source code, and where that reference occurred. If this declaration
7181/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7182/// C99 6.9p3), then the declaration will be marked as used.
7183///
7184/// \param Loc the location where the declaration was referenced.
7185///
7186/// \param D the declaration that has been referenced by the source code.
7187void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7188  assert(D && "No declaration?");
7189
7190  if (D->isUsed())
7191    return;
7192
7193  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7194  // template or not. The reason for this is that unevaluated expressions
7195  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7196  // -Wunused-parameters)
7197  if (isa<ParmVarDecl>(D) ||
7198      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
7199    D->setUsed(true);
7200
7201  // Do not mark anything as "used" within a dependent context; wait for
7202  // an instantiation.
7203  if (CurContext->isDependentContext())
7204    return;
7205
7206  switch (ExprEvalContexts.back().Context) {
7207    case Unevaluated:
7208      // We are in an expression that is not potentially evaluated; do nothing.
7209      return;
7210
7211    case PotentiallyEvaluated:
7212      // We are in a potentially-evaluated expression, so this declaration is
7213      // "used"; handle this below.
7214      break;
7215
7216    case PotentiallyPotentiallyEvaluated:
7217      // We are in an expression that may be potentially evaluated; queue this
7218      // declaration reference until we know whether the expression is
7219      // potentially evaluated.
7220      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7221      return;
7222  }
7223
7224  // Note that this declaration has been used.
7225  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7226    unsigned TypeQuals;
7227    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7228        if (!Constructor->isUsed())
7229          DefineImplicitDefaultConstructor(Loc, Constructor);
7230    } else if (Constructor->isImplicit() &&
7231               Constructor->isCopyConstructor(TypeQuals)) {
7232      if (!Constructor->isUsed())
7233        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7234    }
7235
7236    MaybeMarkVirtualMembersReferenced(Loc, Constructor);
7237  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7238    if (Destructor->isImplicit() && !Destructor->isUsed())
7239      DefineImplicitDestructor(Loc, Destructor);
7240
7241  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7242    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7243        MethodDecl->getOverloadedOperator() == OO_Equal) {
7244      if (!MethodDecl->isUsed())
7245        DefineImplicitOverloadedAssign(Loc, MethodDecl);
7246    }
7247  }
7248  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7249    // Implicit instantiation of function templates and member functions of
7250    // class templates.
7251    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
7252      bool AlreadyInstantiated = false;
7253      if (FunctionTemplateSpecializationInfo *SpecInfo
7254                                = Function->getTemplateSpecializationInfo()) {
7255        if (SpecInfo->getPointOfInstantiation().isInvalid())
7256          SpecInfo->setPointOfInstantiation(Loc);
7257        else if (SpecInfo->getTemplateSpecializationKind()
7258                   == TSK_ImplicitInstantiation)
7259          AlreadyInstantiated = true;
7260      } else if (MemberSpecializationInfo *MSInfo
7261                                  = Function->getMemberSpecializationInfo()) {
7262        if (MSInfo->getPointOfInstantiation().isInvalid())
7263          MSInfo->setPointOfInstantiation(Loc);
7264        else if (MSInfo->getTemplateSpecializationKind()
7265                   == TSK_ImplicitInstantiation)
7266          AlreadyInstantiated = true;
7267      }
7268
7269      if (!AlreadyInstantiated) {
7270        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7271            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7272          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7273                                                                      Loc));
7274        else
7275          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7276                                                                 Loc));
7277      }
7278    }
7279
7280    // FIXME: keep track of references to static functions
7281    Function->setUsed(true);
7282    return;
7283  }
7284
7285  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7286    // Implicit instantiation of static data members of class templates.
7287    if (Var->isStaticDataMember() &&
7288        Var->getInstantiatedFromStaticDataMember()) {
7289      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7290      assert(MSInfo && "Missing member specialization information?");
7291      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7292          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7293        MSInfo->setPointOfInstantiation(Loc);
7294        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7295      }
7296    }
7297
7298    // FIXME: keep track of references to static data?
7299
7300    D->setUsed(true);
7301    return;
7302  }
7303}
7304
7305/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7306/// of the program being compiled.
7307///
7308/// This routine emits the given diagnostic when the code currently being
7309/// type-checked is "potentially evaluated", meaning that there is a
7310/// possibility that the code will actually be executable. Code in sizeof()
7311/// expressions, code used only during overload resolution, etc., are not
7312/// potentially evaluated. This routine will suppress such diagnostics or,
7313/// in the absolutely nutty case of potentially potentially evaluated
7314/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7315/// later.
7316///
7317/// This routine should be used for all diagnostics that describe the run-time
7318/// behavior of a program, such as passing a non-POD value through an ellipsis.
7319/// Failure to do so will likely result in spurious diagnostics or failures
7320/// during overload resolution or within sizeof/alignof/typeof/typeid.
7321bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7322                               const PartialDiagnostic &PD) {
7323  switch (ExprEvalContexts.back().Context ) {
7324  case Unevaluated:
7325    // The argument will never be evaluated, so don't complain.
7326    break;
7327
7328  case PotentiallyEvaluated:
7329    Diag(Loc, PD);
7330    return true;
7331
7332  case PotentiallyPotentiallyEvaluated:
7333    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7334    break;
7335  }
7336
7337  return false;
7338}
7339
7340bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7341                               CallExpr *CE, FunctionDecl *FD) {
7342  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7343    return false;
7344
7345  PartialDiagnostic Note =
7346    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7347    << FD->getDeclName() : PDiag();
7348  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7349
7350  if (RequireCompleteType(Loc, ReturnType,
7351                          FD ?
7352                          PDiag(diag::err_call_function_incomplete_return)
7353                            << CE->getSourceRange() << FD->getDeclName() :
7354                          PDiag(diag::err_call_incomplete_return)
7355                            << CE->getSourceRange(),
7356                          std::make_pair(NoteLoc, Note)))
7357    return true;
7358
7359  return false;
7360}
7361
7362// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7363// will prevent this condition from triggering, which is what we want.
7364void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7365  SourceLocation Loc;
7366
7367  unsigned diagnostic = diag::warn_condition_is_assignment;
7368
7369  if (isa<BinaryOperator>(E)) {
7370    BinaryOperator *Op = cast<BinaryOperator>(E);
7371    if (Op->getOpcode() != BinaryOperator::Assign)
7372      return;
7373
7374    // Greylist some idioms by putting them into a warning subcategory.
7375    if (ObjCMessageExpr *ME
7376          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7377      Selector Sel = ME->getSelector();
7378
7379      // self = [<foo> init...]
7380      if (isSelfExpr(Op->getLHS())
7381          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7382        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7383
7384      // <foo> = [<bar> nextObject]
7385      else if (Sel.isUnarySelector() &&
7386               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7387        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7388    }
7389
7390    Loc = Op->getOperatorLoc();
7391  } else if (isa<CXXOperatorCallExpr>(E)) {
7392    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7393    if (Op->getOperator() != OO_Equal)
7394      return;
7395
7396    Loc = Op->getOperatorLoc();
7397  } else {
7398    // Not an assignment.
7399    return;
7400  }
7401
7402  SourceLocation Open = E->getSourceRange().getBegin();
7403  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7404
7405  Diag(Loc, diagnostic)
7406    << E->getSourceRange()
7407    << CodeModificationHint::CreateInsertion(Open, "(")
7408    << CodeModificationHint::CreateInsertion(Close, ")");
7409  Diag(Loc, diag::note_condition_assign_to_comparison)
7410    << CodeModificationHint::CreateReplacement(Loc, "==");
7411}
7412
7413bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7414  DiagnoseAssignmentAsCondition(E);
7415
7416  if (!E->isTypeDependent()) {
7417    DefaultFunctionArrayLvalueConversion(E);
7418
7419    QualType T = E->getType();
7420
7421    if (getLangOptions().CPlusPlus) {
7422      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7423        return true;
7424    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7425      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7426        << T << E->getSourceRange();
7427      return true;
7428    }
7429  }
7430
7431  return false;
7432}
7433