SemaExpr.cpp revision 7d5a8769842eb89ea3be4ebd4d8c4ee1cd01dec6
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaUtil.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Lex/LiteralSupport.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/OwningPtr.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31/// ActOnStringLiteral - The specified tokens were lexed as pasted string
32/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
33/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
34/// multiple tokens.  However, the common case is that StringToks points to one
35/// string.
36///
37Action::ExprResult
38Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
39  assert(NumStringToks && "Must have at least one string!");
40
41  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
42  if (Literal.hadError)
43    return ExprResult(true);
44
45  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
46  for (unsigned i = 0; i != NumStringToks; ++i)
47    StringTokLocs.push_back(StringToks[i].getLocation());
48
49  // Verify that pascal strings aren't too large.
50  if (Literal.Pascal && Literal.GetStringLength() > 256)
51    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
52                SourceRange(StringToks[0].getLocation(),
53                            StringToks[NumStringToks-1].getLocation()));
54
55  QualType StrTy = Context.CharTy;
56  if (Literal.AnyWide) StrTy = Context.getWcharType();
57  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
58
59  // Get an array type for the string, according to C99 6.4.5.  This includes
60  // the nul terminator character as well as the string length for pascal
61  // strings.
62  StrTy = Context.getConstantArrayType(StrTy,
63                                   llvm::APInt(32, Literal.GetStringLength()+1),
64                                       ArrayType::Normal, 0);
65
66  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
67  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
68                           Literal.AnyWide, StrTy,
69                           StringToks[0].getLocation(),
70                           StringToks[NumStringToks-1].getLocation());
71}
72
73
74/// ActOnIdentifierExpr - The parser read an identifier in expression context,
75/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
76/// identifier is used in a function call context.
77Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
78                                           IdentifierInfo &II,
79                                           bool HasTrailingLParen) {
80  // Could be enum-constant, value decl, instance variable, etc.
81  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
82
83  // If this reference is in an Objective-C method, then ivar lookup happens as
84  // well.
85  if (getCurMethodDecl()) {
86    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
87    // There are two cases to handle here.  1) scoped lookup could have failed,
88    // in which case we should look for an ivar.  2) scoped lookup could have
89    // found a decl, but that decl is outside the current method (i.e. a global
90    // variable).  In these two cases, we do a lookup for an ivar with this
91    // name, if the lookup suceeds, we replace it our current decl.
92    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
93      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
94      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
95        // FIXME: This should use a new expr for a direct reference, don't turn
96        // this into Self->ivar, just return a BareIVarExpr or something.
97        IdentifierInfo &II = Context.Idents.get("self");
98        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
99        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
100                                 static_cast<Expr*>(SelfExpr.Val), true, true);
101      }
102    }
103    if (SD == 0 && !strcmp(II.getName(), "super")) {
104      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
105                     getCurMethodDecl()->getClassInterface()));
106      return new ObjCSuperRefExpr(T, Loc);
107    }
108  }
109
110  if (D == 0) {
111    // Otherwise, this could be an implicitly declared function reference (legal
112    // in C90, extension in C99).
113    if (HasTrailingLParen &&
114        !getLangOptions().CPlusPlus) // Not in C++.
115      D = ImplicitlyDefineFunction(Loc, II, S);
116    else {
117      // If this name wasn't predeclared and if this is not a function call,
118      // diagnose the problem.
119      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
120    }
121  }
122
123  if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
124    // check if referencing an identifier with __attribute__((deprecated)).
125    if (VD->getAttr<DeprecatedAttr>())
126      Diag(Loc, diag::warn_deprecated, VD->getName());
127
128    // Only create DeclRefExpr's for valid Decl's.
129    if (VD->isInvalidDecl())
130      return true;
131    return new DeclRefExpr(VD, VD->getType(), Loc);
132  }
133
134  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
135    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
136      if (MD->isStatic())
137        // "invalid use of member 'x' in static member function"
138        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
139                    FD->getName());
140      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
141        // "invalid use of nonstatic data member 'x'"
142        return Diag(Loc, diag::err_invalid_non_static_member_use,
143                    FD->getName());
144
145      if (FD->isInvalidDecl())
146        return true;
147
148      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
149      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
150      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
151                            true, FD, Loc, FD->getType());
152    }
153
154    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
155  }
156
157  if (isa<TypedefDecl>(D))
158    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
159  if (isa<ObjCInterfaceDecl>(D))
160    return Diag(Loc, diag::err_unexpected_interface, II.getName());
161  if (isa<NamespaceDecl>(D))
162    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
163
164  assert(0 && "Invalid decl");
165  abort();
166}
167
168Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
169                                           tok::TokenKind Kind) {
170  PreDefinedExpr::IdentType IT;
171
172  switch (Kind) {
173  default: assert(0 && "Unknown simple primary expr!");
174  case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
175  case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
176  case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
177  }
178
179  // Verify that this is in a function context.
180  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
181    return Diag(Loc, diag::err_predef_outside_function);
182
183  // Pre-defined identifiers are of type char[x], where x is the length of the
184  // string.
185  unsigned Length;
186  if (getCurFunctionDecl())
187    Length = getCurFunctionDecl()->getIdentifier()->getLength();
188  else
189    Length = getCurMethodDecl()->getSynthesizedMethodSize();
190
191  llvm::APInt LengthI(32, Length + 1);
192  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
193  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
194  return new PreDefinedExpr(Loc, ResTy, IT);
195}
196
197Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
198  llvm::SmallString<16> CharBuffer;
199  CharBuffer.resize(Tok.getLength());
200  const char *ThisTokBegin = &CharBuffer[0];
201  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
202
203  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
204                            Tok.getLocation(), PP);
205  if (Literal.hadError())
206    return ExprResult(true);
207
208  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
209
210  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
211                              Tok.getLocation());
212}
213
214Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
215  // fast path for a single digit (which is quite common). A single digit
216  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
217  if (Tok.getLength() == 1) {
218    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
219
220    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
221    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
222                                         Context.IntTy,
223                                         Tok.getLocation()));
224  }
225  llvm::SmallString<512> IntegerBuffer;
226  IntegerBuffer.resize(Tok.getLength());
227  const char *ThisTokBegin = &IntegerBuffer[0];
228
229  // Get the spelling of the token, which eliminates trigraphs, etc.
230  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
231  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
232                               Tok.getLocation(), PP);
233  if (Literal.hadError)
234    return ExprResult(true);
235
236  Expr *Res;
237
238  if (Literal.isFloatingLiteral()) {
239    QualType Ty;
240    if (Literal.isFloat)
241      Ty = Context.FloatTy;
242    else if (!Literal.isLong)
243      Ty = Context.DoubleTy;
244    else
245      Ty = Context.LongDoubleTy;
246
247    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
248
249    // isExact will be set by GetFloatValue().
250    bool isExact = false;
251    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
252                              Ty, Tok.getLocation());
253
254  } else if (!Literal.isIntegerLiteral()) {
255    return ExprResult(true);
256  } else {
257    QualType Ty;
258
259    // long long is a C99 feature.
260    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
261        Literal.isLongLong)
262      Diag(Tok.getLocation(), diag::ext_longlong);
263
264    // Get the value in the widest-possible width.
265    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
266
267    if (Literal.GetIntegerValue(ResultVal)) {
268      // If this value didn't fit into uintmax_t, warn and force to ull.
269      Diag(Tok.getLocation(), diag::warn_integer_too_large);
270      Ty = Context.UnsignedLongLongTy;
271      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
272             "long long is not intmax_t?");
273    } else {
274      // If this value fits into a ULL, try to figure out what else it fits into
275      // according to the rules of C99 6.4.4.1p5.
276
277      // Octal, Hexadecimal, and integers with a U suffix are allowed to
278      // be an unsigned int.
279      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
280
281      // Check from smallest to largest, picking the smallest type we can.
282      unsigned Width = 0;
283      if (!Literal.isLong && !Literal.isLongLong) {
284        // Are int/unsigned possibilities?
285        unsigned IntSize = Context.Target.getIntWidth();
286
287        // Does it fit in a unsigned int?
288        if (ResultVal.isIntN(IntSize)) {
289          // Does it fit in a signed int?
290          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
291            Ty = Context.IntTy;
292          else if (AllowUnsigned)
293            Ty = Context.UnsignedIntTy;
294          Width = IntSize;
295        }
296      }
297
298      // Are long/unsigned long possibilities?
299      if (Ty.isNull() && !Literal.isLongLong) {
300        unsigned LongSize = Context.Target.getLongWidth();
301
302        // Does it fit in a unsigned long?
303        if (ResultVal.isIntN(LongSize)) {
304          // Does it fit in a signed long?
305          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
306            Ty = Context.LongTy;
307          else if (AllowUnsigned)
308            Ty = Context.UnsignedLongTy;
309          Width = LongSize;
310        }
311      }
312
313      // Finally, check long long if needed.
314      if (Ty.isNull()) {
315        unsigned LongLongSize = Context.Target.getLongLongWidth();
316
317        // Does it fit in a unsigned long long?
318        if (ResultVal.isIntN(LongLongSize)) {
319          // Does it fit in a signed long long?
320          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
321            Ty = Context.LongLongTy;
322          else if (AllowUnsigned)
323            Ty = Context.UnsignedLongLongTy;
324          Width = LongLongSize;
325        }
326      }
327
328      // If we still couldn't decide a type, we probably have something that
329      // does not fit in a signed long long, but has no U suffix.
330      if (Ty.isNull()) {
331        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
332        Ty = Context.UnsignedLongLongTy;
333        Width = Context.Target.getLongLongWidth();
334      }
335
336      if (ResultVal.getBitWidth() != Width)
337        ResultVal.trunc(Width);
338    }
339
340    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
341  }
342
343  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
344  if (Literal.isImaginary)
345    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
346
347  return Res;
348}
349
350Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
351                                        ExprTy *Val) {
352  Expr *E = (Expr *)Val;
353  assert((E != 0) && "ActOnParenExpr() missing expr");
354  return new ParenExpr(L, R, E);
355}
356
357/// The UsualUnaryConversions() function is *not* called by this routine.
358/// See C99 6.3.2.1p[2-4] for more details.
359QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
360                                         SourceLocation OpLoc, bool isSizeof) {
361  // C99 6.5.3.4p1:
362  if (isa<FunctionType>(exprType) && isSizeof)
363    // alignof(function) is allowed.
364    Diag(OpLoc, diag::ext_sizeof_function_type);
365  else if (exprType->isVoidType())
366    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
367  else if (exprType->isIncompleteType()) {
368    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
369                           diag::err_alignof_incomplete_type,
370         exprType.getAsString());
371    return QualType(); // error
372  }
373  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
374  return Context.getSizeType();
375}
376
377Action::ExprResult Sema::
378ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
379                           SourceLocation LPLoc, TypeTy *Ty,
380                           SourceLocation RPLoc) {
381  // If error parsing type, ignore.
382  if (Ty == 0) return true;
383
384  // Verify that this is a valid expression.
385  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
386
387  QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
388
389  if (resultType.isNull())
390    return true;
391  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
392}
393
394QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
395  DefaultFunctionArrayConversion(V);
396
397  // These operators return the element type of a complex type.
398  if (const ComplexType *CT = V->getType()->getAsComplexType())
399    return CT->getElementType();
400
401  // Otherwise they pass through real integer and floating point types here.
402  if (V->getType()->isArithmeticType())
403    return V->getType();
404
405  // Reject anything else.
406  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
407  return QualType();
408}
409
410
411
412Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
413                                             tok::TokenKind Kind,
414                                             ExprTy *Input) {
415  UnaryOperator::Opcode Opc;
416  switch (Kind) {
417  default: assert(0 && "Unknown unary op!");
418  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
419  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
420  }
421  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
422  if (result.isNull())
423    return true;
424  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
425}
426
427Action::ExprResult Sema::
428ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
429                        ExprTy *Idx, SourceLocation RLoc) {
430  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
431
432  // Perform default conversions.
433  DefaultFunctionArrayConversion(LHSExp);
434  DefaultFunctionArrayConversion(RHSExp);
435
436  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
437
438  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
439  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
440  // in the subscript position. As a result, we need to derive the array base
441  // and index from the expression types.
442  Expr *BaseExpr, *IndexExpr;
443  QualType ResultType;
444  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
445    BaseExpr = LHSExp;
446    IndexExpr = RHSExp;
447    // FIXME: need to deal with const...
448    ResultType = PTy->getPointeeType();
449  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
450     // Handle the uncommon case of "123[Ptr]".
451    BaseExpr = RHSExp;
452    IndexExpr = LHSExp;
453    // FIXME: need to deal with const...
454    ResultType = PTy->getPointeeType();
455  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
456    BaseExpr = LHSExp;    // vectors: V[123]
457    IndexExpr = RHSExp;
458
459    // Component access limited to variables (reject vec4.rg[1]).
460    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
461        !isa<ExtVectorElementExpr>(BaseExpr))
462      return Diag(LLoc, diag::err_ext_vector_component_access,
463                  SourceRange(LLoc, RLoc));
464    // FIXME: need to deal with const...
465    ResultType = VTy->getElementType();
466  } else {
467    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
468                RHSExp->getSourceRange());
469  }
470  // C99 6.5.2.1p1
471  if (!IndexExpr->getType()->isIntegerType())
472    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
473                IndexExpr->getSourceRange());
474
475  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
476  // the following check catches trying to index a pointer to a function (e.g.
477  // void (*)(int)) and pointers to incomplete types.  Functions are not
478  // objects in C99.
479  if (!ResultType->isObjectType())
480    return Diag(BaseExpr->getLocStart(),
481                diag::err_typecheck_subscript_not_object,
482                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
483
484  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
485}
486
487QualType Sema::
488CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
489                        IdentifierInfo &CompName, SourceLocation CompLoc) {
490  const ExtVectorType *vecType = baseType->getAsExtVectorType();
491
492  // This flag determines whether or not the component is to be treated as a
493  // special name, or a regular GLSL-style component access.
494  bool SpecialComponent = false;
495
496  // The vector accessor can't exceed the number of elements.
497  const char *compStr = CompName.getName();
498  if (strlen(compStr) > vecType->getNumElements()) {
499    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
500                baseType.getAsString(), SourceRange(CompLoc));
501    return QualType();
502  }
503
504  // Check that we've found one of the special components, or that the component
505  // names must come from the same set.
506  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
507      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
508    SpecialComponent = true;
509  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
510    do
511      compStr++;
512    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
513  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
514    do
515      compStr++;
516    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
517  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
518    do
519      compStr++;
520    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
521  }
522
523  if (!SpecialComponent && *compStr) {
524    // We didn't get to the end of the string. This means the component names
525    // didn't come from the same set *or* we encountered an illegal name.
526    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
527         std::string(compStr,compStr+1), SourceRange(CompLoc));
528    return QualType();
529  }
530  // Each component accessor can't exceed the vector type.
531  compStr = CompName.getName();
532  while (*compStr) {
533    if (vecType->isAccessorWithinNumElements(*compStr))
534      compStr++;
535    else
536      break;
537  }
538  if (!SpecialComponent && *compStr) {
539    // We didn't get to the end of the string. This means a component accessor
540    // exceeds the number of elements in the vector.
541    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
542                baseType.getAsString(), SourceRange(CompLoc));
543    return QualType();
544  }
545
546  // If we have a special component name, verify that the current vector length
547  // is an even number, since all special component names return exactly half
548  // the elements.
549  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
550    return QualType();
551  }
552
553  // The component accessor looks fine - now we need to compute the actual type.
554  // The vector type is implied by the component accessor. For example,
555  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
556  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
557  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
558                                       : strlen(CompName.getName());
559  if (CompSize == 1)
560    return vecType->getElementType();
561
562  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
563  // Now look up the TypeDefDecl from the vector type. Without this,
564  // diagostics look bad. We want extended vector types to appear built-in.
565  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
566    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
567      return Context.getTypedefType(ExtVectorDecls[i]);
568  }
569  return VT; // should never get here (a typedef type should always be found).
570}
571
572Action::ExprResult Sema::
573ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
574                         tok::TokenKind OpKind, SourceLocation MemberLoc,
575                         IdentifierInfo &Member) {
576  Expr *BaseExpr = static_cast<Expr *>(Base);
577  assert(BaseExpr && "no record expression");
578
579  // Perform default conversions.
580  DefaultFunctionArrayConversion(BaseExpr);
581
582  QualType BaseType = BaseExpr->getType();
583  assert(!BaseType.isNull() && "no type for member expression");
584
585  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
586  // must have pointer type, and the accessed type is the pointee.
587  if (OpKind == tok::arrow) {
588    if (const PointerType *PT = BaseType->getAsPointerType())
589      BaseType = PT->getPointeeType();
590    else
591      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
592                  BaseType.getAsString(), BaseExpr->getSourceRange());
593  }
594
595  // Handle field access to simple records.  This also handles access to fields
596  // of the ObjC 'id' struct.
597  if (const RecordType *RTy = BaseType->getAsRecordType()) {
598    RecordDecl *RDecl = RTy->getDecl();
599    if (RTy->isIncompleteType())
600      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
601                  BaseExpr->getSourceRange());
602    // The record definition is complete, now make sure the member is valid.
603    FieldDecl *MemberDecl = RDecl->getMember(&Member);
604    if (!MemberDecl)
605      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
606                  BaseExpr->getSourceRange());
607
608    // Figure out the type of the member; see C99 6.5.2.3p3
609    // FIXME: Handle address space modifiers
610    QualType MemberType = MemberDecl->getType();
611    unsigned combinedQualifiers =
612        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
613    MemberType = MemberType.getQualifiedType(combinedQualifiers);
614
615    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
616                          MemberLoc, MemberType);
617  }
618
619  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
620  // (*Obj).ivar.
621  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
622    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
623      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
624                                 OpKind == tok::arrow);
625    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
626                IFTy->getDecl()->getName(), Member.getName(),
627                BaseExpr->getSourceRange());
628  }
629
630  // Handle Objective-C property access, which is "Obj.property" where Obj is a
631  // pointer to a (potentially qualified) interface type.
632  const PointerType *PTy;
633  const ObjCInterfaceType *IFTy;
634  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
635      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
636    ObjCInterfaceDecl *IFace = IFTy->getDecl();
637
638    // Before we look for explicit property declarations, we check for
639    // nullary methods (which allow '.' notation).
640    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
641
642    if (ObjCMethodDecl *MD = IFace->lookupInstanceMethod(Sel))
643      return new ObjCPropertyRefExpr(MD, MD->getResultType(),
644                                     MemberLoc, BaseExpr);
645
646    // FIXME: Need to deal with setter methods that take 1 argument. E.g.:
647    // @interface NSBundle : NSObject {}
648    // - (NSString *)bundlePath;
649    // - (void)setBundlePath:(NSString *)x;
650    // @end
651    // void someMethod() { frameworkBundle.bundlePath = 0; }
652    //
653    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
654      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
655
656    // Lastly, check protocols on qualified interfaces.
657    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
658         E = IFTy->qual_end(); I != E; ++I)
659      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
660        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
661  }
662
663  // Handle 'field access' to vectors, such as 'V.xx'.
664  if (BaseType->isExtVectorType() && OpKind == tok::period) {
665    // Component access limited to variables (reject vec4.rg.g).
666    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
667        !isa<ExtVectorElementExpr>(BaseExpr))
668      return Diag(MemberLoc, diag::err_ext_vector_component_access,
669                  BaseExpr->getSourceRange());
670    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
671    if (ret.isNull())
672      return true;
673    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
674  }
675
676  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
677              BaseType.getAsString(), BaseExpr->getSourceRange());
678}
679
680/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
681/// This provides the location of the left/right parens and a list of comma
682/// locations.
683Action::ExprResult Sema::
684ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
685              ExprTy **args, unsigned NumArgs,
686              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
687  Expr *Fn = static_cast<Expr *>(fn);
688  Expr **Args = reinterpret_cast<Expr**>(args);
689  assert(Fn && "no function call expression");
690  FunctionDecl *FDecl = NULL;
691
692  // Promote the function operand.
693  UsualUnaryConversions(Fn);
694
695  // If we're directly calling a function, get the declaration for
696  // that function.
697  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
698    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
699      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
700
701  // Make the call expr early, before semantic checks.  This guarantees cleanup
702  // of arguments and function on error.
703  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
704                                                 Context.BoolTy, RParenLoc));
705
706  // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
707  // type pointer to function".
708  const PointerType *PT = Fn->getType()->getAsPointerType();
709  if (PT == 0)
710    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
711                SourceRange(Fn->getLocStart(), RParenLoc));
712  const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
713  if (FuncT == 0)
714    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
715                SourceRange(Fn->getLocStart(), RParenLoc));
716
717  // We know the result type of the call, set it.
718  TheCall->setType(FuncT->getResultType());
719
720  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
721    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
722    // assignment, to the types of the corresponding parameter, ...
723    unsigned NumArgsInProto = Proto->getNumArgs();
724    unsigned NumArgsToCheck = NumArgs;
725
726    // If too few arguments are available (and we don't have default
727    // arguments for the remaining parameters), don't make the call.
728    if (NumArgs < NumArgsInProto) {
729      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
730        // Use default arguments for missing arguments
731        NumArgsToCheck = NumArgsInProto;
732        TheCall->setNumArgs(NumArgsInProto);
733      } else
734        return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
735                    Fn->getSourceRange());
736    }
737
738    // If too many are passed and not variadic, error on the extras and drop
739    // them.
740    if (NumArgs > NumArgsInProto) {
741      if (!Proto->isVariadic()) {
742        Diag(Args[NumArgsInProto]->getLocStart(),
743             diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
744             SourceRange(Args[NumArgsInProto]->getLocStart(),
745                         Args[NumArgs-1]->getLocEnd()));
746        // This deletes the extra arguments.
747        TheCall->setNumArgs(NumArgsInProto);
748      }
749      NumArgsToCheck = NumArgsInProto;
750    }
751
752    // Continue to check argument types (even if we have too few/many args).
753    for (unsigned i = 0; i != NumArgsToCheck; i++) {
754      QualType ProtoArgType = Proto->getArgType(i);
755
756      Expr *Arg;
757      if (i < NumArgs)
758        Arg = Args[i];
759      else
760        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
761      QualType ArgType = Arg->getType();
762
763      // Compute implicit casts from the operand to the formal argument type.
764      AssignConvertType ConvTy =
765        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
766      TheCall->setArg(i, Arg);
767
768      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
769                                   ArgType, Arg, "passing"))
770        return true;
771    }
772
773    // If this is a variadic call, handle args passed through "...".
774    if (Proto->isVariadic()) {
775      // Promote the arguments (C99 6.5.2.2p7).
776      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
777        Expr *Arg = Args[i];
778        DefaultArgumentPromotion(Arg);
779        TheCall->setArg(i, Arg);
780      }
781    }
782  } else {
783    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
784
785    // Promote the arguments (C99 6.5.2.2p6).
786    for (unsigned i = 0; i != NumArgs; i++) {
787      Expr *Arg = Args[i];
788      DefaultArgumentPromotion(Arg);
789      TheCall->setArg(i, Arg);
790    }
791  }
792
793  // Do special checking on direct calls to functions.
794  if (FDecl)
795    return CheckFunctionCall(FDecl, TheCall.take());
796
797  return TheCall.take();
798}
799
800Action::ExprResult Sema::
801ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
802                     SourceLocation RParenLoc, ExprTy *InitExpr) {
803  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
804  QualType literalType = QualType::getFromOpaquePtr(Ty);
805  // FIXME: put back this assert when initializers are worked out.
806  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
807  Expr *literalExpr = static_cast<Expr*>(InitExpr);
808
809  if (literalType->isArrayType()) {
810    if (literalType->getAsVariableArrayType())
811      return Diag(LParenLoc,
812                  diag::err_variable_object_no_init,
813                  SourceRange(LParenLoc,
814                              literalExpr->getSourceRange().getEnd()));
815  } else if (literalType->isIncompleteType()) {
816    return Diag(LParenLoc,
817                diag::err_typecheck_decl_incomplete_type,
818                literalType.getAsString(),
819                SourceRange(LParenLoc,
820                            literalExpr->getSourceRange().getEnd()));
821  }
822
823  if (CheckInitializerTypes(literalExpr, literalType))
824    return true;
825
826  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
827  if (isFileScope) { // 6.5.2.5p3
828    if (CheckForConstantInitializer(literalExpr, literalType))
829      return true;
830  }
831  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
832}
833
834Action::ExprResult Sema::
835ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
836              SourceLocation RBraceLoc) {
837  Expr **InitList = reinterpret_cast<Expr**>(initlist);
838
839  // Semantic analysis for initializers is done by ActOnDeclarator() and
840  // CheckInitializer() - it requires knowledge of the object being intialized.
841
842  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
843  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
844  return E;
845}
846
847bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
848  assert(VectorTy->isVectorType() && "Not a vector type!");
849
850  if (Ty->isVectorType() || Ty->isIntegerType()) {
851    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
852      return Diag(R.getBegin(),
853                  Ty->isVectorType() ?
854                  diag::err_invalid_conversion_between_vectors :
855                  diag::err_invalid_conversion_between_vector_and_integer,
856                  VectorTy.getAsString().c_str(),
857                  Ty.getAsString().c_str(), R);
858  } else
859    return Diag(R.getBegin(),
860                diag::err_invalid_conversion_between_vector_and_scalar,
861                VectorTy.getAsString().c_str(),
862                Ty.getAsString().c_str(), R);
863
864  return false;
865}
866
867Action::ExprResult Sema::
868ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
869              SourceLocation RParenLoc, ExprTy *Op) {
870  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
871
872  Expr *castExpr = static_cast<Expr*>(Op);
873  QualType castType = QualType::getFromOpaquePtr(Ty);
874
875  UsualUnaryConversions(castExpr);
876
877  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
878  // type needs to be scalar.
879  if (!castType->isVoidType()) {  // Cast to void allows any expr type.
880    if (!castType->isScalarType() && !castType->isVectorType()) {
881      // GCC struct/union extension.
882      if (castType == castExpr->getType() &&
883          castType->isStructureType() || castType->isUnionType()) {
884        Diag(LParenLoc, diag::ext_typecheck_cast_nonscalar,
885             SourceRange(LParenLoc, RParenLoc));
886        return new CastExpr(castType, castExpr, LParenLoc);
887      } else
888        return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
889                    castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
890    }
891    if (!castExpr->getType()->isScalarType() &&
892        !castExpr->getType()->isVectorType())
893      return Diag(castExpr->getLocStart(),
894                  diag::err_typecheck_expect_scalar_operand,
895                  castExpr->getType().getAsString(),castExpr->getSourceRange());
896
897    if (castExpr->getType()->isVectorType()) {
898      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
899                          castExpr->getType(), castType))
900        return true;
901    } else if (castType->isVectorType()) {
902      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
903                          castType, castExpr->getType()))
904        return true;
905    }
906  }
907  return new CastExpr(castType, castExpr, LParenLoc);
908}
909
910/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
911/// In that case, lex = cond.
912inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
913  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
914  UsualUnaryConversions(cond);
915  UsualUnaryConversions(lex);
916  UsualUnaryConversions(rex);
917  QualType condT = cond->getType();
918  QualType lexT = lex->getType();
919  QualType rexT = rex->getType();
920
921  // first, check the condition.
922  if (!condT->isScalarType()) { // C99 6.5.15p2
923    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
924         condT.getAsString());
925    return QualType();
926  }
927
928  // Now check the two expressions.
929
930  // If both operands have arithmetic type, do the usual arithmetic conversions
931  // to find a common type: C99 6.5.15p3,5.
932  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
933    UsualArithmeticConversions(lex, rex);
934    return lex->getType();
935  }
936
937  // If both operands are the same structure or union type, the result is that
938  // type.
939  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
940    if (const RecordType *RHSRT = rexT->getAsRecordType())
941      if (LHSRT->getDecl() == RHSRT->getDecl())
942        // "If both the operands have structure or union type, the result has
943        // that type."  This implies that CV qualifiers are dropped.
944        return lexT.getUnqualifiedType();
945  }
946
947  // C99 6.5.15p5: "If both operands have void type, the result has void type."
948  // The following || allows only one side to be void (a GCC-ism).
949  if (lexT->isVoidType() || rexT->isVoidType()) {
950    if (!lexT->isVoidType())
951      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
952           rex->getSourceRange());
953    if (!rexT->isVoidType())
954      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
955           lex->getSourceRange());
956    ImpCastExprToType(lex, Context.VoidTy);
957    ImpCastExprToType(rex, Context.VoidTy);
958    return Context.VoidTy;
959  }
960  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
961  // the type of the other operand."
962  if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
963    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
964    return lexT;
965  }
966  if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
967    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
968    return rexT;
969  }
970  // Handle the case where both operands are pointers before we handle null
971  // pointer constants in case both operands are null pointer constants.
972  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
973    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
974      // get the "pointed to" types
975      QualType lhptee = LHSPT->getPointeeType();
976      QualType rhptee = RHSPT->getPointeeType();
977
978      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
979      if (lhptee->isVoidType() &&
980          rhptee->isIncompleteOrObjectType()) {
981        // Figure out necessary qualifiers (C99 6.5.15p6)
982        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
983        QualType destType = Context.getPointerType(destPointee);
984        ImpCastExprToType(lex, destType); // add qualifiers if necessary
985        ImpCastExprToType(rex, destType); // promote to void*
986        return destType;
987      }
988      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
989        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
990        QualType destType = Context.getPointerType(destPointee);
991        ImpCastExprToType(lex, destType); // add qualifiers if necessary
992        ImpCastExprToType(rex, destType); // promote to void*
993        return destType;
994      }
995
996      if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
997                                      rhptee.getUnqualifiedType())) {
998        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
999             lexT.getAsString(), rexT.getAsString(),
1000             lex->getSourceRange(), rex->getSourceRange());
1001        // In this situation, we assume void* type. No especially good
1002        // reason, but this is what gcc does, and we do have to pick
1003        // to get a consistent AST.
1004        QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
1005        ImpCastExprToType(lex, voidPtrTy);
1006        ImpCastExprToType(rex, voidPtrTy);
1007        return voidPtrTy;
1008      }
1009      // The pointer types are compatible.
1010      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1011      // differently qualified versions of compatible types, the result type is
1012      // a pointer to an appropriately qualified version of the *composite*
1013      // type.
1014      // FIXME: Need to calculate the composite type.
1015      // FIXME: Need to add qualifiers
1016      QualType compositeType = lexT;
1017      ImpCastExprToType(lex, compositeType);
1018      ImpCastExprToType(rex, compositeType);
1019      return compositeType;
1020    }
1021  }
1022  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1023  // evaluates to "struct objc_object *" (and is handled above when comparing
1024  // id with statically typed objects). FIXME: Do we need an ImpCastExprToType?
1025  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1026    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true))
1027      return Context.getObjCIdType();
1028  }
1029  // Otherwise, the operands are not compatible.
1030  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1031       lexT.getAsString(), rexT.getAsString(),
1032       lex->getSourceRange(), rex->getSourceRange());
1033  return QualType();
1034}
1035
1036/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1037/// in the case of a the GNU conditional expr extension.
1038Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1039                                            SourceLocation ColonLoc,
1040                                            ExprTy *Cond, ExprTy *LHS,
1041                                            ExprTy *RHS) {
1042  Expr *CondExpr = (Expr *) Cond;
1043  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1044
1045  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1046  // was the condition.
1047  bool isLHSNull = LHSExpr == 0;
1048  if (isLHSNull)
1049    LHSExpr = CondExpr;
1050
1051  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1052                                             RHSExpr, QuestionLoc);
1053  if (result.isNull())
1054    return true;
1055  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1056                                 RHSExpr, result);
1057}
1058
1059/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
1060/// do not have a prototype. Arguments that have type float are promoted to
1061/// double. All other argument types are converted by UsualUnaryConversions().
1062void Sema::DefaultArgumentPromotion(Expr *&Expr) {
1063  QualType Ty = Expr->getType();
1064  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
1065
1066  // If this is a 'float' (CVR qualified or typedef) promote to double.
1067  if (const BuiltinType *BT = Ty->getAsBuiltinType())
1068    if (BT->getKind() == BuiltinType::Float)
1069      return ImpCastExprToType(Expr, Context.DoubleTy);
1070
1071  UsualUnaryConversions(Expr);
1072}
1073
1074/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
1075void Sema::DefaultFunctionArrayConversion(Expr *&E) {
1076  QualType Ty = E->getType();
1077  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
1078
1079  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
1080    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
1081    Ty = E->getType();
1082  }
1083  if (Ty->isFunctionType())
1084    ImpCastExprToType(E, Context.getPointerType(Ty));
1085  else if (Ty->isArrayType())
1086    ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
1087}
1088
1089/// UsualUnaryConversions - Performs various conversions that are common to most
1090/// operators (C99 6.3). The conversions of array and function types are
1091/// sometimes surpressed. For example, the array->pointer conversion doesn't
1092/// apply if the array is an argument to the sizeof or address (&) operators.
1093/// In these instances, this routine should *not* be called.
1094Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
1095  QualType Ty = Expr->getType();
1096  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
1097
1098  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
1099    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
1100    Ty = Expr->getType();
1101  }
1102  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
1103    ImpCastExprToType(Expr, Context.IntTy);
1104  else
1105    DefaultFunctionArrayConversion(Expr);
1106
1107  return Expr;
1108}
1109
1110/// UsualArithmeticConversions - Performs various conversions that are common to
1111/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1112/// routine returns the first non-arithmetic type found. The client is
1113/// responsible for emitting appropriate error diagnostics.
1114/// FIXME: verify the conversion rules for "complex int" are consistent with
1115/// GCC.
1116QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
1117                                          bool isCompAssign) {
1118  if (!isCompAssign) {
1119    UsualUnaryConversions(lhsExpr);
1120    UsualUnaryConversions(rhsExpr);
1121  }
1122  // For conversion purposes, we ignore any qualifiers.
1123  // For example, "const float" and "float" are equivalent.
1124  QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
1125  QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
1126
1127  // If both types are identical, no conversion is needed.
1128  if (lhs == rhs)
1129    return lhs;
1130
1131  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1132  // The caller can deal with this (e.g. pointer + int).
1133  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
1134    return lhs;
1135
1136  // At this point, we have two different arithmetic types.
1137
1138  // Handle complex types first (C99 6.3.1.8p1).
1139  if (lhs->isComplexType() || rhs->isComplexType()) {
1140    // if we have an integer operand, the result is the complex type.
1141    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
1142      // convert the rhs to the lhs complex type.
1143      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1144      return lhs;
1145    }
1146    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
1147      // convert the lhs to the rhs complex type.
1148      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1149      return rhs;
1150    }
1151    // This handles complex/complex, complex/float, or float/complex.
1152    // When both operands are complex, the shorter operand is converted to the
1153    // type of the longer, and that is the type of the result. This corresponds
1154    // to what is done when combining two real floating-point operands.
1155    // The fun begins when size promotion occur across type domains.
1156    // From H&S 6.3.4: When one operand is complex and the other is a real
1157    // floating-point type, the less precise type is converted, within it's
1158    // real or complex domain, to the precision of the other type. For example,
1159    // when combining a "long double" with a "double _Complex", the
1160    // "double _Complex" is promoted to "long double _Complex".
1161    int result = Context.getFloatingTypeOrder(lhs, rhs);
1162
1163    if (result > 0) { // The left side is bigger, convert rhs.
1164      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
1165      if (!isCompAssign)
1166        ImpCastExprToType(rhsExpr, rhs);
1167    } else if (result < 0) { // The right side is bigger, convert lhs.
1168      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
1169      if (!isCompAssign)
1170        ImpCastExprToType(lhsExpr, lhs);
1171    }
1172    // At this point, lhs and rhs have the same rank/size. Now, make sure the
1173    // domains match. This is a requirement for our implementation, C99
1174    // does not require this promotion.
1175    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
1176      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
1177        if (!isCompAssign)
1178          ImpCastExprToType(lhsExpr, rhs);
1179        return rhs;
1180      } else { // handle "_Complex double, double".
1181        if (!isCompAssign)
1182          ImpCastExprToType(rhsExpr, lhs);
1183        return lhs;
1184      }
1185    }
1186    return lhs; // The domain/size match exactly.
1187  }
1188  // Now handle "real" floating types (i.e. float, double, long double).
1189  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
1190    // if we have an integer operand, the result is the real floating type.
1191    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
1192      // convert rhs to the lhs floating point type.
1193      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1194      return lhs;
1195    }
1196    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
1197      // convert lhs to the rhs floating point type.
1198      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1199      return rhs;
1200    }
1201    // We have two real floating types, float/complex combos were handled above.
1202    // Convert the smaller operand to the bigger result.
1203    int result = Context.getFloatingTypeOrder(lhs, rhs);
1204
1205    if (result > 0) { // convert the rhs
1206      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1207      return lhs;
1208    }
1209    if (result < 0) { // convert the lhs
1210      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1211      return rhs;
1212    }
1213    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
1214  }
1215  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
1216    // Handle GCC complex int extension.
1217    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
1218    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
1219
1220    if (lhsComplexInt && rhsComplexInt) {
1221      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
1222                                      rhsComplexInt->getElementType()) >= 0) {
1223        // convert the rhs
1224        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1225        return lhs;
1226      }
1227      if (!isCompAssign)
1228        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1229      return rhs;
1230    } else if (lhsComplexInt && rhs->isIntegerType()) {
1231      // convert the rhs to the lhs complex type.
1232      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1233      return lhs;
1234    } else if (rhsComplexInt && lhs->isIntegerType()) {
1235      // convert the lhs to the rhs complex type.
1236      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1237      return rhs;
1238    }
1239  }
1240  // Finally, we have two differing integer types.
1241  // The rules for this case are in C99 6.3.1.8
1242  int compare = Context.getIntegerTypeOrder(lhs, rhs);
1243  bool lhsSigned = lhs->isSignedIntegerType(),
1244       rhsSigned = rhs->isSignedIntegerType();
1245  QualType destType;
1246  if (lhsSigned == rhsSigned) {
1247    // Same signedness; use the higher-ranked type
1248    destType = compare >= 0 ? lhs : rhs;
1249  } else if (compare != (lhsSigned ? 1 : -1)) {
1250    // The unsigned type has greater than or equal rank to the
1251    // signed type, so use the unsigned type
1252    destType = lhsSigned ? rhs : lhs;
1253  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
1254    // The two types are different widths; if we are here, that
1255    // means the signed type is larger than the unsigned type, so
1256    // use the signed type.
1257    destType = lhsSigned ? lhs : rhs;
1258  } else {
1259    // The signed type is higher-ranked than the unsigned type,
1260    // but isn't actually any bigger (like unsigned int and long
1261    // on most 32-bit systems).  Use the unsigned type corresponding
1262    // to the signed type.
1263    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
1264  }
1265  if (!isCompAssign) {
1266    ImpCastExprToType(lhsExpr, destType);
1267    ImpCastExprToType(rhsExpr, destType);
1268  }
1269  return destType;
1270}
1271
1272// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1273// being closely modeled after the C99 spec:-). The odd characteristic of this
1274// routine is it effectively iqnores the qualifiers on the top level pointee.
1275// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1276// FIXME: add a couple examples in this comment.
1277Sema::AssignConvertType
1278Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1279  QualType lhptee, rhptee;
1280
1281  // get the "pointed to" type (ignoring qualifiers at the top level)
1282  lhptee = lhsType->getAsPointerType()->getPointeeType();
1283  rhptee = rhsType->getAsPointerType()->getPointeeType();
1284
1285  // make sure we operate on the canonical type
1286  lhptee = lhptee.getCanonicalType();
1287  rhptee = rhptee.getCanonicalType();
1288
1289  AssignConvertType ConvTy = Compatible;
1290
1291  // C99 6.5.16.1p1: This following citation is common to constraints
1292  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1293  // qualifiers of the type *pointed to* by the right;
1294  // FIXME: Handle ASQualType
1295  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1296       rhptee.getCVRQualifiers())
1297    ConvTy = CompatiblePointerDiscardsQualifiers;
1298
1299  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1300  // incomplete type and the other is a pointer to a qualified or unqualified
1301  // version of void...
1302  if (lhptee->isVoidType()) {
1303    if (rhptee->isIncompleteOrObjectType())
1304      return ConvTy;
1305
1306    // As an extension, we allow cast to/from void* to function pointer.
1307    assert(rhptee->isFunctionType());
1308    return FunctionVoidPointer;
1309  }
1310
1311  if (rhptee->isVoidType()) {
1312    if (lhptee->isIncompleteOrObjectType())
1313      return ConvTy;
1314
1315    // As an extension, we allow cast to/from void* to function pointer.
1316    assert(lhptee->isFunctionType());
1317    return FunctionVoidPointer;
1318  }
1319
1320  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1321  // unqualified versions of compatible types, ...
1322  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1323                                  rhptee.getUnqualifiedType()))
1324    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1325  return ConvTy;
1326}
1327
1328/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1329/// has code to accommodate several GCC extensions when type checking
1330/// pointers. Here are some objectionable examples that GCC considers warnings:
1331///
1332///  int a, *pint;
1333///  short *pshort;
1334///  struct foo *pfoo;
1335///
1336///  pint = pshort; // warning: assignment from incompatible pointer type
1337///  a = pint; // warning: assignment makes integer from pointer without a cast
1338///  pint = a; // warning: assignment makes pointer from integer without a cast
1339///  pint = pfoo; // warning: assignment from incompatible pointer type
1340///
1341/// As a result, the code for dealing with pointers is more complex than the
1342/// C99 spec dictates.
1343///
1344Sema::AssignConvertType
1345Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1346  // Get canonical types.  We're not formatting these types, just comparing
1347  // them.
1348  lhsType = lhsType.getCanonicalType().getUnqualifiedType();
1349  rhsType = rhsType.getCanonicalType().getUnqualifiedType();
1350
1351  if (lhsType == rhsType)
1352    return Compatible; // Common case: fast path an exact match.
1353
1354  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1355    if (Context.typesAreCompatible(lhsType, rhsType))
1356      return Compatible;
1357    return Incompatible;
1358  }
1359
1360  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1361    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1362      return Compatible;
1363    // Relax integer conversions like we do for pointers below.
1364    if (rhsType->isIntegerType())
1365      return IntToPointer;
1366    if (lhsType->isIntegerType())
1367      return PointerToInt;
1368    return Incompatible;
1369  }
1370
1371  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1372    // For ExtVector, allow vector splats; float -> <n x float>
1373    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1374      if (LV->getElementType() == rhsType)
1375        return Compatible;
1376
1377    // If we are allowing lax vector conversions, and LHS and RHS are both
1378    // vectors, the total size only needs to be the same. This is a bitcast;
1379    // no bits are changed but the result type is different.
1380    if (getLangOptions().LaxVectorConversions &&
1381        lhsType->isVectorType() && rhsType->isVectorType()) {
1382      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1383        return Compatible;
1384    }
1385    return Incompatible;
1386  }
1387
1388  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1389    return Compatible;
1390
1391  if (isa<PointerType>(lhsType)) {
1392    if (rhsType->isIntegerType())
1393      return IntToPointer;
1394
1395    if (isa<PointerType>(rhsType))
1396      return CheckPointerTypesForAssignment(lhsType, rhsType);
1397    return Incompatible;
1398  }
1399
1400  if (isa<PointerType>(rhsType)) {
1401    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1402    if (lhsType == Context.BoolTy)
1403      return Compatible;
1404
1405    if (lhsType->isIntegerType())
1406      return PointerToInt;
1407
1408    if (isa<PointerType>(lhsType))
1409      return CheckPointerTypesForAssignment(lhsType, rhsType);
1410    return Incompatible;
1411  }
1412
1413  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1414    if (Context.typesAreCompatible(lhsType, rhsType))
1415      return Compatible;
1416  }
1417  return Incompatible;
1418}
1419
1420Sema::AssignConvertType
1421Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1422  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1423  // a null pointer constant.
1424  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
1425      && rExpr->isNullPointerConstant(Context)) {
1426    ImpCastExprToType(rExpr, lhsType);
1427    return Compatible;
1428  }
1429  // This check seems unnatural, however it is necessary to ensure the proper
1430  // conversion of functions/arrays. If the conversion were done for all
1431  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1432  // expressions that surpress this implicit conversion (&, sizeof).
1433  //
1434  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1435  // are better understood.
1436  if (!lhsType->isReferenceType())
1437    DefaultFunctionArrayConversion(rExpr);
1438
1439  Sema::AssignConvertType result =
1440    CheckAssignmentConstraints(lhsType, rExpr->getType());
1441
1442  // C99 6.5.16.1p2: The value of the right operand is converted to the
1443  // type of the assignment expression.
1444  if (rExpr->getType() != lhsType)
1445    ImpCastExprToType(rExpr, lhsType);
1446  return result;
1447}
1448
1449Sema::AssignConvertType
1450Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1451  return CheckAssignmentConstraints(lhsType, rhsType);
1452}
1453
1454QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1455  Diag(loc, diag::err_typecheck_invalid_operands,
1456       lex->getType().getAsString(), rex->getType().getAsString(),
1457       lex->getSourceRange(), rex->getSourceRange());
1458  return QualType();
1459}
1460
1461inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1462                                                              Expr *&rex) {
1463  // For conversion purposes, we ignore any qualifiers.
1464  // For example, "const float" and "float" are equivalent.
1465  QualType lhsType = lex->getType().getCanonicalType().getUnqualifiedType();
1466  QualType rhsType = rex->getType().getCanonicalType().getUnqualifiedType();
1467
1468  // If the vector types are identical, return.
1469  if (lhsType == rhsType)
1470    return lhsType;
1471
1472  // Handle the case of a vector & extvector type of the same size and element
1473  // type.  It would be nice if we only had one vector type someday.
1474  if (getLangOptions().LaxVectorConversions)
1475    if (const VectorType *LV = lhsType->getAsVectorType())
1476      if (const VectorType *RV = rhsType->getAsVectorType())
1477        if (LV->getElementType() == RV->getElementType() &&
1478            LV->getNumElements() == RV->getNumElements())
1479          return lhsType->isExtVectorType() ? lhsType : rhsType;
1480
1481  // If the lhs is an extended vector and the rhs is a scalar of the same type
1482  // or a literal, promote the rhs to the vector type.
1483  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1484    QualType eltType = V->getElementType();
1485
1486    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1487        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1488        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1489      ImpCastExprToType(rex, lhsType);
1490      return lhsType;
1491    }
1492  }
1493
1494  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1495  // promote the lhs to the vector type.
1496  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1497    QualType eltType = V->getElementType();
1498
1499    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1500        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1501        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1502      ImpCastExprToType(lex, rhsType);
1503      return rhsType;
1504    }
1505  }
1506
1507  // You cannot convert between vector values of different size.
1508  Diag(loc, diag::err_typecheck_vector_not_convertable,
1509       lex->getType().getAsString(), rex->getType().getAsString(),
1510       lex->getSourceRange(), rex->getSourceRange());
1511  return QualType();
1512}
1513
1514inline QualType Sema::CheckMultiplyDivideOperands(
1515  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1516{
1517  QualType lhsType = lex->getType(), rhsType = rex->getType();
1518
1519  if (lhsType->isVectorType() || rhsType->isVectorType())
1520    return CheckVectorOperands(loc, lex, rex);
1521
1522  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1523
1524  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1525    return compType;
1526  return InvalidOperands(loc, lex, rex);
1527}
1528
1529inline QualType Sema::CheckRemainderOperands(
1530  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1531{
1532  QualType lhsType = lex->getType(), rhsType = rex->getType();
1533
1534  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1535
1536  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1537    return compType;
1538  return InvalidOperands(loc, lex, rex);
1539}
1540
1541inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1542  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1543{
1544  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1545    return CheckVectorOperands(loc, lex, rex);
1546
1547  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1548
1549  // handle the common case first (both operands are arithmetic).
1550  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1551    return compType;
1552
1553  // Put any potential pointer into PExp
1554  Expr* PExp = lex, *IExp = rex;
1555  if (IExp->getType()->isPointerType())
1556    std::swap(PExp, IExp);
1557
1558  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1559    if (IExp->getType()->isIntegerType()) {
1560      // Check for arithmetic on pointers to incomplete types
1561      if (!PTy->getPointeeType()->isObjectType()) {
1562        if (PTy->getPointeeType()->isVoidType()) {
1563          Diag(loc, diag::ext_gnu_void_ptr,
1564               lex->getSourceRange(), rex->getSourceRange());
1565        } else {
1566          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1567               lex->getType().getAsString(), lex->getSourceRange());
1568          return QualType();
1569        }
1570      }
1571      return PExp->getType();
1572    }
1573  }
1574
1575  return InvalidOperands(loc, lex, rex);
1576}
1577
1578// C99 6.5.6
1579QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1580                                        SourceLocation loc, bool isCompAssign) {
1581  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1582    return CheckVectorOperands(loc, lex, rex);
1583
1584  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1585
1586  // Enforce type constraints: C99 6.5.6p3.
1587
1588  // Handle the common case first (both operands are arithmetic).
1589  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1590    return compType;
1591
1592  // Either ptr - int   or   ptr - ptr.
1593  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1594    QualType lpointee = LHSPTy->getPointeeType();
1595
1596    // The LHS must be an object type, not incomplete, function, etc.
1597    if (!lpointee->isObjectType()) {
1598      // Handle the GNU void* extension.
1599      if (lpointee->isVoidType()) {
1600        Diag(loc, diag::ext_gnu_void_ptr,
1601             lex->getSourceRange(), rex->getSourceRange());
1602      } else {
1603        Diag(loc, diag::err_typecheck_sub_ptr_object,
1604             lex->getType().getAsString(), lex->getSourceRange());
1605        return QualType();
1606      }
1607    }
1608
1609    // The result type of a pointer-int computation is the pointer type.
1610    if (rex->getType()->isIntegerType())
1611      return lex->getType();
1612
1613    // Handle pointer-pointer subtractions.
1614    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1615      QualType rpointee = RHSPTy->getPointeeType();
1616
1617      // RHS must be an object type, unless void (GNU).
1618      if (!rpointee->isObjectType()) {
1619        // Handle the GNU void* extension.
1620        if (rpointee->isVoidType()) {
1621          if (!lpointee->isVoidType())
1622            Diag(loc, diag::ext_gnu_void_ptr,
1623                 lex->getSourceRange(), rex->getSourceRange());
1624        } else {
1625          Diag(loc, diag::err_typecheck_sub_ptr_object,
1626               rex->getType().getAsString(), rex->getSourceRange());
1627          return QualType();
1628        }
1629      }
1630
1631      // Pointee types must be compatible.
1632      if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1633                                      rpointee.getUnqualifiedType())) {
1634        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1635             lex->getType().getAsString(), rex->getType().getAsString(),
1636             lex->getSourceRange(), rex->getSourceRange());
1637        return QualType();
1638      }
1639
1640      return Context.getPointerDiffType();
1641    }
1642  }
1643
1644  return InvalidOperands(loc, lex, rex);
1645}
1646
1647// C99 6.5.7
1648QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1649                                  bool isCompAssign) {
1650  // C99 6.5.7p2: Each of the operands shall have integer type.
1651  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1652    return InvalidOperands(loc, lex, rex);
1653
1654  // Shifts don't perform usual arithmetic conversions, they just do integer
1655  // promotions on each operand. C99 6.5.7p3
1656  if (!isCompAssign)
1657    UsualUnaryConversions(lex);
1658  UsualUnaryConversions(rex);
1659
1660  // "The type of the result is that of the promoted left operand."
1661  return lex->getType();
1662}
1663
1664// C99 6.5.8
1665QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1666                                    bool isRelational) {
1667  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1668    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1669
1670  // C99 6.5.8p3 / C99 6.5.9p4
1671  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1672    UsualArithmeticConversions(lex, rex);
1673  else {
1674    UsualUnaryConversions(lex);
1675    UsualUnaryConversions(rex);
1676  }
1677  QualType lType = lex->getType();
1678  QualType rType = rex->getType();
1679
1680  // For non-floating point types, check for self-comparisons of the form
1681  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1682  // often indicate logic errors in the program.
1683  if (!lType->isFloatingType()) {
1684    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1685      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1686        if (DRL->getDecl() == DRR->getDecl())
1687          Diag(loc, diag::warn_selfcomparison);
1688  }
1689
1690  if (isRelational) {
1691    if (lType->isRealType() && rType->isRealType())
1692      return Context.IntTy;
1693  } else {
1694    // Check for comparisons of floating point operands using != and ==.
1695    if (lType->isFloatingType()) {
1696      assert (rType->isFloatingType());
1697      CheckFloatComparison(loc,lex,rex);
1698    }
1699
1700    if (lType->isArithmeticType() && rType->isArithmeticType())
1701      return Context.IntTy;
1702  }
1703
1704  bool LHSIsNull = lex->isNullPointerConstant(Context);
1705  bool RHSIsNull = rex->isNullPointerConstant(Context);
1706
1707  // All of the following pointer related warnings are GCC extensions, except
1708  // when handling null pointer constants. One day, we can consider making them
1709  // errors (when -pedantic-errors is enabled).
1710  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
1711    QualType LCanPointeeTy =
1712      lType->getAsPointerType()->getPointeeType().getCanonicalType();
1713    QualType RCanPointeeTy =
1714      rType->getAsPointerType()->getPointeeType().getCanonicalType();
1715
1716    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
1717        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
1718        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
1719                                    RCanPointeeTy.getUnqualifiedType())) {
1720      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1721           lType.getAsString(), rType.getAsString(),
1722           lex->getSourceRange(), rex->getSourceRange());
1723    }
1724    ImpCastExprToType(rex, lType); // promote the pointer to pointer
1725    return Context.IntTy;
1726  }
1727  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
1728    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
1729      ImpCastExprToType(rex, lType);
1730      return Context.IntTy;
1731    }
1732  }
1733  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
1734       rType->isIntegerType()) {
1735    if (!RHSIsNull)
1736      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1737           lType.getAsString(), rType.getAsString(),
1738           lex->getSourceRange(), rex->getSourceRange());
1739    ImpCastExprToType(rex, lType); // promote the integer to pointer
1740    return Context.IntTy;
1741  }
1742  if (lType->isIntegerType() &&
1743      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
1744    if (!LHSIsNull)
1745      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1746           lType.getAsString(), rType.getAsString(),
1747           lex->getSourceRange(), rex->getSourceRange());
1748    ImpCastExprToType(lex, rType); // promote the integer to pointer
1749    return Context.IntTy;
1750  }
1751  return InvalidOperands(loc, lex, rex);
1752}
1753
1754/// CheckVectorCompareOperands - vector comparisons are a clang extension that
1755/// operates on extended vector types.  Instead of producing an IntTy result,
1756/// like a scalar comparison, a vector comparison produces a vector of integer
1757/// types.
1758QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
1759                                          SourceLocation loc,
1760                                          bool isRelational) {
1761  // Check to make sure we're operating on vectors of the same type and width,
1762  // Allowing one side to be a scalar of element type.
1763  QualType vType = CheckVectorOperands(loc, lex, rex);
1764  if (vType.isNull())
1765    return vType;
1766
1767  QualType lType = lex->getType();
1768  QualType rType = rex->getType();
1769
1770  // For non-floating point types, check for self-comparisons of the form
1771  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1772  // often indicate logic errors in the program.
1773  if (!lType->isFloatingType()) {
1774    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1775      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1776        if (DRL->getDecl() == DRR->getDecl())
1777          Diag(loc, diag::warn_selfcomparison);
1778  }
1779
1780  // Check for comparisons of floating point operands using != and ==.
1781  if (!isRelational && lType->isFloatingType()) {
1782    assert (rType->isFloatingType());
1783    CheckFloatComparison(loc,lex,rex);
1784  }
1785
1786  // Return the type for the comparison, which is the same as vector type for
1787  // integer vectors, or an integer type of identical size and number of
1788  // elements for floating point vectors.
1789  if (lType->isIntegerType())
1790    return lType;
1791
1792  const VectorType *VTy = lType->getAsVectorType();
1793
1794  // FIXME: need to deal with non-32b int / non-64b long long
1795  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
1796  if (TypeSize == 32) {
1797    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
1798  }
1799  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
1800  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
1801}
1802
1803inline QualType Sema::CheckBitwiseOperands(
1804  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1805{
1806  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1807    return CheckVectorOperands(loc, lex, rex);
1808
1809  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1810
1811  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1812    return compType;
1813  return InvalidOperands(loc, lex, rex);
1814}
1815
1816inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1817  Expr *&lex, Expr *&rex, SourceLocation loc)
1818{
1819  UsualUnaryConversions(lex);
1820  UsualUnaryConversions(rex);
1821
1822  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
1823    return Context.IntTy;
1824  return InvalidOperands(loc, lex, rex);
1825}
1826
1827inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1828  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
1829{
1830  QualType lhsType = lex->getType();
1831  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1832  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1833
1834  switch (mlval) { // C99 6.5.16p2
1835  case Expr::MLV_Valid:
1836    break;
1837  case Expr::MLV_ConstQualified:
1838    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1839    return QualType();
1840  case Expr::MLV_ArrayType:
1841    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1842         lhsType.getAsString(), lex->getSourceRange());
1843    return QualType();
1844  case Expr::MLV_NotObjectType:
1845    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1846         lhsType.getAsString(), lex->getSourceRange());
1847    return QualType();
1848  case Expr::MLV_InvalidExpression:
1849    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1850         lex->getSourceRange());
1851    return QualType();
1852  case Expr::MLV_IncompleteType:
1853  case Expr::MLV_IncompleteVoidType:
1854    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1855         lhsType.getAsString(), lex->getSourceRange());
1856    return QualType();
1857  case Expr::MLV_DuplicateVectorComponents:
1858    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1859         lex->getSourceRange());
1860    return QualType();
1861  }
1862
1863  AssignConvertType ConvTy;
1864  if (compoundType.isNull())
1865    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
1866  else
1867    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
1868
1869  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
1870                               rex, "assigning"))
1871    return QualType();
1872
1873  // C99 6.5.16p3: The type of an assignment expression is the type of the
1874  // left operand unless the left operand has qualified type, in which case
1875  // it is the unqualified version of the type of the left operand.
1876  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1877  // is converted to the type of the assignment expression (above).
1878  // C++ 5.17p1: the type of the assignment expression is that of its left
1879  // oprdu.
1880  return lhsType.getUnqualifiedType();
1881}
1882
1883inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1884  Expr *&lex, Expr *&rex, SourceLocation loc) {
1885  UsualUnaryConversions(rex);
1886  return rex->getType();
1887}
1888
1889/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1890/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1891QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1892  QualType resType = op->getType();
1893  assert(!resType.isNull() && "no type for increment/decrement expression");
1894
1895  // C99 6.5.2.4p1: We allow complex as a GCC extension.
1896  if (const PointerType *pt = resType->getAsPointerType()) {
1897    if (pt->getPointeeType()->isVoidType()) {
1898      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
1899    } else if (!pt->getPointeeType()->isObjectType()) {
1900      // C99 6.5.2.4p2, 6.5.6p2
1901      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1902           resType.getAsString(), op->getSourceRange());
1903      return QualType();
1904    }
1905  } else if (!resType->isRealType()) {
1906    if (resType->isComplexType())
1907      // C99 does not support ++/-- on complex types.
1908      Diag(OpLoc, diag::ext_integer_increment_complex,
1909           resType.getAsString(), op->getSourceRange());
1910    else {
1911      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1912           resType.getAsString(), op->getSourceRange());
1913      return QualType();
1914    }
1915  }
1916  // At this point, we know we have a real, complex or pointer type.
1917  // Now make sure the operand is a modifiable lvalue.
1918  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1919  if (mlval != Expr::MLV_Valid) {
1920    // FIXME: emit a more precise diagnostic...
1921    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1922         op->getSourceRange());
1923    return QualType();
1924  }
1925  return resType;
1926}
1927
1928/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
1929/// This routine allows us to typecheck complex/recursive expressions
1930/// where the declaration is needed for type checking. Here are some
1931/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1932static ValueDecl *getPrimaryDecl(Expr *E) {
1933  switch (E->getStmtClass()) {
1934  case Stmt::DeclRefExprClass:
1935    return cast<DeclRefExpr>(E)->getDecl();
1936  case Stmt::MemberExprClass:
1937    // Fields cannot be declared with a 'register' storage class.
1938    // &X->f is always ok, even if X is declared register.
1939    if (cast<MemberExpr>(E)->isArrow())
1940      return 0;
1941    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
1942  case Stmt::ArraySubscriptExprClass: {
1943    // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
1944
1945    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
1946    if (!VD || VD->getType()->isPointerType())
1947      return 0;
1948    else
1949      return VD;
1950  }
1951  case Stmt::UnaryOperatorClass:
1952    return getPrimaryDecl(cast<UnaryOperator>(E)->getSubExpr());
1953  case Stmt::ParenExprClass:
1954    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
1955  case Stmt::ImplicitCastExprClass:
1956    // &X[4] when X is an array, has an implicit cast from array to pointer.
1957    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
1958  default:
1959    return 0;
1960  }
1961}
1962
1963/// CheckAddressOfOperand - The operand of & must be either a function
1964/// designator or an lvalue designating an object. If it is an lvalue, the
1965/// object cannot be declared with storage class register or be a bit field.
1966/// Note: The usual conversions are *not* applied to the operand of the &
1967/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1968QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1969  if (getLangOptions().C99) {
1970    // Implement C99-only parts of addressof rules.
1971    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
1972      if (uOp->getOpcode() == UnaryOperator::Deref)
1973        // Per C99 6.5.3.2, the address of a deref always returns a valid result
1974        // (assuming the deref expression is valid).
1975        return uOp->getSubExpr()->getType();
1976    }
1977    // Technically, there should be a check for array subscript
1978    // expressions here, but the result of one is always an lvalue anyway.
1979  }
1980  ValueDecl *dcl = getPrimaryDecl(op);
1981  Expr::isLvalueResult lval = op->isLvalue();
1982
1983  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1984    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
1985      // FIXME: emit more specific diag...
1986      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1987           op->getSourceRange());
1988      return QualType();
1989    }
1990  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
1991    if (MemExpr->getMemberDecl()->isBitField()) {
1992      Diag(OpLoc, diag::err_typecheck_address_of,
1993           std::string("bit-field"), op->getSourceRange());
1994      return QualType();
1995    }
1996  // Check for Apple extension for accessing vector components.
1997  } else if (isa<ArraySubscriptExpr>(op) &&
1998           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
1999    Diag(OpLoc, diag::err_typecheck_address_of,
2000         std::string("vector"), op->getSourceRange());
2001    return QualType();
2002  } else if (dcl) { // C99 6.5.3.2p1
2003    // We have an lvalue with a decl. Make sure the decl is not declared
2004    // with the register storage-class specifier.
2005    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2006      if (vd->getStorageClass() == VarDecl::Register) {
2007        Diag(OpLoc, diag::err_typecheck_address_of,
2008             std::string("register variable"), op->getSourceRange());
2009        return QualType();
2010      }
2011    } else
2012      assert(0 && "Unknown/unexpected decl type");
2013  }
2014  // If the operand has type "type", the result has type "pointer to type".
2015  return Context.getPointerType(op->getType());
2016}
2017
2018QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2019  UsualUnaryConversions(op);
2020  QualType qType = op->getType();
2021
2022  if (const PointerType *PT = qType->getAsPointerType()) {
2023    // Note that per both C89 and C99, this is always legal, even
2024    // if ptype is an incomplete type or void.
2025    // It would be possible to warn about dereferencing a
2026    // void pointer, but it's completely well-defined,
2027    // and such a warning is unlikely to catch any mistakes.
2028    return PT->getPointeeType();
2029  }
2030  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2031       qType.getAsString(), op->getSourceRange());
2032  return QualType();
2033}
2034
2035static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2036  tok::TokenKind Kind) {
2037  BinaryOperator::Opcode Opc;
2038  switch (Kind) {
2039  default: assert(0 && "Unknown binop!");
2040  case tok::star:                 Opc = BinaryOperator::Mul; break;
2041  case tok::slash:                Opc = BinaryOperator::Div; break;
2042  case tok::percent:              Opc = BinaryOperator::Rem; break;
2043  case tok::plus:                 Opc = BinaryOperator::Add; break;
2044  case tok::minus:                Opc = BinaryOperator::Sub; break;
2045  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2046  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2047  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2048  case tok::less:                 Opc = BinaryOperator::LT; break;
2049  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2050  case tok::greater:              Opc = BinaryOperator::GT; break;
2051  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2052  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2053  case tok::amp:                  Opc = BinaryOperator::And; break;
2054  case tok::caret:                Opc = BinaryOperator::Xor; break;
2055  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2056  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2057  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2058  case tok::equal:                Opc = BinaryOperator::Assign; break;
2059  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2060  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2061  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2062  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2063  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2064  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2065  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2066  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2067  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2068  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2069  case tok::comma:                Opc = BinaryOperator::Comma; break;
2070  }
2071  return Opc;
2072}
2073
2074static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2075  tok::TokenKind Kind) {
2076  UnaryOperator::Opcode Opc;
2077  switch (Kind) {
2078  default: assert(0 && "Unknown unary op!");
2079  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2080  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2081  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2082  case tok::star:         Opc = UnaryOperator::Deref; break;
2083  case tok::plus:         Opc = UnaryOperator::Plus; break;
2084  case tok::minus:        Opc = UnaryOperator::Minus; break;
2085  case tok::tilde:        Opc = UnaryOperator::Not; break;
2086  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2087  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2088  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2089  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2090  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2091  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2092  }
2093  return Opc;
2094}
2095
2096// Binary Operators.  'Tok' is the token for the operator.
2097Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2098                                    ExprTy *LHS, ExprTy *RHS) {
2099  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2100  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2101
2102  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2103  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2104
2105  QualType ResultTy;  // Result type of the binary operator.
2106  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2107
2108  switch (Opc) {
2109  default:
2110    assert(0 && "Unknown binary expr!");
2111  case BinaryOperator::Assign:
2112    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2113    break;
2114  case BinaryOperator::Mul:
2115  case BinaryOperator::Div:
2116    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2117    break;
2118  case BinaryOperator::Rem:
2119    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2120    break;
2121  case BinaryOperator::Add:
2122    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2123    break;
2124  case BinaryOperator::Sub:
2125    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2126    break;
2127  case BinaryOperator::Shl:
2128  case BinaryOperator::Shr:
2129    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2130    break;
2131  case BinaryOperator::LE:
2132  case BinaryOperator::LT:
2133  case BinaryOperator::GE:
2134  case BinaryOperator::GT:
2135    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2136    break;
2137  case BinaryOperator::EQ:
2138  case BinaryOperator::NE:
2139    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2140    break;
2141  case BinaryOperator::And:
2142  case BinaryOperator::Xor:
2143  case BinaryOperator::Or:
2144    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2145    break;
2146  case BinaryOperator::LAnd:
2147  case BinaryOperator::LOr:
2148    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2149    break;
2150  case BinaryOperator::MulAssign:
2151  case BinaryOperator::DivAssign:
2152    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2153    if (!CompTy.isNull())
2154      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2155    break;
2156  case BinaryOperator::RemAssign:
2157    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2158    if (!CompTy.isNull())
2159      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2160    break;
2161  case BinaryOperator::AddAssign:
2162    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2163    if (!CompTy.isNull())
2164      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2165    break;
2166  case BinaryOperator::SubAssign:
2167    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2168    if (!CompTy.isNull())
2169      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2170    break;
2171  case BinaryOperator::ShlAssign:
2172  case BinaryOperator::ShrAssign:
2173    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2174    if (!CompTy.isNull())
2175      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2176    break;
2177  case BinaryOperator::AndAssign:
2178  case BinaryOperator::XorAssign:
2179  case BinaryOperator::OrAssign:
2180    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2181    if (!CompTy.isNull())
2182      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2183    break;
2184  case BinaryOperator::Comma:
2185    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2186    break;
2187  }
2188  if (ResultTy.isNull())
2189    return true;
2190  if (CompTy.isNull())
2191    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2192  else
2193    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2194}
2195
2196// Unary Operators.  'Tok' is the token for the operator.
2197Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2198                                      ExprTy *input) {
2199  Expr *Input = (Expr*)input;
2200  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2201  QualType resultType;
2202  switch (Opc) {
2203  default:
2204    assert(0 && "Unimplemented unary expr!");
2205  case UnaryOperator::PreInc:
2206  case UnaryOperator::PreDec:
2207    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2208    break;
2209  case UnaryOperator::AddrOf:
2210    resultType = CheckAddressOfOperand(Input, OpLoc);
2211    break;
2212  case UnaryOperator::Deref:
2213    DefaultFunctionArrayConversion(Input);
2214    resultType = CheckIndirectionOperand(Input, OpLoc);
2215    break;
2216  case UnaryOperator::Plus:
2217  case UnaryOperator::Minus:
2218    UsualUnaryConversions(Input);
2219    resultType = Input->getType();
2220    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2221      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2222                  resultType.getAsString());
2223    break;
2224  case UnaryOperator::Not: // bitwise complement
2225    UsualUnaryConversions(Input);
2226    resultType = Input->getType();
2227    // C99 6.5.3.3p1. We allow complex as a GCC extension.
2228    if (!resultType->isIntegerType()) {
2229      if (resultType->isComplexType())
2230        // C99 does not support '~' for complex conjugation.
2231        Diag(OpLoc, diag::ext_integer_complement_complex,
2232                    resultType.getAsString());
2233      else
2234        return Diag(OpLoc, diag::err_typecheck_unary_expr,
2235                    resultType.getAsString());
2236    }
2237    break;
2238  case UnaryOperator::LNot: // logical negation
2239    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2240    DefaultFunctionArrayConversion(Input);
2241    resultType = Input->getType();
2242    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2243      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2244                  resultType.getAsString());
2245    // LNot always has type int. C99 6.5.3.3p5.
2246    resultType = Context.IntTy;
2247    break;
2248  case UnaryOperator::SizeOf:
2249    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
2250    break;
2251  case UnaryOperator::AlignOf:
2252    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
2253    break;
2254  case UnaryOperator::Real:
2255  case UnaryOperator::Imag:
2256    resultType = CheckRealImagOperand(Input, OpLoc);
2257    break;
2258  case UnaryOperator::Extension:
2259    resultType = Input->getType();
2260    break;
2261  }
2262  if (resultType.isNull())
2263    return true;
2264  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2265}
2266
2267/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2268Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2269                                      SourceLocation LabLoc,
2270                                      IdentifierInfo *LabelII) {
2271  // Look up the record for this label identifier.
2272  LabelStmt *&LabelDecl = LabelMap[LabelII];
2273
2274  // If we haven't seen this label yet, create a forward reference.
2275  if (LabelDecl == 0)
2276    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2277
2278  // Create the AST node.  The address of a label always has type 'void*'.
2279  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2280                           Context.getPointerType(Context.VoidTy));
2281}
2282
2283Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2284                                     SourceLocation RPLoc) { // "({..})"
2285  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2286  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2287  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2288
2289  // FIXME: there are a variety of strange constraints to enforce here, for
2290  // example, it is not possible to goto into a stmt expression apparently.
2291  // More semantic analysis is needed.
2292
2293  // FIXME: the last statement in the compount stmt has its value used.  We
2294  // should not warn about it being unused.
2295
2296  // If there are sub stmts in the compound stmt, take the type of the last one
2297  // as the type of the stmtexpr.
2298  QualType Ty = Context.VoidTy;
2299
2300  if (!Compound->body_empty())
2301    if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
2302      Ty = LastExpr->getType();
2303
2304  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2305}
2306
2307Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2308                                            SourceLocation TypeLoc,
2309                                            TypeTy *argty,
2310                                            OffsetOfComponent *CompPtr,
2311                                            unsigned NumComponents,
2312                                            SourceLocation RPLoc) {
2313  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2314  assert(!ArgTy.isNull() && "Missing type argument!");
2315
2316  // We must have at least one component that refers to the type, and the first
2317  // one is known to be a field designator.  Verify that the ArgTy represents
2318  // a struct/union/class.
2319  if (!ArgTy->isRecordType())
2320    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2321
2322  // Otherwise, create a compound literal expression as the base, and
2323  // iteratively process the offsetof designators.
2324  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2325
2326  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2327  // GCC extension, diagnose them.
2328  if (NumComponents != 1)
2329    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2330         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2331
2332  for (unsigned i = 0; i != NumComponents; ++i) {
2333    const OffsetOfComponent &OC = CompPtr[i];
2334    if (OC.isBrackets) {
2335      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2336      const ArrayType *AT = Res->getType()->getAsArrayType();
2337      if (!AT) {
2338        delete Res;
2339        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2340                    Res->getType().getAsString());
2341      }
2342
2343      // FIXME: C++: Verify that operator[] isn't overloaded.
2344
2345      // C99 6.5.2.1p1
2346      Expr *Idx = static_cast<Expr*>(OC.U.E);
2347      if (!Idx->getType()->isIntegerType())
2348        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2349                    Idx->getSourceRange());
2350
2351      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2352      continue;
2353    }
2354
2355    const RecordType *RC = Res->getType()->getAsRecordType();
2356    if (!RC) {
2357      delete Res;
2358      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2359                  Res->getType().getAsString());
2360    }
2361
2362    // Get the decl corresponding to this.
2363    RecordDecl *RD = RC->getDecl();
2364    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2365    if (!MemberDecl)
2366      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2367                  OC.U.IdentInfo->getName(),
2368                  SourceRange(OC.LocStart, OC.LocEnd));
2369
2370    // FIXME: C++: Verify that MemberDecl isn't a static field.
2371    // FIXME: Verify that MemberDecl isn't a bitfield.
2372    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2373    // matter here.
2374    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2375  }
2376
2377  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2378                           BuiltinLoc);
2379}
2380
2381
2382Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2383                                                TypeTy *arg1, TypeTy *arg2,
2384                                                SourceLocation RPLoc) {
2385  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2386  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2387
2388  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2389
2390  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2391}
2392
2393Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2394                                       ExprTy *expr1, ExprTy *expr2,
2395                                       SourceLocation RPLoc) {
2396  Expr *CondExpr = static_cast<Expr*>(cond);
2397  Expr *LHSExpr = static_cast<Expr*>(expr1);
2398  Expr *RHSExpr = static_cast<Expr*>(expr2);
2399
2400  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2401
2402  // The conditional expression is required to be a constant expression.
2403  llvm::APSInt condEval(32);
2404  SourceLocation ExpLoc;
2405  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2406    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2407                 CondExpr->getSourceRange());
2408
2409  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2410  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2411                                               RHSExpr->getType();
2412  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2413}
2414
2415/// ExprsMatchFnType - return true if the Exprs in array Args have
2416/// QualTypes that match the QualTypes of the arguments of the FnType.
2417/// The number of arguments has already been validated to match the number of
2418/// arguments in FnType.
2419static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
2420  unsigned NumParams = FnType->getNumArgs();
2421  for (unsigned i = 0; i != NumParams; ++i) {
2422    QualType ExprTy = Args[i]->getType().getCanonicalType();
2423    QualType ParmTy = FnType->getArgType(i).getCanonicalType();
2424
2425    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2426      return false;
2427  }
2428  return true;
2429}
2430
2431Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2432                                         SourceLocation *CommaLocs,
2433                                         SourceLocation BuiltinLoc,
2434                                         SourceLocation RParenLoc) {
2435  // __builtin_overload requires at least 2 arguments
2436  if (NumArgs < 2)
2437    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2438                SourceRange(BuiltinLoc, RParenLoc));
2439
2440  // The first argument is required to be a constant expression.  It tells us
2441  // the number of arguments to pass to each of the functions to be overloaded.
2442  Expr **Args = reinterpret_cast<Expr**>(args);
2443  Expr *NParamsExpr = Args[0];
2444  llvm::APSInt constEval(32);
2445  SourceLocation ExpLoc;
2446  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2447    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2448                NParamsExpr->getSourceRange());
2449
2450  // Verify that the number of parameters is > 0
2451  unsigned NumParams = constEval.getZExtValue();
2452  if (NumParams == 0)
2453    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2454                NParamsExpr->getSourceRange());
2455  // Verify that we have at least 1 + NumParams arguments to the builtin.
2456  if ((NumParams + 1) > NumArgs)
2457    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2458                SourceRange(BuiltinLoc, RParenLoc));
2459
2460  // Figure out the return type, by matching the args to one of the functions
2461  // listed after the parameters.
2462  OverloadExpr *OE = 0;
2463  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2464    // UsualUnaryConversions will convert the function DeclRefExpr into a
2465    // pointer to function.
2466    Expr *Fn = UsualUnaryConversions(Args[i]);
2467    FunctionTypeProto *FnType = 0;
2468    if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
2469      QualType PointeeType = PT->getPointeeType().getCanonicalType();
2470      FnType = dyn_cast<FunctionTypeProto>(PointeeType);
2471    }
2472
2473    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2474    // parameters, and the number of parameters must match the value passed to
2475    // the builtin.
2476    if (!FnType || (FnType->getNumArgs() != NumParams))
2477      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2478                  Fn->getSourceRange());
2479
2480    // Scan the parameter list for the FunctionType, checking the QualType of
2481    // each parameter against the QualTypes of the arguments to the builtin.
2482    // If they match, return a new OverloadExpr.
2483    if (ExprsMatchFnType(Args+1, FnType)) {
2484      if (OE)
2485        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2486                    OE->getFn()->getSourceRange());
2487      // Remember our match, and continue processing the remaining arguments
2488      // to catch any errors.
2489      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2490                            BuiltinLoc, RParenLoc);
2491    }
2492  }
2493  // Return the newly created OverloadExpr node, if we succeded in matching
2494  // exactly one of the candidate functions.
2495  if (OE)
2496    return OE;
2497
2498  // If we didn't find a matching function Expr in the __builtin_overload list
2499  // the return an error.
2500  std::string typeNames;
2501  for (unsigned i = 0; i != NumParams; ++i) {
2502    if (i != 0) typeNames += ", ";
2503    typeNames += Args[i+1]->getType().getAsString();
2504  }
2505
2506  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2507              SourceRange(BuiltinLoc, RParenLoc));
2508}
2509
2510Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2511                                  ExprTy *expr, TypeTy *type,
2512                                  SourceLocation RPLoc) {
2513  Expr *E = static_cast<Expr*>(expr);
2514  QualType T = QualType::getFromOpaquePtr(type);
2515
2516  InitBuiltinVaListType();
2517
2518  if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
2519      != Compatible)
2520    return Diag(E->getLocStart(),
2521                diag::err_first_argument_to_va_arg_not_of_type_va_list,
2522                E->getType().getAsString(),
2523                E->getSourceRange());
2524
2525  // FIXME: Warn if a non-POD type is passed in.
2526
2527  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
2528}
2529
2530bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
2531                                    SourceLocation Loc,
2532                                    QualType DstType, QualType SrcType,
2533                                    Expr *SrcExpr, const char *Flavor) {
2534  // Decode the result (notice that AST's are still created for extensions).
2535  bool isInvalid = false;
2536  unsigned DiagKind;
2537  switch (ConvTy) {
2538  default: assert(0 && "Unknown conversion type");
2539  case Compatible: return false;
2540  case PointerToInt:
2541    DiagKind = diag::ext_typecheck_convert_pointer_int;
2542    break;
2543  case IntToPointer:
2544    DiagKind = diag::ext_typecheck_convert_int_pointer;
2545    break;
2546  case IncompatiblePointer:
2547    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
2548    break;
2549  case FunctionVoidPointer:
2550    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
2551    break;
2552  case CompatiblePointerDiscardsQualifiers:
2553    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
2554    break;
2555  case Incompatible:
2556    DiagKind = diag::err_typecheck_convert_incompatible;
2557    isInvalid = true;
2558    break;
2559  }
2560
2561  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
2562       SrcExpr->getSourceRange());
2563  return isInvalid;
2564}
2565