SemaExpr.cpp revision 7f3fec565aab6cad369f418dbcbe601d545c5ac0
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
197      // convert lhs to the rhs floating point type.
198      return rhs;
199    }
200    // We have two real floating types, float/complex combos were handled above.
201    // Convert the smaller operand to the bigger result.
202    int result = Context.getFloatingTypeOrder(lhs, rhs);
203
204    if (result > 0) { // convert the rhs
205      return lhs;
206    }
207    if (result < 0) { // convert the lhs
208      return rhs;
209    }
210    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
211  }
212  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
213    // Handle GCC complex int extension.
214    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
215    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
216
217    if (lhsComplexInt && rhsComplexInt) {
218      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
219                                      rhsComplexInt->getElementType()) >= 0) {
220        // convert the rhs
221        return lhs;
222      }
223      return rhs;
224    } else if (lhsComplexInt && rhs->isIntegerType()) {
225      // convert the rhs to the lhs complex type.
226      return lhs;
227    } else if (rhsComplexInt && lhs->isIntegerType()) {
228      // convert the lhs to the rhs complex type.
229      return rhs;
230    }
231  }
232  // Finally, we have two differing integer types.
233  // The rules for this case are in C99 6.3.1.8
234  int compare = Context.getIntegerTypeOrder(lhs, rhs);
235  bool lhsSigned = lhs->isSignedIntegerType(),
236       rhsSigned = rhs->isSignedIntegerType();
237  QualType destType;
238  if (lhsSigned == rhsSigned) {
239    // Same signedness; use the higher-ranked type
240    destType = compare >= 0 ? lhs : rhs;
241  } else if (compare != (lhsSigned ? 1 : -1)) {
242    // The unsigned type has greater than or equal rank to the
243    // signed type, so use the unsigned type
244    destType = lhsSigned ? rhs : lhs;
245  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
246    // The two types are different widths; if we are here, that
247    // means the signed type is larger than the unsigned type, so
248    // use the signed type.
249    destType = lhsSigned ? lhs : rhs;
250  } else {
251    // The signed type is higher-ranked than the unsigned type,
252    // but isn't actually any bigger (like unsigned int and long
253    // on most 32-bit systems).  Use the unsigned type corresponding
254    // to the signed type.
255    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
256  }
257  return destType;
258}
259
260//===----------------------------------------------------------------------===//
261//  Semantic Analysis for various Expression Types
262//===----------------------------------------------------------------------===//
263
264
265/// ActOnStringLiteral - The specified tokens were lexed as pasted string
266/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
267/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
268/// multiple tokens.  However, the common case is that StringToks points to one
269/// string.
270///
271Action::ExprResult
272Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
273  assert(NumStringToks && "Must have at least one string!");
274
275  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
276  if (Literal.hadError)
277    return ExprResult(true);
278
279  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
280  for (unsigned i = 0; i != NumStringToks; ++i)
281    StringTokLocs.push_back(StringToks[i].getLocation());
282
283  // Verify that pascal strings aren't too large.
284  if (Literal.Pascal && Literal.GetStringLength() > 256)
285    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
286      << SourceRange(StringToks[0].getLocation(),
287                     StringToks[NumStringToks-1].getLocation());
288
289  QualType StrTy = Context.CharTy;
290  if (Literal.AnyWide) StrTy = Context.getWCharType();
291  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
292
293  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
294  if (getLangOptions().CPlusPlus)
295    StrTy.addConst();
296
297  // Get an array type for the string, according to C99 6.4.5.  This includes
298  // the nul terminator character as well as the string length for pascal
299  // strings.
300  StrTy = Context.getConstantArrayType(StrTy,
301                                   llvm::APInt(32, Literal.GetStringLength()+1),
302                                       ArrayType::Normal, 0);
303
304  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
305  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
306                           Literal.AnyWide, StrTy,
307                           StringToks[0].getLocation(),
308                           StringToks[NumStringToks-1].getLocation());
309}
310
311/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
312/// CurBlock to VD should cause it to be snapshotted (as we do for auto
313/// variables defined outside the block) or false if this is not needed (e.g.
314/// for values inside the block or for globals).
315///
316/// FIXME: This will create BlockDeclRefExprs for global variables,
317/// function references, etc which is suboptimal :) and breaks
318/// things like "integer constant expression" tests.
319static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
320                                              ValueDecl *VD) {
321  // If the value is defined inside the block, we couldn't snapshot it even if
322  // we wanted to.
323  if (CurBlock->TheDecl == VD->getDeclContext())
324    return false;
325
326  // If this is an enum constant or function, it is constant, don't snapshot.
327  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
328    return false;
329
330  // If this is a reference to an extern, static, or global variable, no need to
331  // snapshot it.
332  // FIXME: What about 'const' variables in C++?
333  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
334    return Var->hasLocalStorage();
335
336  return true;
337}
338
339
340
341/// ActOnIdentifierExpr - The parser read an identifier in expression context,
342/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
343/// identifier is used in a function call context.
344/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
345/// class or namespace that the identifier must be a member of.
346Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
347                                           IdentifierInfo &II,
348                                           bool HasTrailingLParen,
349                                           const CXXScopeSpec *SS) {
350  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
351}
352
353/// ActOnDeclarationNameExpr - The parser has read some kind of name
354/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
355/// performs lookup on that name and returns an expression that refers
356/// to that name. This routine isn't directly called from the parser,
357/// because the parser doesn't know about DeclarationName. Rather,
358/// this routine is called by ActOnIdentifierExpr,
359/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
360/// which form the DeclarationName from the corresponding syntactic
361/// forms.
362///
363/// HasTrailingLParen indicates whether this identifier is used in a
364/// function call context.  LookupCtx is only used for a C++
365/// qualified-id (foo::bar) to indicate the class or namespace that
366/// the identifier must be a member of.
367Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
368                                                DeclarationName Name,
369                                                bool HasTrailingLParen,
370                                                const CXXScopeSpec *SS) {
371  // Could be enum-constant, value decl, instance variable, etc.
372  Decl *D;
373  if (SS && !SS->isEmpty()) {
374    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
375    if (DC == 0)
376      return true;
377    D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
378  } else
379    D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
380
381  // If this reference is in an Objective-C method, then ivar lookup happens as
382  // well.
383  IdentifierInfo *II = Name.getAsIdentifierInfo();
384  if (II && getCurMethodDecl()) {
385    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
386    // There are two cases to handle here.  1) scoped lookup could have failed,
387    // in which case we should look for an ivar.  2) scoped lookup could have
388    // found a decl, but that decl is outside the current method (i.e. a global
389    // variable).  In these two cases, we do a lookup for an ivar with this
390    // name, if the lookup suceeds, we replace it our current decl.
391    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
392      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
393      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
394        // FIXME: This should use a new expr for a direct reference, don't turn
395        // this into Self->ivar, just return a BareIVarExpr or something.
396        IdentifierInfo &II = Context.Idents.get("self");
397        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
398        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
399                                 static_cast<Expr*>(SelfExpr.Val), true, true);
400      }
401    }
402    // Needed to implement property "super.method" notation.
403    if (SD == 0 && II->isStr("super")) {
404      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
405                     getCurMethodDecl()->getClassInterface()));
406      return new ObjCSuperExpr(Loc, T);
407    }
408  }
409  if (D == 0) {
410    // Otherwise, this could be an implicitly declared function reference (legal
411    // in C90, extension in C99).
412    if (HasTrailingLParen && II &&
413        !getLangOptions().CPlusPlus) // Not in C++.
414      D = ImplicitlyDefineFunction(Loc, *II, S);
415    else {
416      // If this name wasn't predeclared and if this is not a function call,
417      // diagnose the problem.
418      if (SS && !SS->isEmpty())
419        return Diag(Loc, diag::err_typecheck_no_member)
420          << Name.getAsString() << SS->getRange();
421      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
422               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
423        return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
424      else
425        return Diag(Loc, diag::err_undeclared_var_use) << Name.getAsString();
426    }
427  }
428
429  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
430    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
431      if (MD->isStatic())
432        // "invalid use of member 'x' in static member function"
433        return Diag(Loc, diag::err_invalid_member_use_in_static_method)
434           << FD->getName();
435      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
436        // "invalid use of nonstatic data member 'x'"
437        return Diag(Loc, diag::err_invalid_non_static_member_use)
438          << FD->getName();
439
440      if (FD->isInvalidDecl())
441        return true;
442
443      // FIXME: Handle 'mutable'.
444      return new DeclRefExpr(FD,
445        FD->getType().getWithAdditionalQualifiers(MD->getTypeQualifiers()),Loc);
446    }
447
448    return Diag(Loc, diag::err_invalid_non_static_member_use) << FD->getName();
449  }
450  if (isa<TypedefDecl>(D))
451    return Diag(Loc, diag::err_unexpected_typedef) << Name.getAsString();
452  if (isa<ObjCInterfaceDecl>(D))
453    return Diag(Loc, diag::err_unexpected_interface) << Name.getAsString();
454  if (isa<NamespaceDecl>(D))
455    return Diag(Loc, diag::err_unexpected_namespace) << Name.getAsString();
456
457  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
458  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
459    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
460
461  ValueDecl *VD = cast<ValueDecl>(D);
462
463  // check if referencing an identifier with __attribute__((deprecated)).
464  if (VD->getAttr<DeprecatedAttr>())
465    Diag(Loc, diag::warn_deprecated) << VD->getName();
466
467  // Only create DeclRefExpr's for valid Decl's.
468  if (VD->isInvalidDecl())
469    return true;
470
471  // If the identifier reference is inside a block, and it refers to a value
472  // that is outside the block, create a BlockDeclRefExpr instead of a
473  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
474  // the block is formed.
475  //
476  // We do not do this for things like enum constants, global variables, etc,
477  // as they do not get snapshotted.
478  //
479  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
480    // The BlocksAttr indicates the variable is bound by-reference.
481    if (VD->getAttr<BlocksAttr>())
482      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
483                                  Loc, true);
484
485    // Variable will be bound by-copy, make it const within the closure.
486    VD->getType().addConst();
487    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
488                                Loc, false);
489  }
490  // If this reference is not in a block or if the referenced variable is
491  // within the block, create a normal DeclRefExpr.
492  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc);
493}
494
495Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
496                                           tok::TokenKind Kind) {
497  PredefinedExpr::IdentType IT;
498
499  switch (Kind) {
500  default: assert(0 && "Unknown simple primary expr!");
501  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
502  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
503  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
504  }
505
506  // Verify that this is in a function context.
507  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
508    return Diag(Loc, diag::err_predef_outside_function);
509
510  // Pre-defined identifiers are of type char[x], where x is the length of the
511  // string.
512  unsigned Length;
513  if (getCurFunctionDecl())
514    Length = getCurFunctionDecl()->getIdentifier()->getLength();
515  else
516    Length = getCurMethodDecl()->getSynthesizedMethodSize();
517
518  llvm::APInt LengthI(32, Length + 1);
519  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
520  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
521  return new PredefinedExpr(Loc, ResTy, IT);
522}
523
524Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
525  llvm::SmallString<16> CharBuffer;
526  CharBuffer.resize(Tok.getLength());
527  const char *ThisTokBegin = &CharBuffer[0];
528  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
529
530  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
531                            Tok.getLocation(), PP);
532  if (Literal.hadError())
533    return ExprResult(true);
534
535  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
536
537  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
538                              Tok.getLocation());
539}
540
541Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
542  // fast path for a single digit (which is quite common). A single digit
543  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
544  if (Tok.getLength() == 1) {
545    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
546
547    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
548    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
549                                         Context.IntTy,
550                                         Tok.getLocation()));
551  }
552  llvm::SmallString<512> IntegerBuffer;
553  // Add padding so that NumericLiteralParser can overread by one character.
554  IntegerBuffer.resize(Tok.getLength()+1);
555  const char *ThisTokBegin = &IntegerBuffer[0];
556
557  // Get the spelling of the token, which eliminates trigraphs, etc.
558  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
559
560  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
561                               Tok.getLocation(), PP);
562  if (Literal.hadError)
563    return ExprResult(true);
564
565  Expr *Res;
566
567  if (Literal.isFloatingLiteral()) {
568    QualType Ty;
569    if (Literal.isFloat)
570      Ty = Context.FloatTy;
571    else if (!Literal.isLong)
572      Ty = Context.DoubleTy;
573    else
574      Ty = Context.LongDoubleTy;
575
576    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
577
578    // isExact will be set by GetFloatValue().
579    bool isExact = false;
580    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
581                              Ty, Tok.getLocation());
582
583  } else if (!Literal.isIntegerLiteral()) {
584    return ExprResult(true);
585  } else {
586    QualType Ty;
587
588    // long long is a C99 feature.
589    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
590        Literal.isLongLong)
591      Diag(Tok.getLocation(), diag::ext_longlong);
592
593    // Get the value in the widest-possible width.
594    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
595
596    if (Literal.GetIntegerValue(ResultVal)) {
597      // If this value didn't fit into uintmax_t, warn and force to ull.
598      Diag(Tok.getLocation(), diag::warn_integer_too_large);
599      Ty = Context.UnsignedLongLongTy;
600      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
601             "long long is not intmax_t?");
602    } else {
603      // If this value fits into a ULL, try to figure out what else it fits into
604      // according to the rules of C99 6.4.4.1p5.
605
606      // Octal, Hexadecimal, and integers with a U suffix are allowed to
607      // be an unsigned int.
608      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
609
610      // Check from smallest to largest, picking the smallest type we can.
611      unsigned Width = 0;
612      if (!Literal.isLong && !Literal.isLongLong) {
613        // Are int/unsigned possibilities?
614        unsigned IntSize = Context.Target.getIntWidth();
615
616        // Does it fit in a unsigned int?
617        if (ResultVal.isIntN(IntSize)) {
618          // Does it fit in a signed int?
619          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
620            Ty = Context.IntTy;
621          else if (AllowUnsigned)
622            Ty = Context.UnsignedIntTy;
623          Width = IntSize;
624        }
625      }
626
627      // Are long/unsigned long possibilities?
628      if (Ty.isNull() && !Literal.isLongLong) {
629        unsigned LongSize = Context.Target.getLongWidth();
630
631        // Does it fit in a unsigned long?
632        if (ResultVal.isIntN(LongSize)) {
633          // Does it fit in a signed long?
634          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
635            Ty = Context.LongTy;
636          else if (AllowUnsigned)
637            Ty = Context.UnsignedLongTy;
638          Width = LongSize;
639        }
640      }
641
642      // Finally, check long long if needed.
643      if (Ty.isNull()) {
644        unsigned LongLongSize = Context.Target.getLongLongWidth();
645
646        // Does it fit in a unsigned long long?
647        if (ResultVal.isIntN(LongLongSize)) {
648          // Does it fit in a signed long long?
649          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
650            Ty = Context.LongLongTy;
651          else if (AllowUnsigned)
652            Ty = Context.UnsignedLongLongTy;
653          Width = LongLongSize;
654        }
655      }
656
657      // If we still couldn't decide a type, we probably have something that
658      // does not fit in a signed long long, but has no U suffix.
659      if (Ty.isNull()) {
660        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
661        Ty = Context.UnsignedLongLongTy;
662        Width = Context.Target.getLongLongWidth();
663      }
664
665      if (ResultVal.getBitWidth() != Width)
666        ResultVal.trunc(Width);
667    }
668
669    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
670  }
671
672  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
673  if (Literal.isImaginary)
674    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
675
676  return Res;
677}
678
679Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
680                                        ExprTy *Val) {
681  Expr *E = (Expr *)Val;
682  assert((E != 0) && "ActOnParenExpr() missing expr");
683  return new ParenExpr(L, R, E);
684}
685
686/// The UsualUnaryConversions() function is *not* called by this routine.
687/// See C99 6.3.2.1p[2-4] for more details.
688bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
689                                     SourceLocation OpLoc,
690                                     const SourceRange &ExprRange,
691                                     bool isSizeof) {
692  // C99 6.5.3.4p1:
693  if (isa<FunctionType>(exprType) && isSizeof)
694    // alignof(function) is allowed.
695    Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
696  else if (exprType->isVoidType())
697    Diag(OpLoc, diag::ext_sizeof_void_type)
698      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
699  else if (exprType->isIncompleteType())
700    return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
701                                  diag::err_alignof_incomplete_type)
702      << exprType.getAsString() << ExprRange;
703
704  return false;
705}
706
707/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
708/// the same for @c alignof and @c __alignof
709/// Note that the ArgRange is invalid if isType is false.
710Action::ExprResult
711Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
712                             void *TyOrEx, const SourceRange &ArgRange) {
713  // If error parsing type, ignore.
714  if (TyOrEx == 0) return true;
715
716  QualType ArgTy;
717  SourceRange Range;
718  if (isType) {
719    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
720    Range = ArgRange;
721  } else {
722    // Get the end location.
723    Expr *ArgEx = (Expr *)TyOrEx;
724    Range = ArgEx->getSourceRange();
725    ArgTy = ArgEx->getType();
726  }
727
728  // Verify that the operand is valid.
729  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
730    return true;
731
732  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
733  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
734                               OpLoc, Range.getEnd());
735}
736
737QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
738  DefaultFunctionArrayConversion(V);
739
740  // These operators return the element type of a complex type.
741  if (const ComplexType *CT = V->getType()->getAsComplexType())
742    return CT->getElementType();
743
744  // Otherwise they pass through real integer and floating point types here.
745  if (V->getType()->isArithmeticType())
746    return V->getType();
747
748  // Reject anything else.
749  Diag(Loc, diag::err_realimag_invalid_type) << V->getType().getAsString();
750  return QualType();
751}
752
753
754
755Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
756                                             tok::TokenKind Kind,
757                                             ExprTy *Input) {
758  Expr *Arg = (Expr *)Input;
759
760  UnaryOperator::Opcode Opc;
761  switch (Kind) {
762  default: assert(0 && "Unknown unary op!");
763  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
764  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
765  }
766
767  if (getLangOptions().CPlusPlus &&
768      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
769    // Which overloaded operator?
770    OverloadedOperatorKind OverOp =
771      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
772
773    // C++ [over.inc]p1:
774    //
775    //     [...] If the function is a member function with one
776    //     parameter (which shall be of type int) or a non-member
777    //     function with two parameters (the second of which shall be
778    //     of type int), it defines the postfix increment operator ++
779    //     for objects of that type. When the postfix increment is
780    //     called as a result of using the ++ operator, the int
781    //     argument will have value zero.
782    Expr *Args[2] = {
783      Arg,
784      new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
785                                     /*isSigned=*/true),
786                         Context.IntTy, SourceLocation())
787    };
788
789    // Build the candidate set for overloading
790    OverloadCandidateSet CandidateSet;
791    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
792
793    // Perform overload resolution.
794    OverloadCandidateSet::iterator Best;
795    switch (BestViableFunction(CandidateSet, Best)) {
796    case OR_Success: {
797      // We found a built-in operator or an overloaded operator.
798      FunctionDecl *FnDecl = Best->Function;
799
800      if (FnDecl) {
801        // We matched an overloaded operator. Build a call to that
802        // operator.
803
804        // Convert the arguments.
805        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
806          if (PerformObjectArgumentInitialization(Arg, Method))
807            return true;
808        } else {
809          // Convert the arguments.
810          if (PerformCopyInitialization(Arg,
811                                        FnDecl->getParamDecl(0)->getType(),
812                                        "passing"))
813            return true;
814        }
815
816        // Determine the result type
817        QualType ResultTy
818          = FnDecl->getType()->getAsFunctionType()->getResultType();
819        ResultTy = ResultTy.getNonReferenceType();
820
821        // Build the actual expression node.
822        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
823                                       SourceLocation());
824        UsualUnaryConversions(FnExpr);
825
826        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
827      } else {
828        // We matched a built-in operator. Convert the arguments, then
829        // break out so that we will build the appropriate built-in
830        // operator node.
831        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
832                                      "passing"))
833          return true;
834
835        break;
836      }
837    }
838
839    case OR_No_Viable_Function:
840      // No viable function; fall through to handling this as a
841      // built-in operator, which will produce an error message for us.
842      break;
843
844    case OR_Ambiguous:
845      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
846          << UnaryOperator::getOpcodeStr(Opc)
847          << Arg->getSourceRange();
848      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
849      return true;
850    }
851
852    // Either we found no viable overloaded operator or we matched a
853    // built-in operator. In either case, fall through to trying to
854    // build a built-in operation.
855  }
856
857  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc);
858  if (result.isNull())
859    return true;
860  return new UnaryOperator(Arg, Opc, result, OpLoc);
861}
862
863Action::ExprResult Sema::
864ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
865                        ExprTy *Idx, SourceLocation RLoc) {
866  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
867
868  if (getLangOptions().CPlusPlus &&
869      LHSExp->getType()->isRecordType() ||
870      LHSExp->getType()->isEnumeralType() ||
871      RHSExp->getType()->isRecordType() ||
872      RHSExp->getType()->isRecordType()) {
873    // Add the appropriate overloaded operators (C++ [over.match.oper])
874    // to the candidate set.
875    OverloadCandidateSet CandidateSet;
876    Expr *Args[2] = { LHSExp, RHSExp };
877    AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
878
879    // Perform overload resolution.
880    OverloadCandidateSet::iterator Best;
881    switch (BestViableFunction(CandidateSet, Best)) {
882    case OR_Success: {
883      // We found a built-in operator or an overloaded operator.
884      FunctionDecl *FnDecl = Best->Function;
885
886      if (FnDecl) {
887        // We matched an overloaded operator. Build a call to that
888        // operator.
889
890        // Convert the arguments.
891        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
892          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
893              PerformCopyInitialization(RHSExp,
894                                        FnDecl->getParamDecl(0)->getType(),
895                                        "passing"))
896            return true;
897        } else {
898          // Convert the arguments.
899          if (PerformCopyInitialization(LHSExp,
900                                        FnDecl->getParamDecl(0)->getType(),
901                                        "passing") ||
902              PerformCopyInitialization(RHSExp,
903                                        FnDecl->getParamDecl(1)->getType(),
904                                        "passing"))
905            return true;
906        }
907
908        // Determine the result type
909        QualType ResultTy
910          = FnDecl->getType()->getAsFunctionType()->getResultType();
911        ResultTy = ResultTy.getNonReferenceType();
912
913        // Build the actual expression node.
914        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
915                                       SourceLocation());
916        UsualUnaryConversions(FnExpr);
917
918        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
919      } else {
920        // We matched a built-in operator. Convert the arguments, then
921        // break out so that we will build the appropriate built-in
922        // operator node.
923        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
924                                      "passing") ||
925            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
926                                      "passing"))
927          return true;
928
929        break;
930      }
931    }
932
933    case OR_No_Viable_Function:
934      // No viable function; fall through to handling this as a
935      // built-in operator, which will produce an error message for us.
936      break;
937
938    case OR_Ambiguous:
939      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
940          << "[]"
941          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
942      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
943      return true;
944    }
945
946    // Either we found no viable overloaded operator or we matched a
947    // built-in operator. In either case, fall through to trying to
948    // build a built-in operation.
949  }
950
951  // Perform default conversions.
952  DefaultFunctionArrayConversion(LHSExp);
953  DefaultFunctionArrayConversion(RHSExp);
954
955  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
956
957  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
958  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
959  // in the subscript position. As a result, we need to derive the array base
960  // and index from the expression types.
961  Expr *BaseExpr, *IndexExpr;
962  QualType ResultType;
963  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
964    BaseExpr = LHSExp;
965    IndexExpr = RHSExp;
966    // FIXME: need to deal with const...
967    ResultType = PTy->getPointeeType();
968  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
969     // Handle the uncommon case of "123[Ptr]".
970    BaseExpr = RHSExp;
971    IndexExpr = LHSExp;
972    // FIXME: need to deal with const...
973    ResultType = PTy->getPointeeType();
974  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
975    BaseExpr = LHSExp;    // vectors: V[123]
976    IndexExpr = RHSExp;
977
978    // Component access limited to variables (reject vec4.rg[1]).
979    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
980        !isa<ExtVectorElementExpr>(BaseExpr))
981      return Diag(LLoc, diag::err_ext_vector_component_access)
982        << SourceRange(LLoc, RLoc);
983    // FIXME: need to deal with const...
984    ResultType = VTy->getElementType();
985  } else {
986    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
987      << RHSExp->getSourceRange();
988  }
989  // C99 6.5.2.1p1
990  if (!IndexExpr->getType()->isIntegerType())
991    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
992      << IndexExpr->getSourceRange();
993
994  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
995  // the following check catches trying to index a pointer to a function (e.g.
996  // void (*)(int)) and pointers to incomplete types.  Functions are not
997  // objects in C99.
998  if (!ResultType->isObjectType())
999    return Diag(BaseExpr->getLocStart(),
1000                diag::err_typecheck_subscript_not_object)
1001      << BaseExpr->getType().getAsString() << BaseExpr->getSourceRange();
1002
1003  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
1004}
1005
1006QualType Sema::
1007CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1008                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1009  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1010
1011  // This flag determines whether or not the component is to be treated as a
1012  // special name, or a regular GLSL-style component access.
1013  bool SpecialComponent = false;
1014
1015  // The vector accessor can't exceed the number of elements.
1016  const char *compStr = CompName.getName();
1017  if (strlen(compStr) > vecType->getNumElements()) {
1018    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1019      << baseType.getAsString() << SourceRange(CompLoc);
1020    return QualType();
1021  }
1022
1023  // Check that we've found one of the special components, or that the component
1024  // names must come from the same set.
1025  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1026      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
1027    SpecialComponent = true;
1028  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1029    do
1030      compStr++;
1031    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1032  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
1033    do
1034      compStr++;
1035    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
1036  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
1037    do
1038      compStr++;
1039    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
1040  }
1041
1042  if (!SpecialComponent && *compStr) {
1043    // We didn't get to the end of the string. This means the component names
1044    // didn't come from the same set *or* we encountered an illegal name.
1045    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1046      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1047    return QualType();
1048  }
1049  // Each component accessor can't exceed the vector type.
1050  compStr = CompName.getName();
1051  while (*compStr) {
1052    if (vecType->isAccessorWithinNumElements(*compStr))
1053      compStr++;
1054    else
1055      break;
1056  }
1057  if (!SpecialComponent && *compStr) {
1058    // We didn't get to the end of the string. This means a component accessor
1059    // exceeds the number of elements in the vector.
1060    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1061      << baseType.getAsString() << SourceRange(CompLoc);
1062    return QualType();
1063  }
1064
1065  // If we have a special component name, verify that the current vector length
1066  // is an even number, since all special component names return exactly half
1067  // the elements.
1068  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
1069    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1070      << baseType.getAsString() << SourceRange(CompLoc);
1071    return QualType();
1072  }
1073
1074  // The component accessor looks fine - now we need to compute the actual type.
1075  // The vector type is implied by the component accessor. For example,
1076  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1077  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1078  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
1079                                       : CompName.getLength();
1080  if (CompSize == 1)
1081    return vecType->getElementType();
1082
1083  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1084  // Now look up the TypeDefDecl from the vector type. Without this,
1085  // diagostics look bad. We want extended vector types to appear built-in.
1086  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1087    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1088      return Context.getTypedefType(ExtVectorDecls[i]);
1089  }
1090  return VT; // should never get here (a typedef type should always be found).
1091}
1092
1093/// constructSetterName - Return the setter name for the given
1094/// identifier, i.e. "set" + Name where the initial character of Name
1095/// has been capitalized.
1096// FIXME: Merge with same routine in Parser. But where should this
1097// live?
1098static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1099                                           const IdentifierInfo *Name) {
1100  llvm::SmallString<100> SelectorName;
1101  SelectorName = "set";
1102  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1103  SelectorName[3] = toupper(SelectorName[3]);
1104  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1105}
1106
1107Action::ExprResult Sema::
1108ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
1109                         tok::TokenKind OpKind, SourceLocation MemberLoc,
1110                         IdentifierInfo &Member) {
1111  Expr *BaseExpr = static_cast<Expr *>(Base);
1112  assert(BaseExpr && "no record expression");
1113
1114  // Perform default conversions.
1115  DefaultFunctionArrayConversion(BaseExpr);
1116
1117  QualType BaseType = BaseExpr->getType();
1118  assert(!BaseType.isNull() && "no type for member expression");
1119
1120  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1121  // must have pointer type, and the accessed type is the pointee.
1122  if (OpKind == tok::arrow) {
1123    if (const PointerType *PT = BaseType->getAsPointerType())
1124      BaseType = PT->getPointeeType();
1125    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1126      return BuildOverloadedArrowExpr(BaseExpr, OpLoc, MemberLoc, Member);
1127    else
1128      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1129        << BaseType.getAsString() << BaseExpr->getSourceRange();
1130  }
1131
1132  // Handle field access to simple records.  This also handles access to fields
1133  // of the ObjC 'id' struct.
1134  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1135    RecordDecl *RDecl = RTy->getDecl();
1136    if (RTy->isIncompleteType())
1137      return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
1138               << RDecl->getName() << BaseExpr->getSourceRange();
1139    // The record definition is complete, now make sure the member is valid.
1140    FieldDecl *MemberDecl = RDecl->getMember(&Member);
1141    if (!MemberDecl)
1142      return Diag(MemberLoc, diag::err_typecheck_no_member)
1143               << &Member << BaseExpr->getSourceRange();
1144
1145    // Figure out the type of the member; see C99 6.5.2.3p3
1146    // FIXME: Handle address space modifiers
1147    QualType MemberType = MemberDecl->getType();
1148    unsigned combinedQualifiers =
1149        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1150    if (CXXFieldDecl *CXXMember = dyn_cast<CXXFieldDecl>(MemberDecl)) {
1151      if (CXXMember->isMutable())
1152        combinedQualifiers &= ~QualType::Const;
1153    }
1154    MemberType = MemberType.getQualifiedType(combinedQualifiers);
1155
1156    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
1157                          MemberLoc, MemberType);
1158  }
1159
1160  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1161  // (*Obj).ivar.
1162  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1163    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
1164      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
1165                                 OpKind == tok::arrow);
1166    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1167             << IFTy->getDecl()->getName() << &Member
1168             << BaseExpr->getSourceRange();
1169  }
1170
1171  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1172  // pointer to a (potentially qualified) interface type.
1173  const PointerType *PTy;
1174  const ObjCInterfaceType *IFTy;
1175  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1176      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1177    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1178
1179    // Search for a declared property first.
1180    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1181      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1182
1183    // Check protocols on qualified interfaces.
1184    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1185         E = IFTy->qual_end(); I != E; ++I)
1186      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1187        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1188
1189    // If that failed, look for an "implicit" property by seeing if the nullary
1190    // selector is implemented.
1191
1192    // FIXME: The logic for looking up nullary and unary selectors should be
1193    // shared with the code in ActOnInstanceMessage.
1194
1195    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1196    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1197
1198    // If this reference is in an @implementation, check for 'private' methods.
1199    if (!Getter)
1200      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1201        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1202          if (ObjCImplementationDecl *ImpDecl =
1203              ObjCImplementations[ClassDecl->getIdentifier()])
1204            Getter = ImpDecl->getInstanceMethod(Sel);
1205
1206    // Look through local category implementations associated with the class.
1207    if (!Getter) {
1208      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1209        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1210          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1211      }
1212    }
1213    if (Getter) {
1214      // If we found a getter then this may be a valid dot-reference, we
1215      // need to also look for the matching setter.
1216      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1217                                                       &Member);
1218      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1219      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1220
1221      if (!Setter) {
1222        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1223          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1224            if (ObjCImplementationDecl *ImpDecl =
1225                ObjCImplementations[ClassDecl->getIdentifier()])
1226              Setter = ImpDecl->getInstanceMethod(SetterSel);
1227      }
1228
1229      // FIXME: There are some issues here. First, we are not
1230      // diagnosing accesses to read-only properties because we do not
1231      // know if this is a getter or setter yet. Second, we are
1232      // checking that the type of the setter matches the type we
1233      // expect.
1234      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
1235                                     MemberLoc, BaseExpr);
1236    }
1237  }
1238  // Handle properties on qualified "id" protocols.
1239  const ObjCQualifiedIdType *QIdTy;
1240  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1241    // Check protocols on qualified interfaces.
1242    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1243         E = QIdTy->qual_end(); I != E; ++I)
1244      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1245        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1246  }
1247  // Handle 'field access' to vectors, such as 'V.xx'.
1248  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1249    // Component access limited to variables (reject vec4.rg.g).
1250    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1251        !isa<ExtVectorElementExpr>(BaseExpr))
1252      return Diag(MemberLoc, diag::err_ext_vector_component_access)
1253               << BaseExpr->getSourceRange();
1254    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1255    if (ret.isNull())
1256      return true;
1257    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1258  }
1259
1260  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
1261          << BaseType.getAsString() << BaseExpr->getSourceRange();
1262}
1263
1264/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1265/// This provides the location of the left/right parens and a list of comma
1266/// locations.
1267Action::ExprResult Sema::
1268ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1269              ExprTy **args, unsigned NumArgs,
1270              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1271  Expr *Fn = static_cast<Expr *>(fn);
1272  Expr **Args = reinterpret_cast<Expr**>(args);
1273  assert(Fn && "no function call expression");
1274  FunctionDecl *FDecl = NULL;
1275  OverloadedFunctionDecl *Ovl = NULL;
1276
1277  // If we're directly calling a function or a set of overloaded
1278  // functions, get the appropriate declaration.
1279  {
1280    DeclRefExpr *DRExpr = NULL;
1281    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1282      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1283    else
1284      DRExpr = dyn_cast<DeclRefExpr>(Fn);
1285
1286    if (DRExpr) {
1287      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1288      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1289    }
1290  }
1291
1292  // If we have a set of overloaded functions, perform overload
1293  // resolution to pick the function.
1294  if (Ovl) {
1295    OverloadCandidateSet CandidateSet;
1296    AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
1297    OverloadCandidateSet::iterator Best;
1298    switch (BestViableFunction(CandidateSet, Best)) {
1299    case OR_Success:
1300      {
1301        // Success! Let the remainder of this function build a call to
1302        // the function selected by overload resolution.
1303        FDecl = Best->Function;
1304        Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1305                                      Fn->getSourceRange().getBegin());
1306        delete Fn;
1307        Fn = NewFn;
1308      }
1309      break;
1310
1311    case OR_No_Viable_Function:
1312      if (CandidateSet.empty())
1313        Diag(Fn->getSourceRange().getBegin(),
1314             diag::err_ovl_no_viable_function_in_call)
1315          << Ovl->getName() << Fn->getSourceRange();
1316      else {
1317        Diag(Fn->getSourceRange().getBegin(),
1318             diag::err_ovl_no_viable_function_in_call_with_cands)
1319          << Ovl->getName() << Fn->getSourceRange();
1320        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1321      }
1322      return true;
1323
1324    case OR_Ambiguous:
1325      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
1326        << Ovl->getName() << Fn->getSourceRange();
1327      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1328      return true;
1329    }
1330  }
1331
1332  if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
1333    return BuildCallToObjectOfClassType(Fn, LParenLoc, Args, NumArgs,
1334                                        CommaLocs, RParenLoc);
1335
1336  // Promote the function operand.
1337  UsualUnaryConversions(Fn);
1338
1339  // Make the call expr early, before semantic checks.  This guarantees cleanup
1340  // of arguments and function on error.
1341  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1342                                                 Context.BoolTy, RParenLoc));
1343  const FunctionType *FuncT;
1344  if (!Fn->getType()->isBlockPointerType()) {
1345    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1346    // have type pointer to function".
1347    const PointerType *PT = Fn->getType()->getAsPointerType();
1348    if (PT == 0)
1349      return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1350        << Fn->getSourceRange();
1351    FuncT = PT->getPointeeType()->getAsFunctionType();
1352  } else { // This is a block call.
1353    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1354                getAsFunctionType();
1355  }
1356  if (FuncT == 0)
1357    return Diag(LParenLoc, diag::err_typecheck_call_not_function)
1358      << Fn->getSourceRange();
1359
1360  // We know the result type of the call, set it.
1361  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1362
1363  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1364    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1365    // assignment, to the types of the corresponding parameter, ...
1366    unsigned NumArgsInProto = Proto->getNumArgs();
1367    unsigned NumArgsToCheck = NumArgs;
1368
1369    // If too few arguments are available (and we don't have default
1370    // arguments for the remaining parameters), don't make the call.
1371    if (NumArgs < NumArgsInProto) {
1372      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1373        // Use default arguments for missing arguments
1374        NumArgsToCheck = NumArgsInProto;
1375        TheCall->setNumArgs(NumArgsInProto);
1376      } else
1377        return Diag(RParenLoc,
1378                    !Fn->getType()->isBlockPointerType()
1379                      ? diag::err_typecheck_call_too_few_args
1380                      : diag::err_typecheck_block_too_few_args)
1381          << Fn->getSourceRange();
1382    }
1383
1384    // If too many are passed and not variadic, error on the extras and drop
1385    // them.
1386    if (NumArgs > NumArgsInProto) {
1387      if (!Proto->isVariadic()) {
1388        Diag(Args[NumArgsInProto]->getLocStart(),
1389               !Fn->getType()->isBlockPointerType()
1390                 ? diag::err_typecheck_call_too_many_args
1391                 : diag::err_typecheck_block_too_many_args)
1392          << Fn->getSourceRange()
1393          << SourceRange(Args[NumArgsInProto]->getLocStart(),
1394                         Args[NumArgs-1]->getLocEnd());
1395        // This deletes the extra arguments.
1396        TheCall->setNumArgs(NumArgsInProto);
1397      }
1398      NumArgsToCheck = NumArgsInProto;
1399    }
1400
1401    // Continue to check argument types (even if we have too few/many args).
1402    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1403      QualType ProtoArgType = Proto->getArgType(i);
1404
1405      Expr *Arg;
1406      if (i < NumArgs)
1407        Arg = Args[i];
1408      else
1409        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1410      QualType ArgType = Arg->getType();
1411
1412      // Pass the argument.
1413      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1414        return true;
1415
1416      TheCall->setArg(i, Arg);
1417    }
1418
1419    // If this is a variadic call, handle args passed through "...".
1420    if (Proto->isVariadic()) {
1421      // Promote the arguments (C99 6.5.2.2p7).
1422      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1423        Expr *Arg = Args[i];
1424        DefaultArgumentPromotion(Arg);
1425        TheCall->setArg(i, Arg);
1426      }
1427    }
1428  } else {
1429    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1430
1431    // Promote the arguments (C99 6.5.2.2p6).
1432    for (unsigned i = 0; i != NumArgs; i++) {
1433      Expr *Arg = Args[i];
1434      DefaultArgumentPromotion(Arg);
1435      TheCall->setArg(i, Arg);
1436    }
1437  }
1438
1439  // Do special checking on direct calls to functions.
1440  if (FDecl)
1441    return CheckFunctionCall(FDecl, TheCall.take());
1442
1443  return TheCall.take();
1444}
1445
1446Action::ExprResult Sema::
1447ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1448                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1449  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1450  QualType literalType = QualType::getFromOpaquePtr(Ty);
1451  // FIXME: put back this assert when initializers are worked out.
1452  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1453  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1454
1455  if (literalType->isArrayType()) {
1456    if (literalType->isVariableArrayType())
1457      return Diag(LParenLoc, diag::err_variable_object_no_init)
1458        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1459  } else if (literalType->isIncompleteType()) {
1460    return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
1461      << literalType.getAsString()
1462      << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
1463  }
1464
1465  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1466                            "temporary"))
1467    return true;
1468
1469  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1470  if (isFileScope) { // 6.5.2.5p3
1471    if (CheckForConstantInitializer(literalExpr, literalType))
1472      return true;
1473  }
1474  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1475                                 isFileScope);
1476}
1477
1478Action::ExprResult Sema::
1479ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1480              InitListDesignations &Designators,
1481              SourceLocation RBraceLoc) {
1482  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1483
1484  // Semantic analysis for initializers is done by ActOnDeclarator() and
1485  // CheckInitializer() - it requires knowledge of the object being intialized.
1486
1487  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1488                                     Designators.hasAnyDesignators());
1489  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1490  return E;
1491}
1492
1493/// CheckCastTypes - Check type constraints for casting between types.
1494bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1495  UsualUnaryConversions(castExpr);
1496
1497  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1498  // type needs to be scalar.
1499  if (castType->isVoidType()) {
1500    // Cast to void allows any expr type.
1501  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1502    // GCC struct/union extension: allow cast to self.
1503    if (Context.getCanonicalType(castType) !=
1504        Context.getCanonicalType(castExpr->getType()) ||
1505        (!castType->isStructureType() && !castType->isUnionType())) {
1506      // Reject any other conversions to non-scalar types.
1507      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
1508        << castType.getAsString() << castExpr->getSourceRange();
1509    }
1510
1511    // accept this, but emit an ext-warn.
1512    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
1513      << castType.getAsString() << castExpr->getSourceRange();
1514  } else if (!castExpr->getType()->isScalarType() &&
1515             !castExpr->getType()->isVectorType()) {
1516    return Diag(castExpr->getLocStart(),
1517                diag::err_typecheck_expect_scalar_operand)
1518      << castExpr->getType().getAsString() << castExpr->getSourceRange();
1519  } else if (castExpr->getType()->isVectorType()) {
1520    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1521      return true;
1522  } else if (castType->isVectorType()) {
1523    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1524      return true;
1525  }
1526  return false;
1527}
1528
1529bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1530  assert(VectorTy->isVectorType() && "Not a vector type!");
1531
1532  if (Ty->isVectorType() || Ty->isIntegerType()) {
1533    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1534      return Diag(R.getBegin(),
1535                  Ty->isVectorType() ?
1536                  diag::err_invalid_conversion_between_vectors :
1537                  diag::err_invalid_conversion_between_vector_and_integer)
1538        << VectorTy.getAsString() << Ty.getAsString() << R;
1539  } else
1540    return Diag(R.getBegin(),
1541                diag::err_invalid_conversion_between_vector_and_scalar)
1542      << VectorTy.getAsString() << Ty.getAsString() << R;
1543
1544  return false;
1545}
1546
1547Action::ExprResult Sema::
1548ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1549              SourceLocation RParenLoc, ExprTy *Op) {
1550  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1551
1552  Expr *castExpr = static_cast<Expr*>(Op);
1553  QualType castType = QualType::getFromOpaquePtr(Ty);
1554
1555  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1556    return true;
1557  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
1558}
1559
1560/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1561/// In that case, lex = cond.
1562inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1563  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1564  UsualUnaryConversions(cond);
1565  UsualUnaryConversions(lex);
1566  UsualUnaryConversions(rex);
1567  QualType condT = cond->getType();
1568  QualType lexT = lex->getType();
1569  QualType rexT = rex->getType();
1570
1571  // first, check the condition.
1572  if (!condT->isScalarType()) { // C99 6.5.15p2
1573    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
1574      << condT.getAsString();
1575    return QualType();
1576  }
1577
1578  // Now check the two expressions.
1579
1580  // If both operands have arithmetic type, do the usual arithmetic conversions
1581  // to find a common type: C99 6.5.15p3,5.
1582  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1583    UsualArithmeticConversions(lex, rex);
1584    return lex->getType();
1585  }
1586
1587  // If both operands are the same structure or union type, the result is that
1588  // type.
1589  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1590    if (const RecordType *RHSRT = rexT->getAsRecordType())
1591      if (LHSRT->getDecl() == RHSRT->getDecl())
1592        // "If both the operands have structure or union type, the result has
1593        // that type."  This implies that CV qualifiers are dropped.
1594        return lexT.getUnqualifiedType();
1595  }
1596
1597  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1598  // The following || allows only one side to be void (a GCC-ism).
1599  if (lexT->isVoidType() || rexT->isVoidType()) {
1600    if (!lexT->isVoidType())
1601      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
1602        << rex->getSourceRange();
1603    if (!rexT->isVoidType())
1604      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
1605        << lex->getSourceRange();
1606    ImpCastExprToType(lex, Context.VoidTy);
1607    ImpCastExprToType(rex, Context.VoidTy);
1608    return Context.VoidTy;
1609  }
1610  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1611  // the type of the other operand."
1612  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1613       Context.isObjCObjectPointerType(lexT)) &&
1614      rex->isNullPointerConstant(Context)) {
1615    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1616    return lexT;
1617  }
1618  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1619       Context.isObjCObjectPointerType(rexT)) &&
1620      lex->isNullPointerConstant(Context)) {
1621    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1622    return rexT;
1623  }
1624  // Handle the case where both operands are pointers before we handle null
1625  // pointer constants in case both operands are null pointer constants.
1626  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1627    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1628      // get the "pointed to" types
1629      QualType lhptee = LHSPT->getPointeeType();
1630      QualType rhptee = RHSPT->getPointeeType();
1631
1632      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1633      if (lhptee->isVoidType() &&
1634          rhptee->isIncompleteOrObjectType()) {
1635        // Figure out necessary qualifiers (C99 6.5.15p6)
1636        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1637        QualType destType = Context.getPointerType(destPointee);
1638        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1639        ImpCastExprToType(rex, destType); // promote to void*
1640        return destType;
1641      }
1642      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1643        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1644        QualType destType = Context.getPointerType(destPointee);
1645        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1646        ImpCastExprToType(rex, destType); // promote to void*
1647        return destType;
1648      }
1649
1650      QualType compositeType = lexT;
1651
1652      // If either type is an Objective-C object type then check
1653      // compatibility according to Objective-C.
1654      if (Context.isObjCObjectPointerType(lexT) ||
1655          Context.isObjCObjectPointerType(rexT)) {
1656        // If both operands are interfaces and either operand can be
1657        // assigned to the other, use that type as the composite
1658        // type. This allows
1659        //   xxx ? (A*) a : (B*) b
1660        // where B is a subclass of A.
1661        //
1662        // Additionally, as for assignment, if either type is 'id'
1663        // allow silent coercion. Finally, if the types are
1664        // incompatible then make sure to use 'id' as the composite
1665        // type so the result is acceptable for sending messages to.
1666
1667        // FIXME: This code should not be localized to here. Also this
1668        // should use a compatible check instead of abusing the
1669        // canAssignObjCInterfaces code.
1670        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1671        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1672        if (LHSIface && RHSIface &&
1673            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1674          compositeType = lexT;
1675        } else if (LHSIface && RHSIface &&
1676                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1677          compositeType = rexT;
1678        } else if (Context.isObjCIdType(lhptee) ||
1679                   Context.isObjCIdType(rhptee)) {
1680          // FIXME: This code looks wrong, because isObjCIdType checks
1681          // the struct but getObjCIdType returns the pointer to
1682          // struct. This is horrible and should be fixed.
1683          compositeType = Context.getObjCIdType();
1684        } else {
1685          QualType incompatTy = Context.getObjCIdType();
1686          ImpCastExprToType(lex, incompatTy);
1687          ImpCastExprToType(rex, incompatTy);
1688          return incompatTy;
1689        }
1690      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1691                                             rhptee.getUnqualifiedType())) {
1692        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
1693          << lexT.getAsString() << rexT.getAsString()
1694          << lex->getSourceRange() << rex->getSourceRange();
1695        // In this situation, we assume void* type. No especially good
1696        // reason, but this is what gcc does, and we do have to pick
1697        // to get a consistent AST.
1698        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1699        ImpCastExprToType(lex, incompatTy);
1700        ImpCastExprToType(rex, incompatTy);
1701        return incompatTy;
1702      }
1703      // The pointer types are compatible.
1704      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1705      // differently qualified versions of compatible types, the result type is
1706      // a pointer to an appropriately qualified version of the *composite*
1707      // type.
1708      // FIXME: Need to calculate the composite type.
1709      // FIXME: Need to add qualifiers
1710      ImpCastExprToType(lex, compositeType);
1711      ImpCastExprToType(rex, compositeType);
1712      return compositeType;
1713    }
1714  }
1715  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1716  // evaluates to "struct objc_object *" (and is handled above when comparing
1717  // id with statically typed objects).
1718  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1719    // GCC allows qualified id and any Objective-C type to devolve to
1720    // id. Currently localizing to here until clear this should be
1721    // part of ObjCQualifiedIdTypesAreCompatible.
1722    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1723        (lexT->isObjCQualifiedIdType() &&
1724         Context.isObjCObjectPointerType(rexT)) ||
1725        (rexT->isObjCQualifiedIdType() &&
1726         Context.isObjCObjectPointerType(lexT))) {
1727      // FIXME: This is not the correct composite type. This only
1728      // happens to work because id can more or less be used anywhere,
1729      // however this may change the type of method sends.
1730      // FIXME: gcc adds some type-checking of the arguments and emits
1731      // (confusing) incompatible comparison warnings in some
1732      // cases. Investigate.
1733      QualType compositeType = Context.getObjCIdType();
1734      ImpCastExprToType(lex, compositeType);
1735      ImpCastExprToType(rex, compositeType);
1736      return compositeType;
1737    }
1738  }
1739
1740  // Selection between block pointer types is ok as long as they are the same.
1741  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1742      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1743    return lexT;
1744
1745  // Otherwise, the operands are not compatible.
1746  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
1747    << lexT.getAsString() << rexT.getAsString()
1748    << lex->getSourceRange() << rex->getSourceRange();
1749  return QualType();
1750}
1751
1752/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1753/// in the case of a the GNU conditional expr extension.
1754Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1755                                            SourceLocation ColonLoc,
1756                                            ExprTy *Cond, ExprTy *LHS,
1757                                            ExprTy *RHS) {
1758  Expr *CondExpr = (Expr *) Cond;
1759  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1760
1761  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1762  // was the condition.
1763  bool isLHSNull = LHSExpr == 0;
1764  if (isLHSNull)
1765    LHSExpr = CondExpr;
1766
1767  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1768                                             RHSExpr, QuestionLoc);
1769  if (result.isNull())
1770    return true;
1771  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1772                                 RHSExpr, result);
1773}
1774
1775
1776// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1777// being closely modeled after the C99 spec:-). The odd characteristic of this
1778// routine is it effectively iqnores the qualifiers on the top level pointee.
1779// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1780// FIXME: add a couple examples in this comment.
1781Sema::AssignConvertType
1782Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1783  QualType lhptee, rhptee;
1784
1785  // get the "pointed to" type (ignoring qualifiers at the top level)
1786  lhptee = lhsType->getAsPointerType()->getPointeeType();
1787  rhptee = rhsType->getAsPointerType()->getPointeeType();
1788
1789  // make sure we operate on the canonical type
1790  lhptee = Context.getCanonicalType(lhptee);
1791  rhptee = Context.getCanonicalType(rhptee);
1792
1793  AssignConvertType ConvTy = Compatible;
1794
1795  // C99 6.5.16.1p1: This following citation is common to constraints
1796  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1797  // qualifiers of the type *pointed to* by the right;
1798  // FIXME: Handle ASQualType
1799  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
1800    ConvTy = CompatiblePointerDiscardsQualifiers;
1801
1802  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1803  // incomplete type and the other is a pointer to a qualified or unqualified
1804  // version of void...
1805  if (lhptee->isVoidType()) {
1806    if (rhptee->isIncompleteOrObjectType())
1807      return ConvTy;
1808
1809    // As an extension, we allow cast to/from void* to function pointer.
1810    assert(rhptee->isFunctionType());
1811    return FunctionVoidPointer;
1812  }
1813
1814  if (rhptee->isVoidType()) {
1815    if (lhptee->isIncompleteOrObjectType())
1816      return ConvTy;
1817
1818    // As an extension, we allow cast to/from void* to function pointer.
1819    assert(lhptee->isFunctionType());
1820    return FunctionVoidPointer;
1821  }
1822
1823  // Check for ObjC interfaces
1824  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1825  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1826  if (LHSIface && RHSIface &&
1827      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1828    return ConvTy;
1829
1830  // ID acts sort of like void* for ObjC interfaces
1831  if (LHSIface && Context.isObjCIdType(rhptee))
1832    return ConvTy;
1833  if (RHSIface && Context.isObjCIdType(lhptee))
1834    return ConvTy;
1835
1836  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1837  // unqualified versions of compatible types, ...
1838  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1839                                  rhptee.getUnqualifiedType()))
1840    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1841  return ConvTy;
1842}
1843
1844/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1845/// block pointer types are compatible or whether a block and normal pointer
1846/// are compatible. It is more restrict than comparing two function pointer
1847// types.
1848Sema::AssignConvertType
1849Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1850                                          QualType rhsType) {
1851  QualType lhptee, rhptee;
1852
1853  // get the "pointed to" type (ignoring qualifiers at the top level)
1854  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1855  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1856
1857  // make sure we operate on the canonical type
1858  lhptee = Context.getCanonicalType(lhptee);
1859  rhptee = Context.getCanonicalType(rhptee);
1860
1861  AssignConvertType ConvTy = Compatible;
1862
1863  // For blocks we enforce that qualifiers are identical.
1864  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1865    ConvTy = CompatiblePointerDiscardsQualifiers;
1866
1867  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1868    return IncompatibleBlockPointer;
1869  return ConvTy;
1870}
1871
1872/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1873/// has code to accommodate several GCC extensions when type checking
1874/// pointers. Here are some objectionable examples that GCC considers warnings:
1875///
1876///  int a, *pint;
1877///  short *pshort;
1878///  struct foo *pfoo;
1879///
1880///  pint = pshort; // warning: assignment from incompatible pointer type
1881///  a = pint; // warning: assignment makes integer from pointer without a cast
1882///  pint = a; // warning: assignment makes pointer from integer without a cast
1883///  pint = pfoo; // warning: assignment from incompatible pointer type
1884///
1885/// As a result, the code for dealing with pointers is more complex than the
1886/// C99 spec dictates.
1887///
1888Sema::AssignConvertType
1889Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1890  // Get canonical types.  We're not formatting these types, just comparing
1891  // them.
1892  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1893  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1894
1895  if (lhsType == rhsType)
1896    return Compatible; // Common case: fast path an exact match.
1897
1898  // If the left-hand side is a reference type, then we are in a
1899  // (rare!) case where we've allowed the use of references in C,
1900  // e.g., as a parameter type in a built-in function. In this case,
1901  // just make sure that the type referenced is compatible with the
1902  // right-hand side type. The caller is responsible for adjusting
1903  // lhsType so that the resulting expression does not have reference
1904  // type.
1905  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
1906    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
1907      return Compatible;
1908    return Incompatible;
1909  }
1910
1911  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1912    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1913      return Compatible;
1914    // Relax integer conversions like we do for pointers below.
1915    if (rhsType->isIntegerType())
1916      return IntToPointer;
1917    if (lhsType->isIntegerType())
1918      return PointerToInt;
1919    return IncompatibleObjCQualifiedId;
1920  }
1921
1922  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1923    // For ExtVector, allow vector splats; float -> <n x float>
1924    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1925      if (LV->getElementType() == rhsType)
1926        return Compatible;
1927
1928    // If we are allowing lax vector conversions, and LHS and RHS are both
1929    // vectors, the total size only needs to be the same. This is a bitcast;
1930    // no bits are changed but the result type is different.
1931    if (getLangOptions().LaxVectorConversions &&
1932        lhsType->isVectorType() && rhsType->isVectorType()) {
1933      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1934        return Compatible;
1935    }
1936    return Incompatible;
1937  }
1938
1939  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1940    return Compatible;
1941
1942  if (isa<PointerType>(lhsType)) {
1943    if (rhsType->isIntegerType())
1944      return IntToPointer;
1945
1946    if (isa<PointerType>(rhsType))
1947      return CheckPointerTypesForAssignment(lhsType, rhsType);
1948
1949    if (rhsType->getAsBlockPointerType()) {
1950      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1951        return BlockVoidPointer;
1952
1953      // Treat block pointers as objects.
1954      if (getLangOptions().ObjC1 &&
1955          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
1956        return Compatible;
1957    }
1958    return Incompatible;
1959  }
1960
1961  if (isa<BlockPointerType>(lhsType)) {
1962    if (rhsType->isIntegerType())
1963      return IntToPointer;
1964
1965    // Treat block pointers as objects.
1966    if (getLangOptions().ObjC1 &&
1967        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
1968      return Compatible;
1969
1970    if (rhsType->isBlockPointerType())
1971      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1972
1973    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1974      if (RHSPT->getPointeeType()->isVoidType())
1975        return BlockVoidPointer;
1976    }
1977    return Incompatible;
1978  }
1979
1980  if (isa<PointerType>(rhsType)) {
1981    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1982    if (lhsType == Context.BoolTy)
1983      return Compatible;
1984
1985    if (lhsType->isIntegerType())
1986      return PointerToInt;
1987
1988    if (isa<PointerType>(lhsType))
1989      return CheckPointerTypesForAssignment(lhsType, rhsType);
1990
1991    if (isa<BlockPointerType>(lhsType) &&
1992        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1993      return BlockVoidPointer;
1994    return Incompatible;
1995  }
1996
1997  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1998    if (Context.typesAreCompatible(lhsType, rhsType))
1999      return Compatible;
2000  }
2001  return Incompatible;
2002}
2003
2004Sema::AssignConvertType
2005Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2006  if (getLangOptions().CPlusPlus) {
2007    if (!lhsType->isRecordType()) {
2008      // C++ 5.17p3: If the left operand is not of class type, the
2009      // expression is implicitly converted (C++ 4) to the
2010      // cv-unqualified type of the left operand.
2011      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType()))
2012        return Incompatible;
2013      else
2014        return Compatible;
2015    }
2016
2017    // FIXME: Currently, we fall through and treat C++ classes like C
2018    // structures.
2019  }
2020
2021  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2022  // a null pointer constant.
2023  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2024       lhsType->isBlockPointerType())
2025      && rExpr->isNullPointerConstant(Context)) {
2026    ImpCastExprToType(rExpr, lhsType);
2027    return Compatible;
2028  }
2029
2030  // We don't allow conversion of non-null-pointer constants to integers.
2031  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2032    return IntToBlockPointer;
2033
2034  // This check seems unnatural, however it is necessary to ensure the proper
2035  // conversion of functions/arrays. If the conversion were done for all
2036  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2037  // expressions that surpress this implicit conversion (&, sizeof).
2038  //
2039  // Suppress this for references: C++ 8.5.3p5.
2040  if (!lhsType->isReferenceType())
2041    DefaultFunctionArrayConversion(rExpr);
2042
2043  Sema::AssignConvertType result =
2044    CheckAssignmentConstraints(lhsType, rExpr->getType());
2045
2046  // C99 6.5.16.1p2: The value of the right operand is converted to the
2047  // type of the assignment expression.
2048  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2049  // so that we can use references in built-in functions even in C.
2050  // The getNonReferenceType() call makes sure that the resulting expression
2051  // does not have reference type.
2052  if (rExpr->getType() != lhsType)
2053    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2054  return result;
2055}
2056
2057Sema::AssignConvertType
2058Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2059  return CheckAssignmentConstraints(lhsType, rhsType);
2060}
2061
2062QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2063  Diag(Loc, diag::err_typecheck_invalid_operands)
2064    << lex->getType().getAsString() << rex->getType().getAsString()
2065    << lex->getSourceRange() << rex->getSourceRange();
2066  return QualType();
2067}
2068
2069inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2070                                                              Expr *&rex) {
2071  // For conversion purposes, we ignore any qualifiers.
2072  // For example, "const float" and "float" are equivalent.
2073  QualType lhsType =
2074    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2075  QualType rhsType =
2076    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2077
2078  // If the vector types are identical, return.
2079  if (lhsType == rhsType)
2080    return lhsType;
2081
2082  // Handle the case of a vector & extvector type of the same size and element
2083  // type.  It would be nice if we only had one vector type someday.
2084  if (getLangOptions().LaxVectorConversions)
2085    if (const VectorType *LV = lhsType->getAsVectorType())
2086      if (const VectorType *RV = rhsType->getAsVectorType())
2087        if (LV->getElementType() == RV->getElementType() &&
2088            LV->getNumElements() == RV->getNumElements())
2089          return lhsType->isExtVectorType() ? lhsType : rhsType;
2090
2091  // If the lhs is an extended vector and the rhs is a scalar of the same type
2092  // or a literal, promote the rhs to the vector type.
2093  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2094    QualType eltType = V->getElementType();
2095
2096    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2097        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2098        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2099      ImpCastExprToType(rex, lhsType);
2100      return lhsType;
2101    }
2102  }
2103
2104  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2105  // promote the lhs to the vector type.
2106  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2107    QualType eltType = V->getElementType();
2108
2109    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2110        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2111        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2112      ImpCastExprToType(lex, rhsType);
2113      return rhsType;
2114    }
2115  }
2116
2117  // You cannot convert between vector values of different size.
2118  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2119    << lex->getType().getAsString() << rex->getType().getAsString()
2120    << lex->getSourceRange() << rex->getSourceRange();
2121  return QualType();
2122}
2123
2124inline QualType Sema::CheckMultiplyDivideOperands(
2125  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2126{
2127  QualType lhsType = lex->getType(), rhsType = rex->getType();
2128
2129  if (lhsType->isVectorType() || rhsType->isVectorType())
2130    return CheckVectorOperands(Loc, lex, rex);
2131
2132  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2133
2134  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2135    return compType;
2136  return InvalidOperands(Loc, lex, rex);
2137}
2138
2139inline QualType Sema::CheckRemainderOperands(
2140  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2141{
2142  QualType lhsType = lex->getType(), rhsType = rex->getType();
2143
2144  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2145
2146  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2147    return compType;
2148  return InvalidOperands(Loc, lex, rex);
2149}
2150
2151inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2152  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2153{
2154  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2155    return CheckVectorOperands(Loc, lex, rex);
2156
2157  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2158
2159  // handle the common case first (both operands are arithmetic).
2160  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2161    return compType;
2162
2163  // Put any potential pointer into PExp
2164  Expr* PExp = lex, *IExp = rex;
2165  if (IExp->getType()->isPointerType())
2166    std::swap(PExp, IExp);
2167
2168  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2169    if (IExp->getType()->isIntegerType()) {
2170      // Check for arithmetic on pointers to incomplete types
2171      if (!PTy->getPointeeType()->isObjectType()) {
2172        if (PTy->getPointeeType()->isVoidType()) {
2173          Diag(Loc, diag::ext_gnu_void_ptr)
2174            << lex->getSourceRange() << rex->getSourceRange();
2175        } else {
2176          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
2177            << lex->getType().getAsString() << lex->getSourceRange();
2178          return QualType();
2179        }
2180      }
2181      return PExp->getType();
2182    }
2183  }
2184
2185  return InvalidOperands(Loc, lex, rex);
2186}
2187
2188// C99 6.5.6
2189QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2190                                        SourceLocation Loc, bool isCompAssign) {
2191  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2192    return CheckVectorOperands(Loc, lex, rex);
2193
2194  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2195
2196  // Enforce type constraints: C99 6.5.6p3.
2197
2198  // Handle the common case first (both operands are arithmetic).
2199  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2200    return compType;
2201
2202  // Either ptr - int   or   ptr - ptr.
2203  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2204    QualType lpointee = LHSPTy->getPointeeType();
2205
2206    // The LHS must be an object type, not incomplete, function, etc.
2207    if (!lpointee->isObjectType()) {
2208      // Handle the GNU void* extension.
2209      if (lpointee->isVoidType()) {
2210        Diag(Loc, diag::ext_gnu_void_ptr)
2211          << lex->getSourceRange() << rex->getSourceRange();
2212      } else {
2213        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2214          << lex->getType().getAsString() << lex->getSourceRange();
2215        return QualType();
2216      }
2217    }
2218
2219    // The result type of a pointer-int computation is the pointer type.
2220    if (rex->getType()->isIntegerType())
2221      return lex->getType();
2222
2223    // Handle pointer-pointer subtractions.
2224    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2225      QualType rpointee = RHSPTy->getPointeeType();
2226
2227      // RHS must be an object type, unless void (GNU).
2228      if (!rpointee->isObjectType()) {
2229        // Handle the GNU void* extension.
2230        if (rpointee->isVoidType()) {
2231          if (!lpointee->isVoidType())
2232            Diag(Loc, diag::ext_gnu_void_ptr)
2233              << lex->getSourceRange() << rex->getSourceRange();
2234        } else {
2235          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2236            << rex->getType().getAsString() << rex->getSourceRange();
2237          return QualType();
2238        }
2239      }
2240
2241      // Pointee types must be compatible.
2242      if (!Context.typesAreCompatible(
2243              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2244              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2245        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2246          << lex->getType().getAsString() << rex->getType().getAsString()
2247          << lex->getSourceRange() << rex->getSourceRange();
2248        return QualType();
2249      }
2250
2251      return Context.getPointerDiffType();
2252    }
2253  }
2254
2255  return InvalidOperands(Loc, lex, rex);
2256}
2257
2258// C99 6.5.7
2259QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2260                                  bool isCompAssign) {
2261  // C99 6.5.7p2: Each of the operands shall have integer type.
2262  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2263    return InvalidOperands(Loc, lex, rex);
2264
2265  // Shifts don't perform usual arithmetic conversions, they just do integer
2266  // promotions on each operand. C99 6.5.7p3
2267  if (!isCompAssign)
2268    UsualUnaryConversions(lex);
2269  UsualUnaryConversions(rex);
2270
2271  // "The type of the result is that of the promoted left operand."
2272  return lex->getType();
2273}
2274
2275static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2276                                        ASTContext& Context) {
2277  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2278  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2279  // ID acts sort of like void* for ObjC interfaces
2280  if (LHSIface && Context.isObjCIdType(RHS))
2281    return true;
2282  if (RHSIface && Context.isObjCIdType(LHS))
2283    return true;
2284  if (!LHSIface || !RHSIface)
2285    return false;
2286  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2287         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2288}
2289
2290// C99 6.5.8
2291QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2292                                    bool isRelational) {
2293  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2294    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2295
2296  // C99 6.5.8p3 / C99 6.5.9p4
2297  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2298    UsualArithmeticConversions(lex, rex);
2299  else {
2300    UsualUnaryConversions(lex);
2301    UsualUnaryConversions(rex);
2302  }
2303  QualType lType = lex->getType();
2304  QualType rType = rex->getType();
2305
2306  // For non-floating point types, check for self-comparisons of the form
2307  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2308  // often indicate logic errors in the program.
2309  if (!lType->isFloatingType()) {
2310    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2311      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2312        if (DRL->getDecl() == DRR->getDecl())
2313          Diag(Loc, diag::warn_selfcomparison);
2314  }
2315
2316  // The result of comparisons is 'bool' in C++, 'int' in C.
2317  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2318
2319  if (isRelational) {
2320    if (lType->isRealType() && rType->isRealType())
2321      return ResultTy;
2322  } else {
2323    // Check for comparisons of floating point operands using != and ==.
2324    if (lType->isFloatingType()) {
2325      assert (rType->isFloatingType());
2326      CheckFloatComparison(Loc,lex,rex);
2327    }
2328
2329    if (lType->isArithmeticType() && rType->isArithmeticType())
2330      return ResultTy;
2331  }
2332
2333  bool LHSIsNull = lex->isNullPointerConstant(Context);
2334  bool RHSIsNull = rex->isNullPointerConstant(Context);
2335
2336  // All of the following pointer related warnings are GCC extensions, except
2337  // when handling null pointer constants. One day, we can consider making them
2338  // errors (when -pedantic-errors is enabled).
2339  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2340    QualType LCanPointeeTy =
2341      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2342    QualType RCanPointeeTy =
2343      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2344
2345    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2346        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2347        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2348                                    RCanPointeeTy.getUnqualifiedType()) &&
2349        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2350      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2351        << lType.getAsString() << rType.getAsString()
2352        << lex->getSourceRange() << rex->getSourceRange();
2353    }
2354    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2355    return ResultTy;
2356  }
2357  // Handle block pointer types.
2358  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2359    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2360    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2361
2362    if (!LHSIsNull && !RHSIsNull &&
2363        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2364      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2365        << lType.getAsString() << rType.getAsString()
2366        << lex->getSourceRange() << rex->getSourceRange();
2367    }
2368    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2369    return ResultTy;
2370  }
2371  // Allow block pointers to be compared with null pointer constants.
2372  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2373      (lType->isPointerType() && rType->isBlockPointerType())) {
2374    if (!LHSIsNull && !RHSIsNull) {
2375      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2376        << lType.getAsString() << rType.getAsString()
2377        << lex->getSourceRange() << rex->getSourceRange();
2378    }
2379    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2380    return ResultTy;
2381  }
2382
2383  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2384    if (lType->isPointerType() || rType->isPointerType()) {
2385      const PointerType *LPT = lType->getAsPointerType();
2386      const PointerType *RPT = rType->getAsPointerType();
2387      bool LPtrToVoid = LPT ?
2388        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2389      bool RPtrToVoid = RPT ?
2390        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2391
2392      if (!LPtrToVoid && !RPtrToVoid &&
2393          !Context.typesAreCompatible(lType, rType)) {
2394        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2395          << lType.getAsString() << rType.getAsString()
2396          << lex->getSourceRange() << rex->getSourceRange();
2397        ImpCastExprToType(rex, lType);
2398        return ResultTy;
2399      }
2400      ImpCastExprToType(rex, lType);
2401      return ResultTy;
2402    }
2403    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2404      ImpCastExprToType(rex, lType);
2405      return ResultTy;
2406    } else {
2407      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2408        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2409          << lType.getAsString() << rType.getAsString()
2410          << lex->getSourceRange() << rex->getSourceRange();
2411        ImpCastExprToType(rex, lType);
2412        return ResultTy;
2413      }
2414    }
2415  }
2416  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2417       rType->isIntegerType()) {
2418    if (!RHSIsNull)
2419      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2420        << lType.getAsString() << rType.getAsString()
2421        << lex->getSourceRange() << rex->getSourceRange();
2422    ImpCastExprToType(rex, lType); // promote the integer to pointer
2423    return ResultTy;
2424  }
2425  if (lType->isIntegerType() &&
2426      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2427    if (!LHSIsNull)
2428      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2429        << lType.getAsString() << rType.getAsString()
2430        << lex->getSourceRange() << rex->getSourceRange();
2431    ImpCastExprToType(lex, rType); // promote the integer to pointer
2432    return ResultTy;
2433  }
2434  // Handle block pointers.
2435  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2436    if (!RHSIsNull)
2437      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2438        << lType.getAsString() << rType.getAsString()
2439        << lex->getSourceRange() << rex->getSourceRange();
2440    ImpCastExprToType(rex, lType); // promote the integer to pointer
2441    return ResultTy;
2442  }
2443  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2444    if (!LHSIsNull)
2445      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2446        << lType.getAsString() << rType.getAsString()
2447        << lex->getSourceRange() << rex->getSourceRange();
2448    ImpCastExprToType(lex, rType); // promote the integer to pointer
2449    return ResultTy;
2450  }
2451  return InvalidOperands(Loc, lex, rex);
2452}
2453
2454/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2455/// operates on extended vector types.  Instead of producing an IntTy result,
2456/// like a scalar comparison, a vector comparison produces a vector of integer
2457/// types.
2458QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2459                                          SourceLocation Loc,
2460                                          bool isRelational) {
2461  // Check to make sure we're operating on vectors of the same type and width,
2462  // Allowing one side to be a scalar of element type.
2463  QualType vType = CheckVectorOperands(Loc, lex, rex);
2464  if (vType.isNull())
2465    return vType;
2466
2467  QualType lType = lex->getType();
2468  QualType rType = rex->getType();
2469
2470  // For non-floating point types, check for self-comparisons of the form
2471  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2472  // often indicate logic errors in the program.
2473  if (!lType->isFloatingType()) {
2474    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2475      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2476        if (DRL->getDecl() == DRR->getDecl())
2477          Diag(Loc, diag::warn_selfcomparison);
2478  }
2479
2480  // Check for comparisons of floating point operands using != and ==.
2481  if (!isRelational && lType->isFloatingType()) {
2482    assert (rType->isFloatingType());
2483    CheckFloatComparison(Loc,lex,rex);
2484  }
2485
2486  // Return the type for the comparison, which is the same as vector type for
2487  // integer vectors, or an integer type of identical size and number of
2488  // elements for floating point vectors.
2489  if (lType->isIntegerType())
2490    return lType;
2491
2492  const VectorType *VTy = lType->getAsVectorType();
2493
2494  // FIXME: need to deal with non-32b int / non-64b long long
2495  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2496  if (TypeSize == 32) {
2497    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2498  }
2499  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2500  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2501}
2502
2503inline QualType Sema::CheckBitwiseOperands(
2504  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2505{
2506  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2507    return CheckVectorOperands(Loc, lex, rex);
2508
2509  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2510
2511  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2512    return compType;
2513  return InvalidOperands(Loc, lex, rex);
2514}
2515
2516inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2517  Expr *&lex, Expr *&rex, SourceLocation Loc)
2518{
2519  UsualUnaryConversions(lex);
2520  UsualUnaryConversions(rex);
2521
2522  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2523    return Context.IntTy;
2524  return InvalidOperands(Loc, lex, rex);
2525}
2526
2527/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2528/// emit an error and return true.  If so, return false.
2529static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2530  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2531  if (IsLV == Expr::MLV_Valid)
2532    return false;
2533
2534  unsigned Diag = 0;
2535  bool NeedType = false;
2536  switch (IsLV) { // C99 6.5.16p2
2537  default: assert(0 && "Unknown result from isModifiableLvalue!");
2538  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
2539  case Expr::MLV_ArrayType:
2540    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
2541    NeedType = true;
2542    break;
2543  case Expr::MLV_NotObjectType:
2544    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
2545    NeedType = true;
2546    break;
2547  case Expr::MLV_LValueCast:
2548    Diag = diag::err_typecheck_lvalue_casts_not_supported;
2549    break;
2550  case Expr::MLV_InvalidExpression:
2551    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
2552    break;
2553  case Expr::MLV_IncompleteType:
2554  case Expr::MLV_IncompleteVoidType:
2555    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
2556    NeedType = true;
2557    break;
2558  case Expr::MLV_DuplicateVectorComponents:
2559    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
2560    break;
2561  case Expr::MLV_NotBlockQualified:
2562    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
2563    break;
2564  }
2565
2566  if (NeedType)
2567    S.Diag(Loc, Diag) << E->getType().getAsString() << E->getSourceRange();
2568  else
2569    S.Diag(Loc, Diag) << E->getSourceRange();
2570  return true;
2571}
2572
2573
2574
2575// C99 6.5.16.1
2576QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
2577                                       SourceLocation Loc,
2578                                       QualType CompoundType) {
2579  // Verify that LHS is a modifiable lvalue, and emit error if not.
2580  if (CheckForModifiableLvalue(LHS, Loc, *this))
2581    return QualType();
2582
2583  QualType LHSType = LHS->getType();
2584  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
2585
2586  AssignConvertType ConvTy;
2587  if (CompoundType.isNull()) {
2588    // Simple assignment "x = y".
2589    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
2590
2591    // If the RHS is a unary plus or minus, check to see if they = and + are
2592    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2593    // instead of "x += 4".
2594    Expr *RHSCheck = RHS;
2595    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2596      RHSCheck = ICE->getSubExpr();
2597    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2598      if ((UO->getOpcode() == UnaryOperator::Plus ||
2599           UO->getOpcode() == UnaryOperator::Minus) &&
2600          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2601          // Only if the two operators are exactly adjacent.
2602          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2603        Diag(Loc, diag::warn_not_compound_assign)
2604          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
2605          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
2606    }
2607  } else {
2608    // Compound assignment "x += y"
2609    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
2610  }
2611
2612  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
2613                               RHS, "assigning"))
2614    return QualType();
2615
2616  // C99 6.5.16p3: The type of an assignment expression is the type of the
2617  // left operand unless the left operand has qualified type, in which case
2618  // it is the unqualified version of the type of the left operand.
2619  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2620  // is converted to the type of the assignment expression (above).
2621  // C++ 5.17p1: the type of the assignment expression is that of its left
2622  // oprdu.
2623  return LHSType.getUnqualifiedType();
2624}
2625
2626// C99 6.5.17
2627QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
2628  // FIXME: what is required for LHS?
2629
2630  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2631  DefaultFunctionArrayConversion(RHS);
2632  return RHS->getType();
2633}
2634
2635/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2636/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2637QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2638  QualType resType = op->getType();
2639  assert(!resType.isNull() && "no type for increment/decrement expression");
2640
2641  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2642  if (const PointerType *pt = resType->getAsPointerType()) {
2643    if (pt->getPointeeType()->isVoidType()) {
2644      Diag(OpLoc, diag::ext_gnu_void_ptr) << op->getSourceRange();
2645    } else if (!pt->getPointeeType()->isObjectType()) {
2646      // C99 6.5.2.4p2, 6.5.6p2
2647      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
2648        << resType.getAsString() << op->getSourceRange();
2649      return QualType();
2650    }
2651  } else if (!resType->isRealType()) {
2652    if (resType->isComplexType())
2653      // C99 does not support ++/-- on complex types.
2654      Diag(OpLoc, diag::ext_integer_increment_complex)
2655        << resType.getAsString() << op->getSourceRange();
2656    else {
2657      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
2658        << resType.getAsString() << op->getSourceRange();
2659      return QualType();
2660    }
2661  }
2662  // At this point, we know we have a real, complex or pointer type.
2663  // Now make sure the operand is a modifiable lvalue.
2664  if (CheckForModifiableLvalue(op, OpLoc, *this))
2665    return QualType();
2666  return resType;
2667}
2668
2669/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2670/// This routine allows us to typecheck complex/recursive expressions
2671/// where the declaration is needed for type checking. We only need to
2672/// handle cases when the expression references a function designator
2673/// or is an lvalue. Here are some examples:
2674///  - &(x) => x
2675///  - &*****f => f for f a function designator.
2676///  - &s.xx => s
2677///  - &s.zz[1].yy -> s, if zz is an array
2678///  - *(x + 1) -> x, if x is an array
2679///  - &"123"[2] -> 0
2680///  - & __real__ x -> x
2681static NamedDecl *getPrimaryDecl(Expr *E) {
2682  switch (E->getStmtClass()) {
2683  case Stmt::DeclRefExprClass:
2684    return cast<DeclRefExpr>(E)->getDecl();
2685  case Stmt::MemberExprClass:
2686    // Fields cannot be declared with a 'register' storage class.
2687    // &X->f is always ok, even if X is declared register.
2688    if (cast<MemberExpr>(E)->isArrow())
2689      return 0;
2690    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2691  case Stmt::ArraySubscriptExprClass: {
2692    // &X[4] and &4[X] refers to X if X is not a pointer.
2693
2694    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2695    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2696    if (!VD || VD->getType()->isPointerType())
2697      return 0;
2698    else
2699      return VD;
2700  }
2701  case Stmt::UnaryOperatorClass: {
2702    UnaryOperator *UO = cast<UnaryOperator>(E);
2703
2704    switch(UO->getOpcode()) {
2705    case UnaryOperator::Deref: {
2706      // *(X + 1) refers to X if X is not a pointer.
2707      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2708        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2709        if (!VD || VD->getType()->isPointerType())
2710          return 0;
2711        return VD;
2712      }
2713      return 0;
2714    }
2715    case UnaryOperator::Real:
2716    case UnaryOperator::Imag:
2717    case UnaryOperator::Extension:
2718      return getPrimaryDecl(UO->getSubExpr());
2719    default:
2720      return 0;
2721    }
2722  }
2723  case Stmt::BinaryOperatorClass: {
2724    BinaryOperator *BO = cast<BinaryOperator>(E);
2725
2726    // Handle cases involving pointer arithmetic. The result of an
2727    // Assign or AddAssign is not an lvalue so they can be ignored.
2728
2729    // (x + n) or (n + x) => x
2730    if (BO->getOpcode() == BinaryOperator::Add) {
2731      if (BO->getLHS()->getType()->isPointerType()) {
2732        return getPrimaryDecl(BO->getLHS());
2733      } else if (BO->getRHS()->getType()->isPointerType()) {
2734        return getPrimaryDecl(BO->getRHS());
2735      }
2736    }
2737
2738    return 0;
2739  }
2740  case Stmt::ParenExprClass:
2741    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2742  case Stmt::ImplicitCastExprClass:
2743    // &X[4] when X is an array, has an implicit cast from array to pointer.
2744    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2745  default:
2746    return 0;
2747  }
2748}
2749
2750/// CheckAddressOfOperand - The operand of & must be either a function
2751/// designator or an lvalue designating an object. If it is an lvalue, the
2752/// object cannot be declared with storage class register or be a bit field.
2753/// Note: The usual conversions are *not* applied to the operand of the &
2754/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2755/// In C++, the operand might be an overloaded function name, in which case
2756/// we allow the '&' but retain the overloaded-function type.
2757QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2758  if (getLangOptions().C99) {
2759    // Implement C99-only parts of addressof rules.
2760    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2761      if (uOp->getOpcode() == UnaryOperator::Deref)
2762        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2763        // (assuming the deref expression is valid).
2764        return uOp->getSubExpr()->getType();
2765    }
2766    // Technically, there should be a check for array subscript
2767    // expressions here, but the result of one is always an lvalue anyway.
2768  }
2769  NamedDecl *dcl = getPrimaryDecl(op);
2770  Expr::isLvalueResult lval = op->isLvalue(Context);
2771
2772  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2773    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2774      // FIXME: emit more specific diag...
2775      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
2776        << op->getSourceRange();
2777      return QualType();
2778    }
2779  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2780    if (MemExpr->getMemberDecl()->isBitField()) {
2781      Diag(OpLoc, diag::err_typecheck_address_of)
2782        << "bit-field" << op->getSourceRange();
2783      return QualType();
2784    }
2785  // Check for Apple extension for accessing vector components.
2786  } else if (isa<ArraySubscriptExpr>(op) &&
2787           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2788    Diag(OpLoc, diag::err_typecheck_address_of)
2789      << "vector" << op->getSourceRange();
2790    return QualType();
2791  } else if (dcl) { // C99 6.5.3.2p1
2792    // We have an lvalue with a decl. Make sure the decl is not declared
2793    // with the register storage-class specifier.
2794    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2795      if (vd->getStorageClass() == VarDecl::Register) {
2796        Diag(OpLoc, diag::err_typecheck_address_of)
2797          << "register variable" << op->getSourceRange();
2798        return QualType();
2799      }
2800    } else if (isa<OverloadedFunctionDecl>(dcl))
2801      return Context.OverloadTy;
2802    else
2803      assert(0 && "Unknown/unexpected decl type");
2804  }
2805
2806  // If the operand has type "type", the result has type "pointer to type".
2807  return Context.getPointerType(op->getType());
2808}
2809
2810QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2811  UsualUnaryConversions(op);
2812  QualType qType = op->getType();
2813
2814  if (const PointerType *PT = qType->getAsPointerType()) {
2815    // Note that per both C89 and C99, this is always legal, even
2816    // if ptype is an incomplete type or void.
2817    // It would be possible to warn about dereferencing a
2818    // void pointer, but it's completely well-defined,
2819    // and such a warning is unlikely to catch any mistakes.
2820    return PT->getPointeeType();
2821  }
2822  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
2823    << qType.getAsString() << op->getSourceRange();
2824  return QualType();
2825}
2826
2827static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2828  tok::TokenKind Kind) {
2829  BinaryOperator::Opcode Opc;
2830  switch (Kind) {
2831  default: assert(0 && "Unknown binop!");
2832  case tok::star:                 Opc = BinaryOperator::Mul; break;
2833  case tok::slash:                Opc = BinaryOperator::Div; break;
2834  case tok::percent:              Opc = BinaryOperator::Rem; break;
2835  case tok::plus:                 Opc = BinaryOperator::Add; break;
2836  case tok::minus:                Opc = BinaryOperator::Sub; break;
2837  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2838  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2839  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2840  case tok::less:                 Opc = BinaryOperator::LT; break;
2841  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2842  case tok::greater:              Opc = BinaryOperator::GT; break;
2843  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2844  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2845  case tok::amp:                  Opc = BinaryOperator::And; break;
2846  case tok::caret:                Opc = BinaryOperator::Xor; break;
2847  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2848  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2849  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2850  case tok::equal:                Opc = BinaryOperator::Assign; break;
2851  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2852  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2853  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2854  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2855  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2856  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2857  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2858  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2859  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2860  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2861  case tok::comma:                Opc = BinaryOperator::Comma; break;
2862  }
2863  return Opc;
2864}
2865
2866static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2867  tok::TokenKind Kind) {
2868  UnaryOperator::Opcode Opc;
2869  switch (Kind) {
2870  default: assert(0 && "Unknown unary op!");
2871  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2872  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2873  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2874  case tok::star:         Opc = UnaryOperator::Deref; break;
2875  case tok::plus:         Opc = UnaryOperator::Plus; break;
2876  case tok::minus:        Opc = UnaryOperator::Minus; break;
2877  case tok::tilde:        Opc = UnaryOperator::Not; break;
2878  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2879  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2880  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2881  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2882  }
2883  return Opc;
2884}
2885
2886/// CreateBuiltinBinOp - Creates a new built-in binary operation with
2887/// operator @p Opc at location @c TokLoc. This routine only supports
2888/// built-in operations; ActOnBinOp handles overloaded operators.
2889Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
2890                                            unsigned Op,
2891                                            Expr *lhs, Expr *rhs) {
2892  QualType ResultTy;  // Result type of the binary operator.
2893  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2894  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
2895
2896  switch (Opc) {
2897  default:
2898    assert(0 && "Unknown binary expr!");
2899  case BinaryOperator::Assign:
2900    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
2901    break;
2902  case BinaryOperator::Mul:
2903  case BinaryOperator::Div:
2904    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
2905    break;
2906  case BinaryOperator::Rem:
2907    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
2908    break;
2909  case BinaryOperator::Add:
2910    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
2911    break;
2912  case BinaryOperator::Sub:
2913    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
2914    break;
2915  case BinaryOperator::Shl:
2916  case BinaryOperator::Shr:
2917    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
2918    break;
2919  case BinaryOperator::LE:
2920  case BinaryOperator::LT:
2921  case BinaryOperator::GE:
2922  case BinaryOperator::GT:
2923    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
2924    break;
2925  case BinaryOperator::EQ:
2926  case BinaryOperator::NE:
2927    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
2928    break;
2929  case BinaryOperator::And:
2930  case BinaryOperator::Xor:
2931  case BinaryOperator::Or:
2932    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
2933    break;
2934  case BinaryOperator::LAnd:
2935  case BinaryOperator::LOr:
2936    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
2937    break;
2938  case BinaryOperator::MulAssign:
2939  case BinaryOperator::DivAssign:
2940    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
2941    if (!CompTy.isNull())
2942      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2943    break;
2944  case BinaryOperator::RemAssign:
2945    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
2946    if (!CompTy.isNull())
2947      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2948    break;
2949  case BinaryOperator::AddAssign:
2950    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
2951    if (!CompTy.isNull())
2952      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2953    break;
2954  case BinaryOperator::SubAssign:
2955    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
2956    if (!CompTy.isNull())
2957      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2958    break;
2959  case BinaryOperator::ShlAssign:
2960  case BinaryOperator::ShrAssign:
2961    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
2962    if (!CompTy.isNull())
2963      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2964    break;
2965  case BinaryOperator::AndAssign:
2966  case BinaryOperator::XorAssign:
2967  case BinaryOperator::OrAssign:
2968    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
2969    if (!CompTy.isNull())
2970      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2971    break;
2972  case BinaryOperator::Comma:
2973    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
2974    break;
2975  }
2976  if (ResultTy.isNull())
2977    return true;
2978  if (CompTy.isNull())
2979    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
2980  else
2981    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
2982}
2983
2984// Binary Operators.  'Tok' is the token for the operator.
2985Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
2986                                    tok::TokenKind Kind,
2987                                    ExprTy *LHS, ExprTy *RHS) {
2988  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2989  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2990
2991  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2992  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2993
2994  if (getLangOptions().CPlusPlus &&
2995      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
2996       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
2997    // If this is one of the assignment operators, we only perform
2998    // overload resolution if the left-hand side is a class or
2999    // enumeration type (C++ [expr.ass]p3).
3000    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3001        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3002      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3003    }
3004
3005    // Determine which overloaded operator we're dealing with.
3006    static const OverloadedOperatorKind OverOps[] = {
3007      OO_Star, OO_Slash, OO_Percent,
3008      OO_Plus, OO_Minus,
3009      OO_LessLess, OO_GreaterGreater,
3010      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3011      OO_EqualEqual, OO_ExclaimEqual,
3012      OO_Amp,
3013      OO_Caret,
3014      OO_Pipe,
3015      OO_AmpAmp,
3016      OO_PipePipe,
3017      OO_Equal, OO_StarEqual,
3018      OO_SlashEqual, OO_PercentEqual,
3019      OO_PlusEqual, OO_MinusEqual,
3020      OO_LessLessEqual, OO_GreaterGreaterEqual,
3021      OO_AmpEqual, OO_CaretEqual,
3022      OO_PipeEqual,
3023      OO_Comma
3024    };
3025    OverloadedOperatorKind OverOp = OverOps[Opc];
3026
3027    // Add the appropriate overloaded operators (C++ [over.match.oper])
3028    // to the candidate set.
3029    OverloadCandidateSet CandidateSet;
3030    Expr *Args[2] = { lhs, rhs };
3031    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
3032
3033    // Perform overload resolution.
3034    OverloadCandidateSet::iterator Best;
3035    switch (BestViableFunction(CandidateSet, Best)) {
3036    case OR_Success: {
3037      // We found a built-in operator or an overloaded operator.
3038      FunctionDecl *FnDecl = Best->Function;
3039
3040      if (FnDecl) {
3041        // We matched an overloaded operator. Build a call to that
3042        // operator.
3043
3044        // Convert the arguments.
3045        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3046          if (PerformObjectArgumentInitialization(lhs, Method) ||
3047              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3048                                        "passing"))
3049            return true;
3050        } else {
3051          // Convert the arguments.
3052          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3053                                        "passing") ||
3054              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3055                                        "passing"))
3056            return true;
3057        }
3058
3059        // Determine the result type
3060        QualType ResultTy
3061          = FnDecl->getType()->getAsFunctionType()->getResultType();
3062        ResultTy = ResultTy.getNonReferenceType();
3063
3064        // Build the actual expression node.
3065        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3066                                       SourceLocation());
3067        UsualUnaryConversions(FnExpr);
3068
3069        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
3070      } else {
3071        // We matched a built-in operator. Convert the arguments, then
3072        // break out so that we will build the appropriate built-in
3073        // operator node.
3074        if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
3075                                      "passing") ||
3076            PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
3077                                      "passing"))
3078          return true;
3079
3080        break;
3081      }
3082    }
3083
3084    case OR_No_Viable_Function:
3085      // No viable function; fall through to handling this as a
3086      // built-in operator, which will produce an error message for us.
3087      break;
3088
3089    case OR_Ambiguous:
3090      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3091          << BinaryOperator::getOpcodeStr(Opc)
3092          << lhs->getSourceRange() << rhs->getSourceRange();
3093      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3094      return true;
3095    }
3096
3097    // Either we found no viable overloaded operator or we matched a
3098    // built-in operator. In either case, fall through to trying to
3099    // build a built-in operation.
3100  }
3101
3102  // Build a built-in binary operation.
3103  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3104}
3105
3106// Unary Operators.  'Tok' is the token for the operator.
3107Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3108                                      tok::TokenKind Op, ExprTy *input) {
3109  Expr *Input = (Expr*)input;
3110  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3111
3112  if (getLangOptions().CPlusPlus &&
3113      (Input->getType()->isRecordType()
3114       || Input->getType()->isEnumeralType())) {
3115    // Determine which overloaded operator we're dealing with.
3116    static const OverloadedOperatorKind OverOps[] = {
3117      OO_None, OO_None,
3118      OO_PlusPlus, OO_MinusMinus,
3119      OO_Amp, OO_Star,
3120      OO_Plus, OO_Minus,
3121      OO_Tilde, OO_Exclaim,
3122      OO_None, OO_None,
3123      OO_None,
3124      OO_None
3125    };
3126    OverloadedOperatorKind OverOp = OverOps[Opc];
3127
3128    // Add the appropriate overloaded operators (C++ [over.match.oper])
3129    // to the candidate set.
3130    OverloadCandidateSet CandidateSet;
3131    if (OverOp != OO_None)
3132      AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
3133
3134    // Perform overload resolution.
3135    OverloadCandidateSet::iterator Best;
3136    switch (BestViableFunction(CandidateSet, Best)) {
3137    case OR_Success: {
3138      // We found a built-in operator or an overloaded operator.
3139      FunctionDecl *FnDecl = Best->Function;
3140
3141      if (FnDecl) {
3142        // We matched an overloaded operator. Build a call to that
3143        // operator.
3144
3145        // Convert the arguments.
3146        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3147          if (PerformObjectArgumentInitialization(Input, Method))
3148            return true;
3149        } else {
3150          // Convert the arguments.
3151          if (PerformCopyInitialization(Input,
3152                                        FnDecl->getParamDecl(0)->getType(),
3153                                        "passing"))
3154            return true;
3155        }
3156
3157        // Determine the result type
3158        QualType ResultTy
3159          = FnDecl->getType()->getAsFunctionType()->getResultType();
3160        ResultTy = ResultTy.getNonReferenceType();
3161
3162        // Build the actual expression node.
3163        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
3164                                       SourceLocation());
3165        UsualUnaryConversions(FnExpr);
3166
3167        return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
3168      } else {
3169        // We matched a built-in operator. Convert the arguments, then
3170        // break out so that we will build the appropriate built-in
3171        // operator node.
3172        if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
3173                                      "passing"))
3174          return true;
3175
3176        break;
3177      }
3178    }
3179
3180    case OR_No_Viable_Function:
3181      // No viable function; fall through to handling this as a
3182      // built-in operator, which will produce an error message for us.
3183      break;
3184
3185    case OR_Ambiguous:
3186      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3187          << UnaryOperator::getOpcodeStr(Opc)
3188          << Input->getSourceRange();
3189      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3190      return true;
3191    }
3192
3193    // Either we found no viable overloaded operator or we matched a
3194    // built-in operator. In either case, fall through to trying to
3195    // build a built-in operation.
3196  }
3197
3198
3199  QualType resultType;
3200  switch (Opc) {
3201  default:
3202    assert(0 && "Unimplemented unary expr!");
3203  case UnaryOperator::PreInc:
3204  case UnaryOperator::PreDec:
3205    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
3206    break;
3207  case UnaryOperator::AddrOf:
3208    resultType = CheckAddressOfOperand(Input, OpLoc);
3209    break;
3210  case UnaryOperator::Deref:
3211    DefaultFunctionArrayConversion(Input);
3212    resultType = CheckIndirectionOperand(Input, OpLoc);
3213    break;
3214  case UnaryOperator::Plus:
3215  case UnaryOperator::Minus:
3216    UsualUnaryConversions(Input);
3217    resultType = Input->getType();
3218    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3219      break;
3220    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3221             resultType->isEnumeralType())
3222      break;
3223    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3224             Opc == UnaryOperator::Plus &&
3225             resultType->isPointerType())
3226      break;
3227
3228    return Diag(OpLoc, diag::err_typecheck_unary_expr)
3229          << resultType.getAsString();
3230  case UnaryOperator::Not: // bitwise complement
3231    UsualUnaryConversions(Input);
3232    resultType = Input->getType();
3233    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3234    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3235      // C99 does not support '~' for complex conjugation.
3236      Diag(OpLoc, diag::ext_integer_complement_complex)
3237        << resultType.getAsString() << Input->getSourceRange();
3238    else if (!resultType->isIntegerType())
3239      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3240        << resultType.getAsString() << Input->getSourceRange();
3241    break;
3242  case UnaryOperator::LNot: // logical negation
3243    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3244    DefaultFunctionArrayConversion(Input);
3245    resultType = Input->getType();
3246    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3247      return Diag(OpLoc, diag::err_typecheck_unary_expr)
3248        << resultType.getAsString();
3249    // LNot always has type int. C99 6.5.3.3p5.
3250    resultType = Context.IntTy;
3251    break;
3252  case UnaryOperator::Real:
3253  case UnaryOperator::Imag:
3254    resultType = CheckRealImagOperand(Input, OpLoc);
3255    break;
3256  case UnaryOperator::Extension:
3257    resultType = Input->getType();
3258    break;
3259  }
3260  if (resultType.isNull())
3261    return true;
3262  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3263}
3264
3265/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3266Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3267                                      SourceLocation LabLoc,
3268                                      IdentifierInfo *LabelII) {
3269  // Look up the record for this label identifier.
3270  LabelStmt *&LabelDecl = LabelMap[LabelII];
3271
3272  // If we haven't seen this label yet, create a forward reference. It
3273  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3274  if (LabelDecl == 0)
3275    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3276
3277  // Create the AST node.  The address of a label always has type 'void*'.
3278  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3279                           Context.getPointerType(Context.VoidTy));
3280}
3281
3282Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3283                                     SourceLocation RPLoc) { // "({..})"
3284  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3285  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3286  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3287
3288  // FIXME: there are a variety of strange constraints to enforce here, for
3289  // example, it is not possible to goto into a stmt expression apparently.
3290  // More semantic analysis is needed.
3291
3292  // FIXME: the last statement in the compount stmt has its value used.  We
3293  // should not warn about it being unused.
3294
3295  // If there are sub stmts in the compound stmt, take the type of the last one
3296  // as the type of the stmtexpr.
3297  QualType Ty = Context.VoidTy;
3298
3299  if (!Compound->body_empty()) {
3300    Stmt *LastStmt = Compound->body_back();
3301    // If LastStmt is a label, skip down through into the body.
3302    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3303      LastStmt = Label->getSubStmt();
3304
3305    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3306      Ty = LastExpr->getType();
3307  }
3308
3309  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3310}
3311
3312Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
3313                                            SourceLocation TypeLoc,
3314                                            TypeTy *argty,
3315                                            OffsetOfComponent *CompPtr,
3316                                            unsigned NumComponents,
3317                                            SourceLocation RPLoc) {
3318  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3319  assert(!ArgTy.isNull() && "Missing type argument!");
3320
3321  // We must have at least one component that refers to the type, and the first
3322  // one is known to be a field designator.  Verify that the ArgTy represents
3323  // a struct/union/class.
3324  if (!ArgTy->isRecordType())
3325    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy.getAsString();
3326
3327  // Otherwise, create a compound literal expression as the base, and
3328  // iteratively process the offsetof designators.
3329  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3330
3331  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3332  // GCC extension, diagnose them.
3333  if (NumComponents != 1)
3334    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
3335      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
3336
3337  for (unsigned i = 0; i != NumComponents; ++i) {
3338    const OffsetOfComponent &OC = CompPtr[i];
3339    if (OC.isBrackets) {
3340      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3341      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3342      if (!AT) {
3343        delete Res;
3344        return Diag(OC.LocEnd, diag::err_offsetof_array_type)
3345          << Res->getType().getAsString();
3346      }
3347
3348      // FIXME: C++: Verify that operator[] isn't overloaded.
3349
3350      // C99 6.5.2.1p1
3351      Expr *Idx = static_cast<Expr*>(OC.U.E);
3352      if (!Idx->getType()->isIntegerType())
3353        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
3354          << Idx->getSourceRange();
3355
3356      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3357      continue;
3358    }
3359
3360    const RecordType *RC = Res->getType()->getAsRecordType();
3361    if (!RC) {
3362      delete Res;
3363      return Diag(OC.LocEnd, diag::err_offsetof_record_type)
3364        << Res->getType().getAsString();
3365    }
3366
3367    // Get the decl corresponding to this.
3368    RecordDecl *RD = RC->getDecl();
3369    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
3370    if (!MemberDecl)
3371      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
3372       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
3373
3374    // FIXME: C++: Verify that MemberDecl isn't a static field.
3375    // FIXME: Verify that MemberDecl isn't a bitfield.
3376    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3377    // matter here.
3378    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3379                         MemberDecl->getType().getNonReferenceType());
3380  }
3381
3382  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3383                           BuiltinLoc);
3384}
3385
3386
3387Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3388                                                TypeTy *arg1, TypeTy *arg2,
3389                                                SourceLocation RPLoc) {
3390  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3391  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3392
3393  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3394
3395  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3396}
3397
3398Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3399                                       ExprTy *expr1, ExprTy *expr2,
3400                                       SourceLocation RPLoc) {
3401  Expr *CondExpr = static_cast<Expr*>(cond);
3402  Expr *LHSExpr = static_cast<Expr*>(expr1);
3403  Expr *RHSExpr = static_cast<Expr*>(expr2);
3404
3405  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3406
3407  // The conditional expression is required to be a constant expression.
3408  llvm::APSInt condEval(32);
3409  SourceLocation ExpLoc;
3410  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3411    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
3412      << CondExpr->getSourceRange();
3413
3414  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3415  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3416                                               RHSExpr->getType();
3417  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3418}
3419
3420//===----------------------------------------------------------------------===//
3421// Clang Extensions.
3422//===----------------------------------------------------------------------===//
3423
3424/// ActOnBlockStart - This callback is invoked when a block literal is started.
3425void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3426  // Analyze block parameters.
3427  BlockSemaInfo *BSI = new BlockSemaInfo();
3428
3429  // Add BSI to CurBlock.
3430  BSI->PrevBlockInfo = CurBlock;
3431  CurBlock = BSI;
3432
3433  BSI->ReturnType = 0;
3434  BSI->TheScope = BlockScope;
3435
3436  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3437  PushDeclContext(BSI->TheDecl);
3438}
3439
3440void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3441  // Analyze arguments to block.
3442  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3443         "Not a function declarator!");
3444  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3445
3446  CurBlock->hasPrototype = FTI.hasPrototype;
3447  CurBlock->isVariadic = true;
3448
3449  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3450  // no arguments, not a function that takes a single void argument.
3451  if (FTI.hasPrototype &&
3452      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3453      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3454        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3455    // empty arg list, don't push any params.
3456    CurBlock->isVariadic = false;
3457  } else if (FTI.hasPrototype) {
3458    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3459      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3460    CurBlock->isVariadic = FTI.isVariadic;
3461  }
3462  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3463
3464  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3465       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3466    // If this has an identifier, add it to the scope stack.
3467    if ((*AI)->getIdentifier())
3468      PushOnScopeChains(*AI, CurBlock->TheScope);
3469}
3470
3471/// ActOnBlockError - If there is an error parsing a block, this callback
3472/// is invoked to pop the information about the block from the action impl.
3473void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3474  // Ensure that CurBlock is deleted.
3475  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3476
3477  // Pop off CurBlock, handle nested blocks.
3478  CurBlock = CurBlock->PrevBlockInfo;
3479
3480  // FIXME: Delete the ParmVarDecl objects as well???
3481
3482}
3483
3484/// ActOnBlockStmtExpr - This is called when the body of a block statement
3485/// literal was successfully completed.  ^(int x){...}
3486Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3487                                          Scope *CurScope) {
3488  // Ensure that CurBlock is deleted.
3489  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3490  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3491
3492  PopDeclContext();
3493
3494  // Pop off CurBlock, handle nested blocks.
3495  CurBlock = CurBlock->PrevBlockInfo;
3496
3497  QualType RetTy = Context.VoidTy;
3498  if (BSI->ReturnType)
3499    RetTy = QualType(BSI->ReturnType, 0);
3500
3501  llvm::SmallVector<QualType, 8> ArgTypes;
3502  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3503    ArgTypes.push_back(BSI->Params[i]->getType());
3504
3505  QualType BlockTy;
3506  if (!BSI->hasPrototype)
3507    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3508  else
3509    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3510                                      BSI->isVariadic, 0);
3511
3512  BlockTy = Context.getBlockPointerType(BlockTy);
3513
3514  BSI->TheDecl->setBody(Body.take());
3515  return new BlockExpr(BSI->TheDecl, BlockTy);
3516}
3517
3518/// ExprsMatchFnType - return true if the Exprs in array Args have
3519/// QualTypes that match the QualTypes of the arguments of the FnType.
3520/// The number of arguments has already been validated to match the number of
3521/// arguments in FnType.
3522static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3523                             ASTContext &Context) {
3524  unsigned NumParams = FnType->getNumArgs();
3525  for (unsigned i = 0; i != NumParams; ++i) {
3526    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3527    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3528
3529    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3530      return false;
3531  }
3532  return true;
3533}
3534
3535Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3536                                         SourceLocation *CommaLocs,
3537                                         SourceLocation BuiltinLoc,
3538                                         SourceLocation RParenLoc) {
3539  // __builtin_overload requires at least 2 arguments
3540  if (NumArgs < 2)
3541    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3542      << SourceRange(BuiltinLoc, RParenLoc);
3543
3544  // The first argument is required to be a constant expression.  It tells us
3545  // the number of arguments to pass to each of the functions to be overloaded.
3546  Expr **Args = reinterpret_cast<Expr**>(args);
3547  Expr *NParamsExpr = Args[0];
3548  llvm::APSInt constEval(32);
3549  SourceLocation ExpLoc;
3550  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3551    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3552      << NParamsExpr->getSourceRange();
3553
3554  // Verify that the number of parameters is > 0
3555  unsigned NumParams = constEval.getZExtValue();
3556  if (NumParams == 0)
3557    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
3558      << NParamsExpr->getSourceRange();
3559  // Verify that we have at least 1 + NumParams arguments to the builtin.
3560  if ((NumParams + 1) > NumArgs)
3561    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3562      << SourceRange(BuiltinLoc, RParenLoc);
3563
3564  // Figure out the return type, by matching the args to one of the functions
3565  // listed after the parameters.
3566  OverloadExpr *OE = 0;
3567  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3568    // UsualUnaryConversions will convert the function DeclRefExpr into a
3569    // pointer to function.
3570    Expr *Fn = UsualUnaryConversions(Args[i]);
3571    const FunctionTypeProto *FnType = 0;
3572    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3573      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3574
3575    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3576    // parameters, and the number of parameters must match the value passed to
3577    // the builtin.
3578    if (!FnType || (FnType->getNumArgs() != NumParams))
3579      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
3580        << Fn->getSourceRange();
3581
3582    // Scan the parameter list for the FunctionType, checking the QualType of
3583    // each parameter against the QualTypes of the arguments to the builtin.
3584    // If they match, return a new OverloadExpr.
3585    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3586      if (OE)
3587        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
3588          << OE->getFn()->getSourceRange();
3589      // Remember our match, and continue processing the remaining arguments
3590      // to catch any errors.
3591      OE = new OverloadExpr(Args, NumArgs, i,
3592                            FnType->getResultType().getNonReferenceType(),
3593                            BuiltinLoc, RParenLoc);
3594    }
3595  }
3596  // Return the newly created OverloadExpr node, if we succeded in matching
3597  // exactly one of the candidate functions.
3598  if (OE)
3599    return OE;
3600
3601  // If we didn't find a matching function Expr in the __builtin_overload list
3602  // the return an error.
3603  std::string typeNames;
3604  for (unsigned i = 0; i != NumParams; ++i) {
3605    if (i != 0) typeNames += ", ";
3606    typeNames += Args[i+1]->getType().getAsString();
3607  }
3608
3609  return Diag(BuiltinLoc, diag::err_overload_no_match)
3610    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
3611}
3612
3613Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3614                                  ExprTy *expr, TypeTy *type,
3615                                  SourceLocation RPLoc) {
3616  Expr *E = static_cast<Expr*>(expr);
3617  QualType T = QualType::getFromOpaquePtr(type);
3618
3619  InitBuiltinVaListType();
3620
3621  // Get the va_list type
3622  QualType VaListType = Context.getBuiltinVaListType();
3623  // Deal with implicit array decay; for example, on x86-64,
3624  // va_list is an array, but it's supposed to decay to
3625  // a pointer for va_arg.
3626  if (VaListType->isArrayType())
3627    VaListType = Context.getArrayDecayedType(VaListType);
3628  // Make sure the input expression also decays appropriately.
3629  UsualUnaryConversions(E);
3630
3631  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3632    return Diag(E->getLocStart(),
3633                diag::err_first_argument_to_va_arg_not_of_type_va_list)
3634      << E->getType().getAsString() << E->getSourceRange();
3635
3636  // FIXME: Warn if a non-POD type is passed in.
3637
3638  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
3639}
3640
3641bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3642                                    SourceLocation Loc,
3643                                    QualType DstType, QualType SrcType,
3644                                    Expr *SrcExpr, const char *Flavor) {
3645  // Decode the result (notice that AST's are still created for extensions).
3646  bool isInvalid = false;
3647  unsigned DiagKind;
3648  switch (ConvTy) {
3649  default: assert(0 && "Unknown conversion type");
3650  case Compatible: return false;
3651  case PointerToInt:
3652    DiagKind = diag::ext_typecheck_convert_pointer_int;
3653    break;
3654  case IntToPointer:
3655    DiagKind = diag::ext_typecheck_convert_int_pointer;
3656    break;
3657  case IncompatiblePointer:
3658    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3659    break;
3660  case FunctionVoidPointer:
3661    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3662    break;
3663  case CompatiblePointerDiscardsQualifiers:
3664    // If the qualifiers lost were because we were applying the
3665    // (deprecated) C++ conversion from a string literal to a char*
3666    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3667    // Ideally, this check would be performed in
3668    // CheckPointerTypesForAssignment. However, that would require a
3669    // bit of refactoring (so that the second argument is an
3670    // expression, rather than a type), which should be done as part
3671    // of a larger effort to fix CheckPointerTypesForAssignment for
3672    // C++ semantics.
3673    if (getLangOptions().CPlusPlus &&
3674        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3675      return false;
3676    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3677    break;
3678  case IntToBlockPointer:
3679    DiagKind = diag::err_int_to_block_pointer;
3680    break;
3681  case IncompatibleBlockPointer:
3682    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3683    break;
3684  case BlockVoidPointer:
3685    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3686    break;
3687  case IncompatibleObjCQualifiedId:
3688    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3689    // it can give a more specific diagnostic.
3690    DiagKind = diag::warn_incompatible_qualified_id;
3691    break;
3692  case Incompatible:
3693    DiagKind = diag::err_typecheck_convert_incompatible;
3694    isInvalid = true;
3695    break;
3696  }
3697
3698  Diag(Loc, DiagKind) << DstType.getAsString() << SrcType.getAsString()
3699    << Flavor << SrcExpr->getSourceRange();
3700  return isInvalid;
3701}
3702