SemaExpr.cpp revision 82324d64af17964d61b9f93203e4cb47b95b742f
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Scope.h"
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29//  Standard Promotions and Conversions
30//===----------------------------------------------------------------------===//
31
32/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
33void Sema::DefaultFunctionArrayConversion(Expr *&E) {
34  QualType Ty = E->getType();
35  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
36
37  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
38    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
39    Ty = E->getType();
40  }
41  if (Ty->isFunctionType())
42    ImpCastExprToType(E, Context.getPointerType(Ty));
43  else if (Ty->isArrayType()) {
44    // In C90 mode, arrays only promote to pointers if the array expression is
45    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
46    // type 'array of type' is converted to an expression that has type 'pointer
47    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
48    // that has type 'array of type' ...".  The relevant change is "an lvalue"
49    // (C90) to "an expression" (C99).
50    //
51    // C++ 4.2p1:
52    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
53    // T" can be converted to an rvalue of type "pointer to T".
54    //
55    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
56        E->isLvalue(Context) == Expr::LV_Valid)
57      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
58  }
59}
60
61/// UsualUnaryConversions - Performs various conversions that are common to most
62/// operators (C99 6.3). The conversions of array and function types are
63/// sometimes surpressed. For example, the array->pointer conversion doesn't
64/// apply if the array is an argument to the sizeof or address (&) operators.
65/// In these instances, this routine should *not* be called.
66Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
67  QualType Ty = Expr->getType();
68  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
69
70  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
71    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
72    Ty = Expr->getType();
73  }
74  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
75    ImpCastExprToType(Expr, Context.IntTy);
76  else
77    DefaultFunctionArrayConversion(Expr);
78
79  return Expr;
80}
81
82/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
83/// do not have a prototype. Arguments that have type float are promoted to
84/// double. All other argument types are converted by UsualUnaryConversions().
85void Sema::DefaultArgumentPromotion(Expr *&Expr) {
86  QualType Ty = Expr->getType();
87  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
88
89  // If this is a 'float' (CVR qualified or typedef) promote to double.
90  if (const BuiltinType *BT = Ty->getAsBuiltinType())
91    if (BT->getKind() == BuiltinType::Float)
92      return ImpCastExprToType(Expr, Context.DoubleTy);
93
94  UsualUnaryConversions(Expr);
95}
96
97/// UsualArithmeticConversions - Performs various conversions that are common to
98/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
99/// routine returns the first non-arithmetic type found. The client is
100/// responsible for emitting appropriate error diagnostics.
101/// FIXME: verify the conversion rules for "complex int" are consistent with
102/// GCC.
103QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
104                                          bool isCompAssign) {
105  if (!isCompAssign) {
106    UsualUnaryConversions(lhsExpr);
107    UsualUnaryConversions(rhsExpr);
108  }
109  // For conversion purposes, we ignore any qualifiers.
110  // For example, "const float" and "float" are equivalent.
111  QualType lhs =
112    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
113  QualType rhs =
114    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
115
116  // If both types are identical, no conversion is needed.
117  if (lhs == rhs)
118    return lhs;
119
120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
121  // The caller can deal with this (e.g. pointer + int).
122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
123    return lhs;
124
125  // At this point, we have two different arithmetic types.
126
127  // Handle complex types first (C99 6.3.1.8p1).
128  if (lhs->isComplexType() || rhs->isComplexType()) {
129    // if we have an integer operand, the result is the complex type.
130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
131      // convert the rhs to the lhs complex type.
132      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
133      return lhs;
134    }
135    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
136      // convert the lhs to the rhs complex type.
137      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
138      return rhs;
139    }
140    // This handles complex/complex, complex/float, or float/complex.
141    // When both operands are complex, the shorter operand is converted to the
142    // type of the longer, and that is the type of the result. This corresponds
143    // to what is done when combining two real floating-point operands.
144    // The fun begins when size promotion occur across type domains.
145    // From H&S 6.3.4: When one operand is complex and the other is a real
146    // floating-point type, the less precise type is converted, within it's
147    // real or complex domain, to the precision of the other type. For example,
148    // when combining a "long double" with a "double _Complex", the
149    // "double _Complex" is promoted to "long double _Complex".
150    int result = Context.getFloatingTypeOrder(lhs, rhs);
151
152    if (result > 0) { // The left side is bigger, convert rhs.
153      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
154      if (!isCompAssign)
155        ImpCastExprToType(rhsExpr, rhs);
156    } else if (result < 0) { // The right side is bigger, convert lhs.
157      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
158      if (!isCompAssign)
159        ImpCastExprToType(lhsExpr, lhs);
160    }
161    // At this point, lhs and rhs have the same rank/size. Now, make sure the
162    // domains match. This is a requirement for our implementation, C99
163    // does not require this promotion.
164    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
165      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
166        if (!isCompAssign)
167          ImpCastExprToType(lhsExpr, rhs);
168        return rhs;
169      } else { // handle "_Complex double, double".
170        if (!isCompAssign)
171          ImpCastExprToType(rhsExpr, lhs);
172        return lhs;
173      }
174    }
175    return lhs; // The domain/size match exactly.
176  }
177  // Now handle "real" floating types (i.e. float, double, long double).
178  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
179    // if we have an integer operand, the result is the real floating type.
180    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
181      // convert rhs to the lhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
186      // convert lhs to the rhs floating point type.
187      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
188      return rhs;
189    }
190    // We have two real floating types, float/complex combos were handled above.
191    // Convert the smaller operand to the bigger result.
192    int result = Context.getFloatingTypeOrder(lhs, rhs);
193
194    if (result > 0) { // convert the rhs
195      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
196      return lhs;
197    }
198    if (result < 0) { // convert the lhs
199      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
200      return rhs;
201    }
202    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
203  }
204  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
205    // Handle GCC complex int extension.
206    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
207    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
208
209    if (lhsComplexInt && rhsComplexInt) {
210      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
211                                      rhsComplexInt->getElementType()) >= 0) {
212        // convert the rhs
213        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
214        return lhs;
215      }
216      if (!isCompAssign)
217        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
218      return rhs;
219    } else if (lhsComplexInt && rhs->isIntegerType()) {
220      // convert the rhs to the lhs complex type.
221      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
222      return lhs;
223    } else if (rhsComplexInt && lhs->isIntegerType()) {
224      // convert the lhs to the rhs complex type.
225      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
226      return rhs;
227    }
228  }
229  // Finally, we have two differing integer types.
230  // The rules for this case are in C99 6.3.1.8
231  int compare = Context.getIntegerTypeOrder(lhs, rhs);
232  bool lhsSigned = lhs->isSignedIntegerType(),
233       rhsSigned = rhs->isSignedIntegerType();
234  QualType destType;
235  if (lhsSigned == rhsSigned) {
236    // Same signedness; use the higher-ranked type
237    destType = compare >= 0 ? lhs : rhs;
238  } else if (compare != (lhsSigned ? 1 : -1)) {
239    // The unsigned type has greater than or equal rank to the
240    // signed type, so use the unsigned type
241    destType = lhsSigned ? rhs : lhs;
242  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
243    // The two types are different widths; if we are here, that
244    // means the signed type is larger than the unsigned type, so
245    // use the signed type.
246    destType = lhsSigned ? lhs : rhs;
247  } else {
248    // The signed type is higher-ranked than the unsigned type,
249    // but isn't actually any bigger (like unsigned int and long
250    // on most 32-bit systems).  Use the unsigned type corresponding
251    // to the signed type.
252    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
253  }
254  if (!isCompAssign) {
255    ImpCastExprToType(lhsExpr, destType);
256    ImpCastExprToType(rhsExpr, destType);
257  }
258  return destType;
259}
260
261//===----------------------------------------------------------------------===//
262//  Semantic Analysis for various Expression Types
263//===----------------------------------------------------------------------===//
264
265
266/// ActOnStringLiteral - The specified tokens were lexed as pasted string
267/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
268/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
269/// multiple tokens.  However, the common case is that StringToks points to one
270/// string.
271///
272Action::ExprResult
273Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
274  assert(NumStringToks && "Must have at least one string!");
275
276  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
277  if (Literal.hadError)
278    return ExprResult(true);
279
280  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
281  for (unsigned i = 0; i != NumStringToks; ++i)
282    StringTokLocs.push_back(StringToks[i].getLocation());
283
284  // Verify that pascal strings aren't too large.
285  if (Literal.Pascal && Literal.GetStringLength() > 256)
286    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
287                SourceRange(StringToks[0].getLocation(),
288                            StringToks[NumStringToks-1].getLocation()));
289
290  QualType StrTy = Context.CharTy;
291  if (Literal.AnyWide) StrTy = Context.getWCharType();
292  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
293
294  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
295  if (getLangOptions().CPlusPlus)
296    StrTy.addConst();
297
298  // Get an array type for the string, according to C99 6.4.5.  This includes
299  // the nul terminator character as well as the string length for pascal
300  // strings.
301  StrTy = Context.getConstantArrayType(StrTy,
302                                   llvm::APInt(32, Literal.GetStringLength()+1),
303                                       ArrayType::Normal, 0);
304
305  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
306  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
307                           Literal.AnyWide, StrTy,
308                           StringToks[0].getLocation(),
309                           StringToks[NumStringToks-1].getLocation());
310}
311
312/// DeclDefinedWithinScope - Return true if the specified decl is defined at or
313/// within the 'Within' scope.  The current Scope is CurScope.
314///
315/// NOTE: This method is extremely inefficient (linear scan), this should not be
316/// used in common cases.
317///
318static bool DeclDefinedWithinScope(ScopedDecl *D, Scope *Within,
319                                   Scope *CurScope) {
320  while (1) {
321    assert(CurScope && "CurScope not nested within 'Within'?");
322
323    // Check this scope for the decl.
324    if (CurScope->isDeclScope(D)) return true;
325
326    if (CurScope == Within) return false;
327    CurScope = CurScope->getParent();
328  }
329}
330
331/// ActOnIdentifierExpr - The parser read an identifier in expression context,
332/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
333/// identifier is used in a function call context.
334Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
335                                           IdentifierInfo &II,
336                                           bool HasTrailingLParen) {
337  // Could be enum-constant, value decl, instance variable, etc.
338  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
339
340  // If this reference is in an Objective-C method, then ivar lookup happens as
341  // well.
342  if (getCurMethodDecl()) {
343    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
344    // There are two cases to handle here.  1) scoped lookup could have failed,
345    // in which case we should look for an ivar.  2) scoped lookup could have
346    // found a decl, but that decl is outside the current method (i.e. a global
347    // variable).  In these two cases, we do a lookup for an ivar with this
348    // name, if the lookup suceeds, we replace it our current decl.
349    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
350      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
351      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
352        // FIXME: This should use a new expr for a direct reference, don't turn
353        // this into Self->ivar, just return a BareIVarExpr or something.
354        IdentifierInfo &II = Context.Idents.get("self");
355        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
356        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
357                                 static_cast<Expr*>(SelfExpr.Val), true, true);
358      }
359    }
360    // Needed to implement property "super.method" notation.
361    if (SD == 0 && &II == SuperID) {
362      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
363                     getCurMethodDecl()->getClassInterface()));
364      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
365    }
366  }
367  // If we are parsing a block, check the block parameter list.
368  if (CurBlock) {
369    for (unsigned i = 0, e = CurBlock->Params.size(); i != e; ++i)
370      if (CurBlock->Params[i]->getIdentifier() == &II)
371        D = CurBlock->Params[i];
372  }
373  if (D == 0) {
374    // Otherwise, this could be an implicitly declared function reference (legal
375    // in C90, extension in C99).
376    if (HasTrailingLParen &&
377        !getLangOptions().CPlusPlus) // Not in C++.
378      D = ImplicitlyDefineFunction(Loc, II, S);
379    else {
380      // If this name wasn't predeclared and if this is not a function call,
381      // diagnose the problem.
382      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
383    }
384  }
385
386  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
387    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
388      if (MD->isStatic())
389        // "invalid use of member 'x' in static member function"
390        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
391                    FD->getName());
392      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
393        // "invalid use of nonstatic data member 'x'"
394        return Diag(Loc, diag::err_invalid_non_static_member_use,
395                    FD->getName());
396
397      if (FD->isInvalidDecl())
398        return true;
399
400      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
401      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
402      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
403                            true, FD, Loc, FD->getType());
404    }
405
406    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
407  }
408  if (isa<TypedefDecl>(D))
409    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
410  if (isa<ObjCInterfaceDecl>(D))
411    return Diag(Loc, diag::err_unexpected_interface, II.getName());
412  if (isa<NamespaceDecl>(D))
413    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
414
415  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
416  ValueDecl *VD = cast<ValueDecl>(D);
417
418  // check if referencing an identifier with __attribute__((deprecated)).
419  if (VD->getAttr<DeprecatedAttr>())
420    Diag(Loc, diag::warn_deprecated, VD->getName());
421
422  // Only create DeclRefExpr's for valid Decl's.
423  if (VD->isInvalidDecl())
424    return true;
425
426  // If this reference is not in a block or if the referenced variable is
427  // within the block, create a normal DeclRefExpr.
428  //
429  // FIXME: This will create BlockDeclRefExprs for global variables,
430  // function references, enums constants, etc which is suboptimal :) and breaks
431  // things like "integer constant expression" tests.
432  //
433  if (!CurBlock || DeclDefinedWithinScope(VD, CurBlock->TheScope, S))
434    return new DeclRefExpr(VD, VD->getType(), Loc);
435
436  // If we are in a block and the variable is outside the current block,
437  // bind the variable reference with a BlockDeclRefExpr.
438
439  // The BlocksAttr indicates the variable is bound by-reference.
440  if (VD->getAttr<BlocksAttr>())
441    return new BlockDeclRefExpr(VD, VD->getType(), Loc, true);
442
443  // Variable will be bound by-copy, make it const within the closure.
444  VD->getType().addConst();
445  return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
446}
447
448Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
449                                           tok::TokenKind Kind) {
450  PredefinedExpr::IdentType IT;
451
452  switch (Kind) {
453  default: assert(0 && "Unknown simple primary expr!");
454  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
455  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
456  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
457  }
458
459  // Verify that this is in a function context.
460  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
461    return Diag(Loc, diag::err_predef_outside_function);
462
463  // Pre-defined identifiers are of type char[x], where x is the length of the
464  // string.
465  unsigned Length;
466  if (getCurFunctionDecl())
467    Length = getCurFunctionDecl()->getIdentifier()->getLength();
468  else
469    Length = getCurMethodDecl()->getSynthesizedMethodSize();
470
471  llvm::APInt LengthI(32, Length + 1);
472  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
473  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
474  return new PredefinedExpr(Loc, ResTy, IT);
475}
476
477Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
478  llvm::SmallString<16> CharBuffer;
479  CharBuffer.resize(Tok.getLength());
480  const char *ThisTokBegin = &CharBuffer[0];
481  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
482
483  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
484                            Tok.getLocation(), PP);
485  if (Literal.hadError())
486    return ExprResult(true);
487
488  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
489
490  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
491                              Tok.getLocation());
492}
493
494Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
495  // fast path for a single digit (which is quite common). A single digit
496  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
497  if (Tok.getLength() == 1) {
498    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
499
500    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
501    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
502                                         Context.IntTy,
503                                         Tok.getLocation()));
504  }
505  llvm::SmallString<512> IntegerBuffer;
506  IntegerBuffer.resize(Tok.getLength());
507  const char *ThisTokBegin = &IntegerBuffer[0];
508
509  // Get the spelling of the token, which eliminates trigraphs, etc.
510  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
511  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
512                               Tok.getLocation(), PP);
513  if (Literal.hadError)
514    return ExprResult(true);
515
516  Expr *Res;
517
518  if (Literal.isFloatingLiteral()) {
519    QualType Ty;
520    if (Literal.isFloat)
521      Ty = Context.FloatTy;
522    else if (!Literal.isLong)
523      Ty = Context.DoubleTy;
524    else
525      Ty = Context.LongDoubleTy;
526
527    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
528
529    // isExact will be set by GetFloatValue().
530    bool isExact = false;
531    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
532                              Ty, Tok.getLocation());
533
534  } else if (!Literal.isIntegerLiteral()) {
535    return ExprResult(true);
536  } else {
537    QualType Ty;
538
539    // long long is a C99 feature.
540    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
541        Literal.isLongLong)
542      Diag(Tok.getLocation(), diag::ext_longlong);
543
544    // Get the value in the widest-possible width.
545    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
546
547    if (Literal.GetIntegerValue(ResultVal)) {
548      // If this value didn't fit into uintmax_t, warn and force to ull.
549      Diag(Tok.getLocation(), diag::warn_integer_too_large);
550      Ty = Context.UnsignedLongLongTy;
551      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
552             "long long is not intmax_t?");
553    } else {
554      // If this value fits into a ULL, try to figure out what else it fits into
555      // according to the rules of C99 6.4.4.1p5.
556
557      // Octal, Hexadecimal, and integers with a U suffix are allowed to
558      // be an unsigned int.
559      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
560
561      // Check from smallest to largest, picking the smallest type we can.
562      unsigned Width = 0;
563      if (!Literal.isLong && !Literal.isLongLong) {
564        // Are int/unsigned possibilities?
565        unsigned IntSize = Context.Target.getIntWidth();
566
567        // Does it fit in a unsigned int?
568        if (ResultVal.isIntN(IntSize)) {
569          // Does it fit in a signed int?
570          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
571            Ty = Context.IntTy;
572          else if (AllowUnsigned)
573            Ty = Context.UnsignedIntTy;
574          Width = IntSize;
575        }
576      }
577
578      // Are long/unsigned long possibilities?
579      if (Ty.isNull() && !Literal.isLongLong) {
580        unsigned LongSize = Context.Target.getLongWidth();
581
582        // Does it fit in a unsigned long?
583        if (ResultVal.isIntN(LongSize)) {
584          // Does it fit in a signed long?
585          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
586            Ty = Context.LongTy;
587          else if (AllowUnsigned)
588            Ty = Context.UnsignedLongTy;
589          Width = LongSize;
590        }
591      }
592
593      // Finally, check long long if needed.
594      if (Ty.isNull()) {
595        unsigned LongLongSize = Context.Target.getLongLongWidth();
596
597        // Does it fit in a unsigned long long?
598        if (ResultVal.isIntN(LongLongSize)) {
599          // Does it fit in a signed long long?
600          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
601            Ty = Context.LongLongTy;
602          else if (AllowUnsigned)
603            Ty = Context.UnsignedLongLongTy;
604          Width = LongLongSize;
605        }
606      }
607
608      // If we still couldn't decide a type, we probably have something that
609      // does not fit in a signed long long, but has no U suffix.
610      if (Ty.isNull()) {
611        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
612        Ty = Context.UnsignedLongLongTy;
613        Width = Context.Target.getLongLongWidth();
614      }
615
616      if (ResultVal.getBitWidth() != Width)
617        ResultVal.trunc(Width);
618    }
619
620    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
621  }
622
623  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
624  if (Literal.isImaginary)
625    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
626
627  return Res;
628}
629
630Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
631                                        ExprTy *Val) {
632  Expr *E = (Expr *)Val;
633  assert((E != 0) && "ActOnParenExpr() missing expr");
634  return new ParenExpr(L, R, E);
635}
636
637/// The UsualUnaryConversions() function is *not* called by this routine.
638/// See C99 6.3.2.1p[2-4] for more details.
639QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
640                                         SourceLocation OpLoc,
641                                         const SourceRange &ExprRange,
642                                         bool isSizeof) {
643  // C99 6.5.3.4p1:
644  if (isa<FunctionType>(exprType) && isSizeof)
645    // alignof(function) is allowed.
646    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
647  else if (exprType->isVoidType())
648    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
649         ExprRange);
650  else if (exprType->isIncompleteType()) {
651    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
652                           diag::err_alignof_incomplete_type,
653         exprType.getAsString(), ExprRange);
654    return QualType(); // error
655  }
656  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
657  return Context.getSizeType();
658}
659
660Action::ExprResult Sema::
661ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
662                           SourceLocation LPLoc, TypeTy *Ty,
663                           SourceLocation RPLoc) {
664  // If error parsing type, ignore.
665  if (Ty == 0) return true;
666
667  // Verify that this is a valid expression.
668  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
669
670  QualType resultType =
671    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
672
673  if (resultType.isNull())
674    return true;
675  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
676}
677
678QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
679  DefaultFunctionArrayConversion(V);
680
681  // These operators return the element type of a complex type.
682  if (const ComplexType *CT = V->getType()->getAsComplexType())
683    return CT->getElementType();
684
685  // Otherwise they pass through real integer and floating point types here.
686  if (V->getType()->isArithmeticType())
687    return V->getType();
688
689  // Reject anything else.
690  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
691  return QualType();
692}
693
694
695
696Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
697                                             tok::TokenKind Kind,
698                                             ExprTy *Input) {
699  UnaryOperator::Opcode Opc;
700  switch (Kind) {
701  default: assert(0 && "Unknown unary op!");
702  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
703  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
704  }
705  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
706  if (result.isNull())
707    return true;
708  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
709}
710
711Action::ExprResult Sema::
712ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
713                        ExprTy *Idx, SourceLocation RLoc) {
714  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
715
716  // Perform default conversions.
717  DefaultFunctionArrayConversion(LHSExp);
718  DefaultFunctionArrayConversion(RHSExp);
719
720  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
721
722  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
723  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
724  // in the subscript position. As a result, we need to derive the array base
725  // and index from the expression types.
726  Expr *BaseExpr, *IndexExpr;
727  QualType ResultType;
728  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
729    BaseExpr = LHSExp;
730    IndexExpr = RHSExp;
731    // FIXME: need to deal with const...
732    ResultType = PTy->getPointeeType();
733  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
734     // Handle the uncommon case of "123[Ptr]".
735    BaseExpr = RHSExp;
736    IndexExpr = LHSExp;
737    // FIXME: need to deal with const...
738    ResultType = PTy->getPointeeType();
739  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
740    BaseExpr = LHSExp;    // vectors: V[123]
741    IndexExpr = RHSExp;
742
743    // Component access limited to variables (reject vec4.rg[1]).
744    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
745        !isa<ExtVectorElementExpr>(BaseExpr))
746      return Diag(LLoc, diag::err_ext_vector_component_access,
747                  SourceRange(LLoc, RLoc));
748    // FIXME: need to deal with const...
749    ResultType = VTy->getElementType();
750  } else {
751    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
752                RHSExp->getSourceRange());
753  }
754  // C99 6.5.2.1p1
755  if (!IndexExpr->getType()->isIntegerType())
756    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
757                IndexExpr->getSourceRange());
758
759  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
760  // the following check catches trying to index a pointer to a function (e.g.
761  // void (*)(int)) and pointers to incomplete types.  Functions are not
762  // objects in C99.
763  if (!ResultType->isObjectType())
764    return Diag(BaseExpr->getLocStart(),
765                diag::err_typecheck_subscript_not_object,
766                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
767
768  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
769}
770
771QualType Sema::
772CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
773                        IdentifierInfo &CompName, SourceLocation CompLoc) {
774  const ExtVectorType *vecType = baseType->getAsExtVectorType();
775
776  // This flag determines whether or not the component is to be treated as a
777  // special name, or a regular GLSL-style component access.
778  bool SpecialComponent = false;
779
780  // The vector accessor can't exceed the number of elements.
781  const char *compStr = CompName.getName();
782  if (strlen(compStr) > vecType->getNumElements()) {
783    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
784                baseType.getAsString(), SourceRange(CompLoc));
785    return QualType();
786  }
787
788  // Check that we've found one of the special components, or that the component
789  // names must come from the same set.
790  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
791      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
792    SpecialComponent = true;
793  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
794    do
795      compStr++;
796    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
797  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
798    do
799      compStr++;
800    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
801  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
802    do
803      compStr++;
804    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
805  }
806
807  if (!SpecialComponent && *compStr) {
808    // We didn't get to the end of the string. This means the component names
809    // didn't come from the same set *or* we encountered an illegal name.
810    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
811         std::string(compStr,compStr+1), SourceRange(CompLoc));
812    return QualType();
813  }
814  // Each component accessor can't exceed the vector type.
815  compStr = CompName.getName();
816  while (*compStr) {
817    if (vecType->isAccessorWithinNumElements(*compStr))
818      compStr++;
819    else
820      break;
821  }
822  if (!SpecialComponent && *compStr) {
823    // We didn't get to the end of the string. This means a component accessor
824    // exceeds the number of elements in the vector.
825    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
826                baseType.getAsString(), SourceRange(CompLoc));
827    return QualType();
828  }
829
830  // If we have a special component name, verify that the current vector length
831  // is an even number, since all special component names return exactly half
832  // the elements.
833  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
834    return QualType();
835  }
836
837  // The component accessor looks fine - now we need to compute the actual type.
838  // The vector type is implied by the component accessor. For example,
839  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
840  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
841  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
842                                       : strlen(CompName.getName());
843  if (CompSize == 1)
844    return vecType->getElementType();
845
846  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
847  // Now look up the TypeDefDecl from the vector type. Without this,
848  // diagostics look bad. We want extended vector types to appear built-in.
849  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
850    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
851      return Context.getTypedefType(ExtVectorDecls[i]);
852  }
853  return VT; // should never get here (a typedef type should always be found).
854}
855
856/// constructSetterName - Return the setter name for the given
857/// identifier, i.e. "set" + Name where the initial character of Name
858/// has been capitalized.
859// FIXME: Merge with same routine in Parser. But where should this
860// live?
861static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
862                                           const IdentifierInfo *Name) {
863  unsigned N = Name->getLength();
864  char *SelectorName = new char[3 + N];
865  memcpy(SelectorName, "set", 3);
866  memcpy(&SelectorName[3], Name->getName(), N);
867  SelectorName[3] = toupper(SelectorName[3]);
868
869  IdentifierInfo *Setter =
870    &Idents.get(SelectorName, &SelectorName[3 + N]);
871  delete[] SelectorName;
872  return Setter;
873}
874
875Action::ExprResult Sema::
876ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
877                         tok::TokenKind OpKind, SourceLocation MemberLoc,
878                         IdentifierInfo &Member) {
879  Expr *BaseExpr = static_cast<Expr *>(Base);
880  assert(BaseExpr && "no record expression");
881
882  // Perform default conversions.
883  DefaultFunctionArrayConversion(BaseExpr);
884
885  QualType BaseType = BaseExpr->getType();
886  assert(!BaseType.isNull() && "no type for member expression");
887
888  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
889  // must have pointer type, and the accessed type is the pointee.
890  if (OpKind == tok::arrow) {
891    if (const PointerType *PT = BaseType->getAsPointerType())
892      BaseType = PT->getPointeeType();
893    else
894      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
895                  BaseType.getAsString(), BaseExpr->getSourceRange());
896  }
897
898  // Handle field access to simple records.  This also handles access to fields
899  // of the ObjC 'id' struct.
900  if (const RecordType *RTy = BaseType->getAsRecordType()) {
901    RecordDecl *RDecl = RTy->getDecl();
902    if (RTy->isIncompleteType())
903      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
904                  BaseExpr->getSourceRange());
905    // The record definition is complete, now make sure the member is valid.
906    FieldDecl *MemberDecl = RDecl->getMember(&Member);
907    if (!MemberDecl)
908      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
909                  BaseExpr->getSourceRange());
910
911    // Figure out the type of the member; see C99 6.5.2.3p3
912    // FIXME: Handle address space modifiers
913    QualType MemberType = MemberDecl->getType();
914    unsigned combinedQualifiers =
915        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
916    MemberType = MemberType.getQualifiedType(combinedQualifiers);
917
918    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
919                          MemberLoc, MemberType);
920  }
921
922  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
923  // (*Obj).ivar.
924  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
925    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
926      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
927                                 OpKind == tok::arrow);
928    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
929                IFTy->getDecl()->getName(), Member.getName(),
930                BaseExpr->getSourceRange());
931  }
932
933  // Handle Objective-C property access, which is "Obj.property" where Obj is a
934  // pointer to a (potentially qualified) interface type.
935  const PointerType *PTy;
936  const ObjCInterfaceType *IFTy;
937  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
938      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
939    ObjCInterfaceDecl *IFace = IFTy->getDecl();
940
941    // Search for a declared property first.
942    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
943      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
944
945    // Check protocols on qualified interfaces.
946    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
947         E = IFTy->qual_end(); I != E; ++I)
948      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
949        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
950
951    // If that failed, look for an "implicit" property by seeing if the nullary
952    // selector is implemented.
953
954    // FIXME: The logic for looking up nullary and unary selectors should be
955    // shared with the code in ActOnInstanceMessage.
956
957    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
958    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
959
960    // If this reference is in an @implementation, check for 'private' methods.
961    if (!Getter)
962      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
963        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
964          if (ObjCImplementationDecl *ImpDecl =
965              ObjCImplementations[ClassDecl->getIdentifier()])
966            Getter = ImpDecl->getInstanceMethod(Sel);
967
968    if (Getter) {
969      // If we found a getter then this may be a valid dot-reference, we
970      // need to also look for the matching setter.
971      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
972                                                       &Member);
973      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
974      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
975
976      if (!Setter) {
977        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
978          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
979            if (ObjCImplementationDecl *ImpDecl =
980                ObjCImplementations[ClassDecl->getIdentifier()])
981              Setter = ImpDecl->getInstanceMethod(SetterSel);
982      }
983
984      // FIXME: There are some issues here. First, we are not
985      // diagnosing accesses to read-only properties because we do not
986      // know if this is a getter or setter yet. Second, we are
987      // checking that the type of the setter matches the type we
988      // expect.
989      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
990                                     MemberLoc, BaseExpr);
991    }
992  }
993
994  // Handle 'field access' to vectors, such as 'V.xx'.
995  if (BaseType->isExtVectorType() && OpKind == tok::period) {
996    // Component access limited to variables (reject vec4.rg.g).
997    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
998        !isa<ExtVectorElementExpr>(BaseExpr))
999      return Diag(MemberLoc, diag::err_ext_vector_component_access,
1000                  BaseExpr->getSourceRange());
1001    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1002    if (ret.isNull())
1003      return true;
1004    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1005  }
1006
1007  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1008              BaseType.getAsString(), BaseExpr->getSourceRange());
1009}
1010
1011/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1012/// This provides the location of the left/right parens and a list of comma
1013/// locations.
1014Action::ExprResult Sema::
1015ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1016              ExprTy **args, unsigned NumArgs,
1017              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1018  Expr *Fn = static_cast<Expr *>(fn);
1019  Expr **Args = reinterpret_cast<Expr**>(args);
1020  assert(Fn && "no function call expression");
1021  FunctionDecl *FDecl = NULL;
1022
1023  // Promote the function operand.
1024  UsualUnaryConversions(Fn);
1025
1026  // If we're directly calling a function, get the declaration for
1027  // that function.
1028  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1029    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
1030      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1031
1032  // Make the call expr early, before semantic checks.  This guarantees cleanup
1033  // of arguments and function on error.
1034  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1035                                                 Context.BoolTy, RParenLoc));
1036  const FunctionType *FuncT;
1037  if (!Fn->getType()->isBlockPointerType()) {
1038    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1039    // have type pointer to function".
1040    const PointerType *PT = Fn->getType()->getAsPointerType();
1041    if (PT == 0)
1042      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1043                  Fn->getSourceRange());
1044    FuncT = PT->getPointeeType()->getAsFunctionType();
1045  } else { // This is a block call.
1046    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1047                getAsFunctionType();
1048  }
1049  if (FuncT == 0)
1050    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1051                Fn->getSourceRange());
1052
1053  // We know the result type of the call, set it.
1054  TheCall->setType(FuncT->getResultType());
1055
1056  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1057    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1058    // assignment, to the types of the corresponding parameter, ...
1059    unsigned NumArgsInProto = Proto->getNumArgs();
1060    unsigned NumArgsToCheck = NumArgs;
1061
1062    // If too few arguments are available (and we don't have default
1063    // arguments for the remaining parameters), don't make the call.
1064    if (NumArgs < NumArgsInProto) {
1065      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1066        // Use default arguments for missing arguments
1067        NumArgsToCheck = NumArgsInProto;
1068        TheCall->setNumArgs(NumArgsInProto);
1069      } else
1070        return Diag(RParenLoc,
1071                    !Fn->getType()->isBlockPointerType()
1072                      ? diag::err_typecheck_call_too_few_args
1073                      : diag::err_typecheck_block_too_few_args,
1074                    Fn->getSourceRange());
1075    }
1076
1077    // If too many are passed and not variadic, error on the extras and drop
1078    // them.
1079    if (NumArgs > NumArgsInProto) {
1080      if (!Proto->isVariadic()) {
1081        Diag(Args[NumArgsInProto]->getLocStart(),
1082               !Fn->getType()->isBlockPointerType()
1083                 ? diag::err_typecheck_call_too_many_args
1084                 : diag::err_typecheck_block_too_many_args,
1085             Fn->getSourceRange(),
1086             SourceRange(Args[NumArgsInProto]->getLocStart(),
1087                         Args[NumArgs-1]->getLocEnd()));
1088        // This deletes the extra arguments.
1089        TheCall->setNumArgs(NumArgsInProto);
1090      }
1091      NumArgsToCheck = NumArgsInProto;
1092    }
1093
1094    // Continue to check argument types (even if we have too few/many args).
1095    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1096      QualType ProtoArgType = Proto->getArgType(i);
1097
1098      Expr *Arg;
1099      if (i < NumArgs)
1100        Arg = Args[i];
1101      else
1102        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1103      QualType ArgType = Arg->getType();
1104
1105      // Compute implicit casts from the operand to the formal argument type.
1106      AssignConvertType ConvTy =
1107        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1108      TheCall->setArg(i, Arg);
1109
1110      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1111                                   ArgType, Arg, "passing"))
1112        return true;
1113    }
1114
1115    // If this is a variadic call, handle args passed through "...".
1116    if (Proto->isVariadic()) {
1117      // Promote the arguments (C99 6.5.2.2p7).
1118      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1119        Expr *Arg = Args[i];
1120        DefaultArgumentPromotion(Arg);
1121        TheCall->setArg(i, Arg);
1122      }
1123    }
1124  } else {
1125    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1126
1127    // Promote the arguments (C99 6.5.2.2p6).
1128    for (unsigned i = 0; i != NumArgs; i++) {
1129      Expr *Arg = Args[i];
1130      DefaultArgumentPromotion(Arg);
1131      TheCall->setArg(i, Arg);
1132    }
1133  }
1134
1135  // Do special checking on direct calls to functions.
1136  if (FDecl)
1137    return CheckFunctionCall(FDecl, TheCall.take());
1138
1139  return TheCall.take();
1140}
1141
1142Action::ExprResult Sema::
1143ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1144                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1145  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1146  QualType literalType = QualType::getFromOpaquePtr(Ty);
1147  // FIXME: put back this assert when initializers are worked out.
1148  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1149  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1150
1151  if (literalType->isArrayType()) {
1152    if (literalType->isVariableArrayType())
1153      return Diag(LParenLoc,
1154                  diag::err_variable_object_no_init,
1155                  SourceRange(LParenLoc,
1156                              literalExpr->getSourceRange().getEnd()));
1157  } else if (literalType->isIncompleteType()) {
1158    return Diag(LParenLoc,
1159                diag::err_typecheck_decl_incomplete_type,
1160                literalType.getAsString(),
1161                SourceRange(LParenLoc,
1162                            literalExpr->getSourceRange().getEnd()));
1163  }
1164
1165  if (CheckInitializerTypes(literalExpr, literalType))
1166    return true;
1167
1168  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1169  if (isFileScope) { // 6.5.2.5p3
1170    if (CheckForConstantInitializer(literalExpr, literalType))
1171      return true;
1172  }
1173  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1174}
1175
1176Action::ExprResult Sema::
1177ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1178              SourceLocation RBraceLoc) {
1179  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1180
1181  // Semantic analysis for initializers is done by ActOnDeclarator() and
1182  // CheckInitializer() - it requires knowledge of the object being intialized.
1183
1184  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1185  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1186  return E;
1187}
1188
1189/// CheckCastTypes - Check type constraints for casting between types.
1190bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1191  UsualUnaryConversions(castExpr);
1192
1193  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1194  // type needs to be scalar.
1195  if (castType->isVoidType()) {
1196    // Cast to void allows any expr type.
1197  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1198    // GCC struct/union extension: allow cast to self.
1199    if (Context.getCanonicalType(castType) !=
1200        Context.getCanonicalType(castExpr->getType()) ||
1201        (!castType->isStructureType() && !castType->isUnionType())) {
1202      // Reject any other conversions to non-scalar types.
1203      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1204                  castType.getAsString(), castExpr->getSourceRange());
1205    }
1206
1207    // accept this, but emit an ext-warn.
1208    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1209         castType.getAsString(), castExpr->getSourceRange());
1210  } else if (!castExpr->getType()->isScalarType() &&
1211             !castExpr->getType()->isVectorType()) {
1212    return Diag(castExpr->getLocStart(),
1213                diag::err_typecheck_expect_scalar_operand,
1214                castExpr->getType().getAsString(),castExpr->getSourceRange());
1215  } else if (castExpr->getType()->isVectorType()) {
1216    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1217      return true;
1218  } else if (castType->isVectorType()) {
1219    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1220      return true;
1221  }
1222  return false;
1223}
1224
1225bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1226  assert(VectorTy->isVectorType() && "Not a vector type!");
1227
1228  if (Ty->isVectorType() || Ty->isIntegerType()) {
1229    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1230      return Diag(R.getBegin(),
1231                  Ty->isVectorType() ?
1232                  diag::err_invalid_conversion_between_vectors :
1233                  diag::err_invalid_conversion_between_vector_and_integer,
1234                  VectorTy.getAsString().c_str(),
1235                  Ty.getAsString().c_str(), R);
1236  } else
1237    return Diag(R.getBegin(),
1238                diag::err_invalid_conversion_between_vector_and_scalar,
1239                VectorTy.getAsString().c_str(),
1240                Ty.getAsString().c_str(), R);
1241
1242  return false;
1243}
1244
1245Action::ExprResult Sema::
1246ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1247              SourceLocation RParenLoc, ExprTy *Op) {
1248  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1249
1250  Expr *castExpr = static_cast<Expr*>(Op);
1251  QualType castType = QualType::getFromOpaquePtr(Ty);
1252
1253  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1254    return true;
1255  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
1256}
1257
1258/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1259/// In that case, lex = cond.
1260inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1261  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1262  UsualUnaryConversions(cond);
1263  UsualUnaryConversions(lex);
1264  UsualUnaryConversions(rex);
1265  QualType condT = cond->getType();
1266  QualType lexT = lex->getType();
1267  QualType rexT = rex->getType();
1268
1269  // first, check the condition.
1270  if (!condT->isScalarType()) { // C99 6.5.15p2
1271    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1272         condT.getAsString());
1273    return QualType();
1274  }
1275
1276  // Now check the two expressions.
1277
1278  // If both operands have arithmetic type, do the usual arithmetic conversions
1279  // to find a common type: C99 6.5.15p3,5.
1280  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1281    UsualArithmeticConversions(lex, rex);
1282    return lex->getType();
1283  }
1284
1285  // If both operands are the same structure or union type, the result is that
1286  // type.
1287  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1288    if (const RecordType *RHSRT = rexT->getAsRecordType())
1289      if (LHSRT->getDecl() == RHSRT->getDecl())
1290        // "If both the operands have structure or union type, the result has
1291        // that type."  This implies that CV qualifiers are dropped.
1292        return lexT.getUnqualifiedType();
1293  }
1294
1295  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1296  // The following || allows only one side to be void (a GCC-ism).
1297  if (lexT->isVoidType() || rexT->isVoidType()) {
1298    if (!lexT->isVoidType())
1299      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1300           rex->getSourceRange());
1301    if (!rexT->isVoidType())
1302      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1303           lex->getSourceRange());
1304    ImpCastExprToType(lex, Context.VoidTy);
1305    ImpCastExprToType(rex, Context.VoidTy);
1306    return Context.VoidTy;
1307  }
1308  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1309  // the type of the other operand."
1310  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1311       Context.isObjCObjectPointerType(lexT)) &&
1312      rex->isNullPointerConstant(Context)) {
1313    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1314    return lexT;
1315  }
1316  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1317       Context.isObjCObjectPointerType(rexT)) &&
1318      lex->isNullPointerConstant(Context)) {
1319    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1320    return rexT;
1321  }
1322  // Handle the case where both operands are pointers before we handle null
1323  // pointer constants in case both operands are null pointer constants.
1324  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1325    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1326      // get the "pointed to" types
1327      QualType lhptee = LHSPT->getPointeeType();
1328      QualType rhptee = RHSPT->getPointeeType();
1329
1330      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1331      if (lhptee->isVoidType() &&
1332          rhptee->isIncompleteOrObjectType()) {
1333        // Figure out necessary qualifiers (C99 6.5.15p6)
1334        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1335        QualType destType = Context.getPointerType(destPointee);
1336        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1337        ImpCastExprToType(rex, destType); // promote to void*
1338        return destType;
1339      }
1340      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1341        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1342        QualType destType = Context.getPointerType(destPointee);
1343        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1344        ImpCastExprToType(rex, destType); // promote to void*
1345        return destType;
1346      }
1347
1348      QualType compositeType = lexT;
1349
1350      // If either type is an Objective-C object type then check
1351      // compatibility according to Objective-C.
1352      if (Context.isObjCObjectPointerType(lexT) ||
1353          Context.isObjCObjectPointerType(rexT)) {
1354        // If both operands are interfaces and either operand can be
1355        // assigned to the other, use that type as the composite
1356        // type. This allows
1357        //   xxx ? (A*) a : (B*) b
1358        // where B is a subclass of A.
1359        //
1360        // Additionally, as for assignment, if either type is 'id'
1361        // allow silent coercion. Finally, if the types are
1362        // incompatible then make sure to use 'id' as the composite
1363        // type so the result is acceptable for sending messages to.
1364
1365        // FIXME: This code should not be localized to here. Also this
1366        // should use a compatible check instead of abusing the
1367        // canAssignObjCInterfaces code.
1368        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1369        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1370        if (LHSIface && RHSIface &&
1371            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1372          compositeType = lexT;
1373        } else if (LHSIface && RHSIface &&
1374                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1375          compositeType = rexT;
1376        } else if (Context.isObjCIdType(lhptee) ||
1377                   Context.isObjCIdType(rhptee)) {
1378          // FIXME: This code looks wrong, because isObjCIdType checks
1379          // the struct but getObjCIdType returns the pointer to
1380          // struct. This is horrible and should be fixed.
1381          compositeType = Context.getObjCIdType();
1382        } else {
1383          QualType incompatTy = Context.getObjCIdType();
1384          ImpCastExprToType(lex, incompatTy);
1385          ImpCastExprToType(rex, incompatTy);
1386          return incompatTy;
1387        }
1388      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1389                                             rhptee.getUnqualifiedType())) {
1390        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1391             lexT.getAsString(), rexT.getAsString(),
1392             lex->getSourceRange(), rex->getSourceRange());
1393        // In this situation, we assume void* type. No especially good
1394        // reason, but this is what gcc does, and we do have to pick
1395        // to get a consistent AST.
1396        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1397        ImpCastExprToType(lex, incompatTy);
1398        ImpCastExprToType(rex, incompatTy);
1399        return incompatTy;
1400      }
1401      // The pointer types are compatible.
1402      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1403      // differently qualified versions of compatible types, the result type is
1404      // a pointer to an appropriately qualified version of the *composite*
1405      // type.
1406      // FIXME: Need to calculate the composite type.
1407      // FIXME: Need to add qualifiers
1408      ImpCastExprToType(lex, compositeType);
1409      ImpCastExprToType(rex, compositeType);
1410      return compositeType;
1411    }
1412  }
1413  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1414  // evaluates to "struct objc_object *" (and is handled above when comparing
1415  // id with statically typed objects).
1416  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1417    // GCC allows qualified id and any Objective-C type to devolve to
1418    // id. Currently localizing to here until clear this should be
1419    // part of ObjCQualifiedIdTypesAreCompatible.
1420    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1421        (lexT->isObjCQualifiedIdType() &&
1422         Context.isObjCObjectPointerType(rexT)) ||
1423        (rexT->isObjCQualifiedIdType() &&
1424         Context.isObjCObjectPointerType(lexT))) {
1425      // FIXME: This is not the correct composite type. This only
1426      // happens to work because id can more or less be used anywhere,
1427      // however this may change the type of method sends.
1428      // FIXME: gcc adds some type-checking of the arguments and emits
1429      // (confusing) incompatible comparison warnings in some
1430      // cases. Investigate.
1431      QualType compositeType = Context.getObjCIdType();
1432      ImpCastExprToType(lex, compositeType);
1433      ImpCastExprToType(rex, compositeType);
1434      return compositeType;
1435    }
1436  }
1437
1438  // Selection between block pointer types is ok as long as they are the same.
1439  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1440      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1441    return lexT;
1442
1443  // Otherwise, the operands are not compatible.
1444  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1445       lexT.getAsString(), rexT.getAsString(),
1446       lex->getSourceRange(), rex->getSourceRange());
1447  return QualType();
1448}
1449
1450/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1451/// in the case of a the GNU conditional expr extension.
1452Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1453                                            SourceLocation ColonLoc,
1454                                            ExprTy *Cond, ExprTy *LHS,
1455                                            ExprTy *RHS) {
1456  Expr *CondExpr = (Expr *) Cond;
1457  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1458
1459  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1460  // was the condition.
1461  bool isLHSNull = LHSExpr == 0;
1462  if (isLHSNull)
1463    LHSExpr = CondExpr;
1464
1465  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1466                                             RHSExpr, QuestionLoc);
1467  if (result.isNull())
1468    return true;
1469  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1470                                 RHSExpr, result);
1471}
1472
1473
1474// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1475// being closely modeled after the C99 spec:-). The odd characteristic of this
1476// routine is it effectively iqnores the qualifiers on the top level pointee.
1477// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1478// FIXME: add a couple examples in this comment.
1479Sema::AssignConvertType
1480Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1481  QualType lhptee, rhptee;
1482
1483  // get the "pointed to" type (ignoring qualifiers at the top level)
1484  lhptee = lhsType->getAsPointerType()->getPointeeType();
1485  rhptee = rhsType->getAsPointerType()->getPointeeType();
1486
1487  // make sure we operate on the canonical type
1488  lhptee = Context.getCanonicalType(lhptee);
1489  rhptee = Context.getCanonicalType(rhptee);
1490
1491  AssignConvertType ConvTy = Compatible;
1492
1493  // C99 6.5.16.1p1: This following citation is common to constraints
1494  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1495  // qualifiers of the type *pointed to* by the right;
1496  // FIXME: Handle ASQualType
1497  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1498       rhptee.getCVRQualifiers())
1499    ConvTy = CompatiblePointerDiscardsQualifiers;
1500
1501  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1502  // incomplete type and the other is a pointer to a qualified or unqualified
1503  // version of void...
1504  if (lhptee->isVoidType()) {
1505    if (rhptee->isIncompleteOrObjectType())
1506      return ConvTy;
1507
1508    // As an extension, we allow cast to/from void* to function pointer.
1509    assert(rhptee->isFunctionType());
1510    return FunctionVoidPointer;
1511  }
1512
1513  if (rhptee->isVoidType()) {
1514    if (lhptee->isIncompleteOrObjectType())
1515      return ConvTy;
1516
1517    // As an extension, we allow cast to/from void* to function pointer.
1518    assert(lhptee->isFunctionType());
1519    return FunctionVoidPointer;
1520  }
1521
1522  // Check for ObjC interfaces
1523  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1524  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1525  if (LHSIface && RHSIface &&
1526      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1527    return ConvTy;
1528
1529  // ID acts sort of like void* for ObjC interfaces
1530  if (LHSIface && Context.isObjCIdType(rhptee))
1531    return ConvTy;
1532  if (RHSIface && Context.isObjCIdType(lhptee))
1533    return ConvTy;
1534
1535  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1536  // unqualified versions of compatible types, ...
1537  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1538                                  rhptee.getUnqualifiedType()))
1539    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1540  return ConvTy;
1541}
1542
1543/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1544/// block pointer types are compatible or whether a block and normal pointer
1545/// are compatible. It is more restrict than comparing two function pointer
1546// types.
1547Sema::AssignConvertType
1548Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1549                                          QualType rhsType) {
1550  QualType lhptee, rhptee;
1551
1552  // get the "pointed to" type (ignoring qualifiers at the top level)
1553  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1554  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1555
1556  // make sure we operate on the canonical type
1557  lhptee = Context.getCanonicalType(lhptee);
1558  rhptee = Context.getCanonicalType(rhptee);
1559
1560  AssignConvertType ConvTy = Compatible;
1561
1562  // For blocks we enforce that qualifiers are identical.
1563  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1564    ConvTy = CompatiblePointerDiscardsQualifiers;
1565
1566  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1567    return IncompatibleBlockPointer;
1568  return ConvTy;
1569}
1570
1571/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1572/// has code to accommodate several GCC extensions when type checking
1573/// pointers. Here are some objectionable examples that GCC considers warnings:
1574///
1575///  int a, *pint;
1576///  short *pshort;
1577///  struct foo *pfoo;
1578///
1579///  pint = pshort; // warning: assignment from incompatible pointer type
1580///  a = pint; // warning: assignment makes integer from pointer without a cast
1581///  pint = a; // warning: assignment makes pointer from integer without a cast
1582///  pint = pfoo; // warning: assignment from incompatible pointer type
1583///
1584/// As a result, the code for dealing with pointers is more complex than the
1585/// C99 spec dictates.
1586///
1587Sema::AssignConvertType
1588Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1589  // Get canonical types.  We're not formatting these types, just comparing
1590  // them.
1591  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1592  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1593
1594  if (lhsType == rhsType)
1595    return Compatible; // Common case: fast path an exact match.
1596
1597  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1598    if (Context.typesAreCompatible(lhsType, rhsType))
1599      return Compatible;
1600    return Incompatible;
1601  }
1602
1603  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1604    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1605      return Compatible;
1606    // Relax integer conversions like we do for pointers below.
1607    if (rhsType->isIntegerType())
1608      return IntToPointer;
1609    if (lhsType->isIntegerType())
1610      return PointerToInt;
1611    return Incompatible;
1612  }
1613
1614  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1615    // For ExtVector, allow vector splats; float -> <n x float>
1616    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1617      if (LV->getElementType() == rhsType)
1618        return Compatible;
1619
1620    // If we are allowing lax vector conversions, and LHS and RHS are both
1621    // vectors, the total size only needs to be the same. This is a bitcast;
1622    // no bits are changed but the result type is different.
1623    if (getLangOptions().LaxVectorConversions &&
1624        lhsType->isVectorType() && rhsType->isVectorType()) {
1625      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1626        return Compatible;
1627    }
1628    return Incompatible;
1629  }
1630
1631  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1632    return Compatible;
1633
1634  if (isa<PointerType>(lhsType)) {
1635    if (rhsType->isIntegerType())
1636      return IntToPointer;
1637
1638    if (isa<PointerType>(rhsType))
1639      return CheckPointerTypesForAssignment(lhsType, rhsType);
1640
1641    if (rhsType->getAsBlockPointerType())
1642      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1643        return BlockVoidPointer;
1644
1645    return Incompatible;
1646  }
1647
1648  if (isa<BlockPointerType>(lhsType)) {
1649    if (rhsType->isIntegerType())
1650      return IntToPointer;
1651
1652    if (rhsType->isBlockPointerType())
1653      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1654
1655    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1656      if (RHSPT->getPointeeType()->isVoidType())
1657        return BlockVoidPointer;
1658    }
1659    return Incompatible;
1660  }
1661
1662  if (isa<PointerType>(rhsType)) {
1663    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1664    if (lhsType == Context.BoolTy)
1665      return Compatible;
1666
1667    if (lhsType->isIntegerType())
1668      return PointerToInt;
1669
1670    if (isa<PointerType>(lhsType))
1671      return CheckPointerTypesForAssignment(lhsType, rhsType);
1672
1673    if (isa<BlockPointerType>(lhsType) &&
1674        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1675      return BlockVoidPointer;
1676    return Incompatible;
1677  }
1678
1679  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1680    if (Context.typesAreCompatible(lhsType, rhsType))
1681      return Compatible;
1682  }
1683  return Incompatible;
1684}
1685
1686Sema::AssignConvertType
1687Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1688  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1689  // a null pointer constant.
1690  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1691       lhsType->isBlockPointerType())
1692      && rExpr->isNullPointerConstant(Context)) {
1693    ImpCastExprToType(rExpr, lhsType);
1694    return Compatible;
1695  }
1696
1697  // We don't allow conversion of non-null-pointer constants to integers.
1698  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1699    return IntToBlockPointer;
1700
1701  // This check seems unnatural, however it is necessary to ensure the proper
1702  // conversion of functions/arrays. If the conversion were done for all
1703  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1704  // expressions that surpress this implicit conversion (&, sizeof).
1705  //
1706  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1707  // are better understood.
1708  if (!lhsType->isReferenceType())
1709    DefaultFunctionArrayConversion(rExpr);
1710
1711  Sema::AssignConvertType result =
1712    CheckAssignmentConstraints(lhsType, rExpr->getType());
1713
1714  // C99 6.5.16.1p2: The value of the right operand is converted to the
1715  // type of the assignment expression.
1716  if (rExpr->getType() != lhsType)
1717    ImpCastExprToType(rExpr, lhsType);
1718  return result;
1719}
1720
1721Sema::AssignConvertType
1722Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1723  return CheckAssignmentConstraints(lhsType, rhsType);
1724}
1725
1726QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1727  Diag(loc, diag::err_typecheck_invalid_operands,
1728       lex->getType().getAsString(), rex->getType().getAsString(),
1729       lex->getSourceRange(), rex->getSourceRange());
1730  return QualType();
1731}
1732
1733inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1734                                                              Expr *&rex) {
1735  // For conversion purposes, we ignore any qualifiers.
1736  // For example, "const float" and "float" are equivalent.
1737  QualType lhsType =
1738    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1739  QualType rhsType =
1740    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1741
1742  // If the vector types are identical, return.
1743  if (lhsType == rhsType)
1744    return lhsType;
1745
1746  // Handle the case of a vector & extvector type of the same size and element
1747  // type.  It would be nice if we only had one vector type someday.
1748  if (getLangOptions().LaxVectorConversions)
1749    if (const VectorType *LV = lhsType->getAsVectorType())
1750      if (const VectorType *RV = rhsType->getAsVectorType())
1751        if (LV->getElementType() == RV->getElementType() &&
1752            LV->getNumElements() == RV->getNumElements())
1753          return lhsType->isExtVectorType() ? lhsType : rhsType;
1754
1755  // If the lhs is an extended vector and the rhs is a scalar of the same type
1756  // or a literal, promote the rhs to the vector type.
1757  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1758    QualType eltType = V->getElementType();
1759
1760    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1761        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1762        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1763      ImpCastExprToType(rex, lhsType);
1764      return lhsType;
1765    }
1766  }
1767
1768  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1769  // promote the lhs to the vector type.
1770  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1771    QualType eltType = V->getElementType();
1772
1773    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1774        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1775        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1776      ImpCastExprToType(lex, rhsType);
1777      return rhsType;
1778    }
1779  }
1780
1781  // You cannot convert between vector values of different size.
1782  Diag(loc, diag::err_typecheck_vector_not_convertable,
1783       lex->getType().getAsString(), rex->getType().getAsString(),
1784       lex->getSourceRange(), rex->getSourceRange());
1785  return QualType();
1786}
1787
1788inline QualType Sema::CheckMultiplyDivideOperands(
1789  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1790{
1791  QualType lhsType = lex->getType(), rhsType = rex->getType();
1792
1793  if (lhsType->isVectorType() || rhsType->isVectorType())
1794    return CheckVectorOperands(loc, lex, rex);
1795
1796  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1797
1798  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1799    return compType;
1800  return InvalidOperands(loc, lex, rex);
1801}
1802
1803inline QualType Sema::CheckRemainderOperands(
1804  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1805{
1806  QualType lhsType = lex->getType(), rhsType = rex->getType();
1807
1808  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1809
1810  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1811    return compType;
1812  return InvalidOperands(loc, lex, rex);
1813}
1814
1815inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1816  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1817{
1818  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1819    return CheckVectorOperands(loc, lex, rex);
1820
1821  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1822
1823  // handle the common case first (both operands are arithmetic).
1824  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1825    return compType;
1826
1827  // Put any potential pointer into PExp
1828  Expr* PExp = lex, *IExp = rex;
1829  if (IExp->getType()->isPointerType())
1830    std::swap(PExp, IExp);
1831
1832  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1833    if (IExp->getType()->isIntegerType()) {
1834      // Check for arithmetic on pointers to incomplete types
1835      if (!PTy->getPointeeType()->isObjectType()) {
1836        if (PTy->getPointeeType()->isVoidType()) {
1837          Diag(loc, diag::ext_gnu_void_ptr,
1838               lex->getSourceRange(), rex->getSourceRange());
1839        } else {
1840          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1841               lex->getType().getAsString(), lex->getSourceRange());
1842          return QualType();
1843        }
1844      }
1845      return PExp->getType();
1846    }
1847  }
1848
1849  return InvalidOperands(loc, lex, rex);
1850}
1851
1852// C99 6.5.6
1853QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1854                                        SourceLocation loc, bool isCompAssign) {
1855  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1856    return CheckVectorOperands(loc, lex, rex);
1857
1858  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1859
1860  // Enforce type constraints: C99 6.5.6p3.
1861
1862  // Handle the common case first (both operands are arithmetic).
1863  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1864    return compType;
1865
1866  // Either ptr - int   or   ptr - ptr.
1867  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1868    QualType lpointee = LHSPTy->getPointeeType();
1869
1870    // The LHS must be an object type, not incomplete, function, etc.
1871    if (!lpointee->isObjectType()) {
1872      // Handle the GNU void* extension.
1873      if (lpointee->isVoidType()) {
1874        Diag(loc, diag::ext_gnu_void_ptr,
1875             lex->getSourceRange(), rex->getSourceRange());
1876      } else {
1877        Diag(loc, diag::err_typecheck_sub_ptr_object,
1878             lex->getType().getAsString(), lex->getSourceRange());
1879        return QualType();
1880      }
1881    }
1882
1883    // The result type of a pointer-int computation is the pointer type.
1884    if (rex->getType()->isIntegerType())
1885      return lex->getType();
1886
1887    // Handle pointer-pointer subtractions.
1888    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1889      QualType rpointee = RHSPTy->getPointeeType();
1890
1891      // RHS must be an object type, unless void (GNU).
1892      if (!rpointee->isObjectType()) {
1893        // Handle the GNU void* extension.
1894        if (rpointee->isVoidType()) {
1895          if (!lpointee->isVoidType())
1896            Diag(loc, diag::ext_gnu_void_ptr,
1897                 lex->getSourceRange(), rex->getSourceRange());
1898        } else {
1899          Diag(loc, diag::err_typecheck_sub_ptr_object,
1900               rex->getType().getAsString(), rex->getSourceRange());
1901          return QualType();
1902        }
1903      }
1904
1905      // Pointee types must be compatible.
1906      if (!Context.typesAreCompatible(
1907              Context.getCanonicalType(lpointee).getUnqualifiedType(),
1908              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
1909        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1910             lex->getType().getAsString(), rex->getType().getAsString(),
1911             lex->getSourceRange(), rex->getSourceRange());
1912        return QualType();
1913      }
1914
1915      return Context.getPointerDiffType();
1916    }
1917  }
1918
1919  return InvalidOperands(loc, lex, rex);
1920}
1921
1922// C99 6.5.7
1923QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1924                                  bool isCompAssign) {
1925  // C99 6.5.7p2: Each of the operands shall have integer type.
1926  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1927    return InvalidOperands(loc, lex, rex);
1928
1929  // Shifts don't perform usual arithmetic conversions, they just do integer
1930  // promotions on each operand. C99 6.5.7p3
1931  if (!isCompAssign)
1932    UsualUnaryConversions(lex);
1933  UsualUnaryConversions(rex);
1934
1935  // "The type of the result is that of the promoted left operand."
1936  return lex->getType();
1937}
1938
1939static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
1940                                        ASTContext& Context) {
1941  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
1942  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
1943  // ID acts sort of like void* for ObjC interfaces
1944  if (LHSIface && Context.isObjCIdType(RHS))
1945    return true;
1946  if (RHSIface && Context.isObjCIdType(LHS))
1947    return true;
1948  if (!LHSIface || !RHSIface)
1949    return false;
1950  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
1951         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
1952}
1953
1954// C99 6.5.8
1955QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1956                                    bool isRelational) {
1957  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1958    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1959
1960  // C99 6.5.8p3 / C99 6.5.9p4
1961  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1962    UsualArithmeticConversions(lex, rex);
1963  else {
1964    UsualUnaryConversions(lex);
1965    UsualUnaryConversions(rex);
1966  }
1967  QualType lType = lex->getType();
1968  QualType rType = rex->getType();
1969
1970  // For non-floating point types, check for self-comparisons of the form
1971  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1972  // often indicate logic errors in the program.
1973  if (!lType->isFloatingType()) {
1974    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1975      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1976        if (DRL->getDecl() == DRR->getDecl())
1977          Diag(loc, diag::warn_selfcomparison);
1978  }
1979
1980  if (isRelational) {
1981    if (lType->isRealType() && rType->isRealType())
1982      return Context.IntTy;
1983  } else {
1984    // Check for comparisons of floating point operands using != and ==.
1985    if (lType->isFloatingType()) {
1986      assert (rType->isFloatingType());
1987      CheckFloatComparison(loc,lex,rex);
1988    }
1989
1990    if (lType->isArithmeticType() && rType->isArithmeticType())
1991      return Context.IntTy;
1992  }
1993
1994  bool LHSIsNull = lex->isNullPointerConstant(Context);
1995  bool RHSIsNull = rex->isNullPointerConstant(Context);
1996
1997  // All of the following pointer related warnings are GCC extensions, except
1998  // when handling null pointer constants. One day, we can consider making them
1999  // errors (when -pedantic-errors is enabled).
2000  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2001    QualType LCanPointeeTy =
2002      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2003    QualType RCanPointeeTy =
2004      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2005
2006    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2007        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2008        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2009                                    RCanPointeeTy.getUnqualifiedType()) &&
2010        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2011      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2012           lType.getAsString(), rType.getAsString(),
2013           lex->getSourceRange(), rex->getSourceRange());
2014    }
2015    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2016    return Context.IntTy;
2017  }
2018  // Handle block pointer types.
2019  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2020    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2021    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2022
2023    if (!LHSIsNull && !RHSIsNull &&
2024        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2025      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2026           lType.getAsString(), rType.getAsString(),
2027           lex->getSourceRange(), rex->getSourceRange());
2028    }
2029    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2030    return Context.IntTy;
2031  }
2032
2033  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2034    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2035      ImpCastExprToType(rex, lType);
2036      return Context.IntTy;
2037    }
2038  }
2039  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2040       rType->isIntegerType()) {
2041    if (!RHSIsNull)
2042      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2043           lType.getAsString(), rType.getAsString(),
2044           lex->getSourceRange(), rex->getSourceRange());
2045    ImpCastExprToType(rex, lType); // promote the integer to pointer
2046    return Context.IntTy;
2047  }
2048  if (lType->isIntegerType() &&
2049      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2050    if (!LHSIsNull)
2051      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2052           lType.getAsString(), rType.getAsString(),
2053           lex->getSourceRange(), rex->getSourceRange());
2054    ImpCastExprToType(lex, rType); // promote the integer to pointer
2055    return Context.IntTy;
2056  }
2057  // Handle block pointers.
2058  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2059    if (!RHSIsNull)
2060      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2061           lType.getAsString(), rType.getAsString(),
2062           lex->getSourceRange(), rex->getSourceRange());
2063    ImpCastExprToType(rex, lType); // promote the integer to pointer
2064    return Context.IntTy;
2065  }
2066  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2067    if (!LHSIsNull)
2068      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2069           lType.getAsString(), rType.getAsString(),
2070           lex->getSourceRange(), rex->getSourceRange());
2071    ImpCastExprToType(lex, rType); // promote the integer to pointer
2072    return Context.IntTy;
2073  }
2074  return InvalidOperands(loc, lex, rex);
2075}
2076
2077/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2078/// operates on extended vector types.  Instead of producing an IntTy result,
2079/// like a scalar comparison, a vector comparison produces a vector of integer
2080/// types.
2081QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2082                                          SourceLocation loc,
2083                                          bool isRelational) {
2084  // Check to make sure we're operating on vectors of the same type and width,
2085  // Allowing one side to be a scalar of element type.
2086  QualType vType = CheckVectorOperands(loc, lex, rex);
2087  if (vType.isNull())
2088    return vType;
2089
2090  QualType lType = lex->getType();
2091  QualType rType = rex->getType();
2092
2093  // For non-floating point types, check for self-comparisons of the form
2094  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2095  // often indicate logic errors in the program.
2096  if (!lType->isFloatingType()) {
2097    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2098      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2099        if (DRL->getDecl() == DRR->getDecl())
2100          Diag(loc, diag::warn_selfcomparison);
2101  }
2102
2103  // Check for comparisons of floating point operands using != and ==.
2104  if (!isRelational && lType->isFloatingType()) {
2105    assert (rType->isFloatingType());
2106    CheckFloatComparison(loc,lex,rex);
2107  }
2108
2109  // Return the type for the comparison, which is the same as vector type for
2110  // integer vectors, or an integer type of identical size and number of
2111  // elements for floating point vectors.
2112  if (lType->isIntegerType())
2113    return lType;
2114
2115  const VectorType *VTy = lType->getAsVectorType();
2116
2117  // FIXME: need to deal with non-32b int / non-64b long long
2118  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2119  if (TypeSize == 32) {
2120    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2121  }
2122  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2123  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2124}
2125
2126inline QualType Sema::CheckBitwiseOperands(
2127  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
2128{
2129  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2130    return CheckVectorOperands(loc, lex, rex);
2131
2132  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2133
2134  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2135    return compType;
2136  return InvalidOperands(loc, lex, rex);
2137}
2138
2139inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2140  Expr *&lex, Expr *&rex, SourceLocation loc)
2141{
2142  UsualUnaryConversions(lex);
2143  UsualUnaryConversions(rex);
2144
2145  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2146    return Context.IntTy;
2147  return InvalidOperands(loc, lex, rex);
2148}
2149
2150inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
2151  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
2152{
2153  QualType lhsType = lex->getType();
2154  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
2155  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context);
2156
2157  switch (mlval) { // C99 6.5.16p2
2158  case Expr::MLV_Valid:
2159    break;
2160  case Expr::MLV_ConstQualified:
2161    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
2162    return QualType();
2163  case Expr::MLV_ArrayType:
2164    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
2165         lhsType.getAsString(), lex->getSourceRange());
2166    return QualType();
2167  case Expr::MLV_NotObjectType:
2168    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
2169         lhsType.getAsString(), lex->getSourceRange());
2170    return QualType();
2171  case Expr::MLV_InvalidExpression:
2172    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
2173         lex->getSourceRange());
2174    return QualType();
2175  case Expr::MLV_IncompleteType:
2176  case Expr::MLV_IncompleteVoidType:
2177    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
2178         lhsType.getAsString(), lex->getSourceRange());
2179    return QualType();
2180  case Expr::MLV_DuplicateVectorComponents:
2181    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
2182         lex->getSourceRange());
2183    return QualType();
2184  }
2185
2186  AssignConvertType ConvTy;
2187  if (compoundType.isNull()) {
2188    // Simple assignment "x = y".
2189    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
2190
2191    // If the RHS is a unary plus or minus, check to see if they = and + are
2192    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2193    // instead of "x += 4".
2194    Expr *RHSCheck = rex;
2195    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2196      RHSCheck = ICE->getSubExpr();
2197    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2198      if ((UO->getOpcode() == UnaryOperator::Plus ||
2199           UO->getOpcode() == UnaryOperator::Minus) &&
2200          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2201          // Only if the two operators are exactly adjacent.
2202          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2203        Diag(loc, diag::warn_not_compound_assign,
2204             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2205             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2206    }
2207  } else {
2208    // Compound assignment "x += y"
2209    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
2210  }
2211
2212  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
2213                               rex, "assigning"))
2214    return QualType();
2215
2216  // C99 6.5.16p3: The type of an assignment expression is the type of the
2217  // left operand unless the left operand has qualified type, in which case
2218  // it is the unqualified version of the type of the left operand.
2219  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2220  // is converted to the type of the assignment expression (above).
2221  // C++ 5.17p1: the type of the assignment expression is that of its left
2222  // oprdu.
2223  return lhsType.getUnqualifiedType();
2224}
2225
2226inline QualType Sema::CheckCommaOperands( // C99 6.5.17
2227  Expr *&lex, Expr *&rex, SourceLocation loc) {
2228
2229  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2230  DefaultFunctionArrayConversion(rex);
2231  return rex->getType();
2232}
2233
2234/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2235/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2236QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2237  QualType resType = op->getType();
2238  assert(!resType.isNull() && "no type for increment/decrement expression");
2239
2240  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2241  if (const PointerType *pt = resType->getAsPointerType()) {
2242    if (pt->getPointeeType()->isVoidType()) {
2243      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2244    } else if (!pt->getPointeeType()->isObjectType()) {
2245      // C99 6.5.2.4p2, 6.5.6p2
2246      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2247           resType.getAsString(), op->getSourceRange());
2248      return QualType();
2249    }
2250  } else if (!resType->isRealType()) {
2251    if (resType->isComplexType())
2252      // C99 does not support ++/-- on complex types.
2253      Diag(OpLoc, diag::ext_integer_increment_complex,
2254           resType.getAsString(), op->getSourceRange());
2255    else {
2256      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2257           resType.getAsString(), op->getSourceRange());
2258      return QualType();
2259    }
2260  }
2261  // At this point, we know we have a real, complex or pointer type.
2262  // Now make sure the operand is a modifiable lvalue.
2263  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
2264  if (mlval != Expr::MLV_Valid) {
2265    // FIXME: emit a more precise diagnostic...
2266    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
2267         op->getSourceRange());
2268    return QualType();
2269  }
2270  return resType;
2271}
2272
2273/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2274/// This routine allows us to typecheck complex/recursive expressions
2275/// where the declaration is needed for type checking. We only need to
2276/// handle cases when the expression references a function designator
2277/// or is an lvalue. Here are some examples:
2278///  - &(x) => x
2279///  - &*****f => f for f a function designator.
2280///  - &s.xx => s
2281///  - &s.zz[1].yy -> s, if zz is an array
2282///  - *(x + 1) -> x, if x is an array
2283///  - &"123"[2] -> 0
2284///  - & __real__ x -> x
2285static ValueDecl *getPrimaryDecl(Expr *E) {
2286  switch (E->getStmtClass()) {
2287  case Stmt::DeclRefExprClass:
2288    return cast<DeclRefExpr>(E)->getDecl();
2289  case Stmt::MemberExprClass:
2290    // Fields cannot be declared with a 'register' storage class.
2291    // &X->f is always ok, even if X is declared register.
2292    if (cast<MemberExpr>(E)->isArrow())
2293      return 0;
2294    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2295  case Stmt::ArraySubscriptExprClass: {
2296    // &X[4] and &4[X] refers to X if X is not a pointer.
2297
2298    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2299    if (!VD || VD->getType()->isPointerType())
2300      return 0;
2301    else
2302      return VD;
2303  }
2304  case Stmt::UnaryOperatorClass: {
2305    UnaryOperator *UO = cast<UnaryOperator>(E);
2306
2307    switch(UO->getOpcode()) {
2308    case UnaryOperator::Deref: {
2309      // *(X + 1) refers to X if X is not a pointer.
2310      ValueDecl *VD = getPrimaryDecl(UO->getSubExpr());
2311      if (!VD || VD->getType()->isPointerType())
2312        return 0;
2313      return VD;
2314    }
2315    case UnaryOperator::Real:
2316    case UnaryOperator::Imag:
2317    case UnaryOperator::Extension:
2318      return getPrimaryDecl(UO->getSubExpr());
2319    default:
2320      return 0;
2321    }
2322  }
2323  case Stmt::BinaryOperatorClass: {
2324    BinaryOperator *BO = cast<BinaryOperator>(E);
2325
2326    // Handle cases involving pointer arithmetic. The result of an
2327    // Assign or AddAssign is not an lvalue so they can be ignored.
2328
2329    // (x + n) or (n + x) => x
2330    if (BO->getOpcode() == BinaryOperator::Add) {
2331      if (BO->getLHS()->getType()->isPointerType()) {
2332        return getPrimaryDecl(BO->getLHS());
2333      } else if (BO->getRHS()->getType()->isPointerType()) {
2334        return getPrimaryDecl(BO->getRHS());
2335      }
2336    }
2337
2338    return 0;
2339  }
2340  case Stmt::ParenExprClass:
2341    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2342  case Stmt::ImplicitCastExprClass:
2343    // &X[4] when X is an array, has an implicit cast from array to pointer.
2344    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2345  default:
2346    return 0;
2347  }
2348}
2349
2350/// CheckAddressOfOperand - The operand of & must be either a function
2351/// designator or an lvalue designating an object. If it is an lvalue, the
2352/// object cannot be declared with storage class register or be a bit field.
2353/// Note: The usual conversions are *not* applied to the operand of the &
2354/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2355QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2356  if (getLangOptions().C99) {
2357    // Implement C99-only parts of addressof rules.
2358    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2359      if (uOp->getOpcode() == UnaryOperator::Deref)
2360        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2361        // (assuming the deref expression is valid).
2362        return uOp->getSubExpr()->getType();
2363    }
2364    // Technically, there should be a check for array subscript
2365    // expressions here, but the result of one is always an lvalue anyway.
2366  }
2367  ValueDecl *dcl = getPrimaryDecl(op);
2368  Expr::isLvalueResult lval = op->isLvalue(Context);
2369
2370  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2371    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2372      // FIXME: emit more specific diag...
2373      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2374           op->getSourceRange());
2375      return QualType();
2376    }
2377  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2378    if (MemExpr->getMemberDecl()->isBitField()) {
2379      Diag(OpLoc, diag::err_typecheck_address_of,
2380           std::string("bit-field"), op->getSourceRange());
2381      return QualType();
2382    }
2383  // Check for Apple extension for accessing vector components.
2384  } else if (isa<ArraySubscriptExpr>(op) &&
2385           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2386    Diag(OpLoc, diag::err_typecheck_address_of,
2387         std::string("vector"), op->getSourceRange());
2388    return QualType();
2389  } else if (dcl) { // C99 6.5.3.2p1
2390    // We have an lvalue with a decl. Make sure the decl is not declared
2391    // with the register storage-class specifier.
2392    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2393      if (vd->getStorageClass() == VarDecl::Register) {
2394        Diag(OpLoc, diag::err_typecheck_address_of,
2395             std::string("register variable"), op->getSourceRange());
2396        return QualType();
2397      }
2398    } else
2399      assert(0 && "Unknown/unexpected decl type");
2400  }
2401
2402  // If the operand has type "type", the result has type "pointer to type".
2403  return Context.getPointerType(op->getType());
2404}
2405
2406QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2407  UsualUnaryConversions(op);
2408  QualType qType = op->getType();
2409
2410  if (const PointerType *PT = qType->getAsPointerType()) {
2411    // Note that per both C89 and C99, this is always legal, even
2412    // if ptype is an incomplete type or void.
2413    // It would be possible to warn about dereferencing a
2414    // void pointer, but it's completely well-defined,
2415    // and such a warning is unlikely to catch any mistakes.
2416    return PT->getPointeeType();
2417  }
2418  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2419       qType.getAsString(), op->getSourceRange());
2420  return QualType();
2421}
2422
2423static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2424  tok::TokenKind Kind) {
2425  BinaryOperator::Opcode Opc;
2426  switch (Kind) {
2427  default: assert(0 && "Unknown binop!");
2428  case tok::star:                 Opc = BinaryOperator::Mul; break;
2429  case tok::slash:                Opc = BinaryOperator::Div; break;
2430  case tok::percent:              Opc = BinaryOperator::Rem; break;
2431  case tok::plus:                 Opc = BinaryOperator::Add; break;
2432  case tok::minus:                Opc = BinaryOperator::Sub; break;
2433  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2434  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2435  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2436  case tok::less:                 Opc = BinaryOperator::LT; break;
2437  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2438  case tok::greater:              Opc = BinaryOperator::GT; break;
2439  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2440  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2441  case tok::amp:                  Opc = BinaryOperator::And; break;
2442  case tok::caret:                Opc = BinaryOperator::Xor; break;
2443  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2444  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2445  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2446  case tok::equal:                Opc = BinaryOperator::Assign; break;
2447  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2448  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2449  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2450  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2451  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2452  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2453  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2454  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2455  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2456  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2457  case tok::comma:                Opc = BinaryOperator::Comma; break;
2458  }
2459  return Opc;
2460}
2461
2462static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2463  tok::TokenKind Kind) {
2464  UnaryOperator::Opcode Opc;
2465  switch (Kind) {
2466  default: assert(0 && "Unknown unary op!");
2467  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2468  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2469  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2470  case tok::star:         Opc = UnaryOperator::Deref; break;
2471  case tok::plus:         Opc = UnaryOperator::Plus; break;
2472  case tok::minus:        Opc = UnaryOperator::Minus; break;
2473  case tok::tilde:        Opc = UnaryOperator::Not; break;
2474  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2475  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2476  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2477  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2478  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2479  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2480  }
2481  return Opc;
2482}
2483
2484// Binary Operators.  'Tok' is the token for the operator.
2485Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2486                                    ExprTy *LHS, ExprTy *RHS) {
2487  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2488  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2489
2490  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2491  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2492
2493  QualType ResultTy;  // Result type of the binary operator.
2494  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2495
2496  switch (Opc) {
2497  default:
2498    assert(0 && "Unknown binary expr!");
2499  case BinaryOperator::Assign:
2500    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2501    break;
2502  case BinaryOperator::Mul:
2503  case BinaryOperator::Div:
2504    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2505    break;
2506  case BinaryOperator::Rem:
2507    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2508    break;
2509  case BinaryOperator::Add:
2510    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2511    break;
2512  case BinaryOperator::Sub:
2513    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2514    break;
2515  case BinaryOperator::Shl:
2516  case BinaryOperator::Shr:
2517    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2518    break;
2519  case BinaryOperator::LE:
2520  case BinaryOperator::LT:
2521  case BinaryOperator::GE:
2522  case BinaryOperator::GT:
2523    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2524    break;
2525  case BinaryOperator::EQ:
2526  case BinaryOperator::NE:
2527    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2528    break;
2529  case BinaryOperator::And:
2530  case BinaryOperator::Xor:
2531  case BinaryOperator::Or:
2532    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2533    break;
2534  case BinaryOperator::LAnd:
2535  case BinaryOperator::LOr:
2536    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2537    break;
2538  case BinaryOperator::MulAssign:
2539  case BinaryOperator::DivAssign:
2540    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2541    if (!CompTy.isNull())
2542      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2543    break;
2544  case BinaryOperator::RemAssign:
2545    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2546    if (!CompTy.isNull())
2547      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2548    break;
2549  case BinaryOperator::AddAssign:
2550    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2551    if (!CompTy.isNull())
2552      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2553    break;
2554  case BinaryOperator::SubAssign:
2555    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2556    if (!CompTy.isNull())
2557      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2558    break;
2559  case BinaryOperator::ShlAssign:
2560  case BinaryOperator::ShrAssign:
2561    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2562    if (!CompTy.isNull())
2563      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2564    break;
2565  case BinaryOperator::AndAssign:
2566  case BinaryOperator::XorAssign:
2567  case BinaryOperator::OrAssign:
2568    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2569    if (!CompTy.isNull())
2570      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2571    break;
2572  case BinaryOperator::Comma:
2573    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2574    break;
2575  }
2576  if (ResultTy.isNull())
2577    return true;
2578  if (CompTy.isNull())
2579    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2580  else
2581    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2582}
2583
2584// Unary Operators.  'Tok' is the token for the operator.
2585Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2586                                      ExprTy *input) {
2587  Expr *Input = (Expr*)input;
2588  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2589  QualType resultType;
2590  switch (Opc) {
2591  default:
2592    assert(0 && "Unimplemented unary expr!");
2593  case UnaryOperator::PreInc:
2594  case UnaryOperator::PreDec:
2595    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2596    break;
2597  case UnaryOperator::AddrOf:
2598    resultType = CheckAddressOfOperand(Input, OpLoc);
2599    break;
2600  case UnaryOperator::Deref:
2601    DefaultFunctionArrayConversion(Input);
2602    resultType = CheckIndirectionOperand(Input, OpLoc);
2603    break;
2604  case UnaryOperator::Plus:
2605  case UnaryOperator::Minus:
2606    UsualUnaryConversions(Input);
2607    resultType = Input->getType();
2608    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2609      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2610                  resultType.getAsString());
2611    break;
2612  case UnaryOperator::Not: // bitwise complement
2613    UsualUnaryConversions(Input);
2614    resultType = Input->getType();
2615    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2616    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2617      // C99 does not support '~' for complex conjugation.
2618      Diag(OpLoc, diag::ext_integer_complement_complex,
2619           resultType.getAsString(), Input->getSourceRange());
2620    else if (!resultType->isIntegerType())
2621      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2622                  resultType.getAsString(), Input->getSourceRange());
2623    break;
2624  case UnaryOperator::LNot: // logical negation
2625    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2626    DefaultFunctionArrayConversion(Input);
2627    resultType = Input->getType();
2628    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2629      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2630                  resultType.getAsString());
2631    // LNot always has type int. C99 6.5.3.3p5.
2632    resultType = Context.IntTy;
2633    break;
2634  case UnaryOperator::SizeOf:
2635    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2636                                           Input->getSourceRange(), true);
2637    break;
2638  case UnaryOperator::AlignOf:
2639    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2640                                           Input->getSourceRange(), false);
2641    break;
2642  case UnaryOperator::Real:
2643  case UnaryOperator::Imag:
2644    resultType = CheckRealImagOperand(Input, OpLoc);
2645    break;
2646  case UnaryOperator::Extension:
2647    resultType = Input->getType();
2648    break;
2649  }
2650  if (resultType.isNull())
2651    return true;
2652  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2653}
2654
2655/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2656Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2657                                      SourceLocation LabLoc,
2658                                      IdentifierInfo *LabelII) {
2659  // Look up the record for this label identifier.
2660  LabelStmt *&LabelDecl = LabelMap[LabelII];
2661
2662  // If we haven't seen this label yet, create a forward reference. It
2663  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
2664  if (LabelDecl == 0)
2665    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2666
2667  // Create the AST node.  The address of a label always has type 'void*'.
2668  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2669                           Context.getPointerType(Context.VoidTy));
2670}
2671
2672Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2673                                     SourceLocation RPLoc) { // "({..})"
2674  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2675  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2676  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2677
2678  // FIXME: there are a variety of strange constraints to enforce here, for
2679  // example, it is not possible to goto into a stmt expression apparently.
2680  // More semantic analysis is needed.
2681
2682  // FIXME: the last statement in the compount stmt has its value used.  We
2683  // should not warn about it being unused.
2684
2685  // If there are sub stmts in the compound stmt, take the type of the last one
2686  // as the type of the stmtexpr.
2687  QualType Ty = Context.VoidTy;
2688
2689  if (!Compound->body_empty()) {
2690    Stmt *LastStmt = Compound->body_back();
2691    // If LastStmt is a label, skip down through into the body.
2692    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
2693      LastStmt = Label->getSubStmt();
2694
2695    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
2696      Ty = LastExpr->getType();
2697  }
2698
2699  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2700}
2701
2702Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2703                                            SourceLocation TypeLoc,
2704                                            TypeTy *argty,
2705                                            OffsetOfComponent *CompPtr,
2706                                            unsigned NumComponents,
2707                                            SourceLocation RPLoc) {
2708  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2709  assert(!ArgTy.isNull() && "Missing type argument!");
2710
2711  // We must have at least one component that refers to the type, and the first
2712  // one is known to be a field designator.  Verify that the ArgTy represents
2713  // a struct/union/class.
2714  if (!ArgTy->isRecordType())
2715    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2716
2717  // Otherwise, create a compound literal expression as the base, and
2718  // iteratively process the offsetof designators.
2719  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2720
2721  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2722  // GCC extension, diagnose them.
2723  if (NumComponents != 1)
2724    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2725         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2726
2727  for (unsigned i = 0; i != NumComponents; ++i) {
2728    const OffsetOfComponent &OC = CompPtr[i];
2729    if (OC.isBrackets) {
2730      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2731      const ArrayType *AT = Context.getAsArrayType(Res->getType());
2732      if (!AT) {
2733        delete Res;
2734        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2735                    Res->getType().getAsString());
2736      }
2737
2738      // FIXME: C++: Verify that operator[] isn't overloaded.
2739
2740      // C99 6.5.2.1p1
2741      Expr *Idx = static_cast<Expr*>(OC.U.E);
2742      if (!Idx->getType()->isIntegerType())
2743        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2744                    Idx->getSourceRange());
2745
2746      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2747      continue;
2748    }
2749
2750    const RecordType *RC = Res->getType()->getAsRecordType();
2751    if (!RC) {
2752      delete Res;
2753      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2754                  Res->getType().getAsString());
2755    }
2756
2757    // Get the decl corresponding to this.
2758    RecordDecl *RD = RC->getDecl();
2759    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2760    if (!MemberDecl)
2761      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2762                  OC.U.IdentInfo->getName(),
2763                  SourceRange(OC.LocStart, OC.LocEnd));
2764
2765    // FIXME: C++: Verify that MemberDecl isn't a static field.
2766    // FIXME: Verify that MemberDecl isn't a bitfield.
2767    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2768    // matter here.
2769    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2770  }
2771
2772  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2773                           BuiltinLoc);
2774}
2775
2776
2777Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2778                                                TypeTy *arg1, TypeTy *arg2,
2779                                                SourceLocation RPLoc) {
2780  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2781  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2782
2783  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2784
2785  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2786}
2787
2788Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2789                                       ExprTy *expr1, ExprTy *expr2,
2790                                       SourceLocation RPLoc) {
2791  Expr *CondExpr = static_cast<Expr*>(cond);
2792  Expr *LHSExpr = static_cast<Expr*>(expr1);
2793  Expr *RHSExpr = static_cast<Expr*>(expr2);
2794
2795  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2796
2797  // The conditional expression is required to be a constant expression.
2798  llvm::APSInt condEval(32);
2799  SourceLocation ExpLoc;
2800  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2801    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2802                 CondExpr->getSourceRange());
2803
2804  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2805  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2806                                               RHSExpr->getType();
2807  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2808}
2809
2810//===----------------------------------------------------------------------===//
2811// Clang Extensions.
2812//===----------------------------------------------------------------------===//
2813
2814/// ActOnBlockStart - This callback is invoked when a block literal is started.
2815void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope,
2816                           Declarator &ParamInfo) {
2817  // Analyze block parameters.
2818  BlockSemaInfo *BSI = new BlockSemaInfo();
2819
2820  // Add BSI to CurBlock.
2821  BSI->PrevBlockInfo = CurBlock;
2822  CurBlock = BSI;
2823
2824  BSI->ReturnType = 0;
2825  BSI->TheScope = BlockScope;
2826
2827  // Analyze arguments to block.
2828  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2829         "Not a function declarator!");
2830  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
2831
2832  BSI->hasPrototype = FTI.hasPrototype;
2833  BSI->isVariadic = true;
2834
2835  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
2836  // no arguments, not a function that takes a single void argument.
2837  if (FTI.hasPrototype &&
2838      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2839      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
2840        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
2841    // empty arg list, don't push any params.
2842    BSI->isVariadic = false;
2843  } else if (FTI.hasPrototype) {
2844    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2845      BSI->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
2846    BSI->isVariadic = FTI.isVariadic;
2847  }
2848}
2849
2850/// ActOnBlockError - If there is an error parsing a block, this callback
2851/// is invoked to pop the information about the block from the action impl.
2852void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
2853  // Ensure that CurBlock is deleted.
2854  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
2855
2856  // Pop off CurBlock, handle nested blocks.
2857  CurBlock = CurBlock->PrevBlockInfo;
2858
2859  // FIXME: Delete the ParmVarDecl objects as well???
2860
2861}
2862
2863/// ActOnBlockStmtExpr - This is called when the body of a block statement
2864/// literal was successfully completed.  ^(int x){...}
2865Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
2866                                          Scope *CurScope) {
2867  // Ensure that CurBlock is deleted.
2868  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
2869  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
2870
2871  // Pop off CurBlock, handle nested blocks.
2872  CurBlock = CurBlock->PrevBlockInfo;
2873
2874  QualType RetTy = Context.VoidTy;
2875  if (BSI->ReturnType)
2876    RetTy = QualType(BSI->ReturnType, 0);
2877
2878  llvm::SmallVector<QualType, 8> ArgTypes;
2879  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
2880    ArgTypes.push_back(BSI->Params[i]->getType());
2881
2882  QualType BlockTy;
2883  if (!BSI->hasPrototype)
2884    BlockTy = Context.getFunctionTypeNoProto(RetTy);
2885  else
2886    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
2887                                      BSI->isVariadic);
2888
2889  BlockTy = Context.getBlockPointerType(BlockTy);
2890  return new BlockExpr(CaretLoc, BlockTy, &BSI->Params[0], BSI->Params.size(),
2891                       Body.take());
2892}
2893
2894/// ExprsMatchFnType - return true if the Exprs in array Args have
2895/// QualTypes that match the QualTypes of the arguments of the FnType.
2896/// The number of arguments has already been validated to match the number of
2897/// arguments in FnType.
2898static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
2899                             ASTContext &Context) {
2900  unsigned NumParams = FnType->getNumArgs();
2901  for (unsigned i = 0; i != NumParams; ++i) {
2902    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
2903    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
2904
2905    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2906      return false;
2907  }
2908  return true;
2909}
2910
2911Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2912                                         SourceLocation *CommaLocs,
2913                                         SourceLocation BuiltinLoc,
2914                                         SourceLocation RParenLoc) {
2915  // __builtin_overload requires at least 2 arguments
2916  if (NumArgs < 2)
2917    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2918                SourceRange(BuiltinLoc, RParenLoc));
2919
2920  // The first argument is required to be a constant expression.  It tells us
2921  // the number of arguments to pass to each of the functions to be overloaded.
2922  Expr **Args = reinterpret_cast<Expr**>(args);
2923  Expr *NParamsExpr = Args[0];
2924  llvm::APSInt constEval(32);
2925  SourceLocation ExpLoc;
2926  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2927    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2928                NParamsExpr->getSourceRange());
2929
2930  // Verify that the number of parameters is > 0
2931  unsigned NumParams = constEval.getZExtValue();
2932  if (NumParams == 0)
2933    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2934                NParamsExpr->getSourceRange());
2935  // Verify that we have at least 1 + NumParams arguments to the builtin.
2936  if ((NumParams + 1) > NumArgs)
2937    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2938                SourceRange(BuiltinLoc, RParenLoc));
2939
2940  // Figure out the return type, by matching the args to one of the functions
2941  // listed after the parameters.
2942  OverloadExpr *OE = 0;
2943  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2944    // UsualUnaryConversions will convert the function DeclRefExpr into a
2945    // pointer to function.
2946    Expr *Fn = UsualUnaryConversions(Args[i]);
2947    const FunctionTypeProto *FnType = 0;
2948    if (const PointerType *PT = Fn->getType()->getAsPointerType())
2949      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
2950
2951    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2952    // parameters, and the number of parameters must match the value passed to
2953    // the builtin.
2954    if (!FnType || (FnType->getNumArgs() != NumParams))
2955      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2956                  Fn->getSourceRange());
2957
2958    // Scan the parameter list for the FunctionType, checking the QualType of
2959    // each parameter against the QualTypes of the arguments to the builtin.
2960    // If they match, return a new OverloadExpr.
2961    if (ExprsMatchFnType(Args+1, FnType, Context)) {
2962      if (OE)
2963        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2964                    OE->getFn()->getSourceRange());
2965      // Remember our match, and continue processing the remaining arguments
2966      // to catch any errors.
2967      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2968                            BuiltinLoc, RParenLoc);
2969    }
2970  }
2971  // Return the newly created OverloadExpr node, if we succeded in matching
2972  // exactly one of the candidate functions.
2973  if (OE)
2974    return OE;
2975
2976  // If we didn't find a matching function Expr in the __builtin_overload list
2977  // the return an error.
2978  std::string typeNames;
2979  for (unsigned i = 0; i != NumParams; ++i) {
2980    if (i != 0) typeNames += ", ";
2981    typeNames += Args[i+1]->getType().getAsString();
2982  }
2983
2984  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2985              SourceRange(BuiltinLoc, RParenLoc));
2986}
2987
2988Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2989                                  ExprTy *expr, TypeTy *type,
2990                                  SourceLocation RPLoc) {
2991  Expr *E = static_cast<Expr*>(expr);
2992  QualType T = QualType::getFromOpaquePtr(type);
2993
2994  InitBuiltinVaListType();
2995
2996  // Get the va_list type
2997  QualType VaListType = Context.getBuiltinVaListType();
2998  // Deal with implicit array decay; for example, on x86-64,
2999  // va_list is an array, but it's supposed to decay to
3000  // a pointer for va_arg.
3001  if (VaListType->isArrayType())
3002    VaListType = Context.getArrayDecayedType(VaListType);
3003  // Make sure the input expression also decays appropriately.
3004  UsualUnaryConversions(E);
3005
3006  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3007    return Diag(E->getLocStart(),
3008                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3009                E->getType().getAsString(),
3010                E->getSourceRange());
3011
3012  // FIXME: Warn if a non-POD type is passed in.
3013
3014  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
3015}
3016
3017bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3018                                    SourceLocation Loc,
3019                                    QualType DstType, QualType SrcType,
3020                                    Expr *SrcExpr, const char *Flavor) {
3021  // Decode the result (notice that AST's are still created for extensions).
3022  bool isInvalid = false;
3023  unsigned DiagKind;
3024  switch (ConvTy) {
3025  default: assert(0 && "Unknown conversion type");
3026  case Compatible: return false;
3027  case PointerToInt:
3028    DiagKind = diag::ext_typecheck_convert_pointer_int;
3029    break;
3030  case IntToPointer:
3031    DiagKind = diag::ext_typecheck_convert_int_pointer;
3032    break;
3033  case IncompatiblePointer:
3034    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3035    break;
3036  case FunctionVoidPointer:
3037    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3038    break;
3039  case CompatiblePointerDiscardsQualifiers:
3040    // If the qualifiers lost were because we were applying the
3041    // (deprecated) C++ conversion from a string literal to a char*
3042    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3043    // Ideally, this check would be performed in
3044    // CheckPointerTypesForAssignment. However, that would require a
3045    // bit of refactoring (so that the second argument is an
3046    // expression, rather than a type), which should be done as part
3047    // of a larger effort to fix CheckPointerTypesForAssignment for
3048    // C++ semantics.
3049    if (getLangOptions().CPlusPlus &&
3050        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3051      return false;
3052    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3053    break;
3054  case IntToBlockPointer:
3055    DiagKind = diag::err_int_to_block_pointer;
3056    break;
3057  case IncompatibleBlockPointer:
3058    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3059    break;
3060  case BlockVoidPointer:
3061    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3062    break;
3063  case Incompatible:
3064    DiagKind = diag::err_typecheck_convert_incompatible;
3065    isInvalid = true;
3066    break;
3067  }
3068
3069  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
3070       SrcExpr->getSourceRange());
3071  return isInvalid;
3072}
3073