SemaExpr.cpp revision 8421ec07de0c295f54d1070b470a32155b8e0192
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Designator.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Template.h"
39using namespace clang;
40using namespace sema;
41
42
43/// \brief Determine whether the use of this declaration is valid, and
44/// emit any corresponding diagnostics.
45///
46/// This routine diagnoses various problems with referencing
47/// declarations that can occur when using a declaration. For example,
48/// it might warn if a deprecated or unavailable declaration is being
49/// used, or produce an error (and return true) if a C++0x deleted
50/// function is being used.
51///
52/// If IgnoreDeprecated is set to true, this should not want about deprecated
53/// decls.
54///
55/// \returns true if there was an error (this declaration cannot be
56/// referenced), false otherwise.
57///
58bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
59  // See if the decl is deprecated.
60  if (D->getAttr<DeprecatedAttr>()) {
61    EmitDeprecationWarning(D, Loc);
62  }
63
64  // See if the decl is unavailable
65  if (D->getAttr<UnavailableAttr>()) {
66    Diag(Loc, diag::err_unavailable) << D->getDeclName();
67    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
68  }
69
70  // See if this is a deleted function.
71  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
72    if (FD->isDeleted()) {
73      Diag(Loc, diag::err_deleted_function_use);
74      Diag(D->getLocation(), diag::note_unavailable_here) << true;
75      return true;
76    }
77  }
78
79  return false;
80}
81
82/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
83/// (and other functions in future), which have been declared with sentinel
84/// attribute. It warns if call does not have the sentinel argument.
85///
86void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
87                                 Expr **Args, unsigned NumArgs) {
88  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
89  if (!attr)
90    return;
91
92  // FIXME: In C++0x, if any of the arguments are parameter pack
93  // expansions, we can't check for the sentinel now.
94  int sentinelPos = attr->getSentinel();
95  int nullPos = attr->getNullPos();
96
97  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
98  // base class. Then we won't be needing two versions of the same code.
99  unsigned int i = 0;
100  bool warnNotEnoughArgs = false;
101  int isMethod = 0;
102  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = MD->param_end();
105    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112    isMethod = 1;
113  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
114    // skip over named parameters.
115    ObjCMethodDecl::param_iterator P, E = FD->param_end();
116    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
117      if (nullPos)
118        --nullPos;
119      else
120        ++i;
121    }
122    warnNotEnoughArgs = (P != E || i >= NumArgs);
123  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
124    // block or function pointer call.
125    QualType Ty = V->getType();
126    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
127      const FunctionType *FT = Ty->isFunctionPointerType()
128      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
129      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
130      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
131        unsigned NumArgsInProto = Proto->getNumArgs();
132        unsigned k;
133        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
134          if (nullPos)
135            --nullPos;
136          else
137            ++i;
138        }
139        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
140      }
141      if (Ty->isBlockPointerType())
142        isMethod = 2;
143    } else
144      return;
145  } else
146    return;
147
148  if (warnNotEnoughArgs) {
149    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
150    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
151    return;
152  }
153  int sentinel = i;
154  while (sentinelPos > 0 && i < NumArgs-1) {
155    --sentinelPos;
156    ++i;
157  }
158  if (sentinelPos > 0) {
159    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161    return;
162  }
163  while (i < NumArgs-1) {
164    ++i;
165    ++sentinel;
166  }
167  Expr *sentinelExpr = Args[sentinel];
168  if (!sentinelExpr) return;
169  if (sentinelExpr->isTypeDependent()) return;
170  if (sentinelExpr->isValueDependent()) return;
171  if (sentinelExpr->getType()->isAnyPointerType() &&
172      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
173                                            Expr::NPC_ValueDependentIsNull))
174    return;
175
176  // Unfortunately, __null has type 'int'.
177  if (isa<GNUNullExpr>(sentinelExpr)) return;
178
179  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
180  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
181}
182
183SourceRange Sema::getExprRange(ExprTy *E) const {
184  Expr *Ex = (Expr *)E;
185  return Ex? Ex->getSourceRange() : SourceRange();
186}
187
188//===----------------------------------------------------------------------===//
189//  Standard Promotions and Conversions
190//===----------------------------------------------------------------------===//
191
192/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
193void Sema::DefaultFunctionArrayConversion(Expr *&E) {
194  QualType Ty = E->getType();
195  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
196
197  if (Ty->isFunctionType())
198    ImpCastExprToType(E, Context.getPointerType(Ty),
199                      CK_FunctionToPointerDecay);
200  else if (Ty->isArrayType()) {
201    // In C90 mode, arrays only promote to pointers if the array expression is
202    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
203    // type 'array of type' is converted to an expression that has type 'pointer
204    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
205    // that has type 'array of type' ...".  The relevant change is "an lvalue"
206    // (C90) to "an expression" (C99).
207    //
208    // C++ 4.2p1:
209    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
210    // T" can be converted to an rvalue of type "pointer to T".
211    //
212    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
213        E->isLvalue(Context) == Expr::LV_Valid)
214      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
215                        CK_ArrayToPointerDecay);
216  }
217}
218
219void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
220  DefaultFunctionArrayConversion(E);
221
222  QualType Ty = E->getType();
223  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
224  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
225      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
226      E->isLvalue(Context) == Expr::LV_Valid) {
227    // C++ [conv.lval]p1:
228    //   [...] If T is a non-class type, the type of the rvalue is the
229    //   cv-unqualified version of T. Otherwise, the type of the
230    //   rvalue is T
231    //
232    // C99 6.3.2.1p2:
233    //   If the lvalue has qualified type, the value has the unqualified
234    //   version of the type of the lvalue; otherwise, the value has the
235    //   type of the lvalue.
236    ImpCastExprToType(E, Ty.getUnqualifiedType(), CK_NoOp);
237  }
238}
239
240
241/// UsualUnaryConversions - Performs various conversions that are common to most
242/// operators (C99 6.3). The conversions of array and function types are
243/// sometimes surpressed. For example, the array->pointer conversion doesn't
244/// apply if the array is an argument to the sizeof or address (&) operators.
245/// In these instances, this routine should *not* be called.
246Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
247  QualType Ty = Expr->getType();
248  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
249
250  // C99 6.3.1.1p2:
251  //
252  //   The following may be used in an expression wherever an int or
253  //   unsigned int may be used:
254  //     - an object or expression with an integer type whose integer
255  //       conversion rank is less than or equal to the rank of int
256  //       and unsigned int.
257  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
258  //
259  //   If an int can represent all values of the original type, the
260  //   value is converted to an int; otherwise, it is converted to an
261  //   unsigned int. These are called the integer promotions. All
262  //   other types are unchanged by the integer promotions.
263  QualType PTy = Context.isPromotableBitField(Expr);
264  if (!PTy.isNull()) {
265    ImpCastExprToType(Expr, PTy, CK_IntegralCast);
266    return Expr;
267  }
268  if (Ty->isPromotableIntegerType()) {
269    QualType PT = Context.getPromotedIntegerType(Ty);
270    ImpCastExprToType(Expr, PT, CK_IntegralCast);
271    return Expr;
272  }
273
274  DefaultFunctionArrayLvalueConversion(Expr);
275  return Expr;
276}
277
278/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
279/// do not have a prototype. Arguments that have type float are promoted to
280/// double. All other argument types are converted by UsualUnaryConversions().
281void Sema::DefaultArgumentPromotion(Expr *&Expr) {
282  QualType Ty = Expr->getType();
283  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
284
285  // If this is a 'float' (CVR qualified or typedef) promote to double.
286  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
287    return ImpCastExprToType(Expr, Context.DoubleTy,
288                             CK_FloatingCast);
289
290  UsualUnaryConversions(Expr);
291}
292
293/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
294/// will warn if the resulting type is not a POD type, and rejects ObjC
295/// interfaces passed by value.  This returns true if the argument type is
296/// completely illegal.
297bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
298                                            FunctionDecl *FDecl) {
299  DefaultArgumentPromotion(Expr);
300
301  // __builtin_va_start takes the second argument as a "varargs" argument, but
302  // it doesn't actually do anything with it.  It doesn't need to be non-pod
303  // etc.
304  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
305    return false;
306
307  if (Expr->getType()->isObjCObjectType() &&
308      DiagRuntimeBehavior(Expr->getLocStart(),
309        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
310          << Expr->getType() << CT))
311    return true;
312
313  if (!Expr->getType()->isPODType() &&
314      DiagRuntimeBehavior(Expr->getLocStart(),
315                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
316                            << Expr->getType() << CT))
317    return true;
318
319  return false;
320}
321
322
323/// UsualArithmeticConversions - Performs various conversions that are common to
324/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
325/// routine returns the first non-arithmetic type found. The client is
326/// responsible for emitting appropriate error diagnostics.
327/// FIXME: verify the conversion rules for "complex int" are consistent with
328/// GCC.
329QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
330                                          bool isCompAssign) {
331  if (!isCompAssign)
332    UsualUnaryConversions(lhsExpr);
333
334  UsualUnaryConversions(rhsExpr);
335
336  // For conversion purposes, we ignore any qualifiers.
337  // For example, "const float" and "float" are equivalent.
338  QualType lhs =
339    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
340  QualType rhs =
341    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
342
343  // If both types are identical, no conversion is needed.
344  if (lhs == rhs)
345    return lhs;
346
347  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
348  // The caller can deal with this (e.g. pointer + int).
349  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
350    return lhs;
351
352  // Perform bitfield promotions.
353  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
354  if (!LHSBitfieldPromoteTy.isNull())
355    lhs = LHSBitfieldPromoteTy;
356  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
357  if (!RHSBitfieldPromoteTy.isNull())
358    rhs = RHSBitfieldPromoteTy;
359
360  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
361  if (!isCompAssign)
362    ImpCastExprToType(lhsExpr, destType, CK_Unknown);
363  ImpCastExprToType(rhsExpr, destType, CK_Unknown);
364  return destType;
365}
366
367//===----------------------------------------------------------------------===//
368//  Semantic Analysis for various Expression Types
369//===----------------------------------------------------------------------===//
370
371
372/// ActOnStringLiteral - The specified tokens were lexed as pasted string
373/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
374/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
375/// multiple tokens.  However, the common case is that StringToks points to one
376/// string.
377///
378ExprResult
379Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
380  assert(NumStringToks && "Must have at least one string!");
381
382  StringLiteralParser Literal(StringToks, NumStringToks, PP);
383  if (Literal.hadError)
384    return ExprError();
385
386  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
387  for (unsigned i = 0; i != NumStringToks; ++i)
388    StringTokLocs.push_back(StringToks[i].getLocation());
389
390  QualType StrTy = Context.CharTy;
391  if (Literal.AnyWide) StrTy = Context.getWCharType();
392  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
393
394  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
395  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
396    StrTy.addConst();
397
398  // Get an array type for the string, according to C99 6.4.5.  This includes
399  // the nul terminator character as well as the string length for pascal
400  // strings.
401  StrTy = Context.getConstantArrayType(StrTy,
402                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
403                                       ArrayType::Normal, 0);
404
405  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
406  return Owned(StringLiteral::Create(Context, Literal.GetString(),
407                                     Literal.GetStringLength(),
408                                     Literal.AnyWide, StrTy,
409                                     &StringTokLocs[0],
410                                     StringTokLocs.size()));
411}
412
413/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
414/// CurBlock to VD should cause it to be snapshotted (as we do for auto
415/// variables defined outside the block) or false if this is not needed (e.g.
416/// for values inside the block or for globals).
417///
418/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
419/// up-to-date.
420///
421static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
422                                              ValueDecl *VD) {
423  // If the value is defined inside the block, we couldn't snapshot it even if
424  // we wanted to.
425  if (CurBlock->TheDecl == VD->getDeclContext())
426    return false;
427
428  // If this is an enum constant or function, it is constant, don't snapshot.
429  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
430    return false;
431
432  // If this is a reference to an extern, static, or global variable, no need to
433  // snapshot it.
434  // FIXME: What about 'const' variables in C++?
435  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
436    if (!Var->hasLocalStorage())
437      return false;
438
439  // Blocks that have these can't be constant.
440  CurBlock->hasBlockDeclRefExprs = true;
441
442  // If we have nested blocks, the decl may be declared in an outer block (in
443  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
444  // be defined outside all of the current blocks (in which case the blocks do
445  // all get the bit).  Walk the nesting chain.
446  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
447    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
448
449    if (!NextBlock)
450      continue;
451
452    // If we found the defining block for the variable, don't mark the block as
453    // having a reference outside it.
454    if (NextBlock->TheDecl == VD->getDeclContext())
455      break;
456
457    // Otherwise, the DeclRef from the inner block causes the outer one to need
458    // a snapshot as well.
459    NextBlock->hasBlockDeclRefExprs = true;
460  }
461
462  return true;
463}
464
465
466ExprResult
467Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
468                       const CXXScopeSpec *SS) {
469  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
470  return BuildDeclRefExpr(D, Ty, NameInfo, SS);
471}
472
473/// BuildDeclRefExpr - Build a DeclRefExpr.
474ExprResult
475Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
476                       const DeclarationNameInfo &NameInfo,
477                       const CXXScopeSpec *SS) {
478  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
479    Diag(NameInfo.getLoc(),
480         diag::err_auto_variable_cannot_appear_in_own_initializer)
481      << D->getDeclName();
482    return ExprError();
483  }
484
485  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
486    if (isa<NonTypeTemplateParmDecl>(VD)) {
487      // Non-type template parameters can be referenced anywhere they are
488      // visible.
489      Ty = Ty.getNonLValueExprType(Context);
490    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
491      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
492        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
493          Diag(NameInfo.getLoc(),
494               diag::err_reference_to_local_var_in_enclosing_function)
495            << D->getIdentifier() << FD->getDeclName();
496          Diag(D->getLocation(), diag::note_local_variable_declared_here)
497            << D->getIdentifier();
498          return ExprError();
499        }
500      }
501    }
502  }
503
504  MarkDeclarationReferenced(NameInfo.getLoc(), D);
505
506  return Owned(DeclRefExpr::Create(Context,
507                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
508                                   SS? SS->getRange() : SourceRange(),
509                                   D, NameInfo, Ty));
510}
511
512/// \brief Given a field that represents a member of an anonymous
513/// struct/union, build the path from that field's context to the
514/// actual member.
515///
516/// Construct the sequence of field member references we'll have to
517/// perform to get to the field in the anonymous union/struct. The
518/// list of members is built from the field outward, so traverse it
519/// backwards to go from an object in the current context to the field
520/// we found.
521///
522/// \returns The variable from which the field access should begin,
523/// for an anonymous struct/union that is not a member of another
524/// class. Otherwise, returns NULL.
525VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
526                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
527  assert(Field->getDeclContext()->isRecord() &&
528         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
529         && "Field must be stored inside an anonymous struct or union");
530
531  Path.push_back(Field);
532  VarDecl *BaseObject = 0;
533  DeclContext *Ctx = Field->getDeclContext();
534  do {
535    RecordDecl *Record = cast<RecordDecl>(Ctx);
536    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
537    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
538      Path.push_back(AnonField);
539    else {
540      BaseObject = cast<VarDecl>(AnonObject);
541      break;
542    }
543    Ctx = Ctx->getParent();
544  } while (Ctx->isRecord() &&
545           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
546
547  return BaseObject;
548}
549
550ExprResult
551Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
552                                               FieldDecl *Field,
553                                               Expr *BaseObjectExpr,
554                                               SourceLocation OpLoc) {
555  llvm::SmallVector<FieldDecl *, 4> AnonFields;
556  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
557                                                            AnonFields);
558
559  // Build the expression that refers to the base object, from
560  // which we will build a sequence of member references to each
561  // of the anonymous union objects and, eventually, the field we
562  // found via name lookup.
563  bool BaseObjectIsPointer = false;
564  Qualifiers BaseQuals;
565  if (BaseObject) {
566    // BaseObject is an anonymous struct/union variable (and is,
567    // therefore, not part of another non-anonymous record).
568    MarkDeclarationReferenced(Loc, BaseObject);
569    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
570                                               SourceLocation());
571    BaseQuals
572      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
573  } else if (BaseObjectExpr) {
574    // The caller provided the base object expression. Determine
575    // whether its a pointer and whether it adds any qualifiers to the
576    // anonymous struct/union fields we're looking into.
577    QualType ObjectType = BaseObjectExpr->getType();
578    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
579      BaseObjectIsPointer = true;
580      ObjectType = ObjectPtr->getPointeeType();
581    }
582    BaseQuals
583      = Context.getCanonicalType(ObjectType).getQualifiers();
584  } else {
585    // We've found a member of an anonymous struct/union that is
586    // inside a non-anonymous struct/union, so in a well-formed
587    // program our base object expression is "this".
588    DeclContext *DC = getFunctionLevelDeclContext();
589    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
590      if (!MD->isStatic()) {
591        QualType AnonFieldType
592          = Context.getTagDeclType(
593                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
594        QualType ThisType = Context.getTagDeclType(MD->getParent());
595        if ((Context.getCanonicalType(AnonFieldType)
596               == Context.getCanonicalType(ThisType)) ||
597            IsDerivedFrom(ThisType, AnonFieldType)) {
598          // Our base object expression is "this".
599          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
600                                                     MD->getThisType(Context),
601                                                     /*isImplicit=*/true);
602          BaseObjectIsPointer = true;
603        }
604      } else {
605        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
606          << Field->getDeclName());
607      }
608      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
609    }
610
611    if (!BaseObjectExpr)
612      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
613        << Field->getDeclName());
614  }
615
616  // Build the implicit member references to the field of the
617  // anonymous struct/union.
618  Expr *Result = BaseObjectExpr;
619  Qualifiers ResultQuals = BaseQuals;
620  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
621         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
622       FI != FIEnd; ++FI) {
623    QualType MemberType = (*FI)->getType();
624    Qualifiers MemberTypeQuals =
625      Context.getCanonicalType(MemberType).getQualifiers();
626
627    // CVR attributes from the base are picked up by members,
628    // except that 'mutable' members don't pick up 'const'.
629    if ((*FI)->isMutable())
630      ResultQuals.removeConst();
631
632    // GC attributes are never picked up by members.
633    ResultQuals.removeObjCGCAttr();
634
635    // TR 18037 does not allow fields to be declared with address spaces.
636    assert(!MemberTypeQuals.hasAddressSpace());
637
638    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
639    if (NewQuals != MemberTypeQuals)
640      MemberType = Context.getQualifiedType(MemberType, NewQuals);
641
642    MarkDeclarationReferenced(Loc, *FI);
643    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
644    // FIXME: Might this end up being a qualified name?
645    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
646                                      OpLoc, MemberType);
647    BaseObjectIsPointer = false;
648    ResultQuals = NewQuals;
649  }
650
651  return Owned(Result);
652}
653
654/// Decomposes the given name into a DeclarationNameInfo, its location, and
655/// possibly a list of template arguments.
656///
657/// If this produces template arguments, it is permitted to call
658/// DecomposeTemplateName.
659///
660/// This actually loses a lot of source location information for
661/// non-standard name kinds; we should consider preserving that in
662/// some way.
663static void DecomposeUnqualifiedId(Sema &SemaRef,
664                                   const UnqualifiedId &Id,
665                                   TemplateArgumentListInfo &Buffer,
666                                   DeclarationNameInfo &NameInfo,
667                             const TemplateArgumentListInfo *&TemplateArgs) {
668  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
669    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
670    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
671
672    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
673                                       Id.TemplateId->getTemplateArgs(),
674                                       Id.TemplateId->NumArgs);
675    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
676    TemplateArgsPtr.release();
677
678    TemplateName TName = Id.TemplateId->Template.get();
679    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
680    NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
681    TemplateArgs = &Buffer;
682  } else {
683    NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
684    TemplateArgs = 0;
685  }
686}
687
688/// Determines whether the given record is "fully-formed" at the given
689/// location, i.e. whether a qualified lookup into it is assured of
690/// getting consistent results already.
691static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
692  if (!Record->hasDefinition())
693    return false;
694
695  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
696         E = Record->bases_end(); I != E; ++I) {
697    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
698    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
699    if (!BaseRT) return false;
700
701    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
702    if (!BaseRecord->hasDefinition() ||
703        !IsFullyFormedScope(SemaRef, BaseRecord))
704      return false;
705  }
706
707  return true;
708}
709
710/// Determines if the given class is provably not derived from all of
711/// the prospective base classes.
712static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
713                                     CXXRecordDecl *Record,
714                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
715  if (Bases.count(Record->getCanonicalDecl()))
716    return false;
717
718  RecordDecl *RD = Record->getDefinition();
719  if (!RD) return false;
720  Record = cast<CXXRecordDecl>(RD);
721
722  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
723         E = Record->bases_end(); I != E; ++I) {
724    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
725    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
726    if (!BaseRT) return false;
727
728    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
729    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
730      return false;
731  }
732
733  return true;
734}
735
736enum IMAKind {
737  /// The reference is definitely not an instance member access.
738  IMA_Static,
739
740  /// The reference may be an implicit instance member access.
741  IMA_Mixed,
742
743  /// The reference may be to an instance member, but it is invalid if
744  /// so, because the context is not an instance method.
745  IMA_Mixed_StaticContext,
746
747  /// The reference may be to an instance member, but it is invalid if
748  /// so, because the context is from an unrelated class.
749  IMA_Mixed_Unrelated,
750
751  /// The reference is definitely an implicit instance member access.
752  IMA_Instance,
753
754  /// The reference may be to an unresolved using declaration.
755  IMA_Unresolved,
756
757  /// The reference may be to an unresolved using declaration and the
758  /// context is not an instance method.
759  IMA_Unresolved_StaticContext,
760
761  /// The reference is to a member of an anonymous structure in a
762  /// non-class context.
763  IMA_AnonymousMember,
764
765  /// All possible referrents are instance members and the current
766  /// context is not an instance method.
767  IMA_Error_StaticContext,
768
769  /// All possible referrents are instance members of an unrelated
770  /// class.
771  IMA_Error_Unrelated
772};
773
774/// The given lookup names class member(s) and is not being used for
775/// an address-of-member expression.  Classify the type of access
776/// according to whether it's possible that this reference names an
777/// instance member.  This is best-effort; it is okay to
778/// conservatively answer "yes", in which case some errors will simply
779/// not be caught until template-instantiation.
780static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
781                                            const LookupResult &R) {
782  assert(!R.empty() && (*R.begin())->isCXXClassMember());
783
784  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
785  bool isStaticContext =
786    (!isa<CXXMethodDecl>(DC) ||
787     cast<CXXMethodDecl>(DC)->isStatic());
788
789  if (R.isUnresolvableResult())
790    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
791
792  // Collect all the declaring classes of instance members we find.
793  bool hasNonInstance = false;
794  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
795  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
796    NamedDecl *D = *I;
797    if (D->isCXXInstanceMember()) {
798      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
799
800      // If this is a member of an anonymous record, move out to the
801      // innermost non-anonymous struct or union.  If there isn't one,
802      // that's a special case.
803      while (R->isAnonymousStructOrUnion()) {
804        R = dyn_cast<CXXRecordDecl>(R->getParent());
805        if (!R) return IMA_AnonymousMember;
806      }
807      Classes.insert(R->getCanonicalDecl());
808    }
809    else
810      hasNonInstance = true;
811  }
812
813  // If we didn't find any instance members, it can't be an implicit
814  // member reference.
815  if (Classes.empty())
816    return IMA_Static;
817
818  // If the current context is not an instance method, it can't be
819  // an implicit member reference.
820  if (isStaticContext)
821    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
822
823  // If we can prove that the current context is unrelated to all the
824  // declaring classes, it can't be an implicit member reference (in
825  // which case it's an error if any of those members are selected).
826  if (IsProvablyNotDerivedFrom(SemaRef,
827                               cast<CXXMethodDecl>(DC)->getParent(),
828                               Classes))
829    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
830
831  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
832}
833
834/// Diagnose a reference to a field with no object available.
835static void DiagnoseInstanceReference(Sema &SemaRef,
836                                      const CXXScopeSpec &SS,
837                                      const LookupResult &R) {
838  SourceLocation Loc = R.getNameLoc();
839  SourceRange Range(Loc);
840  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
841
842  if (R.getAsSingle<FieldDecl>()) {
843    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
844      if (MD->isStatic()) {
845        // "invalid use of member 'x' in static member function"
846        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
847          << Range << R.getLookupName();
848        return;
849      }
850    }
851
852    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
853      << R.getLookupName() << Range;
854    return;
855  }
856
857  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
858}
859
860/// Diagnose an empty lookup.
861///
862/// \return false if new lookup candidates were found
863bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
864                               CorrectTypoContext CTC) {
865  DeclarationName Name = R.getLookupName();
866
867  unsigned diagnostic = diag::err_undeclared_var_use;
868  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
869  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
870      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
871      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
872    diagnostic = diag::err_undeclared_use;
873    diagnostic_suggest = diag::err_undeclared_use_suggest;
874  }
875
876  // If the original lookup was an unqualified lookup, fake an
877  // unqualified lookup.  This is useful when (for example) the
878  // original lookup would not have found something because it was a
879  // dependent name.
880  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
881       DC; DC = DC->getParent()) {
882    if (isa<CXXRecordDecl>(DC)) {
883      LookupQualifiedName(R, DC);
884
885      if (!R.empty()) {
886        // Don't give errors about ambiguities in this lookup.
887        R.suppressDiagnostics();
888
889        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
890        bool isInstance = CurMethod &&
891                          CurMethod->isInstance() &&
892                          DC == CurMethod->getParent();
893
894        // Give a code modification hint to insert 'this->'.
895        // TODO: fixit for inserting 'Base<T>::' in the other cases.
896        // Actually quite difficult!
897        if (isInstance) {
898          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
899              CallsUndergoingInstantiation.back()->getCallee());
900          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
901              CurMethod->getInstantiatedFromMemberFunction());
902          if (DepMethod) {
903            Diag(R.getNameLoc(), diagnostic) << Name
904              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
905            QualType DepThisType = DepMethod->getThisType(Context);
906            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
907                                       R.getNameLoc(), DepThisType, false);
908            TemplateArgumentListInfo TList;
909            if (ULE->hasExplicitTemplateArgs())
910              ULE->copyTemplateArgumentsInto(TList);
911            CXXDependentScopeMemberExpr *DepExpr =
912                CXXDependentScopeMemberExpr::Create(
913                    Context, DepThis, DepThisType, true, SourceLocation(),
914                    ULE->getQualifier(), ULE->getQualifierRange(), NULL,
915                    R.getLookupNameInfo(), &TList);
916            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
917          } else {
918            // FIXME: we should be able to handle this case too. It is correct
919            // to add this-> here. This is a workaround for PR7947.
920            Diag(R.getNameLoc(), diagnostic) << Name;
921          }
922        } else {
923          Diag(R.getNameLoc(), diagnostic) << Name;
924        }
925
926        // Do we really want to note all of these?
927        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
928          Diag((*I)->getLocation(), diag::note_dependent_var_use);
929
930        // Tell the callee to try to recover.
931        return false;
932      }
933
934      R.clear();
935    }
936  }
937
938  // We didn't find anything, so try to correct for a typo.
939  DeclarationName Corrected;
940  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
941    if (!R.empty()) {
942      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
943        if (SS.isEmpty())
944          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
945            << FixItHint::CreateReplacement(R.getNameLoc(),
946                                            R.getLookupName().getAsString());
947        else
948          Diag(R.getNameLoc(), diag::err_no_member_suggest)
949            << Name << computeDeclContext(SS, false) << R.getLookupName()
950            << SS.getRange()
951            << FixItHint::CreateReplacement(R.getNameLoc(),
952                                            R.getLookupName().getAsString());
953        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
954          Diag(ND->getLocation(), diag::note_previous_decl)
955            << ND->getDeclName();
956
957        // Tell the callee to try to recover.
958        return false;
959      }
960
961      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
962        // FIXME: If we ended up with a typo for a type name or
963        // Objective-C class name, we're in trouble because the parser
964        // is in the wrong place to recover. Suggest the typo
965        // correction, but don't make it a fix-it since we're not going
966        // to recover well anyway.
967        if (SS.isEmpty())
968          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
969        else
970          Diag(R.getNameLoc(), diag::err_no_member_suggest)
971            << Name << computeDeclContext(SS, false) << R.getLookupName()
972            << SS.getRange();
973
974        // Don't try to recover; it won't work.
975        return true;
976      }
977    } else {
978      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
979      // because we aren't able to recover.
980      if (SS.isEmpty())
981        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
982      else
983        Diag(R.getNameLoc(), diag::err_no_member_suggest)
984        << Name << computeDeclContext(SS, false) << Corrected
985        << SS.getRange();
986      return true;
987    }
988    R.clear();
989  }
990
991  // Emit a special diagnostic for failed member lookups.
992  // FIXME: computing the declaration context might fail here (?)
993  if (!SS.isEmpty()) {
994    Diag(R.getNameLoc(), diag::err_no_member)
995      << Name << computeDeclContext(SS, false)
996      << SS.getRange();
997    return true;
998  }
999
1000  // Give up, we can't recover.
1001  Diag(R.getNameLoc(), diagnostic) << Name;
1002  return true;
1003}
1004
1005static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
1006                                                       IdentifierInfo *II,
1007                                                       SourceLocation NameLoc) {
1008  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1009  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1010  if (!IDecl)
1011    return 0;
1012  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1013  if (!ClassImpDecl)
1014    return 0;
1015  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1016  if (!property)
1017    return 0;
1018  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1019    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
1020      return 0;
1021  return property;
1022}
1023
1024static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
1025                                               LookupResult &Lookup,
1026                                               IdentifierInfo *II,
1027                                               SourceLocation NameLoc) {
1028  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1029  bool LookForIvars;
1030  if (Lookup.empty())
1031    LookForIvars = true;
1032  else if (CurMeth->isClassMethod())
1033    LookForIvars = false;
1034  else
1035    LookForIvars = (Lookup.isSingleResult() &&
1036                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1037  if (!LookForIvars)
1038    return 0;
1039
1040  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1041  if (!IDecl)
1042    return 0;
1043  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1044  if (!ClassImpDecl)
1045    return 0;
1046  bool DynamicImplSeen = false;
1047  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1048  if (!property)
1049    return 0;
1050  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1051    DynamicImplSeen =
1052      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1053  if (!DynamicImplSeen) {
1054    QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
1055    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
1056                                              NameLoc,
1057                                              II, PropType, /*Dinfo=*/0,
1058                                              ObjCIvarDecl::Protected,
1059                                              (Expr *)0, true);
1060    ClassImpDecl->addDecl(Ivar);
1061    IDecl->makeDeclVisibleInContext(Ivar, false);
1062    property->setPropertyIvarDecl(Ivar);
1063    return Ivar;
1064  }
1065  return 0;
1066}
1067
1068ExprResult Sema::ActOnIdExpression(Scope *S,
1069                                   CXXScopeSpec &SS,
1070                                   UnqualifiedId &Id,
1071                                   bool HasTrailingLParen,
1072                                   bool isAddressOfOperand) {
1073  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1074         "cannot be direct & operand and have a trailing lparen");
1075
1076  if (SS.isInvalid())
1077    return ExprError();
1078
1079  TemplateArgumentListInfo TemplateArgsBuffer;
1080
1081  // Decompose the UnqualifiedId into the following data.
1082  DeclarationNameInfo NameInfo;
1083  const TemplateArgumentListInfo *TemplateArgs;
1084  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1085
1086  DeclarationName Name = NameInfo.getName();
1087  IdentifierInfo *II = Name.getAsIdentifierInfo();
1088  SourceLocation NameLoc = NameInfo.getLoc();
1089
1090  // C++ [temp.dep.expr]p3:
1091  //   An id-expression is type-dependent if it contains:
1092  //     -- an identifier that was declared with a dependent type,
1093  //        (note: handled after lookup)
1094  //     -- a template-id that is dependent,
1095  //        (note: handled in BuildTemplateIdExpr)
1096  //     -- a conversion-function-id that specifies a dependent type,
1097  //     -- a nested-name-specifier that contains a class-name that
1098  //        names a dependent type.
1099  // Determine whether this is a member of an unknown specialization;
1100  // we need to handle these differently.
1101  bool DependentID = false;
1102  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1103      Name.getCXXNameType()->isDependentType()) {
1104    DependentID = true;
1105  } else if (SS.isSet()) {
1106    DeclContext *DC = computeDeclContext(SS, false);
1107    if (DC) {
1108      if (RequireCompleteDeclContext(SS, DC))
1109        return ExprError();
1110      // FIXME: We should be checking whether DC is the current instantiation.
1111      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
1112        DependentID = !IsFullyFormedScope(*this, RD);
1113    } else {
1114      DependentID = true;
1115    }
1116  }
1117
1118  if (DependentID) {
1119    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1120                                      TemplateArgs);
1121  }
1122  bool IvarLookupFollowUp = false;
1123  // Perform the required lookup.
1124  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1125  if (TemplateArgs) {
1126    // Lookup the template name again to correctly establish the context in
1127    // which it was found. This is really unfortunate as we already did the
1128    // lookup to determine that it was a template name in the first place. If
1129    // this becomes a performance hit, we can work harder to preserve those
1130    // results until we get here but it's likely not worth it.
1131    bool MemberOfUnknownSpecialization;
1132    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1133                       MemberOfUnknownSpecialization);
1134  } else {
1135    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1136    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1137
1138    // If this reference is in an Objective-C method, then we need to do
1139    // some special Objective-C lookup, too.
1140    if (IvarLookupFollowUp) {
1141      ExprResult E(LookupInObjCMethod(R, S, II, true));
1142      if (E.isInvalid())
1143        return ExprError();
1144
1145      Expr *Ex = E.takeAs<Expr>();
1146      if (Ex) return Owned(Ex);
1147      // Synthesize ivars lazily
1148      if (getLangOptions().ObjCNonFragileABI2) {
1149        if (SynthesizeProvisionalIvar(*this, R, II, NameLoc))
1150          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1151                                   isAddressOfOperand);
1152      }
1153      // for further use, this must be set to false if in class method.
1154      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1155    }
1156  }
1157
1158  if (R.isAmbiguous())
1159    return ExprError();
1160
1161  // Determine whether this name might be a candidate for
1162  // argument-dependent lookup.
1163  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1164
1165  if (R.empty() && !ADL) {
1166    // Otherwise, this could be an implicitly declared function reference (legal
1167    // in C90, extension in C99, forbidden in C++).
1168    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1169      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1170      if (D) R.addDecl(D);
1171    }
1172
1173    // If this name wasn't predeclared and if this is not a function
1174    // call, diagnose the problem.
1175    if (R.empty()) {
1176      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1177        return ExprError();
1178
1179      assert(!R.empty() &&
1180             "DiagnoseEmptyLookup returned false but added no results");
1181
1182      // If we found an Objective-C instance variable, let
1183      // LookupInObjCMethod build the appropriate expression to
1184      // reference the ivar.
1185      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1186        R.clear();
1187        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1188        assert(E.isInvalid() || E.get());
1189        return move(E);
1190      }
1191    }
1192  }
1193
1194  // This is guaranteed from this point on.
1195  assert(!R.empty() || ADL);
1196
1197  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1198    if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
1199        !getLangOptions().ObjCNonFragileABI2 &&
1200        Var->isFileVarDecl()) {
1201      ObjCPropertyDecl *Property =
1202        OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
1203      if (Property) {
1204        Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
1205        Diag(Property->getLocation(), diag::note_property_declare);
1206        Diag(Var->getLocation(), diag::note_global_declared_at);
1207      }
1208    }
1209  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1210    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1211      // C99 DR 316 says that, if a function type comes from a
1212      // function definition (without a prototype), that type is only
1213      // used for checking compatibility. Therefore, when referencing
1214      // the function, we pretend that we don't have the full function
1215      // type.
1216      if (DiagnoseUseOfDecl(Func, NameLoc))
1217        return ExprError();
1218
1219      QualType T = Func->getType();
1220      QualType NoProtoType = T;
1221      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1222        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1223                                                     Proto->getExtInfo());
1224      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1225    }
1226  }
1227
1228  // Check whether this might be a C++ implicit instance member access.
1229  // C++ [class.mfct.non-static]p3:
1230  //   When an id-expression that is not part of a class member access
1231  //   syntax and not used to form a pointer to member is used in the
1232  //   body of a non-static member function of class X, if name lookup
1233  //   resolves the name in the id-expression to a non-static non-type
1234  //   member of some class C, the id-expression is transformed into a
1235  //   class member access expression using (*this) as the
1236  //   postfix-expression to the left of the . operator.
1237  //
1238  // But we don't actually need to do this for '&' operands if R
1239  // resolved to a function or overloaded function set, because the
1240  // expression is ill-formed if it actually works out to be a
1241  // non-static member function:
1242  //
1243  // C++ [expr.ref]p4:
1244  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1245  //   [t]he expression can be used only as the left-hand operand of a
1246  //   member function call.
1247  //
1248  // There are other safeguards against such uses, but it's important
1249  // to get this right here so that we don't end up making a
1250  // spuriously dependent expression if we're inside a dependent
1251  // instance method.
1252  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1253    bool MightBeImplicitMember;
1254    if (!isAddressOfOperand)
1255      MightBeImplicitMember = true;
1256    else if (!SS.isEmpty())
1257      MightBeImplicitMember = false;
1258    else if (R.isOverloadedResult())
1259      MightBeImplicitMember = false;
1260    else if (R.isUnresolvableResult())
1261      MightBeImplicitMember = true;
1262    else
1263      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl());
1264
1265    if (MightBeImplicitMember)
1266      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1267  }
1268
1269  if (TemplateArgs)
1270    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1271
1272  return BuildDeclarationNameExpr(SS, R, ADL);
1273}
1274
1275/// Builds an expression which might be an implicit member expression.
1276ExprResult
1277Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1278                                      LookupResult &R,
1279                                const TemplateArgumentListInfo *TemplateArgs) {
1280  switch (ClassifyImplicitMemberAccess(*this, R)) {
1281  case IMA_Instance:
1282    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1283
1284  case IMA_AnonymousMember:
1285    assert(R.isSingleResult());
1286    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1287                                                    R.getAsSingle<FieldDecl>());
1288
1289  case IMA_Mixed:
1290  case IMA_Mixed_Unrelated:
1291  case IMA_Unresolved:
1292    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1293
1294  case IMA_Static:
1295  case IMA_Mixed_StaticContext:
1296  case IMA_Unresolved_StaticContext:
1297    if (TemplateArgs)
1298      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1299    return BuildDeclarationNameExpr(SS, R, false);
1300
1301  case IMA_Error_StaticContext:
1302  case IMA_Error_Unrelated:
1303    DiagnoseInstanceReference(*this, SS, R);
1304    return ExprError();
1305  }
1306
1307  llvm_unreachable("unexpected instance member access kind");
1308  return ExprError();
1309}
1310
1311/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1312/// declaration name, generally during template instantiation.
1313/// There's a large number of things which don't need to be done along
1314/// this path.
1315ExprResult
1316Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1317                                        const DeclarationNameInfo &NameInfo) {
1318  DeclContext *DC;
1319  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1320    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1321
1322  if (RequireCompleteDeclContext(SS, DC))
1323    return ExprError();
1324
1325  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1326  LookupQualifiedName(R, DC);
1327
1328  if (R.isAmbiguous())
1329    return ExprError();
1330
1331  if (R.empty()) {
1332    Diag(NameInfo.getLoc(), diag::err_no_member)
1333      << NameInfo.getName() << DC << SS.getRange();
1334    return ExprError();
1335  }
1336
1337  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1338}
1339
1340/// LookupInObjCMethod - The parser has read a name in, and Sema has
1341/// detected that we're currently inside an ObjC method.  Perform some
1342/// additional lookup.
1343///
1344/// Ideally, most of this would be done by lookup, but there's
1345/// actually quite a lot of extra work involved.
1346///
1347/// Returns a null sentinel to indicate trivial success.
1348ExprResult
1349Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1350                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1351  SourceLocation Loc = Lookup.getNameLoc();
1352  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1353
1354  // There are two cases to handle here.  1) scoped lookup could have failed,
1355  // in which case we should look for an ivar.  2) scoped lookup could have
1356  // found a decl, but that decl is outside the current instance method (i.e.
1357  // a global variable).  In these two cases, we do a lookup for an ivar with
1358  // this name, if the lookup sucedes, we replace it our current decl.
1359
1360  // If we're in a class method, we don't normally want to look for
1361  // ivars.  But if we don't find anything else, and there's an
1362  // ivar, that's an error.
1363  bool IsClassMethod = CurMethod->isClassMethod();
1364
1365  bool LookForIvars;
1366  if (Lookup.empty())
1367    LookForIvars = true;
1368  else if (IsClassMethod)
1369    LookForIvars = false;
1370  else
1371    LookForIvars = (Lookup.isSingleResult() &&
1372                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1373  ObjCInterfaceDecl *IFace = 0;
1374  if (LookForIvars) {
1375    IFace = CurMethod->getClassInterface();
1376    ObjCInterfaceDecl *ClassDeclared;
1377    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1378      // Diagnose using an ivar in a class method.
1379      if (IsClassMethod)
1380        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1381                         << IV->getDeclName());
1382
1383      // If we're referencing an invalid decl, just return this as a silent
1384      // error node.  The error diagnostic was already emitted on the decl.
1385      if (IV->isInvalidDecl())
1386        return ExprError();
1387
1388      // Check if referencing a field with __attribute__((deprecated)).
1389      if (DiagnoseUseOfDecl(IV, Loc))
1390        return ExprError();
1391
1392      // Diagnose the use of an ivar outside of the declaring class.
1393      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1394          ClassDeclared != IFace)
1395        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1396
1397      // FIXME: This should use a new expr for a direct reference, don't
1398      // turn this into Self->ivar, just return a BareIVarExpr or something.
1399      IdentifierInfo &II = Context.Idents.get("self");
1400      UnqualifiedId SelfName;
1401      SelfName.setIdentifier(&II, SourceLocation());
1402      CXXScopeSpec SelfScopeSpec;
1403      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1404                                              SelfName, false, false);
1405      if (SelfExpr.isInvalid())
1406        return ExprError();
1407
1408      MarkDeclarationReferenced(Loc, IV);
1409      return Owned(new (Context)
1410                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1411                                   SelfExpr.takeAs<Expr>(), true, true));
1412    }
1413  } else if (CurMethod->isInstanceMethod()) {
1414    // We should warn if a local variable hides an ivar.
1415    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1416    ObjCInterfaceDecl *ClassDeclared;
1417    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1418      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1419          IFace == ClassDeclared)
1420        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1421    }
1422  }
1423
1424  if (Lookup.empty() && II && AllowBuiltinCreation) {
1425    // FIXME. Consolidate this with similar code in LookupName.
1426    if (unsigned BuiltinID = II->getBuiltinID()) {
1427      if (!(getLangOptions().CPlusPlus &&
1428            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1429        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1430                                           S, Lookup.isForRedeclaration(),
1431                                           Lookup.getNameLoc());
1432        if (D) Lookup.addDecl(D);
1433      }
1434    }
1435  }
1436  // Sentinel value saying that we didn't do anything special.
1437  return Owned((Expr*) 0);
1438}
1439
1440/// \brief Cast a base object to a member's actual type.
1441///
1442/// Logically this happens in three phases:
1443///
1444/// * First we cast from the base type to the naming class.
1445///   The naming class is the class into which we were looking
1446///   when we found the member;  it's the qualifier type if a
1447///   qualifier was provided, and otherwise it's the base type.
1448///
1449/// * Next we cast from the naming class to the declaring class.
1450///   If the member we found was brought into a class's scope by
1451///   a using declaration, this is that class;  otherwise it's
1452///   the class declaring the member.
1453///
1454/// * Finally we cast from the declaring class to the "true"
1455///   declaring class of the member.  This conversion does not
1456///   obey access control.
1457bool
1458Sema::PerformObjectMemberConversion(Expr *&From,
1459                                    NestedNameSpecifier *Qualifier,
1460                                    NamedDecl *FoundDecl,
1461                                    NamedDecl *Member) {
1462  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1463  if (!RD)
1464    return false;
1465
1466  QualType DestRecordType;
1467  QualType DestType;
1468  QualType FromRecordType;
1469  QualType FromType = From->getType();
1470  bool PointerConversions = false;
1471  if (isa<FieldDecl>(Member)) {
1472    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1473
1474    if (FromType->getAs<PointerType>()) {
1475      DestType = Context.getPointerType(DestRecordType);
1476      FromRecordType = FromType->getPointeeType();
1477      PointerConversions = true;
1478    } else {
1479      DestType = DestRecordType;
1480      FromRecordType = FromType;
1481    }
1482  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1483    if (Method->isStatic())
1484      return false;
1485
1486    DestType = Method->getThisType(Context);
1487    DestRecordType = DestType->getPointeeType();
1488
1489    if (FromType->getAs<PointerType>()) {
1490      FromRecordType = FromType->getPointeeType();
1491      PointerConversions = true;
1492    } else {
1493      FromRecordType = FromType;
1494      DestType = DestRecordType;
1495    }
1496  } else {
1497    // No conversion necessary.
1498    return false;
1499  }
1500
1501  if (DestType->isDependentType() || FromType->isDependentType())
1502    return false;
1503
1504  // If the unqualified types are the same, no conversion is necessary.
1505  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1506    return false;
1507
1508  SourceRange FromRange = From->getSourceRange();
1509  SourceLocation FromLoc = FromRange.getBegin();
1510
1511  ExprValueKind VK = CastCategory(From);
1512
1513  // C++ [class.member.lookup]p8:
1514  //   [...] Ambiguities can often be resolved by qualifying a name with its
1515  //   class name.
1516  //
1517  // If the member was a qualified name and the qualified referred to a
1518  // specific base subobject type, we'll cast to that intermediate type
1519  // first and then to the object in which the member is declared. That allows
1520  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1521  //
1522  //   class Base { public: int x; };
1523  //   class Derived1 : public Base { };
1524  //   class Derived2 : public Base { };
1525  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1526  //
1527  //   void VeryDerived::f() {
1528  //     x = 17; // error: ambiguous base subobjects
1529  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1530  //   }
1531  if (Qualifier) {
1532    QualType QType = QualType(Qualifier->getAsType(), 0);
1533    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1534    assert(QType->isRecordType() && "lookup done with non-record type");
1535
1536    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1537
1538    // In C++98, the qualifier type doesn't actually have to be a base
1539    // type of the object type, in which case we just ignore it.
1540    // Otherwise build the appropriate casts.
1541    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1542      CXXCastPath BasePath;
1543      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1544                                       FromLoc, FromRange, &BasePath))
1545        return true;
1546
1547      if (PointerConversions)
1548        QType = Context.getPointerType(QType);
1549      ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
1550                        VK, &BasePath);
1551
1552      FromType = QType;
1553      FromRecordType = QRecordType;
1554
1555      // If the qualifier type was the same as the destination type,
1556      // we're done.
1557      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1558        return false;
1559    }
1560  }
1561
1562  bool IgnoreAccess = false;
1563
1564  // If we actually found the member through a using declaration, cast
1565  // down to the using declaration's type.
1566  //
1567  // Pointer equality is fine here because only one declaration of a
1568  // class ever has member declarations.
1569  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1570    assert(isa<UsingShadowDecl>(FoundDecl));
1571    QualType URecordType = Context.getTypeDeclType(
1572                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1573
1574    // We only need to do this if the naming-class to declaring-class
1575    // conversion is non-trivial.
1576    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1577      assert(IsDerivedFrom(FromRecordType, URecordType));
1578      CXXCastPath BasePath;
1579      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1580                                       FromLoc, FromRange, &BasePath))
1581        return true;
1582
1583      QualType UType = URecordType;
1584      if (PointerConversions)
1585        UType = Context.getPointerType(UType);
1586      ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
1587                        VK, &BasePath);
1588      FromType = UType;
1589      FromRecordType = URecordType;
1590    }
1591
1592    // We don't do access control for the conversion from the
1593    // declaring class to the true declaring class.
1594    IgnoreAccess = true;
1595  }
1596
1597  CXXCastPath BasePath;
1598  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1599                                   FromLoc, FromRange, &BasePath,
1600                                   IgnoreAccess))
1601    return true;
1602
1603  ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
1604                    VK, &BasePath);
1605  return false;
1606}
1607
1608/// \brief Build a MemberExpr AST node.
1609static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1610                                   const CXXScopeSpec &SS, ValueDecl *Member,
1611                                   DeclAccessPair FoundDecl,
1612                                   const DeclarationNameInfo &MemberNameInfo,
1613                                   QualType Ty,
1614                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1615  NestedNameSpecifier *Qualifier = 0;
1616  SourceRange QualifierRange;
1617  if (SS.isSet()) {
1618    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1619    QualifierRange = SS.getRange();
1620  }
1621
1622  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1623                            Member, FoundDecl, MemberNameInfo,
1624                            TemplateArgs, Ty);
1625}
1626
1627/// Builds an implicit member access expression.  The current context
1628/// is known to be an instance method, and the given unqualified lookup
1629/// set is known to contain only instance members, at least one of which
1630/// is from an appropriate type.
1631ExprResult
1632Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1633                              LookupResult &R,
1634                              const TemplateArgumentListInfo *TemplateArgs,
1635                              bool IsKnownInstance) {
1636  assert(!R.empty() && !R.isAmbiguous());
1637
1638  SourceLocation Loc = R.getNameLoc();
1639
1640  // We may have found a field within an anonymous union or struct
1641  // (C++ [class.union]).
1642  // FIXME: This needs to happen post-isImplicitMemberReference?
1643  // FIXME: template-ids inside anonymous structs?
1644  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1645    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1646      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1647
1648  // If this is known to be an instance access, go ahead and build a
1649  // 'this' expression now.
1650  DeclContext *DC = getFunctionLevelDeclContext();
1651  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1652  Expr *This = 0; // null signifies implicit access
1653  if (IsKnownInstance) {
1654    SourceLocation Loc = R.getNameLoc();
1655    if (SS.getRange().isValid())
1656      Loc = SS.getRange().getBegin();
1657    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1658  }
1659
1660  return BuildMemberReferenceExpr(This, ThisType,
1661                                  /*OpLoc*/ SourceLocation(),
1662                                  /*IsArrow*/ true,
1663                                  SS,
1664                                  /*FirstQualifierInScope*/ 0,
1665                                  R, TemplateArgs);
1666}
1667
1668bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1669                                      const LookupResult &R,
1670                                      bool HasTrailingLParen) {
1671  // Only when used directly as the postfix-expression of a call.
1672  if (!HasTrailingLParen)
1673    return false;
1674
1675  // Never if a scope specifier was provided.
1676  if (SS.isSet())
1677    return false;
1678
1679  // Only in C++ or ObjC++.
1680  if (!getLangOptions().CPlusPlus)
1681    return false;
1682
1683  // Turn off ADL when we find certain kinds of declarations during
1684  // normal lookup:
1685  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1686    NamedDecl *D = *I;
1687
1688    // C++0x [basic.lookup.argdep]p3:
1689    //     -- a declaration of a class member
1690    // Since using decls preserve this property, we check this on the
1691    // original decl.
1692    if (D->isCXXClassMember())
1693      return false;
1694
1695    // C++0x [basic.lookup.argdep]p3:
1696    //     -- a block-scope function declaration that is not a
1697    //        using-declaration
1698    // NOTE: we also trigger this for function templates (in fact, we
1699    // don't check the decl type at all, since all other decl types
1700    // turn off ADL anyway).
1701    if (isa<UsingShadowDecl>(D))
1702      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1703    else if (D->getDeclContext()->isFunctionOrMethod())
1704      return false;
1705
1706    // C++0x [basic.lookup.argdep]p3:
1707    //     -- a declaration that is neither a function or a function
1708    //        template
1709    // And also for builtin functions.
1710    if (isa<FunctionDecl>(D)) {
1711      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1712
1713      // But also builtin functions.
1714      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1715        return false;
1716    } else if (!isa<FunctionTemplateDecl>(D))
1717      return false;
1718  }
1719
1720  return true;
1721}
1722
1723
1724/// Diagnoses obvious problems with the use of the given declaration
1725/// as an expression.  This is only actually called for lookups that
1726/// were not overloaded, and it doesn't promise that the declaration
1727/// will in fact be used.
1728static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1729  if (isa<TypedefDecl>(D)) {
1730    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1731    return true;
1732  }
1733
1734  if (isa<ObjCInterfaceDecl>(D)) {
1735    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1736    return true;
1737  }
1738
1739  if (isa<NamespaceDecl>(D)) {
1740    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1741    return true;
1742  }
1743
1744  return false;
1745}
1746
1747ExprResult
1748Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1749                               LookupResult &R,
1750                               bool NeedsADL) {
1751  // If this is a single, fully-resolved result and we don't need ADL,
1752  // just build an ordinary singleton decl ref.
1753  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1754    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
1755                                    R.getFoundDecl());
1756
1757  // We only need to check the declaration if there's exactly one
1758  // result, because in the overloaded case the results can only be
1759  // functions and function templates.
1760  if (R.isSingleResult() &&
1761      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1762    return ExprError();
1763
1764  // Otherwise, just build an unresolved lookup expression.  Suppress
1765  // any lookup-related diagnostics; we'll hash these out later, when
1766  // we've picked a target.
1767  R.suppressDiagnostics();
1768
1769  bool Dependent
1770    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1771  UnresolvedLookupExpr *ULE
1772    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1773                                   (NestedNameSpecifier*) SS.getScopeRep(),
1774                                   SS.getRange(), R.getLookupNameInfo(),
1775                                   NeedsADL, R.isOverloadedResult(),
1776                                   R.begin(), R.end());
1777
1778  return Owned(ULE);
1779}
1780
1781
1782/// \brief Complete semantic analysis for a reference to the given declaration.
1783ExprResult
1784Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1785                               const DeclarationNameInfo &NameInfo,
1786                               NamedDecl *D) {
1787  assert(D && "Cannot refer to a NULL declaration");
1788  assert(!isa<FunctionTemplateDecl>(D) &&
1789         "Cannot refer unambiguously to a function template");
1790
1791  SourceLocation Loc = NameInfo.getLoc();
1792  if (CheckDeclInExpr(*this, Loc, D))
1793    return ExprError();
1794
1795  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1796    // Specifically diagnose references to class templates that are missing
1797    // a template argument list.
1798    Diag(Loc, diag::err_template_decl_ref)
1799      << Template << SS.getRange();
1800    Diag(Template->getLocation(), diag::note_template_decl_here);
1801    return ExprError();
1802  }
1803
1804  // Make sure that we're referring to a value.
1805  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1806  if (!VD) {
1807    Diag(Loc, diag::err_ref_non_value)
1808      << D << SS.getRange();
1809    Diag(D->getLocation(), diag::note_declared_at);
1810    return ExprError();
1811  }
1812
1813  // Check whether this declaration can be used. Note that we suppress
1814  // this check when we're going to perform argument-dependent lookup
1815  // on this function name, because this might not be the function
1816  // that overload resolution actually selects.
1817  if (DiagnoseUseOfDecl(VD, Loc))
1818    return ExprError();
1819
1820  // Only create DeclRefExpr's for valid Decl's.
1821  if (VD->isInvalidDecl())
1822    return ExprError();
1823
1824  // If the identifier reference is inside a block, and it refers to a value
1825  // that is outside the block, create a BlockDeclRefExpr instead of a
1826  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1827  // the block is formed.
1828  //
1829  // We do not do this for things like enum constants, global variables, etc,
1830  // as they do not get snapshotted.
1831  //
1832  if (getCurBlock() &&
1833      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1834    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1835      Diag(Loc, diag::err_ref_vm_type);
1836      Diag(D->getLocation(), diag::note_declared_at);
1837      return ExprError();
1838    }
1839
1840    if (VD->getType()->isArrayType()) {
1841      Diag(Loc, diag::err_ref_array_type);
1842      Diag(D->getLocation(), diag::note_declared_at);
1843      return ExprError();
1844    }
1845
1846    MarkDeclarationReferenced(Loc, VD);
1847    QualType ExprTy = VD->getType().getNonReferenceType();
1848    // The BlocksAttr indicates the variable is bound by-reference.
1849    if (VD->getAttr<BlocksAttr>())
1850      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1851    // This is to record that a 'const' was actually synthesize and added.
1852    bool constAdded = !ExprTy.isConstQualified();
1853    // Variable will be bound by-copy, make it const within the closure.
1854
1855    ExprTy.addConst();
1856    QualType T = VD->getType();
1857    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
1858                                                            ExprTy, Loc, false,
1859                                                            constAdded);
1860    if (getLangOptions().CPlusPlus) {
1861      if (!T->isDependentType() && !T->isReferenceType()) {
1862        Expr *E = new (Context)
1863                    DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
1864                                          SourceLocation());
1865
1866        ExprResult Res = PerformCopyInitialization(
1867                          InitializedEntity::InitializeBlock(VD->getLocation(),
1868                                                         T, false),
1869                                                         SourceLocation(),
1870                                                         Owned(E));
1871        if (!Res.isInvalid()) {
1872          Res = MaybeCreateCXXExprWithTemporaries(Res.get());
1873          Expr *Init = Res.takeAs<Expr>();
1874          BDRE->setCopyConstructorExpr(Init);
1875        }
1876      }
1877    }
1878    return Owned(BDRE);
1879  }
1880  // If this reference is not in a block or if the referenced variable is
1881  // within the block, create a normal DeclRefExpr.
1882
1883  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
1884                          NameInfo, &SS);
1885}
1886
1887ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1888                                                 tok::TokenKind Kind) {
1889  PredefinedExpr::IdentType IT;
1890
1891  switch (Kind) {
1892  default: assert(0 && "Unknown simple primary expr!");
1893  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1894  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1895  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1896  }
1897
1898  // Pre-defined identifiers are of type char[x], where x is the length of the
1899  // string.
1900
1901  Decl *currentDecl = getCurFunctionOrMethodDecl();
1902  if (!currentDecl && getCurBlock())
1903    currentDecl = getCurBlock()->TheDecl;
1904  if (!currentDecl) {
1905    Diag(Loc, diag::ext_predef_outside_function);
1906    currentDecl = Context.getTranslationUnitDecl();
1907  }
1908
1909  QualType ResTy;
1910  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1911    ResTy = Context.DependentTy;
1912  } else {
1913    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1914
1915    llvm::APInt LengthI(32, Length + 1);
1916    ResTy = Context.CharTy.withConst();
1917    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1918  }
1919  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1920}
1921
1922ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1923  llvm::SmallString<16> CharBuffer;
1924  bool Invalid = false;
1925  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1926  if (Invalid)
1927    return ExprError();
1928
1929  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1930                            PP);
1931  if (Literal.hadError())
1932    return ExprError();
1933
1934  QualType Ty;
1935  if (!getLangOptions().CPlusPlus)
1936    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1937  else if (Literal.isWide())
1938    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1939  else if (Literal.isMultiChar())
1940    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1941  else
1942    Ty = Context.CharTy;  // 'x' -> char in C++
1943
1944  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1945                                              Literal.isWide(),
1946                                              Ty, Tok.getLocation()));
1947}
1948
1949ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1950  // Fast path for a single digit (which is quite common).  A single digit
1951  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1952  if (Tok.getLength() == 1) {
1953    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1954    unsigned IntSize = Context.Target.getIntWidth();
1955    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
1956                    Context.IntTy, Tok.getLocation()));
1957  }
1958
1959  llvm::SmallString<512> IntegerBuffer;
1960  // Add padding so that NumericLiteralParser can overread by one character.
1961  IntegerBuffer.resize(Tok.getLength()+1);
1962  const char *ThisTokBegin = &IntegerBuffer[0];
1963
1964  // Get the spelling of the token, which eliminates trigraphs, etc.
1965  bool Invalid = false;
1966  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1967  if (Invalid)
1968    return ExprError();
1969
1970  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1971                               Tok.getLocation(), PP);
1972  if (Literal.hadError)
1973    return ExprError();
1974
1975  Expr *Res;
1976
1977  if (Literal.isFloatingLiteral()) {
1978    QualType Ty;
1979    if (Literal.isFloat)
1980      Ty = Context.FloatTy;
1981    else if (!Literal.isLong)
1982      Ty = Context.DoubleTy;
1983    else
1984      Ty = Context.LongDoubleTy;
1985
1986    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1987
1988    using llvm::APFloat;
1989    APFloat Val(Format);
1990
1991    APFloat::opStatus result = Literal.GetFloatValue(Val);
1992
1993    // Overflow is always an error, but underflow is only an error if
1994    // we underflowed to zero (APFloat reports denormals as underflow).
1995    if ((result & APFloat::opOverflow) ||
1996        ((result & APFloat::opUnderflow) && Val.isZero())) {
1997      unsigned diagnostic;
1998      llvm::SmallString<20> buffer;
1999      if (result & APFloat::opOverflow) {
2000        diagnostic = diag::warn_float_overflow;
2001        APFloat::getLargest(Format).toString(buffer);
2002      } else {
2003        diagnostic = diag::warn_float_underflow;
2004        APFloat::getSmallest(Format).toString(buffer);
2005      }
2006
2007      Diag(Tok.getLocation(), diagnostic)
2008        << Ty
2009        << llvm::StringRef(buffer.data(), buffer.size());
2010    }
2011
2012    bool isExact = (result == APFloat::opOK);
2013    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
2014
2015  } else if (!Literal.isIntegerLiteral()) {
2016    return ExprError();
2017  } else {
2018    QualType Ty;
2019
2020    // long long is a C99 feature.
2021    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
2022        Literal.isLongLong)
2023      Diag(Tok.getLocation(), diag::ext_longlong);
2024
2025    // Get the value in the widest-possible width.
2026    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
2027
2028    if (Literal.GetIntegerValue(ResultVal)) {
2029      // If this value didn't fit into uintmax_t, warn and force to ull.
2030      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2031      Ty = Context.UnsignedLongLongTy;
2032      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2033             "long long is not intmax_t?");
2034    } else {
2035      // If this value fits into a ULL, try to figure out what else it fits into
2036      // according to the rules of C99 6.4.4.1p5.
2037
2038      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2039      // be an unsigned int.
2040      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2041
2042      // Check from smallest to largest, picking the smallest type we can.
2043      unsigned Width = 0;
2044      if (!Literal.isLong && !Literal.isLongLong) {
2045        // Are int/unsigned possibilities?
2046        unsigned IntSize = Context.Target.getIntWidth();
2047
2048        // Does it fit in a unsigned int?
2049        if (ResultVal.isIntN(IntSize)) {
2050          // Does it fit in a signed int?
2051          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2052            Ty = Context.IntTy;
2053          else if (AllowUnsigned)
2054            Ty = Context.UnsignedIntTy;
2055          Width = IntSize;
2056        }
2057      }
2058
2059      // Are long/unsigned long possibilities?
2060      if (Ty.isNull() && !Literal.isLongLong) {
2061        unsigned LongSize = Context.Target.getLongWidth();
2062
2063        // Does it fit in a unsigned long?
2064        if (ResultVal.isIntN(LongSize)) {
2065          // Does it fit in a signed long?
2066          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2067            Ty = Context.LongTy;
2068          else if (AllowUnsigned)
2069            Ty = Context.UnsignedLongTy;
2070          Width = LongSize;
2071        }
2072      }
2073
2074      // Finally, check long long if needed.
2075      if (Ty.isNull()) {
2076        unsigned LongLongSize = Context.Target.getLongLongWidth();
2077
2078        // Does it fit in a unsigned long long?
2079        if (ResultVal.isIntN(LongLongSize)) {
2080          // Does it fit in a signed long long?
2081          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
2082            Ty = Context.LongLongTy;
2083          else if (AllowUnsigned)
2084            Ty = Context.UnsignedLongLongTy;
2085          Width = LongLongSize;
2086        }
2087      }
2088
2089      // If we still couldn't decide a type, we probably have something that
2090      // does not fit in a signed long long, but has no U suffix.
2091      if (Ty.isNull()) {
2092        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2093        Ty = Context.UnsignedLongLongTy;
2094        Width = Context.Target.getLongLongWidth();
2095      }
2096
2097      if (ResultVal.getBitWidth() != Width)
2098        ResultVal.trunc(Width);
2099    }
2100    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2101  }
2102
2103  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2104  if (Literal.isImaginary)
2105    Res = new (Context) ImaginaryLiteral(Res,
2106                                        Context.getComplexType(Res->getType()));
2107
2108  return Owned(Res);
2109}
2110
2111ExprResult Sema::ActOnParenExpr(SourceLocation L,
2112                                              SourceLocation R, Expr *E) {
2113  assert((E != 0) && "ActOnParenExpr() missing expr");
2114  return Owned(new (Context) ParenExpr(L, R, E));
2115}
2116
2117/// The UsualUnaryConversions() function is *not* called by this routine.
2118/// See C99 6.3.2.1p[2-4] for more details.
2119bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2120                                     SourceLocation OpLoc,
2121                                     const SourceRange &ExprRange,
2122                                     bool isSizeof) {
2123  if (exprType->isDependentType())
2124    return false;
2125
2126  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2127  //   the result is the size of the referenced type."
2128  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2129  //   result shall be the alignment of the referenced type."
2130  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2131    exprType = Ref->getPointeeType();
2132
2133  // C99 6.5.3.4p1:
2134  if (exprType->isFunctionType()) {
2135    // alignof(function) is allowed as an extension.
2136    if (isSizeof)
2137      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2138    return false;
2139  }
2140
2141  // Allow sizeof(void)/alignof(void) as an extension.
2142  if (exprType->isVoidType()) {
2143    Diag(OpLoc, diag::ext_sizeof_void_type)
2144      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2145    return false;
2146  }
2147
2148  if (RequireCompleteType(OpLoc, exprType,
2149                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2150                          << int(!isSizeof) << ExprRange))
2151    return true;
2152
2153  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2154  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2155    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2156      << exprType << isSizeof << ExprRange;
2157    return true;
2158  }
2159
2160  if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
2161    Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
2162      << !isSizeof << ExprRange;
2163    return true;
2164  }
2165
2166  return false;
2167}
2168
2169bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2170                            const SourceRange &ExprRange) {
2171  E = E->IgnoreParens();
2172
2173  // alignof decl is always ok.
2174  if (isa<DeclRefExpr>(E))
2175    return false;
2176
2177  // Cannot know anything else if the expression is dependent.
2178  if (E->isTypeDependent())
2179    return false;
2180
2181  if (E->getBitField()) {
2182    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2183    return true;
2184  }
2185
2186  // Alignment of a field access is always okay, so long as it isn't a
2187  // bit-field.
2188  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2189    if (isa<FieldDecl>(ME->getMemberDecl()))
2190      return false;
2191
2192  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2193}
2194
2195/// \brief Build a sizeof or alignof expression given a type operand.
2196ExprResult
2197Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2198                              SourceLocation OpLoc,
2199                              bool isSizeOf, SourceRange R) {
2200  if (!TInfo)
2201    return ExprError();
2202
2203  QualType T = TInfo->getType();
2204
2205  if (!T->isDependentType() &&
2206      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2207    return ExprError();
2208
2209  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2210  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2211                                               Context.getSizeType(), OpLoc,
2212                                               R.getEnd()));
2213}
2214
2215/// \brief Build a sizeof or alignof expression given an expression
2216/// operand.
2217ExprResult
2218Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2219                              bool isSizeOf, SourceRange R) {
2220  // Verify that the operand is valid.
2221  bool isInvalid = false;
2222  if (E->isTypeDependent()) {
2223    // Delay type-checking for type-dependent expressions.
2224  } else if (!isSizeOf) {
2225    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2226  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2227    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2228    isInvalid = true;
2229  } else {
2230    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2231  }
2232
2233  if (isInvalid)
2234    return ExprError();
2235
2236  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2237  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2238                                               Context.getSizeType(), OpLoc,
2239                                               R.getEnd()));
2240}
2241
2242/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2243/// the same for @c alignof and @c __alignof
2244/// Note that the ArgRange is invalid if isType is false.
2245ExprResult
2246Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2247                             void *TyOrEx, const SourceRange &ArgRange) {
2248  // If error parsing type, ignore.
2249  if (TyOrEx == 0) return ExprError();
2250
2251  if (isType) {
2252    TypeSourceInfo *TInfo;
2253    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2254    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2255  }
2256
2257  Expr *ArgEx = (Expr *)TyOrEx;
2258  ExprResult Result
2259    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2260
2261  return move(Result);
2262}
2263
2264QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2265  if (V->isTypeDependent())
2266    return Context.DependentTy;
2267
2268  // These operators return the element type of a complex type.
2269  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2270    return CT->getElementType();
2271
2272  // Otherwise they pass through real integer and floating point types here.
2273  if (V->getType()->isArithmeticType())
2274    return V->getType();
2275
2276  // Reject anything else.
2277  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2278    << (isReal ? "__real" : "__imag");
2279  return QualType();
2280}
2281
2282
2283
2284ExprResult
2285Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2286                          tok::TokenKind Kind, Expr *Input) {
2287  UnaryOperatorKind Opc;
2288  switch (Kind) {
2289  default: assert(0 && "Unknown unary op!");
2290  case tok::plusplus:   Opc = UO_PostInc; break;
2291  case tok::minusminus: Opc = UO_PostDec; break;
2292  }
2293
2294  return BuildUnaryOp(S, OpLoc, Opc, Input);
2295}
2296
2297ExprResult
2298Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2299                              Expr *Idx, SourceLocation RLoc) {
2300  // Since this might be a postfix expression, get rid of ParenListExprs.
2301  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2302  if (Result.isInvalid()) return ExprError();
2303  Base = Result.take();
2304
2305  Expr *LHSExp = Base, *RHSExp = Idx;
2306
2307  if (getLangOptions().CPlusPlus &&
2308      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2309    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2310                                                  Context.DependentTy, RLoc));
2311  }
2312
2313  if (getLangOptions().CPlusPlus &&
2314      (LHSExp->getType()->isRecordType() ||
2315       LHSExp->getType()->isEnumeralType() ||
2316       RHSExp->getType()->isRecordType() ||
2317       RHSExp->getType()->isEnumeralType())) {
2318    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2319  }
2320
2321  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2322}
2323
2324
2325ExprResult
2326Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2327                                     Expr *Idx, SourceLocation RLoc) {
2328  Expr *LHSExp = Base;
2329  Expr *RHSExp = Idx;
2330
2331  // Perform default conversions.
2332  if (!LHSExp->getType()->getAs<VectorType>())
2333      DefaultFunctionArrayLvalueConversion(LHSExp);
2334  DefaultFunctionArrayLvalueConversion(RHSExp);
2335
2336  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2337
2338  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2339  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2340  // in the subscript position. As a result, we need to derive the array base
2341  // and index from the expression types.
2342  Expr *BaseExpr, *IndexExpr;
2343  QualType ResultType;
2344  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2345    BaseExpr = LHSExp;
2346    IndexExpr = RHSExp;
2347    ResultType = Context.DependentTy;
2348  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2349    BaseExpr = LHSExp;
2350    IndexExpr = RHSExp;
2351    ResultType = PTy->getPointeeType();
2352  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2353     // Handle the uncommon case of "123[Ptr]".
2354    BaseExpr = RHSExp;
2355    IndexExpr = LHSExp;
2356    ResultType = PTy->getPointeeType();
2357  } else if (const ObjCObjectPointerType *PTy =
2358               LHSTy->getAs<ObjCObjectPointerType>()) {
2359    BaseExpr = LHSExp;
2360    IndexExpr = RHSExp;
2361    ResultType = PTy->getPointeeType();
2362  } else if (const ObjCObjectPointerType *PTy =
2363               RHSTy->getAs<ObjCObjectPointerType>()) {
2364     // Handle the uncommon case of "123[Ptr]".
2365    BaseExpr = RHSExp;
2366    IndexExpr = LHSExp;
2367    ResultType = PTy->getPointeeType();
2368  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2369    BaseExpr = LHSExp;    // vectors: V[123]
2370    IndexExpr = RHSExp;
2371
2372    // FIXME: need to deal with const...
2373    ResultType = VTy->getElementType();
2374  } else if (LHSTy->isArrayType()) {
2375    // If we see an array that wasn't promoted by
2376    // DefaultFunctionArrayLvalueConversion, it must be an array that
2377    // wasn't promoted because of the C90 rule that doesn't
2378    // allow promoting non-lvalue arrays.  Warn, then
2379    // force the promotion here.
2380    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2381        LHSExp->getSourceRange();
2382    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2383                      CK_ArrayToPointerDecay);
2384    LHSTy = LHSExp->getType();
2385
2386    BaseExpr = LHSExp;
2387    IndexExpr = RHSExp;
2388    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2389  } else if (RHSTy->isArrayType()) {
2390    // Same as previous, except for 123[f().a] case
2391    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2392        RHSExp->getSourceRange();
2393    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2394                      CK_ArrayToPointerDecay);
2395    RHSTy = RHSExp->getType();
2396
2397    BaseExpr = RHSExp;
2398    IndexExpr = LHSExp;
2399    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2400  } else {
2401    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2402       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2403  }
2404  // C99 6.5.2.1p1
2405  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
2406    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2407                     << IndexExpr->getSourceRange());
2408
2409  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2410       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2411         && !IndexExpr->isTypeDependent())
2412    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2413
2414  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2415  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2416  // type. Note that Functions are not objects, and that (in C99 parlance)
2417  // incomplete types are not object types.
2418  if (ResultType->isFunctionType()) {
2419    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2420      << ResultType << BaseExpr->getSourceRange();
2421    return ExprError();
2422  }
2423
2424  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
2425    // GNU extension: subscripting on pointer to void
2426    Diag(LLoc, diag::ext_gnu_void_ptr)
2427      << BaseExpr->getSourceRange();
2428  } else if (!ResultType->isDependentType() &&
2429      RequireCompleteType(LLoc, ResultType,
2430                          PDiag(diag::err_subscript_incomplete_type)
2431                            << BaseExpr->getSourceRange()))
2432    return ExprError();
2433
2434  // Diagnose bad cases where we step over interface counts.
2435  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2436    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2437      << ResultType << BaseExpr->getSourceRange();
2438    return ExprError();
2439  }
2440
2441  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2442                                                ResultType, RLoc));
2443}
2444
2445QualType Sema::
2446CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2447                        const IdentifierInfo *CompName,
2448                        SourceLocation CompLoc) {
2449  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2450  // see FIXME there.
2451  //
2452  // FIXME: This logic can be greatly simplified by splitting it along
2453  // halving/not halving and reworking the component checking.
2454  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2455
2456  // The vector accessor can't exceed the number of elements.
2457  const char *compStr = CompName->getNameStart();
2458
2459  // This flag determines whether or not the component is one of the four
2460  // special names that indicate a subset of exactly half the elements are
2461  // to be selected.
2462  bool HalvingSwizzle = false;
2463
2464  // This flag determines whether or not CompName has an 's' char prefix,
2465  // indicating that it is a string of hex values to be used as vector indices.
2466  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2467
2468  // Check that we've found one of the special components, or that the component
2469  // names must come from the same set.
2470  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2471      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2472    HalvingSwizzle = true;
2473  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2474    do
2475      compStr++;
2476    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2477  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2478    do
2479      compStr++;
2480    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2481  }
2482
2483  if (!HalvingSwizzle && *compStr) {
2484    // We didn't get to the end of the string. This means the component names
2485    // didn't come from the same set *or* we encountered an illegal name.
2486    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2487      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
2488    return QualType();
2489  }
2490
2491  // Ensure no component accessor exceeds the width of the vector type it
2492  // operates on.
2493  if (!HalvingSwizzle) {
2494    compStr = CompName->getNameStart();
2495
2496    if (HexSwizzle)
2497      compStr++;
2498
2499    while (*compStr) {
2500      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2501        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2502          << baseType << SourceRange(CompLoc);
2503        return QualType();
2504      }
2505    }
2506  }
2507
2508  // The component accessor looks fine - now we need to compute the actual type.
2509  // The vector type is implied by the component accessor. For example,
2510  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2511  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2512  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2513  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2514                                     : CompName->getLength();
2515  if (HexSwizzle)
2516    CompSize--;
2517
2518  if (CompSize == 1)
2519    return vecType->getElementType();
2520
2521  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2522  // Now look up the TypeDefDecl from the vector type. Without this,
2523  // diagostics look bad. We want extended vector types to appear built-in.
2524  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2525    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2526      return Context.getTypedefType(ExtVectorDecls[i]);
2527  }
2528  return VT; // should never get here (a typedef type should always be found).
2529}
2530
2531static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2532                                                IdentifierInfo *Member,
2533                                                const Selector &Sel,
2534                                                ASTContext &Context) {
2535
2536  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2537    return PD;
2538  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2539    return OMD;
2540
2541  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2542       E = PDecl->protocol_end(); I != E; ++I) {
2543    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2544                                                     Context))
2545      return D;
2546  }
2547  return 0;
2548}
2549
2550static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2551                                IdentifierInfo *Member,
2552                                const Selector &Sel,
2553                                ASTContext &Context) {
2554  // Check protocols on qualified interfaces.
2555  Decl *GDecl = 0;
2556  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2557       E = QIdTy->qual_end(); I != E; ++I) {
2558    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2559      GDecl = PD;
2560      break;
2561    }
2562    // Also must look for a getter name which uses property syntax.
2563    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2564      GDecl = OMD;
2565      break;
2566    }
2567  }
2568  if (!GDecl) {
2569    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2570         E = QIdTy->qual_end(); I != E; ++I) {
2571      // Search in the protocol-qualifier list of current protocol.
2572      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2573      if (GDecl)
2574        return GDecl;
2575    }
2576  }
2577  return GDecl;
2578}
2579
2580ExprResult
2581Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
2582                               bool IsArrow, SourceLocation OpLoc,
2583                               const CXXScopeSpec &SS,
2584                               NamedDecl *FirstQualifierInScope,
2585                               const DeclarationNameInfo &NameInfo,
2586                               const TemplateArgumentListInfo *TemplateArgs) {
2587  // Even in dependent contexts, try to diagnose base expressions with
2588  // obviously wrong types, e.g.:
2589  //
2590  // T* t;
2591  // t.f;
2592  //
2593  // In Obj-C++, however, the above expression is valid, since it could be
2594  // accessing the 'f' property if T is an Obj-C interface. The extra check
2595  // allows this, while still reporting an error if T is a struct pointer.
2596  if (!IsArrow) {
2597    const PointerType *PT = BaseType->getAs<PointerType>();
2598    if (PT && (!getLangOptions().ObjC1 ||
2599               PT->getPointeeType()->isRecordType())) {
2600      assert(BaseExpr && "cannot happen with implicit member accesses");
2601      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
2602        << BaseType << BaseExpr->getSourceRange();
2603      return ExprError();
2604    }
2605  }
2606
2607  assert(BaseType->isDependentType() ||
2608         NameInfo.getName().isDependentName() ||
2609         isDependentScopeSpecifier(SS));
2610
2611  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2612  // must have pointer type, and the accessed type is the pointee.
2613  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2614                                                   IsArrow, OpLoc,
2615                                                   SS.getScopeRep(),
2616                                                   SS.getRange(),
2617                                                   FirstQualifierInScope,
2618                                                   NameInfo, TemplateArgs));
2619}
2620
2621/// We know that the given qualified member reference points only to
2622/// declarations which do not belong to the static type of the base
2623/// expression.  Diagnose the problem.
2624static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2625                                             Expr *BaseExpr,
2626                                             QualType BaseType,
2627                                             const CXXScopeSpec &SS,
2628                                             const LookupResult &R) {
2629  // If this is an implicit member access, use a different set of
2630  // diagnostics.
2631  if (!BaseExpr)
2632    return DiagnoseInstanceReference(SemaRef, SS, R);
2633
2634  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2635    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2636}
2637
2638// Check whether the declarations we found through a nested-name
2639// specifier in a member expression are actually members of the base
2640// type.  The restriction here is:
2641//
2642//   C++ [expr.ref]p2:
2643//     ... In these cases, the id-expression shall name a
2644//     member of the class or of one of its base classes.
2645//
2646// So it's perfectly legitimate for the nested-name specifier to name
2647// an unrelated class, and for us to find an overload set including
2648// decls from classes which are not superclasses, as long as the decl
2649// we actually pick through overload resolution is from a superclass.
2650bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2651                                         QualType BaseType,
2652                                         const CXXScopeSpec &SS,
2653                                         const LookupResult &R) {
2654  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2655  if (!BaseRT) {
2656    // We can't check this yet because the base type is still
2657    // dependent.
2658    assert(BaseType->isDependentType());
2659    return false;
2660  }
2661  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2662
2663  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2664    // If this is an implicit member reference and we find a
2665    // non-instance member, it's not an error.
2666    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2667      return false;
2668
2669    // Note that we use the DC of the decl, not the underlying decl.
2670    DeclContext *DC = (*I)->getDeclContext();
2671    while (DC->isTransparentContext())
2672      DC = DC->getParent();
2673
2674    if (!DC->isRecord())
2675      continue;
2676
2677    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2678    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
2679
2680    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2681      return false;
2682  }
2683
2684  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2685  return true;
2686}
2687
2688static bool
2689LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2690                         SourceRange BaseRange, const RecordType *RTy,
2691                         SourceLocation OpLoc, CXXScopeSpec &SS,
2692                         bool HasTemplateArgs) {
2693  RecordDecl *RDecl = RTy->getDecl();
2694  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2695                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2696                                    << BaseRange))
2697    return true;
2698
2699  if (HasTemplateArgs) {
2700    // LookupTemplateName doesn't expect these both to exist simultaneously.
2701    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
2702
2703    bool MOUS;
2704    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
2705    return false;
2706  }
2707
2708  DeclContext *DC = RDecl;
2709  if (SS.isSet()) {
2710    // If the member name was a qualified-id, look into the
2711    // nested-name-specifier.
2712    DC = SemaRef.computeDeclContext(SS, false);
2713
2714    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2715      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2716        << SS.getRange() << DC;
2717      return true;
2718    }
2719
2720    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2721
2722    if (!isa<TypeDecl>(DC)) {
2723      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2724        << DC << SS.getRange();
2725      return true;
2726    }
2727  }
2728
2729  // The record definition is complete, now look up the member.
2730  SemaRef.LookupQualifiedName(R, DC);
2731
2732  if (!R.empty())
2733    return false;
2734
2735  // We didn't find anything with the given name, so try to correct
2736  // for typos.
2737  DeclarationName Name = R.getLookupName();
2738  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2739      !R.empty() &&
2740      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2741    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2742      << Name << DC << R.getLookupName() << SS.getRange()
2743      << FixItHint::CreateReplacement(R.getNameLoc(),
2744                                      R.getLookupName().getAsString());
2745    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2746      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2747        << ND->getDeclName();
2748    return false;
2749  } else {
2750    R.clear();
2751    R.setLookupName(Name);
2752  }
2753
2754  return false;
2755}
2756
2757ExprResult
2758Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
2759                               SourceLocation OpLoc, bool IsArrow,
2760                               CXXScopeSpec &SS,
2761                               NamedDecl *FirstQualifierInScope,
2762                               const DeclarationNameInfo &NameInfo,
2763                               const TemplateArgumentListInfo *TemplateArgs) {
2764  if (BaseType->isDependentType() ||
2765      (SS.isSet() && isDependentScopeSpecifier(SS)))
2766    return ActOnDependentMemberExpr(Base, BaseType,
2767                                    IsArrow, OpLoc,
2768                                    SS, FirstQualifierInScope,
2769                                    NameInfo, TemplateArgs);
2770
2771  LookupResult R(*this, NameInfo, LookupMemberName);
2772
2773  // Implicit member accesses.
2774  if (!Base) {
2775    QualType RecordTy = BaseType;
2776    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2777    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2778                                 RecordTy->getAs<RecordType>(),
2779                                 OpLoc, SS, TemplateArgs != 0))
2780      return ExprError();
2781
2782  // Explicit member accesses.
2783  } else {
2784    ExprResult Result =
2785      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2786                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
2787
2788    if (Result.isInvalid()) {
2789      Owned(Base);
2790      return ExprError();
2791    }
2792
2793    if (Result.get())
2794      return move(Result);
2795
2796    // LookupMemberExpr can modify Base, and thus change BaseType
2797    BaseType = Base->getType();
2798  }
2799
2800  return BuildMemberReferenceExpr(Base, BaseType,
2801                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2802                                  R, TemplateArgs);
2803}
2804
2805ExprResult
2806Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
2807                               SourceLocation OpLoc, bool IsArrow,
2808                               const CXXScopeSpec &SS,
2809                               NamedDecl *FirstQualifierInScope,
2810                               LookupResult &R,
2811                         const TemplateArgumentListInfo *TemplateArgs,
2812                               bool SuppressQualifierCheck) {
2813  QualType BaseType = BaseExprType;
2814  if (IsArrow) {
2815    assert(BaseType->isPointerType());
2816    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2817  }
2818  R.setBaseObjectType(BaseType);
2819
2820  NestedNameSpecifier *Qualifier = SS.getScopeRep();
2821  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
2822  DeclarationName MemberName = MemberNameInfo.getName();
2823  SourceLocation MemberLoc = MemberNameInfo.getLoc();
2824
2825  if (R.isAmbiguous())
2826    return ExprError();
2827
2828  if (R.empty()) {
2829    // Rederive where we looked up.
2830    DeclContext *DC = (SS.isSet()
2831                       ? computeDeclContext(SS, false)
2832                       : BaseType->getAs<RecordType>()->getDecl());
2833
2834    Diag(R.getNameLoc(), diag::err_no_member)
2835      << MemberName << DC
2836      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2837    return ExprError();
2838  }
2839
2840  // Diagnose lookups that find only declarations from a non-base
2841  // type.  This is possible for either qualified lookups (which may
2842  // have been qualified with an unrelated type) or implicit member
2843  // expressions (which were found with unqualified lookup and thus
2844  // may have come from an enclosing scope).  Note that it's okay for
2845  // lookup to find declarations from a non-base type as long as those
2846  // aren't the ones picked by overload resolution.
2847  if ((SS.isSet() || !BaseExpr ||
2848       (isa<CXXThisExpr>(BaseExpr) &&
2849        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2850      !SuppressQualifierCheck &&
2851      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2852    return ExprError();
2853
2854  // Construct an unresolved result if we in fact got an unresolved
2855  // result.
2856  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2857    bool Dependent =
2858      BaseExprType->isDependentType() ||
2859      R.isUnresolvableResult() ||
2860      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2861
2862    // Suppress any lookup-related diagnostics; we'll do these when we
2863    // pick a member.
2864    R.suppressDiagnostics();
2865
2866    UnresolvedMemberExpr *MemExpr
2867      = UnresolvedMemberExpr::Create(Context, Dependent,
2868                                     R.isUnresolvableResult(),
2869                                     BaseExpr, BaseExprType,
2870                                     IsArrow, OpLoc,
2871                                     Qualifier, SS.getRange(),
2872                                     MemberNameInfo,
2873                                     TemplateArgs, R.begin(), R.end());
2874
2875    return Owned(MemExpr);
2876  }
2877
2878  assert(R.isSingleResult());
2879  DeclAccessPair FoundDecl = R.begin().getPair();
2880  NamedDecl *MemberDecl = R.getFoundDecl();
2881
2882  // FIXME: diagnose the presence of template arguments now.
2883
2884  // If the decl being referenced had an error, return an error for this
2885  // sub-expr without emitting another error, in order to avoid cascading
2886  // error cases.
2887  if (MemberDecl->isInvalidDecl())
2888    return ExprError();
2889
2890  // Handle the implicit-member-access case.
2891  if (!BaseExpr) {
2892    // If this is not an instance member, convert to a non-member access.
2893    if (!MemberDecl->isCXXInstanceMember())
2894      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
2895
2896    SourceLocation Loc = R.getNameLoc();
2897    if (SS.getRange().isValid())
2898      Loc = SS.getRange().getBegin();
2899    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2900  }
2901
2902  bool ShouldCheckUse = true;
2903  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2904    // Don't diagnose the use of a virtual member function unless it's
2905    // explicitly qualified.
2906    if (MD->isVirtual() && !SS.isSet())
2907      ShouldCheckUse = false;
2908  }
2909
2910  // Check the use of this member.
2911  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2912    Owned(BaseExpr);
2913    return ExprError();
2914  }
2915
2916  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2917    // We may have found a field within an anonymous union or struct
2918    // (C++ [class.union]).
2919    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2920        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2921      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2922                                                      BaseExpr, OpLoc);
2923
2924    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2925    QualType MemberType = FD->getType();
2926    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2927      MemberType = Ref->getPointeeType();
2928    else {
2929      Qualifiers BaseQuals = BaseType.getQualifiers();
2930      BaseQuals.removeObjCGCAttr();
2931      if (FD->isMutable()) BaseQuals.removeConst();
2932
2933      Qualifiers MemberQuals
2934        = Context.getCanonicalType(MemberType).getQualifiers();
2935
2936      Qualifiers Combined = BaseQuals + MemberQuals;
2937      if (Combined != MemberQuals)
2938        MemberType = Context.getQualifiedType(MemberType, Combined);
2939    }
2940
2941    MarkDeclarationReferenced(MemberLoc, FD);
2942    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2943      return ExprError();
2944    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2945                                 FD, FoundDecl, MemberNameInfo,
2946                                 MemberType));
2947  }
2948
2949  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2950    MarkDeclarationReferenced(MemberLoc, Var);
2951    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2952                                 Var, FoundDecl, MemberNameInfo,
2953                                 Var->getType().getNonReferenceType()));
2954  }
2955
2956  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2957    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2958    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2959                                 MemberFn, FoundDecl, MemberNameInfo,
2960                                 MemberFn->getType()));
2961  }
2962
2963  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2964    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2965    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2966                                 Enum, FoundDecl, MemberNameInfo,
2967                                 Enum->getType()));
2968  }
2969
2970  Owned(BaseExpr);
2971
2972  // We found something that we didn't expect. Complain.
2973  if (isa<TypeDecl>(MemberDecl))
2974    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
2975      << MemberName << BaseType << int(IsArrow);
2976  else
2977    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2978      << MemberName << BaseType << int(IsArrow);
2979
2980  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2981    << MemberName;
2982  R.suppressDiagnostics();
2983  return ExprError();
2984}
2985
2986/// Look up the given member of the given non-type-dependent
2987/// expression.  This can return in one of two ways:
2988///  * If it returns a sentinel null-but-valid result, the caller will
2989///    assume that lookup was performed and the results written into
2990///    the provided structure.  It will take over from there.
2991///  * Otherwise, the returned expression will be produced in place of
2992///    an ordinary member expression.
2993///
2994/// The ObjCImpDecl bit is a gross hack that will need to be properly
2995/// fixed for ObjC++.
2996ExprResult
2997Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2998                       bool &IsArrow, SourceLocation OpLoc,
2999                       CXXScopeSpec &SS,
3000                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
3001  assert(BaseExpr && "no base expression");
3002
3003  // Perform default conversions.
3004  DefaultFunctionArrayConversion(BaseExpr);
3005
3006  QualType BaseType = BaseExpr->getType();
3007  assert(!BaseType->isDependentType());
3008
3009  DeclarationName MemberName = R.getLookupName();
3010  SourceLocation MemberLoc = R.getNameLoc();
3011
3012  // If the user is trying to apply -> or . to a function pointer
3013  // type, it's probably because they forgot parentheses to call that
3014  // function. Suggest the addition of those parentheses, build the
3015  // call, and continue on.
3016  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3017    if (const FunctionProtoType *Fun
3018          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
3019      QualType ResultTy = Fun->getResultType();
3020      if (Fun->getNumArgs() == 0 &&
3021          ((!IsArrow && ResultTy->isRecordType()) ||
3022           (IsArrow && ResultTy->isPointerType() &&
3023            ResultTy->getAs<PointerType>()->getPointeeType()
3024                                                          ->isRecordType()))) {
3025        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
3026        Diag(Loc, diag::err_member_reference_needs_call)
3027          << QualType(Fun, 0)
3028          << FixItHint::CreateInsertion(Loc, "()");
3029
3030        ExprResult NewBase
3031          = ActOnCallExpr(0, BaseExpr, Loc, MultiExprArg(*this, 0, 0), Loc);
3032        BaseExpr = 0;
3033        if (NewBase.isInvalid())
3034          return ExprError();
3035
3036        BaseExpr = NewBase.takeAs<Expr>();
3037        DefaultFunctionArrayConversion(BaseExpr);
3038        BaseType = BaseExpr->getType();
3039      }
3040    }
3041  }
3042
3043  // If this is an Objective-C pseudo-builtin and a definition is provided then
3044  // use that.
3045  if (BaseType->isObjCIdType()) {
3046    if (IsArrow) {
3047      // Handle the following exceptional case PObj->isa.
3048      if (const ObjCObjectPointerType *OPT =
3049          BaseType->getAs<ObjCObjectPointerType>()) {
3050        if (OPT->getObjectType()->isObjCId() &&
3051            MemberName.getAsIdentifierInfo()->isStr("isa"))
3052          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
3053                                                 Context.getObjCClassType()));
3054      }
3055    }
3056    // We have an 'id' type. Rather than fall through, we check if this
3057    // is a reference to 'isa'.
3058    if (BaseType != Context.ObjCIdRedefinitionType) {
3059      BaseType = Context.ObjCIdRedefinitionType;
3060      ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3061    }
3062  }
3063
3064  // If this is an Objective-C pseudo-builtin and a definition is provided then
3065  // use that.
3066  if (Context.isObjCSelType(BaseType)) {
3067    // We have an 'SEL' type. Rather than fall through, we check if this
3068    // is a reference to 'sel_id'.
3069    if (BaseType != Context.ObjCSelRedefinitionType) {
3070      BaseType = Context.ObjCSelRedefinitionType;
3071      ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3072    }
3073  }
3074
3075  assert(!BaseType.isNull() && "no type for member expression");
3076
3077  // Handle properties on ObjC 'Class' types.
3078  if (!IsArrow && BaseType->isObjCClassType()) {
3079    // Also must look for a getter name which uses property syntax.
3080    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3081    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3082    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3083      ObjCInterfaceDecl *IFace = MD->getClassInterface();
3084      ObjCMethodDecl *Getter;
3085      // FIXME: need to also look locally in the implementation.
3086      if ((Getter = IFace->lookupClassMethod(Sel))) {
3087        // Check the use of this method.
3088        if (DiagnoseUseOfDecl(Getter, MemberLoc))
3089          return ExprError();
3090      }
3091      // If we found a getter then this may be a valid dot-reference, we
3092      // will look for the matching setter, in case it is needed.
3093      Selector SetterSel =
3094      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3095                                         PP.getSelectorTable(), Member);
3096      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
3097      if (!Setter) {
3098        // If this reference is in an @implementation, also check for 'private'
3099        // methods.
3100        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3101      }
3102      // Look through local category implementations associated with the class.
3103      if (!Setter)
3104        Setter = IFace->getCategoryClassMethod(SetterSel);
3105
3106      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3107        return ExprError();
3108
3109      if (Getter || Setter) {
3110        QualType PType;
3111
3112        if (Getter)
3113          PType = Getter->getSendResultType();
3114        else
3115          // Get the expression type from Setter's incoming parameter.
3116          PType = (*(Setter->param_end() -1))->getType();
3117        // FIXME: we must check that the setter has property type.
3118        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
3119                                                  PType,
3120                                                  Setter, MemberLoc, BaseExpr));
3121      }
3122      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3123                       << MemberName << BaseType);
3124    }
3125  }
3126
3127  if (BaseType->isObjCClassType() &&
3128      BaseType != Context.ObjCClassRedefinitionType) {
3129    BaseType = Context.ObjCClassRedefinitionType;
3130    ImpCastExprToType(BaseExpr, BaseType, CK_BitCast);
3131  }
3132
3133  if (IsArrow) {
3134    if (const PointerType *PT = BaseType->getAs<PointerType>())
3135      BaseType = PT->getPointeeType();
3136    else if (BaseType->isObjCObjectPointerType())
3137      ;
3138    else if (BaseType->isRecordType()) {
3139      // Recover from arrow accesses to records, e.g.:
3140      //   struct MyRecord foo;
3141      //   foo->bar
3142      // This is actually well-formed in C++ if MyRecord has an
3143      // overloaded operator->, but that should have been dealt with
3144      // by now.
3145      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3146        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3147        << FixItHint::CreateReplacement(OpLoc, ".");
3148      IsArrow = false;
3149    } else {
3150      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3151        << BaseType << BaseExpr->getSourceRange();
3152      return ExprError();
3153    }
3154  } else {
3155    // Recover from dot accesses to pointers, e.g.:
3156    //   type *foo;
3157    //   foo.bar
3158    // This is actually well-formed in two cases:
3159    //   - 'type' is an Objective C type
3160    //   - 'bar' is a pseudo-destructor name which happens to refer to
3161    //     the appropriate pointer type
3162    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3163      const PointerType *PT = BaseType->getAs<PointerType>();
3164      if (PT && PT->getPointeeType()->isRecordType()) {
3165        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3166          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3167          << FixItHint::CreateReplacement(OpLoc, "->");
3168        BaseType = PT->getPointeeType();
3169        IsArrow = true;
3170      }
3171    }
3172  }
3173
3174  // Handle field access to simple records.
3175  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3176    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3177                                 RTy, OpLoc, SS, HasTemplateArgs))
3178      return ExprError();
3179    return Owned((Expr*) 0);
3180  }
3181
3182  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3183  // (*Obj).ivar.
3184  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3185      (!IsArrow && BaseType->isObjCObjectType())) {
3186    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3187    ObjCInterfaceDecl *IDecl =
3188      OPT ? OPT->getInterfaceDecl()
3189          : BaseType->getAs<ObjCObjectType>()->getInterface();
3190    if (IDecl) {
3191      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3192
3193      ObjCInterfaceDecl *ClassDeclared;
3194      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3195
3196      if (!IV) {
3197        // Attempt to correct for typos in ivar names.
3198        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3199                         LookupMemberName);
3200        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3201            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3202          Diag(R.getNameLoc(),
3203               diag::err_typecheck_member_reference_ivar_suggest)
3204            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3205            << FixItHint::CreateReplacement(R.getNameLoc(),
3206                                            IV->getNameAsString());
3207          Diag(IV->getLocation(), diag::note_previous_decl)
3208            << IV->getDeclName();
3209        } else {
3210          Res.clear();
3211          Res.setLookupName(Member);
3212        }
3213      }
3214
3215      if (IV) {
3216        // If the decl being referenced had an error, return an error for this
3217        // sub-expr without emitting another error, in order to avoid cascading
3218        // error cases.
3219        if (IV->isInvalidDecl())
3220          return ExprError();
3221
3222        // Check whether we can reference this field.
3223        if (DiagnoseUseOfDecl(IV, MemberLoc))
3224          return ExprError();
3225        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3226            IV->getAccessControl() != ObjCIvarDecl::Package) {
3227          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3228          if (ObjCMethodDecl *MD = getCurMethodDecl())
3229            ClassOfMethodDecl =  MD->getClassInterface();
3230          else if (ObjCImpDecl && getCurFunctionDecl()) {
3231            // Case of a c-function declared inside an objc implementation.
3232            // FIXME: For a c-style function nested inside an objc implementation
3233            // class, there is no implementation context available, so we pass
3234            // down the context as argument to this routine. Ideally, this context
3235            // need be passed down in the AST node and somehow calculated from the
3236            // AST for a function decl.
3237            if (ObjCImplementationDecl *IMPD =
3238                dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
3239              ClassOfMethodDecl = IMPD->getClassInterface();
3240            else if (ObjCCategoryImplDecl* CatImplClass =
3241                        dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
3242              ClassOfMethodDecl = CatImplClass->getClassInterface();
3243          }
3244
3245          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3246            if (ClassDeclared != IDecl ||
3247                ClassOfMethodDecl != ClassDeclared)
3248              Diag(MemberLoc, diag::error_private_ivar_access)
3249                << IV->getDeclName();
3250          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3251            // @protected
3252            Diag(MemberLoc, diag::error_protected_ivar_access)
3253              << IV->getDeclName();
3254        }
3255
3256        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3257                                                   MemberLoc, BaseExpr,
3258                                                   IsArrow));
3259      }
3260      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3261                         << IDecl->getDeclName() << MemberName
3262                         << BaseExpr->getSourceRange());
3263    }
3264  }
3265  // Handle properties on 'id' and qualified "id".
3266  if (!IsArrow && (BaseType->isObjCIdType() ||
3267                   BaseType->isObjCQualifiedIdType())) {
3268    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3269    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3270
3271    // Check protocols on qualified interfaces.
3272    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3273    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3274      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3275        // Check the use of this declaration
3276        if (DiagnoseUseOfDecl(PD, MemberLoc))
3277          return ExprError();
3278
3279        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3280                                                       MemberLoc, BaseExpr));
3281      }
3282      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3283        // Check the use of this method.
3284        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3285          return ExprError();
3286
3287        return Owned(ObjCMessageExpr::Create(Context,
3288                                             OMD->getSendResultType(),
3289                                             OpLoc, BaseExpr, Sel,
3290                                             OMD, NULL, 0, MemberLoc));
3291      }
3292    }
3293
3294    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3295                       << MemberName << BaseType);
3296  }
3297
3298  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3299  // pointer to a (potentially qualified) interface type.
3300  if (!IsArrow)
3301    if (const ObjCObjectPointerType *OPT =
3302          BaseType->getAsObjCInterfacePointerType())
3303      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3304
3305  // Handle the following exceptional case (*Obj).isa.
3306  if (!IsArrow &&
3307      BaseType->isObjCObjectType() &&
3308      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3309      MemberName.getAsIdentifierInfo()->isStr("isa"))
3310    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3311                                           Context.getObjCClassType()));
3312
3313  // Handle 'field access' to vectors, such as 'V.xx'.
3314  if (BaseType->isExtVectorType()) {
3315    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3316    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3317    if (ret.isNull())
3318      return ExprError();
3319    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3320                                                    MemberLoc));
3321  }
3322
3323  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3324    << BaseType << BaseExpr->getSourceRange();
3325
3326  return ExprError();
3327}
3328
3329/// The main callback when the parser finds something like
3330///   expression . [nested-name-specifier] identifier
3331///   expression -> [nested-name-specifier] identifier
3332/// where 'identifier' encompasses a fairly broad spectrum of
3333/// possibilities, including destructor and operator references.
3334///
3335/// \param OpKind either tok::arrow or tok::period
3336/// \param HasTrailingLParen whether the next token is '(', which
3337///   is used to diagnose mis-uses of special members that can
3338///   only be called
3339/// \param ObjCImpDecl the current ObjC @implementation decl;
3340///   this is an ugly hack around the fact that ObjC @implementations
3341///   aren't properly put in the context chain
3342ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
3343                                                   SourceLocation OpLoc,
3344                                                   tok::TokenKind OpKind,
3345                                                   CXXScopeSpec &SS,
3346                                                   UnqualifiedId &Id,
3347                                                   Decl *ObjCImpDecl,
3348                                                   bool HasTrailingLParen) {
3349  if (SS.isSet() && SS.isInvalid())
3350    return ExprError();
3351
3352  TemplateArgumentListInfo TemplateArgsBuffer;
3353
3354  // Decompose the name into its component parts.
3355  DeclarationNameInfo NameInfo;
3356  const TemplateArgumentListInfo *TemplateArgs;
3357  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3358                         NameInfo, TemplateArgs);
3359
3360  DeclarationName Name = NameInfo.getName();
3361  bool IsArrow = (OpKind == tok::arrow);
3362
3363  NamedDecl *FirstQualifierInScope
3364    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3365                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3366
3367  // This is a postfix expression, so get rid of ParenListExprs.
3368  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3369  if (Result.isInvalid()) return ExprError();
3370  Base = Result.take();
3371
3372  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3373      isDependentScopeSpecifier(SS)) {
3374    Result = ActOnDependentMemberExpr(Base, Base->getType(),
3375                                      IsArrow, OpLoc,
3376                                      SS, FirstQualifierInScope,
3377                                      NameInfo, TemplateArgs);
3378  } else {
3379    LookupResult R(*this, NameInfo, LookupMemberName);
3380    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3381                              SS, ObjCImpDecl, TemplateArgs != 0);
3382
3383    if (Result.isInvalid()) {
3384      Owned(Base);
3385      return ExprError();
3386    }
3387
3388    if (Result.get()) {
3389      // The only way a reference to a destructor can be used is to
3390      // immediately call it, which falls into this case.  If the
3391      // next token is not a '(', produce a diagnostic and build the
3392      // call now.
3393      if (!HasTrailingLParen &&
3394          Id.getKind() == UnqualifiedId::IK_DestructorName)
3395        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
3396
3397      return move(Result);
3398    }
3399
3400    Result = BuildMemberReferenceExpr(Base, Base->getType(),
3401                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3402                                      R, TemplateArgs);
3403  }
3404
3405  return move(Result);
3406}
3407
3408ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3409                                                    FunctionDecl *FD,
3410                                                    ParmVarDecl *Param) {
3411  if (Param->hasUnparsedDefaultArg()) {
3412    Diag(CallLoc,
3413          diag::err_use_of_default_argument_to_function_declared_later) <<
3414      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3415    Diag(UnparsedDefaultArgLocs[Param],
3416          diag::note_default_argument_declared_here);
3417    return ExprError();
3418  }
3419
3420  if (Param->hasUninstantiatedDefaultArg()) {
3421    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3422
3423    // Instantiate the expression.
3424    MultiLevelTemplateArgumentList ArgList
3425      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3426
3427    std::pair<const TemplateArgument *, unsigned> Innermost
3428      = ArgList.getInnermost();
3429    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3430                               Innermost.second);
3431
3432    ExprResult Result = SubstExpr(UninstExpr, ArgList);
3433    if (Result.isInvalid())
3434      return ExprError();
3435
3436    // Check the expression as an initializer for the parameter.
3437    InitializedEntity Entity
3438      = InitializedEntity::InitializeParameter(Param);
3439    InitializationKind Kind
3440      = InitializationKind::CreateCopy(Param->getLocation(),
3441             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3442    Expr *ResultE = Result.takeAs<Expr>();
3443
3444    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3445    Result = InitSeq.Perform(*this, Entity, Kind,
3446                             MultiExprArg(*this, &ResultE, 1));
3447    if (Result.isInvalid())
3448      return ExprError();
3449
3450    // Build the default argument expression.
3451    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3452                                           Result.takeAs<Expr>()));
3453  }
3454
3455  // If the default expression creates temporaries, we need to
3456  // push them to the current stack of expression temporaries so they'll
3457  // be properly destroyed.
3458  // FIXME: We should really be rebuilding the default argument with new
3459  // bound temporaries; see the comment in PR5810.
3460  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
3461    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
3462    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
3463                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
3464    ExprTemporaries.push_back(Temporary);
3465  }
3466
3467  // We already type-checked the argument, so we know it works.
3468  // Just mark all of the declarations in this potentially-evaluated expression
3469  // as being "referenced".
3470  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
3471  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3472}
3473
3474/// ConvertArgumentsForCall - Converts the arguments specified in
3475/// Args/NumArgs to the parameter types of the function FDecl with
3476/// function prototype Proto. Call is the call expression itself, and
3477/// Fn is the function expression. For a C++ member function, this
3478/// routine does not attempt to convert the object argument. Returns
3479/// true if the call is ill-formed.
3480bool
3481Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3482                              FunctionDecl *FDecl,
3483                              const FunctionProtoType *Proto,
3484                              Expr **Args, unsigned NumArgs,
3485                              SourceLocation RParenLoc) {
3486  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3487  // assignment, to the types of the corresponding parameter, ...
3488  unsigned NumArgsInProto = Proto->getNumArgs();
3489  bool Invalid = false;
3490
3491  // If too few arguments are available (and we don't have default
3492  // arguments for the remaining parameters), don't make the call.
3493  if (NumArgs < NumArgsInProto) {
3494    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3495      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3496        << Fn->getType()->isBlockPointerType()
3497        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3498    Call->setNumArgs(Context, NumArgsInProto);
3499  }
3500
3501  // If too many are passed and not variadic, error on the extras and drop
3502  // them.
3503  if (NumArgs > NumArgsInProto) {
3504    if (!Proto->isVariadic()) {
3505      Diag(Args[NumArgsInProto]->getLocStart(),
3506           diag::err_typecheck_call_too_many_args)
3507        << Fn->getType()->isBlockPointerType()
3508        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3509        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3510                       Args[NumArgs-1]->getLocEnd());
3511      // This deletes the extra arguments.
3512      Call->setNumArgs(Context, NumArgsInProto);
3513      return true;
3514    }
3515  }
3516  llvm::SmallVector<Expr *, 8> AllArgs;
3517  VariadicCallType CallType =
3518    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3519  if (Fn->getType()->isBlockPointerType())
3520    CallType = VariadicBlock; // Block
3521  else if (isa<MemberExpr>(Fn))
3522    CallType = VariadicMethod;
3523  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3524                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3525  if (Invalid)
3526    return true;
3527  unsigned TotalNumArgs = AllArgs.size();
3528  for (unsigned i = 0; i < TotalNumArgs; ++i)
3529    Call->setArg(i, AllArgs[i]);
3530
3531  return false;
3532}
3533
3534bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3535                                  FunctionDecl *FDecl,
3536                                  const FunctionProtoType *Proto,
3537                                  unsigned FirstProtoArg,
3538                                  Expr **Args, unsigned NumArgs,
3539                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3540                                  VariadicCallType CallType) {
3541  unsigned NumArgsInProto = Proto->getNumArgs();
3542  unsigned NumArgsToCheck = NumArgs;
3543  bool Invalid = false;
3544  if (NumArgs != NumArgsInProto)
3545    // Use default arguments for missing arguments
3546    NumArgsToCheck = NumArgsInProto;
3547  unsigned ArgIx = 0;
3548  // Continue to check argument types (even if we have too few/many args).
3549  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3550    QualType ProtoArgType = Proto->getArgType(i);
3551
3552    Expr *Arg;
3553    if (ArgIx < NumArgs) {
3554      Arg = Args[ArgIx++];
3555
3556      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3557                              ProtoArgType,
3558                              PDiag(diag::err_call_incomplete_argument)
3559                              << Arg->getSourceRange()))
3560        return true;
3561
3562      // Pass the argument
3563      ParmVarDecl *Param = 0;
3564      if (FDecl && i < FDecl->getNumParams())
3565        Param = FDecl->getParamDecl(i);
3566
3567
3568      InitializedEntity Entity =
3569        Param? InitializedEntity::InitializeParameter(Param)
3570             : InitializedEntity::InitializeParameter(ProtoArgType);
3571      ExprResult ArgE = PerformCopyInitialization(Entity,
3572                                                        SourceLocation(),
3573                                                        Owned(Arg));
3574      if (ArgE.isInvalid())
3575        return true;
3576
3577      Arg = ArgE.takeAs<Expr>();
3578    } else {
3579      ParmVarDecl *Param = FDecl->getParamDecl(i);
3580
3581      ExprResult ArgExpr =
3582        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3583      if (ArgExpr.isInvalid())
3584        return true;
3585
3586      Arg = ArgExpr.takeAs<Expr>();
3587    }
3588    AllArgs.push_back(Arg);
3589  }
3590
3591  // If this is a variadic call, handle args passed through "...".
3592  if (CallType != VariadicDoesNotApply) {
3593    // Promote the arguments (C99 6.5.2.2p7).
3594    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3595      Expr *Arg = Args[i];
3596      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3597      AllArgs.push_back(Arg);
3598    }
3599  }
3600  return Invalid;
3601}
3602
3603/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3604/// This provides the location of the left/right parens and a list of comma
3605/// locations.
3606ExprResult
3607Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3608                    MultiExprArg args, SourceLocation RParenLoc) {
3609  unsigned NumArgs = args.size();
3610
3611  // Since this might be a postfix expression, get rid of ParenListExprs.
3612  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3613  if (Result.isInvalid()) return ExprError();
3614  Fn = Result.take();
3615
3616  Expr **Args = args.release();
3617
3618  if (getLangOptions().CPlusPlus) {
3619    // If this is a pseudo-destructor expression, build the call immediately.
3620    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3621      if (NumArgs > 0) {
3622        // Pseudo-destructor calls should not have any arguments.
3623        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3624          << FixItHint::CreateRemoval(
3625                                    SourceRange(Args[0]->getLocStart(),
3626                                                Args[NumArgs-1]->getLocEnd()));
3627
3628        NumArgs = 0;
3629      }
3630
3631      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3632                                          RParenLoc));
3633    }
3634
3635    // Determine whether this is a dependent call inside a C++ template,
3636    // in which case we won't do any semantic analysis now.
3637    // FIXME: Will need to cache the results of name lookup (including ADL) in
3638    // Fn.
3639    bool Dependent = false;
3640    if (Fn->isTypeDependent())
3641      Dependent = true;
3642    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3643      Dependent = true;
3644
3645    if (Dependent)
3646      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3647                                          Context.DependentTy, RParenLoc));
3648
3649    // Determine whether this is a call to an object (C++ [over.call.object]).
3650    if (Fn->getType()->isRecordType())
3651      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3652                                                RParenLoc));
3653
3654    Expr *NakedFn = Fn->IgnoreParens();
3655
3656    // Determine whether this is a call to an unresolved member function.
3657    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3658      // If lookup was unresolved but not dependent (i.e. didn't find
3659      // an unresolved using declaration), it has to be an overloaded
3660      // function set, which means it must contain either multiple
3661      // declarations (all methods or method templates) or a single
3662      // method template.
3663      assert((MemE->getNumDecls() > 1) ||
3664             isa<FunctionTemplateDecl>(
3665                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3666      (void)MemE;
3667
3668      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3669                                       RParenLoc);
3670    }
3671
3672    // Determine whether this is a call to a member function.
3673    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3674      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3675      if (isa<CXXMethodDecl>(MemDecl))
3676        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3677                                         RParenLoc);
3678    }
3679
3680    // Determine whether this is a call to a pointer-to-member function.
3681    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3682      if (BO->getOpcode() == BO_PtrMemD ||
3683          BO->getOpcode() == BO_PtrMemI) {
3684        if (const FunctionProtoType *FPT
3685                                = BO->getType()->getAs<FunctionProtoType>()) {
3686          QualType ResultTy = FPT->getCallResultType(Context);
3687
3688          CXXMemberCallExpr *TheCall
3689            = new (Context) CXXMemberCallExpr(Context, BO, Args,
3690                                              NumArgs, ResultTy,
3691                                              RParenLoc);
3692
3693          if (CheckCallReturnType(FPT->getResultType(),
3694                                  BO->getRHS()->getSourceRange().getBegin(),
3695                                  TheCall, 0))
3696            return ExprError();
3697
3698          if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
3699                                      RParenLoc))
3700            return ExprError();
3701
3702          return MaybeBindToTemporary(TheCall);
3703        }
3704        return ExprError(Diag(Fn->getLocStart(),
3705                              diag::err_typecheck_call_not_function)
3706                              << Fn->getType() << Fn->getSourceRange());
3707      }
3708    }
3709  }
3710
3711  // If we're directly calling a function, get the appropriate declaration.
3712  // Also, in C++, keep track of whether we should perform argument-dependent
3713  // lookup and whether there were any explicitly-specified template arguments.
3714
3715  Expr *NakedFn = Fn->IgnoreParens();
3716  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3717    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3718    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3719                                   RParenLoc);
3720  }
3721
3722  NamedDecl *NDecl = 0;
3723  if (isa<DeclRefExpr>(NakedFn))
3724    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3725
3726  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3727}
3728
3729/// BuildResolvedCallExpr - Build a call to a resolved expression,
3730/// i.e. an expression not of \p OverloadTy.  The expression should
3731/// unary-convert to an expression of function-pointer or
3732/// block-pointer type.
3733///
3734/// \param NDecl the declaration being called, if available
3735ExprResult
3736Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3737                            SourceLocation LParenLoc,
3738                            Expr **Args, unsigned NumArgs,
3739                            SourceLocation RParenLoc) {
3740  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3741
3742  // Promote the function operand.
3743  UsualUnaryConversions(Fn);
3744
3745  // Make the call expr early, before semantic checks.  This guarantees cleanup
3746  // of arguments and function on error.
3747  CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
3748                                             Args, NumArgs,
3749                                             Context.BoolTy,
3750                                             RParenLoc);
3751
3752  const FunctionType *FuncT;
3753  if (!Fn->getType()->isBlockPointerType()) {
3754    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3755    // have type pointer to function".
3756    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3757    if (PT == 0)
3758      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3759        << Fn->getType() << Fn->getSourceRange());
3760    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3761  } else { // This is a block call.
3762    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3763                getAs<FunctionType>();
3764  }
3765  if (FuncT == 0)
3766    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3767      << Fn->getType() << Fn->getSourceRange());
3768
3769  // Check for a valid return type
3770  if (CheckCallReturnType(FuncT->getResultType(),
3771                          Fn->getSourceRange().getBegin(), TheCall,
3772                          FDecl))
3773    return ExprError();
3774
3775  // We know the result type of the call, set it.
3776  TheCall->setType(FuncT->getCallResultType(Context));
3777
3778  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3779    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3780                                RParenLoc))
3781      return ExprError();
3782  } else {
3783    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3784
3785    if (FDecl) {
3786      // Check if we have too few/too many template arguments, based
3787      // on our knowledge of the function definition.
3788      const FunctionDecl *Def = 0;
3789      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3790        const FunctionProtoType *Proto =
3791            Def->getType()->getAs<FunctionProtoType>();
3792        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3793          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3794            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3795        }
3796      }
3797    }
3798
3799    // Promote the arguments (C99 6.5.2.2p6).
3800    for (unsigned i = 0; i != NumArgs; i++) {
3801      Expr *Arg = Args[i];
3802      DefaultArgumentPromotion(Arg);
3803      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3804                              Arg->getType(),
3805                              PDiag(diag::err_call_incomplete_argument)
3806                                << Arg->getSourceRange()))
3807        return ExprError();
3808      TheCall->setArg(i, Arg);
3809    }
3810  }
3811
3812  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3813    if (!Method->isStatic())
3814      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3815        << Fn->getSourceRange());
3816
3817  // Check for sentinels
3818  if (NDecl)
3819    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3820
3821  // Do special checking on direct calls to functions.
3822  if (FDecl) {
3823    if (CheckFunctionCall(FDecl, TheCall))
3824      return ExprError();
3825
3826    if (unsigned BuiltinID = FDecl->getBuiltinID())
3827      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3828  } else if (NDecl) {
3829    if (CheckBlockCall(NDecl, TheCall))
3830      return ExprError();
3831  }
3832
3833  return MaybeBindToTemporary(TheCall);
3834}
3835
3836ExprResult
3837Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3838                           SourceLocation RParenLoc, Expr *InitExpr) {
3839  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3840  // FIXME: put back this assert when initializers are worked out.
3841  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3842
3843  TypeSourceInfo *TInfo;
3844  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3845  if (!TInfo)
3846    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3847
3848  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3849}
3850
3851ExprResult
3852Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3853                               SourceLocation RParenLoc, Expr *literalExpr) {
3854  QualType literalType = TInfo->getType();
3855
3856  if (literalType->isArrayType()) {
3857    if (literalType->isVariableArrayType())
3858      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3859        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3860  } else if (!literalType->isDependentType() &&
3861             RequireCompleteType(LParenLoc, literalType,
3862                      PDiag(diag::err_typecheck_decl_incomplete_type)
3863                        << SourceRange(LParenLoc,
3864                                       literalExpr->getSourceRange().getEnd())))
3865    return ExprError();
3866
3867  InitializedEntity Entity
3868    = InitializedEntity::InitializeTemporary(literalType);
3869  InitializationKind Kind
3870    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3871                                     /*IsCStyleCast=*/true);
3872  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3873  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3874                                       MultiExprArg(*this, &literalExpr, 1),
3875                                            &literalType);
3876  if (Result.isInvalid())
3877    return ExprError();
3878  literalExpr = Result.get();
3879
3880  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3881  if (isFileScope) { // 6.5.2.5p3
3882    if (CheckForConstantInitializer(literalExpr, literalType))
3883      return ExprError();
3884  }
3885
3886  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3887                                                 literalExpr, isFileScope));
3888}
3889
3890ExprResult
3891Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3892                    SourceLocation RBraceLoc) {
3893  unsigned NumInit = initlist.size();
3894  Expr **InitList = initlist.release();
3895
3896  // Semantic analysis for initializers is done by ActOnDeclarator() and
3897  // CheckInitializer() - it requires knowledge of the object being intialized.
3898
3899  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3900                                               NumInit, RBraceLoc);
3901  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3902  return Owned(E);
3903}
3904
3905static CastKind getScalarCastKind(ASTContext &Context,
3906                                            QualType SrcTy, QualType DestTy) {
3907  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3908    return CK_NoOp;
3909
3910  if (SrcTy->hasPointerRepresentation()) {
3911    if (DestTy->hasPointerRepresentation())
3912      return DestTy->isObjCObjectPointerType() ?
3913                CK_AnyPointerToObjCPointerCast :
3914                CK_BitCast;
3915    if (DestTy->isIntegerType())
3916      return CK_PointerToIntegral;
3917  }
3918
3919  if (SrcTy->isIntegerType()) {
3920    if (DestTy->isIntegerType())
3921      return CK_IntegralCast;
3922    if (DestTy->hasPointerRepresentation())
3923      return CK_IntegralToPointer;
3924    if (DestTy->isRealFloatingType())
3925      return CK_IntegralToFloating;
3926  }
3927
3928  if (SrcTy->isRealFloatingType()) {
3929    if (DestTy->isRealFloatingType())
3930      return CK_FloatingCast;
3931    if (DestTy->isIntegerType())
3932      return CK_FloatingToIntegral;
3933  }
3934
3935  // FIXME: Assert here.
3936  // assert(false && "Unhandled cast combination!");
3937  return CK_Unknown;
3938}
3939
3940/// CheckCastTypes - Check type constraints for casting between types.
3941bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3942                          CastKind& Kind,
3943                          CXXCastPath &BasePath,
3944                          bool FunctionalStyle) {
3945  if (getLangOptions().CPlusPlus)
3946    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3947                              FunctionalStyle);
3948
3949  DefaultFunctionArrayLvalueConversion(castExpr);
3950
3951  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3952  // type needs to be scalar.
3953  if (castType->isVoidType()) {
3954    // Cast to void allows any expr type.
3955    Kind = CK_ToVoid;
3956    return false;
3957  }
3958
3959  if (RequireCompleteType(TyR.getBegin(), castType,
3960                          diag::err_typecheck_cast_to_incomplete))
3961    return true;
3962
3963  if (!castType->isScalarType() && !castType->isVectorType()) {
3964    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3965        (castType->isStructureType() || castType->isUnionType())) {
3966      // GCC struct/union extension: allow cast to self.
3967      // FIXME: Check that the cast destination type is complete.
3968      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3969        << castType << castExpr->getSourceRange();
3970      Kind = CK_NoOp;
3971      return false;
3972    }
3973
3974    if (castType->isUnionType()) {
3975      // GCC cast to union extension
3976      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3977      RecordDecl::field_iterator Field, FieldEnd;
3978      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3979           Field != FieldEnd; ++Field) {
3980        if (Context.hasSameUnqualifiedType(Field->getType(),
3981                                           castExpr->getType())) {
3982          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3983            << castExpr->getSourceRange();
3984          break;
3985        }
3986      }
3987      if (Field == FieldEnd)
3988        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3989          << castExpr->getType() << castExpr->getSourceRange();
3990      Kind = CK_ToUnion;
3991      return false;
3992    }
3993
3994    // Reject any other conversions to non-scalar types.
3995    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3996      << castType << castExpr->getSourceRange();
3997  }
3998
3999  if (!castExpr->getType()->isScalarType() &&
4000      !castExpr->getType()->isVectorType()) {
4001    return Diag(castExpr->getLocStart(),
4002                diag::err_typecheck_expect_scalar_operand)
4003      << castExpr->getType() << castExpr->getSourceRange();
4004  }
4005
4006  if (castType->isExtVectorType())
4007    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
4008
4009  if (castType->isVectorType())
4010    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
4011  if (castExpr->getType()->isVectorType())
4012    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
4013
4014  if (isa<ObjCSelectorExpr>(castExpr))
4015    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
4016
4017  if (!castType->isArithmeticType()) {
4018    QualType castExprType = castExpr->getType();
4019    if (!castExprType->isIntegralType(Context) &&
4020        castExprType->isArithmeticType())
4021      return Diag(castExpr->getLocStart(),
4022                  diag::err_cast_pointer_from_non_pointer_int)
4023        << castExprType << castExpr->getSourceRange();
4024  } else if (!castExpr->getType()->isArithmeticType()) {
4025    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
4026      return Diag(castExpr->getLocStart(),
4027                  diag::err_cast_pointer_to_non_pointer_int)
4028        << castType << castExpr->getSourceRange();
4029  }
4030
4031  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
4032
4033  if (Kind == CK_Unknown || Kind == CK_BitCast)
4034    CheckCastAlign(castExpr, castType, TyR);
4035
4036  return false;
4037}
4038
4039bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4040                           CastKind &Kind) {
4041  assert(VectorTy->isVectorType() && "Not a vector type!");
4042
4043  if (Ty->isVectorType() || Ty->isIntegerType()) {
4044    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4045      return Diag(R.getBegin(),
4046                  Ty->isVectorType() ?
4047                  diag::err_invalid_conversion_between_vectors :
4048                  diag::err_invalid_conversion_between_vector_and_integer)
4049        << VectorTy << Ty << R;
4050  } else
4051    return Diag(R.getBegin(),
4052                diag::err_invalid_conversion_between_vector_and_scalar)
4053      << VectorTy << Ty << R;
4054
4055  Kind = CK_BitCast;
4056  return false;
4057}
4058
4059bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4060                              CastKind &Kind) {
4061  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4062
4063  QualType SrcTy = CastExpr->getType();
4064
4065  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4066  // an ExtVectorType.
4067  if (SrcTy->isVectorType()) {
4068    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4069      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4070        << DestTy << SrcTy << R;
4071    Kind = CK_BitCast;
4072    return false;
4073  }
4074
4075  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4076  // conversion will take place first from scalar to elt type, and then
4077  // splat from elt type to vector.
4078  if (SrcTy->isPointerType())
4079    return Diag(R.getBegin(),
4080                diag::err_invalid_conversion_between_vector_and_scalar)
4081      << DestTy << SrcTy << R;
4082
4083  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4084  ImpCastExprToType(CastExpr, DestElemTy,
4085                    getScalarCastKind(Context, SrcTy, DestElemTy));
4086
4087  Kind = CK_VectorSplat;
4088  return false;
4089}
4090
4091ExprResult
4092Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
4093                    SourceLocation RParenLoc, Expr *castExpr) {
4094  assert((Ty != 0) && (castExpr != 0) &&
4095         "ActOnCastExpr(): missing type or expr");
4096
4097  TypeSourceInfo *castTInfo;
4098  QualType castType = GetTypeFromParser(Ty, &castTInfo);
4099  if (!castTInfo)
4100    castTInfo = Context.getTrivialTypeSourceInfo(castType);
4101
4102  // If the Expr being casted is a ParenListExpr, handle it specially.
4103  if (isa<ParenListExpr>(castExpr))
4104    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
4105                                    castTInfo);
4106
4107  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4108}
4109
4110ExprResult
4111Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4112                          SourceLocation RParenLoc, Expr *castExpr) {
4113  CastKind Kind = CK_Unknown;
4114  CXXCastPath BasePath;
4115  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4116                     Kind, BasePath))
4117    return ExprError();
4118
4119  return Owned(CStyleCastExpr::Create(Context,
4120                                    Ty->getType().getNonLValueExprType(Context),
4121                                      Kind, castExpr, &BasePath, Ty,
4122                                      LParenLoc, RParenLoc));
4123}
4124
4125/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4126/// of comma binary operators.
4127ExprResult
4128Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4129  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4130  if (!E)
4131    return Owned(expr);
4132
4133  ExprResult Result(E->getExpr(0));
4134
4135  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4136    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4137                        E->getExpr(i));
4138
4139  if (Result.isInvalid()) return ExprError();
4140
4141  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4142}
4143
4144ExprResult
4145Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4146                               SourceLocation RParenLoc, Expr *Op,
4147                               TypeSourceInfo *TInfo) {
4148  ParenListExpr *PE = cast<ParenListExpr>(Op);
4149  QualType Ty = TInfo->getType();
4150  bool isAltiVecLiteral = false;
4151
4152  // Check for an altivec literal,
4153  // i.e. all the elements are integer constants.
4154  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4155    if (PE->getNumExprs() == 0) {
4156      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4157      return ExprError();
4158    }
4159    if (PE->getNumExprs() == 1) {
4160      if (!PE->getExpr(0)->getType()->isVectorType())
4161        isAltiVecLiteral = true;
4162    }
4163    else
4164      isAltiVecLiteral = true;
4165  }
4166
4167  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4168  // then handle it as such.
4169  if (isAltiVecLiteral) {
4170    llvm::SmallVector<Expr *, 8> initExprs;
4171    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4172      initExprs.push_back(PE->getExpr(i));
4173
4174    // FIXME: This means that pretty-printing the final AST will produce curly
4175    // braces instead of the original commas.
4176    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4177                                                 &initExprs[0],
4178                                                 initExprs.size(), RParenLoc);
4179    E->setType(Ty);
4180    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
4181  } else {
4182    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4183    // sequence of BinOp comma operators.
4184    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
4185    if (Result.isInvalid()) return ExprError();
4186    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
4187  }
4188}
4189
4190ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4191                                                  SourceLocation R,
4192                                                  MultiExprArg Val,
4193                                                  ParsedType TypeOfCast) {
4194  unsigned nexprs = Val.size();
4195  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4196  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4197  Expr *expr;
4198  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4199    expr = new (Context) ParenExpr(L, R, exprs[0]);
4200  else
4201    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4202  return Owned(expr);
4203}
4204
4205/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4206/// In that case, lhs = cond.
4207/// C99 6.5.15
4208QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4209                                        Expr *&SAVE,
4210                                        SourceLocation QuestionLoc) {
4211  // C++ is sufficiently different to merit its own checker.
4212  if (getLangOptions().CPlusPlus)
4213    return CXXCheckConditionalOperands(Cond, LHS, RHS, SAVE, QuestionLoc);
4214
4215  UsualUnaryConversions(Cond);
4216  if (SAVE) {
4217    SAVE = LHS = Cond;
4218  }
4219  else
4220    UsualUnaryConversions(LHS);
4221  UsualUnaryConversions(RHS);
4222  QualType CondTy = Cond->getType();
4223  QualType LHSTy = LHS->getType();
4224  QualType RHSTy = RHS->getType();
4225
4226  // first, check the condition.
4227  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4228    // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4229    // Throw an error if its not either.
4230    if (getLangOptions().OpenCL) {
4231      if (!CondTy->isVectorType()) {
4232        Diag(Cond->getLocStart(),
4233             diag::err_typecheck_cond_expect_scalar_or_vector)
4234          << CondTy;
4235        return QualType();
4236      }
4237    }
4238    else {
4239      Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4240        << CondTy;
4241      return QualType();
4242    }
4243  }
4244
4245  // Now check the two expressions.
4246  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4247    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4248
4249  // OpenCL: If the condition is a vector, and both operands are scalar,
4250  // attempt to implicity convert them to the vector type to act like the
4251  // built in select.
4252  if (getLangOptions().OpenCL && CondTy->isVectorType()) {
4253    // Both operands should be of scalar type.
4254    if (!LHSTy->isScalarType()) {
4255      Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4256        << CondTy;
4257      return QualType();
4258    }
4259    if (!RHSTy->isScalarType()) {
4260      Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4261        << CondTy;
4262      return QualType();
4263    }
4264    // Implicity convert these scalars to the type of the condition.
4265    ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
4266    ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
4267  }
4268
4269  // If both operands have arithmetic type, do the usual arithmetic conversions
4270  // to find a common type: C99 6.5.15p3,5.
4271  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4272    UsualArithmeticConversions(LHS, RHS);
4273    return LHS->getType();
4274  }
4275
4276  // If both operands are the same structure or union type, the result is that
4277  // type.
4278  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4279    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4280      if (LHSRT->getDecl() == RHSRT->getDecl())
4281        // "If both the operands have structure or union type, the result has
4282        // that type."  This implies that CV qualifiers are dropped.
4283        return LHSTy.getUnqualifiedType();
4284    // FIXME: Type of conditional expression must be complete in C mode.
4285  }
4286
4287  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4288  // The following || allows only one side to be void (a GCC-ism).
4289  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4290    if (!LHSTy->isVoidType())
4291      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4292        << RHS->getSourceRange();
4293    if (!RHSTy->isVoidType())
4294      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4295        << LHS->getSourceRange();
4296    ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
4297    ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
4298    return Context.VoidTy;
4299  }
4300  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4301  // the type of the other operand."
4302  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4303      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4304    // promote the null to a pointer.
4305    ImpCastExprToType(RHS, LHSTy, CK_Unknown);
4306    return LHSTy;
4307  }
4308  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4309      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4310    ImpCastExprToType(LHS, RHSTy, CK_Unknown);
4311    return RHSTy;
4312  }
4313
4314  // All objective-c pointer type analysis is done here.
4315  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4316                                                        QuestionLoc);
4317  if (!compositeType.isNull())
4318    return compositeType;
4319
4320
4321  // Handle block pointer types.
4322  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4323    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4324      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4325        QualType destType = Context.getPointerType(Context.VoidTy);
4326        ImpCastExprToType(LHS, destType, CK_BitCast);
4327        ImpCastExprToType(RHS, destType, CK_BitCast);
4328        return destType;
4329      }
4330      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4331      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4332      return QualType();
4333    }
4334    // We have 2 block pointer types.
4335    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4336      // Two identical block pointer types are always compatible.
4337      return LHSTy;
4338    }
4339    // The block pointer types aren't identical, continue checking.
4340    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4341    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4342
4343    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4344                                    rhptee.getUnqualifiedType())) {
4345      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4346      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4347      // In this situation, we assume void* type. No especially good
4348      // reason, but this is what gcc does, and we do have to pick
4349      // to get a consistent AST.
4350      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4351      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4352      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4353      return incompatTy;
4354    }
4355    // The block pointer types are compatible.
4356    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4357    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4358    return LHSTy;
4359  }
4360
4361  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4362  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4363    // get the "pointed to" types
4364    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4365    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4366
4367    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4368    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4369      // Figure out necessary qualifiers (C99 6.5.15p6)
4370      QualType destPointee
4371        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4372      QualType destType = Context.getPointerType(destPointee);
4373      // Add qualifiers if necessary.
4374      ImpCastExprToType(LHS, destType, CK_NoOp);
4375      // Promote to void*.
4376      ImpCastExprToType(RHS, destType, CK_BitCast);
4377      return destType;
4378    }
4379    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4380      QualType destPointee
4381        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4382      QualType destType = Context.getPointerType(destPointee);
4383      // Add qualifiers if necessary.
4384      ImpCastExprToType(RHS, destType, CK_NoOp);
4385      // Promote to void*.
4386      ImpCastExprToType(LHS, destType, CK_BitCast);
4387      return destType;
4388    }
4389
4390    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4391      // Two identical pointer types are always compatible.
4392      return LHSTy;
4393    }
4394    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4395                                    rhptee.getUnqualifiedType())) {
4396      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4397        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4398      // In this situation, we assume void* type. No especially good
4399      // reason, but this is what gcc does, and we do have to pick
4400      // to get a consistent AST.
4401      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4402      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4403      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4404      return incompatTy;
4405    }
4406    // The pointer types are compatible.
4407    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4408    // differently qualified versions of compatible types, the result type is
4409    // a pointer to an appropriately qualified version of the *composite*
4410    // type.
4411    // FIXME: Need to calculate the composite type.
4412    // FIXME: Need to add qualifiers
4413    ImpCastExprToType(LHS, LHSTy, CK_BitCast);
4414    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4415    return LHSTy;
4416  }
4417
4418  // GCC compatibility: soften pointer/integer mismatch.
4419  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4420    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4421      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4422    ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
4423    return RHSTy;
4424  }
4425  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4426    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4427      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4428    ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
4429    return LHSTy;
4430  }
4431
4432  // Otherwise, the operands are not compatible.
4433  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4434    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4435  return QualType();
4436}
4437
4438/// FindCompositeObjCPointerType - Helper method to find composite type of
4439/// two objective-c pointer types of the two input expressions.
4440QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4441                                        SourceLocation QuestionLoc) {
4442  QualType LHSTy = LHS->getType();
4443  QualType RHSTy = RHS->getType();
4444
4445  // Handle things like Class and struct objc_class*.  Here we case the result
4446  // to the pseudo-builtin, because that will be implicitly cast back to the
4447  // redefinition type if an attempt is made to access its fields.
4448  if (LHSTy->isObjCClassType() &&
4449      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4450    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4451    return LHSTy;
4452  }
4453  if (RHSTy->isObjCClassType() &&
4454      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4455    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4456    return RHSTy;
4457  }
4458  // And the same for struct objc_object* / id
4459  if (LHSTy->isObjCIdType() &&
4460      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4461    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4462    return LHSTy;
4463  }
4464  if (RHSTy->isObjCIdType() &&
4465      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4466    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4467    return RHSTy;
4468  }
4469  // And the same for struct objc_selector* / SEL
4470  if (Context.isObjCSelType(LHSTy) &&
4471      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4472    ImpCastExprToType(RHS, LHSTy, CK_BitCast);
4473    return LHSTy;
4474  }
4475  if (Context.isObjCSelType(RHSTy) &&
4476      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4477    ImpCastExprToType(LHS, RHSTy, CK_BitCast);
4478    return RHSTy;
4479  }
4480  // Check constraints for Objective-C object pointers types.
4481  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4482
4483    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4484      // Two identical object pointer types are always compatible.
4485      return LHSTy;
4486    }
4487    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4488    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4489    QualType compositeType = LHSTy;
4490
4491    // If both operands are interfaces and either operand can be
4492    // assigned to the other, use that type as the composite
4493    // type. This allows
4494    //   xxx ? (A*) a : (B*) b
4495    // where B is a subclass of A.
4496    //
4497    // Additionally, as for assignment, if either type is 'id'
4498    // allow silent coercion. Finally, if the types are
4499    // incompatible then make sure to use 'id' as the composite
4500    // type so the result is acceptable for sending messages to.
4501
4502    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4503    // It could return the composite type.
4504    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4505      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4506    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4507      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4508    } else if ((LHSTy->isObjCQualifiedIdType() ||
4509                RHSTy->isObjCQualifiedIdType()) &&
4510               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4511      // Need to handle "id<xx>" explicitly.
4512      // GCC allows qualified id and any Objective-C type to devolve to
4513      // id. Currently localizing to here until clear this should be
4514      // part of ObjCQualifiedIdTypesAreCompatible.
4515      compositeType = Context.getObjCIdType();
4516    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4517      compositeType = Context.getObjCIdType();
4518    } else if (!(compositeType =
4519                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4520      ;
4521    else {
4522      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4523      << LHSTy << RHSTy
4524      << LHS->getSourceRange() << RHS->getSourceRange();
4525      QualType incompatTy = Context.getObjCIdType();
4526      ImpCastExprToType(LHS, incompatTy, CK_BitCast);
4527      ImpCastExprToType(RHS, incompatTy, CK_BitCast);
4528      return incompatTy;
4529    }
4530    // The object pointer types are compatible.
4531    ImpCastExprToType(LHS, compositeType, CK_BitCast);
4532    ImpCastExprToType(RHS, compositeType, CK_BitCast);
4533    return compositeType;
4534  }
4535  // Check Objective-C object pointer types and 'void *'
4536  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4537    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4538    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4539    QualType destPointee
4540    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4541    QualType destType = Context.getPointerType(destPointee);
4542    // Add qualifiers if necessary.
4543    ImpCastExprToType(LHS, destType, CK_NoOp);
4544    // Promote to void*.
4545    ImpCastExprToType(RHS, destType, CK_BitCast);
4546    return destType;
4547  }
4548  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4549    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4550    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4551    QualType destPointee
4552    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4553    QualType destType = Context.getPointerType(destPointee);
4554    // Add qualifiers if necessary.
4555    ImpCastExprToType(RHS, destType, CK_NoOp);
4556    // Promote to void*.
4557    ImpCastExprToType(LHS, destType, CK_BitCast);
4558    return destType;
4559  }
4560  return QualType();
4561}
4562
4563/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4564/// in the case of a the GNU conditional expr extension.
4565ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4566                                                  SourceLocation ColonLoc,
4567                                                  Expr *CondExpr, Expr *LHSExpr,
4568                                                  Expr *RHSExpr) {
4569  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4570  // was the condition.
4571  bool isLHSNull = LHSExpr == 0;
4572  Expr *SAVEExpr = 0;
4573  if (isLHSNull) {
4574    LHSExpr = SAVEExpr = CondExpr;
4575  }
4576
4577  QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
4578                                             SAVEExpr, QuestionLoc);
4579  if (result.isNull())
4580    return ExprError();
4581
4582  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4583                                                 LHSExpr, ColonLoc,
4584                                                 RHSExpr, SAVEExpr,
4585                                                 result));
4586}
4587
4588// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4589// being closely modeled after the C99 spec:-). The odd characteristic of this
4590// routine is it effectively iqnores the qualifiers on the top level pointee.
4591// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4592// FIXME: add a couple examples in this comment.
4593Sema::AssignConvertType
4594Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4595  QualType lhptee, rhptee;
4596
4597  if ((lhsType->isObjCClassType() &&
4598       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4599     (rhsType->isObjCClassType() &&
4600       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4601      return Compatible;
4602  }
4603
4604  // get the "pointed to" type (ignoring qualifiers at the top level)
4605  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4606  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4607
4608  // make sure we operate on the canonical type
4609  lhptee = Context.getCanonicalType(lhptee);
4610  rhptee = Context.getCanonicalType(rhptee);
4611
4612  AssignConvertType ConvTy = Compatible;
4613
4614  // C99 6.5.16.1p1: This following citation is common to constraints
4615  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4616  // qualifiers of the type *pointed to* by the right;
4617  // FIXME: Handle ExtQualType
4618  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4619    ConvTy = CompatiblePointerDiscardsQualifiers;
4620
4621  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4622  // incomplete type and the other is a pointer to a qualified or unqualified
4623  // version of void...
4624  if (lhptee->isVoidType()) {
4625    if (rhptee->isIncompleteOrObjectType())
4626      return ConvTy;
4627
4628    // As an extension, we allow cast to/from void* to function pointer.
4629    assert(rhptee->isFunctionType());
4630    return FunctionVoidPointer;
4631  }
4632
4633  if (rhptee->isVoidType()) {
4634    if (lhptee->isIncompleteOrObjectType())
4635      return ConvTy;
4636
4637    // As an extension, we allow cast to/from void* to function pointer.
4638    assert(lhptee->isFunctionType());
4639    return FunctionVoidPointer;
4640  }
4641  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4642  // unqualified versions of compatible types, ...
4643  lhptee = lhptee.getUnqualifiedType();
4644  rhptee = rhptee.getUnqualifiedType();
4645  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4646    // Check if the pointee types are compatible ignoring the sign.
4647    // We explicitly check for char so that we catch "char" vs
4648    // "unsigned char" on systems where "char" is unsigned.
4649    if (lhptee->isCharType())
4650      lhptee = Context.UnsignedCharTy;
4651    else if (lhptee->hasSignedIntegerRepresentation())
4652      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4653
4654    if (rhptee->isCharType())
4655      rhptee = Context.UnsignedCharTy;
4656    else if (rhptee->hasSignedIntegerRepresentation())
4657      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4658
4659    if (lhptee == rhptee) {
4660      // Types are compatible ignoring the sign. Qualifier incompatibility
4661      // takes priority over sign incompatibility because the sign
4662      // warning can be disabled.
4663      if (ConvTy != Compatible)
4664        return ConvTy;
4665      return IncompatiblePointerSign;
4666    }
4667
4668    // If we are a multi-level pointer, it's possible that our issue is simply
4669    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4670    // the eventual target type is the same and the pointers have the same
4671    // level of indirection, this must be the issue.
4672    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4673      do {
4674        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4675        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4676
4677        lhptee = Context.getCanonicalType(lhptee);
4678        rhptee = Context.getCanonicalType(rhptee);
4679      } while (lhptee->isPointerType() && rhptee->isPointerType());
4680
4681      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4682        return IncompatibleNestedPointerQualifiers;
4683    }
4684
4685    // General pointer incompatibility takes priority over qualifiers.
4686    return IncompatiblePointer;
4687  }
4688  return ConvTy;
4689}
4690
4691/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4692/// block pointer types are compatible or whether a block and normal pointer
4693/// are compatible. It is more restrict than comparing two function pointer
4694// types.
4695Sema::AssignConvertType
4696Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4697                                          QualType rhsType) {
4698  QualType lhptee, rhptee;
4699
4700  // get the "pointed to" type (ignoring qualifiers at the top level)
4701  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4702  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4703
4704  // make sure we operate on the canonical type
4705  lhptee = Context.getCanonicalType(lhptee);
4706  rhptee = Context.getCanonicalType(rhptee);
4707
4708  AssignConvertType ConvTy = Compatible;
4709
4710  // For blocks we enforce that qualifiers are identical.
4711  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4712    ConvTy = CompatiblePointerDiscardsQualifiers;
4713
4714  if (!getLangOptions().CPlusPlus) {
4715    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4716      return IncompatibleBlockPointer;
4717  }
4718  else if (!Context.typesAreCompatible(lhptee, rhptee))
4719    return IncompatibleBlockPointer;
4720  return ConvTy;
4721}
4722
4723/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4724/// for assignment compatibility.
4725Sema::AssignConvertType
4726Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4727  if (lhsType->isObjCBuiltinType()) {
4728    // Class is not compatible with ObjC object pointers.
4729    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4730        !rhsType->isObjCQualifiedClassType())
4731      return IncompatiblePointer;
4732    return Compatible;
4733  }
4734  if (rhsType->isObjCBuiltinType()) {
4735    // Class is not compatible with ObjC object pointers.
4736    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4737        !lhsType->isObjCQualifiedClassType())
4738      return IncompatiblePointer;
4739    return Compatible;
4740  }
4741  QualType lhptee =
4742  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4743  QualType rhptee =
4744  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4745  // make sure we operate on the canonical type
4746  lhptee = Context.getCanonicalType(lhptee);
4747  rhptee = Context.getCanonicalType(rhptee);
4748  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4749    return CompatiblePointerDiscardsQualifiers;
4750
4751  if (Context.typesAreCompatible(lhsType, rhsType))
4752    return Compatible;
4753  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4754    return IncompatibleObjCQualifiedId;
4755  return IncompatiblePointer;
4756}
4757
4758/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4759/// has code to accommodate several GCC extensions when type checking
4760/// pointers. Here are some objectionable examples that GCC considers warnings:
4761///
4762///  int a, *pint;
4763///  short *pshort;
4764///  struct foo *pfoo;
4765///
4766///  pint = pshort; // warning: assignment from incompatible pointer type
4767///  a = pint; // warning: assignment makes integer from pointer without a cast
4768///  pint = a; // warning: assignment makes pointer from integer without a cast
4769///  pint = pfoo; // warning: assignment from incompatible pointer type
4770///
4771/// As a result, the code for dealing with pointers is more complex than the
4772/// C99 spec dictates.
4773///
4774Sema::AssignConvertType
4775Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4776  // Get canonical types.  We're not formatting these types, just comparing
4777  // them.
4778  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4779  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4780
4781  if (lhsType == rhsType)
4782    return Compatible; // Common case: fast path an exact match.
4783
4784  if ((lhsType->isObjCClassType() &&
4785       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4786     (rhsType->isObjCClassType() &&
4787       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4788      return Compatible;
4789  }
4790
4791  // If the left-hand side is a reference type, then we are in a
4792  // (rare!) case where we've allowed the use of references in C,
4793  // e.g., as a parameter type in a built-in function. In this case,
4794  // just make sure that the type referenced is compatible with the
4795  // right-hand side type. The caller is responsible for adjusting
4796  // lhsType so that the resulting expression does not have reference
4797  // type.
4798  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4799    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4800      return Compatible;
4801    return Incompatible;
4802  }
4803  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4804  // to the same ExtVector type.
4805  if (lhsType->isExtVectorType()) {
4806    if (rhsType->isExtVectorType())
4807      return lhsType == rhsType ? Compatible : Incompatible;
4808    if (rhsType->isArithmeticType())
4809      return Compatible;
4810  }
4811
4812  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4813    if (lhsType->isVectorType() && rhsType->isVectorType()) {
4814      // If we are allowing lax vector conversions, and LHS and RHS are both
4815      // vectors, the total size only needs to be the same. This is a bitcast;
4816      // no bits are changed but the result type is different.
4817      if (getLangOptions().LaxVectorConversions &&
4818         (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)))
4819        return IncompatibleVectors;
4820
4821      // Allow assignments of an AltiVec vector type to an equivalent GCC
4822      // vector type and vice versa
4823      if (Context.areCompatibleVectorTypes(lhsType, rhsType))
4824        return Compatible;
4825    }
4826    return Incompatible;
4827  }
4828
4829  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
4830      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
4831    return Compatible;
4832
4833  if (isa<PointerType>(lhsType)) {
4834    if (rhsType->isIntegerType())
4835      return IntToPointer;
4836
4837    if (isa<PointerType>(rhsType))
4838      return CheckPointerTypesForAssignment(lhsType, rhsType);
4839
4840    // In general, C pointers are not compatible with ObjC object pointers.
4841    if (isa<ObjCObjectPointerType>(rhsType)) {
4842      if (lhsType->isVoidPointerType()) // an exception to the rule.
4843        return Compatible;
4844      return IncompatiblePointer;
4845    }
4846    if (rhsType->getAs<BlockPointerType>()) {
4847      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4848        return Compatible;
4849
4850      // Treat block pointers as objects.
4851      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4852        return Compatible;
4853    }
4854    return Incompatible;
4855  }
4856
4857  if (isa<BlockPointerType>(lhsType)) {
4858    if (rhsType->isIntegerType())
4859      return IntToBlockPointer;
4860
4861    // Treat block pointers as objects.
4862    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4863      return Compatible;
4864
4865    if (rhsType->isBlockPointerType())
4866      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4867
4868    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4869      if (RHSPT->getPointeeType()->isVoidType())
4870        return Compatible;
4871    }
4872    return Incompatible;
4873  }
4874
4875  if (isa<ObjCObjectPointerType>(lhsType)) {
4876    if (rhsType->isIntegerType())
4877      return IntToPointer;
4878
4879    // In general, C pointers are not compatible with ObjC object pointers.
4880    if (isa<PointerType>(rhsType)) {
4881      if (rhsType->isVoidPointerType()) // an exception to the rule.
4882        return Compatible;
4883      return IncompatiblePointer;
4884    }
4885    if (rhsType->isObjCObjectPointerType()) {
4886      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4887    }
4888    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4889      if (RHSPT->getPointeeType()->isVoidType())
4890        return Compatible;
4891    }
4892    // Treat block pointers as objects.
4893    if (rhsType->isBlockPointerType())
4894      return Compatible;
4895    return Incompatible;
4896  }
4897  if (isa<PointerType>(rhsType)) {
4898    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4899    if (lhsType == Context.BoolTy)
4900      return Compatible;
4901
4902    if (lhsType->isIntegerType())
4903      return PointerToInt;
4904
4905    if (isa<PointerType>(lhsType))
4906      return CheckPointerTypesForAssignment(lhsType, rhsType);
4907
4908    if (isa<BlockPointerType>(lhsType) &&
4909        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4910      return Compatible;
4911    return Incompatible;
4912  }
4913  if (isa<ObjCObjectPointerType>(rhsType)) {
4914    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4915    if (lhsType == Context.BoolTy)
4916      return Compatible;
4917
4918    if (lhsType->isIntegerType())
4919      return PointerToInt;
4920
4921    // In general, C pointers are not compatible with ObjC object pointers.
4922    if (isa<PointerType>(lhsType)) {
4923      if (lhsType->isVoidPointerType()) // an exception to the rule.
4924        return Compatible;
4925      return IncompatiblePointer;
4926    }
4927    if (isa<BlockPointerType>(lhsType) &&
4928        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4929      return Compatible;
4930    return Incompatible;
4931  }
4932
4933  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4934    if (Context.typesAreCompatible(lhsType, rhsType))
4935      return Compatible;
4936  }
4937  return Incompatible;
4938}
4939
4940/// \brief Constructs a transparent union from an expression that is
4941/// used to initialize the transparent union.
4942static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4943                                      QualType UnionType, FieldDecl *Field) {
4944  // Build an initializer list that designates the appropriate member
4945  // of the transparent union.
4946  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4947                                                   &E, 1,
4948                                                   SourceLocation());
4949  Initializer->setType(UnionType);
4950  Initializer->setInitializedFieldInUnion(Field);
4951
4952  // Build a compound literal constructing a value of the transparent
4953  // union type from this initializer list.
4954  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4955  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4956                                  Initializer, false);
4957}
4958
4959Sema::AssignConvertType
4960Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4961  QualType FromType = rExpr->getType();
4962
4963  // If the ArgType is a Union type, we want to handle a potential
4964  // transparent_union GCC extension.
4965  const RecordType *UT = ArgType->getAsUnionType();
4966  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4967    return Incompatible;
4968
4969  // The field to initialize within the transparent union.
4970  RecordDecl *UD = UT->getDecl();
4971  FieldDecl *InitField = 0;
4972  // It's compatible if the expression matches any of the fields.
4973  for (RecordDecl::field_iterator it = UD->field_begin(),
4974         itend = UD->field_end();
4975       it != itend; ++it) {
4976    if (it->getType()->isPointerType()) {
4977      // If the transparent union contains a pointer type, we allow:
4978      // 1) void pointer
4979      // 2) null pointer constant
4980      if (FromType->isPointerType())
4981        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4982          ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
4983          InitField = *it;
4984          break;
4985        }
4986
4987      if (rExpr->isNullPointerConstant(Context,
4988                                       Expr::NPC_ValueDependentIsNull)) {
4989        ImpCastExprToType(rExpr, it->getType(), CK_IntegralToPointer);
4990        InitField = *it;
4991        break;
4992      }
4993    }
4994
4995    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4996          == Compatible) {
4997      ImpCastExprToType(rExpr, it->getType(), CK_Unknown);
4998      InitField = *it;
4999      break;
5000    }
5001  }
5002
5003  if (!InitField)
5004    return Incompatible;
5005
5006  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
5007  return Compatible;
5008}
5009
5010Sema::AssignConvertType
5011Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
5012  if (getLangOptions().CPlusPlus) {
5013    if (!lhsType->isRecordType()) {
5014      // C++ 5.17p3: If the left operand is not of class type, the
5015      // expression is implicitly converted (C++ 4) to the
5016      // cv-unqualified type of the left operand.
5017      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
5018                                    AA_Assigning))
5019        return Incompatible;
5020      return Compatible;
5021    }
5022
5023    // FIXME: Currently, we fall through and treat C++ classes like C
5024    // structures.
5025  }
5026
5027  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5028  // a null pointer constant.
5029  if ((lhsType->isPointerType() ||
5030       lhsType->isObjCObjectPointerType() ||
5031       lhsType->isBlockPointerType())
5032      && rExpr->isNullPointerConstant(Context,
5033                                      Expr::NPC_ValueDependentIsNull)) {
5034    ImpCastExprToType(rExpr, lhsType, CK_Unknown);
5035    return Compatible;
5036  }
5037
5038  // This check seems unnatural, however it is necessary to ensure the proper
5039  // conversion of functions/arrays. If the conversion were done for all
5040  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5041  // expressions that suppress this implicit conversion (&, sizeof).
5042  //
5043  // Suppress this for references: C++ 8.5.3p5.
5044  if (!lhsType->isReferenceType())
5045    DefaultFunctionArrayLvalueConversion(rExpr);
5046
5047  Sema::AssignConvertType result =
5048    CheckAssignmentConstraints(lhsType, rExpr->getType());
5049
5050  // C99 6.5.16.1p2: The value of the right operand is converted to the
5051  // type of the assignment expression.
5052  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5053  // so that we can use references in built-in functions even in C.
5054  // The getNonReferenceType() call makes sure that the resulting expression
5055  // does not have reference type.
5056  if (result != Incompatible && rExpr->getType() != lhsType)
5057    ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
5058                      CK_Unknown);
5059  return result;
5060}
5061
5062QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5063  Diag(Loc, diag::err_typecheck_invalid_operands)
5064    << lex->getType() << rex->getType()
5065    << lex->getSourceRange() << rex->getSourceRange();
5066  return QualType();
5067}
5068
5069QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
5070  // For conversion purposes, we ignore any qualifiers.
5071  // For example, "const float" and "float" are equivalent.
5072  QualType lhsType =
5073    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
5074  QualType rhsType =
5075    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
5076
5077  // If the vector types are identical, return.
5078  if (lhsType == rhsType)
5079    return lhsType;
5080
5081  // Handle the case of a vector & extvector type of the same size and element
5082  // type.  It would be nice if we only had one vector type someday.
5083  if (getLangOptions().LaxVectorConversions) {
5084    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5085      if (const VectorType *RV = rhsType->getAs<VectorType>()) {
5086        if (LV->getElementType() == RV->getElementType() &&
5087            LV->getNumElements() == RV->getNumElements()) {
5088          if (lhsType->isExtVectorType()) {
5089            ImpCastExprToType(rex, lhsType, CK_BitCast);
5090            return lhsType;
5091          }
5092
5093          ImpCastExprToType(lex, rhsType, CK_BitCast);
5094          return rhsType;
5095        } else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
5096          // If we are allowing lax vector conversions, and LHS and RHS are both
5097          // vectors, the total size only needs to be the same. This is a
5098          // bitcast; no bits are changed but the result type is different.
5099          ImpCastExprToType(rex, lhsType, CK_BitCast);
5100          return lhsType;
5101        }
5102      }
5103    }
5104  }
5105
5106  // Handle the case of equivalent AltiVec and GCC vector types
5107  if (lhsType->isVectorType() && rhsType->isVectorType() &&
5108      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5109    ImpCastExprToType(lex, rhsType, CK_BitCast);
5110    return rhsType;
5111  }
5112
5113  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5114  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5115  bool swapped = false;
5116  if (rhsType->isExtVectorType()) {
5117    swapped = true;
5118    std::swap(rex, lex);
5119    std::swap(rhsType, lhsType);
5120  }
5121
5122  // Handle the case of an ext vector and scalar.
5123  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5124    QualType EltTy = LV->getElementType();
5125    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5126      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
5127        ImpCastExprToType(rex, lhsType, CK_IntegralCast);
5128        if (swapped) std::swap(rex, lex);
5129        return lhsType;
5130      }
5131    }
5132    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5133        rhsType->isRealFloatingType()) {
5134      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
5135        ImpCastExprToType(rex, lhsType, CK_FloatingCast);
5136        if (swapped) std::swap(rex, lex);
5137        return lhsType;
5138      }
5139    }
5140  }
5141
5142  // Vectors of different size or scalar and non-ext-vector are errors.
5143  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5144    << lex->getType() << rex->getType()
5145    << lex->getSourceRange() << rex->getSourceRange();
5146  return QualType();
5147}
5148
5149QualType Sema::CheckMultiplyDivideOperands(
5150  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5151  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5152    return CheckVectorOperands(Loc, lex, rex);
5153
5154  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5155
5156  if (!lex->getType()->isArithmeticType() ||
5157      !rex->getType()->isArithmeticType())
5158    return InvalidOperands(Loc, lex, rex);
5159
5160  // Check for division by zero.
5161  if (isDiv &&
5162      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5163    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5164                                     << rex->getSourceRange());
5165
5166  return compType;
5167}
5168
5169QualType Sema::CheckRemainderOperands(
5170  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5171  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5172    if (lex->getType()->hasIntegerRepresentation() &&
5173        rex->getType()->hasIntegerRepresentation())
5174      return CheckVectorOperands(Loc, lex, rex);
5175    return InvalidOperands(Loc, lex, rex);
5176  }
5177
5178  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5179
5180  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5181    return InvalidOperands(Loc, lex, rex);
5182
5183  // Check for remainder by zero.
5184  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5185    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5186                                 << rex->getSourceRange());
5187
5188  return compType;
5189}
5190
5191QualType Sema::CheckAdditionOperands( // C99 6.5.6
5192  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5193  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5194    QualType compType = CheckVectorOperands(Loc, lex, rex);
5195    if (CompLHSTy) *CompLHSTy = compType;
5196    return compType;
5197  }
5198
5199  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5200
5201  // handle the common case first (both operands are arithmetic).
5202  if (lex->getType()->isArithmeticType() &&
5203      rex->getType()->isArithmeticType()) {
5204    if (CompLHSTy) *CompLHSTy = compType;
5205    return compType;
5206  }
5207
5208  // Put any potential pointer into PExp
5209  Expr* PExp = lex, *IExp = rex;
5210  if (IExp->getType()->isAnyPointerType())
5211    std::swap(PExp, IExp);
5212
5213  if (PExp->getType()->isAnyPointerType()) {
5214
5215    if (IExp->getType()->isIntegerType()) {
5216      QualType PointeeTy = PExp->getType()->getPointeeType();
5217
5218      // Check for arithmetic on pointers to incomplete types.
5219      if (PointeeTy->isVoidType()) {
5220        if (getLangOptions().CPlusPlus) {
5221          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5222            << lex->getSourceRange() << rex->getSourceRange();
5223          return QualType();
5224        }
5225
5226        // GNU extension: arithmetic on pointer to void
5227        Diag(Loc, diag::ext_gnu_void_ptr)
5228          << lex->getSourceRange() << rex->getSourceRange();
5229      } else if (PointeeTy->isFunctionType()) {
5230        if (getLangOptions().CPlusPlus) {
5231          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5232            << lex->getType() << lex->getSourceRange();
5233          return QualType();
5234        }
5235
5236        // GNU extension: arithmetic on pointer to function
5237        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5238          << lex->getType() << lex->getSourceRange();
5239      } else {
5240        // Check if we require a complete type.
5241        if (((PExp->getType()->isPointerType() &&
5242              !PExp->getType()->isDependentType()) ||
5243              PExp->getType()->isObjCObjectPointerType()) &&
5244             RequireCompleteType(Loc, PointeeTy,
5245                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5246                             << PExp->getSourceRange()
5247                             << PExp->getType()))
5248          return QualType();
5249      }
5250      // Diagnose bad cases where we step over interface counts.
5251      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5252        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5253          << PointeeTy << PExp->getSourceRange();
5254        return QualType();
5255      }
5256
5257      if (CompLHSTy) {
5258        QualType LHSTy = Context.isPromotableBitField(lex);
5259        if (LHSTy.isNull()) {
5260          LHSTy = lex->getType();
5261          if (LHSTy->isPromotableIntegerType())
5262            LHSTy = Context.getPromotedIntegerType(LHSTy);
5263        }
5264        *CompLHSTy = LHSTy;
5265      }
5266      return PExp->getType();
5267    }
5268  }
5269
5270  return InvalidOperands(Loc, lex, rex);
5271}
5272
5273// C99 6.5.6
5274QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5275                                        SourceLocation Loc, QualType* CompLHSTy) {
5276  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5277    QualType compType = CheckVectorOperands(Loc, lex, rex);
5278    if (CompLHSTy) *CompLHSTy = compType;
5279    return compType;
5280  }
5281
5282  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5283
5284  // Enforce type constraints: C99 6.5.6p3.
5285
5286  // Handle the common case first (both operands are arithmetic).
5287  if (lex->getType()->isArithmeticType()
5288      && rex->getType()->isArithmeticType()) {
5289    if (CompLHSTy) *CompLHSTy = compType;
5290    return compType;
5291  }
5292
5293  // Either ptr - int   or   ptr - ptr.
5294  if (lex->getType()->isAnyPointerType()) {
5295    QualType lpointee = lex->getType()->getPointeeType();
5296
5297    // The LHS must be an completely-defined object type.
5298
5299    bool ComplainAboutVoid = false;
5300    Expr *ComplainAboutFunc = 0;
5301    if (lpointee->isVoidType()) {
5302      if (getLangOptions().CPlusPlus) {
5303        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5304          << lex->getSourceRange() << rex->getSourceRange();
5305        return QualType();
5306      }
5307
5308      // GNU C extension: arithmetic on pointer to void
5309      ComplainAboutVoid = true;
5310    } else if (lpointee->isFunctionType()) {
5311      if (getLangOptions().CPlusPlus) {
5312        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5313          << lex->getType() << lex->getSourceRange();
5314        return QualType();
5315      }
5316
5317      // GNU C extension: arithmetic on pointer to function
5318      ComplainAboutFunc = lex;
5319    } else if (!lpointee->isDependentType() &&
5320               RequireCompleteType(Loc, lpointee,
5321                                   PDiag(diag::err_typecheck_sub_ptr_object)
5322                                     << lex->getSourceRange()
5323                                     << lex->getType()))
5324      return QualType();
5325
5326    // Diagnose bad cases where we step over interface counts.
5327    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5328      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5329        << lpointee << lex->getSourceRange();
5330      return QualType();
5331    }
5332
5333    // The result type of a pointer-int computation is the pointer type.
5334    if (rex->getType()->isIntegerType()) {
5335      if (ComplainAboutVoid)
5336        Diag(Loc, diag::ext_gnu_void_ptr)
5337          << lex->getSourceRange() << rex->getSourceRange();
5338      if (ComplainAboutFunc)
5339        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5340          << ComplainAboutFunc->getType()
5341          << ComplainAboutFunc->getSourceRange();
5342
5343      if (CompLHSTy) *CompLHSTy = lex->getType();
5344      return lex->getType();
5345    }
5346
5347    // Handle pointer-pointer subtractions.
5348    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5349      QualType rpointee = RHSPTy->getPointeeType();
5350
5351      // RHS must be a completely-type object type.
5352      // Handle the GNU void* extension.
5353      if (rpointee->isVoidType()) {
5354        if (getLangOptions().CPlusPlus) {
5355          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5356            << lex->getSourceRange() << rex->getSourceRange();
5357          return QualType();
5358        }
5359
5360        ComplainAboutVoid = true;
5361      } else if (rpointee->isFunctionType()) {
5362        if (getLangOptions().CPlusPlus) {
5363          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5364            << rex->getType() << rex->getSourceRange();
5365          return QualType();
5366        }
5367
5368        // GNU extension: arithmetic on pointer to function
5369        if (!ComplainAboutFunc)
5370          ComplainAboutFunc = rex;
5371      } else if (!rpointee->isDependentType() &&
5372                 RequireCompleteType(Loc, rpointee,
5373                                     PDiag(diag::err_typecheck_sub_ptr_object)
5374                                       << rex->getSourceRange()
5375                                       << rex->getType()))
5376        return QualType();
5377
5378      if (getLangOptions().CPlusPlus) {
5379        // Pointee types must be the same: C++ [expr.add]
5380        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5381          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5382            << lex->getType() << rex->getType()
5383            << lex->getSourceRange() << rex->getSourceRange();
5384          return QualType();
5385        }
5386      } else {
5387        // Pointee types must be compatible C99 6.5.6p3
5388        if (!Context.typesAreCompatible(
5389                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5390                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5391          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5392            << lex->getType() << rex->getType()
5393            << lex->getSourceRange() << rex->getSourceRange();
5394          return QualType();
5395        }
5396      }
5397
5398      if (ComplainAboutVoid)
5399        Diag(Loc, diag::ext_gnu_void_ptr)
5400          << lex->getSourceRange() << rex->getSourceRange();
5401      if (ComplainAboutFunc)
5402        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5403          << ComplainAboutFunc->getType()
5404          << ComplainAboutFunc->getSourceRange();
5405
5406      if (CompLHSTy) *CompLHSTy = lex->getType();
5407      return Context.getPointerDiffType();
5408    }
5409  }
5410
5411  return InvalidOperands(Loc, lex, rex);
5412}
5413
5414// C99 6.5.7
5415QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5416                                  bool isCompAssign) {
5417  // C99 6.5.7p2: Each of the operands shall have integer type.
5418  if (!lex->getType()->hasIntegerRepresentation() ||
5419      !rex->getType()->hasIntegerRepresentation())
5420    return InvalidOperands(Loc, lex, rex);
5421
5422  // Vector shifts promote their scalar inputs to vector type.
5423  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5424    return CheckVectorOperands(Loc, lex, rex);
5425
5426  // Shifts don't perform usual arithmetic conversions, they just do integer
5427  // promotions on each operand. C99 6.5.7p3
5428  QualType LHSTy = Context.isPromotableBitField(lex);
5429  if (LHSTy.isNull()) {
5430    LHSTy = lex->getType();
5431    if (LHSTy->isPromotableIntegerType())
5432      LHSTy = Context.getPromotedIntegerType(LHSTy);
5433  }
5434  if (!isCompAssign)
5435    ImpCastExprToType(lex, LHSTy, CK_IntegralCast);
5436
5437  UsualUnaryConversions(rex);
5438
5439  // Sanity-check shift operands
5440  llvm::APSInt Right;
5441  // Check right/shifter operand
5442  if (!rex->isValueDependent() &&
5443      rex->isIntegerConstantExpr(Right, Context)) {
5444    if (Right.isNegative())
5445      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5446    else {
5447      llvm::APInt LeftBits(Right.getBitWidth(),
5448                          Context.getTypeSize(lex->getType()));
5449      if (Right.uge(LeftBits))
5450        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5451    }
5452  }
5453
5454  // "The type of the result is that of the promoted left operand."
5455  return LHSTy;
5456}
5457
5458static bool IsWithinTemplateSpecialization(Decl *D) {
5459  if (DeclContext *DC = D->getDeclContext()) {
5460    if (isa<ClassTemplateSpecializationDecl>(DC))
5461      return true;
5462    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
5463      return FD->isFunctionTemplateSpecialization();
5464  }
5465  return false;
5466}
5467
5468// C99 6.5.8, C++ [expr.rel]
5469QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5470                                    unsigned OpaqueOpc, bool isRelational) {
5471  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
5472
5473  // Handle vector comparisons separately.
5474  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5475    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5476
5477  QualType lType = lex->getType();
5478  QualType rType = rex->getType();
5479
5480  if (!lType->hasFloatingRepresentation() &&
5481      !(lType->isBlockPointerType() && isRelational) &&
5482      !lex->getLocStart().isMacroID() &&
5483      !rex->getLocStart().isMacroID()) {
5484    // For non-floating point types, check for self-comparisons of the form
5485    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5486    // often indicate logic errors in the program.
5487    //
5488    // NOTE: Don't warn about comparison expressions resulting from macro
5489    // expansion. Also don't warn about comparisons which are only self
5490    // comparisons within a template specialization. The warnings should catch
5491    // obvious cases in the definition of the template anyways. The idea is to
5492    // warn when the typed comparison operator will always evaluate to the same
5493    // result.
5494    Expr *LHSStripped = lex->IgnoreParens();
5495    Expr *RHSStripped = rex->IgnoreParens();
5496    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
5497      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
5498        if (DRL->getDecl() == DRR->getDecl() &&
5499            !IsWithinTemplateSpecialization(DRL->getDecl())) {
5500          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5501                              << 0 // self-
5502                              << (Opc == BO_EQ
5503                                  || Opc == BO_LE
5504                                  || Opc == BO_GE));
5505        } else if (lType->isArrayType() && rType->isArrayType() &&
5506                   !DRL->getDecl()->getType()->isReferenceType() &&
5507                   !DRR->getDecl()->getType()->isReferenceType()) {
5508            // what is it always going to eval to?
5509            char always_evals_to;
5510            switch(Opc) {
5511            case BO_EQ: // e.g. array1 == array2
5512              always_evals_to = 0; // false
5513              break;
5514            case BO_NE: // e.g. array1 != array2
5515              always_evals_to = 1; // true
5516              break;
5517            default:
5518              // best we can say is 'a constant'
5519              always_evals_to = 2; // e.g. array1 <= array2
5520              break;
5521            }
5522            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5523                                << 1 // array
5524                                << always_evals_to);
5525        }
5526      }
5527    }
5528
5529    if (isa<CastExpr>(LHSStripped))
5530      LHSStripped = LHSStripped->IgnoreParenCasts();
5531    if (isa<CastExpr>(RHSStripped))
5532      RHSStripped = RHSStripped->IgnoreParenCasts();
5533
5534    // Warn about comparisons against a string constant (unless the other
5535    // operand is null), the user probably wants strcmp.
5536    Expr *literalString = 0;
5537    Expr *literalStringStripped = 0;
5538    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5539        !RHSStripped->isNullPointerConstant(Context,
5540                                            Expr::NPC_ValueDependentIsNull)) {
5541      literalString = lex;
5542      literalStringStripped = LHSStripped;
5543    } else if ((isa<StringLiteral>(RHSStripped) ||
5544                isa<ObjCEncodeExpr>(RHSStripped)) &&
5545               !LHSStripped->isNullPointerConstant(Context,
5546                                            Expr::NPC_ValueDependentIsNull)) {
5547      literalString = rex;
5548      literalStringStripped = RHSStripped;
5549    }
5550
5551    if (literalString) {
5552      std::string resultComparison;
5553      switch (Opc) {
5554      case BO_LT: resultComparison = ") < 0"; break;
5555      case BO_GT: resultComparison = ") > 0"; break;
5556      case BO_LE: resultComparison = ") <= 0"; break;
5557      case BO_GE: resultComparison = ") >= 0"; break;
5558      case BO_EQ: resultComparison = ") == 0"; break;
5559      case BO_NE: resultComparison = ") != 0"; break;
5560      default: assert(false && "Invalid comparison operator");
5561      }
5562
5563      DiagRuntimeBehavior(Loc,
5564        PDiag(diag::warn_stringcompare)
5565          << isa<ObjCEncodeExpr>(literalStringStripped)
5566          << literalString->getSourceRange());
5567    }
5568  }
5569
5570  // C99 6.5.8p3 / C99 6.5.9p4
5571  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5572    UsualArithmeticConversions(lex, rex);
5573  else {
5574    UsualUnaryConversions(lex);
5575    UsualUnaryConversions(rex);
5576  }
5577
5578  lType = lex->getType();
5579  rType = rex->getType();
5580
5581  // The result of comparisons is 'bool' in C++, 'int' in C.
5582  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5583
5584  if (isRelational) {
5585    if (lType->isRealType() && rType->isRealType())
5586      return ResultTy;
5587  } else {
5588    // Check for comparisons of floating point operands using != and ==.
5589    if (lType->hasFloatingRepresentation())
5590      CheckFloatComparison(Loc,lex,rex);
5591
5592    if (lType->isArithmeticType() && rType->isArithmeticType())
5593      return ResultTy;
5594  }
5595
5596  bool LHSIsNull = lex->isNullPointerConstant(Context,
5597                                              Expr::NPC_ValueDependentIsNull);
5598  bool RHSIsNull = rex->isNullPointerConstant(Context,
5599                                              Expr::NPC_ValueDependentIsNull);
5600
5601  // All of the following pointer-related warnings are GCC extensions, except
5602  // when handling null pointer constants.
5603  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5604    QualType LCanPointeeTy =
5605      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5606    QualType RCanPointeeTy =
5607      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5608
5609    if (getLangOptions().CPlusPlus) {
5610      if (LCanPointeeTy == RCanPointeeTy)
5611        return ResultTy;
5612      if (!isRelational &&
5613          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5614        // Valid unless comparison between non-null pointer and function pointer
5615        // This is a gcc extension compatibility comparison.
5616        // In a SFINAE context, we treat this as a hard error to maintain
5617        // conformance with the C++ standard.
5618        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5619            && !LHSIsNull && !RHSIsNull) {
5620          Diag(Loc,
5621               isSFINAEContext()?
5622                   diag::err_typecheck_comparison_of_fptr_to_void
5623                 : diag::ext_typecheck_comparison_of_fptr_to_void)
5624            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5625
5626          if (isSFINAEContext())
5627            return QualType();
5628
5629          ImpCastExprToType(rex, lType, CK_BitCast);
5630          return ResultTy;
5631        }
5632      }
5633      // C++ [expr.rel]p2:
5634      //   [...] Pointer conversions (4.10) and qualification
5635      //   conversions (4.4) are performed on pointer operands (or on
5636      //   a pointer operand and a null pointer constant) to bring
5637      //   them to their composite pointer type. [...]
5638      //
5639      // C++ [expr.eq]p1 uses the same notion for (in)equality
5640      // comparisons of pointers.
5641      bool NonStandardCompositeType = false;
5642      QualType T = FindCompositePointerType(Loc, lex, rex,
5643                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5644      if (T.isNull()) {
5645        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5646          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5647        return QualType();
5648      } else if (NonStandardCompositeType) {
5649        Diag(Loc,
5650             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5651          << lType << rType << T
5652          << lex->getSourceRange() << rex->getSourceRange();
5653      }
5654
5655      ImpCastExprToType(lex, T, CK_BitCast);
5656      ImpCastExprToType(rex, T, CK_BitCast);
5657      return ResultTy;
5658    }
5659    // C99 6.5.9p2 and C99 6.5.8p2
5660    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5661                                   RCanPointeeTy.getUnqualifiedType())) {
5662      // Valid unless a relational comparison of function pointers
5663      if (isRelational && LCanPointeeTy->isFunctionType()) {
5664        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5665          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5666      }
5667    } else if (!isRelational &&
5668               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5669      // Valid unless comparison between non-null pointer and function pointer
5670      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5671          && !LHSIsNull && !RHSIsNull) {
5672        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5673          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5674      }
5675    } else {
5676      // Invalid
5677      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5678        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5679    }
5680    if (LCanPointeeTy != RCanPointeeTy)
5681      ImpCastExprToType(rex, lType, CK_BitCast);
5682    return ResultTy;
5683  }
5684
5685  if (getLangOptions().CPlusPlus) {
5686    // Comparison of pointers with null pointer constants and equality
5687    // comparisons of member pointers to null pointer constants.
5688    if (RHSIsNull &&
5689        (lType->isPointerType() ||
5690         (!isRelational && lType->isMemberPointerType()))) {
5691      ImpCastExprToType(rex, lType,
5692                        lType->isMemberPointerType()
5693                          ? CK_NullToMemberPointer
5694                          : CK_IntegralToPointer);
5695      return ResultTy;
5696    }
5697    if (LHSIsNull &&
5698        (rType->isPointerType() ||
5699         (!isRelational && rType->isMemberPointerType()))) {
5700      ImpCastExprToType(lex, rType,
5701                        rType->isMemberPointerType()
5702                          ? CK_NullToMemberPointer
5703                          : CK_IntegralToPointer);
5704      return ResultTy;
5705    }
5706
5707    // Comparison of member pointers.
5708    if (!isRelational &&
5709        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5710      // C++ [expr.eq]p2:
5711      //   In addition, pointers to members can be compared, or a pointer to
5712      //   member and a null pointer constant. Pointer to member conversions
5713      //   (4.11) and qualification conversions (4.4) are performed to bring
5714      //   them to a common type. If one operand is a null pointer constant,
5715      //   the common type is the type of the other operand. Otherwise, the
5716      //   common type is a pointer to member type similar (4.4) to the type
5717      //   of one of the operands, with a cv-qualification signature (4.4)
5718      //   that is the union of the cv-qualification signatures of the operand
5719      //   types.
5720      bool NonStandardCompositeType = false;
5721      QualType T = FindCompositePointerType(Loc, lex, rex,
5722                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5723      if (T.isNull()) {
5724        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5725          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5726        return QualType();
5727      } else if (NonStandardCompositeType) {
5728        Diag(Loc,
5729             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5730          << lType << rType << T
5731          << lex->getSourceRange() << rex->getSourceRange();
5732      }
5733
5734      ImpCastExprToType(lex, T, CK_BitCast);
5735      ImpCastExprToType(rex, T, CK_BitCast);
5736      return ResultTy;
5737    }
5738
5739    // Comparison of nullptr_t with itself.
5740    if (lType->isNullPtrType() && rType->isNullPtrType())
5741      return ResultTy;
5742  }
5743
5744  // Handle block pointer types.
5745  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5746    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5747    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5748
5749    if (!LHSIsNull && !RHSIsNull &&
5750        !Context.typesAreCompatible(lpointee, rpointee)) {
5751      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5752        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5753    }
5754    ImpCastExprToType(rex, lType, CK_BitCast);
5755    return ResultTy;
5756  }
5757  // Allow block pointers to be compared with null pointer constants.
5758  if (!isRelational
5759      && ((lType->isBlockPointerType() && rType->isPointerType())
5760          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5761    if (!LHSIsNull && !RHSIsNull) {
5762      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5763             ->getPointeeType()->isVoidType())
5764            || (lType->isPointerType() && lType->getAs<PointerType>()
5765                ->getPointeeType()->isVoidType())))
5766        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5767          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5768    }
5769    ImpCastExprToType(rex, lType, CK_BitCast);
5770    return ResultTy;
5771  }
5772
5773  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5774    if (lType->isPointerType() || rType->isPointerType()) {
5775      const PointerType *LPT = lType->getAs<PointerType>();
5776      const PointerType *RPT = rType->getAs<PointerType>();
5777      bool LPtrToVoid = LPT ?
5778        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5779      bool RPtrToVoid = RPT ?
5780        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5781
5782      if (!LPtrToVoid && !RPtrToVoid &&
5783          !Context.typesAreCompatible(lType, rType)) {
5784        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5785          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5786      }
5787      ImpCastExprToType(rex, lType, CK_BitCast);
5788      return ResultTy;
5789    }
5790    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5791      if (!Context.areComparableObjCPointerTypes(lType, rType))
5792        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5793          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5794      ImpCastExprToType(rex, lType, CK_BitCast);
5795      return ResultTy;
5796    }
5797  }
5798  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
5799      (lType->isIntegerType() && rType->isAnyPointerType())) {
5800    unsigned DiagID = 0;
5801    bool isError = false;
5802    if ((LHSIsNull && lType->isIntegerType()) ||
5803        (RHSIsNull && rType->isIntegerType())) {
5804      if (isRelational && !getLangOptions().CPlusPlus)
5805        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5806    } else if (isRelational && !getLangOptions().CPlusPlus)
5807      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5808    else if (getLangOptions().CPlusPlus) {
5809      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
5810      isError = true;
5811    } else
5812      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5813
5814    if (DiagID) {
5815      Diag(Loc, DiagID)
5816        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5817      if (isError)
5818        return QualType();
5819    }
5820
5821    if (lType->isIntegerType())
5822      ImpCastExprToType(lex, rType, CK_IntegralToPointer);
5823    else
5824      ImpCastExprToType(rex, lType, CK_IntegralToPointer);
5825    return ResultTy;
5826  }
5827
5828  // Handle block pointers.
5829  if (!isRelational && RHSIsNull
5830      && lType->isBlockPointerType() && rType->isIntegerType()) {
5831    ImpCastExprToType(rex, lType, CK_IntegralToPointer);
5832    return ResultTy;
5833  }
5834  if (!isRelational && LHSIsNull
5835      && lType->isIntegerType() && rType->isBlockPointerType()) {
5836    ImpCastExprToType(lex, rType, CK_IntegralToPointer);
5837    return ResultTy;
5838  }
5839  return InvalidOperands(Loc, lex, rex);
5840}
5841
5842/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5843/// operates on extended vector types.  Instead of producing an IntTy result,
5844/// like a scalar comparison, a vector comparison produces a vector of integer
5845/// types.
5846QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5847                                          SourceLocation Loc,
5848                                          bool isRelational) {
5849  // Check to make sure we're operating on vectors of the same type and width,
5850  // Allowing one side to be a scalar of element type.
5851  QualType vType = CheckVectorOperands(Loc, lex, rex);
5852  if (vType.isNull())
5853    return vType;
5854
5855  QualType lType = lex->getType();
5856  QualType rType = rex->getType();
5857
5858  // For non-floating point types, check for self-comparisons of the form
5859  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5860  // often indicate logic errors in the program.
5861  if (!lType->hasFloatingRepresentation()) {
5862    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5863      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5864        if (DRL->getDecl() == DRR->getDecl())
5865          DiagRuntimeBehavior(Loc,
5866                              PDiag(diag::warn_comparison_always)
5867                                << 0 // self-
5868                                << 2 // "a constant"
5869                              );
5870  }
5871
5872  // Check for comparisons of floating point operands using != and ==.
5873  if (!isRelational && lType->hasFloatingRepresentation()) {
5874    assert (rType->hasFloatingRepresentation());
5875    CheckFloatComparison(Loc,lex,rex);
5876  }
5877
5878  // Return the type for the comparison, which is the same as vector type for
5879  // integer vectors, or an integer type of identical size and number of
5880  // elements for floating point vectors.
5881  if (lType->hasIntegerRepresentation())
5882    return lType;
5883
5884  const VectorType *VTy = lType->getAs<VectorType>();
5885  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5886  if (TypeSize == Context.getTypeSize(Context.IntTy))
5887    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5888  if (TypeSize == Context.getTypeSize(Context.LongTy))
5889    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5890
5891  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5892         "Unhandled vector element size in vector compare");
5893  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5894}
5895
5896inline QualType Sema::CheckBitwiseOperands(
5897  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5898  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5899    if (lex->getType()->hasIntegerRepresentation() &&
5900        rex->getType()->hasIntegerRepresentation())
5901      return CheckVectorOperands(Loc, lex, rex);
5902
5903    return InvalidOperands(Loc, lex, rex);
5904  }
5905
5906  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5907
5908  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5909    return compType;
5910  return InvalidOperands(Loc, lex, rex);
5911}
5912
5913inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5914  Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
5915
5916  // Diagnose cases where the user write a logical and/or but probably meant a
5917  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
5918  // is a constant.
5919  if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
5920      rex->getType()->isIntegerType() && !rex->isValueDependent() &&
5921      // Don't warn in macros.
5922      !Loc.isMacroID()) {
5923    // If the RHS can be constant folded, and if it constant folds to something
5924    // that isn't 0 or 1 (which indicate a potential logical operation that
5925    // happened to fold to true/false) then warn.
5926    Expr::EvalResult Result;
5927    if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
5928        Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
5929      Diag(Loc, diag::warn_logical_instead_of_bitwise)
5930       << rex->getSourceRange()
5931        << (Opc == BO_LAnd ? "&&" : "||")
5932        << (Opc == BO_LAnd ? "&" : "|");
5933    }
5934  }
5935
5936  if (!Context.getLangOptions().CPlusPlus) {
5937    UsualUnaryConversions(lex);
5938    UsualUnaryConversions(rex);
5939
5940    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5941      return InvalidOperands(Loc, lex, rex);
5942
5943    return Context.IntTy;
5944  }
5945
5946  // The following is safe because we only use this method for
5947  // non-overloadable operands.
5948
5949  // C++ [expr.log.and]p1
5950  // C++ [expr.log.or]p1
5951  // The operands are both contextually converted to type bool.
5952  if (PerformContextuallyConvertToBool(lex) ||
5953      PerformContextuallyConvertToBool(rex))
5954    return InvalidOperands(Loc, lex, rex);
5955
5956  // C++ [expr.log.and]p2
5957  // C++ [expr.log.or]p2
5958  // The result is a bool.
5959  return Context.BoolTy;
5960}
5961
5962/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5963/// is a read-only property; return true if so. A readonly property expression
5964/// depends on various declarations and thus must be treated specially.
5965///
5966static bool IsReadonlyProperty(Expr *E, Sema &S) {
5967  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5968    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5969    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5970      QualType BaseType = PropExpr->getBase()->getType();
5971      if (const ObjCObjectPointerType *OPT =
5972            BaseType->getAsObjCInterfacePointerType())
5973        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5974          if (S.isPropertyReadonly(PDecl, IFace))
5975            return true;
5976    }
5977  }
5978  return false;
5979}
5980
5981/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5982/// emit an error and return true.  If so, return false.
5983static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5984  SourceLocation OrigLoc = Loc;
5985  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5986                                                              &Loc);
5987  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5988    IsLV = Expr::MLV_ReadonlyProperty;
5989  if (IsLV == Expr::MLV_Valid)
5990    return false;
5991
5992  unsigned Diag = 0;
5993  bool NeedType = false;
5994  switch (IsLV) { // C99 6.5.16p2
5995  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5996  case Expr::MLV_ArrayType:
5997    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5998    NeedType = true;
5999    break;
6000  case Expr::MLV_NotObjectType:
6001    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
6002    NeedType = true;
6003    break;
6004  case Expr::MLV_LValueCast:
6005    Diag = diag::err_typecheck_lvalue_casts_not_supported;
6006    break;
6007  case Expr::MLV_Valid:
6008    llvm_unreachable("did not take early return for MLV_Valid");
6009  case Expr::MLV_InvalidExpression:
6010  case Expr::MLV_MemberFunction:
6011  case Expr::MLV_ClassTemporary:
6012    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
6013    break;
6014  case Expr::MLV_IncompleteType:
6015  case Expr::MLV_IncompleteVoidType:
6016    return S.RequireCompleteType(Loc, E->getType(),
6017              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
6018                  << E->getSourceRange());
6019  case Expr::MLV_DuplicateVectorComponents:
6020    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
6021    break;
6022  case Expr::MLV_NotBlockQualified:
6023    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
6024    break;
6025  case Expr::MLV_ReadonlyProperty:
6026    Diag = diag::error_readonly_property_assignment;
6027    break;
6028  case Expr::MLV_NoSetterProperty:
6029    Diag = diag::error_nosetter_property_assignment;
6030    break;
6031  case Expr::MLV_SubObjCPropertySetting:
6032    Diag = diag::error_no_subobject_property_setting;
6033    break;
6034  }
6035
6036  SourceRange Assign;
6037  if (Loc != OrigLoc)
6038    Assign = SourceRange(OrigLoc, OrigLoc);
6039  if (NeedType)
6040    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
6041  else
6042    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
6043  return true;
6044}
6045
6046
6047
6048// C99 6.5.16.1
6049QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
6050                                       SourceLocation Loc,
6051                                       QualType CompoundType) {
6052  // Verify that LHS is a modifiable lvalue, and emit error if not.
6053  if (CheckForModifiableLvalue(LHS, Loc, *this))
6054    return QualType();
6055
6056  QualType LHSType = LHS->getType();
6057  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
6058  AssignConvertType ConvTy;
6059  if (CompoundType.isNull()) {
6060    QualType LHSTy(LHSType);
6061    // Simple assignment "x = y".
6062    ConvertPropertyAssignment(LHS, RHS, LHSTy);
6063    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
6064    // Special case of NSObject attributes on c-style pointer types.
6065    if (ConvTy == IncompatiblePointer &&
6066        ((Context.isObjCNSObjectType(LHSType) &&
6067          RHSType->isObjCObjectPointerType()) ||
6068         (Context.isObjCNSObjectType(RHSType) &&
6069          LHSType->isObjCObjectPointerType())))
6070      ConvTy = Compatible;
6071
6072    // If the RHS is a unary plus or minus, check to see if they = and + are
6073    // right next to each other.  If so, the user may have typo'd "x =+ 4"
6074    // instead of "x += 4".
6075    Expr *RHSCheck = RHS;
6076    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
6077      RHSCheck = ICE->getSubExpr();
6078    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
6079      if ((UO->getOpcode() == UO_Plus ||
6080           UO->getOpcode() == UO_Minus) &&
6081          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6082          // Only if the two operators are exactly adjacent.
6083          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6084          // And there is a space or other character before the subexpr of the
6085          // unary +/-.  We don't want to warn on "x=-1".
6086          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6087          UO->getSubExpr()->getLocStart().isFileID()) {
6088        Diag(Loc, diag::warn_not_compound_assign)
6089          << (UO->getOpcode() == UO_Plus ? "+" : "-")
6090          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6091      }
6092    }
6093  } else {
6094    // Compound assignment "x += y"
6095    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
6096  }
6097
6098  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6099                               RHS, AA_Assigning))
6100    return QualType();
6101
6102
6103  // Check to see if the destination operand is a dereferenced null pointer.  If
6104  // so, and if not volatile-qualified, this is undefined behavior that the
6105  // optimizer will delete, so warn about it.  People sometimes try to use this
6106  // to get a deterministic trap and are surprised by clang's behavior.  This
6107  // only handles the pattern "*null = whatever", which is a very syntactic
6108  // check.
6109  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
6110    if (UO->getOpcode() == UO_Deref &&
6111        UO->getSubExpr()->IgnoreParenCasts()->
6112          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
6113        !UO->getType().isVolatileQualified()) {
6114    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
6115        << UO->getSubExpr()->getSourceRange();
6116    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
6117  }
6118
6119  // C99 6.5.16p3: The type of an assignment expression is the type of the
6120  // left operand unless the left operand has qualified type, in which case
6121  // it is the unqualified version of the type of the left operand.
6122  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6123  // is converted to the type of the assignment expression (above).
6124  // C++ 5.17p1: the type of the assignment expression is that of its left
6125  // operand.
6126  return LHSType.getUnqualifiedType();
6127}
6128
6129// C99 6.5.17
6130QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
6131  DiagnoseUnusedExprResult(LHS);
6132
6133  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
6134  // C++ does not perform this conversion (C++ [expr.comma]p1).
6135  if (!getLangOptions().CPlusPlus)
6136    DefaultFunctionArrayLvalueConversion(RHS);
6137
6138  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
6139  // incomplete in C++).
6140
6141  return RHS->getType();
6142}
6143
6144/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
6145/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
6146QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
6147                                              bool isInc, bool isPrefix) {
6148  if (Op->isTypeDependent())
6149    return Context.DependentTy;
6150
6151  QualType ResType = Op->getType();
6152  assert(!ResType.isNull() && "no type for increment/decrement expression");
6153
6154  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
6155    // Decrement of bool is not allowed.
6156    if (!isInc) {
6157      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
6158      return QualType();
6159    }
6160    // Increment of bool sets it to true, but is deprecated.
6161    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
6162  } else if (ResType->isRealType()) {
6163    // OK!
6164  } else if (ResType->isAnyPointerType()) {
6165    QualType PointeeTy = ResType->getPointeeType();
6166
6167    // C99 6.5.2.4p2, 6.5.6p2
6168    if (PointeeTy->isVoidType()) {
6169      if (getLangOptions().CPlusPlus) {
6170        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
6171          << Op->getSourceRange();
6172        return QualType();
6173      }
6174
6175      // Pointer to void is a GNU extension in C.
6176      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
6177    } else if (PointeeTy->isFunctionType()) {
6178      if (getLangOptions().CPlusPlus) {
6179        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
6180          << Op->getType() << Op->getSourceRange();
6181        return QualType();
6182      }
6183
6184      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
6185        << ResType << Op->getSourceRange();
6186    } else if (RequireCompleteType(OpLoc, PointeeTy,
6187                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6188                             << Op->getSourceRange()
6189                             << ResType))
6190      return QualType();
6191    // Diagnose bad cases where we step over interface counts.
6192    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6193      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6194        << PointeeTy << Op->getSourceRange();
6195      return QualType();
6196    }
6197  } else if (ResType->isAnyComplexType()) {
6198    // C99 does not support ++/-- on complex types, we allow as an extension.
6199    Diag(OpLoc, diag::ext_integer_increment_complex)
6200      << ResType << Op->getSourceRange();
6201  } else {
6202    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6203      << ResType << int(isInc) << Op->getSourceRange();
6204    return QualType();
6205  }
6206  // At this point, we know we have a real, complex or pointer type.
6207  // Now make sure the operand is a modifiable lvalue.
6208  if (CheckForModifiableLvalue(Op, OpLoc, *this))
6209    return QualType();
6210  // In C++, a prefix increment is the same type as the operand. Otherwise
6211  // (in C or with postfix), the increment is the unqualified type of the
6212  // operand.
6213  return isPrefix && getLangOptions().CPlusPlus
6214    ? ResType : ResType.getUnqualifiedType();
6215}
6216
6217void Sema::ConvertPropertyAssignment(Expr *LHS, Expr *&RHS, QualType& LHSTy) {
6218  bool copyInit = false;
6219  if (const ObjCImplicitSetterGetterRefExpr *OISGE =
6220      dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
6221    // If using property-dot syntax notation for assignment, and there is a
6222    // setter, RHS expression is being passed to the setter argument. So,
6223    // type conversion (and comparison) is RHS to setter's argument type.
6224    if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
6225      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
6226      LHSTy = (*P)->getType();
6227    }
6228    copyInit = (getLangOptions().CPlusPlus && LHSTy->isRecordType());
6229  }
6230  else
6231      copyInit = (getLangOptions().CPlusPlus && isa<ObjCPropertyRefExpr>(LHS) &&
6232                  LHSTy->isRecordType());
6233  if (copyInit) {
6234    InitializedEntity Entity =
6235    InitializedEntity::InitializeParameter(LHSTy);
6236    Expr *Arg = RHS;
6237    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
6238                                                Owned(Arg));
6239    if (!ArgE.isInvalid())
6240      RHS = ArgE.takeAs<Expr>();
6241  }
6242}
6243
6244
6245/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6246/// This routine allows us to typecheck complex/recursive expressions
6247/// where the declaration is needed for type checking. We only need to
6248/// handle cases when the expression references a function designator
6249/// or is an lvalue. Here are some examples:
6250///  - &(x) => x
6251///  - &*****f => f for f a function designator.
6252///  - &s.xx => s
6253///  - &s.zz[1].yy -> s, if zz is an array
6254///  - *(x + 1) -> x, if x is an array
6255///  - &"123"[2] -> 0
6256///  - & __real__ x -> x
6257static NamedDecl *getPrimaryDecl(Expr *E) {
6258  switch (E->getStmtClass()) {
6259  case Stmt::DeclRefExprClass:
6260    return cast<DeclRefExpr>(E)->getDecl();
6261  case Stmt::MemberExprClass:
6262    // If this is an arrow operator, the address is an offset from
6263    // the base's value, so the object the base refers to is
6264    // irrelevant.
6265    if (cast<MemberExpr>(E)->isArrow())
6266      return 0;
6267    // Otherwise, the expression refers to a part of the base
6268    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6269  case Stmt::ArraySubscriptExprClass: {
6270    // FIXME: This code shouldn't be necessary!  We should catch the implicit
6271    // promotion of register arrays earlier.
6272    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6273    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6274      if (ICE->getSubExpr()->getType()->isArrayType())
6275        return getPrimaryDecl(ICE->getSubExpr());
6276    }
6277    return 0;
6278  }
6279  case Stmt::UnaryOperatorClass: {
6280    UnaryOperator *UO = cast<UnaryOperator>(E);
6281
6282    switch(UO->getOpcode()) {
6283    case UO_Real:
6284    case UO_Imag:
6285    case UO_Extension:
6286      return getPrimaryDecl(UO->getSubExpr());
6287    default:
6288      return 0;
6289    }
6290  }
6291  case Stmt::ParenExprClass:
6292    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6293  case Stmt::ImplicitCastExprClass:
6294    // If the result of an implicit cast is an l-value, we care about
6295    // the sub-expression; otherwise, the result here doesn't matter.
6296    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6297  default:
6298    return 0;
6299  }
6300}
6301
6302/// CheckAddressOfOperand - The operand of & must be either a function
6303/// designator or an lvalue designating an object. If it is an lvalue, the
6304/// object cannot be declared with storage class register or be a bit field.
6305/// Note: The usual conversions are *not* applied to the operand of the &
6306/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6307/// In C++, the operand might be an overloaded function name, in which case
6308/// we allow the '&' but retain the overloaded-function type.
6309QualType Sema::CheckAddressOfOperand(Expr *OrigOp, SourceLocation OpLoc) {
6310  if (OrigOp->isTypeDependent())
6311    return Context.DependentTy;
6312  if (OrigOp->getType() == Context.OverloadTy)
6313    return Context.OverloadTy;
6314
6315  // Make sure to ignore parentheses in subsequent checks
6316  Expr *op = OrigOp->IgnoreParens();
6317
6318  if (getLangOptions().C99) {
6319    // Implement C99-only parts of addressof rules.
6320    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6321      if (uOp->getOpcode() == UO_Deref)
6322        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6323        // (assuming the deref expression is valid).
6324        return uOp->getSubExpr()->getType();
6325    }
6326    // Technically, there should be a check for array subscript
6327    // expressions here, but the result of one is always an lvalue anyway.
6328  }
6329  NamedDecl *dcl = getPrimaryDecl(op);
6330  Expr::isLvalueResult lval = op->isLvalue(Context);
6331
6332  if (lval == Expr::LV_ClassTemporary) {
6333    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6334                                 : diag::ext_typecheck_addrof_class_temporary)
6335      << op->getType() << op->getSourceRange();
6336    if (isSFINAEContext())
6337      return QualType();
6338  } else if (isa<ObjCSelectorExpr>(op)) {
6339    return Context.getPointerType(op->getType());
6340  } else if (lval == Expr::LV_MemberFunction) {
6341    // If it's an instance method, make a member pointer.
6342    // The expression must have exactly the form &A::foo.
6343
6344    // If the underlying expression isn't a decl ref, give up.
6345    if (!isa<DeclRefExpr>(op)) {
6346      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
6347        << OrigOp->getSourceRange();
6348      return QualType();
6349    }
6350    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
6351    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
6352
6353    // The id-expression was parenthesized.
6354    if (OrigOp != DRE) {
6355      Diag(OpLoc, diag::err_parens_pointer_member_function)
6356        << OrigOp->getSourceRange();
6357
6358    // The method was named without a qualifier.
6359    } else if (!DRE->getQualifier()) {
6360      Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6361        << op->getSourceRange();
6362    }
6363
6364    return Context.getMemberPointerType(op->getType(),
6365              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6366  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6367    // C99 6.5.3.2p1
6368    // The operand must be either an l-value or a function designator
6369    if (!op->getType()->isFunctionType()) {
6370      // FIXME: emit more specific diag...
6371      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6372        << op->getSourceRange();
6373      return QualType();
6374    }
6375  } else if (op->getBitField()) { // C99 6.5.3.2p1
6376    // The operand cannot be a bit-field
6377    Diag(OpLoc, diag::err_typecheck_address_of)
6378      << "bit-field" << op->getSourceRange();
6379        return QualType();
6380  } else if (op->refersToVectorElement()) {
6381    // The operand cannot be an element of a vector
6382    Diag(OpLoc, diag::err_typecheck_address_of)
6383      << "vector element" << op->getSourceRange();
6384    return QualType();
6385  } else if (isa<ObjCPropertyRefExpr>(op)) {
6386    // cannot take address of a property expression.
6387    Diag(OpLoc, diag::err_typecheck_address_of)
6388      << "property expression" << op->getSourceRange();
6389    return QualType();
6390  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6391    // FIXME: Can LHS ever be null here?
6392    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6393      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6394  } else if (dcl) { // C99 6.5.3.2p1
6395    // We have an lvalue with a decl. Make sure the decl is not declared
6396    // with the register storage-class specifier.
6397    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6398      // in C++ it is not error to take address of a register
6399      // variable (c++03 7.1.1P3)
6400      if (vd->getStorageClass() == SC_Register &&
6401          !getLangOptions().CPlusPlus) {
6402        Diag(OpLoc, diag::err_typecheck_address_of)
6403          << "register variable" << op->getSourceRange();
6404        return QualType();
6405      }
6406    } else if (isa<FunctionTemplateDecl>(dcl)) {
6407      return Context.OverloadTy;
6408    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6409      // Okay: we can take the address of a field.
6410      // Could be a pointer to member, though, if there is an explicit
6411      // scope qualifier for the class.
6412      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6413        DeclContext *Ctx = dcl->getDeclContext();
6414        if (Ctx && Ctx->isRecord()) {
6415          if (FD->getType()->isReferenceType()) {
6416            Diag(OpLoc,
6417                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6418              << FD->getDeclName() << FD->getType();
6419            return QualType();
6420          }
6421
6422          return Context.getMemberPointerType(op->getType(),
6423                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6424        }
6425      }
6426    } else if (!isa<FunctionDecl>(dcl))
6427      assert(0 && "Unknown/unexpected decl type");
6428  }
6429
6430  if (lval == Expr::LV_IncompleteVoidType) {
6431    // Taking the address of a void variable is technically illegal, but we
6432    // allow it in cases which are otherwise valid.
6433    // Example: "extern void x; void* y = &x;".
6434    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6435  }
6436
6437  // If the operand has type "type", the result has type "pointer to type".
6438  if (op->getType()->isObjCObjectType())
6439    return Context.getObjCObjectPointerType(op->getType());
6440  return Context.getPointerType(op->getType());
6441}
6442
6443/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
6444QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6445  if (Op->isTypeDependent())
6446    return Context.DependentTy;
6447
6448  UsualUnaryConversions(Op);
6449  QualType OpTy = Op->getType();
6450  QualType Result;
6451
6452  // Note that per both C89 and C99, indirection is always legal, even if OpTy
6453  // is an incomplete type or void.  It would be possible to warn about
6454  // dereferencing a void pointer, but it's completely well-defined, and such a
6455  // warning is unlikely to catch any mistakes.
6456  if (const PointerType *PT = OpTy->getAs<PointerType>())
6457    Result = PT->getPointeeType();
6458  else if (const ObjCObjectPointerType *OPT =
6459             OpTy->getAs<ObjCObjectPointerType>())
6460    Result = OPT->getPointeeType();
6461
6462  if (Result.isNull()) {
6463    Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6464      << OpTy << Op->getSourceRange();
6465    return QualType();
6466  }
6467
6468  return Result;
6469}
6470
6471static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
6472  tok::TokenKind Kind) {
6473  BinaryOperatorKind Opc;
6474  switch (Kind) {
6475  default: assert(0 && "Unknown binop!");
6476  case tok::periodstar:           Opc = BO_PtrMemD; break;
6477  case tok::arrowstar:            Opc = BO_PtrMemI; break;
6478  case tok::star:                 Opc = BO_Mul; break;
6479  case tok::slash:                Opc = BO_Div; break;
6480  case tok::percent:              Opc = BO_Rem; break;
6481  case tok::plus:                 Opc = BO_Add; break;
6482  case tok::minus:                Opc = BO_Sub; break;
6483  case tok::lessless:             Opc = BO_Shl; break;
6484  case tok::greatergreater:       Opc = BO_Shr; break;
6485  case tok::lessequal:            Opc = BO_LE; break;
6486  case tok::less:                 Opc = BO_LT; break;
6487  case tok::greaterequal:         Opc = BO_GE; break;
6488  case tok::greater:              Opc = BO_GT; break;
6489  case tok::exclaimequal:         Opc = BO_NE; break;
6490  case tok::equalequal:           Opc = BO_EQ; break;
6491  case tok::amp:                  Opc = BO_And; break;
6492  case tok::caret:                Opc = BO_Xor; break;
6493  case tok::pipe:                 Opc = BO_Or; break;
6494  case tok::ampamp:               Opc = BO_LAnd; break;
6495  case tok::pipepipe:             Opc = BO_LOr; break;
6496  case tok::equal:                Opc = BO_Assign; break;
6497  case tok::starequal:            Opc = BO_MulAssign; break;
6498  case tok::slashequal:           Opc = BO_DivAssign; break;
6499  case tok::percentequal:         Opc = BO_RemAssign; break;
6500  case tok::plusequal:            Opc = BO_AddAssign; break;
6501  case tok::minusequal:           Opc = BO_SubAssign; break;
6502  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
6503  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
6504  case tok::ampequal:             Opc = BO_AndAssign; break;
6505  case tok::caretequal:           Opc = BO_XorAssign; break;
6506  case tok::pipeequal:            Opc = BO_OrAssign; break;
6507  case tok::comma:                Opc = BO_Comma; break;
6508  }
6509  return Opc;
6510}
6511
6512static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
6513  tok::TokenKind Kind) {
6514  UnaryOperatorKind Opc;
6515  switch (Kind) {
6516  default: assert(0 && "Unknown unary op!");
6517  case tok::plusplus:     Opc = UO_PreInc; break;
6518  case tok::minusminus:   Opc = UO_PreDec; break;
6519  case tok::amp:          Opc = UO_AddrOf; break;
6520  case tok::star:         Opc = UO_Deref; break;
6521  case tok::plus:         Opc = UO_Plus; break;
6522  case tok::minus:        Opc = UO_Minus; break;
6523  case tok::tilde:        Opc = UO_Not; break;
6524  case tok::exclaim:      Opc = UO_LNot; break;
6525  case tok::kw___real:    Opc = UO_Real; break;
6526  case tok::kw___imag:    Opc = UO_Imag; break;
6527  case tok::kw___extension__: Opc = UO_Extension; break;
6528  }
6529  return Opc;
6530}
6531
6532/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6533/// operator @p Opc at location @c TokLoc. This routine only supports
6534/// built-in operations; ActOnBinOp handles overloaded operators.
6535ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6536                                    unsigned Op,
6537                                    Expr *lhs, Expr *rhs) {
6538  QualType ResultTy;     // Result type of the binary operator.
6539  BinaryOperatorKind Opc = (BinaryOperatorKind) Op;
6540  // The following two variables are used for compound assignment operators
6541  QualType CompLHSTy;    // Type of LHS after promotions for computation
6542  QualType CompResultTy; // Type of computation result
6543
6544  switch (Opc) {
6545  case BO_Assign:
6546    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6547    break;
6548  case BO_PtrMemD:
6549  case BO_PtrMemI:
6550    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6551                                            Opc == BO_PtrMemI);
6552    break;
6553  case BO_Mul:
6554  case BO_Div:
6555    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6556                                           Opc == BO_Div);
6557    break;
6558  case BO_Rem:
6559    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6560    break;
6561  case BO_Add:
6562    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6563    break;
6564  case BO_Sub:
6565    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6566    break;
6567  case BO_Shl:
6568  case BO_Shr:
6569    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6570    break;
6571  case BO_LE:
6572  case BO_LT:
6573  case BO_GE:
6574  case BO_GT:
6575    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6576    break;
6577  case BO_EQ:
6578  case BO_NE:
6579    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6580    break;
6581  case BO_And:
6582  case BO_Xor:
6583  case BO_Or:
6584    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6585    break;
6586  case BO_LAnd:
6587  case BO_LOr:
6588    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
6589    break;
6590  case BO_MulAssign:
6591  case BO_DivAssign:
6592    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6593                                              Opc == BO_DivAssign);
6594    CompLHSTy = CompResultTy;
6595    if (!CompResultTy.isNull())
6596      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6597    break;
6598  case BO_RemAssign:
6599    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6600    CompLHSTy = CompResultTy;
6601    if (!CompResultTy.isNull())
6602      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6603    break;
6604  case BO_AddAssign:
6605    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6606    if (!CompResultTy.isNull())
6607      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6608    break;
6609  case BO_SubAssign:
6610    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6611    if (!CompResultTy.isNull())
6612      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6613    break;
6614  case BO_ShlAssign:
6615  case BO_ShrAssign:
6616    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6617    CompLHSTy = CompResultTy;
6618    if (!CompResultTy.isNull())
6619      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6620    break;
6621  case BO_AndAssign:
6622  case BO_XorAssign:
6623  case BO_OrAssign:
6624    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6625    CompLHSTy = CompResultTy;
6626    if (!CompResultTy.isNull())
6627      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6628    break;
6629  case BO_Comma:
6630    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6631    break;
6632  }
6633  if (ResultTy.isNull())
6634    return ExprError();
6635  if (ResultTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6636    if (Opc >= BO_Assign && Opc <= BO_OrAssign)
6637          Diag(OpLoc, diag::err_assignment_requires_nonfragile_object)
6638                << ResultTy;
6639  }
6640  if (CompResultTy.isNull())
6641    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6642  else
6643    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6644                                                      CompLHSTy, CompResultTy,
6645                                                      OpLoc));
6646}
6647
6648/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6649/// ParenRange in parentheses.
6650static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6651                               const PartialDiagnostic &PD,
6652                               const PartialDiagnostic &FirstNote,
6653                               SourceRange FirstParenRange,
6654                               const PartialDiagnostic &SecondNote,
6655                               SourceRange SecondParenRange) {
6656  Self.Diag(Loc, PD);
6657
6658  if (!FirstNote.getDiagID())
6659    return;
6660
6661  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6662  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6663    // We can't display the parentheses, so just return.
6664    return;
6665  }
6666
6667  Self.Diag(Loc, FirstNote)
6668    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6669    << FixItHint::CreateInsertion(EndLoc, ")");
6670
6671  if (!SecondNote.getDiagID())
6672    return;
6673
6674  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6675  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6676    // We can't display the parentheses, so just dig the
6677    // warning/error and return.
6678    Self.Diag(Loc, SecondNote);
6679    return;
6680  }
6681
6682  Self.Diag(Loc, SecondNote)
6683    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6684    << FixItHint::CreateInsertion(EndLoc, ")");
6685}
6686
6687/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6688/// operators are mixed in a way that suggests that the programmer forgot that
6689/// comparison operators have higher precedence. The most typical example of
6690/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6691static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
6692                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6693  typedef BinaryOperator BinOp;
6694  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6695                rhsopc = static_cast<BinOp::Opcode>(-1);
6696  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6697    lhsopc = BO->getOpcode();
6698  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6699    rhsopc = BO->getOpcode();
6700
6701  // Subs are not binary operators.
6702  if (lhsopc == -1 && rhsopc == -1)
6703    return;
6704
6705  // Bitwise operations are sometimes used as eager logical ops.
6706  // Don't diagnose this.
6707  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6708      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6709    return;
6710
6711  if (BinOp::isComparisonOp(lhsopc))
6712    SuggestParentheses(Self, OpLoc,
6713      Self.PDiag(diag::warn_precedence_bitwise_rel)
6714          << SourceRange(lhs->getLocStart(), OpLoc)
6715          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6716      Self.PDiag(diag::note_precedence_bitwise_first)
6717          << BinOp::getOpcodeStr(Opc),
6718      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6719      Self.PDiag(diag::note_precedence_bitwise_silence)
6720          << BinOp::getOpcodeStr(lhsopc),
6721                       lhs->getSourceRange());
6722  else if (BinOp::isComparisonOp(rhsopc))
6723    SuggestParentheses(Self, OpLoc,
6724      Self.PDiag(diag::warn_precedence_bitwise_rel)
6725          << SourceRange(OpLoc, rhs->getLocEnd())
6726          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6727      Self.PDiag(diag::note_precedence_bitwise_first)
6728        << BinOp::getOpcodeStr(Opc),
6729      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6730      Self.PDiag(diag::note_precedence_bitwise_silence)
6731        << BinOp::getOpcodeStr(rhsopc),
6732                       rhs->getSourceRange());
6733}
6734
6735/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6736/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6737/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6738static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
6739                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6740  if (BinaryOperator::isBitwiseOp(Opc))
6741    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6742}
6743
6744// Binary Operators.  'Tok' is the token for the operator.
6745ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6746                            tok::TokenKind Kind,
6747                            Expr *lhs, Expr *rhs) {
6748  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
6749  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6750  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6751
6752  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6753  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6754
6755  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6756}
6757
6758ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6759                            BinaryOperatorKind Opc,
6760                            Expr *lhs, Expr *rhs) {
6761  if (getLangOptions().CPlusPlus &&
6762      ((!isa<ObjCImplicitSetterGetterRefExpr>(lhs) &&
6763        !isa<ObjCPropertyRefExpr>(lhs))
6764        || rhs->isTypeDependent() || Opc != BO_Assign) &&
6765      (lhs->getType()->isOverloadableType() ||
6766       rhs->getType()->isOverloadableType())) {
6767    // Find all of the overloaded operators visible from this
6768    // point. We perform both an operator-name lookup from the local
6769    // scope and an argument-dependent lookup based on the types of
6770    // the arguments.
6771    UnresolvedSet<16> Functions;
6772    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6773    if (S && OverOp != OO_None)
6774      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6775                                   Functions);
6776
6777    // Build the (potentially-overloaded, potentially-dependent)
6778    // binary operation.
6779    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6780  }
6781
6782  // Build a built-in binary operation.
6783  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6784}
6785
6786ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6787                                                    unsigned OpcIn,
6788                                                    Expr *Input) {
6789  UnaryOperatorKind Opc = static_cast<UnaryOperatorKind>(OpcIn);
6790
6791  QualType resultType;
6792  switch (Opc) {
6793  case UO_PreInc:
6794  case UO_PreDec:
6795  case UO_PostInc:
6796  case UO_PostDec:
6797    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6798                                                Opc == UO_PreInc ||
6799                                                Opc == UO_PostInc,
6800                                                Opc == UO_PreInc ||
6801                                                Opc == UO_PreDec);
6802    break;
6803  case UO_AddrOf:
6804    resultType = CheckAddressOfOperand(Input, OpLoc);
6805    break;
6806  case UO_Deref:
6807    DefaultFunctionArrayLvalueConversion(Input);
6808    resultType = CheckIndirectionOperand(Input, OpLoc);
6809    break;
6810  case UO_Plus:
6811  case UO_Minus:
6812    UsualUnaryConversions(Input);
6813    resultType = Input->getType();
6814    if (resultType->isDependentType())
6815      break;
6816    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
6817        resultType->isVectorType())
6818      break;
6819    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6820             resultType->isEnumeralType())
6821      break;
6822    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6823             Opc == UO_Plus &&
6824             resultType->isPointerType())
6825      break;
6826
6827    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6828      << resultType << Input->getSourceRange());
6829  case UO_Not: // bitwise complement
6830    UsualUnaryConversions(Input);
6831    resultType = Input->getType();
6832    if (resultType->isDependentType())
6833      break;
6834    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6835    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6836      // C99 does not support '~' for complex conjugation.
6837      Diag(OpLoc, diag::ext_integer_complement_complex)
6838        << resultType << Input->getSourceRange();
6839    else if (!resultType->hasIntegerRepresentation())
6840      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6841        << resultType << Input->getSourceRange());
6842    break;
6843  case UO_LNot: // logical negation
6844    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6845    DefaultFunctionArrayLvalueConversion(Input);
6846    resultType = Input->getType();
6847    if (resultType->isDependentType())
6848      break;
6849    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6850      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6851        << resultType << Input->getSourceRange());
6852
6853    // Do not accept &f if f is overloaded
6854    // i.e. void f(int); void f(char); bool b = &f;
6855    if (resultType == Context.OverloadTy &&
6856        PerformContextuallyConvertToBool(Input))
6857      return ExprError(); // Diagnostic is uttered above
6858
6859    // LNot always has type int. C99 6.5.3.3p5.
6860    // In C++, it's bool. C++ 5.3.1p8
6861    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6862    break;
6863  case UO_Real:
6864  case UO_Imag:
6865    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UO_Real);
6866    break;
6867  case UO_Extension:
6868    resultType = Input->getType();
6869    break;
6870  }
6871  if (resultType.isNull())
6872    return ExprError();
6873
6874  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6875}
6876
6877ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6878                              UnaryOperatorKind Opc,
6879                              Expr *Input) {
6880  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6881      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
6882    // Find all of the overloaded operators visible from this
6883    // point. We perform both an operator-name lookup from the local
6884    // scope and an argument-dependent lookup based on the types of
6885    // the arguments.
6886    UnresolvedSet<16> Functions;
6887    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6888    if (S && OverOp != OO_None)
6889      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6890                                   Functions);
6891
6892    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
6893  }
6894
6895  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
6896}
6897
6898// Unary Operators.  'Tok' is the token for the operator.
6899ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6900                                            tok::TokenKind Op, Expr *Input) {
6901  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
6902}
6903
6904/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6905ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6906                                            SourceLocation LabLoc,
6907                                            IdentifierInfo *LabelII) {
6908  // Look up the record for this label identifier.
6909  LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
6910
6911  // If we haven't seen this label yet, create a forward reference. It
6912  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6913  if (LabelDecl == 0)
6914    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6915
6916  LabelDecl->setUsed();
6917  // Create the AST node.  The address of a label always has type 'void*'.
6918  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6919                                       Context.getPointerType(Context.VoidTy)));
6920}
6921
6922ExprResult
6923Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
6924                    SourceLocation RPLoc) { // "({..})"
6925  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6926  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6927
6928  bool isFileScope
6929    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6930  if (isFileScope)
6931    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6932
6933  // FIXME: there are a variety of strange constraints to enforce here, for
6934  // example, it is not possible to goto into a stmt expression apparently.
6935  // More semantic analysis is needed.
6936
6937  // If there are sub stmts in the compound stmt, take the type of the last one
6938  // as the type of the stmtexpr.
6939  QualType Ty = Context.VoidTy;
6940
6941  if (!Compound->body_empty()) {
6942    Stmt *LastStmt = Compound->body_back();
6943    // If LastStmt is a label, skip down through into the body.
6944    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6945      LastStmt = Label->getSubStmt();
6946
6947    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6948      Ty = LastExpr->getType();
6949  }
6950
6951  // FIXME: Check that expression type is complete/non-abstract; statement
6952  // expressions are not lvalues.
6953
6954  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6955}
6956
6957ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6958                                                  TypeSourceInfo *TInfo,
6959                                                  OffsetOfComponent *CompPtr,
6960                                                  unsigned NumComponents,
6961                                                  SourceLocation RParenLoc) {
6962  QualType ArgTy = TInfo->getType();
6963  bool Dependent = ArgTy->isDependentType();
6964  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6965
6966  // We must have at least one component that refers to the type, and the first
6967  // one is known to be a field designator.  Verify that the ArgTy represents
6968  // a struct/union/class.
6969  if (!Dependent && !ArgTy->isRecordType())
6970    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6971                       << ArgTy << TypeRange);
6972
6973  // Type must be complete per C99 7.17p3 because a declaring a variable
6974  // with an incomplete type would be ill-formed.
6975  if (!Dependent
6976      && RequireCompleteType(BuiltinLoc, ArgTy,
6977                             PDiag(diag::err_offsetof_incomplete_type)
6978                               << TypeRange))
6979    return ExprError();
6980
6981  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6982  // GCC extension, diagnose them.
6983  // FIXME: This diagnostic isn't actually visible because the location is in
6984  // a system header!
6985  if (NumComponents != 1)
6986    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6987      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6988
6989  bool DidWarnAboutNonPOD = false;
6990  QualType CurrentType = ArgTy;
6991  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6992  llvm::SmallVector<OffsetOfNode, 4> Comps;
6993  llvm::SmallVector<Expr*, 4> Exprs;
6994  for (unsigned i = 0; i != NumComponents; ++i) {
6995    const OffsetOfComponent &OC = CompPtr[i];
6996    if (OC.isBrackets) {
6997      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6998      if (!CurrentType->isDependentType()) {
6999        const ArrayType *AT = Context.getAsArrayType(CurrentType);
7000        if(!AT)
7001          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
7002                           << CurrentType);
7003        CurrentType = AT->getElementType();
7004      } else
7005        CurrentType = Context.DependentTy;
7006
7007      // The expression must be an integral expression.
7008      // FIXME: An integral constant expression?
7009      Expr *Idx = static_cast<Expr*>(OC.U.E);
7010      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
7011          !Idx->getType()->isIntegerType())
7012        return ExprError(Diag(Idx->getLocStart(),
7013                              diag::err_typecheck_subscript_not_integer)
7014                         << Idx->getSourceRange());
7015
7016      // Record this array index.
7017      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
7018      Exprs.push_back(Idx);
7019      continue;
7020    }
7021
7022    // Offset of a field.
7023    if (CurrentType->isDependentType()) {
7024      // We have the offset of a field, but we can't look into the dependent
7025      // type. Just record the identifier of the field.
7026      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
7027      CurrentType = Context.DependentTy;
7028      continue;
7029    }
7030
7031    // We need to have a complete type to look into.
7032    if (RequireCompleteType(OC.LocStart, CurrentType,
7033                            diag::err_offsetof_incomplete_type))
7034      return ExprError();
7035
7036    // Look for the designated field.
7037    const RecordType *RC = CurrentType->getAs<RecordType>();
7038    if (!RC)
7039      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
7040                       << CurrentType);
7041    RecordDecl *RD = RC->getDecl();
7042
7043    // C++ [lib.support.types]p5:
7044    //   The macro offsetof accepts a restricted set of type arguments in this
7045    //   International Standard. type shall be a POD structure or a POD union
7046    //   (clause 9).
7047    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7048      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
7049          DiagRuntimeBehavior(BuiltinLoc,
7050                              PDiag(diag::warn_offsetof_non_pod_type)
7051                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
7052                              << CurrentType))
7053        DidWarnAboutNonPOD = true;
7054    }
7055
7056    // Look for the field.
7057    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
7058    LookupQualifiedName(R, RD);
7059    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
7060    if (!MemberDecl)
7061      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
7062                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
7063                                                              OC.LocEnd));
7064
7065    // C99 7.17p3:
7066    //   (If the specified member is a bit-field, the behavior is undefined.)
7067    //
7068    // We diagnose this as an error.
7069    if (MemberDecl->getBitWidth()) {
7070      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
7071        << MemberDecl->getDeclName()
7072        << SourceRange(BuiltinLoc, RParenLoc);
7073      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
7074      return ExprError();
7075    }
7076
7077    RecordDecl *Parent = MemberDecl->getParent();
7078    bool AnonStructUnion = Parent->isAnonymousStructOrUnion();
7079    if (AnonStructUnion) {
7080      do {
7081        Parent = cast<RecordDecl>(Parent->getParent());
7082      } while (Parent->isAnonymousStructOrUnion());
7083    }
7084
7085    // If the member was found in a base class, introduce OffsetOfNodes for
7086    // the base class indirections.
7087    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
7088                       /*DetectVirtual=*/false);
7089    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
7090      CXXBasePath &Path = Paths.front();
7091      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
7092           B != BEnd; ++B)
7093        Comps.push_back(OffsetOfNode(B->Base));
7094    }
7095
7096    if (AnonStructUnion) {
7097      llvm::SmallVector<FieldDecl*, 4> Path;
7098      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
7099      unsigned n = Path.size();
7100      for (int j = n - 1; j > -1; --j)
7101        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
7102    } else {
7103      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
7104    }
7105    CurrentType = MemberDecl->getType().getNonReferenceType();
7106  }
7107
7108  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
7109                                    TInfo, Comps.data(), Comps.size(),
7110                                    Exprs.data(), Exprs.size(), RParenLoc));
7111}
7112
7113ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
7114                                                  SourceLocation BuiltinLoc,
7115                                                  SourceLocation TypeLoc,
7116                                                  ParsedType argty,
7117                                                  OffsetOfComponent *CompPtr,
7118                                                  unsigned NumComponents,
7119                                                  SourceLocation RPLoc) {
7120
7121  TypeSourceInfo *ArgTInfo;
7122  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
7123  if (ArgTy.isNull())
7124    return ExprError();
7125
7126  if (!ArgTInfo)
7127    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
7128
7129  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
7130                              RPLoc);
7131}
7132
7133
7134ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
7135                                                      ParsedType arg1,ParsedType arg2,
7136                                                      SourceLocation RPLoc) {
7137  TypeSourceInfo *argTInfo1;
7138  QualType argT1 = GetTypeFromParser(arg1, &argTInfo1);
7139  TypeSourceInfo *argTInfo2;
7140  QualType argT2 = GetTypeFromParser(arg2, &argTInfo2);
7141
7142  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
7143
7144  return BuildTypesCompatibleExpr(BuiltinLoc, argTInfo1, argTInfo2, RPLoc);
7145}
7146
7147ExprResult
7148Sema::BuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
7149                               TypeSourceInfo *argTInfo1,
7150                               TypeSourceInfo *argTInfo2,
7151                               SourceLocation RPLoc) {
7152  if (getLangOptions().CPlusPlus) {
7153    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
7154      << SourceRange(BuiltinLoc, RPLoc);
7155    return ExprError();
7156  }
7157
7158  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
7159                                                 argTInfo1, argTInfo2, RPLoc));
7160}
7161
7162
7163ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
7164                                             Expr *CondExpr,
7165                                             Expr *LHSExpr, Expr *RHSExpr,
7166                                             SourceLocation RPLoc) {
7167  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
7168
7169  QualType resType;
7170  bool ValueDependent = false;
7171  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
7172    resType = Context.DependentTy;
7173    ValueDependent = true;
7174  } else {
7175    // The conditional expression is required to be a constant expression.
7176    llvm::APSInt condEval(32);
7177    SourceLocation ExpLoc;
7178    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
7179      return ExprError(Diag(ExpLoc,
7180                       diag::err_typecheck_choose_expr_requires_constant)
7181        << CondExpr->getSourceRange());
7182
7183    // If the condition is > zero, then the AST type is the same as the LSHExpr.
7184    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7185    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7186                                             : RHSExpr->isValueDependent();
7187  }
7188
7189  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7190                                        resType, RPLoc,
7191                                        resType->isDependentType(),
7192                                        ValueDependent));
7193}
7194
7195//===----------------------------------------------------------------------===//
7196// Clang Extensions.
7197//===----------------------------------------------------------------------===//
7198
7199/// ActOnBlockStart - This callback is invoked when a block literal is started.
7200void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7201  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7202  PushBlockScope(BlockScope, Block);
7203  CurContext->addDecl(Block);
7204  if (BlockScope)
7205    PushDeclContext(BlockScope, Block);
7206  else
7207    CurContext = Block;
7208}
7209
7210void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7211  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7212  BlockScopeInfo *CurBlock = getCurBlock();
7213
7214  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7215  CurBlock->TheDecl->setSignatureAsWritten(Sig);
7216  QualType T = Sig->getType();
7217
7218  bool isVariadic;
7219  QualType RetTy;
7220  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7221    CurBlock->FunctionType = T;
7222    RetTy = Fn->getResultType();
7223    isVariadic =
7224      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7225  } else {
7226    RetTy = T;
7227    isVariadic = false;
7228  }
7229
7230  CurBlock->TheDecl->setIsVariadic(isVariadic);
7231
7232  // Don't allow returning an array by value.
7233  if (RetTy->isArrayType()) {
7234    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7235    return;
7236  }
7237
7238  // Don't allow returning a objc interface by value.
7239  if (RetTy->isObjCObjectType()) {
7240    Diag(ParamInfo.getSourceRange().getBegin(),
7241         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7242    return;
7243  }
7244
7245  // Context.DependentTy is used as a placeholder for a missing block
7246  // return type.  TODO:  what should we do with declarators like:
7247  //   ^ * { ... }
7248  // If the answer is "apply template argument deduction"....
7249  if (RetTy != Context.DependentTy)
7250    CurBlock->ReturnType = RetTy;
7251
7252  // Push block parameters from the declarator if we had them.
7253  llvm::SmallVector<ParmVarDecl*, 8> Params;
7254  if (isa<FunctionProtoType>(T)) {
7255    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7256    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7257      ParmVarDecl *Param = TL.getArg(I);
7258      if (Param->getIdentifier() == 0 &&
7259          !Param->isImplicit() &&
7260          !Param->isInvalidDecl() &&
7261          !getLangOptions().CPlusPlus)
7262        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7263      Params.push_back(Param);
7264    }
7265
7266  // Fake up parameter variables if we have a typedef, like
7267  //   ^ fntype { ... }
7268  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7269    for (FunctionProtoType::arg_type_iterator
7270           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7271      ParmVarDecl *Param =
7272        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7273                                   ParamInfo.getSourceRange().getBegin(),
7274                                   *I);
7275      Params.push_back(Param);
7276    }
7277  }
7278
7279  // Set the parameters on the block decl.
7280  if (!Params.empty())
7281    CurBlock->TheDecl->setParams(Params.data(), Params.size());
7282
7283  // Finally we can process decl attributes.
7284  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7285
7286  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7287    Diag(ParamInfo.getAttributes()->getLoc(),
7288         diag::warn_attribute_sentinel_not_variadic) << 1;
7289    // FIXME: remove the attribute.
7290  }
7291
7292  // Put the parameter variables in scope.  We can bail out immediately
7293  // if we don't have any.
7294  if (Params.empty())
7295    return;
7296
7297  bool ShouldCheckShadow =
7298    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7299
7300  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7301         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7302    (*AI)->setOwningFunction(CurBlock->TheDecl);
7303
7304    // If this has an identifier, add it to the scope stack.
7305    if ((*AI)->getIdentifier()) {
7306      if (ShouldCheckShadow)
7307        CheckShadow(CurBlock->TheScope, *AI);
7308
7309      PushOnScopeChains(*AI, CurBlock->TheScope);
7310    }
7311  }
7312}
7313
7314/// ActOnBlockError - If there is an error parsing a block, this callback
7315/// is invoked to pop the information about the block from the action impl.
7316void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7317  // Pop off CurBlock, handle nested blocks.
7318  PopDeclContext();
7319  PopFunctionOrBlockScope();
7320  // FIXME: Delete the ParmVarDecl objects as well???
7321}
7322
7323/// ActOnBlockStmtExpr - This is called when the body of a block statement
7324/// literal was successfully completed.  ^(int x){...}
7325ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7326                                                Stmt *Body, Scope *CurScope) {
7327  // If blocks are disabled, emit an error.
7328  if (!LangOpts.Blocks)
7329    Diag(CaretLoc, diag::err_blocks_disable);
7330
7331  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7332
7333  PopDeclContext();
7334
7335  QualType RetTy = Context.VoidTy;
7336  if (!BSI->ReturnType.isNull())
7337    RetTy = BSI->ReturnType;
7338
7339  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7340  QualType BlockTy;
7341
7342  // If the user wrote a function type in some form, try to use that.
7343  if (!BSI->FunctionType.isNull()) {
7344    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
7345
7346    FunctionType::ExtInfo Ext = FTy->getExtInfo();
7347    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
7348
7349    // Turn protoless block types into nullary block types.
7350    if (isa<FunctionNoProtoType>(FTy)) {
7351      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7352                                        false, false, 0, 0, Ext);
7353
7354    // Otherwise, if we don't need to change anything about the function type,
7355    // preserve its sugar structure.
7356    } else if (FTy->getResultType() == RetTy &&
7357               (!NoReturn || FTy->getNoReturnAttr())) {
7358      BlockTy = BSI->FunctionType;
7359
7360    // Otherwise, make the minimal modifications to the function type.
7361    } else {
7362      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
7363      BlockTy = Context.getFunctionType(RetTy,
7364                                        FPT->arg_type_begin(),
7365                                        FPT->getNumArgs(),
7366                                        FPT->isVariadic(),
7367                                        /*quals*/ 0,
7368                                        FPT->hasExceptionSpec(),
7369                                        FPT->hasAnyExceptionSpec(),
7370                                        FPT->getNumExceptions(),
7371                                        FPT->exception_begin(),
7372                                        Ext);
7373    }
7374
7375  // If we don't have a function type, just build one from nothing.
7376  } else {
7377    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7378                                      false, false, 0, 0,
7379                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7380  }
7381
7382  // FIXME: Check that return/parameter types are complete/non-abstract
7383  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
7384                           BSI->TheDecl->param_end());
7385  BlockTy = Context.getBlockPointerType(BlockTy);
7386
7387  // If needed, diagnose invalid gotos and switches in the block.
7388  if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7389    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
7390
7391  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
7392
7393  bool Good = true;
7394  // Check goto/label use.
7395  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7396         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7397    LabelStmt *L = I->second;
7398
7399    // Verify that we have no forward references left.  If so, there was a goto
7400    // or address of a label taken, but no definition of it.
7401    if (L->getSubStmt() != 0) {
7402      if (!L->isUsed())
7403        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
7404      continue;
7405    }
7406
7407    // Emit error.
7408    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7409    Good = false;
7410  }
7411  if (!Good) {
7412    PopFunctionOrBlockScope();
7413    return ExprError();
7414  }
7415
7416  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7417                                              BSI->hasBlockDeclRefExprs);
7418
7419  // Issue any analysis-based warnings.
7420  const sema::AnalysisBasedWarnings::Policy &WP =
7421    AnalysisWarnings.getDefaultPolicy();
7422  AnalysisWarnings.IssueWarnings(WP, Result);
7423
7424  PopFunctionOrBlockScope();
7425  return Owned(Result);
7426}
7427
7428ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7429                                        Expr *expr, ParsedType type,
7430                                        SourceLocation RPLoc) {
7431  TypeSourceInfo *TInfo;
7432  QualType T = GetTypeFromParser(type, &TInfo);
7433  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
7434}
7435
7436ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
7437                                            Expr *E, TypeSourceInfo *TInfo,
7438                                            SourceLocation RPLoc) {
7439  Expr *OrigExpr = E;
7440
7441  InitBuiltinVaListType();
7442
7443  // Get the va_list type
7444  QualType VaListType = Context.getBuiltinVaListType();
7445  if (VaListType->isArrayType()) {
7446    // Deal with implicit array decay; for example, on x86-64,
7447    // va_list is an array, but it's supposed to decay to
7448    // a pointer for va_arg.
7449    VaListType = Context.getArrayDecayedType(VaListType);
7450    // Make sure the input expression also decays appropriately.
7451    UsualUnaryConversions(E);
7452  } else {
7453    // Otherwise, the va_list argument must be an l-value because
7454    // it is modified by va_arg.
7455    if (!E->isTypeDependent() &&
7456        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7457      return ExprError();
7458  }
7459
7460  if (!E->isTypeDependent() &&
7461      !Context.hasSameType(VaListType, E->getType())) {
7462    return ExprError(Diag(E->getLocStart(),
7463                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7464      << OrigExpr->getType() << E->getSourceRange());
7465  }
7466
7467  // FIXME: Check that type is complete/non-abstract
7468  // FIXME: Warn if a non-POD type is passed in.
7469
7470  QualType T = TInfo->getType().getNonLValueExprType(Context);
7471  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
7472}
7473
7474ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7475  // The type of __null will be int or long, depending on the size of
7476  // pointers on the target.
7477  QualType Ty;
7478  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7479    Ty = Context.IntTy;
7480  else
7481    Ty = Context.LongTy;
7482
7483  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7484}
7485
7486static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7487                                           Expr *SrcExpr, FixItHint &Hint) {
7488  if (!SemaRef.getLangOptions().ObjC1)
7489    return;
7490
7491  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7492  if (!PT)
7493    return;
7494
7495  // Check if the destination is of type 'id'.
7496  if (!PT->isObjCIdType()) {
7497    // Check if the destination is the 'NSString' interface.
7498    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7499    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7500      return;
7501  }
7502
7503  // Strip off any parens and casts.
7504  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7505  if (!SL || SL->isWide())
7506    return;
7507
7508  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7509}
7510
7511bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7512                                    SourceLocation Loc,
7513                                    QualType DstType, QualType SrcType,
7514                                    Expr *SrcExpr, AssignmentAction Action,
7515                                    bool *Complained) {
7516  if (Complained)
7517    *Complained = false;
7518
7519  // Decode the result (notice that AST's are still created for extensions).
7520  bool isInvalid = false;
7521  unsigned DiagKind;
7522  FixItHint Hint;
7523
7524  switch (ConvTy) {
7525  default: assert(0 && "Unknown conversion type");
7526  case Compatible: return false;
7527  case PointerToInt:
7528    DiagKind = diag::ext_typecheck_convert_pointer_int;
7529    break;
7530  case IntToPointer:
7531    DiagKind = diag::ext_typecheck_convert_int_pointer;
7532    break;
7533  case IncompatiblePointer:
7534    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7535    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7536    break;
7537  case IncompatiblePointerSign:
7538    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7539    break;
7540  case FunctionVoidPointer:
7541    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7542    break;
7543  case CompatiblePointerDiscardsQualifiers:
7544    // If the qualifiers lost were because we were applying the
7545    // (deprecated) C++ conversion from a string literal to a char*
7546    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7547    // Ideally, this check would be performed in
7548    // CheckPointerTypesForAssignment. However, that would require a
7549    // bit of refactoring (so that the second argument is an
7550    // expression, rather than a type), which should be done as part
7551    // of a larger effort to fix CheckPointerTypesForAssignment for
7552    // C++ semantics.
7553    if (getLangOptions().CPlusPlus &&
7554        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7555      return false;
7556    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7557    break;
7558  case IncompatibleNestedPointerQualifiers:
7559    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7560    break;
7561  case IntToBlockPointer:
7562    DiagKind = diag::err_int_to_block_pointer;
7563    break;
7564  case IncompatibleBlockPointer:
7565    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7566    break;
7567  case IncompatibleObjCQualifiedId:
7568    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7569    // it can give a more specific diagnostic.
7570    DiagKind = diag::warn_incompatible_qualified_id;
7571    break;
7572  case IncompatibleVectors:
7573    DiagKind = diag::warn_incompatible_vectors;
7574    break;
7575  case Incompatible:
7576    DiagKind = diag::err_typecheck_convert_incompatible;
7577    isInvalid = true;
7578    break;
7579  }
7580
7581  QualType FirstType, SecondType;
7582  switch (Action) {
7583  case AA_Assigning:
7584  case AA_Initializing:
7585    // The destination type comes first.
7586    FirstType = DstType;
7587    SecondType = SrcType;
7588    break;
7589
7590  case AA_Returning:
7591  case AA_Passing:
7592  case AA_Converting:
7593  case AA_Sending:
7594  case AA_Casting:
7595    // The source type comes first.
7596    FirstType = SrcType;
7597    SecondType = DstType;
7598    break;
7599  }
7600
7601  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7602    << SrcExpr->getSourceRange() << Hint;
7603  if (Complained)
7604    *Complained = true;
7605  return isInvalid;
7606}
7607
7608bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7609  llvm::APSInt ICEResult;
7610  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7611    if (Result)
7612      *Result = ICEResult;
7613    return false;
7614  }
7615
7616  Expr::EvalResult EvalResult;
7617
7618  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7619      EvalResult.HasSideEffects) {
7620    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7621
7622    if (EvalResult.Diag) {
7623      // We only show the note if it's not the usual "invalid subexpression"
7624      // or if it's actually in a subexpression.
7625      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7626          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7627        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7628    }
7629
7630    return true;
7631  }
7632
7633  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7634    E->getSourceRange();
7635
7636  if (EvalResult.Diag &&
7637      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7638    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7639
7640  if (Result)
7641    *Result = EvalResult.Val.getInt();
7642  return false;
7643}
7644
7645void
7646Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7647  ExprEvalContexts.push_back(
7648        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7649}
7650
7651void
7652Sema::PopExpressionEvaluationContext() {
7653  // Pop the current expression evaluation context off the stack.
7654  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7655  ExprEvalContexts.pop_back();
7656
7657  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7658    if (Rec.PotentiallyReferenced) {
7659      // Mark any remaining declarations in the current position of the stack
7660      // as "referenced". If they were not meant to be referenced, semantic
7661      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7662      for (PotentiallyReferencedDecls::iterator
7663             I = Rec.PotentiallyReferenced->begin(),
7664             IEnd = Rec.PotentiallyReferenced->end();
7665           I != IEnd; ++I)
7666        MarkDeclarationReferenced(I->first, I->second);
7667    }
7668
7669    if (Rec.PotentiallyDiagnosed) {
7670      // Emit any pending diagnostics.
7671      for (PotentiallyEmittedDiagnostics::iterator
7672                I = Rec.PotentiallyDiagnosed->begin(),
7673             IEnd = Rec.PotentiallyDiagnosed->end();
7674           I != IEnd; ++I)
7675        Diag(I->first, I->second);
7676    }
7677  }
7678
7679  // When are coming out of an unevaluated context, clear out any
7680  // temporaries that we may have created as part of the evaluation of
7681  // the expression in that context: they aren't relevant because they
7682  // will never be constructed.
7683  if (Rec.Context == Unevaluated &&
7684      ExprTemporaries.size() > Rec.NumTemporaries)
7685    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7686                          ExprTemporaries.end());
7687
7688  // Destroy the popped expression evaluation record.
7689  Rec.Destroy();
7690}
7691
7692/// \brief Note that the given declaration was referenced in the source code.
7693///
7694/// This routine should be invoke whenever a given declaration is referenced
7695/// in the source code, and where that reference occurred. If this declaration
7696/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7697/// C99 6.9p3), then the declaration will be marked as used.
7698///
7699/// \param Loc the location where the declaration was referenced.
7700///
7701/// \param D the declaration that has been referenced by the source code.
7702void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7703  assert(D && "No declaration?");
7704
7705  if (D->isUsed(false))
7706    return;
7707
7708  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7709  // template or not. The reason for this is that unevaluated expressions
7710  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7711  // -Wunused-parameters)
7712  if (isa<ParmVarDecl>(D) ||
7713      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7714    D->setUsed(true);
7715    return;
7716  }
7717
7718  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7719    return;
7720
7721  // Do not mark anything as "used" within a dependent context; wait for
7722  // an instantiation.
7723  if (CurContext->isDependentContext())
7724    return;
7725
7726  switch (ExprEvalContexts.back().Context) {
7727    case Unevaluated:
7728      // We are in an expression that is not potentially evaluated; do nothing.
7729      return;
7730
7731    case PotentiallyEvaluated:
7732      // We are in a potentially-evaluated expression, so this declaration is
7733      // "used"; handle this below.
7734      break;
7735
7736    case PotentiallyPotentiallyEvaluated:
7737      // We are in an expression that may be potentially evaluated; queue this
7738      // declaration reference until we know whether the expression is
7739      // potentially evaluated.
7740      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7741      return;
7742
7743    case PotentiallyEvaluatedIfUsed:
7744      // Referenced declarations will only be used if the construct in the
7745      // containing expression is used.
7746      return;
7747  }
7748
7749  // Note that this declaration has been used.
7750  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7751    unsigned TypeQuals;
7752    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7753      if (Constructor->getParent()->hasTrivialConstructor())
7754        return;
7755      if (!Constructor->isUsed(false))
7756        DefineImplicitDefaultConstructor(Loc, Constructor);
7757    } else if (Constructor->isImplicit() &&
7758               Constructor->isCopyConstructor(TypeQuals)) {
7759      if (!Constructor->isUsed(false))
7760        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7761    }
7762
7763    MarkVTableUsed(Loc, Constructor->getParent());
7764  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7765    if (Destructor->isImplicit() && !Destructor->isUsed(false))
7766      DefineImplicitDestructor(Loc, Destructor);
7767    if (Destructor->isVirtual())
7768      MarkVTableUsed(Loc, Destructor->getParent());
7769  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7770    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7771        MethodDecl->getOverloadedOperator() == OO_Equal) {
7772      if (!MethodDecl->isUsed(false))
7773        DefineImplicitCopyAssignment(Loc, MethodDecl);
7774    } else if (MethodDecl->isVirtual())
7775      MarkVTableUsed(Loc, MethodDecl->getParent());
7776  }
7777  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7778    // Implicit instantiation of function templates and member functions of
7779    // class templates.
7780    if (Function->isImplicitlyInstantiable()) {
7781      bool AlreadyInstantiated = false;
7782      if (FunctionTemplateSpecializationInfo *SpecInfo
7783                                = Function->getTemplateSpecializationInfo()) {
7784        if (SpecInfo->getPointOfInstantiation().isInvalid())
7785          SpecInfo->setPointOfInstantiation(Loc);
7786        else if (SpecInfo->getTemplateSpecializationKind()
7787                   == TSK_ImplicitInstantiation)
7788          AlreadyInstantiated = true;
7789      } else if (MemberSpecializationInfo *MSInfo
7790                                  = Function->getMemberSpecializationInfo()) {
7791        if (MSInfo->getPointOfInstantiation().isInvalid())
7792          MSInfo->setPointOfInstantiation(Loc);
7793        else if (MSInfo->getTemplateSpecializationKind()
7794                   == TSK_ImplicitInstantiation)
7795          AlreadyInstantiated = true;
7796      }
7797
7798      if (!AlreadyInstantiated) {
7799        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7800            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7801          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7802                                                                      Loc));
7803        else
7804          PendingInstantiations.push_back(std::make_pair(Function, Loc));
7805      }
7806    } else // Walk redefinitions, as some of them may be instantiable.
7807      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
7808           e(Function->redecls_end()); i != e; ++i) {
7809        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
7810          MarkDeclarationReferenced(Loc, *i);
7811      }
7812
7813    // FIXME: keep track of references to static functions
7814
7815    // Recursive functions should be marked when used from another function.
7816    if (CurContext != Function)
7817      Function->setUsed(true);
7818
7819    return;
7820  }
7821
7822  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7823    // Implicit instantiation of static data members of class templates.
7824    if (Var->isStaticDataMember() &&
7825        Var->getInstantiatedFromStaticDataMember()) {
7826      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7827      assert(MSInfo && "Missing member specialization information?");
7828      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7829          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7830        MSInfo->setPointOfInstantiation(Loc);
7831        PendingInstantiations.push_back(std::make_pair(Var, Loc));
7832      }
7833    }
7834
7835    // FIXME: keep track of references to static data?
7836
7837    D->setUsed(true);
7838    return;
7839  }
7840}
7841
7842namespace {
7843  // Mark all of the declarations referenced
7844  // FIXME: Not fully implemented yet! We need to have a better understanding
7845  // of when we're entering
7846  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7847    Sema &S;
7848    SourceLocation Loc;
7849
7850  public:
7851    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7852
7853    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7854
7855    bool TraverseTemplateArgument(const TemplateArgument &Arg);
7856    bool TraverseRecordType(RecordType *T);
7857  };
7858}
7859
7860bool MarkReferencedDecls::TraverseTemplateArgument(
7861  const TemplateArgument &Arg) {
7862  if (Arg.getKind() == TemplateArgument::Declaration) {
7863    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7864  }
7865
7866  return Inherited::TraverseTemplateArgument(Arg);
7867}
7868
7869bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
7870  if (ClassTemplateSpecializationDecl *Spec
7871                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7872    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7873    return TraverseTemplateArguments(Args.getFlatArgumentList(),
7874                                     Args.flat_size());
7875  }
7876
7877  return true;
7878}
7879
7880void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7881  MarkReferencedDecls Marker(*this, Loc);
7882  Marker.TraverseType(Context.getCanonicalType(T));
7883}
7884
7885namespace {
7886  /// \brief Helper class that marks all of the declarations referenced by
7887  /// potentially-evaluated subexpressions as "referenced".
7888  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
7889    Sema &S;
7890
7891  public:
7892    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
7893
7894    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
7895
7896    void VisitDeclRefExpr(DeclRefExpr *E) {
7897      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
7898    }
7899
7900    void VisitMemberExpr(MemberExpr *E) {
7901      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
7902      Inherited::VisitMemberExpr(E);
7903    }
7904
7905    void VisitCXXNewExpr(CXXNewExpr *E) {
7906      if (E->getConstructor())
7907        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
7908      if (E->getOperatorNew())
7909        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
7910      if (E->getOperatorDelete())
7911        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
7912      Inherited::VisitCXXNewExpr(E);
7913    }
7914
7915    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
7916      if (E->getOperatorDelete())
7917        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
7918      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
7919      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
7920        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
7921        S.MarkDeclarationReferenced(E->getLocStart(),
7922                                    S.LookupDestructor(Record));
7923      }
7924
7925      Inherited::VisitCXXDeleteExpr(E);
7926    }
7927
7928    void VisitCXXConstructExpr(CXXConstructExpr *E) {
7929      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
7930      Inherited::VisitCXXConstructExpr(E);
7931    }
7932
7933    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
7934      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
7935    }
7936  };
7937}
7938
7939/// \brief Mark any declarations that appear within this expression or any
7940/// potentially-evaluated subexpressions as "referenced".
7941void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
7942  EvaluatedExprMarker(*this).Visit(E);
7943}
7944
7945/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7946/// of the program being compiled.
7947///
7948/// This routine emits the given diagnostic when the code currently being
7949/// type-checked is "potentially evaluated", meaning that there is a
7950/// possibility that the code will actually be executable. Code in sizeof()
7951/// expressions, code used only during overload resolution, etc., are not
7952/// potentially evaluated. This routine will suppress such diagnostics or,
7953/// in the absolutely nutty case of potentially potentially evaluated
7954/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7955/// later.
7956///
7957/// This routine should be used for all diagnostics that describe the run-time
7958/// behavior of a program, such as passing a non-POD value through an ellipsis.
7959/// Failure to do so will likely result in spurious diagnostics or failures
7960/// during overload resolution or within sizeof/alignof/typeof/typeid.
7961bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7962                               const PartialDiagnostic &PD) {
7963  switch (ExprEvalContexts.back().Context ) {
7964  case Unevaluated:
7965    // The argument will never be evaluated, so don't complain.
7966    break;
7967
7968  case PotentiallyEvaluated:
7969  case PotentiallyEvaluatedIfUsed:
7970    Diag(Loc, PD);
7971    return true;
7972
7973  case PotentiallyPotentiallyEvaluated:
7974    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7975    break;
7976  }
7977
7978  return false;
7979}
7980
7981bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7982                               CallExpr *CE, FunctionDecl *FD) {
7983  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7984    return false;
7985
7986  PartialDiagnostic Note =
7987    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7988    << FD->getDeclName() : PDiag();
7989  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7990
7991  if (RequireCompleteType(Loc, ReturnType,
7992                          FD ?
7993                          PDiag(diag::err_call_function_incomplete_return)
7994                            << CE->getSourceRange() << FD->getDeclName() :
7995                          PDiag(diag::err_call_incomplete_return)
7996                            << CE->getSourceRange(),
7997                          std::make_pair(NoteLoc, Note)))
7998    return true;
7999
8000  return false;
8001}
8002
8003// Diagnose the common s/=/==/ typo.  Note that adding parentheses
8004// will prevent this condition from triggering, which is what we want.
8005void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
8006  SourceLocation Loc;
8007
8008  unsigned diagnostic = diag::warn_condition_is_assignment;
8009
8010  if (isa<BinaryOperator>(E)) {
8011    BinaryOperator *Op = cast<BinaryOperator>(E);
8012    if (Op->getOpcode() != BO_Assign)
8013      return;
8014
8015    // Greylist some idioms by putting them into a warning subcategory.
8016    if (ObjCMessageExpr *ME
8017          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
8018      Selector Sel = ME->getSelector();
8019
8020      // self = [<foo> init...]
8021      if (isSelfExpr(Op->getLHS())
8022          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
8023        diagnostic = diag::warn_condition_is_idiomatic_assignment;
8024
8025      // <foo> = [<bar> nextObject]
8026      else if (Sel.isUnarySelector() &&
8027               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
8028        diagnostic = diag::warn_condition_is_idiomatic_assignment;
8029    }
8030
8031    Loc = Op->getOperatorLoc();
8032  } else if (isa<CXXOperatorCallExpr>(E)) {
8033    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
8034    if (Op->getOperator() != OO_Equal)
8035      return;
8036
8037    Loc = Op->getOperatorLoc();
8038  } else {
8039    // Not an assignment.
8040    return;
8041  }
8042
8043  SourceLocation Open = E->getSourceRange().getBegin();
8044  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
8045
8046  Diag(Loc, diagnostic) << E->getSourceRange();
8047  Diag(Loc, diag::note_condition_assign_to_comparison)
8048    << FixItHint::CreateReplacement(Loc, "==");
8049  Diag(Loc, diag::note_condition_assign_silence)
8050    << FixItHint::CreateInsertion(Open, "(")
8051    << FixItHint::CreateInsertion(Close, ")");
8052}
8053
8054bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
8055  DiagnoseAssignmentAsCondition(E);
8056
8057  if (!E->isTypeDependent()) {
8058    DefaultFunctionArrayLvalueConversion(E);
8059
8060    QualType T = E->getType();
8061
8062    if (getLangOptions().CPlusPlus) {
8063      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
8064        return true;
8065    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
8066      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
8067        << T << E->getSourceRange();
8068      return true;
8069    }
8070  }
8071
8072  return false;
8073}
8074
8075ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
8076                                       Expr *Sub) {
8077  if (!Sub)
8078    return ExprError();
8079
8080  if (CheckBooleanCondition(Sub, Loc))
8081    return ExprError();
8082
8083  return Owned(Sub);
8084}
8085