SemaExpr.cpp revision 84268904947ada7e251932a6f5b0f4364df7a2c7
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/AnalysisBasedWarnings.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Lex/LiteralSupport.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44#include "TreeTransform.h"
45using namespace clang;
46using namespace sema;
47
48/// \brief Determine whether the use of this declaration is valid, without
49/// emitting diagnostics.
50bool Sema::CanUseDecl(NamedDecl *D) {
51  // See if this is an auto-typed variable whose initializer we are parsing.
52  if (ParsingInitForAutoVars.count(D))
53    return false;
54
55  // See if this is a deleted function.
56  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57    if (FD->isDeleted())
58      return false;
59  }
60
61  // See if this function is unavailable.
62  if (D->getAvailability() == AR_Unavailable &&
63      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64    return false;
65
66  return true;
67}
68
69static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
70  // Warn if this is used but marked unused.
71  if (D->hasAttr<UnusedAttr>()) {
72    const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
73    if (!DC->hasAttr<UnusedAttr>())
74      S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
75  }
76}
77
78static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
79                              NamedDecl *D, SourceLocation Loc,
80                              const ObjCInterfaceDecl *UnknownObjCClass) {
81  // See if this declaration is unavailable or deprecated.
82  std::string Message;
83  AvailabilityResult Result = D->getAvailability(&Message);
84  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
85    if (Result == AR_Available) {
86      const DeclContext *DC = ECD->getDeclContext();
87      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
88        Result = TheEnumDecl->getAvailability(&Message);
89    }
90
91  const ObjCPropertyDecl *ObjCPDecl = 0;
92  if (Result == AR_Deprecated || Result == AR_Unavailable) {
93    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
94      if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
95        AvailabilityResult PDeclResult = PD->getAvailability(0);
96        if (PDeclResult == Result)
97          ObjCPDecl = PD;
98      }
99    }
100  }
101
102  switch (Result) {
103    case AR_Available:
104    case AR_NotYetIntroduced:
105      break;
106
107    case AR_Deprecated:
108      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
109      break;
110
111    case AR_Unavailable:
112      if (S.getCurContextAvailability() != AR_Unavailable) {
113        if (Message.empty()) {
114          if (!UnknownObjCClass) {
115            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
116            if (ObjCPDecl)
117              S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
118                << ObjCPDecl->getDeclName() << 1;
119          }
120          else
121            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
122              << D->getDeclName();
123        }
124        else
125          S.Diag(Loc, diag::err_unavailable_message)
126            << D->getDeclName() << Message;
127        S.Diag(D->getLocation(), diag::note_unavailable_here)
128                  << isa<FunctionDecl>(D) << false;
129        if (ObjCPDecl)
130          S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
131          << ObjCPDecl->getDeclName() << 1;
132      }
133      break;
134    }
135    return Result;
136}
137
138/// \brief Emit a note explaining that this function is deleted or unavailable.
139void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
140  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
141
142  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
143    // If the method was explicitly defaulted, point at that declaration.
144    if (!Method->isImplicit())
145      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
146
147    // Try to diagnose why this special member function was implicitly
148    // deleted. This might fail, if that reason no longer applies.
149    CXXSpecialMember CSM = getSpecialMember(Method);
150    if (CSM != CXXInvalid)
151      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
152
153    return;
154  }
155
156  Diag(Decl->getLocation(), diag::note_unavailable_here)
157    << 1 << Decl->isDeleted();
158}
159
160/// \brief Determine whether a FunctionDecl was ever declared with an
161/// explicit storage class.
162static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
163  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
164                                     E = D->redecls_end();
165       I != E; ++I) {
166    if (I->getStorageClassAsWritten() != SC_None)
167      return true;
168  }
169  return false;
170}
171
172/// \brief Check whether we're in an extern inline function and referring to a
173/// variable or function with internal linkage (C11 6.7.4p3).
174///
175/// This is only a warning because we used to silently accept this code, but
176/// in many cases it will not behave correctly. This is not enabled in C++ mode
177/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
178/// and so while there may still be user mistakes, most of the time we can't
179/// prove that there are errors.
180static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
181                                                      const NamedDecl *D,
182                                                      SourceLocation Loc) {
183  // This is disabled under C++; there are too many ways for this to fire in
184  // contexts where the warning is a false positive, or where it is technically
185  // correct but benign.
186  if (S.getLangOpts().CPlusPlus)
187    return;
188
189  // Check if this is an inlined function or method.
190  FunctionDecl *Current = S.getCurFunctionDecl();
191  if (!Current)
192    return;
193  if (!Current->isInlined())
194    return;
195  if (Current->getLinkage() != ExternalLinkage)
196    return;
197
198  // Check if the decl has internal linkage.
199  if (D->getLinkage() != InternalLinkage)
200    return;
201
202  // Downgrade from ExtWarn to Extension if
203  //  (1) the supposedly external inline function is in the main file,
204  //      and probably won't be included anywhere else.
205  //  (2) the thing we're referencing is a pure function.
206  //  (3) the thing we're referencing is another inline function.
207  // This last can give us false negatives, but it's better than warning on
208  // wrappers for simple C library functions.
209  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
210  bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
211  if (!DowngradeWarning && UsedFn)
212    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
213
214  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
215                               : diag::warn_internal_in_extern_inline)
216    << /*IsVar=*/!UsedFn << D;
217
218  // Suggest "static" on the inline function, if possible.
219  if (!hasAnyExplicitStorageClass(Current)) {
220    const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
221    SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
222    S.Diag(DeclBegin, diag::note_convert_inline_to_static)
223      << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
224  }
225
226  S.Diag(D->getCanonicalDecl()->getLocation(),
227         diag::note_internal_decl_declared_here)
228    << D;
229}
230
231/// \brief Determine whether the use of this declaration is valid, and
232/// emit any corresponding diagnostics.
233///
234/// This routine diagnoses various problems with referencing
235/// declarations that can occur when using a declaration. For example,
236/// it might warn if a deprecated or unavailable declaration is being
237/// used, or produce an error (and return true) if a C++0x deleted
238/// function is being used.
239///
240/// \returns true if there was an error (this declaration cannot be
241/// referenced), false otherwise.
242///
243bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
244                             const ObjCInterfaceDecl *UnknownObjCClass) {
245  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
246    // If there were any diagnostics suppressed by template argument deduction,
247    // emit them now.
248    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
249      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
250    if (Pos != SuppressedDiagnostics.end()) {
251      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
252      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
253        Diag(Suppressed[I].first, Suppressed[I].second);
254
255      // Clear out the list of suppressed diagnostics, so that we don't emit
256      // them again for this specialization. However, we don't obsolete this
257      // entry from the table, because we want to avoid ever emitting these
258      // diagnostics again.
259      Suppressed.clear();
260    }
261  }
262
263  // See if this is an auto-typed variable whose initializer we are parsing.
264  if (ParsingInitForAutoVars.count(D)) {
265    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
266      << D->getDeclName();
267    return true;
268  }
269
270  // See if this is a deleted function.
271  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
272    if (FD->isDeleted()) {
273      Diag(Loc, diag::err_deleted_function_use);
274      NoteDeletedFunction(FD);
275      return true;
276    }
277  }
278  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
279
280  DiagnoseUnusedOfDecl(*this, D, Loc);
281
282  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
283
284  return false;
285}
286
287/// \brief Retrieve the message suffix that should be added to a
288/// diagnostic complaining about the given function being deleted or
289/// unavailable.
290std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
291  // FIXME: C++0x implicitly-deleted special member functions could be
292  // detected here so that we could improve diagnostics to say, e.g.,
293  // "base class 'A' had a deleted copy constructor".
294  if (FD->isDeleted())
295    return std::string();
296
297  std::string Message;
298  if (FD->getAvailability(&Message))
299    return ": " + Message;
300
301  return std::string();
302}
303
304/// DiagnoseSentinelCalls - This routine checks whether a call or
305/// message-send is to a declaration with the sentinel attribute, and
306/// if so, it checks that the requirements of the sentinel are
307/// satisfied.
308void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
309                                 Expr **args, unsigned numArgs) {
310  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
311  if (!attr)
312    return;
313
314  // The number of formal parameters of the declaration.
315  unsigned numFormalParams;
316
317  // The kind of declaration.  This is also an index into a %select in
318  // the diagnostic.
319  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
320
321  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
322    numFormalParams = MD->param_size();
323    calleeType = CT_Method;
324  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
325    numFormalParams = FD->param_size();
326    calleeType = CT_Function;
327  } else if (isa<VarDecl>(D)) {
328    QualType type = cast<ValueDecl>(D)->getType();
329    const FunctionType *fn = 0;
330    if (const PointerType *ptr = type->getAs<PointerType>()) {
331      fn = ptr->getPointeeType()->getAs<FunctionType>();
332      if (!fn) return;
333      calleeType = CT_Function;
334    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
335      fn = ptr->getPointeeType()->castAs<FunctionType>();
336      calleeType = CT_Block;
337    } else {
338      return;
339    }
340
341    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
342      numFormalParams = proto->getNumArgs();
343    } else {
344      numFormalParams = 0;
345    }
346  } else {
347    return;
348  }
349
350  // "nullPos" is the number of formal parameters at the end which
351  // effectively count as part of the variadic arguments.  This is
352  // useful if you would prefer to not have *any* formal parameters,
353  // but the language forces you to have at least one.
354  unsigned nullPos = attr->getNullPos();
355  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
356  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
357
358  // The number of arguments which should follow the sentinel.
359  unsigned numArgsAfterSentinel = attr->getSentinel();
360
361  // If there aren't enough arguments for all the formal parameters,
362  // the sentinel, and the args after the sentinel, complain.
363  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
364    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
365    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
366    return;
367  }
368
369  // Otherwise, find the sentinel expression.
370  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
371  if (!sentinelExpr) return;
372  if (sentinelExpr->isValueDependent()) return;
373  if (Context.isSentinelNullExpr(sentinelExpr)) return;
374
375  // Pick a reasonable string to insert.  Optimistically use 'nil' or
376  // 'NULL' if those are actually defined in the context.  Only use
377  // 'nil' for ObjC methods, where it's much more likely that the
378  // variadic arguments form a list of object pointers.
379  SourceLocation MissingNilLoc
380    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
381  std::string NullValue;
382  if (calleeType == CT_Method &&
383      PP.getIdentifierInfo("nil")->hasMacroDefinition())
384    NullValue = "nil";
385  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
386    NullValue = "NULL";
387  else
388    NullValue = "(void*) 0";
389
390  if (MissingNilLoc.isInvalid())
391    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
392  else
393    Diag(MissingNilLoc, diag::warn_missing_sentinel)
394      << calleeType
395      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
396  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
397}
398
399SourceRange Sema::getExprRange(Expr *E) const {
400  return E ? E->getSourceRange() : SourceRange();
401}
402
403//===----------------------------------------------------------------------===//
404//  Standard Promotions and Conversions
405//===----------------------------------------------------------------------===//
406
407/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
408ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
409  // Handle any placeholder expressions which made it here.
410  if (E->getType()->isPlaceholderType()) {
411    ExprResult result = CheckPlaceholderExpr(E);
412    if (result.isInvalid()) return ExprError();
413    E = result.take();
414  }
415
416  QualType Ty = E->getType();
417  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
418
419  if (Ty->isFunctionType())
420    E = ImpCastExprToType(E, Context.getPointerType(Ty),
421                          CK_FunctionToPointerDecay).take();
422  else if (Ty->isArrayType()) {
423    // In C90 mode, arrays only promote to pointers if the array expression is
424    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
425    // type 'array of type' is converted to an expression that has type 'pointer
426    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
427    // that has type 'array of type' ...".  The relevant change is "an lvalue"
428    // (C90) to "an expression" (C99).
429    //
430    // C++ 4.2p1:
431    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
432    // T" can be converted to an rvalue of type "pointer to T".
433    //
434    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
435      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
436                            CK_ArrayToPointerDecay).take();
437  }
438  return Owned(E);
439}
440
441static void CheckForNullPointerDereference(Sema &S, Expr *E) {
442  // Check to see if we are dereferencing a null pointer.  If so,
443  // and if not volatile-qualified, this is undefined behavior that the
444  // optimizer will delete, so warn about it.  People sometimes try to use this
445  // to get a deterministic trap and are surprised by clang's behavior.  This
446  // only handles the pattern "*null", which is a very syntactic check.
447  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
448    if (UO->getOpcode() == UO_Deref &&
449        UO->getSubExpr()->IgnoreParenCasts()->
450          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
451        !UO->getType().isVolatileQualified()) {
452    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
453                          S.PDiag(diag::warn_indirection_through_null)
454                            << UO->getSubExpr()->getSourceRange());
455    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
456                        S.PDiag(diag::note_indirection_through_null));
457  }
458}
459
460ExprResult Sema::DefaultLvalueConversion(Expr *E) {
461  // Handle any placeholder expressions which made it here.
462  if (E->getType()->isPlaceholderType()) {
463    ExprResult result = CheckPlaceholderExpr(E);
464    if (result.isInvalid()) return ExprError();
465    E = result.take();
466  }
467
468  // C++ [conv.lval]p1:
469  //   A glvalue of a non-function, non-array type T can be
470  //   converted to a prvalue.
471  if (!E->isGLValue()) return Owned(E);
472
473  QualType T = E->getType();
474  assert(!T.isNull() && "r-value conversion on typeless expression?");
475
476  // We don't want to throw lvalue-to-rvalue casts on top of
477  // expressions of certain types in C++.
478  if (getLangOpts().CPlusPlus &&
479      (E->getType() == Context.OverloadTy ||
480       T->isDependentType() ||
481       T->isRecordType()))
482    return Owned(E);
483
484  // The C standard is actually really unclear on this point, and
485  // DR106 tells us what the result should be but not why.  It's
486  // generally best to say that void types just doesn't undergo
487  // lvalue-to-rvalue at all.  Note that expressions of unqualified
488  // 'void' type are never l-values, but qualified void can be.
489  if (T->isVoidType())
490    return Owned(E);
491
492  CheckForNullPointerDereference(*this, E);
493
494  // C++ [conv.lval]p1:
495  //   [...] If T is a non-class type, the type of the prvalue is the
496  //   cv-unqualified version of T. Otherwise, the type of the
497  //   rvalue is T.
498  //
499  // C99 6.3.2.1p2:
500  //   If the lvalue has qualified type, the value has the unqualified
501  //   version of the type of the lvalue; otherwise, the value has the
502  //   type of the lvalue.
503  if (T.hasQualifiers())
504    T = T.getUnqualifiedType();
505
506  UpdateMarkingForLValueToRValue(E);
507
508  // Loading a __weak object implicitly retains the value, so we need a cleanup to
509  // balance that.
510  if (getLangOpts().ObjCAutoRefCount &&
511      E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
512    ExprNeedsCleanups = true;
513
514  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
515                                                  E, 0, VK_RValue));
516
517  // C11 6.3.2.1p2:
518  //   ... if the lvalue has atomic type, the value has the non-atomic version
519  //   of the type of the lvalue ...
520  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
521    T = Atomic->getValueType().getUnqualifiedType();
522    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
523                                         Res.get(), 0, VK_RValue));
524  }
525
526  return Res;
527}
528
529ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
530  ExprResult Res = DefaultFunctionArrayConversion(E);
531  if (Res.isInvalid())
532    return ExprError();
533  Res = DefaultLvalueConversion(Res.take());
534  if (Res.isInvalid())
535    return ExprError();
536  return Res;
537}
538
539
540/// UsualUnaryConversions - Performs various conversions that are common to most
541/// operators (C99 6.3). The conversions of array and function types are
542/// sometimes suppressed. For example, the array->pointer conversion doesn't
543/// apply if the array is an argument to the sizeof or address (&) operators.
544/// In these instances, this routine should *not* be called.
545ExprResult Sema::UsualUnaryConversions(Expr *E) {
546  // First, convert to an r-value.
547  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
548  if (Res.isInvalid())
549    return Owned(E);
550  E = Res.take();
551
552  QualType Ty = E->getType();
553  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
554
555  // Half FP is a bit different: it's a storage-only type, meaning that any
556  // "use" of it should be promoted to float.
557  if (Ty->isHalfType())
558    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
559
560  // Try to perform integral promotions if the object has a theoretically
561  // promotable type.
562  if (Ty->isIntegralOrUnscopedEnumerationType()) {
563    // C99 6.3.1.1p2:
564    //
565    //   The following may be used in an expression wherever an int or
566    //   unsigned int may be used:
567    //     - an object or expression with an integer type whose integer
568    //       conversion rank is less than or equal to the rank of int
569    //       and unsigned int.
570    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
571    //
572    //   If an int can represent all values of the original type, the
573    //   value is converted to an int; otherwise, it is converted to an
574    //   unsigned int. These are called the integer promotions. All
575    //   other types are unchanged by the integer promotions.
576
577    QualType PTy = Context.isPromotableBitField(E);
578    if (!PTy.isNull()) {
579      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
580      return Owned(E);
581    }
582    if (Ty->isPromotableIntegerType()) {
583      QualType PT = Context.getPromotedIntegerType(Ty);
584      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
585      return Owned(E);
586    }
587  }
588  return Owned(E);
589}
590
591/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
592/// do not have a prototype. Arguments that have type float are promoted to
593/// double. All other argument types are converted by UsualUnaryConversions().
594ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
595  QualType Ty = E->getType();
596  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
597
598  ExprResult Res = UsualUnaryConversions(E);
599  if (Res.isInvalid())
600    return Owned(E);
601  E = Res.take();
602
603  // If this is a 'float' (CVR qualified or typedef) promote to double.
604  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
605    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
606
607  // C++ performs lvalue-to-rvalue conversion as a default argument
608  // promotion, even on class types, but note:
609  //   C++11 [conv.lval]p2:
610  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
611  //     operand or a subexpression thereof the value contained in the
612  //     referenced object is not accessed. Otherwise, if the glvalue
613  //     has a class type, the conversion copy-initializes a temporary
614  //     of type T from the glvalue and the result of the conversion
615  //     is a prvalue for the temporary.
616  // FIXME: add some way to gate this entire thing for correctness in
617  // potentially potentially evaluated contexts.
618  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
619    ExprResult Temp = PerformCopyInitialization(
620                       InitializedEntity::InitializeTemporary(E->getType()),
621                                                E->getExprLoc(),
622                                                Owned(E));
623    if (Temp.isInvalid())
624      return ExprError();
625    E = Temp.get();
626  }
627
628  return Owned(E);
629}
630
631/// Determine the degree of POD-ness for an expression.
632/// Incomplete types are considered POD, since this check can be performed
633/// when we're in an unevaluated context.
634Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
635  if (Ty->isIncompleteType()) {
636    if (Ty->isObjCObjectType())
637      return VAK_Invalid;
638    return VAK_Valid;
639  }
640
641  if (Ty.isCXX98PODType(Context))
642    return VAK_Valid;
643
644  // C++11 [expr.call]p7:
645  //   Passing a potentially-evaluated argument of class type (Clause 9)
646  //   having a non-trivial copy constructor, a non-trivial move constructor,
647  //   or a non-trivial destructor, with no corresponding parameter,
648  //   is conditionally-supported with implementation-defined semantics.
649  if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
650    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
651      if (!Record->hasNonTrivialCopyConstructor() &&
652          !Record->hasNonTrivialMoveConstructor() &&
653          !Record->hasNonTrivialDestructor())
654        return VAK_ValidInCXX11;
655
656  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
657    return VAK_Valid;
658  return VAK_Invalid;
659}
660
661bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
662  // Don't allow one to pass an Objective-C interface to a vararg.
663  const QualType & Ty = E->getType();
664
665  // Complain about passing non-POD types through varargs.
666  switch (isValidVarArgType(Ty)) {
667  case VAK_Valid:
668    break;
669  case VAK_ValidInCXX11:
670    DiagRuntimeBehavior(E->getLocStart(), 0,
671        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
672        << E->getType() << CT);
673    break;
674  case VAK_Invalid: {
675    if (Ty->isObjCObjectType())
676      return DiagRuntimeBehavior(E->getLocStart(), 0,
677                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
678                            << Ty << CT);
679
680    return DiagRuntimeBehavior(E->getLocStart(), 0,
681                   PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
682                   << getLangOpts().CPlusPlus0x << Ty << CT);
683  }
684  }
685  // c++ rules are enforced elsewhere.
686  return false;
687}
688
689/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
690/// will create a trap if the resulting type is not a POD type.
691ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
692                                                  FunctionDecl *FDecl) {
693  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
694    // Strip the unbridged-cast placeholder expression off, if applicable.
695    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
696        (CT == VariadicMethod ||
697         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
698      E = stripARCUnbridgedCast(E);
699
700    // Otherwise, do normal placeholder checking.
701    } else {
702      ExprResult ExprRes = CheckPlaceholderExpr(E);
703      if (ExprRes.isInvalid())
704        return ExprError();
705      E = ExprRes.take();
706    }
707  }
708
709  ExprResult ExprRes = DefaultArgumentPromotion(E);
710  if (ExprRes.isInvalid())
711    return ExprError();
712  E = ExprRes.take();
713
714  // Diagnostics regarding non-POD argument types are
715  // emitted along with format string checking in Sema::CheckFunctionCall().
716  if (isValidVarArgType(E->getType()) == VAK_Invalid) {
717    // Turn this into a trap.
718    CXXScopeSpec SS;
719    SourceLocation TemplateKWLoc;
720    UnqualifiedId Name;
721    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
722                       E->getLocStart());
723    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
724                                          Name, true, false);
725    if (TrapFn.isInvalid())
726      return ExprError();
727
728    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
729                                    E->getLocStart(), MultiExprArg(),
730                                    E->getLocEnd());
731    if (Call.isInvalid())
732      return ExprError();
733
734    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
735                                  Call.get(), E);
736    if (Comma.isInvalid())
737      return ExprError();
738    return Comma.get();
739  }
740
741  if (!getLangOpts().CPlusPlus &&
742      RequireCompleteType(E->getExprLoc(), E->getType(),
743                          diag::err_call_incomplete_argument))
744    return ExprError();
745
746  return Owned(E);
747}
748
749/// \brief Converts an integer to complex float type.  Helper function of
750/// UsualArithmeticConversions()
751///
752/// \return false if the integer expression is an integer type and is
753/// successfully converted to the complex type.
754static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
755                                                  ExprResult &ComplexExpr,
756                                                  QualType IntTy,
757                                                  QualType ComplexTy,
758                                                  bool SkipCast) {
759  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
760  if (SkipCast) return false;
761  if (IntTy->isIntegerType()) {
762    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
763    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
764    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
765                                  CK_FloatingRealToComplex);
766  } else {
767    assert(IntTy->isComplexIntegerType());
768    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
769                                  CK_IntegralComplexToFloatingComplex);
770  }
771  return false;
772}
773
774/// \brief Takes two complex float types and converts them to the same type.
775/// Helper function of UsualArithmeticConversions()
776static QualType
777handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
778                                            ExprResult &RHS, QualType LHSType,
779                                            QualType RHSType,
780                                            bool IsCompAssign) {
781  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
782
783  if (order < 0) {
784    // _Complex float -> _Complex double
785    if (!IsCompAssign)
786      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
787    return RHSType;
788  }
789  if (order > 0)
790    // _Complex float -> _Complex double
791    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
792  return LHSType;
793}
794
795/// \brief Converts otherExpr to complex float and promotes complexExpr if
796/// necessary.  Helper function of UsualArithmeticConversions()
797static QualType handleOtherComplexFloatConversion(Sema &S,
798                                                  ExprResult &ComplexExpr,
799                                                  ExprResult &OtherExpr,
800                                                  QualType ComplexTy,
801                                                  QualType OtherTy,
802                                                  bool ConvertComplexExpr,
803                                                  bool ConvertOtherExpr) {
804  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
805
806  // If just the complexExpr is complex, the otherExpr needs to be converted,
807  // and the complexExpr might need to be promoted.
808  if (order > 0) { // complexExpr is wider
809    // float -> _Complex double
810    if (ConvertOtherExpr) {
811      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
812      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
813      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
814                                      CK_FloatingRealToComplex);
815    }
816    return ComplexTy;
817  }
818
819  // otherTy is at least as wide.  Find its corresponding complex type.
820  QualType result = (order == 0 ? ComplexTy :
821                                  S.Context.getComplexType(OtherTy));
822
823  // double -> _Complex double
824  if (ConvertOtherExpr)
825    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
826                                    CK_FloatingRealToComplex);
827
828  // _Complex float -> _Complex double
829  if (ConvertComplexExpr && order < 0)
830    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
831                                      CK_FloatingComplexCast);
832
833  return result;
834}
835
836/// \brief Handle arithmetic conversion with complex types.  Helper function of
837/// UsualArithmeticConversions()
838static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
839                                             ExprResult &RHS, QualType LHSType,
840                                             QualType RHSType,
841                                             bool IsCompAssign) {
842  // if we have an integer operand, the result is the complex type.
843  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
844                                             /*skipCast*/false))
845    return LHSType;
846  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
847                                             /*skipCast*/IsCompAssign))
848    return RHSType;
849
850  // This handles complex/complex, complex/float, or float/complex.
851  // When both operands are complex, the shorter operand is converted to the
852  // type of the longer, and that is the type of the result. This corresponds
853  // to what is done when combining two real floating-point operands.
854  // The fun begins when size promotion occur across type domains.
855  // From H&S 6.3.4: When one operand is complex and the other is a real
856  // floating-point type, the less precise type is converted, within it's
857  // real or complex domain, to the precision of the other type. For example,
858  // when combining a "long double" with a "double _Complex", the
859  // "double _Complex" is promoted to "long double _Complex".
860
861  bool LHSComplexFloat = LHSType->isComplexType();
862  bool RHSComplexFloat = RHSType->isComplexType();
863
864  // If both are complex, just cast to the more precise type.
865  if (LHSComplexFloat && RHSComplexFloat)
866    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
867                                                       LHSType, RHSType,
868                                                       IsCompAssign);
869
870  // If only one operand is complex, promote it if necessary and convert the
871  // other operand to complex.
872  if (LHSComplexFloat)
873    return handleOtherComplexFloatConversion(
874        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
875        /*convertOtherExpr*/ true);
876
877  assert(RHSComplexFloat);
878  return handleOtherComplexFloatConversion(
879      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
880      /*convertOtherExpr*/ !IsCompAssign);
881}
882
883/// \brief Hande arithmetic conversion from integer to float.  Helper function
884/// of UsualArithmeticConversions()
885static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
886                                           ExprResult &IntExpr,
887                                           QualType FloatTy, QualType IntTy,
888                                           bool ConvertFloat, bool ConvertInt) {
889  if (IntTy->isIntegerType()) {
890    if (ConvertInt)
891      // Convert intExpr to the lhs floating point type.
892      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
893                                    CK_IntegralToFloating);
894    return FloatTy;
895  }
896
897  // Convert both sides to the appropriate complex float.
898  assert(IntTy->isComplexIntegerType());
899  QualType result = S.Context.getComplexType(FloatTy);
900
901  // _Complex int -> _Complex float
902  if (ConvertInt)
903    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
904                                  CK_IntegralComplexToFloatingComplex);
905
906  // float -> _Complex float
907  if (ConvertFloat)
908    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
909                                    CK_FloatingRealToComplex);
910
911  return result;
912}
913
914/// \brief Handle arithmethic conversion with floating point types.  Helper
915/// function of UsualArithmeticConversions()
916static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
917                                      ExprResult &RHS, QualType LHSType,
918                                      QualType RHSType, bool IsCompAssign) {
919  bool LHSFloat = LHSType->isRealFloatingType();
920  bool RHSFloat = RHSType->isRealFloatingType();
921
922  // If we have two real floating types, convert the smaller operand
923  // to the bigger result.
924  if (LHSFloat && RHSFloat) {
925    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
926    if (order > 0) {
927      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
928      return LHSType;
929    }
930
931    assert(order < 0 && "illegal float comparison");
932    if (!IsCompAssign)
933      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
934    return RHSType;
935  }
936
937  if (LHSFloat)
938    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
939                                      /*convertFloat=*/!IsCompAssign,
940                                      /*convertInt=*/ true);
941  assert(RHSFloat);
942  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
943                                    /*convertInt=*/ true,
944                                    /*convertFloat=*/!IsCompAssign);
945}
946
947/// \brief Handle conversions with GCC complex int extension.  Helper function
948/// of UsualArithmeticConversions()
949// FIXME: if the operands are (int, _Complex long), we currently
950// don't promote the complex.  Also, signedness?
951static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
952                                           ExprResult &RHS, QualType LHSType,
953                                           QualType RHSType,
954                                           bool IsCompAssign) {
955  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
956  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
957
958  if (LHSComplexInt && RHSComplexInt) {
959    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
960                                              RHSComplexInt->getElementType());
961    assert(order && "inequal types with equal element ordering");
962    if (order > 0) {
963      // _Complex int -> _Complex long
964      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
965      return LHSType;
966    }
967
968    if (!IsCompAssign)
969      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
970    return RHSType;
971  }
972
973  if (LHSComplexInt) {
974    // int -> _Complex int
975    // FIXME: This needs to take integer ranks into account
976    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
977                              CK_IntegralCast);
978    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
979    return LHSType;
980  }
981
982  assert(RHSComplexInt);
983  // int -> _Complex int
984  // FIXME: This needs to take integer ranks into account
985  if (!IsCompAssign) {
986    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
987                              CK_IntegralCast);
988    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
989  }
990  return RHSType;
991}
992
993/// \brief Handle integer arithmetic conversions.  Helper function of
994/// UsualArithmeticConversions()
995static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
996                                        ExprResult &RHS, QualType LHSType,
997                                        QualType RHSType, bool IsCompAssign) {
998  // The rules for this case are in C99 6.3.1.8
999  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1000  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1001  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1002  if (LHSSigned == RHSSigned) {
1003    // Same signedness; use the higher-ranked type
1004    if (order >= 0) {
1005      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
1006      return LHSType;
1007    } else if (!IsCompAssign)
1008      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
1009    return RHSType;
1010  } else if (order != (LHSSigned ? 1 : -1)) {
1011    // The unsigned type has greater than or equal rank to the
1012    // signed type, so use the unsigned type
1013    if (RHSSigned) {
1014      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
1015      return LHSType;
1016    } else if (!IsCompAssign)
1017      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
1018    return RHSType;
1019  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1020    // The two types are different widths; if we are here, that
1021    // means the signed type is larger than the unsigned type, so
1022    // use the signed type.
1023    if (LHSSigned) {
1024      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
1025      return LHSType;
1026    } else if (!IsCompAssign)
1027      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
1028    return RHSType;
1029  } else {
1030    // The signed type is higher-ranked than the unsigned type,
1031    // but isn't actually any bigger (like unsigned int and long
1032    // on most 32-bit systems).  Use the unsigned type corresponding
1033    // to the signed type.
1034    QualType result =
1035      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1036    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
1037    if (!IsCompAssign)
1038      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
1039    return result;
1040  }
1041}
1042
1043/// UsualArithmeticConversions - Performs various conversions that are common to
1044/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1045/// routine returns the first non-arithmetic type found. The client is
1046/// responsible for emitting appropriate error diagnostics.
1047/// FIXME: verify the conversion rules for "complex int" are consistent with
1048/// GCC.
1049QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1050                                          bool IsCompAssign) {
1051  if (!IsCompAssign) {
1052    LHS = UsualUnaryConversions(LHS.take());
1053    if (LHS.isInvalid())
1054      return QualType();
1055  }
1056
1057  RHS = UsualUnaryConversions(RHS.take());
1058  if (RHS.isInvalid())
1059    return QualType();
1060
1061  // For conversion purposes, we ignore any qualifiers.
1062  // For example, "const float" and "float" are equivalent.
1063  QualType LHSType =
1064    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1065  QualType RHSType =
1066    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1067
1068  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1069  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1070    LHSType = AtomicLHS->getValueType();
1071
1072  // If both types are identical, no conversion is needed.
1073  if (LHSType == RHSType)
1074    return LHSType;
1075
1076  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1077  // The caller can deal with this (e.g. pointer + int).
1078  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1079    return QualType();
1080
1081  // Apply unary and bitfield promotions to the LHS's type.
1082  QualType LHSUnpromotedType = LHSType;
1083  if (LHSType->isPromotableIntegerType())
1084    LHSType = Context.getPromotedIntegerType(LHSType);
1085  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1086  if (!LHSBitfieldPromoteTy.isNull())
1087    LHSType = LHSBitfieldPromoteTy;
1088  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1089    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1090
1091  // If both types are identical, no conversion is needed.
1092  if (LHSType == RHSType)
1093    return LHSType;
1094
1095  // At this point, we have two different arithmetic types.
1096
1097  // Handle complex types first (C99 6.3.1.8p1).
1098  if (LHSType->isComplexType() || RHSType->isComplexType())
1099    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1100                                        IsCompAssign);
1101
1102  // Now handle "real" floating types (i.e. float, double, long double).
1103  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1104    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1105                                 IsCompAssign);
1106
1107  // Handle GCC complex int extension.
1108  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1109    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1110                                      IsCompAssign);
1111
1112  // Finally, we have two differing integer types.
1113  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
1114                                 IsCompAssign);
1115}
1116
1117//===----------------------------------------------------------------------===//
1118//  Semantic Analysis for various Expression Types
1119//===----------------------------------------------------------------------===//
1120
1121
1122ExprResult
1123Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1124                                SourceLocation DefaultLoc,
1125                                SourceLocation RParenLoc,
1126                                Expr *ControllingExpr,
1127                                MultiTypeArg ArgTypes,
1128                                MultiExprArg ArgExprs) {
1129  unsigned NumAssocs = ArgTypes.size();
1130  assert(NumAssocs == ArgExprs.size());
1131
1132  ParsedType *ParsedTypes = ArgTypes.data();
1133  Expr **Exprs = ArgExprs.data();
1134
1135  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1136  for (unsigned i = 0; i < NumAssocs; ++i) {
1137    if (ParsedTypes[i])
1138      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1139    else
1140      Types[i] = 0;
1141  }
1142
1143  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1144                                             ControllingExpr, Types, Exprs,
1145                                             NumAssocs);
1146  delete [] Types;
1147  return ER;
1148}
1149
1150ExprResult
1151Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1152                                 SourceLocation DefaultLoc,
1153                                 SourceLocation RParenLoc,
1154                                 Expr *ControllingExpr,
1155                                 TypeSourceInfo **Types,
1156                                 Expr **Exprs,
1157                                 unsigned NumAssocs) {
1158  bool TypeErrorFound = false,
1159       IsResultDependent = ControllingExpr->isTypeDependent(),
1160       ContainsUnexpandedParameterPack
1161         = ControllingExpr->containsUnexpandedParameterPack();
1162
1163  for (unsigned i = 0; i < NumAssocs; ++i) {
1164    if (Exprs[i]->containsUnexpandedParameterPack())
1165      ContainsUnexpandedParameterPack = true;
1166
1167    if (Types[i]) {
1168      if (Types[i]->getType()->containsUnexpandedParameterPack())
1169        ContainsUnexpandedParameterPack = true;
1170
1171      if (Types[i]->getType()->isDependentType()) {
1172        IsResultDependent = true;
1173      } else {
1174        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1175        // complete object type other than a variably modified type."
1176        unsigned D = 0;
1177        if (Types[i]->getType()->isIncompleteType())
1178          D = diag::err_assoc_type_incomplete;
1179        else if (!Types[i]->getType()->isObjectType())
1180          D = diag::err_assoc_type_nonobject;
1181        else if (Types[i]->getType()->isVariablyModifiedType())
1182          D = diag::err_assoc_type_variably_modified;
1183
1184        if (D != 0) {
1185          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1186            << Types[i]->getTypeLoc().getSourceRange()
1187            << Types[i]->getType();
1188          TypeErrorFound = true;
1189        }
1190
1191        // C11 6.5.1.1p2 "No two generic associations in the same generic
1192        // selection shall specify compatible types."
1193        for (unsigned j = i+1; j < NumAssocs; ++j)
1194          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1195              Context.typesAreCompatible(Types[i]->getType(),
1196                                         Types[j]->getType())) {
1197            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1198                 diag::err_assoc_compatible_types)
1199              << Types[j]->getTypeLoc().getSourceRange()
1200              << Types[j]->getType()
1201              << Types[i]->getType();
1202            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1203                 diag::note_compat_assoc)
1204              << Types[i]->getTypeLoc().getSourceRange()
1205              << Types[i]->getType();
1206            TypeErrorFound = true;
1207          }
1208      }
1209    }
1210  }
1211  if (TypeErrorFound)
1212    return ExprError();
1213
1214  // If we determined that the generic selection is result-dependent, don't
1215  // try to compute the result expression.
1216  if (IsResultDependent)
1217    return Owned(new (Context) GenericSelectionExpr(
1218                   Context, KeyLoc, ControllingExpr,
1219                   llvm::makeArrayRef(Types, NumAssocs),
1220                   llvm::makeArrayRef(Exprs, NumAssocs),
1221                   DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1222
1223  SmallVector<unsigned, 1> CompatIndices;
1224  unsigned DefaultIndex = -1U;
1225  for (unsigned i = 0; i < NumAssocs; ++i) {
1226    if (!Types[i])
1227      DefaultIndex = i;
1228    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1229                                        Types[i]->getType()))
1230      CompatIndices.push_back(i);
1231  }
1232
1233  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1234  // type compatible with at most one of the types named in its generic
1235  // association list."
1236  if (CompatIndices.size() > 1) {
1237    // We strip parens here because the controlling expression is typically
1238    // parenthesized in macro definitions.
1239    ControllingExpr = ControllingExpr->IgnoreParens();
1240    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1241      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1242      << (unsigned) CompatIndices.size();
1243    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1244         E = CompatIndices.end(); I != E; ++I) {
1245      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1246           diag::note_compat_assoc)
1247        << Types[*I]->getTypeLoc().getSourceRange()
1248        << Types[*I]->getType();
1249    }
1250    return ExprError();
1251  }
1252
1253  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1254  // its controlling expression shall have type compatible with exactly one of
1255  // the types named in its generic association list."
1256  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1257    // We strip parens here because the controlling expression is typically
1258    // parenthesized in macro definitions.
1259    ControllingExpr = ControllingExpr->IgnoreParens();
1260    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1261      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1262    return ExprError();
1263  }
1264
1265  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1266  // type name that is compatible with the type of the controlling expression,
1267  // then the result expression of the generic selection is the expression
1268  // in that generic association. Otherwise, the result expression of the
1269  // generic selection is the expression in the default generic association."
1270  unsigned ResultIndex =
1271    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1272
1273  return Owned(new (Context) GenericSelectionExpr(
1274                 Context, KeyLoc, ControllingExpr,
1275                 llvm::makeArrayRef(Types, NumAssocs),
1276                 llvm::makeArrayRef(Exprs, NumAssocs),
1277                 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1278                 ResultIndex));
1279}
1280
1281/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1282/// location of the token and the offset of the ud-suffix within it.
1283static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1284                                     unsigned Offset) {
1285  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1286                                        S.getLangOpts());
1287}
1288
1289/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1290/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1291static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1292                                                 IdentifierInfo *UDSuffix,
1293                                                 SourceLocation UDSuffixLoc,
1294                                                 ArrayRef<Expr*> Args,
1295                                                 SourceLocation LitEndLoc) {
1296  assert(Args.size() <= 2 && "too many arguments for literal operator");
1297
1298  QualType ArgTy[2];
1299  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1300    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1301    if (ArgTy[ArgIdx]->isArrayType())
1302      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1303  }
1304
1305  DeclarationName OpName =
1306    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1307  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1308  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1309
1310  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1311  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1312                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1313    return ExprError();
1314
1315  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1316}
1317
1318/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1319/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1320/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1321/// multiple tokens.  However, the common case is that StringToks points to one
1322/// string.
1323///
1324ExprResult
1325Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1326                         Scope *UDLScope) {
1327  assert(NumStringToks && "Must have at least one string!");
1328
1329  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1330  if (Literal.hadError)
1331    return ExprError();
1332
1333  SmallVector<SourceLocation, 4> StringTokLocs;
1334  for (unsigned i = 0; i != NumStringToks; ++i)
1335    StringTokLocs.push_back(StringToks[i].getLocation());
1336
1337  QualType StrTy = Context.CharTy;
1338  if (Literal.isWide())
1339    StrTy = Context.getWCharType();
1340  else if (Literal.isUTF16())
1341    StrTy = Context.Char16Ty;
1342  else if (Literal.isUTF32())
1343    StrTy = Context.Char32Ty;
1344  else if (Literal.isPascal())
1345    StrTy = Context.UnsignedCharTy;
1346
1347  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1348  if (Literal.isWide())
1349    Kind = StringLiteral::Wide;
1350  else if (Literal.isUTF8())
1351    Kind = StringLiteral::UTF8;
1352  else if (Literal.isUTF16())
1353    Kind = StringLiteral::UTF16;
1354  else if (Literal.isUTF32())
1355    Kind = StringLiteral::UTF32;
1356
1357  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1358  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1359    StrTy.addConst();
1360
1361  // Get an array type for the string, according to C99 6.4.5.  This includes
1362  // the nul terminator character as well as the string length for pascal
1363  // strings.
1364  StrTy = Context.getConstantArrayType(StrTy,
1365                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1366                                       ArrayType::Normal, 0);
1367
1368  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1369  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1370                                             Kind, Literal.Pascal, StrTy,
1371                                             &StringTokLocs[0],
1372                                             StringTokLocs.size());
1373  if (Literal.getUDSuffix().empty())
1374    return Owned(Lit);
1375
1376  // We're building a user-defined literal.
1377  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1378  SourceLocation UDSuffixLoc =
1379    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1380                   Literal.getUDSuffixOffset());
1381
1382  // Make sure we're allowed user-defined literals here.
1383  if (!UDLScope)
1384    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1385
1386  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1387  //   operator "" X (str, len)
1388  QualType SizeType = Context.getSizeType();
1389  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1390  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1391                                                  StringTokLocs[0]);
1392  Expr *Args[] = { Lit, LenArg };
1393  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1394                                        Args, StringTokLocs.back());
1395}
1396
1397ExprResult
1398Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1399                       SourceLocation Loc,
1400                       const CXXScopeSpec *SS) {
1401  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1402  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1403}
1404
1405/// BuildDeclRefExpr - Build an expression that references a
1406/// declaration that does not require a closure capture.
1407ExprResult
1408Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1409                       const DeclarationNameInfo &NameInfo,
1410                       const CXXScopeSpec *SS) {
1411  if (getLangOpts().CUDA)
1412    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1413      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1414        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1415                           CalleeTarget = IdentifyCUDATarget(Callee);
1416        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1417          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1418            << CalleeTarget << D->getIdentifier() << CallerTarget;
1419          Diag(D->getLocation(), diag::note_previous_decl)
1420            << D->getIdentifier();
1421          return ExprError();
1422        }
1423      }
1424
1425  bool refersToEnclosingScope =
1426    (CurContext != D->getDeclContext() &&
1427     D->getDeclContext()->isFunctionOrMethod());
1428
1429  DeclRefExpr *E = DeclRefExpr::Create(Context,
1430                                       SS ? SS->getWithLocInContext(Context)
1431                                              : NestedNameSpecifierLoc(),
1432                                       SourceLocation(),
1433                                       D, refersToEnclosingScope,
1434                                       NameInfo, Ty, VK);
1435
1436  MarkDeclRefReferenced(E);
1437
1438  if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1439      Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1440    DiagnosticsEngine::Level Level =
1441      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1442                               E->getLocStart());
1443    if (Level != DiagnosticsEngine::Ignored)
1444      getCurFunction()->recordUseOfWeak(E);
1445  }
1446
1447  // Just in case we're building an illegal pointer-to-member.
1448  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1449  if (FD && FD->isBitField())
1450    E->setObjectKind(OK_BitField);
1451
1452  return Owned(E);
1453}
1454
1455/// Decomposes the given name into a DeclarationNameInfo, its location, and
1456/// possibly a list of template arguments.
1457///
1458/// If this produces template arguments, it is permitted to call
1459/// DecomposeTemplateName.
1460///
1461/// This actually loses a lot of source location information for
1462/// non-standard name kinds; we should consider preserving that in
1463/// some way.
1464void
1465Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1466                             TemplateArgumentListInfo &Buffer,
1467                             DeclarationNameInfo &NameInfo,
1468                             const TemplateArgumentListInfo *&TemplateArgs) {
1469  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1470    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1471    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1472
1473    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1474                                       Id.TemplateId->NumArgs);
1475    translateTemplateArguments(TemplateArgsPtr, Buffer);
1476
1477    TemplateName TName = Id.TemplateId->Template.get();
1478    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1479    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1480    TemplateArgs = &Buffer;
1481  } else {
1482    NameInfo = GetNameFromUnqualifiedId(Id);
1483    TemplateArgs = 0;
1484  }
1485}
1486
1487/// Diagnose an empty lookup.
1488///
1489/// \return false if new lookup candidates were found
1490bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1491                               CorrectionCandidateCallback &CCC,
1492                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1493                               llvm::ArrayRef<Expr *> Args) {
1494  DeclarationName Name = R.getLookupName();
1495
1496  unsigned diagnostic = diag::err_undeclared_var_use;
1497  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1498  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1499      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1500      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1501    diagnostic = diag::err_undeclared_use;
1502    diagnostic_suggest = diag::err_undeclared_use_suggest;
1503  }
1504
1505  // If the original lookup was an unqualified lookup, fake an
1506  // unqualified lookup.  This is useful when (for example) the
1507  // original lookup would not have found something because it was a
1508  // dependent name.
1509  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1510    ? CurContext : 0;
1511  while (DC) {
1512    if (isa<CXXRecordDecl>(DC)) {
1513      LookupQualifiedName(R, DC);
1514
1515      if (!R.empty()) {
1516        // Don't give errors about ambiguities in this lookup.
1517        R.suppressDiagnostics();
1518
1519        // During a default argument instantiation the CurContext points
1520        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1521        // function parameter list, hence add an explicit check.
1522        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1523                              ActiveTemplateInstantiations.back().Kind ==
1524            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1525        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1526        bool isInstance = CurMethod &&
1527                          CurMethod->isInstance() &&
1528                          DC == CurMethod->getParent() && !isDefaultArgument;
1529
1530
1531        // Give a code modification hint to insert 'this->'.
1532        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1533        // Actually quite difficult!
1534        if (getLangOpts().MicrosoftMode)
1535          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1536        if (isInstance) {
1537          Diag(R.getNameLoc(), diagnostic) << Name
1538            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1539          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1540              CallsUndergoingInstantiation.back()->getCallee());
1541
1542
1543          CXXMethodDecl *DepMethod;
1544          if (CurMethod->getTemplatedKind() ==
1545              FunctionDecl::TK_FunctionTemplateSpecialization)
1546            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1547                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1548          else
1549            DepMethod = cast<CXXMethodDecl>(
1550                CurMethod->getInstantiatedFromMemberFunction());
1551          assert(DepMethod && "No template pattern found");
1552
1553          QualType DepThisType = DepMethod->getThisType(Context);
1554          CheckCXXThisCapture(R.getNameLoc());
1555          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1556                                     R.getNameLoc(), DepThisType, false);
1557          TemplateArgumentListInfo TList;
1558          if (ULE->hasExplicitTemplateArgs())
1559            ULE->copyTemplateArgumentsInto(TList);
1560
1561          CXXScopeSpec SS;
1562          SS.Adopt(ULE->getQualifierLoc());
1563          CXXDependentScopeMemberExpr *DepExpr =
1564              CXXDependentScopeMemberExpr::Create(
1565                  Context, DepThis, DepThisType, true, SourceLocation(),
1566                  SS.getWithLocInContext(Context),
1567                  ULE->getTemplateKeywordLoc(), 0,
1568                  R.getLookupNameInfo(),
1569                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1570          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1571        } else {
1572          Diag(R.getNameLoc(), diagnostic) << Name;
1573        }
1574
1575        // Do we really want to note all of these?
1576        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1577          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1578
1579        // Return true if we are inside a default argument instantiation
1580        // and the found name refers to an instance member function, otherwise
1581        // the function calling DiagnoseEmptyLookup will try to create an
1582        // implicit member call and this is wrong for default argument.
1583        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1584          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1585          return true;
1586        }
1587
1588        // Tell the callee to try to recover.
1589        return false;
1590      }
1591
1592      R.clear();
1593    }
1594
1595    // In Microsoft mode, if we are performing lookup from within a friend
1596    // function definition declared at class scope then we must set
1597    // DC to the lexical parent to be able to search into the parent
1598    // class.
1599    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1600        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1601        DC->getLexicalParent()->isRecord())
1602      DC = DC->getLexicalParent();
1603    else
1604      DC = DC->getParent();
1605  }
1606
1607  // We didn't find anything, so try to correct for a typo.
1608  TypoCorrection Corrected;
1609  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1610                                    S, &SS, CCC))) {
1611    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1612    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1613    R.setLookupName(Corrected.getCorrection());
1614
1615    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1616      if (Corrected.isOverloaded()) {
1617        OverloadCandidateSet OCS(R.getNameLoc());
1618        OverloadCandidateSet::iterator Best;
1619        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1620                                        CDEnd = Corrected.end();
1621             CD != CDEnd; ++CD) {
1622          if (FunctionTemplateDecl *FTD =
1623                   dyn_cast<FunctionTemplateDecl>(*CD))
1624            AddTemplateOverloadCandidate(
1625                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1626                Args, OCS);
1627          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1628            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1629              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1630                                   Args, OCS);
1631        }
1632        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1633          case OR_Success:
1634            ND = Best->Function;
1635            break;
1636          default:
1637            break;
1638        }
1639      }
1640      R.addDecl(ND);
1641      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1642        if (SS.isEmpty())
1643          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1644            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1645        else
1646          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1647            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1648            << SS.getRange()
1649            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
1650                                            CorrectedStr);
1651        if (ND)
1652          Diag(ND->getLocation(), diag::note_previous_decl)
1653            << CorrectedQuotedStr;
1654
1655        // Tell the callee to try to recover.
1656        return false;
1657      }
1658
1659      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1660        // FIXME: If we ended up with a typo for a type name or
1661        // Objective-C class name, we're in trouble because the parser
1662        // is in the wrong place to recover. Suggest the typo
1663        // correction, but don't make it a fix-it since we're not going
1664        // to recover well anyway.
1665        if (SS.isEmpty())
1666          Diag(R.getNameLoc(), diagnostic_suggest)
1667            << Name << CorrectedQuotedStr;
1668        else
1669          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1670            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1671            << SS.getRange();
1672
1673        // Don't try to recover; it won't work.
1674        return true;
1675      }
1676    } else {
1677      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1678      // because we aren't able to recover.
1679      if (SS.isEmpty())
1680        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1681      else
1682        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1683        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1684        << SS.getRange();
1685      return true;
1686    }
1687  }
1688  R.clear();
1689
1690  // Emit a special diagnostic for failed member lookups.
1691  // FIXME: computing the declaration context might fail here (?)
1692  if (!SS.isEmpty()) {
1693    Diag(R.getNameLoc(), diag::err_no_member)
1694      << Name << computeDeclContext(SS, false)
1695      << SS.getRange();
1696    return true;
1697  }
1698
1699  // Give up, we can't recover.
1700  Diag(R.getNameLoc(), diagnostic) << Name;
1701  return true;
1702}
1703
1704ExprResult Sema::ActOnIdExpression(Scope *S,
1705                                   CXXScopeSpec &SS,
1706                                   SourceLocation TemplateKWLoc,
1707                                   UnqualifiedId &Id,
1708                                   bool HasTrailingLParen,
1709                                   bool IsAddressOfOperand,
1710                                   CorrectionCandidateCallback *CCC) {
1711  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1712         "cannot be direct & operand and have a trailing lparen");
1713
1714  if (SS.isInvalid())
1715    return ExprError();
1716
1717  TemplateArgumentListInfo TemplateArgsBuffer;
1718
1719  // Decompose the UnqualifiedId into the following data.
1720  DeclarationNameInfo NameInfo;
1721  const TemplateArgumentListInfo *TemplateArgs;
1722  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1723
1724  DeclarationName Name = NameInfo.getName();
1725  IdentifierInfo *II = Name.getAsIdentifierInfo();
1726  SourceLocation NameLoc = NameInfo.getLoc();
1727
1728  // C++ [temp.dep.expr]p3:
1729  //   An id-expression is type-dependent if it contains:
1730  //     -- an identifier that was declared with a dependent type,
1731  //        (note: handled after lookup)
1732  //     -- a template-id that is dependent,
1733  //        (note: handled in BuildTemplateIdExpr)
1734  //     -- a conversion-function-id that specifies a dependent type,
1735  //     -- a nested-name-specifier that contains a class-name that
1736  //        names a dependent type.
1737  // Determine whether this is a member of an unknown specialization;
1738  // we need to handle these differently.
1739  bool DependentID = false;
1740  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1741      Name.getCXXNameType()->isDependentType()) {
1742    DependentID = true;
1743  } else if (SS.isSet()) {
1744    if (DeclContext *DC = computeDeclContext(SS, false)) {
1745      if (RequireCompleteDeclContext(SS, DC))
1746        return ExprError();
1747    } else {
1748      DependentID = true;
1749    }
1750  }
1751
1752  if (DependentID)
1753    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1754                                      IsAddressOfOperand, TemplateArgs);
1755
1756  // Perform the required lookup.
1757  LookupResult R(*this, NameInfo,
1758                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1759                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1760  if (TemplateArgs) {
1761    // Lookup the template name again to correctly establish the context in
1762    // which it was found. This is really unfortunate as we already did the
1763    // lookup to determine that it was a template name in the first place. If
1764    // this becomes a performance hit, we can work harder to preserve those
1765    // results until we get here but it's likely not worth it.
1766    bool MemberOfUnknownSpecialization;
1767    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1768                       MemberOfUnknownSpecialization);
1769
1770    if (MemberOfUnknownSpecialization ||
1771        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1772      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1773                                        IsAddressOfOperand, TemplateArgs);
1774  } else {
1775    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1776    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1777
1778    // If the result might be in a dependent base class, this is a dependent
1779    // id-expression.
1780    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1781      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1782                                        IsAddressOfOperand, TemplateArgs);
1783
1784    // If this reference is in an Objective-C method, then we need to do
1785    // some special Objective-C lookup, too.
1786    if (IvarLookupFollowUp) {
1787      ExprResult E(LookupInObjCMethod(R, S, II, true));
1788      if (E.isInvalid())
1789        return ExprError();
1790
1791      if (Expr *Ex = E.takeAs<Expr>())
1792        return Owned(Ex);
1793    }
1794  }
1795
1796  if (R.isAmbiguous())
1797    return ExprError();
1798
1799  // Determine whether this name might be a candidate for
1800  // argument-dependent lookup.
1801  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1802
1803  if (R.empty() && !ADL) {
1804    // Otherwise, this could be an implicitly declared function reference (legal
1805    // in C90, extension in C99, forbidden in C++).
1806    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1807      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1808      if (D) R.addDecl(D);
1809    }
1810
1811    // If this name wasn't predeclared and if this is not a function
1812    // call, diagnose the problem.
1813    if (R.empty()) {
1814
1815      // In Microsoft mode, if we are inside a template class member function
1816      // and we can't resolve an identifier then assume the identifier is type
1817      // dependent. The goal is to postpone name lookup to instantiation time
1818      // to be able to search into type dependent base classes.
1819      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1820          isa<CXXMethodDecl>(CurContext))
1821        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1822                                          IsAddressOfOperand, TemplateArgs);
1823
1824      CorrectionCandidateCallback DefaultValidator;
1825      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1826        return ExprError();
1827
1828      assert(!R.empty() &&
1829             "DiagnoseEmptyLookup returned false but added no results");
1830
1831      // If we found an Objective-C instance variable, let
1832      // LookupInObjCMethod build the appropriate expression to
1833      // reference the ivar.
1834      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1835        R.clear();
1836        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1837        // In a hopelessly buggy code, Objective-C instance variable
1838        // lookup fails and no expression will be built to reference it.
1839        if (!E.isInvalid() && !E.get())
1840          return ExprError();
1841        return E;
1842      }
1843    }
1844  }
1845
1846  // This is guaranteed from this point on.
1847  assert(!R.empty() || ADL);
1848
1849  // Check whether this might be a C++ implicit instance member access.
1850  // C++ [class.mfct.non-static]p3:
1851  //   When an id-expression that is not part of a class member access
1852  //   syntax and not used to form a pointer to member is used in the
1853  //   body of a non-static member function of class X, if name lookup
1854  //   resolves the name in the id-expression to a non-static non-type
1855  //   member of some class C, the id-expression is transformed into a
1856  //   class member access expression using (*this) as the
1857  //   postfix-expression to the left of the . operator.
1858  //
1859  // But we don't actually need to do this for '&' operands if R
1860  // resolved to a function or overloaded function set, because the
1861  // expression is ill-formed if it actually works out to be a
1862  // non-static member function:
1863  //
1864  // C++ [expr.ref]p4:
1865  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1866  //   [t]he expression can be used only as the left-hand operand of a
1867  //   member function call.
1868  //
1869  // There are other safeguards against such uses, but it's important
1870  // to get this right here so that we don't end up making a
1871  // spuriously dependent expression if we're inside a dependent
1872  // instance method.
1873  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1874    bool MightBeImplicitMember;
1875    if (!IsAddressOfOperand)
1876      MightBeImplicitMember = true;
1877    else if (!SS.isEmpty())
1878      MightBeImplicitMember = false;
1879    else if (R.isOverloadedResult())
1880      MightBeImplicitMember = false;
1881    else if (R.isUnresolvableResult())
1882      MightBeImplicitMember = true;
1883    else
1884      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1885                              isa<IndirectFieldDecl>(R.getFoundDecl());
1886
1887    if (MightBeImplicitMember)
1888      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1889                                             R, TemplateArgs);
1890  }
1891
1892  if (TemplateArgs || TemplateKWLoc.isValid())
1893    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1894
1895  return BuildDeclarationNameExpr(SS, R, ADL);
1896}
1897
1898/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1899/// declaration name, generally during template instantiation.
1900/// There's a large number of things which don't need to be done along
1901/// this path.
1902ExprResult
1903Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1904                                        const DeclarationNameInfo &NameInfo,
1905                                        bool IsAddressOfOperand) {
1906  DeclContext *DC = computeDeclContext(SS, false);
1907  if (!DC)
1908    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1909                                     NameInfo, /*TemplateArgs=*/0);
1910
1911  if (RequireCompleteDeclContext(SS, DC))
1912    return ExprError();
1913
1914  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1915  LookupQualifiedName(R, DC);
1916
1917  if (R.isAmbiguous())
1918    return ExprError();
1919
1920  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1921    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1922                                     NameInfo, /*TemplateArgs=*/0);
1923
1924  if (R.empty()) {
1925    Diag(NameInfo.getLoc(), diag::err_no_member)
1926      << NameInfo.getName() << DC << SS.getRange();
1927    return ExprError();
1928  }
1929
1930  // Defend against this resolving to an implicit member access. We usually
1931  // won't get here if this might be a legitimate a class member (we end up in
1932  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
1933  // a pointer-to-member or in an unevaluated context in C++11.
1934  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
1935    return BuildPossibleImplicitMemberExpr(SS,
1936                                           /*TemplateKWLoc=*/SourceLocation(),
1937                                           R, /*TemplateArgs=*/0);
1938
1939  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
1940}
1941
1942/// LookupInObjCMethod - The parser has read a name in, and Sema has
1943/// detected that we're currently inside an ObjC method.  Perform some
1944/// additional lookup.
1945///
1946/// Ideally, most of this would be done by lookup, but there's
1947/// actually quite a lot of extra work involved.
1948///
1949/// Returns a null sentinel to indicate trivial success.
1950ExprResult
1951Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1952                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1953  SourceLocation Loc = Lookup.getNameLoc();
1954  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1955
1956  // There are two cases to handle here.  1) scoped lookup could have failed,
1957  // in which case we should look for an ivar.  2) scoped lookup could have
1958  // found a decl, but that decl is outside the current instance method (i.e.
1959  // a global variable).  In these two cases, we do a lookup for an ivar with
1960  // this name, if the lookup sucedes, we replace it our current decl.
1961
1962  // If we're in a class method, we don't normally want to look for
1963  // ivars.  But if we don't find anything else, and there's an
1964  // ivar, that's an error.
1965  bool IsClassMethod = CurMethod->isClassMethod();
1966
1967  bool LookForIvars;
1968  if (Lookup.empty())
1969    LookForIvars = true;
1970  else if (IsClassMethod)
1971    LookForIvars = false;
1972  else
1973    LookForIvars = (Lookup.isSingleResult() &&
1974                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1975  ObjCInterfaceDecl *IFace = 0;
1976  if (LookForIvars) {
1977    IFace = CurMethod->getClassInterface();
1978    ObjCInterfaceDecl *ClassDeclared;
1979    ObjCIvarDecl *IV = 0;
1980    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1981      // Diagnose using an ivar in a class method.
1982      if (IsClassMethod)
1983        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1984                         << IV->getDeclName());
1985
1986      // If we're referencing an invalid decl, just return this as a silent
1987      // error node.  The error diagnostic was already emitted on the decl.
1988      if (IV->isInvalidDecl())
1989        return ExprError();
1990
1991      // Check if referencing a field with __attribute__((deprecated)).
1992      if (DiagnoseUseOfDecl(IV, Loc))
1993        return ExprError();
1994
1995      // Diagnose the use of an ivar outside of the declaring class.
1996      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1997          !declaresSameEntity(ClassDeclared, IFace) &&
1998          !getLangOpts().DebuggerSupport)
1999        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2000
2001      // FIXME: This should use a new expr for a direct reference, don't
2002      // turn this into Self->ivar, just return a BareIVarExpr or something.
2003      IdentifierInfo &II = Context.Idents.get("self");
2004      UnqualifiedId SelfName;
2005      SelfName.setIdentifier(&II, SourceLocation());
2006      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2007      CXXScopeSpec SelfScopeSpec;
2008      SourceLocation TemplateKWLoc;
2009      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2010                                              SelfName, false, false);
2011      if (SelfExpr.isInvalid())
2012        return ExprError();
2013
2014      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2015      if (SelfExpr.isInvalid())
2016        return ExprError();
2017
2018      MarkAnyDeclReferenced(Loc, IV);
2019
2020      ObjCMethodFamily MF = CurMethod->getMethodFamily();
2021      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize)
2022        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2023
2024      ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2025                                                              Loc,
2026                                                              SelfExpr.take(),
2027                                                              true, true);
2028
2029      if (getLangOpts().ObjCAutoRefCount) {
2030        if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2031          DiagnosticsEngine::Level Level =
2032            Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2033          if (Level != DiagnosticsEngine::Ignored)
2034            getCurFunction()->recordUseOfWeak(Result);
2035        }
2036        if (CurContext->isClosure())
2037          Diag(Loc, diag::warn_implicitly_retains_self)
2038            << FixItHint::CreateInsertion(Loc, "self->");
2039      }
2040
2041      return Owned(Result);
2042    }
2043  } else if (CurMethod->isInstanceMethod()) {
2044    // We should warn if a local variable hides an ivar.
2045    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2046      ObjCInterfaceDecl *ClassDeclared;
2047      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2048        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2049            declaresSameEntity(IFace, ClassDeclared))
2050          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2051      }
2052    }
2053  } else if (Lookup.isSingleResult() &&
2054             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2055    // If accessing a stand-alone ivar in a class method, this is an error.
2056    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2057      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2058                       << IV->getDeclName());
2059  }
2060
2061  if (Lookup.empty() && II && AllowBuiltinCreation) {
2062    // FIXME. Consolidate this with similar code in LookupName.
2063    if (unsigned BuiltinID = II->getBuiltinID()) {
2064      if (!(getLangOpts().CPlusPlus &&
2065            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2066        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2067                                           S, Lookup.isForRedeclaration(),
2068                                           Lookup.getNameLoc());
2069        if (D) Lookup.addDecl(D);
2070      }
2071    }
2072  }
2073  // Sentinel value saying that we didn't do anything special.
2074  return Owned((Expr*) 0);
2075}
2076
2077/// \brief Cast a base object to a member's actual type.
2078///
2079/// Logically this happens in three phases:
2080///
2081/// * First we cast from the base type to the naming class.
2082///   The naming class is the class into which we were looking
2083///   when we found the member;  it's the qualifier type if a
2084///   qualifier was provided, and otherwise it's the base type.
2085///
2086/// * Next we cast from the naming class to the declaring class.
2087///   If the member we found was brought into a class's scope by
2088///   a using declaration, this is that class;  otherwise it's
2089///   the class declaring the member.
2090///
2091/// * Finally we cast from the declaring class to the "true"
2092///   declaring class of the member.  This conversion does not
2093///   obey access control.
2094ExprResult
2095Sema::PerformObjectMemberConversion(Expr *From,
2096                                    NestedNameSpecifier *Qualifier,
2097                                    NamedDecl *FoundDecl,
2098                                    NamedDecl *Member) {
2099  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2100  if (!RD)
2101    return Owned(From);
2102
2103  QualType DestRecordType;
2104  QualType DestType;
2105  QualType FromRecordType;
2106  QualType FromType = From->getType();
2107  bool PointerConversions = false;
2108  if (isa<FieldDecl>(Member)) {
2109    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2110
2111    if (FromType->getAs<PointerType>()) {
2112      DestType = Context.getPointerType(DestRecordType);
2113      FromRecordType = FromType->getPointeeType();
2114      PointerConversions = true;
2115    } else {
2116      DestType = DestRecordType;
2117      FromRecordType = FromType;
2118    }
2119  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2120    if (Method->isStatic())
2121      return Owned(From);
2122
2123    DestType = Method->getThisType(Context);
2124    DestRecordType = DestType->getPointeeType();
2125
2126    if (FromType->getAs<PointerType>()) {
2127      FromRecordType = FromType->getPointeeType();
2128      PointerConversions = true;
2129    } else {
2130      FromRecordType = FromType;
2131      DestType = DestRecordType;
2132    }
2133  } else {
2134    // No conversion necessary.
2135    return Owned(From);
2136  }
2137
2138  if (DestType->isDependentType() || FromType->isDependentType())
2139    return Owned(From);
2140
2141  // If the unqualified types are the same, no conversion is necessary.
2142  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2143    return Owned(From);
2144
2145  SourceRange FromRange = From->getSourceRange();
2146  SourceLocation FromLoc = FromRange.getBegin();
2147
2148  ExprValueKind VK = From->getValueKind();
2149
2150  // C++ [class.member.lookup]p8:
2151  //   [...] Ambiguities can often be resolved by qualifying a name with its
2152  //   class name.
2153  //
2154  // If the member was a qualified name and the qualified referred to a
2155  // specific base subobject type, we'll cast to that intermediate type
2156  // first and then to the object in which the member is declared. That allows
2157  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2158  //
2159  //   class Base { public: int x; };
2160  //   class Derived1 : public Base { };
2161  //   class Derived2 : public Base { };
2162  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2163  //
2164  //   void VeryDerived::f() {
2165  //     x = 17; // error: ambiguous base subobjects
2166  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2167  //   }
2168  if (Qualifier) {
2169    QualType QType = QualType(Qualifier->getAsType(), 0);
2170    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2171    assert(QType->isRecordType() && "lookup done with non-record type");
2172
2173    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2174
2175    // In C++98, the qualifier type doesn't actually have to be a base
2176    // type of the object type, in which case we just ignore it.
2177    // Otherwise build the appropriate casts.
2178    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2179      CXXCastPath BasePath;
2180      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2181                                       FromLoc, FromRange, &BasePath))
2182        return ExprError();
2183
2184      if (PointerConversions)
2185        QType = Context.getPointerType(QType);
2186      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2187                               VK, &BasePath).take();
2188
2189      FromType = QType;
2190      FromRecordType = QRecordType;
2191
2192      // If the qualifier type was the same as the destination type,
2193      // we're done.
2194      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2195        return Owned(From);
2196    }
2197  }
2198
2199  bool IgnoreAccess = false;
2200
2201  // If we actually found the member through a using declaration, cast
2202  // down to the using declaration's type.
2203  //
2204  // Pointer equality is fine here because only one declaration of a
2205  // class ever has member declarations.
2206  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2207    assert(isa<UsingShadowDecl>(FoundDecl));
2208    QualType URecordType = Context.getTypeDeclType(
2209                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2210
2211    // We only need to do this if the naming-class to declaring-class
2212    // conversion is non-trivial.
2213    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2214      assert(IsDerivedFrom(FromRecordType, URecordType));
2215      CXXCastPath BasePath;
2216      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2217                                       FromLoc, FromRange, &BasePath))
2218        return ExprError();
2219
2220      QualType UType = URecordType;
2221      if (PointerConversions)
2222        UType = Context.getPointerType(UType);
2223      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2224                               VK, &BasePath).take();
2225      FromType = UType;
2226      FromRecordType = URecordType;
2227    }
2228
2229    // We don't do access control for the conversion from the
2230    // declaring class to the true declaring class.
2231    IgnoreAccess = true;
2232  }
2233
2234  CXXCastPath BasePath;
2235  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2236                                   FromLoc, FromRange, &BasePath,
2237                                   IgnoreAccess))
2238    return ExprError();
2239
2240  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2241                           VK, &BasePath);
2242}
2243
2244bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2245                                      const LookupResult &R,
2246                                      bool HasTrailingLParen) {
2247  // Only when used directly as the postfix-expression of a call.
2248  if (!HasTrailingLParen)
2249    return false;
2250
2251  // Never if a scope specifier was provided.
2252  if (SS.isSet())
2253    return false;
2254
2255  // Only in C++ or ObjC++.
2256  if (!getLangOpts().CPlusPlus)
2257    return false;
2258
2259  // Turn off ADL when we find certain kinds of declarations during
2260  // normal lookup:
2261  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2262    NamedDecl *D = *I;
2263
2264    // C++0x [basic.lookup.argdep]p3:
2265    //     -- a declaration of a class member
2266    // Since using decls preserve this property, we check this on the
2267    // original decl.
2268    if (D->isCXXClassMember())
2269      return false;
2270
2271    // C++0x [basic.lookup.argdep]p3:
2272    //     -- a block-scope function declaration that is not a
2273    //        using-declaration
2274    // NOTE: we also trigger this for function templates (in fact, we
2275    // don't check the decl type at all, since all other decl types
2276    // turn off ADL anyway).
2277    if (isa<UsingShadowDecl>(D))
2278      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2279    else if (D->getDeclContext()->isFunctionOrMethod())
2280      return false;
2281
2282    // C++0x [basic.lookup.argdep]p3:
2283    //     -- a declaration that is neither a function or a function
2284    //        template
2285    // And also for builtin functions.
2286    if (isa<FunctionDecl>(D)) {
2287      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2288
2289      // But also builtin functions.
2290      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2291        return false;
2292    } else if (!isa<FunctionTemplateDecl>(D))
2293      return false;
2294  }
2295
2296  return true;
2297}
2298
2299
2300/// Diagnoses obvious problems with the use of the given declaration
2301/// as an expression.  This is only actually called for lookups that
2302/// were not overloaded, and it doesn't promise that the declaration
2303/// will in fact be used.
2304static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2305  if (isa<TypedefNameDecl>(D)) {
2306    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2307    return true;
2308  }
2309
2310  if (isa<ObjCInterfaceDecl>(D)) {
2311    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2312    return true;
2313  }
2314
2315  if (isa<NamespaceDecl>(D)) {
2316    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2317    return true;
2318  }
2319
2320  return false;
2321}
2322
2323ExprResult
2324Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2325                               LookupResult &R,
2326                               bool NeedsADL) {
2327  // If this is a single, fully-resolved result and we don't need ADL,
2328  // just build an ordinary singleton decl ref.
2329  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2330    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2331                                    R.getFoundDecl());
2332
2333  // We only need to check the declaration if there's exactly one
2334  // result, because in the overloaded case the results can only be
2335  // functions and function templates.
2336  if (R.isSingleResult() &&
2337      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2338    return ExprError();
2339
2340  // Otherwise, just build an unresolved lookup expression.  Suppress
2341  // any lookup-related diagnostics; we'll hash these out later, when
2342  // we've picked a target.
2343  R.suppressDiagnostics();
2344
2345  UnresolvedLookupExpr *ULE
2346    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2347                                   SS.getWithLocInContext(Context),
2348                                   R.getLookupNameInfo(),
2349                                   NeedsADL, R.isOverloadedResult(),
2350                                   R.begin(), R.end());
2351
2352  return Owned(ULE);
2353}
2354
2355/// \brief Complete semantic analysis for a reference to the given declaration.
2356ExprResult
2357Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2358                               const DeclarationNameInfo &NameInfo,
2359                               NamedDecl *D) {
2360  assert(D && "Cannot refer to a NULL declaration");
2361  assert(!isa<FunctionTemplateDecl>(D) &&
2362         "Cannot refer unambiguously to a function template");
2363
2364  SourceLocation Loc = NameInfo.getLoc();
2365  if (CheckDeclInExpr(*this, Loc, D))
2366    return ExprError();
2367
2368  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2369    // Specifically diagnose references to class templates that are missing
2370    // a template argument list.
2371    Diag(Loc, diag::err_template_decl_ref)
2372      << Template << SS.getRange();
2373    Diag(Template->getLocation(), diag::note_template_decl_here);
2374    return ExprError();
2375  }
2376
2377  // Make sure that we're referring to a value.
2378  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2379  if (!VD) {
2380    Diag(Loc, diag::err_ref_non_value)
2381      << D << SS.getRange();
2382    Diag(D->getLocation(), diag::note_declared_at);
2383    return ExprError();
2384  }
2385
2386  // Check whether this declaration can be used. Note that we suppress
2387  // this check when we're going to perform argument-dependent lookup
2388  // on this function name, because this might not be the function
2389  // that overload resolution actually selects.
2390  if (DiagnoseUseOfDecl(VD, Loc))
2391    return ExprError();
2392
2393  // Only create DeclRefExpr's for valid Decl's.
2394  if (VD->isInvalidDecl())
2395    return ExprError();
2396
2397  // Handle members of anonymous structs and unions.  If we got here,
2398  // and the reference is to a class member indirect field, then this
2399  // must be the subject of a pointer-to-member expression.
2400  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2401    if (!indirectField->isCXXClassMember())
2402      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2403                                                      indirectField);
2404
2405  {
2406    QualType type = VD->getType();
2407    ExprValueKind valueKind = VK_RValue;
2408
2409    switch (D->getKind()) {
2410    // Ignore all the non-ValueDecl kinds.
2411#define ABSTRACT_DECL(kind)
2412#define VALUE(type, base)
2413#define DECL(type, base) \
2414    case Decl::type:
2415#include "clang/AST/DeclNodes.inc"
2416      llvm_unreachable("invalid value decl kind");
2417
2418    // These shouldn't make it here.
2419    case Decl::ObjCAtDefsField:
2420    case Decl::ObjCIvar:
2421      llvm_unreachable("forming non-member reference to ivar?");
2422
2423    // Enum constants are always r-values and never references.
2424    // Unresolved using declarations are dependent.
2425    case Decl::EnumConstant:
2426    case Decl::UnresolvedUsingValue:
2427      valueKind = VK_RValue;
2428      break;
2429
2430    // Fields and indirect fields that got here must be for
2431    // pointer-to-member expressions; we just call them l-values for
2432    // internal consistency, because this subexpression doesn't really
2433    // exist in the high-level semantics.
2434    case Decl::Field:
2435    case Decl::IndirectField:
2436      assert(getLangOpts().CPlusPlus &&
2437             "building reference to field in C?");
2438
2439      // These can't have reference type in well-formed programs, but
2440      // for internal consistency we do this anyway.
2441      type = type.getNonReferenceType();
2442      valueKind = VK_LValue;
2443      break;
2444
2445    // Non-type template parameters are either l-values or r-values
2446    // depending on the type.
2447    case Decl::NonTypeTemplateParm: {
2448      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2449        type = reftype->getPointeeType();
2450        valueKind = VK_LValue; // even if the parameter is an r-value reference
2451        break;
2452      }
2453
2454      // For non-references, we need to strip qualifiers just in case
2455      // the template parameter was declared as 'const int' or whatever.
2456      valueKind = VK_RValue;
2457      type = type.getUnqualifiedType();
2458      break;
2459    }
2460
2461    case Decl::Var:
2462      // In C, "extern void blah;" is valid and is an r-value.
2463      if (!getLangOpts().CPlusPlus &&
2464          !type.hasQualifiers() &&
2465          type->isVoidType()) {
2466        valueKind = VK_RValue;
2467        break;
2468      }
2469      // fallthrough
2470
2471    case Decl::ImplicitParam:
2472    case Decl::ParmVar: {
2473      // These are always l-values.
2474      valueKind = VK_LValue;
2475      type = type.getNonReferenceType();
2476
2477      // FIXME: Does the addition of const really only apply in
2478      // potentially-evaluated contexts? Since the variable isn't actually
2479      // captured in an unevaluated context, it seems that the answer is no.
2480      if (!isUnevaluatedContext()) {
2481        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2482        if (!CapturedType.isNull())
2483          type = CapturedType;
2484      }
2485
2486      break;
2487    }
2488
2489    case Decl::Function: {
2490      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2491        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2492          type = Context.BuiltinFnTy;
2493          valueKind = VK_RValue;
2494          break;
2495        }
2496      }
2497
2498      const FunctionType *fty = type->castAs<FunctionType>();
2499
2500      // If we're referring to a function with an __unknown_anytype
2501      // result type, make the entire expression __unknown_anytype.
2502      if (fty->getResultType() == Context.UnknownAnyTy) {
2503        type = Context.UnknownAnyTy;
2504        valueKind = VK_RValue;
2505        break;
2506      }
2507
2508      // Functions are l-values in C++.
2509      if (getLangOpts().CPlusPlus) {
2510        valueKind = VK_LValue;
2511        break;
2512      }
2513
2514      // C99 DR 316 says that, if a function type comes from a
2515      // function definition (without a prototype), that type is only
2516      // used for checking compatibility. Therefore, when referencing
2517      // the function, we pretend that we don't have the full function
2518      // type.
2519      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2520          isa<FunctionProtoType>(fty))
2521        type = Context.getFunctionNoProtoType(fty->getResultType(),
2522                                              fty->getExtInfo());
2523
2524      // Functions are r-values in C.
2525      valueKind = VK_RValue;
2526      break;
2527    }
2528
2529    case Decl::CXXMethod:
2530      // If we're referring to a method with an __unknown_anytype
2531      // result type, make the entire expression __unknown_anytype.
2532      // This should only be possible with a type written directly.
2533      if (const FunctionProtoType *proto
2534            = dyn_cast<FunctionProtoType>(VD->getType()))
2535        if (proto->getResultType() == Context.UnknownAnyTy) {
2536          type = Context.UnknownAnyTy;
2537          valueKind = VK_RValue;
2538          break;
2539        }
2540
2541      // C++ methods are l-values if static, r-values if non-static.
2542      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2543        valueKind = VK_LValue;
2544        break;
2545      }
2546      // fallthrough
2547
2548    case Decl::CXXConversion:
2549    case Decl::CXXDestructor:
2550    case Decl::CXXConstructor:
2551      valueKind = VK_RValue;
2552      break;
2553    }
2554
2555    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2556  }
2557}
2558
2559ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2560  PredefinedExpr::IdentType IT;
2561
2562  switch (Kind) {
2563  default: llvm_unreachable("Unknown simple primary expr!");
2564  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2565  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2566  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2567  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2568  }
2569
2570  // Pre-defined identifiers are of type char[x], where x is the length of the
2571  // string.
2572
2573  Decl *currentDecl = getCurFunctionOrMethodDecl();
2574  if (!currentDecl && getCurBlock())
2575    currentDecl = getCurBlock()->TheDecl;
2576  if (!currentDecl) {
2577    Diag(Loc, diag::ext_predef_outside_function);
2578    currentDecl = Context.getTranslationUnitDecl();
2579  }
2580
2581  QualType ResTy;
2582  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2583    ResTy = Context.DependentTy;
2584  } else {
2585    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2586
2587    llvm::APInt LengthI(32, Length + 1);
2588    if (IT == PredefinedExpr::LFunction)
2589      ResTy = Context.WCharTy.withConst();
2590    else
2591      ResTy = Context.CharTy.withConst();
2592    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2593  }
2594  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2595}
2596
2597ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2598  SmallString<16> CharBuffer;
2599  bool Invalid = false;
2600  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2601  if (Invalid)
2602    return ExprError();
2603
2604  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2605                            PP, Tok.getKind());
2606  if (Literal.hadError())
2607    return ExprError();
2608
2609  QualType Ty;
2610  if (Literal.isWide())
2611    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2612  else if (Literal.isUTF16())
2613    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2614  else if (Literal.isUTF32())
2615    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2616  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2617    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2618  else
2619    Ty = Context.CharTy;  // 'x' -> char in C++
2620
2621  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2622  if (Literal.isWide())
2623    Kind = CharacterLiteral::Wide;
2624  else if (Literal.isUTF16())
2625    Kind = CharacterLiteral::UTF16;
2626  else if (Literal.isUTF32())
2627    Kind = CharacterLiteral::UTF32;
2628
2629  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2630                                             Tok.getLocation());
2631
2632  if (Literal.getUDSuffix().empty())
2633    return Owned(Lit);
2634
2635  // We're building a user-defined literal.
2636  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2637  SourceLocation UDSuffixLoc =
2638    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2639
2640  // Make sure we're allowed user-defined literals here.
2641  if (!UDLScope)
2642    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2643
2644  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2645  //   operator "" X (ch)
2646  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2647                                        llvm::makeArrayRef(&Lit, 1),
2648                                        Tok.getLocation());
2649}
2650
2651ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2652  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2653  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2654                                      Context.IntTy, Loc));
2655}
2656
2657static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2658                                  QualType Ty, SourceLocation Loc) {
2659  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2660
2661  using llvm::APFloat;
2662  APFloat Val(Format);
2663
2664  APFloat::opStatus result = Literal.GetFloatValue(Val);
2665
2666  // Overflow is always an error, but underflow is only an error if
2667  // we underflowed to zero (APFloat reports denormals as underflow).
2668  if ((result & APFloat::opOverflow) ||
2669      ((result & APFloat::opUnderflow) && Val.isZero())) {
2670    unsigned diagnostic;
2671    SmallString<20> buffer;
2672    if (result & APFloat::opOverflow) {
2673      diagnostic = diag::warn_float_overflow;
2674      APFloat::getLargest(Format).toString(buffer);
2675    } else {
2676      diagnostic = diag::warn_float_underflow;
2677      APFloat::getSmallest(Format).toString(buffer);
2678    }
2679
2680    S.Diag(Loc, diagnostic)
2681      << Ty
2682      << StringRef(buffer.data(), buffer.size());
2683  }
2684
2685  bool isExact = (result == APFloat::opOK);
2686  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2687}
2688
2689ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2690  // Fast path for a single digit (which is quite common).  A single digit
2691  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2692  if (Tok.getLength() == 1) {
2693    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2694    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2695  }
2696
2697  SmallString<128> SpellingBuffer;
2698  // NumericLiteralParser wants to overread by one character.  Add padding to
2699  // the buffer in case the token is copied to the buffer.  If getSpelling()
2700  // returns a StringRef to the memory buffer, it should have a null char at
2701  // the EOF, so it is also safe.
2702  SpellingBuffer.resize(Tok.getLength() + 1);
2703
2704  // Get the spelling of the token, which eliminates trigraphs, etc.
2705  bool Invalid = false;
2706  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2707  if (Invalid)
2708    return ExprError();
2709
2710  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2711  if (Literal.hadError)
2712    return ExprError();
2713
2714  if (Literal.hasUDSuffix()) {
2715    // We're building a user-defined literal.
2716    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2717    SourceLocation UDSuffixLoc =
2718      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2719
2720    // Make sure we're allowed user-defined literals here.
2721    if (!UDLScope)
2722      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2723
2724    QualType CookedTy;
2725    if (Literal.isFloatingLiteral()) {
2726      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2727      // long double, the literal is treated as a call of the form
2728      //   operator "" X (f L)
2729      CookedTy = Context.LongDoubleTy;
2730    } else {
2731      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2732      // unsigned long long, the literal is treated as a call of the form
2733      //   operator "" X (n ULL)
2734      CookedTy = Context.UnsignedLongLongTy;
2735    }
2736
2737    DeclarationName OpName =
2738      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2739    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2740    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2741
2742    // Perform literal operator lookup to determine if we're building a raw
2743    // literal or a cooked one.
2744    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2745    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2746                                  /*AllowRawAndTemplate*/true)) {
2747    case LOLR_Error:
2748      return ExprError();
2749
2750    case LOLR_Cooked: {
2751      Expr *Lit;
2752      if (Literal.isFloatingLiteral()) {
2753        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2754      } else {
2755        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2756        if (Literal.GetIntegerValue(ResultVal))
2757          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2758        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2759                                     Tok.getLocation());
2760      }
2761      return BuildLiteralOperatorCall(R, OpNameInfo,
2762                                      llvm::makeArrayRef(&Lit, 1),
2763                                      Tok.getLocation());
2764    }
2765
2766    case LOLR_Raw: {
2767      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2768      // literal is treated as a call of the form
2769      //   operator "" X ("n")
2770      SourceLocation TokLoc = Tok.getLocation();
2771      unsigned Length = Literal.getUDSuffixOffset();
2772      QualType StrTy = Context.getConstantArrayType(
2773          Context.CharTy, llvm::APInt(32, Length + 1),
2774          ArrayType::Normal, 0);
2775      Expr *Lit = StringLiteral::Create(
2776          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
2777          /*Pascal*/false, StrTy, &TokLoc, 1);
2778      return BuildLiteralOperatorCall(R, OpNameInfo,
2779                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2780    }
2781
2782    case LOLR_Template:
2783      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2784      // template), L is treated as a call fo the form
2785      //   operator "" X <'c1', 'c2', ... 'ck'>()
2786      // where n is the source character sequence c1 c2 ... ck.
2787      TemplateArgumentListInfo ExplicitArgs;
2788      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2789      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2790      llvm::APSInt Value(CharBits, CharIsUnsigned);
2791      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2792        Value = TokSpelling[I];
2793        TemplateArgument Arg(Context, Value, Context.CharTy);
2794        TemplateArgumentLocInfo ArgInfo;
2795        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2796      }
2797      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2798                                      Tok.getLocation(), &ExplicitArgs);
2799    }
2800
2801    llvm_unreachable("unexpected literal operator lookup result");
2802  }
2803
2804  Expr *Res;
2805
2806  if (Literal.isFloatingLiteral()) {
2807    QualType Ty;
2808    if (Literal.isFloat)
2809      Ty = Context.FloatTy;
2810    else if (!Literal.isLong)
2811      Ty = Context.DoubleTy;
2812    else
2813      Ty = Context.LongDoubleTy;
2814
2815    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2816
2817    if (Ty == Context.DoubleTy) {
2818      if (getLangOpts().SinglePrecisionConstants) {
2819        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2820      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2821        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2822        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2823      }
2824    }
2825  } else if (!Literal.isIntegerLiteral()) {
2826    return ExprError();
2827  } else {
2828    QualType Ty;
2829
2830    // 'long long' is a C99 or C++11 feature.
2831    if (!getLangOpts().C99 && Literal.isLongLong) {
2832      if (getLangOpts().CPlusPlus)
2833        Diag(Tok.getLocation(),
2834             getLangOpts().CPlusPlus0x ?
2835             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
2836      else
2837        Diag(Tok.getLocation(), diag::ext_c99_longlong);
2838    }
2839
2840    // Get the value in the widest-possible width.
2841    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2842    // The microsoft literal suffix extensions support 128-bit literals, which
2843    // may be wider than [u]intmax_t.
2844    // FIXME: Actually, they don't. We seem to have accidentally invented the
2845    //        i128 suffix.
2846    if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
2847        PP.getTargetInfo().hasInt128Type())
2848      MaxWidth = 128;
2849    llvm::APInt ResultVal(MaxWidth, 0);
2850
2851    if (Literal.GetIntegerValue(ResultVal)) {
2852      // If this value didn't fit into uintmax_t, warn and force to ull.
2853      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2854      Ty = Context.UnsignedLongLongTy;
2855      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2856             "long long is not intmax_t?");
2857    } else {
2858      // If this value fits into a ULL, try to figure out what else it fits into
2859      // according to the rules of C99 6.4.4.1p5.
2860
2861      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2862      // be an unsigned int.
2863      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2864
2865      // Check from smallest to largest, picking the smallest type we can.
2866      unsigned Width = 0;
2867      if (!Literal.isLong && !Literal.isLongLong) {
2868        // Are int/unsigned possibilities?
2869        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2870
2871        // Does it fit in a unsigned int?
2872        if (ResultVal.isIntN(IntSize)) {
2873          // Does it fit in a signed int?
2874          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2875            Ty = Context.IntTy;
2876          else if (AllowUnsigned)
2877            Ty = Context.UnsignedIntTy;
2878          Width = IntSize;
2879        }
2880      }
2881
2882      // Are long/unsigned long possibilities?
2883      if (Ty.isNull() && !Literal.isLongLong) {
2884        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2885
2886        // Does it fit in a unsigned long?
2887        if (ResultVal.isIntN(LongSize)) {
2888          // Does it fit in a signed long?
2889          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2890            Ty = Context.LongTy;
2891          else if (AllowUnsigned)
2892            Ty = Context.UnsignedLongTy;
2893          Width = LongSize;
2894        }
2895      }
2896
2897      // Check long long if needed.
2898      if (Ty.isNull()) {
2899        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2900
2901        // Does it fit in a unsigned long long?
2902        if (ResultVal.isIntN(LongLongSize)) {
2903          // Does it fit in a signed long long?
2904          // To be compatible with MSVC, hex integer literals ending with the
2905          // LL or i64 suffix are always signed in Microsoft mode.
2906          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2907              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2908            Ty = Context.LongLongTy;
2909          else if (AllowUnsigned)
2910            Ty = Context.UnsignedLongLongTy;
2911          Width = LongLongSize;
2912        }
2913      }
2914
2915      // If it doesn't fit in unsigned long long, and we're using Microsoft
2916      // extensions, then its a 128-bit integer literal.
2917      if (Ty.isNull() && Literal.isMicrosoftInteger &&
2918          PP.getTargetInfo().hasInt128Type()) {
2919        if (Literal.isUnsigned)
2920          Ty = Context.UnsignedInt128Ty;
2921        else
2922          Ty = Context.Int128Ty;
2923        Width = 128;
2924      }
2925
2926      // If we still couldn't decide a type, we probably have something that
2927      // does not fit in a signed long long, but has no U suffix.
2928      if (Ty.isNull()) {
2929        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2930        Ty = Context.UnsignedLongLongTy;
2931        Width = Context.getTargetInfo().getLongLongWidth();
2932      }
2933
2934      if (ResultVal.getBitWidth() != Width)
2935        ResultVal = ResultVal.trunc(Width);
2936    }
2937    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2938  }
2939
2940  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2941  if (Literal.isImaginary)
2942    Res = new (Context) ImaginaryLiteral(Res,
2943                                        Context.getComplexType(Res->getType()));
2944
2945  return Owned(Res);
2946}
2947
2948ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2949  assert((E != 0) && "ActOnParenExpr() missing expr");
2950  return Owned(new (Context) ParenExpr(L, R, E));
2951}
2952
2953static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2954                                         SourceLocation Loc,
2955                                         SourceRange ArgRange) {
2956  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2957  // scalar or vector data type argument..."
2958  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2959  // type (C99 6.2.5p18) or void.
2960  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2961    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2962      << T << ArgRange;
2963    return true;
2964  }
2965
2966  assert((T->isVoidType() || !T->isIncompleteType()) &&
2967         "Scalar types should always be complete");
2968  return false;
2969}
2970
2971static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2972                                           SourceLocation Loc,
2973                                           SourceRange ArgRange,
2974                                           UnaryExprOrTypeTrait TraitKind) {
2975  // C99 6.5.3.4p1:
2976  if (T->isFunctionType()) {
2977    // alignof(function) is allowed as an extension.
2978    if (TraitKind == UETT_SizeOf)
2979      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2980    return false;
2981  }
2982
2983  // Allow sizeof(void)/alignof(void) as an extension.
2984  if (T->isVoidType()) {
2985    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2986    return false;
2987  }
2988
2989  return true;
2990}
2991
2992static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2993                                             SourceLocation Loc,
2994                                             SourceRange ArgRange,
2995                                             UnaryExprOrTypeTrait TraitKind) {
2996  // Reject sizeof(interface) and sizeof(interface<proto>) if the
2997  // runtime doesn't allow it.
2998  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
2999    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3000      << T << (TraitKind == UETT_SizeOf)
3001      << ArgRange;
3002    return true;
3003  }
3004
3005  return false;
3006}
3007
3008/// \brief Check the constrains on expression operands to unary type expression
3009/// and type traits.
3010///
3011/// Completes any types necessary and validates the constraints on the operand
3012/// expression. The logic mostly mirrors the type-based overload, but may modify
3013/// the expression as it completes the type for that expression through template
3014/// instantiation, etc.
3015bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3016                                            UnaryExprOrTypeTrait ExprKind) {
3017  QualType ExprTy = E->getType();
3018
3019  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3020  //   the result is the size of the referenced type."
3021  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3022  //   result shall be the alignment of the referenced type."
3023  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3024    ExprTy = Ref->getPointeeType();
3025
3026  if (ExprKind == UETT_VecStep)
3027    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3028                                        E->getSourceRange());
3029
3030  // Whitelist some types as extensions
3031  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3032                                      E->getSourceRange(), ExprKind))
3033    return false;
3034
3035  if (RequireCompleteExprType(E,
3036                              diag::err_sizeof_alignof_incomplete_type,
3037                              ExprKind, E->getSourceRange()))
3038    return true;
3039
3040  // Completeing the expression's type may have changed it.
3041  ExprTy = E->getType();
3042  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
3043    ExprTy = Ref->getPointeeType();
3044
3045  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3046                                       E->getSourceRange(), ExprKind))
3047    return true;
3048
3049  if (ExprKind == UETT_SizeOf) {
3050    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3051      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3052        QualType OType = PVD->getOriginalType();
3053        QualType Type = PVD->getType();
3054        if (Type->isPointerType() && OType->isArrayType()) {
3055          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3056            << Type << OType;
3057          Diag(PVD->getLocation(), diag::note_declared_at);
3058        }
3059      }
3060    }
3061  }
3062
3063  return false;
3064}
3065
3066/// \brief Check the constraints on operands to unary expression and type
3067/// traits.
3068///
3069/// This will complete any types necessary, and validate the various constraints
3070/// on those operands.
3071///
3072/// The UsualUnaryConversions() function is *not* called by this routine.
3073/// C99 6.3.2.1p[2-4] all state:
3074///   Except when it is the operand of the sizeof operator ...
3075///
3076/// C++ [expr.sizeof]p4
3077///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3078///   standard conversions are not applied to the operand of sizeof.
3079///
3080/// This policy is followed for all of the unary trait expressions.
3081bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3082                                            SourceLocation OpLoc,
3083                                            SourceRange ExprRange,
3084                                            UnaryExprOrTypeTrait ExprKind) {
3085  if (ExprType->isDependentType())
3086    return false;
3087
3088  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3089  //   the result is the size of the referenced type."
3090  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3091  //   result shall be the alignment of the referenced type."
3092  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3093    ExprType = Ref->getPointeeType();
3094
3095  if (ExprKind == UETT_VecStep)
3096    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3097
3098  // Whitelist some types as extensions
3099  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3100                                      ExprKind))
3101    return false;
3102
3103  if (RequireCompleteType(OpLoc, ExprType,
3104                          diag::err_sizeof_alignof_incomplete_type,
3105                          ExprKind, ExprRange))
3106    return true;
3107
3108  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3109                                       ExprKind))
3110    return true;
3111
3112  return false;
3113}
3114
3115static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3116  E = E->IgnoreParens();
3117
3118  // alignof decl is always ok.
3119  if (isa<DeclRefExpr>(E))
3120    return false;
3121
3122  // Cannot know anything else if the expression is dependent.
3123  if (E->isTypeDependent())
3124    return false;
3125
3126  if (E->getBitField()) {
3127    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3128       << 1 << E->getSourceRange();
3129    return true;
3130  }
3131
3132  // Alignment of a field access is always okay, so long as it isn't a
3133  // bit-field.
3134  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3135    if (isa<FieldDecl>(ME->getMemberDecl()))
3136      return false;
3137
3138  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3139}
3140
3141bool Sema::CheckVecStepExpr(Expr *E) {
3142  E = E->IgnoreParens();
3143
3144  // Cannot know anything else if the expression is dependent.
3145  if (E->isTypeDependent())
3146    return false;
3147
3148  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3149}
3150
3151/// \brief Build a sizeof or alignof expression given a type operand.
3152ExprResult
3153Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3154                                     SourceLocation OpLoc,
3155                                     UnaryExprOrTypeTrait ExprKind,
3156                                     SourceRange R) {
3157  if (!TInfo)
3158    return ExprError();
3159
3160  QualType T = TInfo->getType();
3161
3162  if (!T->isDependentType() &&
3163      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3164    return ExprError();
3165
3166  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3167  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3168                                                      Context.getSizeType(),
3169                                                      OpLoc, R.getEnd()));
3170}
3171
3172/// \brief Build a sizeof or alignof expression given an expression
3173/// operand.
3174ExprResult
3175Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3176                                     UnaryExprOrTypeTrait ExprKind) {
3177  ExprResult PE = CheckPlaceholderExpr(E);
3178  if (PE.isInvalid())
3179    return ExprError();
3180
3181  E = PE.get();
3182
3183  // Verify that the operand is valid.
3184  bool isInvalid = false;
3185  if (E->isTypeDependent()) {
3186    // Delay type-checking for type-dependent expressions.
3187  } else if (ExprKind == UETT_AlignOf) {
3188    isInvalid = CheckAlignOfExpr(*this, E);
3189  } else if (ExprKind == UETT_VecStep) {
3190    isInvalid = CheckVecStepExpr(E);
3191  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3192    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3193    isInvalid = true;
3194  } else {
3195    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3196  }
3197
3198  if (isInvalid)
3199    return ExprError();
3200
3201  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3202    PE = TransformToPotentiallyEvaluated(E);
3203    if (PE.isInvalid()) return ExprError();
3204    E = PE.take();
3205  }
3206
3207  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3208  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3209      ExprKind, E, Context.getSizeType(), OpLoc,
3210      E->getSourceRange().getEnd()));
3211}
3212
3213/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3214/// expr and the same for @c alignof and @c __alignof
3215/// Note that the ArgRange is invalid if isType is false.
3216ExprResult
3217Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3218                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3219                                    void *TyOrEx, const SourceRange &ArgRange) {
3220  // If error parsing type, ignore.
3221  if (TyOrEx == 0) return ExprError();
3222
3223  if (IsType) {
3224    TypeSourceInfo *TInfo;
3225    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3226    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3227  }
3228
3229  Expr *ArgEx = (Expr *)TyOrEx;
3230  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3231  return Result;
3232}
3233
3234static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3235                                     bool IsReal) {
3236  if (V.get()->isTypeDependent())
3237    return S.Context.DependentTy;
3238
3239  // _Real and _Imag are only l-values for normal l-values.
3240  if (V.get()->getObjectKind() != OK_Ordinary) {
3241    V = S.DefaultLvalueConversion(V.take());
3242    if (V.isInvalid())
3243      return QualType();
3244  }
3245
3246  // These operators return the element type of a complex type.
3247  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3248    return CT->getElementType();
3249
3250  // Otherwise they pass through real integer and floating point types here.
3251  if (V.get()->getType()->isArithmeticType())
3252    return V.get()->getType();
3253
3254  // Test for placeholders.
3255  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3256  if (PR.isInvalid()) return QualType();
3257  if (PR.get() != V.get()) {
3258    V = PR;
3259    return CheckRealImagOperand(S, V, Loc, IsReal);
3260  }
3261
3262  // Reject anything else.
3263  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3264    << (IsReal ? "__real" : "__imag");
3265  return QualType();
3266}
3267
3268
3269
3270ExprResult
3271Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3272                          tok::TokenKind Kind, Expr *Input) {
3273  UnaryOperatorKind Opc;
3274  switch (Kind) {
3275  default: llvm_unreachable("Unknown unary op!");
3276  case tok::plusplus:   Opc = UO_PostInc; break;
3277  case tok::minusminus: Opc = UO_PostDec; break;
3278  }
3279
3280  // Since this might is a postfix expression, get rid of ParenListExprs.
3281  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3282  if (Result.isInvalid()) return ExprError();
3283  Input = Result.take();
3284
3285  return BuildUnaryOp(S, OpLoc, Opc, Input);
3286}
3287
3288/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3289///
3290/// \return true on error
3291static bool checkArithmeticOnObjCPointer(Sema &S,
3292                                         SourceLocation opLoc,
3293                                         Expr *op) {
3294  assert(op->getType()->isObjCObjectPointerType());
3295  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3296    return false;
3297
3298  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3299    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3300    << op->getSourceRange();
3301  return true;
3302}
3303
3304ExprResult
3305Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3306                              Expr *Idx, SourceLocation RLoc) {
3307  // Since this might be a postfix expression, get rid of ParenListExprs.
3308  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3309  if (Result.isInvalid()) return ExprError();
3310  Base = Result.take();
3311
3312  Expr *LHSExp = Base, *RHSExp = Idx;
3313
3314  if (getLangOpts().CPlusPlus &&
3315      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3316    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3317                                                  Context.DependentTy,
3318                                                  VK_LValue, OK_Ordinary,
3319                                                  RLoc));
3320  }
3321
3322  if (getLangOpts().CPlusPlus &&
3323      (LHSExp->getType()->isRecordType() ||
3324       LHSExp->getType()->isEnumeralType() ||
3325       RHSExp->getType()->isRecordType() ||
3326       RHSExp->getType()->isEnumeralType()) &&
3327      !LHSExp->getType()->isObjCObjectPointerType()) {
3328    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3329  }
3330
3331  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3332}
3333
3334ExprResult
3335Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3336                                      Expr *Idx, SourceLocation RLoc) {
3337  Expr *LHSExp = Base;
3338  Expr *RHSExp = Idx;
3339
3340  // Perform default conversions.
3341  if (!LHSExp->getType()->getAs<VectorType>()) {
3342    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3343    if (Result.isInvalid())
3344      return ExprError();
3345    LHSExp = Result.take();
3346  }
3347  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3348  if (Result.isInvalid())
3349    return ExprError();
3350  RHSExp = Result.take();
3351
3352  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3353  ExprValueKind VK = VK_LValue;
3354  ExprObjectKind OK = OK_Ordinary;
3355
3356  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3357  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3358  // in the subscript position. As a result, we need to derive the array base
3359  // and index from the expression types.
3360  Expr *BaseExpr, *IndexExpr;
3361  QualType ResultType;
3362  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3363    BaseExpr = LHSExp;
3364    IndexExpr = RHSExp;
3365    ResultType = Context.DependentTy;
3366  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3367    BaseExpr = LHSExp;
3368    IndexExpr = RHSExp;
3369    ResultType = PTy->getPointeeType();
3370  } else if (const ObjCObjectPointerType *PTy =
3371               LHSTy->getAs<ObjCObjectPointerType>()) {
3372    BaseExpr = LHSExp;
3373    IndexExpr = RHSExp;
3374
3375    // Use custom logic if this should be the pseudo-object subscript
3376    // expression.
3377    if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3378      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3379
3380    ResultType = PTy->getPointeeType();
3381    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3382      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3383        << ResultType << BaseExpr->getSourceRange();
3384      return ExprError();
3385    }
3386  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3387     // Handle the uncommon case of "123[Ptr]".
3388    BaseExpr = RHSExp;
3389    IndexExpr = LHSExp;
3390    ResultType = PTy->getPointeeType();
3391  } else if (const ObjCObjectPointerType *PTy =
3392               RHSTy->getAs<ObjCObjectPointerType>()) {
3393     // Handle the uncommon case of "123[Ptr]".
3394    BaseExpr = RHSExp;
3395    IndexExpr = LHSExp;
3396    ResultType = PTy->getPointeeType();
3397    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3398      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3399        << ResultType << BaseExpr->getSourceRange();
3400      return ExprError();
3401    }
3402  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3403    BaseExpr = LHSExp;    // vectors: V[123]
3404    IndexExpr = RHSExp;
3405    VK = LHSExp->getValueKind();
3406    if (VK != VK_RValue)
3407      OK = OK_VectorComponent;
3408
3409    // FIXME: need to deal with const...
3410    ResultType = VTy->getElementType();
3411  } else if (LHSTy->isArrayType()) {
3412    // If we see an array that wasn't promoted by
3413    // DefaultFunctionArrayLvalueConversion, it must be an array that
3414    // wasn't promoted because of the C90 rule that doesn't
3415    // allow promoting non-lvalue arrays.  Warn, then
3416    // force the promotion here.
3417    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3418        LHSExp->getSourceRange();
3419    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3420                               CK_ArrayToPointerDecay).take();
3421    LHSTy = LHSExp->getType();
3422
3423    BaseExpr = LHSExp;
3424    IndexExpr = RHSExp;
3425    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3426  } else if (RHSTy->isArrayType()) {
3427    // Same as previous, except for 123[f().a] case
3428    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3429        RHSExp->getSourceRange();
3430    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3431                               CK_ArrayToPointerDecay).take();
3432    RHSTy = RHSExp->getType();
3433
3434    BaseExpr = RHSExp;
3435    IndexExpr = LHSExp;
3436    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3437  } else {
3438    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3439       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3440  }
3441  // C99 6.5.2.1p1
3442  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3443    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3444                     << IndexExpr->getSourceRange());
3445
3446  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3447       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3448         && !IndexExpr->isTypeDependent())
3449    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3450
3451  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3452  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3453  // type. Note that Functions are not objects, and that (in C99 parlance)
3454  // incomplete types are not object types.
3455  if (ResultType->isFunctionType()) {
3456    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3457      << ResultType << BaseExpr->getSourceRange();
3458    return ExprError();
3459  }
3460
3461  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3462    // GNU extension: subscripting on pointer to void
3463    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3464      << BaseExpr->getSourceRange();
3465
3466    // C forbids expressions of unqualified void type from being l-values.
3467    // See IsCForbiddenLValueType.
3468    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3469  } else if (!ResultType->isDependentType() &&
3470      RequireCompleteType(LLoc, ResultType,
3471                          diag::err_subscript_incomplete_type, BaseExpr))
3472    return ExprError();
3473
3474  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3475         !ResultType.isCForbiddenLValueType());
3476
3477  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3478                                                ResultType, VK, OK, RLoc));
3479}
3480
3481ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3482                                        FunctionDecl *FD,
3483                                        ParmVarDecl *Param) {
3484  if (Param->hasUnparsedDefaultArg()) {
3485    Diag(CallLoc,
3486         diag::err_use_of_default_argument_to_function_declared_later) <<
3487      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3488    Diag(UnparsedDefaultArgLocs[Param],
3489         diag::note_default_argument_declared_here);
3490    return ExprError();
3491  }
3492
3493  if (Param->hasUninstantiatedDefaultArg()) {
3494    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3495
3496    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3497                                                 Param);
3498
3499    // Instantiate the expression.
3500    MultiLevelTemplateArgumentList ArgList
3501      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3502
3503    std::pair<const TemplateArgument *, unsigned> Innermost
3504      = ArgList.getInnermost();
3505    InstantiatingTemplate Inst(*this, CallLoc, Param,
3506                               ArrayRef<TemplateArgument>(Innermost.first,
3507                                                          Innermost.second));
3508    if (Inst)
3509      return ExprError();
3510
3511    ExprResult Result;
3512    {
3513      // C++ [dcl.fct.default]p5:
3514      //   The names in the [default argument] expression are bound, and
3515      //   the semantic constraints are checked, at the point where the
3516      //   default argument expression appears.
3517      ContextRAII SavedContext(*this, FD);
3518      LocalInstantiationScope Local(*this);
3519      Result = SubstExpr(UninstExpr, ArgList);
3520    }
3521    if (Result.isInvalid())
3522      return ExprError();
3523
3524    // Check the expression as an initializer for the parameter.
3525    InitializedEntity Entity
3526      = InitializedEntity::InitializeParameter(Context, Param);
3527    InitializationKind Kind
3528      = InitializationKind::CreateCopy(Param->getLocation(),
3529             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3530    Expr *ResultE = Result.takeAs<Expr>();
3531
3532    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3533    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3534    if (Result.isInvalid())
3535      return ExprError();
3536
3537    Expr *Arg = Result.takeAs<Expr>();
3538    CheckImplicitConversions(Arg, Param->getOuterLocStart());
3539    // Build the default argument expression.
3540    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3541  }
3542
3543  // If the default expression creates temporaries, we need to
3544  // push them to the current stack of expression temporaries so they'll
3545  // be properly destroyed.
3546  // FIXME: We should really be rebuilding the default argument with new
3547  // bound temporaries; see the comment in PR5810.
3548  // We don't need to do that with block decls, though, because
3549  // blocks in default argument expression can never capture anything.
3550  if (isa<ExprWithCleanups>(Param->getInit())) {
3551    // Set the "needs cleanups" bit regardless of whether there are
3552    // any explicit objects.
3553    ExprNeedsCleanups = true;
3554
3555    // Append all the objects to the cleanup list.  Right now, this
3556    // should always be a no-op, because blocks in default argument
3557    // expressions should never be able to capture anything.
3558    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3559           "default argument expression has capturing blocks?");
3560  }
3561
3562  // We already type-checked the argument, so we know it works.
3563  // Just mark all of the declarations in this potentially-evaluated expression
3564  // as being "referenced".
3565  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3566                                   /*SkipLocalVariables=*/true);
3567  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3568}
3569
3570
3571Sema::VariadicCallType
3572Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3573                          Expr *Fn) {
3574  if (Proto && Proto->isVariadic()) {
3575    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3576      return VariadicConstructor;
3577    else if (Fn && Fn->getType()->isBlockPointerType())
3578      return VariadicBlock;
3579    else if (FDecl) {
3580      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3581        if (Method->isInstance())
3582          return VariadicMethod;
3583    }
3584    return VariadicFunction;
3585  }
3586  return VariadicDoesNotApply;
3587}
3588
3589/// ConvertArgumentsForCall - Converts the arguments specified in
3590/// Args/NumArgs to the parameter types of the function FDecl with
3591/// function prototype Proto. Call is the call expression itself, and
3592/// Fn is the function expression. For a C++ member function, this
3593/// routine does not attempt to convert the object argument. Returns
3594/// true if the call is ill-formed.
3595bool
3596Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3597                              FunctionDecl *FDecl,
3598                              const FunctionProtoType *Proto,
3599                              Expr **Args, unsigned NumArgs,
3600                              SourceLocation RParenLoc,
3601                              bool IsExecConfig) {
3602  // Bail out early if calling a builtin with custom typechecking.
3603  // We don't need to do this in the
3604  if (FDecl)
3605    if (unsigned ID = FDecl->getBuiltinID())
3606      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3607        return false;
3608
3609  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3610  // assignment, to the types of the corresponding parameter, ...
3611  unsigned NumArgsInProto = Proto->getNumArgs();
3612  bool Invalid = false;
3613  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3614  unsigned FnKind = Fn->getType()->isBlockPointerType()
3615                       ? 1 /* block */
3616                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3617                                       : 0 /* function */);
3618
3619  // If too few arguments are available (and we don't have default
3620  // arguments for the remaining parameters), don't make the call.
3621  if (NumArgs < NumArgsInProto) {
3622    if (NumArgs < MinArgs) {
3623      if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3624        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3625                          ? diag::err_typecheck_call_too_few_args_one
3626                          : diag::err_typecheck_call_too_few_args_at_least_one)
3627          << FnKind
3628          << FDecl->getParamDecl(0) << Fn->getSourceRange();
3629      else
3630        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3631                          ? diag::err_typecheck_call_too_few_args
3632                          : diag::err_typecheck_call_too_few_args_at_least)
3633          << FnKind
3634          << MinArgs << NumArgs << Fn->getSourceRange();
3635
3636      // Emit the location of the prototype.
3637      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3638        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3639          << FDecl;
3640
3641      return true;
3642    }
3643    Call->setNumArgs(Context, NumArgsInProto);
3644  }
3645
3646  // If too many are passed and not variadic, error on the extras and drop
3647  // them.
3648  if (NumArgs > NumArgsInProto) {
3649    if (!Proto->isVariadic()) {
3650      if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3651        Diag(Args[NumArgsInProto]->getLocStart(),
3652             MinArgs == NumArgsInProto
3653               ? diag::err_typecheck_call_too_many_args_one
3654               : diag::err_typecheck_call_too_many_args_at_most_one)
3655          << FnKind
3656          << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3657          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3658                         Args[NumArgs-1]->getLocEnd());
3659      else
3660        Diag(Args[NumArgsInProto]->getLocStart(),
3661             MinArgs == NumArgsInProto
3662               ? diag::err_typecheck_call_too_many_args
3663               : diag::err_typecheck_call_too_many_args_at_most)
3664          << FnKind
3665          << NumArgsInProto << NumArgs << Fn->getSourceRange()
3666          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3667                         Args[NumArgs-1]->getLocEnd());
3668
3669      // Emit the location of the prototype.
3670      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3671        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3672          << FDecl;
3673
3674      // This deletes the extra arguments.
3675      Call->setNumArgs(Context, NumArgsInProto);
3676      return true;
3677    }
3678  }
3679  SmallVector<Expr *, 8> AllArgs;
3680  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3681
3682  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3683                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3684  if (Invalid)
3685    return true;
3686  unsigned TotalNumArgs = AllArgs.size();
3687  for (unsigned i = 0; i < TotalNumArgs; ++i)
3688    Call->setArg(i, AllArgs[i]);
3689
3690  return false;
3691}
3692
3693bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3694                                  FunctionDecl *FDecl,
3695                                  const FunctionProtoType *Proto,
3696                                  unsigned FirstProtoArg,
3697                                  Expr **Args, unsigned NumArgs,
3698                                  SmallVector<Expr *, 8> &AllArgs,
3699                                  VariadicCallType CallType,
3700                                  bool AllowExplicit) {
3701  unsigned NumArgsInProto = Proto->getNumArgs();
3702  unsigned NumArgsToCheck = NumArgs;
3703  bool Invalid = false;
3704  if (NumArgs != NumArgsInProto)
3705    // Use default arguments for missing arguments
3706    NumArgsToCheck = NumArgsInProto;
3707  unsigned ArgIx = 0;
3708  // Continue to check argument types (even if we have too few/many args).
3709  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3710    QualType ProtoArgType = Proto->getArgType(i);
3711
3712    Expr *Arg;
3713    ParmVarDecl *Param;
3714    if (ArgIx < NumArgs) {
3715      Arg = Args[ArgIx++];
3716
3717      if (RequireCompleteType(Arg->getLocStart(),
3718                              ProtoArgType,
3719                              diag::err_call_incomplete_argument, Arg))
3720        return true;
3721
3722      // Pass the argument
3723      Param = 0;
3724      if (FDecl && i < FDecl->getNumParams())
3725        Param = FDecl->getParamDecl(i);
3726
3727      // Strip the unbridged-cast placeholder expression off, if applicable.
3728      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3729          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3730          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3731        Arg = stripARCUnbridgedCast(Arg);
3732
3733      InitializedEntity Entity =
3734        Param? InitializedEntity::InitializeParameter(Context, Param)
3735             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3736                                                      Proto->isArgConsumed(i));
3737      ExprResult ArgE = PerformCopyInitialization(Entity,
3738                                                  SourceLocation(),
3739                                                  Owned(Arg),
3740                                                  /*TopLevelOfInitList=*/false,
3741                                                  AllowExplicit);
3742      if (ArgE.isInvalid())
3743        return true;
3744
3745      Arg = ArgE.takeAs<Expr>();
3746    } else {
3747      Param = FDecl->getParamDecl(i);
3748
3749      ExprResult ArgExpr =
3750        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3751      if (ArgExpr.isInvalid())
3752        return true;
3753
3754      Arg = ArgExpr.takeAs<Expr>();
3755    }
3756
3757    // Check for array bounds violations for each argument to the call. This
3758    // check only triggers warnings when the argument isn't a more complex Expr
3759    // with its own checking, such as a BinaryOperator.
3760    CheckArrayAccess(Arg);
3761
3762    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3763    CheckStaticArrayArgument(CallLoc, Param, Arg);
3764
3765    AllArgs.push_back(Arg);
3766  }
3767
3768  // If this is a variadic call, handle args passed through "...".
3769  if (CallType != VariadicDoesNotApply) {
3770    // Assume that extern "C" functions with variadic arguments that
3771    // return __unknown_anytype aren't *really* variadic.
3772    if (Proto->getResultType() == Context.UnknownAnyTy &&
3773        FDecl && FDecl->isExternC()) {
3774      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3775        ExprResult arg;
3776        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3777          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3778        else
3779          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3780        Invalid |= arg.isInvalid();
3781        AllArgs.push_back(arg.take());
3782      }
3783
3784    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3785    } else {
3786      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3787        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3788                                                          FDecl);
3789        Invalid |= Arg.isInvalid();
3790        AllArgs.push_back(Arg.take());
3791      }
3792    }
3793
3794    // Check for array bounds violations.
3795    for (unsigned i = ArgIx; i != NumArgs; ++i)
3796      CheckArrayAccess(Args[i]);
3797  }
3798  return Invalid;
3799}
3800
3801static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3802  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3803  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3804    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3805      << ATL->getLocalSourceRange();
3806}
3807
3808/// CheckStaticArrayArgument - If the given argument corresponds to a static
3809/// array parameter, check that it is non-null, and that if it is formed by
3810/// array-to-pointer decay, the underlying array is sufficiently large.
3811///
3812/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3813/// array type derivation, then for each call to the function, the value of the
3814/// corresponding actual argument shall provide access to the first element of
3815/// an array with at least as many elements as specified by the size expression.
3816void
3817Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3818                               ParmVarDecl *Param,
3819                               const Expr *ArgExpr) {
3820  // Static array parameters are not supported in C++.
3821  if (!Param || getLangOpts().CPlusPlus)
3822    return;
3823
3824  QualType OrigTy = Param->getOriginalType();
3825
3826  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3827  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3828    return;
3829
3830  if (ArgExpr->isNullPointerConstant(Context,
3831                                     Expr::NPC_NeverValueDependent)) {
3832    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3833    DiagnoseCalleeStaticArrayParam(*this, Param);
3834    return;
3835  }
3836
3837  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3838  if (!CAT)
3839    return;
3840
3841  const ConstantArrayType *ArgCAT =
3842    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3843  if (!ArgCAT)
3844    return;
3845
3846  if (ArgCAT->getSize().ult(CAT->getSize())) {
3847    Diag(CallLoc, diag::warn_static_array_too_small)
3848      << ArgExpr->getSourceRange()
3849      << (unsigned) ArgCAT->getSize().getZExtValue()
3850      << (unsigned) CAT->getSize().getZExtValue();
3851    DiagnoseCalleeStaticArrayParam(*this, Param);
3852  }
3853}
3854
3855/// Given a function expression of unknown-any type, try to rebuild it
3856/// to have a function type.
3857static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3858
3859/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3860/// This provides the location of the left/right parens and a list of comma
3861/// locations.
3862ExprResult
3863Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3864                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3865                    Expr *ExecConfig, bool IsExecConfig) {
3866  // Since this might be a postfix expression, get rid of ParenListExprs.
3867  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3868  if (Result.isInvalid()) return ExprError();
3869  Fn = Result.take();
3870
3871  if (getLangOpts().CPlusPlus) {
3872    // If this is a pseudo-destructor expression, build the call immediately.
3873    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3874      if (!ArgExprs.empty()) {
3875        // Pseudo-destructor calls should not have any arguments.
3876        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3877          << FixItHint::CreateRemoval(
3878                                    SourceRange(ArgExprs[0]->getLocStart(),
3879                                                ArgExprs.back()->getLocEnd()));
3880      }
3881
3882      return Owned(new (Context) CallExpr(Context, Fn, MultiExprArg(),
3883                                          Context.VoidTy, VK_RValue,
3884                                          RParenLoc));
3885    }
3886
3887    // Determine whether this is a dependent call inside a C++ template,
3888    // in which case we won't do any semantic analysis now.
3889    // FIXME: Will need to cache the results of name lookup (including ADL) in
3890    // Fn.
3891    bool Dependent = false;
3892    if (Fn->isTypeDependent())
3893      Dependent = true;
3894    else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
3895      Dependent = true;
3896
3897    if (Dependent) {
3898      if (ExecConfig) {
3899        return Owned(new (Context) CUDAKernelCallExpr(
3900            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
3901            Context.DependentTy, VK_RValue, RParenLoc));
3902      } else {
3903        return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
3904                                            Context.DependentTy, VK_RValue,
3905                                            RParenLoc));
3906      }
3907    }
3908
3909    // Determine whether this is a call to an object (C++ [over.call.object]).
3910    if (Fn->getType()->isRecordType())
3911      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
3912                                                ArgExprs.data(),
3913                                                ArgExprs.size(), RParenLoc));
3914
3915    if (Fn->getType() == Context.UnknownAnyTy) {
3916      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3917      if (result.isInvalid()) return ExprError();
3918      Fn = result.take();
3919    }
3920
3921    if (Fn->getType() == Context.BoundMemberTy) {
3922      return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3923                                       ArgExprs.size(), RParenLoc);
3924    }
3925  }
3926
3927  // Check for overloaded calls.  This can happen even in C due to extensions.
3928  if (Fn->getType() == Context.OverloadTy) {
3929    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3930
3931    // We aren't supposed to apply this logic for if there's an '&' involved.
3932    if (!find.HasFormOfMemberPointer) {
3933      OverloadExpr *ovl = find.Expression;
3934      if (isa<UnresolvedLookupExpr>(ovl)) {
3935        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3936        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs.data(),
3937                                       ArgExprs.size(), RParenLoc, ExecConfig);
3938      } else {
3939        return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs.data(),
3940                                         ArgExprs.size(), RParenLoc);
3941      }
3942    }
3943  }
3944
3945  // If we're directly calling a function, get the appropriate declaration.
3946  if (Fn->getType() == Context.UnknownAnyTy) {
3947    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3948    if (result.isInvalid()) return ExprError();
3949    Fn = result.take();
3950  }
3951
3952  Expr *NakedFn = Fn->IgnoreParens();
3953
3954  NamedDecl *NDecl = 0;
3955  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3956    if (UnOp->getOpcode() == UO_AddrOf)
3957      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3958
3959  if (isa<DeclRefExpr>(NakedFn))
3960    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3961  else if (isa<MemberExpr>(NakedFn))
3962    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3963
3964  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs.data(),
3965                               ArgExprs.size(), RParenLoc, ExecConfig,
3966                               IsExecConfig);
3967}
3968
3969ExprResult
3970Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3971                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3972  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3973  if (!ConfigDecl)
3974    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3975                          << "cudaConfigureCall");
3976  QualType ConfigQTy = ConfigDecl->getType();
3977
3978  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3979      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3980  MarkFunctionReferenced(LLLLoc, ConfigDecl);
3981
3982  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3983                       /*IsExecConfig=*/true);
3984}
3985
3986/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3987///
3988/// __builtin_astype( value, dst type )
3989///
3990ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3991                                 SourceLocation BuiltinLoc,
3992                                 SourceLocation RParenLoc) {
3993  ExprValueKind VK = VK_RValue;
3994  ExprObjectKind OK = OK_Ordinary;
3995  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3996  QualType SrcTy = E->getType();
3997  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3998    return ExprError(Diag(BuiltinLoc,
3999                          diag::err_invalid_astype_of_different_size)
4000                     << DstTy
4001                     << SrcTy
4002                     << E->getSourceRange());
4003  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4004               RParenLoc));
4005}
4006
4007/// BuildResolvedCallExpr - Build a call to a resolved expression,
4008/// i.e. an expression not of \p OverloadTy.  The expression should
4009/// unary-convert to an expression of function-pointer or
4010/// block-pointer type.
4011///
4012/// \param NDecl the declaration being called, if available
4013ExprResult
4014Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4015                            SourceLocation LParenLoc,
4016                            Expr **Args, unsigned NumArgs,
4017                            SourceLocation RParenLoc,
4018                            Expr *Config, bool IsExecConfig) {
4019  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4020  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4021
4022  // Promote the function operand.
4023  // We special-case function promotion here because we only allow promoting
4024  // builtin functions to function pointers in the callee of a call.
4025  ExprResult Result;
4026  if (BuiltinID &&
4027      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4028    Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4029                               CK_BuiltinFnToFnPtr).take();
4030  } else {
4031    Result = UsualUnaryConversions(Fn);
4032  }
4033  if (Result.isInvalid())
4034    return ExprError();
4035  Fn = Result.take();
4036
4037  // Make the call expr early, before semantic checks.  This guarantees cleanup
4038  // of arguments and function on error.
4039  CallExpr *TheCall;
4040  if (Config)
4041    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4042                                               cast<CallExpr>(Config),
4043                                               llvm::makeArrayRef(Args,NumArgs),
4044                                               Context.BoolTy,
4045                                               VK_RValue,
4046                                               RParenLoc);
4047  else
4048    TheCall = new (Context) CallExpr(Context, Fn,
4049                                     llvm::makeArrayRef(Args, NumArgs),
4050                                     Context.BoolTy,
4051                                     VK_RValue,
4052                                     RParenLoc);
4053
4054  // Bail out early if calling a builtin with custom typechecking.
4055  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4056    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4057
4058 retry:
4059  const FunctionType *FuncT;
4060  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4061    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4062    // have type pointer to function".
4063    FuncT = PT->getPointeeType()->getAs<FunctionType>();
4064    if (FuncT == 0)
4065      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4066                         << Fn->getType() << Fn->getSourceRange());
4067  } else if (const BlockPointerType *BPT =
4068               Fn->getType()->getAs<BlockPointerType>()) {
4069    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4070  } else {
4071    // Handle calls to expressions of unknown-any type.
4072    if (Fn->getType() == Context.UnknownAnyTy) {
4073      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4074      if (rewrite.isInvalid()) return ExprError();
4075      Fn = rewrite.take();
4076      TheCall->setCallee(Fn);
4077      goto retry;
4078    }
4079
4080    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4081      << Fn->getType() << Fn->getSourceRange());
4082  }
4083
4084  if (getLangOpts().CUDA) {
4085    if (Config) {
4086      // CUDA: Kernel calls must be to global functions
4087      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4088        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4089            << FDecl->getName() << Fn->getSourceRange());
4090
4091      // CUDA: Kernel function must have 'void' return type
4092      if (!FuncT->getResultType()->isVoidType())
4093        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4094            << Fn->getType() << Fn->getSourceRange());
4095    } else {
4096      // CUDA: Calls to global functions must be configured
4097      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4098        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4099            << FDecl->getName() << Fn->getSourceRange());
4100    }
4101  }
4102
4103  // Check for a valid return type
4104  if (CheckCallReturnType(FuncT->getResultType(),
4105                          Fn->getLocStart(), TheCall,
4106                          FDecl))
4107    return ExprError();
4108
4109  // We know the result type of the call, set it.
4110  TheCall->setType(FuncT->getCallResultType(Context));
4111  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4112
4113  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4114  if (Proto) {
4115    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4116                                RParenLoc, IsExecConfig))
4117      return ExprError();
4118  } else {
4119    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4120
4121    if (FDecl) {
4122      // Check if we have too few/too many template arguments, based
4123      // on our knowledge of the function definition.
4124      const FunctionDecl *Def = 0;
4125      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4126        Proto = Def->getType()->getAs<FunctionProtoType>();
4127        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4128          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4129            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4130      }
4131
4132      // If the function we're calling isn't a function prototype, but we have
4133      // a function prototype from a prior declaratiom, use that prototype.
4134      if (!FDecl->hasPrototype())
4135        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4136    }
4137
4138    // Promote the arguments (C99 6.5.2.2p6).
4139    for (unsigned i = 0; i != NumArgs; i++) {
4140      Expr *Arg = Args[i];
4141
4142      if (Proto && i < Proto->getNumArgs()) {
4143        InitializedEntity Entity
4144          = InitializedEntity::InitializeParameter(Context,
4145                                                   Proto->getArgType(i),
4146                                                   Proto->isArgConsumed(i));
4147        ExprResult ArgE = PerformCopyInitialization(Entity,
4148                                                    SourceLocation(),
4149                                                    Owned(Arg));
4150        if (ArgE.isInvalid())
4151          return true;
4152
4153        Arg = ArgE.takeAs<Expr>();
4154
4155      } else {
4156        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4157
4158        if (ArgE.isInvalid())
4159          return true;
4160
4161        Arg = ArgE.takeAs<Expr>();
4162      }
4163
4164      if (RequireCompleteType(Arg->getLocStart(),
4165                              Arg->getType(),
4166                              diag::err_call_incomplete_argument, Arg))
4167        return ExprError();
4168
4169      TheCall->setArg(i, Arg);
4170    }
4171  }
4172
4173  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4174    if (!Method->isStatic())
4175      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4176        << Fn->getSourceRange());
4177
4178  // Check for sentinels
4179  if (NDecl)
4180    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4181
4182  // Do special checking on direct calls to functions.
4183  if (FDecl) {
4184    if (CheckFunctionCall(FDecl, TheCall, Proto))
4185      return ExprError();
4186
4187    if (BuiltinID)
4188      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4189  } else if (NDecl) {
4190    if (CheckBlockCall(NDecl, TheCall, Proto))
4191      return ExprError();
4192  }
4193
4194  return MaybeBindToTemporary(TheCall);
4195}
4196
4197ExprResult
4198Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4199                           SourceLocation RParenLoc, Expr *InitExpr) {
4200  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4201  // FIXME: put back this assert when initializers are worked out.
4202  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4203
4204  TypeSourceInfo *TInfo;
4205  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4206  if (!TInfo)
4207    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4208
4209  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4210}
4211
4212ExprResult
4213Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4214                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4215  QualType literalType = TInfo->getType();
4216
4217  if (literalType->isArrayType()) {
4218    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4219          diag::err_illegal_decl_array_incomplete_type,
4220          SourceRange(LParenLoc,
4221                      LiteralExpr->getSourceRange().getEnd())))
4222      return ExprError();
4223    if (literalType->isVariableArrayType())
4224      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4225        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4226  } else if (!literalType->isDependentType() &&
4227             RequireCompleteType(LParenLoc, literalType,
4228               diag::err_typecheck_decl_incomplete_type,
4229               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4230    return ExprError();
4231
4232  InitializedEntity Entity
4233    = InitializedEntity::InitializeTemporary(literalType);
4234  InitializationKind Kind
4235    = InitializationKind::CreateCStyleCast(LParenLoc,
4236                                           SourceRange(LParenLoc, RParenLoc),
4237                                           /*InitList=*/true);
4238  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4239  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4240                                      &literalType);
4241  if (Result.isInvalid())
4242    return ExprError();
4243  LiteralExpr = Result.get();
4244
4245  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4246  if (isFileScope) { // 6.5.2.5p3
4247    if (CheckForConstantInitializer(LiteralExpr, literalType))
4248      return ExprError();
4249  }
4250
4251  // In C, compound literals are l-values for some reason.
4252  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4253
4254  return MaybeBindToTemporary(
4255           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4256                                             VK, LiteralExpr, isFileScope));
4257}
4258
4259ExprResult
4260Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4261                    SourceLocation RBraceLoc) {
4262  // Immediately handle non-overload placeholders.  Overloads can be
4263  // resolved contextually, but everything else here can't.
4264  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4265    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4266      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4267
4268      // Ignore failures; dropping the entire initializer list because
4269      // of one failure would be terrible for indexing/etc.
4270      if (result.isInvalid()) continue;
4271
4272      InitArgList[I] = result.take();
4273    }
4274  }
4275
4276  // Semantic analysis for initializers is done by ActOnDeclarator() and
4277  // CheckInitializer() - it requires knowledge of the object being intialized.
4278
4279  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4280                                               RBraceLoc);
4281  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4282  return Owned(E);
4283}
4284
4285/// Do an explicit extend of the given block pointer if we're in ARC.
4286static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4287  assert(E.get()->getType()->isBlockPointerType());
4288  assert(E.get()->isRValue());
4289
4290  // Only do this in an r-value context.
4291  if (!S.getLangOpts().ObjCAutoRefCount) return;
4292
4293  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4294                               CK_ARCExtendBlockObject, E.get(),
4295                               /*base path*/ 0, VK_RValue);
4296  S.ExprNeedsCleanups = true;
4297}
4298
4299/// Prepare a conversion of the given expression to an ObjC object
4300/// pointer type.
4301CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4302  QualType type = E.get()->getType();
4303  if (type->isObjCObjectPointerType()) {
4304    return CK_BitCast;
4305  } else if (type->isBlockPointerType()) {
4306    maybeExtendBlockObject(*this, E);
4307    return CK_BlockPointerToObjCPointerCast;
4308  } else {
4309    assert(type->isPointerType());
4310    return CK_CPointerToObjCPointerCast;
4311  }
4312}
4313
4314/// Prepares for a scalar cast, performing all the necessary stages
4315/// except the final cast and returning the kind required.
4316CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4317  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4318  // Also, callers should have filtered out the invalid cases with
4319  // pointers.  Everything else should be possible.
4320
4321  QualType SrcTy = Src.get()->getType();
4322  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4323    return CK_NoOp;
4324
4325  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4326  case Type::STK_MemberPointer:
4327    llvm_unreachable("member pointer type in C");
4328
4329  case Type::STK_CPointer:
4330  case Type::STK_BlockPointer:
4331  case Type::STK_ObjCObjectPointer:
4332    switch (DestTy->getScalarTypeKind()) {
4333    case Type::STK_CPointer:
4334      return CK_BitCast;
4335    case Type::STK_BlockPointer:
4336      return (SrcKind == Type::STK_BlockPointer
4337                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4338    case Type::STK_ObjCObjectPointer:
4339      if (SrcKind == Type::STK_ObjCObjectPointer)
4340        return CK_BitCast;
4341      if (SrcKind == Type::STK_CPointer)
4342        return CK_CPointerToObjCPointerCast;
4343      maybeExtendBlockObject(*this, Src);
4344      return CK_BlockPointerToObjCPointerCast;
4345    case Type::STK_Bool:
4346      return CK_PointerToBoolean;
4347    case Type::STK_Integral:
4348      return CK_PointerToIntegral;
4349    case Type::STK_Floating:
4350    case Type::STK_FloatingComplex:
4351    case Type::STK_IntegralComplex:
4352    case Type::STK_MemberPointer:
4353      llvm_unreachable("illegal cast from pointer");
4354    }
4355    llvm_unreachable("Should have returned before this");
4356
4357  case Type::STK_Bool: // casting from bool is like casting from an integer
4358  case Type::STK_Integral:
4359    switch (DestTy->getScalarTypeKind()) {
4360    case Type::STK_CPointer:
4361    case Type::STK_ObjCObjectPointer:
4362    case Type::STK_BlockPointer:
4363      if (Src.get()->isNullPointerConstant(Context,
4364                                           Expr::NPC_ValueDependentIsNull))
4365        return CK_NullToPointer;
4366      return CK_IntegralToPointer;
4367    case Type::STK_Bool:
4368      return CK_IntegralToBoolean;
4369    case Type::STK_Integral:
4370      return CK_IntegralCast;
4371    case Type::STK_Floating:
4372      return CK_IntegralToFloating;
4373    case Type::STK_IntegralComplex:
4374      Src = ImpCastExprToType(Src.take(),
4375                              DestTy->castAs<ComplexType>()->getElementType(),
4376                              CK_IntegralCast);
4377      return CK_IntegralRealToComplex;
4378    case Type::STK_FloatingComplex:
4379      Src = ImpCastExprToType(Src.take(),
4380                              DestTy->castAs<ComplexType>()->getElementType(),
4381                              CK_IntegralToFloating);
4382      return CK_FloatingRealToComplex;
4383    case Type::STK_MemberPointer:
4384      llvm_unreachable("member pointer type in C");
4385    }
4386    llvm_unreachable("Should have returned before this");
4387
4388  case Type::STK_Floating:
4389    switch (DestTy->getScalarTypeKind()) {
4390    case Type::STK_Floating:
4391      return CK_FloatingCast;
4392    case Type::STK_Bool:
4393      return CK_FloatingToBoolean;
4394    case Type::STK_Integral:
4395      return CK_FloatingToIntegral;
4396    case Type::STK_FloatingComplex:
4397      Src = ImpCastExprToType(Src.take(),
4398                              DestTy->castAs<ComplexType>()->getElementType(),
4399                              CK_FloatingCast);
4400      return CK_FloatingRealToComplex;
4401    case Type::STK_IntegralComplex:
4402      Src = ImpCastExprToType(Src.take(),
4403                              DestTy->castAs<ComplexType>()->getElementType(),
4404                              CK_FloatingToIntegral);
4405      return CK_IntegralRealToComplex;
4406    case Type::STK_CPointer:
4407    case Type::STK_ObjCObjectPointer:
4408    case Type::STK_BlockPointer:
4409      llvm_unreachable("valid float->pointer cast?");
4410    case Type::STK_MemberPointer:
4411      llvm_unreachable("member pointer type in C");
4412    }
4413    llvm_unreachable("Should have returned before this");
4414
4415  case Type::STK_FloatingComplex:
4416    switch (DestTy->getScalarTypeKind()) {
4417    case Type::STK_FloatingComplex:
4418      return CK_FloatingComplexCast;
4419    case Type::STK_IntegralComplex:
4420      return CK_FloatingComplexToIntegralComplex;
4421    case Type::STK_Floating: {
4422      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4423      if (Context.hasSameType(ET, DestTy))
4424        return CK_FloatingComplexToReal;
4425      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4426      return CK_FloatingCast;
4427    }
4428    case Type::STK_Bool:
4429      return CK_FloatingComplexToBoolean;
4430    case Type::STK_Integral:
4431      Src = ImpCastExprToType(Src.take(),
4432                              SrcTy->castAs<ComplexType>()->getElementType(),
4433                              CK_FloatingComplexToReal);
4434      return CK_FloatingToIntegral;
4435    case Type::STK_CPointer:
4436    case Type::STK_ObjCObjectPointer:
4437    case Type::STK_BlockPointer:
4438      llvm_unreachable("valid complex float->pointer cast?");
4439    case Type::STK_MemberPointer:
4440      llvm_unreachable("member pointer type in C");
4441    }
4442    llvm_unreachable("Should have returned before this");
4443
4444  case Type::STK_IntegralComplex:
4445    switch (DestTy->getScalarTypeKind()) {
4446    case Type::STK_FloatingComplex:
4447      return CK_IntegralComplexToFloatingComplex;
4448    case Type::STK_IntegralComplex:
4449      return CK_IntegralComplexCast;
4450    case Type::STK_Integral: {
4451      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4452      if (Context.hasSameType(ET, DestTy))
4453        return CK_IntegralComplexToReal;
4454      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4455      return CK_IntegralCast;
4456    }
4457    case Type::STK_Bool:
4458      return CK_IntegralComplexToBoolean;
4459    case Type::STK_Floating:
4460      Src = ImpCastExprToType(Src.take(),
4461                              SrcTy->castAs<ComplexType>()->getElementType(),
4462                              CK_IntegralComplexToReal);
4463      return CK_IntegralToFloating;
4464    case Type::STK_CPointer:
4465    case Type::STK_ObjCObjectPointer:
4466    case Type::STK_BlockPointer:
4467      llvm_unreachable("valid complex int->pointer cast?");
4468    case Type::STK_MemberPointer:
4469      llvm_unreachable("member pointer type in C");
4470    }
4471    llvm_unreachable("Should have returned before this");
4472  }
4473
4474  llvm_unreachable("Unhandled scalar cast");
4475}
4476
4477bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4478                           CastKind &Kind) {
4479  assert(VectorTy->isVectorType() && "Not a vector type!");
4480
4481  if (Ty->isVectorType() || Ty->isIntegerType()) {
4482    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4483      return Diag(R.getBegin(),
4484                  Ty->isVectorType() ?
4485                  diag::err_invalid_conversion_between_vectors :
4486                  diag::err_invalid_conversion_between_vector_and_integer)
4487        << VectorTy << Ty << R;
4488  } else
4489    return Diag(R.getBegin(),
4490                diag::err_invalid_conversion_between_vector_and_scalar)
4491      << VectorTy << Ty << R;
4492
4493  Kind = CK_BitCast;
4494  return false;
4495}
4496
4497ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4498                                    Expr *CastExpr, CastKind &Kind) {
4499  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4500
4501  QualType SrcTy = CastExpr->getType();
4502
4503  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4504  // an ExtVectorType.
4505  // In OpenCL, casts between vectors of different types are not allowed.
4506  // (See OpenCL 6.2).
4507  if (SrcTy->isVectorType()) {
4508    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4509        || (getLangOpts().OpenCL &&
4510            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4511      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4512        << DestTy << SrcTy << R;
4513      return ExprError();
4514    }
4515    Kind = CK_BitCast;
4516    return Owned(CastExpr);
4517  }
4518
4519  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4520  // conversion will take place first from scalar to elt type, and then
4521  // splat from elt type to vector.
4522  if (SrcTy->isPointerType())
4523    return Diag(R.getBegin(),
4524                diag::err_invalid_conversion_between_vector_and_scalar)
4525      << DestTy << SrcTy << R;
4526
4527  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4528  ExprResult CastExprRes = Owned(CastExpr);
4529  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4530  if (CastExprRes.isInvalid())
4531    return ExprError();
4532  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4533
4534  Kind = CK_VectorSplat;
4535  return Owned(CastExpr);
4536}
4537
4538ExprResult
4539Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4540                    Declarator &D, ParsedType &Ty,
4541                    SourceLocation RParenLoc, Expr *CastExpr) {
4542  assert(!D.isInvalidType() && (CastExpr != 0) &&
4543         "ActOnCastExpr(): missing type or expr");
4544
4545  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4546  if (D.isInvalidType())
4547    return ExprError();
4548
4549  if (getLangOpts().CPlusPlus) {
4550    // Check that there are no default arguments (C++ only).
4551    CheckExtraCXXDefaultArguments(D);
4552  }
4553
4554  checkUnusedDeclAttributes(D);
4555
4556  QualType castType = castTInfo->getType();
4557  Ty = CreateParsedType(castType, castTInfo);
4558
4559  bool isVectorLiteral = false;
4560
4561  // Check for an altivec or OpenCL literal,
4562  // i.e. all the elements are integer constants.
4563  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4564  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4565  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4566       && castType->isVectorType() && (PE || PLE)) {
4567    if (PLE && PLE->getNumExprs() == 0) {
4568      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4569      return ExprError();
4570    }
4571    if (PE || PLE->getNumExprs() == 1) {
4572      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4573      if (!E->getType()->isVectorType())
4574        isVectorLiteral = true;
4575    }
4576    else
4577      isVectorLiteral = true;
4578  }
4579
4580  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4581  // then handle it as such.
4582  if (isVectorLiteral)
4583    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4584
4585  // If the Expr being casted is a ParenListExpr, handle it specially.
4586  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4587  // sequence of BinOp comma operators.
4588  if (isa<ParenListExpr>(CastExpr)) {
4589    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4590    if (Result.isInvalid()) return ExprError();
4591    CastExpr = Result.take();
4592  }
4593
4594  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4595}
4596
4597ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4598                                    SourceLocation RParenLoc, Expr *E,
4599                                    TypeSourceInfo *TInfo) {
4600  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4601         "Expected paren or paren list expression");
4602
4603  Expr **exprs;
4604  unsigned numExprs;
4605  Expr *subExpr;
4606  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4607    exprs = PE->getExprs();
4608    numExprs = PE->getNumExprs();
4609  } else {
4610    subExpr = cast<ParenExpr>(E)->getSubExpr();
4611    exprs = &subExpr;
4612    numExprs = 1;
4613  }
4614
4615  QualType Ty = TInfo->getType();
4616  assert(Ty->isVectorType() && "Expected vector type");
4617
4618  SmallVector<Expr *, 8> initExprs;
4619  const VectorType *VTy = Ty->getAs<VectorType>();
4620  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4621
4622  // '(...)' form of vector initialization in AltiVec: the number of
4623  // initializers must be one or must match the size of the vector.
4624  // If a single value is specified in the initializer then it will be
4625  // replicated to all the components of the vector
4626  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4627    // The number of initializers must be one or must match the size of the
4628    // vector. If a single value is specified in the initializer then it will
4629    // be replicated to all the components of the vector
4630    if (numExprs == 1) {
4631      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4632      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4633      if (Literal.isInvalid())
4634        return ExprError();
4635      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4636                                  PrepareScalarCast(Literal, ElemTy));
4637      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4638    }
4639    else if (numExprs < numElems) {
4640      Diag(E->getExprLoc(),
4641           diag::err_incorrect_number_of_vector_initializers);
4642      return ExprError();
4643    }
4644    else
4645      initExprs.append(exprs, exprs + numExprs);
4646  }
4647  else {
4648    // For OpenCL, when the number of initializers is a single value,
4649    // it will be replicated to all components of the vector.
4650    if (getLangOpts().OpenCL &&
4651        VTy->getVectorKind() == VectorType::GenericVector &&
4652        numExprs == 1) {
4653        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4654        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4655        if (Literal.isInvalid())
4656          return ExprError();
4657        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4658                                    PrepareScalarCast(Literal, ElemTy));
4659        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4660    }
4661
4662    initExprs.append(exprs, exprs + numExprs);
4663  }
4664  // FIXME: This means that pretty-printing the final AST will produce curly
4665  // braces instead of the original commas.
4666  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4667                                                   initExprs, RParenLoc);
4668  initE->setType(Ty);
4669  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4670}
4671
4672/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4673/// the ParenListExpr into a sequence of comma binary operators.
4674ExprResult
4675Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4676  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4677  if (!E)
4678    return Owned(OrigExpr);
4679
4680  ExprResult Result(E->getExpr(0));
4681
4682  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4683    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4684                        E->getExpr(i));
4685
4686  if (Result.isInvalid()) return ExprError();
4687
4688  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4689}
4690
4691ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4692                                    SourceLocation R,
4693                                    MultiExprArg Val) {
4694  assert(Val.data() != 0 && "ActOnParenOrParenListExpr() missing expr list");
4695  Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
4696  return Owned(expr);
4697}
4698
4699/// \brief Emit a specialized diagnostic when one expression is a null pointer
4700/// constant and the other is not a pointer.  Returns true if a diagnostic is
4701/// emitted.
4702bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4703                                      SourceLocation QuestionLoc) {
4704  Expr *NullExpr = LHSExpr;
4705  Expr *NonPointerExpr = RHSExpr;
4706  Expr::NullPointerConstantKind NullKind =
4707      NullExpr->isNullPointerConstant(Context,
4708                                      Expr::NPC_ValueDependentIsNotNull);
4709
4710  if (NullKind == Expr::NPCK_NotNull) {
4711    NullExpr = RHSExpr;
4712    NonPointerExpr = LHSExpr;
4713    NullKind =
4714        NullExpr->isNullPointerConstant(Context,
4715                                        Expr::NPC_ValueDependentIsNotNull);
4716  }
4717
4718  if (NullKind == Expr::NPCK_NotNull)
4719    return false;
4720
4721  if (NullKind == Expr::NPCK_ZeroExpression)
4722    return false;
4723
4724  if (NullKind == Expr::NPCK_ZeroLiteral) {
4725    // In this case, check to make sure that we got here from a "NULL"
4726    // string in the source code.
4727    NullExpr = NullExpr->IgnoreParenImpCasts();
4728    SourceLocation loc = NullExpr->getExprLoc();
4729    if (!findMacroSpelling(loc, "NULL"))
4730      return false;
4731  }
4732
4733  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4734  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4735      << NonPointerExpr->getType() << DiagType
4736      << NonPointerExpr->getSourceRange();
4737  return true;
4738}
4739
4740/// \brief Return false if the condition expression is valid, true otherwise.
4741static bool checkCondition(Sema &S, Expr *Cond) {
4742  QualType CondTy = Cond->getType();
4743
4744  // C99 6.5.15p2
4745  if (CondTy->isScalarType()) return false;
4746
4747  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4748  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4749    return false;
4750
4751  // Emit the proper error message.
4752  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4753                              diag::err_typecheck_cond_expect_scalar :
4754                              diag::err_typecheck_cond_expect_scalar_or_vector)
4755    << CondTy;
4756  return true;
4757}
4758
4759/// \brief Return false if the two expressions can be converted to a vector,
4760/// true otherwise
4761static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4762                                                    ExprResult &RHS,
4763                                                    QualType CondTy) {
4764  // Both operands should be of scalar type.
4765  if (!LHS.get()->getType()->isScalarType()) {
4766    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4767      << CondTy;
4768    return true;
4769  }
4770  if (!RHS.get()->getType()->isScalarType()) {
4771    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4772      << CondTy;
4773    return true;
4774  }
4775
4776  // Implicity convert these scalars to the type of the condition.
4777  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4778  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4779  return false;
4780}
4781
4782/// \brief Handle when one or both operands are void type.
4783static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4784                                         ExprResult &RHS) {
4785    Expr *LHSExpr = LHS.get();
4786    Expr *RHSExpr = RHS.get();
4787
4788    if (!LHSExpr->getType()->isVoidType())
4789      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4790        << RHSExpr->getSourceRange();
4791    if (!RHSExpr->getType()->isVoidType())
4792      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4793        << LHSExpr->getSourceRange();
4794    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4795    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4796    return S.Context.VoidTy;
4797}
4798
4799/// \brief Return false if the NullExpr can be promoted to PointerTy,
4800/// true otherwise.
4801static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4802                                        QualType PointerTy) {
4803  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4804      !NullExpr.get()->isNullPointerConstant(S.Context,
4805                                            Expr::NPC_ValueDependentIsNull))
4806    return true;
4807
4808  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4809  return false;
4810}
4811
4812/// \brief Checks compatibility between two pointers and return the resulting
4813/// type.
4814static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4815                                                     ExprResult &RHS,
4816                                                     SourceLocation Loc) {
4817  QualType LHSTy = LHS.get()->getType();
4818  QualType RHSTy = RHS.get()->getType();
4819
4820  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4821    // Two identical pointers types are always compatible.
4822    return LHSTy;
4823  }
4824
4825  QualType lhptee, rhptee;
4826
4827  // Get the pointee types.
4828  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4829    lhptee = LHSBTy->getPointeeType();
4830    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4831  } else {
4832    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4833    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4834  }
4835
4836  // C99 6.5.15p6: If both operands are pointers to compatible types or to
4837  // differently qualified versions of compatible types, the result type is
4838  // a pointer to an appropriately qualified version of the composite
4839  // type.
4840
4841  // Only CVR-qualifiers exist in the standard, and the differently-qualified
4842  // clause doesn't make sense for our extensions. E.g. address space 2 should
4843  // be incompatible with address space 3: they may live on different devices or
4844  // anything.
4845  Qualifiers lhQual = lhptee.getQualifiers();
4846  Qualifiers rhQual = rhptee.getQualifiers();
4847
4848  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4849  lhQual.removeCVRQualifiers();
4850  rhQual.removeCVRQualifiers();
4851
4852  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4853  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4854
4855  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4856
4857  if (CompositeTy.isNull()) {
4858    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4859      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4860      << RHS.get()->getSourceRange();
4861    // In this situation, we assume void* type. No especially good
4862    // reason, but this is what gcc does, and we do have to pick
4863    // to get a consistent AST.
4864    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4865    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4866    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4867    return incompatTy;
4868  }
4869
4870  // The pointer types are compatible.
4871  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4872  ResultTy = S.Context.getPointerType(ResultTy);
4873
4874  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4875  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4876  return ResultTy;
4877}
4878
4879/// \brief Return the resulting type when the operands are both block pointers.
4880static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4881                                                          ExprResult &LHS,
4882                                                          ExprResult &RHS,
4883                                                          SourceLocation Loc) {
4884  QualType LHSTy = LHS.get()->getType();
4885  QualType RHSTy = RHS.get()->getType();
4886
4887  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4888    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4889      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4890      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4891      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4892      return destType;
4893    }
4894    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4895      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4896      << RHS.get()->getSourceRange();
4897    return QualType();
4898  }
4899
4900  // We have 2 block pointer types.
4901  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4902}
4903
4904/// \brief Return the resulting type when the operands are both pointers.
4905static QualType
4906checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4907                                            ExprResult &RHS,
4908                                            SourceLocation Loc) {
4909  // get the pointer types
4910  QualType LHSTy = LHS.get()->getType();
4911  QualType RHSTy = RHS.get()->getType();
4912
4913  // get the "pointed to" types
4914  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4915  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4916
4917  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4918  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4919    // Figure out necessary qualifiers (C99 6.5.15p6)
4920    QualType destPointee
4921      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4922    QualType destType = S.Context.getPointerType(destPointee);
4923    // Add qualifiers if necessary.
4924    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4925    // Promote to void*.
4926    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4927    return destType;
4928  }
4929  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4930    QualType destPointee
4931      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4932    QualType destType = S.Context.getPointerType(destPointee);
4933    // Add qualifiers if necessary.
4934    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4935    // Promote to void*.
4936    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4937    return destType;
4938  }
4939
4940  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4941}
4942
4943/// \brief Return false if the first expression is not an integer and the second
4944/// expression is not a pointer, true otherwise.
4945static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4946                                        Expr* PointerExpr, SourceLocation Loc,
4947                                        bool IsIntFirstExpr) {
4948  if (!PointerExpr->getType()->isPointerType() ||
4949      !Int.get()->getType()->isIntegerType())
4950    return false;
4951
4952  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4953  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4954
4955  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4956    << Expr1->getType() << Expr2->getType()
4957    << Expr1->getSourceRange() << Expr2->getSourceRange();
4958  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4959                            CK_IntegralToPointer);
4960  return true;
4961}
4962
4963/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4964/// In that case, LHS = cond.
4965/// C99 6.5.15
4966QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4967                                        ExprResult &RHS, ExprValueKind &VK,
4968                                        ExprObjectKind &OK,
4969                                        SourceLocation QuestionLoc) {
4970
4971  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4972  if (!LHSResult.isUsable()) return QualType();
4973  LHS = LHSResult;
4974
4975  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4976  if (!RHSResult.isUsable()) return QualType();
4977  RHS = RHSResult;
4978
4979  // C++ is sufficiently different to merit its own checker.
4980  if (getLangOpts().CPlusPlus)
4981    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4982
4983  VK = VK_RValue;
4984  OK = OK_Ordinary;
4985
4986  Cond = UsualUnaryConversions(Cond.take());
4987  if (Cond.isInvalid())
4988    return QualType();
4989  LHS = UsualUnaryConversions(LHS.take());
4990  if (LHS.isInvalid())
4991    return QualType();
4992  RHS = UsualUnaryConversions(RHS.take());
4993  if (RHS.isInvalid())
4994    return QualType();
4995
4996  QualType CondTy = Cond.get()->getType();
4997  QualType LHSTy = LHS.get()->getType();
4998  QualType RHSTy = RHS.get()->getType();
4999
5000  // first, check the condition.
5001  if (checkCondition(*this, Cond.get()))
5002    return QualType();
5003
5004  // Now check the two expressions.
5005  if (LHSTy->isVectorType() || RHSTy->isVectorType())
5006    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5007
5008  // OpenCL: If the condition is a vector, and both operands are scalar,
5009  // attempt to implicity convert them to the vector type to act like the
5010  // built in select.
5011  if (getLangOpts().OpenCL && CondTy->isVectorType())
5012    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5013      return QualType();
5014
5015  // If both operands have arithmetic type, do the usual arithmetic conversions
5016  // to find a common type: C99 6.5.15p3,5.
5017  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5018    UsualArithmeticConversions(LHS, RHS);
5019    if (LHS.isInvalid() || RHS.isInvalid())
5020      return QualType();
5021    return LHS.get()->getType();
5022  }
5023
5024  // If both operands are the same structure or union type, the result is that
5025  // type.
5026  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5027    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5028      if (LHSRT->getDecl() == RHSRT->getDecl())
5029        // "If both the operands have structure or union type, the result has
5030        // that type."  This implies that CV qualifiers are dropped.
5031        return LHSTy.getUnqualifiedType();
5032    // FIXME: Type of conditional expression must be complete in C mode.
5033  }
5034
5035  // C99 6.5.15p5: "If both operands have void type, the result has void type."
5036  // The following || allows only one side to be void (a GCC-ism).
5037  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5038    return checkConditionalVoidType(*this, LHS, RHS);
5039  }
5040
5041  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5042  // the type of the other operand."
5043  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5044  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5045
5046  // All objective-c pointer type analysis is done here.
5047  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5048                                                        QuestionLoc);
5049  if (LHS.isInvalid() || RHS.isInvalid())
5050    return QualType();
5051  if (!compositeType.isNull())
5052    return compositeType;
5053
5054
5055  // Handle block pointer types.
5056  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5057    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5058                                                     QuestionLoc);
5059
5060  // Check constraints for C object pointers types (C99 6.5.15p3,6).
5061  if (LHSTy->isPointerType() && RHSTy->isPointerType())
5062    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5063                                                       QuestionLoc);
5064
5065  // GCC compatibility: soften pointer/integer mismatch.  Note that
5066  // null pointers have been filtered out by this point.
5067  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5068      /*isIntFirstExpr=*/true))
5069    return RHSTy;
5070  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5071      /*isIntFirstExpr=*/false))
5072    return LHSTy;
5073
5074  // Emit a better diagnostic if one of the expressions is a null pointer
5075  // constant and the other is not a pointer type. In this case, the user most
5076  // likely forgot to take the address of the other expression.
5077  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5078    return QualType();
5079
5080  // Otherwise, the operands are not compatible.
5081  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5082    << LHSTy << RHSTy << LHS.get()->getSourceRange()
5083    << RHS.get()->getSourceRange();
5084  return QualType();
5085}
5086
5087/// FindCompositeObjCPointerType - Helper method to find composite type of
5088/// two objective-c pointer types of the two input expressions.
5089QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5090                                            SourceLocation QuestionLoc) {
5091  QualType LHSTy = LHS.get()->getType();
5092  QualType RHSTy = RHS.get()->getType();
5093
5094  // Handle things like Class and struct objc_class*.  Here we case the result
5095  // to the pseudo-builtin, because that will be implicitly cast back to the
5096  // redefinition type if an attempt is made to access its fields.
5097  if (LHSTy->isObjCClassType() &&
5098      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5099    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5100    return LHSTy;
5101  }
5102  if (RHSTy->isObjCClassType() &&
5103      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5104    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5105    return RHSTy;
5106  }
5107  // And the same for struct objc_object* / id
5108  if (LHSTy->isObjCIdType() &&
5109      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5110    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5111    return LHSTy;
5112  }
5113  if (RHSTy->isObjCIdType() &&
5114      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5115    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5116    return RHSTy;
5117  }
5118  // And the same for struct objc_selector* / SEL
5119  if (Context.isObjCSelType(LHSTy) &&
5120      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5121    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5122    return LHSTy;
5123  }
5124  if (Context.isObjCSelType(RHSTy) &&
5125      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5126    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5127    return RHSTy;
5128  }
5129  // Check constraints for Objective-C object pointers types.
5130  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5131
5132    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5133      // Two identical object pointer types are always compatible.
5134      return LHSTy;
5135    }
5136    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5137    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5138    QualType compositeType = LHSTy;
5139
5140    // If both operands are interfaces and either operand can be
5141    // assigned to the other, use that type as the composite
5142    // type. This allows
5143    //   xxx ? (A*) a : (B*) b
5144    // where B is a subclass of A.
5145    //
5146    // Additionally, as for assignment, if either type is 'id'
5147    // allow silent coercion. Finally, if the types are
5148    // incompatible then make sure to use 'id' as the composite
5149    // type so the result is acceptable for sending messages to.
5150
5151    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5152    // It could return the composite type.
5153    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5154      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5155    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5156      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5157    } else if ((LHSTy->isObjCQualifiedIdType() ||
5158                RHSTy->isObjCQualifiedIdType()) &&
5159               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5160      // Need to handle "id<xx>" explicitly.
5161      // GCC allows qualified id and any Objective-C type to devolve to
5162      // id. Currently localizing to here until clear this should be
5163      // part of ObjCQualifiedIdTypesAreCompatible.
5164      compositeType = Context.getObjCIdType();
5165    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5166      compositeType = Context.getObjCIdType();
5167    } else if (!(compositeType =
5168                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5169      ;
5170    else {
5171      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5172      << LHSTy << RHSTy
5173      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5174      QualType incompatTy = Context.getObjCIdType();
5175      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5176      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5177      return incompatTy;
5178    }
5179    // The object pointer types are compatible.
5180    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5181    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5182    return compositeType;
5183  }
5184  // Check Objective-C object pointer types and 'void *'
5185  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5186    if (getLangOpts().ObjCAutoRefCount) {
5187      // ARC forbids the implicit conversion of object pointers to 'void *',
5188      // so these types are not compatible.
5189      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5190          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5191      LHS = RHS = true;
5192      return QualType();
5193    }
5194    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5195    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5196    QualType destPointee
5197    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5198    QualType destType = Context.getPointerType(destPointee);
5199    // Add qualifiers if necessary.
5200    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5201    // Promote to void*.
5202    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5203    return destType;
5204  }
5205  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5206    if (getLangOpts().ObjCAutoRefCount) {
5207      // ARC forbids the implicit conversion of object pointers to 'void *',
5208      // so these types are not compatible.
5209      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5210          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5211      LHS = RHS = true;
5212      return QualType();
5213    }
5214    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5215    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5216    QualType destPointee
5217    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5218    QualType destType = Context.getPointerType(destPointee);
5219    // Add qualifiers if necessary.
5220    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5221    // Promote to void*.
5222    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5223    return destType;
5224  }
5225  return QualType();
5226}
5227
5228/// SuggestParentheses - Emit a note with a fixit hint that wraps
5229/// ParenRange in parentheses.
5230static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5231                               const PartialDiagnostic &Note,
5232                               SourceRange ParenRange) {
5233  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5234  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5235      EndLoc.isValid()) {
5236    Self.Diag(Loc, Note)
5237      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5238      << FixItHint::CreateInsertion(EndLoc, ")");
5239  } else {
5240    // We can't display the parentheses, so just show the bare note.
5241    Self.Diag(Loc, Note) << ParenRange;
5242  }
5243}
5244
5245static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5246  return Opc >= BO_Mul && Opc <= BO_Shr;
5247}
5248
5249/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5250/// expression, either using a built-in or overloaded operator,
5251/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5252/// expression.
5253static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5254                                   Expr **RHSExprs) {
5255  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5256  E = E->IgnoreImpCasts();
5257  E = E->IgnoreConversionOperator();
5258  E = E->IgnoreImpCasts();
5259
5260  // Built-in binary operator.
5261  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5262    if (IsArithmeticOp(OP->getOpcode())) {
5263      *Opcode = OP->getOpcode();
5264      *RHSExprs = OP->getRHS();
5265      return true;
5266    }
5267  }
5268
5269  // Overloaded operator.
5270  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5271    if (Call->getNumArgs() != 2)
5272      return false;
5273
5274    // Make sure this is really a binary operator that is safe to pass into
5275    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5276    OverloadedOperatorKind OO = Call->getOperator();
5277    if (OO < OO_Plus || OO > OO_Arrow)
5278      return false;
5279
5280    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5281    if (IsArithmeticOp(OpKind)) {
5282      *Opcode = OpKind;
5283      *RHSExprs = Call->getArg(1);
5284      return true;
5285    }
5286  }
5287
5288  return false;
5289}
5290
5291static bool IsLogicOp(BinaryOperatorKind Opc) {
5292  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5293}
5294
5295/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5296/// or is a logical expression such as (x==y) which has int type, but is
5297/// commonly interpreted as boolean.
5298static bool ExprLooksBoolean(Expr *E) {
5299  E = E->IgnoreParenImpCasts();
5300
5301  if (E->getType()->isBooleanType())
5302    return true;
5303  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5304    return IsLogicOp(OP->getOpcode());
5305  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5306    return OP->getOpcode() == UO_LNot;
5307
5308  return false;
5309}
5310
5311/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5312/// and binary operator are mixed in a way that suggests the programmer assumed
5313/// the conditional operator has higher precedence, for example:
5314/// "int x = a + someBinaryCondition ? 1 : 2".
5315static void DiagnoseConditionalPrecedence(Sema &Self,
5316                                          SourceLocation OpLoc,
5317                                          Expr *Condition,
5318                                          Expr *LHSExpr,
5319                                          Expr *RHSExpr) {
5320  BinaryOperatorKind CondOpcode;
5321  Expr *CondRHS;
5322
5323  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5324    return;
5325  if (!ExprLooksBoolean(CondRHS))
5326    return;
5327
5328  // The condition is an arithmetic binary expression, with a right-
5329  // hand side that looks boolean, so warn.
5330
5331  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5332      << Condition->getSourceRange()
5333      << BinaryOperator::getOpcodeStr(CondOpcode);
5334
5335  SuggestParentheses(Self, OpLoc,
5336    Self.PDiag(diag::note_precedence_silence)
5337      << BinaryOperator::getOpcodeStr(CondOpcode),
5338    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5339
5340  SuggestParentheses(Self, OpLoc,
5341    Self.PDiag(diag::note_precedence_conditional_first),
5342    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5343}
5344
5345/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5346/// in the case of a the GNU conditional expr extension.
5347ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5348                                    SourceLocation ColonLoc,
5349                                    Expr *CondExpr, Expr *LHSExpr,
5350                                    Expr *RHSExpr) {
5351  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5352  // was the condition.
5353  OpaqueValueExpr *opaqueValue = 0;
5354  Expr *commonExpr = 0;
5355  if (LHSExpr == 0) {
5356    commonExpr = CondExpr;
5357
5358    // We usually want to apply unary conversions *before* saving, except
5359    // in the special case of a C++ l-value conditional.
5360    if (!(getLangOpts().CPlusPlus
5361          && !commonExpr->isTypeDependent()
5362          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5363          && commonExpr->isGLValue()
5364          && commonExpr->isOrdinaryOrBitFieldObject()
5365          && RHSExpr->isOrdinaryOrBitFieldObject()
5366          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5367      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5368      if (commonRes.isInvalid())
5369        return ExprError();
5370      commonExpr = commonRes.take();
5371    }
5372
5373    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5374                                                commonExpr->getType(),
5375                                                commonExpr->getValueKind(),
5376                                                commonExpr->getObjectKind(),
5377                                                commonExpr);
5378    LHSExpr = CondExpr = opaqueValue;
5379  }
5380
5381  ExprValueKind VK = VK_RValue;
5382  ExprObjectKind OK = OK_Ordinary;
5383  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5384  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5385                                             VK, OK, QuestionLoc);
5386  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5387      RHS.isInvalid())
5388    return ExprError();
5389
5390  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5391                                RHS.get());
5392
5393  if (!commonExpr)
5394    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5395                                                   LHS.take(), ColonLoc,
5396                                                   RHS.take(), result, VK, OK));
5397
5398  return Owned(new (Context)
5399    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5400                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5401                              OK));
5402}
5403
5404// checkPointerTypesForAssignment - This is a very tricky routine (despite
5405// being closely modeled after the C99 spec:-). The odd characteristic of this
5406// routine is it effectively iqnores the qualifiers on the top level pointee.
5407// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5408// FIXME: add a couple examples in this comment.
5409static Sema::AssignConvertType
5410checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5411  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5412  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5413
5414  // get the "pointed to" type (ignoring qualifiers at the top level)
5415  const Type *lhptee, *rhptee;
5416  Qualifiers lhq, rhq;
5417  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5418  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5419
5420  Sema::AssignConvertType ConvTy = Sema::Compatible;
5421
5422  // C99 6.5.16.1p1: This following citation is common to constraints
5423  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5424  // qualifiers of the type *pointed to* by the right;
5425  Qualifiers lq;
5426
5427  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5428  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5429      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5430    // Ignore lifetime for further calculation.
5431    lhq.removeObjCLifetime();
5432    rhq.removeObjCLifetime();
5433  }
5434
5435  if (!lhq.compatiblyIncludes(rhq)) {
5436    // Treat address-space mismatches as fatal.  TODO: address subspaces
5437    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5438      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5439
5440    // It's okay to add or remove GC or lifetime qualifiers when converting to
5441    // and from void*.
5442    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5443                        .compatiblyIncludes(
5444                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5445             && (lhptee->isVoidType() || rhptee->isVoidType()))
5446      ; // keep old
5447
5448    // Treat lifetime mismatches as fatal.
5449    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5450      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5451
5452    // For GCC compatibility, other qualifier mismatches are treated
5453    // as still compatible in C.
5454    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5455  }
5456
5457  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5458  // incomplete type and the other is a pointer to a qualified or unqualified
5459  // version of void...
5460  if (lhptee->isVoidType()) {
5461    if (rhptee->isIncompleteOrObjectType())
5462      return ConvTy;
5463
5464    // As an extension, we allow cast to/from void* to function pointer.
5465    assert(rhptee->isFunctionType());
5466    return Sema::FunctionVoidPointer;
5467  }
5468
5469  if (rhptee->isVoidType()) {
5470    if (lhptee->isIncompleteOrObjectType())
5471      return ConvTy;
5472
5473    // As an extension, we allow cast to/from void* to function pointer.
5474    assert(lhptee->isFunctionType());
5475    return Sema::FunctionVoidPointer;
5476  }
5477
5478  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5479  // unqualified versions of compatible types, ...
5480  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5481  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5482    // Check if the pointee types are compatible ignoring the sign.
5483    // We explicitly check for char so that we catch "char" vs
5484    // "unsigned char" on systems where "char" is unsigned.
5485    if (lhptee->isCharType())
5486      ltrans = S.Context.UnsignedCharTy;
5487    else if (lhptee->hasSignedIntegerRepresentation())
5488      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5489
5490    if (rhptee->isCharType())
5491      rtrans = S.Context.UnsignedCharTy;
5492    else if (rhptee->hasSignedIntegerRepresentation())
5493      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5494
5495    if (ltrans == rtrans) {
5496      // Types are compatible ignoring the sign. Qualifier incompatibility
5497      // takes priority over sign incompatibility because the sign
5498      // warning can be disabled.
5499      if (ConvTy != Sema::Compatible)
5500        return ConvTy;
5501
5502      return Sema::IncompatiblePointerSign;
5503    }
5504
5505    // If we are a multi-level pointer, it's possible that our issue is simply
5506    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5507    // the eventual target type is the same and the pointers have the same
5508    // level of indirection, this must be the issue.
5509    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5510      do {
5511        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5512        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5513      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5514
5515      if (lhptee == rhptee)
5516        return Sema::IncompatibleNestedPointerQualifiers;
5517    }
5518
5519    // General pointer incompatibility takes priority over qualifiers.
5520    return Sema::IncompatiblePointer;
5521  }
5522  if (!S.getLangOpts().CPlusPlus &&
5523      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5524    return Sema::IncompatiblePointer;
5525  return ConvTy;
5526}
5527
5528/// checkBlockPointerTypesForAssignment - This routine determines whether two
5529/// block pointer types are compatible or whether a block and normal pointer
5530/// are compatible. It is more restrict than comparing two function pointer
5531// types.
5532static Sema::AssignConvertType
5533checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5534                                    QualType RHSType) {
5535  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5536  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5537
5538  QualType lhptee, rhptee;
5539
5540  // get the "pointed to" type (ignoring qualifiers at the top level)
5541  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5542  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5543
5544  // In C++, the types have to match exactly.
5545  if (S.getLangOpts().CPlusPlus)
5546    return Sema::IncompatibleBlockPointer;
5547
5548  Sema::AssignConvertType ConvTy = Sema::Compatible;
5549
5550  // For blocks we enforce that qualifiers are identical.
5551  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5552    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5553
5554  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5555    return Sema::IncompatibleBlockPointer;
5556
5557  return ConvTy;
5558}
5559
5560/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5561/// for assignment compatibility.
5562static Sema::AssignConvertType
5563checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5564                                   QualType RHSType) {
5565  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5566  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5567
5568  if (LHSType->isObjCBuiltinType()) {
5569    // Class is not compatible with ObjC object pointers.
5570    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5571        !RHSType->isObjCQualifiedClassType())
5572      return Sema::IncompatiblePointer;
5573    return Sema::Compatible;
5574  }
5575  if (RHSType->isObjCBuiltinType()) {
5576    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5577        !LHSType->isObjCQualifiedClassType())
5578      return Sema::IncompatiblePointer;
5579    return Sema::Compatible;
5580  }
5581  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5582  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5583
5584  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5585      // make an exception for id<P>
5586      !LHSType->isObjCQualifiedIdType())
5587    return Sema::CompatiblePointerDiscardsQualifiers;
5588
5589  if (S.Context.typesAreCompatible(LHSType, RHSType))
5590    return Sema::Compatible;
5591  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5592    return Sema::IncompatibleObjCQualifiedId;
5593  return Sema::IncompatiblePointer;
5594}
5595
5596Sema::AssignConvertType
5597Sema::CheckAssignmentConstraints(SourceLocation Loc,
5598                                 QualType LHSType, QualType RHSType) {
5599  // Fake up an opaque expression.  We don't actually care about what
5600  // cast operations are required, so if CheckAssignmentConstraints
5601  // adds casts to this they'll be wasted, but fortunately that doesn't
5602  // usually happen on valid code.
5603  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5604  ExprResult RHSPtr = &RHSExpr;
5605  CastKind K = CK_Invalid;
5606
5607  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5608}
5609
5610/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5611/// has code to accommodate several GCC extensions when type checking
5612/// pointers. Here are some objectionable examples that GCC considers warnings:
5613///
5614///  int a, *pint;
5615///  short *pshort;
5616///  struct foo *pfoo;
5617///
5618///  pint = pshort; // warning: assignment from incompatible pointer type
5619///  a = pint; // warning: assignment makes integer from pointer without a cast
5620///  pint = a; // warning: assignment makes pointer from integer without a cast
5621///  pint = pfoo; // warning: assignment from incompatible pointer type
5622///
5623/// As a result, the code for dealing with pointers is more complex than the
5624/// C99 spec dictates.
5625///
5626/// Sets 'Kind' for any result kind except Incompatible.
5627Sema::AssignConvertType
5628Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5629                                 CastKind &Kind) {
5630  QualType RHSType = RHS.get()->getType();
5631  QualType OrigLHSType = LHSType;
5632
5633  // Get canonical types.  We're not formatting these types, just comparing
5634  // them.
5635  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5636  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5637
5638
5639  // Common case: no conversion required.
5640  if (LHSType == RHSType) {
5641    Kind = CK_NoOp;
5642    return Compatible;
5643  }
5644
5645  // If we have an atomic type, try a non-atomic assignment, then just add an
5646  // atomic qualification step.
5647  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5648    Sema::AssignConvertType result =
5649      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5650    if (result != Compatible)
5651      return result;
5652    if (Kind != CK_NoOp)
5653      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5654    Kind = CK_NonAtomicToAtomic;
5655    return Compatible;
5656  }
5657
5658  // If the left-hand side is a reference type, then we are in a
5659  // (rare!) case where we've allowed the use of references in C,
5660  // e.g., as a parameter type in a built-in function. In this case,
5661  // just make sure that the type referenced is compatible with the
5662  // right-hand side type. The caller is responsible for adjusting
5663  // LHSType so that the resulting expression does not have reference
5664  // type.
5665  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5666    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5667      Kind = CK_LValueBitCast;
5668      return Compatible;
5669    }
5670    return Incompatible;
5671  }
5672
5673  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5674  // to the same ExtVector type.
5675  if (LHSType->isExtVectorType()) {
5676    if (RHSType->isExtVectorType())
5677      return Incompatible;
5678    if (RHSType->isArithmeticType()) {
5679      // CK_VectorSplat does T -> vector T, so first cast to the
5680      // element type.
5681      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5682      if (elType != RHSType) {
5683        Kind = PrepareScalarCast(RHS, elType);
5684        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5685      }
5686      Kind = CK_VectorSplat;
5687      return Compatible;
5688    }
5689  }
5690
5691  // Conversions to or from vector type.
5692  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5693    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5694      // Allow assignments of an AltiVec vector type to an equivalent GCC
5695      // vector type and vice versa
5696      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5697        Kind = CK_BitCast;
5698        return Compatible;
5699      }
5700
5701      // If we are allowing lax vector conversions, and LHS and RHS are both
5702      // vectors, the total size only needs to be the same. This is a bitcast;
5703      // no bits are changed but the result type is different.
5704      if (getLangOpts().LaxVectorConversions &&
5705          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5706        Kind = CK_BitCast;
5707        return IncompatibleVectors;
5708      }
5709    }
5710    return Incompatible;
5711  }
5712
5713  // Arithmetic conversions.
5714  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5715      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5716    Kind = PrepareScalarCast(RHS, LHSType);
5717    return Compatible;
5718  }
5719
5720  // Conversions to normal pointers.
5721  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5722    // U* -> T*
5723    if (isa<PointerType>(RHSType)) {
5724      Kind = CK_BitCast;
5725      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5726    }
5727
5728    // int -> T*
5729    if (RHSType->isIntegerType()) {
5730      Kind = CK_IntegralToPointer; // FIXME: null?
5731      return IntToPointer;
5732    }
5733
5734    // C pointers are not compatible with ObjC object pointers,
5735    // with two exceptions:
5736    if (isa<ObjCObjectPointerType>(RHSType)) {
5737      //  - conversions to void*
5738      if (LHSPointer->getPointeeType()->isVoidType()) {
5739        Kind = CK_BitCast;
5740        return Compatible;
5741      }
5742
5743      //  - conversions from 'Class' to the redefinition type
5744      if (RHSType->isObjCClassType() &&
5745          Context.hasSameType(LHSType,
5746                              Context.getObjCClassRedefinitionType())) {
5747        Kind = CK_BitCast;
5748        return Compatible;
5749      }
5750
5751      Kind = CK_BitCast;
5752      return IncompatiblePointer;
5753    }
5754
5755    // U^ -> void*
5756    if (RHSType->getAs<BlockPointerType>()) {
5757      if (LHSPointer->getPointeeType()->isVoidType()) {
5758        Kind = CK_BitCast;
5759        return Compatible;
5760      }
5761    }
5762
5763    return Incompatible;
5764  }
5765
5766  // Conversions to block pointers.
5767  if (isa<BlockPointerType>(LHSType)) {
5768    // U^ -> T^
5769    if (RHSType->isBlockPointerType()) {
5770      Kind = CK_BitCast;
5771      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5772    }
5773
5774    // int or null -> T^
5775    if (RHSType->isIntegerType()) {
5776      Kind = CK_IntegralToPointer; // FIXME: null
5777      return IntToBlockPointer;
5778    }
5779
5780    // id -> T^
5781    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5782      Kind = CK_AnyPointerToBlockPointerCast;
5783      return Compatible;
5784    }
5785
5786    // void* -> T^
5787    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5788      if (RHSPT->getPointeeType()->isVoidType()) {
5789        Kind = CK_AnyPointerToBlockPointerCast;
5790        return Compatible;
5791      }
5792
5793    return Incompatible;
5794  }
5795
5796  // Conversions to Objective-C pointers.
5797  if (isa<ObjCObjectPointerType>(LHSType)) {
5798    // A* -> B*
5799    if (RHSType->isObjCObjectPointerType()) {
5800      Kind = CK_BitCast;
5801      Sema::AssignConvertType result =
5802        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5803      if (getLangOpts().ObjCAutoRefCount &&
5804          result == Compatible &&
5805          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5806        result = IncompatibleObjCWeakRef;
5807      return result;
5808    }
5809
5810    // int or null -> A*
5811    if (RHSType->isIntegerType()) {
5812      Kind = CK_IntegralToPointer; // FIXME: null
5813      return IntToPointer;
5814    }
5815
5816    // In general, C pointers are not compatible with ObjC object pointers,
5817    // with two exceptions:
5818    if (isa<PointerType>(RHSType)) {
5819      Kind = CK_CPointerToObjCPointerCast;
5820
5821      //  - conversions from 'void*'
5822      if (RHSType->isVoidPointerType()) {
5823        return Compatible;
5824      }
5825
5826      //  - conversions to 'Class' from its redefinition type
5827      if (LHSType->isObjCClassType() &&
5828          Context.hasSameType(RHSType,
5829                              Context.getObjCClassRedefinitionType())) {
5830        return Compatible;
5831      }
5832
5833      return IncompatiblePointer;
5834    }
5835
5836    // T^ -> A*
5837    if (RHSType->isBlockPointerType()) {
5838      maybeExtendBlockObject(*this, RHS);
5839      Kind = CK_BlockPointerToObjCPointerCast;
5840      return Compatible;
5841    }
5842
5843    return Incompatible;
5844  }
5845
5846  // Conversions from pointers that are not covered by the above.
5847  if (isa<PointerType>(RHSType)) {
5848    // T* -> _Bool
5849    if (LHSType == Context.BoolTy) {
5850      Kind = CK_PointerToBoolean;
5851      return Compatible;
5852    }
5853
5854    // T* -> int
5855    if (LHSType->isIntegerType()) {
5856      Kind = CK_PointerToIntegral;
5857      return PointerToInt;
5858    }
5859
5860    return Incompatible;
5861  }
5862
5863  // Conversions from Objective-C pointers that are not covered by the above.
5864  if (isa<ObjCObjectPointerType>(RHSType)) {
5865    // T* -> _Bool
5866    if (LHSType == Context.BoolTy) {
5867      Kind = CK_PointerToBoolean;
5868      return Compatible;
5869    }
5870
5871    // T* -> int
5872    if (LHSType->isIntegerType()) {
5873      Kind = CK_PointerToIntegral;
5874      return PointerToInt;
5875    }
5876
5877    return Incompatible;
5878  }
5879
5880  // struct A -> struct B
5881  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5882    if (Context.typesAreCompatible(LHSType, RHSType)) {
5883      Kind = CK_NoOp;
5884      return Compatible;
5885    }
5886  }
5887
5888  return Incompatible;
5889}
5890
5891/// \brief Constructs a transparent union from an expression that is
5892/// used to initialize the transparent union.
5893static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5894                                      ExprResult &EResult, QualType UnionType,
5895                                      FieldDecl *Field) {
5896  // Build an initializer list that designates the appropriate member
5897  // of the transparent union.
5898  Expr *E = EResult.take();
5899  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5900                                                   E, SourceLocation());
5901  Initializer->setType(UnionType);
5902  Initializer->setInitializedFieldInUnion(Field);
5903
5904  // Build a compound literal constructing a value of the transparent
5905  // union type from this initializer list.
5906  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5907  EResult = S.Owned(
5908    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5909                                VK_RValue, Initializer, false));
5910}
5911
5912Sema::AssignConvertType
5913Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5914                                               ExprResult &RHS) {
5915  QualType RHSType = RHS.get()->getType();
5916
5917  // If the ArgType is a Union type, we want to handle a potential
5918  // transparent_union GCC extension.
5919  const RecordType *UT = ArgType->getAsUnionType();
5920  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5921    return Incompatible;
5922
5923  // The field to initialize within the transparent union.
5924  RecordDecl *UD = UT->getDecl();
5925  FieldDecl *InitField = 0;
5926  // It's compatible if the expression matches any of the fields.
5927  for (RecordDecl::field_iterator it = UD->field_begin(),
5928         itend = UD->field_end();
5929       it != itend; ++it) {
5930    if (it->getType()->isPointerType()) {
5931      // If the transparent union contains a pointer type, we allow:
5932      // 1) void pointer
5933      // 2) null pointer constant
5934      if (RHSType->isPointerType())
5935        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5936          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5937          InitField = *it;
5938          break;
5939        }
5940
5941      if (RHS.get()->isNullPointerConstant(Context,
5942                                           Expr::NPC_ValueDependentIsNull)) {
5943        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5944                                CK_NullToPointer);
5945        InitField = *it;
5946        break;
5947      }
5948    }
5949
5950    CastKind Kind = CK_Invalid;
5951    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5952          == Compatible) {
5953      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5954      InitField = *it;
5955      break;
5956    }
5957  }
5958
5959  if (!InitField)
5960    return Incompatible;
5961
5962  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5963  return Compatible;
5964}
5965
5966Sema::AssignConvertType
5967Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5968                                       bool Diagnose) {
5969  if (getLangOpts().CPlusPlus) {
5970    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5971      // C++ 5.17p3: If the left operand is not of class type, the
5972      // expression is implicitly converted (C++ 4) to the
5973      // cv-unqualified type of the left operand.
5974      ExprResult Res;
5975      if (Diagnose) {
5976        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5977                                        AA_Assigning);
5978      } else {
5979        ImplicitConversionSequence ICS =
5980            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5981                                  /*SuppressUserConversions=*/false,
5982                                  /*AllowExplicit=*/false,
5983                                  /*InOverloadResolution=*/false,
5984                                  /*CStyle=*/false,
5985                                  /*AllowObjCWritebackConversion=*/false);
5986        if (ICS.isFailure())
5987          return Incompatible;
5988        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5989                                        ICS, AA_Assigning);
5990      }
5991      if (Res.isInvalid())
5992        return Incompatible;
5993      Sema::AssignConvertType result = Compatible;
5994      if (getLangOpts().ObjCAutoRefCount &&
5995          !CheckObjCARCUnavailableWeakConversion(LHSType,
5996                                                 RHS.get()->getType()))
5997        result = IncompatibleObjCWeakRef;
5998      RHS = Res;
5999      return result;
6000    }
6001
6002    // FIXME: Currently, we fall through and treat C++ classes like C
6003    // structures.
6004    // FIXME: We also fall through for atomics; not sure what should
6005    // happen there, though.
6006  }
6007
6008  // C99 6.5.16.1p1: the left operand is a pointer and the right is
6009  // a null pointer constant.
6010  if ((LHSType->isPointerType() ||
6011       LHSType->isObjCObjectPointerType() ||
6012       LHSType->isBlockPointerType())
6013      && RHS.get()->isNullPointerConstant(Context,
6014                                          Expr::NPC_ValueDependentIsNull)) {
6015    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6016    return Compatible;
6017  }
6018
6019  // This check seems unnatural, however it is necessary to ensure the proper
6020  // conversion of functions/arrays. If the conversion were done for all
6021  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6022  // expressions that suppress this implicit conversion (&, sizeof).
6023  //
6024  // Suppress this for references: C++ 8.5.3p5.
6025  if (!LHSType->isReferenceType()) {
6026    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6027    if (RHS.isInvalid())
6028      return Incompatible;
6029  }
6030
6031  CastKind Kind = CK_Invalid;
6032  Sema::AssignConvertType result =
6033    CheckAssignmentConstraints(LHSType, RHS, Kind);
6034
6035  // C99 6.5.16.1p2: The value of the right operand is converted to the
6036  // type of the assignment expression.
6037  // CheckAssignmentConstraints allows the left-hand side to be a reference,
6038  // so that we can use references in built-in functions even in C.
6039  // The getNonReferenceType() call makes sure that the resulting expression
6040  // does not have reference type.
6041  if (result != Incompatible && RHS.get()->getType() != LHSType)
6042    RHS = ImpCastExprToType(RHS.take(),
6043                            LHSType.getNonLValueExprType(Context), Kind);
6044  return result;
6045}
6046
6047QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6048                               ExprResult &RHS) {
6049  Diag(Loc, diag::err_typecheck_invalid_operands)
6050    << LHS.get()->getType() << RHS.get()->getType()
6051    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6052  return QualType();
6053}
6054
6055QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6056                                   SourceLocation Loc, bool IsCompAssign) {
6057  if (!IsCompAssign) {
6058    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6059    if (LHS.isInvalid())
6060      return QualType();
6061  }
6062  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6063  if (RHS.isInvalid())
6064    return QualType();
6065
6066  // For conversion purposes, we ignore any qualifiers.
6067  // For example, "const float" and "float" are equivalent.
6068  QualType LHSType =
6069    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6070  QualType RHSType =
6071    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6072
6073  // If the vector types are identical, return.
6074  if (LHSType == RHSType)
6075    return LHSType;
6076
6077  // Handle the case of equivalent AltiVec and GCC vector types
6078  if (LHSType->isVectorType() && RHSType->isVectorType() &&
6079      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6080    if (LHSType->isExtVectorType()) {
6081      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6082      return LHSType;
6083    }
6084
6085    if (!IsCompAssign)
6086      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6087    return RHSType;
6088  }
6089
6090  if (getLangOpts().LaxVectorConversions &&
6091      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6092    // If we are allowing lax vector conversions, and LHS and RHS are both
6093    // vectors, the total size only needs to be the same. This is a
6094    // bitcast; no bits are changed but the result type is different.
6095    // FIXME: Should we really be allowing this?
6096    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6097    return LHSType;
6098  }
6099
6100  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6101  // swap back (so that we don't reverse the inputs to a subtract, for instance.
6102  bool swapped = false;
6103  if (RHSType->isExtVectorType() && !IsCompAssign) {
6104    swapped = true;
6105    std::swap(RHS, LHS);
6106    std::swap(RHSType, LHSType);
6107  }
6108
6109  // Handle the case of an ext vector and scalar.
6110  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6111    QualType EltTy = LV->getElementType();
6112    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6113      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6114      if (order > 0)
6115        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6116      if (order >= 0) {
6117        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6118        if (swapped) std::swap(RHS, LHS);
6119        return LHSType;
6120      }
6121    }
6122    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6123        RHSType->isRealFloatingType()) {
6124      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6125      if (order > 0)
6126        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6127      if (order >= 0) {
6128        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6129        if (swapped) std::swap(RHS, LHS);
6130        return LHSType;
6131      }
6132    }
6133  }
6134
6135  // Vectors of different size or scalar and non-ext-vector are errors.
6136  if (swapped) std::swap(RHS, LHS);
6137  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6138    << LHS.get()->getType() << RHS.get()->getType()
6139    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6140  return QualType();
6141}
6142
6143// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6144// expression.  These are mainly cases where the null pointer is used as an
6145// integer instead of a pointer.
6146static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6147                                SourceLocation Loc, bool IsCompare) {
6148  // The canonical way to check for a GNU null is with isNullPointerConstant,
6149  // but we use a bit of a hack here for speed; this is a relatively
6150  // hot path, and isNullPointerConstant is slow.
6151  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6152  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6153
6154  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6155
6156  // Avoid analyzing cases where the result will either be invalid (and
6157  // diagnosed as such) or entirely valid and not something to warn about.
6158  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6159      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6160    return;
6161
6162  // Comparison operations would not make sense with a null pointer no matter
6163  // what the other expression is.
6164  if (!IsCompare) {
6165    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6166        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6167        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6168    return;
6169  }
6170
6171  // The rest of the operations only make sense with a null pointer
6172  // if the other expression is a pointer.
6173  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6174      NonNullType->canDecayToPointerType())
6175    return;
6176
6177  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6178      << LHSNull /* LHS is NULL */ << NonNullType
6179      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6180}
6181
6182QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6183                                           SourceLocation Loc,
6184                                           bool IsCompAssign, bool IsDiv) {
6185  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6186
6187  if (LHS.get()->getType()->isVectorType() ||
6188      RHS.get()->getType()->isVectorType())
6189    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6190
6191  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6192  if (LHS.isInvalid() || RHS.isInvalid())
6193    return QualType();
6194
6195
6196  if (compType.isNull() || !compType->isArithmeticType())
6197    return InvalidOperands(Loc, LHS, RHS);
6198
6199  // Check for division by zero.
6200  if (IsDiv &&
6201      RHS.get()->isNullPointerConstant(Context,
6202                                       Expr::NPC_ValueDependentIsNotNull))
6203    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6204                                          << RHS.get()->getSourceRange());
6205
6206  return compType;
6207}
6208
6209QualType Sema::CheckRemainderOperands(
6210  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6211  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6212
6213  if (LHS.get()->getType()->isVectorType() ||
6214      RHS.get()->getType()->isVectorType()) {
6215    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6216        RHS.get()->getType()->hasIntegerRepresentation())
6217      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6218    return InvalidOperands(Loc, LHS, RHS);
6219  }
6220
6221  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6222  if (LHS.isInvalid() || RHS.isInvalid())
6223    return QualType();
6224
6225  if (compType.isNull() || !compType->isIntegerType())
6226    return InvalidOperands(Loc, LHS, RHS);
6227
6228  // Check for remainder by zero.
6229  if (RHS.get()->isNullPointerConstant(Context,
6230                                       Expr::NPC_ValueDependentIsNotNull))
6231    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6232                                 << RHS.get()->getSourceRange());
6233
6234  return compType;
6235}
6236
6237/// \brief Diagnose invalid arithmetic on two void pointers.
6238static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6239                                                Expr *LHSExpr, Expr *RHSExpr) {
6240  S.Diag(Loc, S.getLangOpts().CPlusPlus
6241                ? diag::err_typecheck_pointer_arith_void_type
6242                : diag::ext_gnu_void_ptr)
6243    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6244                            << RHSExpr->getSourceRange();
6245}
6246
6247/// \brief Diagnose invalid arithmetic on a void pointer.
6248static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6249                                            Expr *Pointer) {
6250  S.Diag(Loc, S.getLangOpts().CPlusPlus
6251                ? diag::err_typecheck_pointer_arith_void_type
6252                : diag::ext_gnu_void_ptr)
6253    << 0 /* one pointer */ << Pointer->getSourceRange();
6254}
6255
6256/// \brief Diagnose invalid arithmetic on two function pointers.
6257static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6258                                                    Expr *LHS, Expr *RHS) {
6259  assert(LHS->getType()->isAnyPointerType());
6260  assert(RHS->getType()->isAnyPointerType());
6261  S.Diag(Loc, S.getLangOpts().CPlusPlus
6262                ? diag::err_typecheck_pointer_arith_function_type
6263                : diag::ext_gnu_ptr_func_arith)
6264    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6265    // We only show the second type if it differs from the first.
6266    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6267                                                   RHS->getType())
6268    << RHS->getType()->getPointeeType()
6269    << LHS->getSourceRange() << RHS->getSourceRange();
6270}
6271
6272/// \brief Diagnose invalid arithmetic on a function pointer.
6273static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6274                                                Expr *Pointer) {
6275  assert(Pointer->getType()->isAnyPointerType());
6276  S.Diag(Loc, S.getLangOpts().CPlusPlus
6277                ? diag::err_typecheck_pointer_arith_function_type
6278                : diag::ext_gnu_ptr_func_arith)
6279    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6280    << 0 /* one pointer, so only one type */
6281    << Pointer->getSourceRange();
6282}
6283
6284/// \brief Emit error if Operand is incomplete pointer type
6285///
6286/// \returns True if pointer has incomplete type
6287static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6288                                                 Expr *Operand) {
6289  assert(Operand->getType()->isAnyPointerType() &&
6290         !Operand->getType()->isDependentType());
6291  QualType PointeeTy = Operand->getType()->getPointeeType();
6292  return S.RequireCompleteType(Loc, PointeeTy,
6293                               diag::err_typecheck_arithmetic_incomplete_type,
6294                               PointeeTy, Operand->getSourceRange());
6295}
6296
6297/// \brief Check the validity of an arithmetic pointer operand.
6298///
6299/// If the operand has pointer type, this code will check for pointer types
6300/// which are invalid in arithmetic operations. These will be diagnosed
6301/// appropriately, including whether or not the use is supported as an
6302/// extension.
6303///
6304/// \returns True when the operand is valid to use (even if as an extension).
6305static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6306                                            Expr *Operand) {
6307  if (!Operand->getType()->isAnyPointerType()) return true;
6308
6309  QualType PointeeTy = Operand->getType()->getPointeeType();
6310  if (PointeeTy->isVoidType()) {
6311    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6312    return !S.getLangOpts().CPlusPlus;
6313  }
6314  if (PointeeTy->isFunctionType()) {
6315    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6316    return !S.getLangOpts().CPlusPlus;
6317  }
6318
6319  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6320
6321  return true;
6322}
6323
6324/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6325/// operands.
6326///
6327/// This routine will diagnose any invalid arithmetic on pointer operands much
6328/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6329/// for emitting a single diagnostic even for operations where both LHS and RHS
6330/// are (potentially problematic) pointers.
6331///
6332/// \returns True when the operand is valid to use (even if as an extension).
6333static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6334                                                Expr *LHSExpr, Expr *RHSExpr) {
6335  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6336  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6337  if (!isLHSPointer && !isRHSPointer) return true;
6338
6339  QualType LHSPointeeTy, RHSPointeeTy;
6340  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6341  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6342
6343  // Check for arithmetic on pointers to incomplete types.
6344  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6345  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6346  if (isLHSVoidPtr || isRHSVoidPtr) {
6347    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6348    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6349    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6350
6351    return !S.getLangOpts().CPlusPlus;
6352  }
6353
6354  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6355  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6356  if (isLHSFuncPtr || isRHSFuncPtr) {
6357    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6358    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6359                                                                RHSExpr);
6360    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6361
6362    return !S.getLangOpts().CPlusPlus;
6363  }
6364
6365  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6366    return false;
6367  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6368    return false;
6369
6370  return true;
6371}
6372
6373/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6374/// literal.
6375static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6376                                  Expr *LHSExpr, Expr *RHSExpr) {
6377  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6378  Expr* IndexExpr = RHSExpr;
6379  if (!StrExpr) {
6380    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6381    IndexExpr = LHSExpr;
6382  }
6383
6384  bool IsStringPlusInt = StrExpr &&
6385      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6386  if (!IsStringPlusInt)
6387    return;
6388
6389  llvm::APSInt index;
6390  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6391    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6392    if (index.isNonNegative() &&
6393        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6394                              index.isUnsigned()))
6395      return;
6396  }
6397
6398  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6399  Self.Diag(OpLoc, diag::warn_string_plus_int)
6400      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6401
6402  // Only print a fixit for "str" + int, not for int + "str".
6403  if (IndexExpr == RHSExpr) {
6404    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6405    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6406        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6407        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6408        << FixItHint::CreateInsertion(EndLoc, "]");
6409  } else
6410    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6411}
6412
6413/// \brief Emit error when two pointers are incompatible.
6414static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6415                                           Expr *LHSExpr, Expr *RHSExpr) {
6416  assert(LHSExpr->getType()->isAnyPointerType());
6417  assert(RHSExpr->getType()->isAnyPointerType());
6418  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6419    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6420    << RHSExpr->getSourceRange();
6421}
6422
6423QualType Sema::CheckAdditionOperands( // C99 6.5.6
6424    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6425    QualType* CompLHSTy) {
6426  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6427
6428  if (LHS.get()->getType()->isVectorType() ||
6429      RHS.get()->getType()->isVectorType()) {
6430    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6431    if (CompLHSTy) *CompLHSTy = compType;
6432    return compType;
6433  }
6434
6435  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6436  if (LHS.isInvalid() || RHS.isInvalid())
6437    return QualType();
6438
6439  // Diagnose "string literal" '+' int.
6440  if (Opc == BO_Add)
6441    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6442
6443  // handle the common case first (both operands are arithmetic).
6444  if (!compType.isNull() && compType->isArithmeticType()) {
6445    if (CompLHSTy) *CompLHSTy = compType;
6446    return compType;
6447  }
6448
6449  // Type-checking.  Ultimately the pointer's going to be in PExp;
6450  // note that we bias towards the LHS being the pointer.
6451  Expr *PExp = LHS.get(), *IExp = RHS.get();
6452
6453  bool isObjCPointer;
6454  if (PExp->getType()->isPointerType()) {
6455    isObjCPointer = false;
6456  } else if (PExp->getType()->isObjCObjectPointerType()) {
6457    isObjCPointer = true;
6458  } else {
6459    std::swap(PExp, IExp);
6460    if (PExp->getType()->isPointerType()) {
6461      isObjCPointer = false;
6462    } else if (PExp->getType()->isObjCObjectPointerType()) {
6463      isObjCPointer = true;
6464    } else {
6465      return InvalidOperands(Loc, LHS, RHS);
6466    }
6467  }
6468  assert(PExp->getType()->isAnyPointerType());
6469
6470  if (!IExp->getType()->isIntegerType())
6471    return InvalidOperands(Loc, LHS, RHS);
6472
6473  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6474    return QualType();
6475
6476  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6477    return QualType();
6478
6479  // Check array bounds for pointer arithemtic
6480  CheckArrayAccess(PExp, IExp);
6481
6482  if (CompLHSTy) {
6483    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6484    if (LHSTy.isNull()) {
6485      LHSTy = LHS.get()->getType();
6486      if (LHSTy->isPromotableIntegerType())
6487        LHSTy = Context.getPromotedIntegerType(LHSTy);
6488    }
6489    *CompLHSTy = LHSTy;
6490  }
6491
6492  return PExp->getType();
6493}
6494
6495// C99 6.5.6
6496QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6497                                        SourceLocation Loc,
6498                                        QualType* CompLHSTy) {
6499  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6500
6501  if (LHS.get()->getType()->isVectorType() ||
6502      RHS.get()->getType()->isVectorType()) {
6503    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6504    if (CompLHSTy) *CompLHSTy = compType;
6505    return compType;
6506  }
6507
6508  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6509  if (LHS.isInvalid() || RHS.isInvalid())
6510    return QualType();
6511
6512  // Enforce type constraints: C99 6.5.6p3.
6513
6514  // Handle the common case first (both operands are arithmetic).
6515  if (!compType.isNull() && compType->isArithmeticType()) {
6516    if (CompLHSTy) *CompLHSTy = compType;
6517    return compType;
6518  }
6519
6520  // Either ptr - int   or   ptr - ptr.
6521  if (LHS.get()->getType()->isAnyPointerType()) {
6522    QualType lpointee = LHS.get()->getType()->getPointeeType();
6523
6524    // Diagnose bad cases where we step over interface counts.
6525    if (LHS.get()->getType()->isObjCObjectPointerType() &&
6526        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6527      return QualType();
6528
6529    // The result type of a pointer-int computation is the pointer type.
6530    if (RHS.get()->getType()->isIntegerType()) {
6531      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6532        return QualType();
6533
6534      // Check array bounds for pointer arithemtic
6535      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6536                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6537
6538      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6539      return LHS.get()->getType();
6540    }
6541
6542    // Handle pointer-pointer subtractions.
6543    if (const PointerType *RHSPTy
6544          = RHS.get()->getType()->getAs<PointerType>()) {
6545      QualType rpointee = RHSPTy->getPointeeType();
6546
6547      if (getLangOpts().CPlusPlus) {
6548        // Pointee types must be the same: C++ [expr.add]
6549        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6550          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6551        }
6552      } else {
6553        // Pointee types must be compatible C99 6.5.6p3
6554        if (!Context.typesAreCompatible(
6555                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6556                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6557          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6558          return QualType();
6559        }
6560      }
6561
6562      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6563                                               LHS.get(), RHS.get()))
6564        return QualType();
6565
6566      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6567      return Context.getPointerDiffType();
6568    }
6569  }
6570
6571  return InvalidOperands(Loc, LHS, RHS);
6572}
6573
6574static bool isScopedEnumerationType(QualType T) {
6575  if (const EnumType *ET = dyn_cast<EnumType>(T))
6576    return ET->getDecl()->isScoped();
6577  return false;
6578}
6579
6580static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6581                                   SourceLocation Loc, unsigned Opc,
6582                                   QualType LHSType) {
6583  llvm::APSInt Right;
6584  // Check right/shifter operand
6585  if (RHS.get()->isValueDependent() ||
6586      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6587    return;
6588
6589  if (Right.isNegative()) {
6590    S.DiagRuntimeBehavior(Loc, RHS.get(),
6591                          S.PDiag(diag::warn_shift_negative)
6592                            << RHS.get()->getSourceRange());
6593    return;
6594  }
6595  llvm::APInt LeftBits(Right.getBitWidth(),
6596                       S.Context.getTypeSize(LHS.get()->getType()));
6597  if (Right.uge(LeftBits)) {
6598    S.DiagRuntimeBehavior(Loc, RHS.get(),
6599                          S.PDiag(diag::warn_shift_gt_typewidth)
6600                            << RHS.get()->getSourceRange());
6601    return;
6602  }
6603  if (Opc != BO_Shl)
6604    return;
6605
6606  // When left shifting an ICE which is signed, we can check for overflow which
6607  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6608  // integers have defined behavior modulo one more than the maximum value
6609  // representable in the result type, so never warn for those.
6610  llvm::APSInt Left;
6611  if (LHS.get()->isValueDependent() ||
6612      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6613      LHSType->hasUnsignedIntegerRepresentation())
6614    return;
6615  llvm::APInt ResultBits =
6616      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6617  if (LeftBits.uge(ResultBits))
6618    return;
6619  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6620  Result = Result.shl(Right);
6621
6622  // Print the bit representation of the signed integer as an unsigned
6623  // hexadecimal number.
6624  SmallString<40> HexResult;
6625  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6626
6627  // If we are only missing a sign bit, this is less likely to result in actual
6628  // bugs -- if the result is cast back to an unsigned type, it will have the
6629  // expected value. Thus we place this behind a different warning that can be
6630  // turned off separately if needed.
6631  if (LeftBits == ResultBits - 1) {
6632    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6633        << HexResult.str() << LHSType
6634        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6635    return;
6636  }
6637
6638  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6639    << HexResult.str() << Result.getMinSignedBits() << LHSType
6640    << Left.getBitWidth() << LHS.get()->getSourceRange()
6641    << RHS.get()->getSourceRange();
6642}
6643
6644// C99 6.5.7
6645QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6646                                  SourceLocation Loc, unsigned Opc,
6647                                  bool IsCompAssign) {
6648  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6649
6650  // C99 6.5.7p2: Each of the operands shall have integer type.
6651  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6652      !RHS.get()->getType()->hasIntegerRepresentation())
6653    return InvalidOperands(Loc, LHS, RHS);
6654
6655  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6656  // hasIntegerRepresentation() above instead of this.
6657  if (isScopedEnumerationType(LHS.get()->getType()) ||
6658      isScopedEnumerationType(RHS.get()->getType())) {
6659    return InvalidOperands(Loc, LHS, RHS);
6660  }
6661
6662  // Vector shifts promote their scalar inputs to vector type.
6663  if (LHS.get()->getType()->isVectorType() ||
6664      RHS.get()->getType()->isVectorType())
6665    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6666
6667  // Shifts don't perform usual arithmetic conversions, they just do integer
6668  // promotions on each operand. C99 6.5.7p3
6669
6670  // For the LHS, do usual unary conversions, but then reset them away
6671  // if this is a compound assignment.
6672  ExprResult OldLHS = LHS;
6673  LHS = UsualUnaryConversions(LHS.take());
6674  if (LHS.isInvalid())
6675    return QualType();
6676  QualType LHSType = LHS.get()->getType();
6677  if (IsCompAssign) LHS = OldLHS;
6678
6679  // The RHS is simpler.
6680  RHS = UsualUnaryConversions(RHS.take());
6681  if (RHS.isInvalid())
6682    return QualType();
6683
6684  // Sanity-check shift operands
6685  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6686
6687  // "The type of the result is that of the promoted left operand."
6688  return LHSType;
6689}
6690
6691static bool IsWithinTemplateSpecialization(Decl *D) {
6692  if (DeclContext *DC = D->getDeclContext()) {
6693    if (isa<ClassTemplateSpecializationDecl>(DC))
6694      return true;
6695    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6696      return FD->isFunctionTemplateSpecialization();
6697  }
6698  return false;
6699}
6700
6701/// If two different enums are compared, raise a warning.
6702static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6703                                ExprResult &RHS) {
6704  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6705  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6706
6707  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6708  if (!LHSEnumType)
6709    return;
6710  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6711  if (!RHSEnumType)
6712    return;
6713
6714  // Ignore anonymous enums.
6715  if (!LHSEnumType->getDecl()->getIdentifier())
6716    return;
6717  if (!RHSEnumType->getDecl()->getIdentifier())
6718    return;
6719
6720  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6721    return;
6722
6723  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6724      << LHSStrippedType << RHSStrippedType
6725      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6726}
6727
6728/// \brief Diagnose bad pointer comparisons.
6729static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6730                                              ExprResult &LHS, ExprResult &RHS,
6731                                              bool IsError) {
6732  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6733                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6734    << LHS.get()->getType() << RHS.get()->getType()
6735    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6736}
6737
6738/// \brief Returns false if the pointers are converted to a composite type,
6739/// true otherwise.
6740static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6741                                           ExprResult &LHS, ExprResult &RHS) {
6742  // C++ [expr.rel]p2:
6743  //   [...] Pointer conversions (4.10) and qualification
6744  //   conversions (4.4) are performed on pointer operands (or on
6745  //   a pointer operand and a null pointer constant) to bring
6746  //   them to their composite pointer type. [...]
6747  //
6748  // C++ [expr.eq]p1 uses the same notion for (in)equality
6749  // comparisons of pointers.
6750
6751  // C++ [expr.eq]p2:
6752  //   In addition, pointers to members can be compared, or a pointer to
6753  //   member and a null pointer constant. Pointer to member conversions
6754  //   (4.11) and qualification conversions (4.4) are performed to bring
6755  //   them to a common type. If one operand is a null pointer constant,
6756  //   the common type is the type of the other operand. Otherwise, the
6757  //   common type is a pointer to member type similar (4.4) to the type
6758  //   of one of the operands, with a cv-qualification signature (4.4)
6759  //   that is the union of the cv-qualification signatures of the operand
6760  //   types.
6761
6762  QualType LHSType = LHS.get()->getType();
6763  QualType RHSType = RHS.get()->getType();
6764  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6765         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6766
6767  bool NonStandardCompositeType = false;
6768  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6769  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6770  if (T.isNull()) {
6771    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6772    return true;
6773  }
6774
6775  if (NonStandardCompositeType)
6776    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6777      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6778      << RHS.get()->getSourceRange();
6779
6780  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6781  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6782  return false;
6783}
6784
6785static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6786                                                    ExprResult &LHS,
6787                                                    ExprResult &RHS,
6788                                                    bool IsError) {
6789  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6790                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6791    << LHS.get()->getType() << RHS.get()->getType()
6792    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6793}
6794
6795static bool isObjCObjectLiteral(ExprResult &E) {
6796  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
6797  case Stmt::ObjCArrayLiteralClass:
6798  case Stmt::ObjCDictionaryLiteralClass:
6799  case Stmt::ObjCStringLiteralClass:
6800  case Stmt::ObjCBoxedExprClass:
6801    return true;
6802  default:
6803    // Note that ObjCBoolLiteral is NOT an object literal!
6804    return false;
6805  }
6806}
6807
6808static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6809  // Get the LHS object's interface type.
6810  QualType Type = LHS->getType();
6811  QualType InterfaceType;
6812  if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
6813    InterfaceType = PTy->getPointeeType();
6814    if (const ObjCObjectType *iQFaceTy =
6815        InterfaceType->getAsObjCQualifiedInterfaceType())
6816      InterfaceType = iQFaceTy->getBaseType();
6817  } else {
6818    // If this is not actually an Objective-C object, bail out.
6819    return false;
6820  }
6821
6822  // If the RHS isn't an Objective-C object, bail out.
6823  if (!RHS->getType()->isObjCObjectPointerType())
6824    return false;
6825
6826  // Try to find the -isEqual: method.
6827  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6828  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6829                                                      InterfaceType,
6830                                                      /*instance=*/true);
6831  if (!Method) {
6832    if (Type->isObjCIdType()) {
6833      // For 'id', just check the global pool.
6834      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6835                                                  /*receiverId=*/true,
6836                                                  /*warn=*/false);
6837    } else {
6838      // Check protocols.
6839      Method = S.LookupMethodInQualifiedType(IsEqualSel,
6840                                             cast<ObjCObjectPointerType>(Type),
6841                                             /*instance=*/true);
6842    }
6843  }
6844
6845  if (!Method)
6846    return false;
6847
6848  QualType T = Method->param_begin()[0]->getType();
6849  if (!T->isObjCObjectPointerType())
6850    return false;
6851
6852  QualType R = Method->getResultType();
6853  if (!R->isScalarType())
6854    return false;
6855
6856  return true;
6857}
6858
6859static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6860                                          ExprResult &LHS, ExprResult &RHS,
6861                                          BinaryOperator::Opcode Opc){
6862  Expr *Literal;
6863  Expr *Other;
6864  if (isObjCObjectLiteral(LHS)) {
6865    Literal = LHS.get();
6866    Other = RHS.get();
6867  } else {
6868    Literal = RHS.get();
6869    Other = LHS.get();
6870  }
6871
6872  // Don't warn on comparisons against nil.
6873  Other = Other->IgnoreParenCasts();
6874  if (Other->isNullPointerConstant(S.getASTContext(),
6875                                   Expr::NPC_ValueDependentIsNotNull))
6876    return;
6877
6878  // This should be kept in sync with warn_objc_literal_comparison.
6879  // LK_String should always be last, since it has its own warning flag.
6880  enum {
6881    LK_Array,
6882    LK_Dictionary,
6883    LK_Numeric,
6884    LK_Boxed,
6885    LK_String
6886  } LiteralKind;
6887
6888  Literal = Literal->IgnoreParenImpCasts();
6889  switch (Literal->getStmtClass()) {
6890  case Stmt::ObjCStringLiteralClass:
6891    // "string literal"
6892    LiteralKind = LK_String;
6893    break;
6894  case Stmt::ObjCArrayLiteralClass:
6895    // "array literal"
6896    LiteralKind = LK_Array;
6897    break;
6898  case Stmt::ObjCDictionaryLiteralClass:
6899    // "dictionary literal"
6900    LiteralKind = LK_Dictionary;
6901    break;
6902  case Stmt::ObjCBoxedExprClass: {
6903    Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
6904    switch (Inner->getStmtClass()) {
6905    case Stmt::IntegerLiteralClass:
6906    case Stmt::FloatingLiteralClass:
6907    case Stmt::CharacterLiteralClass:
6908    case Stmt::ObjCBoolLiteralExprClass:
6909    case Stmt::CXXBoolLiteralExprClass:
6910      // "numeric literal"
6911      LiteralKind = LK_Numeric;
6912      break;
6913    case Stmt::ImplicitCastExprClass: {
6914      CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6915      // Boolean literals can be represented by implicit casts.
6916      if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
6917        LiteralKind = LK_Numeric;
6918        break;
6919      }
6920      // FALLTHROUGH
6921    }
6922    default:
6923      // "boxed expression"
6924      LiteralKind = LK_Boxed;
6925      break;
6926    }
6927    break;
6928  }
6929  default:
6930    llvm_unreachable("Unknown Objective-C object literal kind");
6931  }
6932
6933  if (LiteralKind == LK_String)
6934    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6935      << Literal->getSourceRange();
6936  else
6937    S.Diag(Loc, diag::warn_objc_literal_comparison)
6938      << LiteralKind << Literal->getSourceRange();
6939
6940  if (BinaryOperator::isEqualityOp(Opc) &&
6941      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
6942    SourceLocation Start = LHS.get()->getLocStart();
6943    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
6944    SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
6945
6946    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
6947      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
6948      << FixItHint::CreateReplacement(OpRange, "isEqual:")
6949      << FixItHint::CreateInsertion(End, "]");
6950  }
6951}
6952
6953// C99 6.5.8, C++ [expr.rel]
6954QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6955                                    SourceLocation Loc, unsigned OpaqueOpc,
6956                                    bool IsRelational) {
6957  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6958
6959  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6960
6961  // Handle vector comparisons separately.
6962  if (LHS.get()->getType()->isVectorType() ||
6963      RHS.get()->getType()->isVectorType())
6964    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6965
6966  QualType LHSType = LHS.get()->getType();
6967  QualType RHSType = RHS.get()->getType();
6968
6969  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6970  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6971
6972  checkEnumComparison(*this, Loc, LHS, RHS);
6973
6974  if (!LHSType->hasFloatingRepresentation() &&
6975      !(LHSType->isBlockPointerType() && IsRelational) &&
6976      !LHS.get()->getLocStart().isMacroID() &&
6977      !RHS.get()->getLocStart().isMacroID()) {
6978    // For non-floating point types, check for self-comparisons of the form
6979    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6980    // often indicate logic errors in the program.
6981    //
6982    // NOTE: Don't warn about comparison expressions resulting from macro
6983    // expansion. Also don't warn about comparisons which are only self
6984    // comparisons within a template specialization. The warnings should catch
6985    // obvious cases in the definition of the template anyways. The idea is to
6986    // warn when the typed comparison operator will always evaluate to the same
6987    // result.
6988    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6989      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6990        if (DRL->getDecl() == DRR->getDecl() &&
6991            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6992          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6993                              << 0 // self-
6994                              << (Opc == BO_EQ
6995                                  || Opc == BO_LE
6996                                  || Opc == BO_GE));
6997        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6998                   !DRL->getDecl()->getType()->isReferenceType() &&
6999                   !DRR->getDecl()->getType()->isReferenceType()) {
7000            // what is it always going to eval to?
7001            char always_evals_to;
7002            switch(Opc) {
7003            case BO_EQ: // e.g. array1 == array2
7004              always_evals_to = 0; // false
7005              break;
7006            case BO_NE: // e.g. array1 != array2
7007              always_evals_to = 1; // true
7008              break;
7009            default:
7010              // best we can say is 'a constant'
7011              always_evals_to = 2; // e.g. array1 <= array2
7012              break;
7013            }
7014            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7015                                << 1 // array
7016                                << always_evals_to);
7017        }
7018      }
7019    }
7020
7021    if (isa<CastExpr>(LHSStripped))
7022      LHSStripped = LHSStripped->IgnoreParenCasts();
7023    if (isa<CastExpr>(RHSStripped))
7024      RHSStripped = RHSStripped->IgnoreParenCasts();
7025
7026    // Warn about comparisons against a string constant (unless the other
7027    // operand is null), the user probably wants strcmp.
7028    Expr *literalString = 0;
7029    Expr *literalStringStripped = 0;
7030    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7031        !RHSStripped->isNullPointerConstant(Context,
7032                                            Expr::NPC_ValueDependentIsNull)) {
7033      literalString = LHS.get();
7034      literalStringStripped = LHSStripped;
7035    } else if ((isa<StringLiteral>(RHSStripped) ||
7036                isa<ObjCEncodeExpr>(RHSStripped)) &&
7037               !LHSStripped->isNullPointerConstant(Context,
7038                                            Expr::NPC_ValueDependentIsNull)) {
7039      literalString = RHS.get();
7040      literalStringStripped = RHSStripped;
7041    }
7042
7043    if (literalString) {
7044      std::string resultComparison;
7045      switch (Opc) {
7046      case BO_LT: resultComparison = ") < 0"; break;
7047      case BO_GT: resultComparison = ") > 0"; break;
7048      case BO_LE: resultComparison = ") <= 0"; break;
7049      case BO_GE: resultComparison = ") >= 0"; break;
7050      case BO_EQ: resultComparison = ") == 0"; break;
7051      case BO_NE: resultComparison = ") != 0"; break;
7052      default: llvm_unreachable("Invalid comparison operator");
7053      }
7054
7055      DiagRuntimeBehavior(Loc, 0,
7056        PDiag(diag::warn_stringcompare)
7057          << isa<ObjCEncodeExpr>(literalStringStripped)
7058          << literalString->getSourceRange());
7059    }
7060  }
7061
7062  // C99 6.5.8p3 / C99 6.5.9p4
7063  if (LHS.get()->getType()->isArithmeticType() &&
7064      RHS.get()->getType()->isArithmeticType()) {
7065    UsualArithmeticConversions(LHS, RHS);
7066    if (LHS.isInvalid() || RHS.isInvalid())
7067      return QualType();
7068  }
7069  else {
7070    LHS = UsualUnaryConversions(LHS.take());
7071    if (LHS.isInvalid())
7072      return QualType();
7073
7074    RHS = UsualUnaryConversions(RHS.take());
7075    if (RHS.isInvalid())
7076      return QualType();
7077  }
7078
7079  LHSType = LHS.get()->getType();
7080  RHSType = RHS.get()->getType();
7081
7082  // The result of comparisons is 'bool' in C++, 'int' in C.
7083  QualType ResultTy = Context.getLogicalOperationType();
7084
7085  if (IsRelational) {
7086    if (LHSType->isRealType() && RHSType->isRealType())
7087      return ResultTy;
7088  } else {
7089    // Check for comparisons of floating point operands using != and ==.
7090    if (LHSType->hasFloatingRepresentation())
7091      CheckFloatComparison(Loc, LHS.get(), RHS.get());
7092
7093    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7094      return ResultTy;
7095  }
7096
7097  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7098                                              Expr::NPC_ValueDependentIsNull);
7099  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7100                                              Expr::NPC_ValueDependentIsNull);
7101
7102  // All of the following pointer-related warnings are GCC extensions, except
7103  // when handling null pointer constants.
7104  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7105    QualType LCanPointeeTy =
7106      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7107    QualType RCanPointeeTy =
7108      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7109
7110    if (getLangOpts().CPlusPlus) {
7111      if (LCanPointeeTy == RCanPointeeTy)
7112        return ResultTy;
7113      if (!IsRelational &&
7114          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7115        // Valid unless comparison between non-null pointer and function pointer
7116        // This is a gcc extension compatibility comparison.
7117        // In a SFINAE context, we treat this as a hard error to maintain
7118        // conformance with the C++ standard.
7119        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7120            && !LHSIsNull && !RHSIsNull) {
7121          diagnoseFunctionPointerToVoidComparison(
7122              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
7123
7124          if (isSFINAEContext())
7125            return QualType();
7126
7127          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7128          return ResultTy;
7129        }
7130      }
7131
7132      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7133        return QualType();
7134      else
7135        return ResultTy;
7136    }
7137    // C99 6.5.9p2 and C99 6.5.8p2
7138    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7139                                   RCanPointeeTy.getUnqualifiedType())) {
7140      // Valid unless a relational comparison of function pointers
7141      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7142        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7143          << LHSType << RHSType << LHS.get()->getSourceRange()
7144          << RHS.get()->getSourceRange();
7145      }
7146    } else if (!IsRelational &&
7147               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7148      // Valid unless comparison between non-null pointer and function pointer
7149      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7150          && !LHSIsNull && !RHSIsNull)
7151        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7152                                                /*isError*/false);
7153    } else {
7154      // Invalid
7155      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7156    }
7157    if (LCanPointeeTy != RCanPointeeTy) {
7158      if (LHSIsNull && !RHSIsNull)
7159        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7160      else
7161        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7162    }
7163    return ResultTy;
7164  }
7165
7166  if (getLangOpts().CPlusPlus) {
7167    // Comparison of nullptr_t with itself.
7168    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7169      return ResultTy;
7170
7171    // Comparison of pointers with null pointer constants and equality
7172    // comparisons of member pointers to null pointer constants.
7173    if (RHSIsNull &&
7174        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7175         (!IsRelational &&
7176          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7177      RHS = ImpCastExprToType(RHS.take(), LHSType,
7178                        LHSType->isMemberPointerType()
7179                          ? CK_NullToMemberPointer
7180                          : CK_NullToPointer);
7181      return ResultTy;
7182    }
7183    if (LHSIsNull &&
7184        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7185         (!IsRelational &&
7186          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7187      LHS = ImpCastExprToType(LHS.take(), RHSType,
7188                        RHSType->isMemberPointerType()
7189                          ? CK_NullToMemberPointer
7190                          : CK_NullToPointer);
7191      return ResultTy;
7192    }
7193
7194    // Comparison of member pointers.
7195    if (!IsRelational &&
7196        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7197      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7198        return QualType();
7199      else
7200        return ResultTy;
7201    }
7202
7203    // Handle scoped enumeration types specifically, since they don't promote
7204    // to integers.
7205    if (LHS.get()->getType()->isEnumeralType() &&
7206        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7207                                       RHS.get()->getType()))
7208      return ResultTy;
7209  }
7210
7211  // Handle block pointer types.
7212  if (!IsRelational && LHSType->isBlockPointerType() &&
7213      RHSType->isBlockPointerType()) {
7214    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7215    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7216
7217    if (!LHSIsNull && !RHSIsNull &&
7218        !Context.typesAreCompatible(lpointee, rpointee)) {
7219      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7220        << LHSType << RHSType << LHS.get()->getSourceRange()
7221        << RHS.get()->getSourceRange();
7222    }
7223    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7224    return ResultTy;
7225  }
7226
7227  // Allow block pointers to be compared with null pointer constants.
7228  if (!IsRelational
7229      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7230          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7231    if (!LHSIsNull && !RHSIsNull) {
7232      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7233             ->getPointeeType()->isVoidType())
7234            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7235                ->getPointeeType()->isVoidType())))
7236        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7237          << LHSType << RHSType << LHS.get()->getSourceRange()
7238          << RHS.get()->getSourceRange();
7239    }
7240    if (LHSIsNull && !RHSIsNull)
7241      LHS = ImpCastExprToType(LHS.take(), RHSType,
7242                              RHSType->isPointerType() ? CK_BitCast
7243                                : CK_AnyPointerToBlockPointerCast);
7244    else
7245      RHS = ImpCastExprToType(RHS.take(), LHSType,
7246                              LHSType->isPointerType() ? CK_BitCast
7247                                : CK_AnyPointerToBlockPointerCast);
7248    return ResultTy;
7249  }
7250
7251  if (LHSType->isObjCObjectPointerType() ||
7252      RHSType->isObjCObjectPointerType()) {
7253    const PointerType *LPT = LHSType->getAs<PointerType>();
7254    const PointerType *RPT = RHSType->getAs<PointerType>();
7255    if (LPT || RPT) {
7256      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7257      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7258
7259      if (!LPtrToVoid && !RPtrToVoid &&
7260          !Context.typesAreCompatible(LHSType, RHSType)) {
7261        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7262                                          /*isError*/false);
7263      }
7264      if (LHSIsNull && !RHSIsNull)
7265        LHS = ImpCastExprToType(LHS.take(), RHSType,
7266                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7267      else
7268        RHS = ImpCastExprToType(RHS.take(), LHSType,
7269                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7270      return ResultTy;
7271    }
7272    if (LHSType->isObjCObjectPointerType() &&
7273        RHSType->isObjCObjectPointerType()) {
7274      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7275        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7276                                          /*isError*/false);
7277      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7278        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7279
7280      if (LHSIsNull && !RHSIsNull)
7281        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7282      else
7283        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7284      return ResultTy;
7285    }
7286  }
7287  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7288      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7289    unsigned DiagID = 0;
7290    bool isError = false;
7291    if (LangOpts.DebuggerSupport) {
7292      // Under a debugger, allow the comparison of pointers to integers,
7293      // since users tend to want to compare addresses.
7294    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7295        (RHSIsNull && RHSType->isIntegerType())) {
7296      if (IsRelational && !getLangOpts().CPlusPlus)
7297        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7298    } else if (IsRelational && !getLangOpts().CPlusPlus)
7299      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7300    else if (getLangOpts().CPlusPlus) {
7301      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7302      isError = true;
7303    } else
7304      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7305
7306    if (DiagID) {
7307      Diag(Loc, DiagID)
7308        << LHSType << RHSType << LHS.get()->getSourceRange()
7309        << RHS.get()->getSourceRange();
7310      if (isError)
7311        return QualType();
7312    }
7313
7314    if (LHSType->isIntegerType())
7315      LHS = ImpCastExprToType(LHS.take(), RHSType,
7316                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7317    else
7318      RHS = ImpCastExprToType(RHS.take(), LHSType,
7319                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7320    return ResultTy;
7321  }
7322
7323  // Handle block pointers.
7324  if (!IsRelational && RHSIsNull
7325      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7326    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7327    return ResultTy;
7328  }
7329  if (!IsRelational && LHSIsNull
7330      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7331    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7332    return ResultTy;
7333  }
7334
7335  return InvalidOperands(Loc, LHS, RHS);
7336}
7337
7338
7339// Return a signed type that is of identical size and number of elements.
7340// For floating point vectors, return an integer type of identical size
7341// and number of elements.
7342QualType Sema::GetSignedVectorType(QualType V) {
7343  const VectorType *VTy = V->getAs<VectorType>();
7344  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7345  if (TypeSize == Context.getTypeSize(Context.CharTy))
7346    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7347  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7348    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7349  else if (TypeSize == Context.getTypeSize(Context.IntTy))
7350    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7351  else if (TypeSize == Context.getTypeSize(Context.LongTy))
7352    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7353  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7354         "Unhandled vector element size in vector compare");
7355  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7356}
7357
7358/// CheckVectorCompareOperands - vector comparisons are a clang extension that
7359/// operates on extended vector types.  Instead of producing an IntTy result,
7360/// like a scalar comparison, a vector comparison produces a vector of integer
7361/// types.
7362QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7363                                          SourceLocation Loc,
7364                                          bool IsRelational) {
7365  // Check to make sure we're operating on vectors of the same type and width,
7366  // Allowing one side to be a scalar of element type.
7367  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7368  if (vType.isNull())
7369    return vType;
7370
7371  QualType LHSType = LHS.get()->getType();
7372
7373  // If AltiVec, the comparison results in a numeric type, i.e.
7374  // bool for C++, int for C
7375  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7376    return Context.getLogicalOperationType();
7377
7378  // For non-floating point types, check for self-comparisons of the form
7379  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7380  // often indicate logic errors in the program.
7381  if (!LHSType->hasFloatingRepresentation()) {
7382    if (DeclRefExpr* DRL
7383          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7384      if (DeclRefExpr* DRR
7385            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7386        if (DRL->getDecl() == DRR->getDecl())
7387          DiagRuntimeBehavior(Loc, 0,
7388                              PDiag(diag::warn_comparison_always)
7389                                << 0 // self-
7390                                << 2 // "a constant"
7391                              );
7392  }
7393
7394  // Check for comparisons of floating point operands using != and ==.
7395  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7396    assert (RHS.get()->getType()->hasFloatingRepresentation());
7397    CheckFloatComparison(Loc, LHS.get(), RHS.get());
7398  }
7399
7400  // Return a signed type for the vector.
7401  return GetSignedVectorType(LHSType);
7402}
7403
7404QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7405                                          SourceLocation Loc) {
7406  // Ensure that either both operands are of the same vector type, or
7407  // one operand is of a vector type and the other is of its element type.
7408  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7409  if (vType.isNull() || vType->isFloatingType())
7410    return InvalidOperands(Loc, LHS, RHS);
7411
7412  return GetSignedVectorType(LHS.get()->getType());
7413}
7414
7415inline QualType Sema::CheckBitwiseOperands(
7416  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7417  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7418
7419  if (LHS.get()->getType()->isVectorType() ||
7420      RHS.get()->getType()->isVectorType()) {
7421    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7422        RHS.get()->getType()->hasIntegerRepresentation())
7423      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7424
7425    return InvalidOperands(Loc, LHS, RHS);
7426  }
7427
7428  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7429  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7430                                                 IsCompAssign);
7431  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7432    return QualType();
7433  LHS = LHSResult.take();
7434  RHS = RHSResult.take();
7435
7436  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7437    return compType;
7438  return InvalidOperands(Loc, LHS, RHS);
7439}
7440
7441inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7442  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7443
7444  // Check vector operands differently.
7445  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7446    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7447
7448  // Diagnose cases where the user write a logical and/or but probably meant a
7449  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7450  // is a constant.
7451  if (LHS.get()->getType()->isIntegerType() &&
7452      !LHS.get()->getType()->isBooleanType() &&
7453      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7454      // Don't warn in macros or template instantiations.
7455      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7456    // If the RHS can be constant folded, and if it constant folds to something
7457    // that isn't 0 or 1 (which indicate a potential logical operation that
7458    // happened to fold to true/false) then warn.
7459    // Parens on the RHS are ignored.
7460    llvm::APSInt Result;
7461    if (RHS.get()->EvaluateAsInt(Result, Context))
7462      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7463          (Result != 0 && Result != 1)) {
7464        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7465          << RHS.get()->getSourceRange()
7466          << (Opc == BO_LAnd ? "&&" : "||");
7467        // Suggest replacing the logical operator with the bitwise version
7468        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7469            << (Opc == BO_LAnd ? "&" : "|")
7470            << FixItHint::CreateReplacement(SourceRange(
7471                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7472                                                getLangOpts())),
7473                                            Opc == BO_LAnd ? "&" : "|");
7474        if (Opc == BO_LAnd)
7475          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7476          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7477              << FixItHint::CreateRemoval(
7478                  SourceRange(
7479                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7480                                                 0, getSourceManager(),
7481                                                 getLangOpts()),
7482                      RHS.get()->getLocEnd()));
7483      }
7484  }
7485
7486  if (!Context.getLangOpts().CPlusPlus) {
7487    LHS = UsualUnaryConversions(LHS.take());
7488    if (LHS.isInvalid())
7489      return QualType();
7490
7491    RHS = UsualUnaryConversions(RHS.take());
7492    if (RHS.isInvalid())
7493      return QualType();
7494
7495    if (!LHS.get()->getType()->isScalarType() ||
7496        !RHS.get()->getType()->isScalarType())
7497      return InvalidOperands(Loc, LHS, RHS);
7498
7499    return Context.IntTy;
7500  }
7501
7502  // The following is safe because we only use this method for
7503  // non-overloadable operands.
7504
7505  // C++ [expr.log.and]p1
7506  // C++ [expr.log.or]p1
7507  // The operands are both contextually converted to type bool.
7508  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7509  if (LHSRes.isInvalid())
7510    return InvalidOperands(Loc, LHS, RHS);
7511  LHS = LHSRes;
7512
7513  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7514  if (RHSRes.isInvalid())
7515    return InvalidOperands(Loc, LHS, RHS);
7516  RHS = RHSRes;
7517
7518  // C++ [expr.log.and]p2
7519  // C++ [expr.log.or]p2
7520  // The result is a bool.
7521  return Context.BoolTy;
7522}
7523
7524/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7525/// is a read-only property; return true if so. A readonly property expression
7526/// depends on various declarations and thus must be treated specially.
7527///
7528static bool IsReadonlyProperty(Expr *E, Sema &S) {
7529  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7530  if (!PropExpr) return false;
7531  if (PropExpr->isImplicitProperty()) return false;
7532
7533  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7534  QualType BaseType = PropExpr->isSuperReceiver() ?
7535                            PropExpr->getSuperReceiverType() :
7536                            PropExpr->getBase()->getType();
7537
7538  if (const ObjCObjectPointerType *OPT =
7539      BaseType->getAsObjCInterfacePointerType())
7540    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7541      if (S.isPropertyReadonly(PDecl, IFace))
7542        return true;
7543  return false;
7544}
7545
7546static bool IsReadonlyMessage(Expr *E, Sema &S) {
7547  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7548  if (!ME) return false;
7549  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7550  ObjCMessageExpr *Base =
7551    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7552  if (!Base) return false;
7553  return Base->getMethodDecl() != 0;
7554}
7555
7556/// Is the given expression (which must be 'const') a reference to a
7557/// variable which was originally non-const, but which has become
7558/// 'const' due to being captured within a block?
7559enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7560static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7561  assert(E->isLValue() && E->getType().isConstQualified());
7562  E = E->IgnoreParens();
7563
7564  // Must be a reference to a declaration from an enclosing scope.
7565  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7566  if (!DRE) return NCCK_None;
7567  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7568
7569  // The declaration must be a variable which is not declared 'const'.
7570  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7571  if (!var) return NCCK_None;
7572  if (var->getType().isConstQualified()) return NCCK_None;
7573  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7574
7575  // Decide whether the first capture was for a block or a lambda.
7576  DeclContext *DC = S.CurContext;
7577  while (DC->getParent() != var->getDeclContext())
7578    DC = DC->getParent();
7579  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7580}
7581
7582/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7583/// emit an error and return true.  If so, return false.
7584static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7585  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7586  SourceLocation OrigLoc = Loc;
7587  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7588                                                              &Loc);
7589  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7590    IsLV = Expr::MLV_ReadonlyProperty;
7591  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7592    IsLV = Expr::MLV_InvalidMessageExpression;
7593  if (IsLV == Expr::MLV_Valid)
7594    return false;
7595
7596  unsigned Diag = 0;
7597  bool NeedType = false;
7598  switch (IsLV) { // C99 6.5.16p2
7599  case Expr::MLV_ConstQualified:
7600    Diag = diag::err_typecheck_assign_const;
7601
7602    // Use a specialized diagnostic when we're assigning to an object
7603    // from an enclosing function or block.
7604    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7605      if (NCCK == NCCK_Block)
7606        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7607      else
7608        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7609      break;
7610    }
7611
7612    // In ARC, use some specialized diagnostics for occasions where we
7613    // infer 'const'.  These are always pseudo-strong variables.
7614    if (S.getLangOpts().ObjCAutoRefCount) {
7615      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7616      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7617        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7618
7619        // Use the normal diagnostic if it's pseudo-__strong but the
7620        // user actually wrote 'const'.
7621        if (var->isARCPseudoStrong() &&
7622            (!var->getTypeSourceInfo() ||
7623             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7624          // There are two pseudo-strong cases:
7625          //  - self
7626          ObjCMethodDecl *method = S.getCurMethodDecl();
7627          if (method && var == method->getSelfDecl())
7628            Diag = method->isClassMethod()
7629              ? diag::err_typecheck_arc_assign_self_class_method
7630              : diag::err_typecheck_arc_assign_self;
7631
7632          //  - fast enumeration variables
7633          else
7634            Diag = diag::err_typecheck_arr_assign_enumeration;
7635
7636          SourceRange Assign;
7637          if (Loc != OrigLoc)
7638            Assign = SourceRange(OrigLoc, OrigLoc);
7639          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7640          // We need to preserve the AST regardless, so migration tool
7641          // can do its job.
7642          return false;
7643        }
7644      }
7645    }
7646
7647    break;
7648  case Expr::MLV_ArrayType:
7649  case Expr::MLV_ArrayTemporary:
7650    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7651    NeedType = true;
7652    break;
7653  case Expr::MLV_NotObjectType:
7654    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7655    NeedType = true;
7656    break;
7657  case Expr::MLV_LValueCast:
7658    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7659    break;
7660  case Expr::MLV_Valid:
7661    llvm_unreachable("did not take early return for MLV_Valid");
7662  case Expr::MLV_InvalidExpression:
7663  case Expr::MLV_MemberFunction:
7664  case Expr::MLV_ClassTemporary:
7665    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7666    break;
7667  case Expr::MLV_IncompleteType:
7668  case Expr::MLV_IncompleteVoidType:
7669    return S.RequireCompleteType(Loc, E->getType(),
7670             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7671  case Expr::MLV_DuplicateVectorComponents:
7672    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7673    break;
7674  case Expr::MLV_ReadonlyProperty:
7675  case Expr::MLV_NoSetterProperty:
7676    llvm_unreachable("readonly properties should be processed differently");
7677  case Expr::MLV_InvalidMessageExpression:
7678    Diag = diag::error_readonly_message_assignment;
7679    break;
7680  case Expr::MLV_SubObjCPropertySetting:
7681    Diag = diag::error_no_subobject_property_setting;
7682    break;
7683  }
7684
7685  SourceRange Assign;
7686  if (Loc != OrigLoc)
7687    Assign = SourceRange(OrigLoc, OrigLoc);
7688  if (NeedType)
7689    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7690  else
7691    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7692  return true;
7693}
7694
7695static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7696                                         SourceLocation Loc,
7697                                         Sema &Sema) {
7698  // C / C++ fields
7699  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7700  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7701  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7702    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7703      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7704  }
7705
7706  // Objective-C instance variables
7707  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7708  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7709  if (OL && OR && OL->getDecl() == OR->getDecl()) {
7710    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7711    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7712    if (RL && RR && RL->getDecl() == RR->getDecl())
7713      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7714  }
7715}
7716
7717// C99 6.5.16.1
7718QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7719                                       SourceLocation Loc,
7720                                       QualType CompoundType) {
7721  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7722
7723  // Verify that LHS is a modifiable lvalue, and emit error if not.
7724  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7725    return QualType();
7726
7727  QualType LHSType = LHSExpr->getType();
7728  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7729                                             CompoundType;
7730  AssignConvertType ConvTy;
7731  if (CompoundType.isNull()) {
7732    Expr *RHSCheck = RHS.get();
7733
7734    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7735
7736    QualType LHSTy(LHSType);
7737    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7738    if (RHS.isInvalid())
7739      return QualType();
7740    // Special case of NSObject attributes on c-style pointer types.
7741    if (ConvTy == IncompatiblePointer &&
7742        ((Context.isObjCNSObjectType(LHSType) &&
7743          RHSType->isObjCObjectPointerType()) ||
7744         (Context.isObjCNSObjectType(RHSType) &&
7745          LHSType->isObjCObjectPointerType())))
7746      ConvTy = Compatible;
7747
7748    if (ConvTy == Compatible &&
7749        LHSType->isObjCObjectType())
7750        Diag(Loc, diag::err_objc_object_assignment)
7751          << LHSType;
7752
7753    // If the RHS is a unary plus or minus, check to see if they = and + are
7754    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7755    // instead of "x += 4".
7756    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7757      RHSCheck = ICE->getSubExpr();
7758    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7759      if ((UO->getOpcode() == UO_Plus ||
7760           UO->getOpcode() == UO_Minus) &&
7761          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7762          // Only if the two operators are exactly adjacent.
7763          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7764          // And there is a space or other character before the subexpr of the
7765          // unary +/-.  We don't want to warn on "x=-1".
7766          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7767          UO->getSubExpr()->getLocStart().isFileID()) {
7768        Diag(Loc, diag::warn_not_compound_assign)
7769          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7770          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7771      }
7772    }
7773
7774    if (ConvTy == Compatible) {
7775      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
7776        // Warn about retain cycles where a block captures the LHS, but
7777        // not if the LHS is a simple variable into which the block is
7778        // being stored...unless that variable can be captured by reference!
7779        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
7780        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
7781        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
7782          checkRetainCycles(LHSExpr, RHS.get());
7783
7784        // It is safe to assign a weak reference into a strong variable.
7785        // Although this code can still have problems:
7786        //   id x = self.weakProp;
7787        //   id y = self.weakProp;
7788        // we do not warn to warn spuriously when 'x' and 'y' are on separate
7789        // paths through the function. This should be revisited if
7790        // -Wrepeated-use-of-weak is made flow-sensitive.
7791        DiagnosticsEngine::Level Level =
7792          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7793                                   RHS.get()->getLocStart());
7794        if (Level != DiagnosticsEngine::Ignored)
7795          getCurFunction()->markSafeWeakUse(RHS.get());
7796
7797      } else if (getLangOpts().ObjCAutoRefCount) {
7798        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7799      }
7800    }
7801  } else {
7802    // Compound assignment "x += y"
7803    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7804  }
7805
7806  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7807                               RHS.get(), AA_Assigning))
7808    return QualType();
7809
7810  CheckForNullPointerDereference(*this, LHSExpr);
7811
7812  // C99 6.5.16p3: The type of an assignment expression is the type of the
7813  // left operand unless the left operand has qualified type, in which case
7814  // it is the unqualified version of the type of the left operand.
7815  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7816  // is converted to the type of the assignment expression (above).
7817  // C++ 5.17p1: the type of the assignment expression is that of its left
7818  // operand.
7819  return (getLangOpts().CPlusPlus
7820          ? LHSType : LHSType.getUnqualifiedType());
7821}
7822
7823// C99 6.5.17
7824static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7825                                   SourceLocation Loc) {
7826  LHS = S.CheckPlaceholderExpr(LHS.take());
7827  RHS = S.CheckPlaceholderExpr(RHS.take());
7828  if (LHS.isInvalid() || RHS.isInvalid())
7829    return QualType();
7830
7831  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7832  // operands, but not unary promotions.
7833  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7834
7835  // So we treat the LHS as a ignored value, and in C++ we allow the
7836  // containing site to determine what should be done with the RHS.
7837  LHS = S.IgnoredValueConversions(LHS.take());
7838  if (LHS.isInvalid())
7839    return QualType();
7840
7841  S.DiagnoseUnusedExprResult(LHS.get());
7842
7843  if (!S.getLangOpts().CPlusPlus) {
7844    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7845    if (RHS.isInvalid())
7846      return QualType();
7847    if (!RHS.get()->getType()->isVoidType())
7848      S.RequireCompleteType(Loc, RHS.get()->getType(),
7849                            diag::err_incomplete_type);
7850  }
7851
7852  return RHS.get()->getType();
7853}
7854
7855/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7856/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7857static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7858                                               ExprValueKind &VK,
7859                                               SourceLocation OpLoc,
7860                                               bool IsInc, bool IsPrefix) {
7861  if (Op->isTypeDependent())
7862    return S.Context.DependentTy;
7863
7864  QualType ResType = Op->getType();
7865  // Atomic types can be used for increment / decrement where the non-atomic
7866  // versions can, so ignore the _Atomic() specifier for the purpose of
7867  // checking.
7868  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7869    ResType = ResAtomicType->getValueType();
7870
7871  assert(!ResType.isNull() && "no type for increment/decrement expression");
7872
7873  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7874    // Decrement of bool is not allowed.
7875    if (!IsInc) {
7876      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7877      return QualType();
7878    }
7879    // Increment of bool sets it to true, but is deprecated.
7880    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7881  } else if (ResType->isRealType()) {
7882    // OK!
7883  } else if (ResType->isPointerType()) {
7884    // C99 6.5.2.4p2, 6.5.6p2
7885    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7886      return QualType();
7887  } else if (ResType->isObjCObjectPointerType()) {
7888    // On modern runtimes, ObjC pointer arithmetic is forbidden.
7889    // Otherwise, we just need a complete type.
7890    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7891        checkArithmeticOnObjCPointer(S, OpLoc, Op))
7892      return QualType();
7893  } else if (ResType->isAnyComplexType()) {
7894    // C99 does not support ++/-- on complex types, we allow as an extension.
7895    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7896      << ResType << Op->getSourceRange();
7897  } else if (ResType->isPlaceholderType()) {
7898    ExprResult PR = S.CheckPlaceholderExpr(Op);
7899    if (PR.isInvalid()) return QualType();
7900    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7901                                          IsInc, IsPrefix);
7902  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7903    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7904  } else {
7905    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7906      << ResType << int(IsInc) << Op->getSourceRange();
7907    return QualType();
7908  }
7909  // At this point, we know we have a real, complex or pointer type.
7910  // Now make sure the operand is a modifiable lvalue.
7911  if (CheckForModifiableLvalue(Op, OpLoc, S))
7912    return QualType();
7913  // In C++, a prefix increment is the same type as the operand. Otherwise
7914  // (in C or with postfix), the increment is the unqualified type of the
7915  // operand.
7916  if (IsPrefix && S.getLangOpts().CPlusPlus) {
7917    VK = VK_LValue;
7918    return ResType;
7919  } else {
7920    VK = VK_RValue;
7921    return ResType.getUnqualifiedType();
7922  }
7923}
7924
7925
7926/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7927/// This routine allows us to typecheck complex/recursive expressions
7928/// where the declaration is needed for type checking. We only need to
7929/// handle cases when the expression references a function designator
7930/// or is an lvalue. Here are some examples:
7931///  - &(x) => x
7932///  - &*****f => f for f a function designator.
7933///  - &s.xx => s
7934///  - &s.zz[1].yy -> s, if zz is an array
7935///  - *(x + 1) -> x, if x is an array
7936///  - &"123"[2] -> 0
7937///  - & __real__ x -> x
7938static ValueDecl *getPrimaryDecl(Expr *E) {
7939  switch (E->getStmtClass()) {
7940  case Stmt::DeclRefExprClass:
7941    return cast<DeclRefExpr>(E)->getDecl();
7942  case Stmt::MemberExprClass:
7943    // If this is an arrow operator, the address is an offset from
7944    // the base's value, so the object the base refers to is
7945    // irrelevant.
7946    if (cast<MemberExpr>(E)->isArrow())
7947      return 0;
7948    // Otherwise, the expression refers to a part of the base
7949    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7950  case Stmt::ArraySubscriptExprClass: {
7951    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7952    // promotion of register arrays earlier.
7953    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7954    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7955      if (ICE->getSubExpr()->getType()->isArrayType())
7956        return getPrimaryDecl(ICE->getSubExpr());
7957    }
7958    return 0;
7959  }
7960  case Stmt::UnaryOperatorClass: {
7961    UnaryOperator *UO = cast<UnaryOperator>(E);
7962
7963    switch(UO->getOpcode()) {
7964    case UO_Real:
7965    case UO_Imag:
7966    case UO_Extension:
7967      return getPrimaryDecl(UO->getSubExpr());
7968    default:
7969      return 0;
7970    }
7971  }
7972  case Stmt::ParenExprClass:
7973    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7974  case Stmt::ImplicitCastExprClass:
7975    // If the result of an implicit cast is an l-value, we care about
7976    // the sub-expression; otherwise, the result here doesn't matter.
7977    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7978  default:
7979    return 0;
7980  }
7981}
7982
7983namespace {
7984  enum {
7985    AO_Bit_Field = 0,
7986    AO_Vector_Element = 1,
7987    AO_Property_Expansion = 2,
7988    AO_Register_Variable = 3,
7989    AO_No_Error = 4
7990  };
7991}
7992/// \brief Diagnose invalid operand for address of operations.
7993///
7994/// \param Type The type of operand which cannot have its address taken.
7995static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7996                                         Expr *E, unsigned Type) {
7997  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7998}
7999
8000/// CheckAddressOfOperand - The operand of & must be either a function
8001/// designator or an lvalue designating an object. If it is an lvalue, the
8002/// object cannot be declared with storage class register or be a bit field.
8003/// Note: The usual conversions are *not* applied to the operand of the &
8004/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8005/// In C++, the operand might be an overloaded function name, in which case
8006/// we allow the '&' but retain the overloaded-function type.
8007static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
8008                                      SourceLocation OpLoc) {
8009  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8010    if (PTy->getKind() == BuiltinType::Overload) {
8011      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
8012        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8013          << OrigOp.get()->getSourceRange();
8014        return QualType();
8015      }
8016
8017      return S.Context.OverloadTy;
8018    }
8019
8020    if (PTy->getKind() == BuiltinType::UnknownAny)
8021      return S.Context.UnknownAnyTy;
8022
8023    if (PTy->getKind() == BuiltinType::BoundMember) {
8024      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8025        << OrigOp.get()->getSourceRange();
8026      return QualType();
8027    }
8028
8029    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
8030    if (OrigOp.isInvalid()) return QualType();
8031  }
8032
8033  if (OrigOp.get()->isTypeDependent())
8034    return S.Context.DependentTy;
8035
8036  assert(!OrigOp.get()->getType()->isPlaceholderType());
8037
8038  // Make sure to ignore parentheses in subsequent checks
8039  Expr *op = OrigOp.get()->IgnoreParens();
8040
8041  if (S.getLangOpts().C99) {
8042    // Implement C99-only parts of addressof rules.
8043    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8044      if (uOp->getOpcode() == UO_Deref)
8045        // Per C99 6.5.3.2, the address of a deref always returns a valid result
8046        // (assuming the deref expression is valid).
8047        return uOp->getSubExpr()->getType();
8048    }
8049    // Technically, there should be a check for array subscript
8050    // expressions here, but the result of one is always an lvalue anyway.
8051  }
8052  ValueDecl *dcl = getPrimaryDecl(op);
8053  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
8054  unsigned AddressOfError = AO_No_Error;
8055
8056  if (lval == Expr::LV_ClassTemporary) {
8057    bool sfinae = S.isSFINAEContext();
8058    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
8059                         : diag::ext_typecheck_addrof_class_temporary)
8060      << op->getType() << op->getSourceRange();
8061    if (sfinae)
8062      return QualType();
8063  } else if (isa<ObjCSelectorExpr>(op)) {
8064    return S.Context.getPointerType(op->getType());
8065  } else if (lval == Expr::LV_MemberFunction) {
8066    // If it's an instance method, make a member pointer.
8067    // The expression must have exactly the form &A::foo.
8068
8069    // If the underlying expression isn't a decl ref, give up.
8070    if (!isa<DeclRefExpr>(op)) {
8071      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8072        << OrigOp.get()->getSourceRange();
8073      return QualType();
8074    }
8075    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8076    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8077
8078    // The id-expression was parenthesized.
8079    if (OrigOp.get() != DRE) {
8080      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
8081        << OrigOp.get()->getSourceRange();
8082
8083    // The method was named without a qualifier.
8084    } else if (!DRE->getQualifier()) {
8085      if (MD->getParent()->getName().empty())
8086        S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8087          << op->getSourceRange();
8088      else {
8089        SmallString<32> Str;
8090        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8091        S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8092          << op->getSourceRange()
8093          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8094      }
8095    }
8096
8097    return S.Context.getMemberPointerType(op->getType(),
8098              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
8099  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8100    // C99 6.5.3.2p1
8101    // The operand must be either an l-value or a function designator
8102    if (!op->getType()->isFunctionType()) {
8103      // Use a special diagnostic for loads from property references.
8104      if (isa<PseudoObjectExpr>(op)) {
8105        AddressOfError = AO_Property_Expansion;
8106      } else {
8107        // FIXME: emit more specific diag...
8108        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8109          << op->getSourceRange();
8110        return QualType();
8111      }
8112    }
8113  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8114    // The operand cannot be a bit-field
8115    AddressOfError = AO_Bit_Field;
8116  } else if (op->getObjectKind() == OK_VectorComponent) {
8117    // The operand cannot be an element of a vector
8118    AddressOfError = AO_Vector_Element;
8119  } else if (dcl) { // C99 6.5.3.2p1
8120    // We have an lvalue with a decl. Make sure the decl is not declared
8121    // with the register storage-class specifier.
8122    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8123      // in C++ it is not error to take address of a register
8124      // variable (c++03 7.1.1P3)
8125      if (vd->getStorageClass() == SC_Register &&
8126          !S.getLangOpts().CPlusPlus) {
8127        AddressOfError = AO_Register_Variable;
8128      }
8129    } else if (isa<FunctionTemplateDecl>(dcl)) {
8130      return S.Context.OverloadTy;
8131    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8132      // Okay: we can take the address of a field.
8133      // Could be a pointer to member, though, if there is an explicit
8134      // scope qualifier for the class.
8135      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8136        DeclContext *Ctx = dcl->getDeclContext();
8137        if (Ctx && Ctx->isRecord()) {
8138          if (dcl->getType()->isReferenceType()) {
8139            S.Diag(OpLoc,
8140                   diag::err_cannot_form_pointer_to_member_of_reference_type)
8141              << dcl->getDeclName() << dcl->getType();
8142            return QualType();
8143          }
8144
8145          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8146            Ctx = Ctx->getParent();
8147          return S.Context.getMemberPointerType(op->getType(),
8148                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8149        }
8150      }
8151    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8152      llvm_unreachable("Unknown/unexpected decl type");
8153  }
8154
8155  if (AddressOfError != AO_No_Error) {
8156    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8157    return QualType();
8158  }
8159
8160  if (lval == Expr::LV_IncompleteVoidType) {
8161    // Taking the address of a void variable is technically illegal, but we
8162    // allow it in cases which are otherwise valid.
8163    // Example: "extern void x; void* y = &x;".
8164    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8165  }
8166
8167  // If the operand has type "type", the result has type "pointer to type".
8168  if (op->getType()->isObjCObjectType())
8169    return S.Context.getObjCObjectPointerType(op->getType());
8170  return S.Context.getPointerType(op->getType());
8171}
8172
8173/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8174static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8175                                        SourceLocation OpLoc) {
8176  if (Op->isTypeDependent())
8177    return S.Context.DependentTy;
8178
8179  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8180  if (ConvResult.isInvalid())
8181    return QualType();
8182  Op = ConvResult.take();
8183  QualType OpTy = Op->getType();
8184  QualType Result;
8185
8186  if (isa<CXXReinterpretCastExpr>(Op)) {
8187    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8188    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8189                                     Op->getSourceRange());
8190  }
8191
8192  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8193  // is an incomplete type or void.  It would be possible to warn about
8194  // dereferencing a void pointer, but it's completely well-defined, and such a
8195  // warning is unlikely to catch any mistakes.
8196  if (const PointerType *PT = OpTy->getAs<PointerType>())
8197    Result = PT->getPointeeType();
8198  else if (const ObjCObjectPointerType *OPT =
8199             OpTy->getAs<ObjCObjectPointerType>())
8200    Result = OPT->getPointeeType();
8201  else {
8202    ExprResult PR = S.CheckPlaceholderExpr(Op);
8203    if (PR.isInvalid()) return QualType();
8204    if (PR.take() != Op)
8205      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8206  }
8207
8208  if (Result.isNull()) {
8209    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8210      << OpTy << Op->getSourceRange();
8211    return QualType();
8212  }
8213
8214  // Dereferences are usually l-values...
8215  VK = VK_LValue;
8216
8217  // ...except that certain expressions are never l-values in C.
8218  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8219    VK = VK_RValue;
8220
8221  return Result;
8222}
8223
8224static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8225  tok::TokenKind Kind) {
8226  BinaryOperatorKind Opc;
8227  switch (Kind) {
8228  default: llvm_unreachable("Unknown binop!");
8229  case tok::periodstar:           Opc = BO_PtrMemD; break;
8230  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8231  case tok::star:                 Opc = BO_Mul; break;
8232  case tok::slash:                Opc = BO_Div; break;
8233  case tok::percent:              Opc = BO_Rem; break;
8234  case tok::plus:                 Opc = BO_Add; break;
8235  case tok::minus:                Opc = BO_Sub; break;
8236  case tok::lessless:             Opc = BO_Shl; break;
8237  case tok::greatergreater:       Opc = BO_Shr; break;
8238  case tok::lessequal:            Opc = BO_LE; break;
8239  case tok::less:                 Opc = BO_LT; break;
8240  case tok::greaterequal:         Opc = BO_GE; break;
8241  case tok::greater:              Opc = BO_GT; break;
8242  case tok::exclaimequal:         Opc = BO_NE; break;
8243  case tok::equalequal:           Opc = BO_EQ; break;
8244  case tok::amp:                  Opc = BO_And; break;
8245  case tok::caret:                Opc = BO_Xor; break;
8246  case tok::pipe:                 Opc = BO_Or; break;
8247  case tok::ampamp:               Opc = BO_LAnd; break;
8248  case tok::pipepipe:             Opc = BO_LOr; break;
8249  case tok::equal:                Opc = BO_Assign; break;
8250  case tok::starequal:            Opc = BO_MulAssign; break;
8251  case tok::slashequal:           Opc = BO_DivAssign; break;
8252  case tok::percentequal:         Opc = BO_RemAssign; break;
8253  case tok::plusequal:            Opc = BO_AddAssign; break;
8254  case tok::minusequal:           Opc = BO_SubAssign; break;
8255  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8256  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8257  case tok::ampequal:             Opc = BO_AndAssign; break;
8258  case tok::caretequal:           Opc = BO_XorAssign; break;
8259  case tok::pipeequal:            Opc = BO_OrAssign; break;
8260  case tok::comma:                Opc = BO_Comma; break;
8261  }
8262  return Opc;
8263}
8264
8265static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8266  tok::TokenKind Kind) {
8267  UnaryOperatorKind Opc;
8268  switch (Kind) {
8269  default: llvm_unreachable("Unknown unary op!");
8270  case tok::plusplus:     Opc = UO_PreInc; break;
8271  case tok::minusminus:   Opc = UO_PreDec; break;
8272  case tok::amp:          Opc = UO_AddrOf; break;
8273  case tok::star:         Opc = UO_Deref; break;
8274  case tok::plus:         Opc = UO_Plus; break;
8275  case tok::minus:        Opc = UO_Minus; break;
8276  case tok::tilde:        Opc = UO_Not; break;
8277  case tok::exclaim:      Opc = UO_LNot; break;
8278  case tok::kw___real:    Opc = UO_Real; break;
8279  case tok::kw___imag:    Opc = UO_Imag; break;
8280  case tok::kw___extension__: Opc = UO_Extension; break;
8281  }
8282  return Opc;
8283}
8284
8285/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8286/// This warning is only emitted for builtin assignment operations. It is also
8287/// suppressed in the event of macro expansions.
8288static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8289                                   SourceLocation OpLoc) {
8290  if (!S.ActiveTemplateInstantiations.empty())
8291    return;
8292  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8293    return;
8294  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8295  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8296  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8297  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8298  if (!LHSDeclRef || !RHSDeclRef ||
8299      LHSDeclRef->getLocation().isMacroID() ||
8300      RHSDeclRef->getLocation().isMacroID())
8301    return;
8302  const ValueDecl *LHSDecl =
8303    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8304  const ValueDecl *RHSDecl =
8305    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8306  if (LHSDecl != RHSDecl)
8307    return;
8308  if (LHSDecl->getType().isVolatileQualified())
8309    return;
8310  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8311    if (RefTy->getPointeeType().isVolatileQualified())
8312      return;
8313
8314  S.Diag(OpLoc, diag::warn_self_assignment)
8315      << LHSDeclRef->getType()
8316      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8317}
8318
8319/// CreateBuiltinBinOp - Creates a new built-in binary operation with
8320/// operator @p Opc at location @c TokLoc. This routine only supports
8321/// built-in operations; ActOnBinOp handles overloaded operators.
8322ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8323                                    BinaryOperatorKind Opc,
8324                                    Expr *LHSExpr, Expr *RHSExpr) {
8325  if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
8326    // The syntax only allows initializer lists on the RHS of assignment,
8327    // so we don't need to worry about accepting invalid code for
8328    // non-assignment operators.
8329    // C++11 5.17p9:
8330    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8331    //   of x = {} is x = T().
8332    InitializationKind Kind =
8333        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8334    InitializedEntity Entity =
8335        InitializedEntity::InitializeTemporary(LHSExpr->getType());
8336    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8337    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
8338    if (Init.isInvalid())
8339      return Init;
8340    RHSExpr = Init.take();
8341  }
8342
8343  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8344  QualType ResultTy;     // Result type of the binary operator.
8345  // The following two variables are used for compound assignment operators
8346  QualType CompLHSTy;    // Type of LHS after promotions for computation
8347  QualType CompResultTy; // Type of computation result
8348  ExprValueKind VK = VK_RValue;
8349  ExprObjectKind OK = OK_Ordinary;
8350
8351  switch (Opc) {
8352  case BO_Assign:
8353    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8354    if (getLangOpts().CPlusPlus &&
8355        LHS.get()->getObjectKind() != OK_ObjCProperty) {
8356      VK = LHS.get()->getValueKind();
8357      OK = LHS.get()->getObjectKind();
8358    }
8359    if (!ResultTy.isNull())
8360      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8361    break;
8362  case BO_PtrMemD:
8363  case BO_PtrMemI:
8364    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8365                                            Opc == BO_PtrMemI);
8366    break;
8367  case BO_Mul:
8368  case BO_Div:
8369    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8370                                           Opc == BO_Div);
8371    break;
8372  case BO_Rem:
8373    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8374    break;
8375  case BO_Add:
8376    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8377    break;
8378  case BO_Sub:
8379    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8380    break;
8381  case BO_Shl:
8382  case BO_Shr:
8383    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8384    break;
8385  case BO_LE:
8386  case BO_LT:
8387  case BO_GE:
8388  case BO_GT:
8389    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8390    break;
8391  case BO_EQ:
8392  case BO_NE:
8393    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8394    break;
8395  case BO_And:
8396  case BO_Xor:
8397  case BO_Or:
8398    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8399    break;
8400  case BO_LAnd:
8401  case BO_LOr:
8402    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8403    break;
8404  case BO_MulAssign:
8405  case BO_DivAssign:
8406    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8407                                               Opc == BO_DivAssign);
8408    CompLHSTy = CompResultTy;
8409    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8410      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8411    break;
8412  case BO_RemAssign:
8413    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8414    CompLHSTy = CompResultTy;
8415    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8416      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8417    break;
8418  case BO_AddAssign:
8419    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8420    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8421      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8422    break;
8423  case BO_SubAssign:
8424    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8425    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8426      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8427    break;
8428  case BO_ShlAssign:
8429  case BO_ShrAssign:
8430    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8431    CompLHSTy = CompResultTy;
8432    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8433      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8434    break;
8435  case BO_AndAssign:
8436  case BO_XorAssign:
8437  case BO_OrAssign:
8438    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8439    CompLHSTy = CompResultTy;
8440    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8441      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8442    break;
8443  case BO_Comma:
8444    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8445    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8446      VK = RHS.get()->getValueKind();
8447      OK = RHS.get()->getObjectKind();
8448    }
8449    break;
8450  }
8451  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8452    return ExprError();
8453
8454  // Check for array bounds violations for both sides of the BinaryOperator
8455  CheckArrayAccess(LHS.get());
8456  CheckArrayAccess(RHS.get());
8457
8458  if (CompResultTy.isNull())
8459    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8460                                              ResultTy, VK, OK, OpLoc,
8461                                              FPFeatures.fp_contract));
8462  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8463      OK_ObjCProperty) {
8464    VK = VK_LValue;
8465    OK = LHS.get()->getObjectKind();
8466  }
8467  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8468                                                    ResultTy, VK, OK, CompLHSTy,
8469                                                    CompResultTy, OpLoc,
8470                                                    FPFeatures.fp_contract));
8471}
8472
8473/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8474/// operators are mixed in a way that suggests that the programmer forgot that
8475/// comparison operators have higher precedence. The most typical example of
8476/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8477static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8478                                      SourceLocation OpLoc, Expr *LHSExpr,
8479                                      Expr *RHSExpr) {
8480  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
8481  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
8482
8483  // Check that one of the sides is a comparison operator.
8484  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
8485  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
8486  if (!isLeftComp && !isRightComp)
8487    return;
8488
8489  // Bitwise operations are sometimes used as eager logical ops.
8490  // Don't diagnose this.
8491  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
8492  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
8493  if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
8494    return;
8495
8496  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8497                                                   OpLoc)
8498                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8499  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
8500  SourceRange ParensRange = isLeftComp ?
8501      SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
8502    : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
8503
8504  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8505    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
8506  SuggestParentheses(Self, OpLoc,
8507    Self.PDiag(diag::note_precedence_silence) << OpStr,
8508    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8509  SuggestParentheses(Self, OpLoc,
8510    Self.PDiag(diag::note_precedence_bitwise_first)
8511      << BinaryOperator::getOpcodeStr(Opc),
8512    ParensRange);
8513}
8514
8515/// \brief It accepts a '&' expr that is inside a '|' one.
8516/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8517/// in parentheses.
8518static void
8519EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8520                                       BinaryOperator *Bop) {
8521  assert(Bop->getOpcode() == BO_And);
8522  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8523      << Bop->getSourceRange() << OpLoc;
8524  SuggestParentheses(Self, Bop->getOperatorLoc(),
8525    Self.PDiag(diag::note_precedence_silence)
8526      << Bop->getOpcodeStr(),
8527    Bop->getSourceRange());
8528}
8529
8530/// \brief It accepts a '&&' expr that is inside a '||' one.
8531/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8532/// in parentheses.
8533static void
8534EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8535                                       BinaryOperator *Bop) {
8536  assert(Bop->getOpcode() == BO_LAnd);
8537  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8538      << Bop->getSourceRange() << OpLoc;
8539  SuggestParentheses(Self, Bop->getOperatorLoc(),
8540    Self.PDiag(diag::note_precedence_silence)
8541      << Bop->getOpcodeStr(),
8542    Bop->getSourceRange());
8543}
8544
8545/// \brief Returns true if the given expression can be evaluated as a constant
8546/// 'true'.
8547static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8548  bool Res;
8549  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8550}
8551
8552/// \brief Returns true if the given expression can be evaluated as a constant
8553/// 'false'.
8554static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8555  bool Res;
8556  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8557}
8558
8559/// \brief Look for '&&' in the left hand of a '||' expr.
8560static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8561                                             Expr *LHSExpr, Expr *RHSExpr) {
8562  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8563    if (Bop->getOpcode() == BO_LAnd) {
8564      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8565      if (EvaluatesAsFalse(S, RHSExpr))
8566        return;
8567      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8568      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8569        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8570    } else if (Bop->getOpcode() == BO_LOr) {
8571      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8572        // If it's "a || b && 1 || c" we didn't warn earlier for
8573        // "a || b && 1", but warn now.
8574        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8575          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8576      }
8577    }
8578  }
8579}
8580
8581/// \brief Look for '&&' in the right hand of a '||' expr.
8582static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8583                                             Expr *LHSExpr, Expr *RHSExpr) {
8584  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8585    if (Bop->getOpcode() == BO_LAnd) {
8586      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8587      if (EvaluatesAsFalse(S, LHSExpr))
8588        return;
8589      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8590      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8591        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8592    }
8593  }
8594}
8595
8596/// \brief Look for '&' in the left or right hand of a '|' expr.
8597static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8598                                             Expr *OrArg) {
8599  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8600    if (Bop->getOpcode() == BO_And)
8601      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8602  }
8603}
8604
8605static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
8606                                    Expr *SubExpr, StringRef Shift) {
8607  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
8608    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
8609      StringRef Op = Bop->getOpcodeStr();
8610      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
8611          << Bop->getSourceRange() << OpLoc << Shift << Op;
8612      SuggestParentheses(S, Bop->getOperatorLoc(),
8613          S.PDiag(diag::note_precedence_silence) << Op,
8614          Bop->getSourceRange());
8615    }
8616  }
8617}
8618
8619/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8620/// precedence.
8621static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8622                                    SourceLocation OpLoc, Expr *LHSExpr,
8623                                    Expr *RHSExpr){
8624  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8625  if (BinaryOperator::isBitwiseOp(Opc))
8626    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8627
8628  // Diagnose "arg1 & arg2 | arg3"
8629  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8630    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8631    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8632  }
8633
8634  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8635  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8636  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8637    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8638    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8639  }
8640
8641  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
8642      || Opc == BO_Shr) {
8643    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
8644    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
8645    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
8646  }
8647}
8648
8649// Binary Operators.  'Tok' is the token for the operator.
8650ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8651                            tok::TokenKind Kind,
8652                            Expr *LHSExpr, Expr *RHSExpr) {
8653  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8654  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8655  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8656
8657  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8658  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8659
8660  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8661}
8662
8663/// Build an overloaded binary operator expression in the given scope.
8664static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8665                                       BinaryOperatorKind Opc,
8666                                       Expr *LHS, Expr *RHS) {
8667  // Find all of the overloaded operators visible from this
8668  // point. We perform both an operator-name lookup from the local
8669  // scope and an argument-dependent lookup based on the types of
8670  // the arguments.
8671  UnresolvedSet<16> Functions;
8672  OverloadedOperatorKind OverOp
8673    = BinaryOperator::getOverloadedOperator(Opc);
8674  if (Sc && OverOp != OO_None)
8675    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8676                                   RHS->getType(), Functions);
8677
8678  // Build the (potentially-overloaded, potentially-dependent)
8679  // binary operation.
8680  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8681}
8682
8683ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8684                            BinaryOperatorKind Opc,
8685                            Expr *LHSExpr, Expr *RHSExpr) {
8686  // We want to end up calling one of checkPseudoObjectAssignment
8687  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8688  // both expressions are overloadable or either is type-dependent),
8689  // or CreateBuiltinBinOp (in any other case).  We also want to get
8690  // any placeholder types out of the way.
8691
8692  // Handle pseudo-objects in the LHS.
8693  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8694    // Assignments with a pseudo-object l-value need special analysis.
8695    if (pty->getKind() == BuiltinType::PseudoObject &&
8696        BinaryOperator::isAssignmentOp(Opc))
8697      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8698
8699    // Don't resolve overloads if the other type is overloadable.
8700    if (pty->getKind() == BuiltinType::Overload) {
8701      // We can't actually test that if we still have a placeholder,
8702      // though.  Fortunately, none of the exceptions we see in that
8703      // code below are valid when the LHS is an overload set.  Note
8704      // that an overload set can be dependently-typed, but it never
8705      // instantiates to having an overloadable type.
8706      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8707      if (resolvedRHS.isInvalid()) return ExprError();
8708      RHSExpr = resolvedRHS.take();
8709
8710      if (RHSExpr->isTypeDependent() ||
8711          RHSExpr->getType()->isOverloadableType())
8712        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8713    }
8714
8715    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8716    if (LHS.isInvalid()) return ExprError();
8717    LHSExpr = LHS.take();
8718  }
8719
8720  // Handle pseudo-objects in the RHS.
8721  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8722    // An overload in the RHS can potentially be resolved by the type
8723    // being assigned to.
8724    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8725      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8726        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8727
8728      if (LHSExpr->getType()->isOverloadableType())
8729        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8730
8731      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8732    }
8733
8734    // Don't resolve overloads if the other type is overloadable.
8735    if (pty->getKind() == BuiltinType::Overload &&
8736        LHSExpr->getType()->isOverloadableType())
8737      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8738
8739    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8740    if (!resolvedRHS.isUsable()) return ExprError();
8741    RHSExpr = resolvedRHS.take();
8742  }
8743
8744  if (getLangOpts().CPlusPlus) {
8745    // If either expression is type-dependent, always build an
8746    // overloaded op.
8747    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8748      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8749
8750    // Otherwise, build an overloaded op if either expression has an
8751    // overloadable type.
8752    if (LHSExpr->getType()->isOverloadableType() ||
8753        RHSExpr->getType()->isOverloadableType())
8754      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8755  }
8756
8757  // Build a built-in binary operation.
8758  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8759}
8760
8761ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8762                                      UnaryOperatorKind Opc,
8763                                      Expr *InputExpr) {
8764  ExprResult Input = Owned(InputExpr);
8765  ExprValueKind VK = VK_RValue;
8766  ExprObjectKind OK = OK_Ordinary;
8767  QualType resultType;
8768  switch (Opc) {
8769  case UO_PreInc:
8770  case UO_PreDec:
8771  case UO_PostInc:
8772  case UO_PostDec:
8773    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8774                                                Opc == UO_PreInc ||
8775                                                Opc == UO_PostInc,
8776                                                Opc == UO_PreInc ||
8777                                                Opc == UO_PreDec);
8778    break;
8779  case UO_AddrOf:
8780    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8781    break;
8782  case UO_Deref: {
8783    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8784    if (Input.isInvalid()) return ExprError();
8785    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8786    break;
8787  }
8788  case UO_Plus:
8789  case UO_Minus:
8790    Input = UsualUnaryConversions(Input.take());
8791    if (Input.isInvalid()) return ExprError();
8792    resultType = Input.get()->getType();
8793    if (resultType->isDependentType())
8794      break;
8795    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8796        resultType->isVectorType())
8797      break;
8798    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8799             resultType->isEnumeralType())
8800      break;
8801    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8802             Opc == UO_Plus &&
8803             resultType->isPointerType())
8804      break;
8805
8806    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8807      << resultType << Input.get()->getSourceRange());
8808
8809  case UO_Not: // bitwise complement
8810    Input = UsualUnaryConversions(Input.take());
8811    if (Input.isInvalid()) return ExprError();
8812    resultType = Input.get()->getType();
8813    if (resultType->isDependentType())
8814      break;
8815    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8816    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8817      // C99 does not support '~' for complex conjugation.
8818      Diag(OpLoc, diag::ext_integer_complement_complex)
8819        << resultType << Input.get()->getSourceRange();
8820    else if (resultType->hasIntegerRepresentation())
8821      break;
8822    else {
8823      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8824        << resultType << Input.get()->getSourceRange());
8825    }
8826    break;
8827
8828  case UO_LNot: // logical negation
8829    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8830    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8831    if (Input.isInvalid()) return ExprError();
8832    resultType = Input.get()->getType();
8833
8834    // Though we still have to promote half FP to float...
8835    if (resultType->isHalfType()) {
8836      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8837      resultType = Context.FloatTy;
8838    }
8839
8840    if (resultType->isDependentType())
8841      break;
8842    if (resultType->isScalarType()) {
8843      // C99 6.5.3.3p1: ok, fallthrough;
8844      if (Context.getLangOpts().CPlusPlus) {
8845        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8846        // operand contextually converted to bool.
8847        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8848                                  ScalarTypeToBooleanCastKind(resultType));
8849      }
8850    } else if (resultType->isExtVectorType()) {
8851      // Vector logical not returns the signed variant of the operand type.
8852      resultType = GetSignedVectorType(resultType);
8853      break;
8854    } else {
8855      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8856        << resultType << Input.get()->getSourceRange());
8857    }
8858
8859    // LNot always has type int. C99 6.5.3.3p5.
8860    // In C++, it's bool. C++ 5.3.1p8
8861    resultType = Context.getLogicalOperationType();
8862    break;
8863  case UO_Real:
8864  case UO_Imag:
8865    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8866    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8867    // complex l-values to ordinary l-values and all other values to r-values.
8868    if (Input.isInvalid()) return ExprError();
8869    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8870      if (Input.get()->getValueKind() != VK_RValue &&
8871          Input.get()->getObjectKind() == OK_Ordinary)
8872        VK = Input.get()->getValueKind();
8873    } else if (!getLangOpts().CPlusPlus) {
8874      // In C, a volatile scalar is read by __imag. In C++, it is not.
8875      Input = DefaultLvalueConversion(Input.take());
8876    }
8877    break;
8878  case UO_Extension:
8879    resultType = Input.get()->getType();
8880    VK = Input.get()->getValueKind();
8881    OK = Input.get()->getObjectKind();
8882    break;
8883  }
8884  if (resultType.isNull() || Input.isInvalid())
8885    return ExprError();
8886
8887  // Check for array bounds violations in the operand of the UnaryOperator,
8888  // except for the '*' and '&' operators that have to be handled specially
8889  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8890  // that are explicitly defined as valid by the standard).
8891  if (Opc != UO_AddrOf && Opc != UO_Deref)
8892    CheckArrayAccess(Input.get());
8893
8894  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8895                                           VK, OK, OpLoc));
8896}
8897
8898/// \brief Determine whether the given expression is a qualified member
8899/// access expression, of a form that could be turned into a pointer to member
8900/// with the address-of operator.
8901static bool isQualifiedMemberAccess(Expr *E) {
8902  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8903    if (!DRE->getQualifier())
8904      return false;
8905
8906    ValueDecl *VD = DRE->getDecl();
8907    if (!VD->isCXXClassMember())
8908      return false;
8909
8910    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8911      return true;
8912    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8913      return Method->isInstance();
8914
8915    return false;
8916  }
8917
8918  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8919    if (!ULE->getQualifier())
8920      return false;
8921
8922    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8923                                           DEnd = ULE->decls_end();
8924         D != DEnd; ++D) {
8925      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8926        if (Method->isInstance())
8927          return true;
8928      } else {
8929        // Overload set does not contain methods.
8930        break;
8931      }
8932    }
8933
8934    return false;
8935  }
8936
8937  return false;
8938}
8939
8940ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8941                              UnaryOperatorKind Opc, Expr *Input) {
8942  // First things first: handle placeholders so that the
8943  // overloaded-operator check considers the right type.
8944  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8945    // Increment and decrement of pseudo-object references.
8946    if (pty->getKind() == BuiltinType::PseudoObject &&
8947        UnaryOperator::isIncrementDecrementOp(Opc))
8948      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8949
8950    // extension is always a builtin operator.
8951    if (Opc == UO_Extension)
8952      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8953
8954    // & gets special logic for several kinds of placeholder.
8955    // The builtin code knows what to do.
8956    if (Opc == UO_AddrOf &&
8957        (pty->getKind() == BuiltinType::Overload ||
8958         pty->getKind() == BuiltinType::UnknownAny ||
8959         pty->getKind() == BuiltinType::BoundMember))
8960      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8961
8962    // Anything else needs to be handled now.
8963    ExprResult Result = CheckPlaceholderExpr(Input);
8964    if (Result.isInvalid()) return ExprError();
8965    Input = Result.take();
8966  }
8967
8968  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8969      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8970      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8971    // Find all of the overloaded operators visible from this
8972    // point. We perform both an operator-name lookup from the local
8973    // scope and an argument-dependent lookup based on the types of
8974    // the arguments.
8975    UnresolvedSet<16> Functions;
8976    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8977    if (S && OverOp != OO_None)
8978      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8979                                   Functions);
8980
8981    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8982  }
8983
8984  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8985}
8986
8987// Unary Operators.  'Tok' is the token for the operator.
8988ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8989                              tok::TokenKind Op, Expr *Input) {
8990  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8991}
8992
8993/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8994ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8995                                LabelDecl *TheDecl) {
8996  TheDecl->setUsed();
8997  // Create the AST node.  The address of a label always has type 'void*'.
8998  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8999                                       Context.getPointerType(Context.VoidTy)));
9000}
9001
9002/// Given the last statement in a statement-expression, check whether
9003/// the result is a producing expression (like a call to an
9004/// ns_returns_retained function) and, if so, rebuild it to hoist the
9005/// release out of the full-expression.  Otherwise, return null.
9006/// Cannot fail.
9007static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9008  // Should always be wrapped with one of these.
9009  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9010  if (!cleanups) return 0;
9011
9012  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9013  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9014    return 0;
9015
9016  // Splice out the cast.  This shouldn't modify any interesting
9017  // features of the statement.
9018  Expr *producer = cast->getSubExpr();
9019  assert(producer->getType() == cast->getType());
9020  assert(producer->getValueKind() == cast->getValueKind());
9021  cleanups->setSubExpr(producer);
9022  return cleanups;
9023}
9024
9025void Sema::ActOnStartStmtExpr() {
9026  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9027}
9028
9029void Sema::ActOnStmtExprError() {
9030  // Note that function is also called by TreeTransform when leaving a
9031  // StmtExpr scope without rebuilding anything.
9032
9033  DiscardCleanupsInEvaluationContext();
9034  PopExpressionEvaluationContext();
9035}
9036
9037ExprResult
9038Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9039                    SourceLocation RPLoc) { // "({..})"
9040  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9041  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9042
9043  if (hasAnyUnrecoverableErrorsInThisFunction())
9044    DiscardCleanupsInEvaluationContext();
9045  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9046  PopExpressionEvaluationContext();
9047
9048  bool isFileScope
9049    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9050  if (isFileScope)
9051    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9052
9053  // FIXME: there are a variety of strange constraints to enforce here, for
9054  // example, it is not possible to goto into a stmt expression apparently.
9055  // More semantic analysis is needed.
9056
9057  // If there are sub stmts in the compound stmt, take the type of the last one
9058  // as the type of the stmtexpr.
9059  QualType Ty = Context.VoidTy;
9060  bool StmtExprMayBindToTemp = false;
9061  if (!Compound->body_empty()) {
9062    Stmt *LastStmt = Compound->body_back();
9063    LabelStmt *LastLabelStmt = 0;
9064    // If LastStmt is a label, skip down through into the body.
9065    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9066      LastLabelStmt = Label;
9067      LastStmt = Label->getSubStmt();
9068    }
9069
9070    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9071      // Do function/array conversion on the last expression, but not
9072      // lvalue-to-rvalue.  However, initialize an unqualified type.
9073      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9074      if (LastExpr.isInvalid())
9075        return ExprError();
9076      Ty = LastExpr.get()->getType().getUnqualifiedType();
9077
9078      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9079        // In ARC, if the final expression ends in a consume, splice
9080        // the consume out and bind it later.  In the alternate case
9081        // (when dealing with a retainable type), the result
9082        // initialization will create a produce.  In both cases the
9083        // result will be +1, and we'll need to balance that out with
9084        // a bind.
9085        if (Expr *rebuiltLastStmt
9086              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9087          LastExpr = rebuiltLastStmt;
9088        } else {
9089          LastExpr = PerformCopyInitialization(
9090                            InitializedEntity::InitializeResult(LPLoc,
9091                                                                Ty,
9092                                                                false),
9093                                                   SourceLocation(),
9094                                               LastExpr);
9095        }
9096
9097        if (LastExpr.isInvalid())
9098          return ExprError();
9099        if (LastExpr.get() != 0) {
9100          if (!LastLabelStmt)
9101            Compound->setLastStmt(LastExpr.take());
9102          else
9103            LastLabelStmt->setSubStmt(LastExpr.take());
9104          StmtExprMayBindToTemp = true;
9105        }
9106      }
9107    }
9108  }
9109
9110  // FIXME: Check that expression type is complete/non-abstract; statement
9111  // expressions are not lvalues.
9112  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9113  if (StmtExprMayBindToTemp)
9114    return MaybeBindToTemporary(ResStmtExpr);
9115  return Owned(ResStmtExpr);
9116}
9117
9118ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9119                                      TypeSourceInfo *TInfo,
9120                                      OffsetOfComponent *CompPtr,
9121                                      unsigned NumComponents,
9122                                      SourceLocation RParenLoc) {
9123  QualType ArgTy = TInfo->getType();
9124  bool Dependent = ArgTy->isDependentType();
9125  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9126
9127  // We must have at least one component that refers to the type, and the first
9128  // one is known to be a field designator.  Verify that the ArgTy represents
9129  // a struct/union/class.
9130  if (!Dependent && !ArgTy->isRecordType())
9131    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9132                       << ArgTy << TypeRange);
9133
9134  // Type must be complete per C99 7.17p3 because a declaring a variable
9135  // with an incomplete type would be ill-formed.
9136  if (!Dependent
9137      && RequireCompleteType(BuiltinLoc, ArgTy,
9138                             diag::err_offsetof_incomplete_type, TypeRange))
9139    return ExprError();
9140
9141  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9142  // GCC extension, diagnose them.
9143  // FIXME: This diagnostic isn't actually visible because the location is in
9144  // a system header!
9145  if (NumComponents != 1)
9146    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9147      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9148
9149  bool DidWarnAboutNonPOD = false;
9150  QualType CurrentType = ArgTy;
9151  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9152  SmallVector<OffsetOfNode, 4> Comps;
9153  SmallVector<Expr*, 4> Exprs;
9154  for (unsigned i = 0; i != NumComponents; ++i) {
9155    const OffsetOfComponent &OC = CompPtr[i];
9156    if (OC.isBrackets) {
9157      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9158      if (!CurrentType->isDependentType()) {
9159        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9160        if(!AT)
9161          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9162                           << CurrentType);
9163        CurrentType = AT->getElementType();
9164      } else
9165        CurrentType = Context.DependentTy;
9166
9167      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9168      if (IdxRval.isInvalid())
9169        return ExprError();
9170      Expr *Idx = IdxRval.take();
9171
9172      // The expression must be an integral expression.
9173      // FIXME: An integral constant expression?
9174      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9175          !Idx->getType()->isIntegerType())
9176        return ExprError(Diag(Idx->getLocStart(),
9177                              diag::err_typecheck_subscript_not_integer)
9178                         << Idx->getSourceRange());
9179
9180      // Record this array index.
9181      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9182      Exprs.push_back(Idx);
9183      continue;
9184    }
9185
9186    // Offset of a field.
9187    if (CurrentType->isDependentType()) {
9188      // We have the offset of a field, but we can't look into the dependent
9189      // type. Just record the identifier of the field.
9190      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9191      CurrentType = Context.DependentTy;
9192      continue;
9193    }
9194
9195    // We need to have a complete type to look into.
9196    if (RequireCompleteType(OC.LocStart, CurrentType,
9197                            diag::err_offsetof_incomplete_type))
9198      return ExprError();
9199
9200    // Look for the designated field.
9201    const RecordType *RC = CurrentType->getAs<RecordType>();
9202    if (!RC)
9203      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9204                       << CurrentType);
9205    RecordDecl *RD = RC->getDecl();
9206
9207    // C++ [lib.support.types]p5:
9208    //   The macro offsetof accepts a restricted set of type arguments in this
9209    //   International Standard. type shall be a POD structure or a POD union
9210    //   (clause 9).
9211    // C++11 [support.types]p4:
9212    //   If type is not a standard-layout class (Clause 9), the results are
9213    //   undefined.
9214    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9215      bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
9216      unsigned DiagID =
9217        LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
9218                            : diag::warn_offsetof_non_pod_type;
9219
9220      if (!IsSafe && !DidWarnAboutNonPOD &&
9221          DiagRuntimeBehavior(BuiltinLoc, 0,
9222                              PDiag(DiagID)
9223                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9224                              << CurrentType))
9225        DidWarnAboutNonPOD = true;
9226    }
9227
9228    // Look for the field.
9229    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9230    LookupQualifiedName(R, RD);
9231    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9232    IndirectFieldDecl *IndirectMemberDecl = 0;
9233    if (!MemberDecl) {
9234      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9235        MemberDecl = IndirectMemberDecl->getAnonField();
9236    }
9237
9238    if (!MemberDecl)
9239      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9240                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9241                                                              OC.LocEnd));
9242
9243    // C99 7.17p3:
9244    //   (If the specified member is a bit-field, the behavior is undefined.)
9245    //
9246    // We diagnose this as an error.
9247    if (MemberDecl->isBitField()) {
9248      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9249        << MemberDecl->getDeclName()
9250        << SourceRange(BuiltinLoc, RParenLoc);
9251      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9252      return ExprError();
9253    }
9254
9255    RecordDecl *Parent = MemberDecl->getParent();
9256    if (IndirectMemberDecl)
9257      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9258
9259    // If the member was found in a base class, introduce OffsetOfNodes for
9260    // the base class indirections.
9261    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9262                       /*DetectVirtual=*/false);
9263    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9264      CXXBasePath &Path = Paths.front();
9265      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9266           B != BEnd; ++B)
9267        Comps.push_back(OffsetOfNode(B->Base));
9268    }
9269
9270    if (IndirectMemberDecl) {
9271      for (IndirectFieldDecl::chain_iterator FI =
9272           IndirectMemberDecl->chain_begin(),
9273           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9274        assert(isa<FieldDecl>(*FI));
9275        Comps.push_back(OffsetOfNode(OC.LocStart,
9276                                     cast<FieldDecl>(*FI), OC.LocEnd));
9277      }
9278    } else
9279      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9280
9281    CurrentType = MemberDecl->getType().getNonReferenceType();
9282  }
9283
9284  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9285                                    TInfo, Comps, Exprs, RParenLoc));
9286}
9287
9288ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9289                                      SourceLocation BuiltinLoc,
9290                                      SourceLocation TypeLoc,
9291                                      ParsedType ParsedArgTy,
9292                                      OffsetOfComponent *CompPtr,
9293                                      unsigned NumComponents,
9294                                      SourceLocation RParenLoc) {
9295
9296  TypeSourceInfo *ArgTInfo;
9297  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9298  if (ArgTy.isNull())
9299    return ExprError();
9300
9301  if (!ArgTInfo)
9302    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9303
9304  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9305                              RParenLoc);
9306}
9307
9308
9309ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9310                                 Expr *CondExpr,
9311                                 Expr *LHSExpr, Expr *RHSExpr,
9312                                 SourceLocation RPLoc) {
9313  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9314
9315  ExprValueKind VK = VK_RValue;
9316  ExprObjectKind OK = OK_Ordinary;
9317  QualType resType;
9318  bool ValueDependent = false;
9319  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9320    resType = Context.DependentTy;
9321    ValueDependent = true;
9322  } else {
9323    // The conditional expression is required to be a constant expression.
9324    llvm::APSInt condEval(32);
9325    ExprResult CondICE
9326      = VerifyIntegerConstantExpression(CondExpr, &condEval,
9327          diag::err_typecheck_choose_expr_requires_constant, false);
9328    if (CondICE.isInvalid())
9329      return ExprError();
9330    CondExpr = CondICE.take();
9331
9332    // If the condition is > zero, then the AST type is the same as the LSHExpr.
9333    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9334
9335    resType = ActiveExpr->getType();
9336    ValueDependent = ActiveExpr->isValueDependent();
9337    VK = ActiveExpr->getValueKind();
9338    OK = ActiveExpr->getObjectKind();
9339  }
9340
9341  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9342                                        resType, VK, OK, RPLoc,
9343                                        resType->isDependentType(),
9344                                        ValueDependent));
9345}
9346
9347//===----------------------------------------------------------------------===//
9348// Clang Extensions.
9349//===----------------------------------------------------------------------===//
9350
9351/// ActOnBlockStart - This callback is invoked when a block literal is started.
9352void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9353  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9354  PushBlockScope(CurScope, Block);
9355  CurContext->addDecl(Block);
9356  if (CurScope)
9357    PushDeclContext(CurScope, Block);
9358  else
9359    CurContext = Block;
9360
9361  getCurBlock()->HasImplicitReturnType = true;
9362
9363  // Enter a new evaluation context to insulate the block from any
9364  // cleanups from the enclosing full-expression.
9365  PushExpressionEvaluationContext(PotentiallyEvaluated);
9366}
9367
9368void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9369                               Scope *CurScope) {
9370  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9371  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9372  BlockScopeInfo *CurBlock = getCurBlock();
9373
9374  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9375  QualType T = Sig->getType();
9376
9377  // FIXME: We should allow unexpanded parameter packs here, but that would,
9378  // in turn, make the block expression contain unexpanded parameter packs.
9379  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9380    // Drop the parameters.
9381    FunctionProtoType::ExtProtoInfo EPI;
9382    EPI.HasTrailingReturn = false;
9383    EPI.TypeQuals |= DeclSpec::TQ_const;
9384    T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
9385                                EPI);
9386    Sig = Context.getTrivialTypeSourceInfo(T);
9387  }
9388
9389  // GetTypeForDeclarator always produces a function type for a block
9390  // literal signature.  Furthermore, it is always a FunctionProtoType
9391  // unless the function was written with a typedef.
9392  assert(T->isFunctionType() &&
9393         "GetTypeForDeclarator made a non-function block signature");
9394
9395  // Look for an explicit signature in that function type.
9396  FunctionProtoTypeLoc ExplicitSignature;
9397
9398  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9399  if (isa<FunctionProtoTypeLoc>(tmp)) {
9400    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9401
9402    // Check whether that explicit signature was synthesized by
9403    // GetTypeForDeclarator.  If so, don't save that as part of the
9404    // written signature.
9405    if (ExplicitSignature.getLocalRangeBegin() ==
9406        ExplicitSignature.getLocalRangeEnd()) {
9407      // This would be much cheaper if we stored TypeLocs instead of
9408      // TypeSourceInfos.
9409      TypeLoc Result = ExplicitSignature.getResultLoc();
9410      unsigned Size = Result.getFullDataSize();
9411      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9412      Sig->getTypeLoc().initializeFullCopy(Result, Size);
9413
9414      ExplicitSignature = FunctionProtoTypeLoc();
9415    }
9416  }
9417
9418  CurBlock->TheDecl->setSignatureAsWritten(Sig);
9419  CurBlock->FunctionType = T;
9420
9421  const FunctionType *Fn = T->getAs<FunctionType>();
9422  QualType RetTy = Fn->getResultType();
9423  bool isVariadic =
9424    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9425
9426  CurBlock->TheDecl->setIsVariadic(isVariadic);
9427
9428  // Don't allow returning a objc interface by value.
9429  if (RetTy->isObjCObjectType()) {
9430    Diag(ParamInfo.getLocStart(),
9431         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9432    return;
9433  }
9434
9435  // Context.DependentTy is used as a placeholder for a missing block
9436  // return type.  TODO:  what should we do with declarators like:
9437  //   ^ * { ... }
9438  // If the answer is "apply template argument deduction"....
9439  if (RetTy != Context.DependentTy) {
9440    CurBlock->ReturnType = RetTy;
9441    CurBlock->TheDecl->setBlockMissingReturnType(false);
9442    CurBlock->HasImplicitReturnType = false;
9443  }
9444
9445  // Push block parameters from the declarator if we had them.
9446  SmallVector<ParmVarDecl*, 8> Params;
9447  if (ExplicitSignature) {
9448    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9449      ParmVarDecl *Param = ExplicitSignature.getArg(I);
9450      if (Param->getIdentifier() == 0 &&
9451          !Param->isImplicit() &&
9452          !Param->isInvalidDecl() &&
9453          !getLangOpts().CPlusPlus)
9454        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9455      Params.push_back(Param);
9456    }
9457
9458  // Fake up parameter variables if we have a typedef, like
9459  //   ^ fntype { ... }
9460  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9461    for (FunctionProtoType::arg_type_iterator
9462           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9463      ParmVarDecl *Param =
9464        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9465                                   ParamInfo.getLocStart(),
9466                                   *I);
9467      Params.push_back(Param);
9468    }
9469  }
9470
9471  // Set the parameters on the block decl.
9472  if (!Params.empty()) {
9473    CurBlock->TheDecl->setParams(Params);
9474    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9475                             CurBlock->TheDecl->param_end(),
9476                             /*CheckParameterNames=*/false);
9477  }
9478
9479  // Finally we can process decl attributes.
9480  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9481
9482  // Put the parameter variables in scope.  We can bail out immediately
9483  // if we don't have any.
9484  if (Params.empty())
9485    return;
9486
9487  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9488         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9489    (*AI)->setOwningFunction(CurBlock->TheDecl);
9490
9491    // If this has an identifier, add it to the scope stack.
9492    if ((*AI)->getIdentifier()) {
9493      CheckShadow(CurBlock->TheScope, *AI);
9494
9495      PushOnScopeChains(*AI, CurBlock->TheScope);
9496    }
9497  }
9498}
9499
9500/// ActOnBlockError - If there is an error parsing a block, this callback
9501/// is invoked to pop the information about the block from the action impl.
9502void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9503  // Leave the expression-evaluation context.
9504  DiscardCleanupsInEvaluationContext();
9505  PopExpressionEvaluationContext();
9506
9507  // Pop off CurBlock, handle nested blocks.
9508  PopDeclContext();
9509  PopFunctionScopeInfo();
9510}
9511
9512/// ActOnBlockStmtExpr - This is called when the body of a block statement
9513/// literal was successfully completed.  ^(int x){...}
9514ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9515                                    Stmt *Body, Scope *CurScope) {
9516  // If blocks are disabled, emit an error.
9517  if (!LangOpts.Blocks)
9518    Diag(CaretLoc, diag::err_blocks_disable);
9519
9520  // Leave the expression-evaluation context.
9521  if (hasAnyUnrecoverableErrorsInThisFunction())
9522    DiscardCleanupsInEvaluationContext();
9523  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9524  PopExpressionEvaluationContext();
9525
9526  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9527
9528  if (BSI->HasImplicitReturnType)
9529    deduceClosureReturnType(*BSI);
9530
9531  PopDeclContext();
9532
9533  QualType RetTy = Context.VoidTy;
9534  if (!BSI->ReturnType.isNull())
9535    RetTy = BSI->ReturnType;
9536
9537  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9538  QualType BlockTy;
9539
9540  // Set the captured variables on the block.
9541  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9542  SmallVector<BlockDecl::Capture, 4> Captures;
9543  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9544    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9545    if (Cap.isThisCapture())
9546      continue;
9547    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9548                              Cap.isNested(), Cap.getCopyExpr());
9549    Captures.push_back(NewCap);
9550  }
9551  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9552                            BSI->CXXThisCaptureIndex != 0);
9553
9554  // If the user wrote a function type in some form, try to use that.
9555  if (!BSI->FunctionType.isNull()) {
9556    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9557
9558    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9559    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9560
9561    // Turn protoless block types into nullary block types.
9562    if (isa<FunctionNoProtoType>(FTy)) {
9563      FunctionProtoType::ExtProtoInfo EPI;
9564      EPI.ExtInfo = Ext;
9565      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9566
9567    // Otherwise, if we don't need to change anything about the function type,
9568    // preserve its sugar structure.
9569    } else if (FTy->getResultType() == RetTy &&
9570               (!NoReturn || FTy->getNoReturnAttr())) {
9571      BlockTy = BSI->FunctionType;
9572
9573    // Otherwise, make the minimal modifications to the function type.
9574    } else {
9575      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9576      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9577      EPI.TypeQuals = 0; // FIXME: silently?
9578      EPI.ExtInfo = Ext;
9579      BlockTy = Context.getFunctionType(RetTy,
9580                                        FPT->arg_type_begin(),
9581                                        FPT->getNumArgs(),
9582                                        EPI);
9583    }
9584
9585  // If we don't have a function type, just build one from nothing.
9586  } else {
9587    FunctionProtoType::ExtProtoInfo EPI;
9588    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9589    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9590  }
9591
9592  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9593                           BSI->TheDecl->param_end());
9594  BlockTy = Context.getBlockPointerType(BlockTy);
9595
9596  // If needed, diagnose invalid gotos and switches in the block.
9597  if (getCurFunction()->NeedsScopeChecking() &&
9598      !hasAnyUnrecoverableErrorsInThisFunction() &&
9599      !PP.isCodeCompletionEnabled())
9600    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9601
9602  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9603
9604  // Try to apply the named return value optimization. We have to check again
9605  // if we can do this, though, because blocks keep return statements around
9606  // to deduce an implicit return type.
9607  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9608      !BSI->TheDecl->isDependentContext())
9609    computeNRVO(Body, getCurBlock());
9610
9611  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9612  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9613  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9614
9615  // If the block isn't obviously global, i.e. it captures anything at
9616  // all, then we need to do a few things in the surrounding context:
9617  if (Result->getBlockDecl()->hasCaptures()) {
9618    // First, this expression has a new cleanup object.
9619    ExprCleanupObjects.push_back(Result->getBlockDecl());
9620    ExprNeedsCleanups = true;
9621
9622    // It also gets a branch-protected scope if any of the captured
9623    // variables needs destruction.
9624    for (BlockDecl::capture_const_iterator
9625           ci = Result->getBlockDecl()->capture_begin(),
9626           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9627      const VarDecl *var = ci->getVariable();
9628      if (var->getType().isDestructedType() != QualType::DK_none) {
9629        getCurFunction()->setHasBranchProtectedScope();
9630        break;
9631      }
9632    }
9633  }
9634
9635  return Owned(Result);
9636}
9637
9638ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9639                                        Expr *E, ParsedType Ty,
9640                                        SourceLocation RPLoc) {
9641  TypeSourceInfo *TInfo;
9642  GetTypeFromParser(Ty, &TInfo);
9643  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9644}
9645
9646ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9647                                Expr *E, TypeSourceInfo *TInfo,
9648                                SourceLocation RPLoc) {
9649  Expr *OrigExpr = E;
9650
9651  // Get the va_list type
9652  QualType VaListType = Context.getBuiltinVaListType();
9653  if (VaListType->isArrayType()) {
9654    // Deal with implicit array decay; for example, on x86-64,
9655    // va_list is an array, but it's supposed to decay to
9656    // a pointer for va_arg.
9657    VaListType = Context.getArrayDecayedType(VaListType);
9658    // Make sure the input expression also decays appropriately.
9659    ExprResult Result = UsualUnaryConversions(E);
9660    if (Result.isInvalid())
9661      return ExprError();
9662    E = Result.take();
9663  } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
9664    // If va_list is a record type and we are compiling in C++ mode,
9665    // check the argument using reference binding.
9666    InitializedEntity Entity
9667      = InitializedEntity::InitializeParameter(Context,
9668          Context.getLValueReferenceType(VaListType), false);
9669    ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
9670    if (Init.isInvalid())
9671      return ExprError();
9672    E = Init.takeAs<Expr>();
9673  } else {
9674    // Otherwise, the va_list argument must be an l-value because
9675    // it is modified by va_arg.
9676    if (!E->isTypeDependent() &&
9677        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9678      return ExprError();
9679  }
9680
9681  if (!E->isTypeDependent() &&
9682      !Context.hasSameType(VaListType, E->getType())) {
9683    return ExprError(Diag(E->getLocStart(),
9684                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9685      << OrigExpr->getType() << E->getSourceRange());
9686  }
9687
9688  if (!TInfo->getType()->isDependentType()) {
9689    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9690                            diag::err_second_parameter_to_va_arg_incomplete,
9691                            TInfo->getTypeLoc()))
9692      return ExprError();
9693
9694    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9695                               TInfo->getType(),
9696                               diag::err_second_parameter_to_va_arg_abstract,
9697                               TInfo->getTypeLoc()))
9698      return ExprError();
9699
9700    if (!TInfo->getType().isPODType(Context)) {
9701      Diag(TInfo->getTypeLoc().getBeginLoc(),
9702           TInfo->getType()->isObjCLifetimeType()
9703             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9704             : diag::warn_second_parameter_to_va_arg_not_pod)
9705        << TInfo->getType()
9706        << TInfo->getTypeLoc().getSourceRange();
9707    }
9708
9709    // Check for va_arg where arguments of the given type will be promoted
9710    // (i.e. this va_arg is guaranteed to have undefined behavior).
9711    QualType PromoteType;
9712    if (TInfo->getType()->isPromotableIntegerType()) {
9713      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9714      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9715        PromoteType = QualType();
9716    }
9717    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9718      PromoteType = Context.DoubleTy;
9719    if (!PromoteType.isNull())
9720      Diag(TInfo->getTypeLoc().getBeginLoc(),
9721          diag::warn_second_parameter_to_va_arg_never_compatible)
9722        << TInfo->getType()
9723        << PromoteType
9724        << TInfo->getTypeLoc().getSourceRange();
9725  }
9726
9727  QualType T = TInfo->getType().getNonLValueExprType(Context);
9728  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9729}
9730
9731ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9732  // The type of __null will be int or long, depending on the size of
9733  // pointers on the target.
9734  QualType Ty;
9735  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9736  if (pw == Context.getTargetInfo().getIntWidth())
9737    Ty = Context.IntTy;
9738  else if (pw == Context.getTargetInfo().getLongWidth())
9739    Ty = Context.LongTy;
9740  else if (pw == Context.getTargetInfo().getLongLongWidth())
9741    Ty = Context.LongLongTy;
9742  else {
9743    llvm_unreachable("I don't know size of pointer!");
9744  }
9745
9746  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9747}
9748
9749static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9750                                           Expr *SrcExpr, FixItHint &Hint) {
9751  if (!SemaRef.getLangOpts().ObjC1)
9752    return;
9753
9754  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9755  if (!PT)
9756    return;
9757
9758  // Check if the destination is of type 'id'.
9759  if (!PT->isObjCIdType()) {
9760    // Check if the destination is the 'NSString' interface.
9761    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9762    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9763      return;
9764  }
9765
9766  // Ignore any parens, implicit casts (should only be
9767  // array-to-pointer decays), and not-so-opaque values.  The last is
9768  // important for making this trigger for property assignments.
9769  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9770  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9771    if (OV->getSourceExpr())
9772      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9773
9774  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9775  if (!SL || !SL->isAscii())
9776    return;
9777
9778  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9779}
9780
9781bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9782                                    SourceLocation Loc,
9783                                    QualType DstType, QualType SrcType,
9784                                    Expr *SrcExpr, AssignmentAction Action,
9785                                    bool *Complained) {
9786  if (Complained)
9787    *Complained = false;
9788
9789  // Decode the result (notice that AST's are still created for extensions).
9790  bool CheckInferredResultType = false;
9791  bool isInvalid = false;
9792  unsigned DiagKind = 0;
9793  FixItHint Hint;
9794  ConversionFixItGenerator ConvHints;
9795  bool MayHaveConvFixit = false;
9796  bool MayHaveFunctionDiff = false;
9797
9798  switch (ConvTy) {
9799  case Compatible:
9800      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9801      return false;
9802
9803  case PointerToInt:
9804    DiagKind = diag::ext_typecheck_convert_pointer_int;
9805    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9806    MayHaveConvFixit = true;
9807    break;
9808  case IntToPointer:
9809    DiagKind = diag::ext_typecheck_convert_int_pointer;
9810    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9811    MayHaveConvFixit = true;
9812    break;
9813  case IncompatiblePointer:
9814    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9815    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9816    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9817      SrcType->isObjCObjectPointerType();
9818    if (Hint.isNull() && !CheckInferredResultType) {
9819      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9820    }
9821    MayHaveConvFixit = true;
9822    break;
9823  case IncompatiblePointerSign:
9824    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9825    break;
9826  case FunctionVoidPointer:
9827    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9828    break;
9829  case IncompatiblePointerDiscardsQualifiers: {
9830    // Perform array-to-pointer decay if necessary.
9831    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9832
9833    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9834    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9835    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9836      DiagKind = diag::err_typecheck_incompatible_address_space;
9837      break;
9838
9839
9840    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9841      DiagKind = diag::err_typecheck_incompatible_ownership;
9842      break;
9843    }
9844
9845    llvm_unreachable("unknown error case for discarding qualifiers!");
9846    // fallthrough
9847  }
9848  case CompatiblePointerDiscardsQualifiers:
9849    // If the qualifiers lost were because we were applying the
9850    // (deprecated) C++ conversion from a string literal to a char*
9851    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9852    // Ideally, this check would be performed in
9853    // checkPointerTypesForAssignment. However, that would require a
9854    // bit of refactoring (so that the second argument is an
9855    // expression, rather than a type), which should be done as part
9856    // of a larger effort to fix checkPointerTypesForAssignment for
9857    // C++ semantics.
9858    if (getLangOpts().CPlusPlus &&
9859        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9860      return false;
9861    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9862    break;
9863  case IncompatibleNestedPointerQualifiers:
9864    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9865    break;
9866  case IntToBlockPointer:
9867    DiagKind = diag::err_int_to_block_pointer;
9868    break;
9869  case IncompatibleBlockPointer:
9870    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9871    break;
9872  case IncompatibleObjCQualifiedId:
9873    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9874    // it can give a more specific diagnostic.
9875    DiagKind = diag::warn_incompatible_qualified_id;
9876    break;
9877  case IncompatibleVectors:
9878    DiagKind = diag::warn_incompatible_vectors;
9879    break;
9880  case IncompatibleObjCWeakRef:
9881    DiagKind = diag::err_arc_weak_unavailable_assign;
9882    break;
9883  case Incompatible:
9884    DiagKind = diag::err_typecheck_convert_incompatible;
9885    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9886    MayHaveConvFixit = true;
9887    isInvalid = true;
9888    MayHaveFunctionDiff = true;
9889    break;
9890  }
9891
9892  QualType FirstType, SecondType;
9893  switch (Action) {
9894  case AA_Assigning:
9895  case AA_Initializing:
9896    // The destination type comes first.
9897    FirstType = DstType;
9898    SecondType = SrcType;
9899    break;
9900
9901  case AA_Returning:
9902  case AA_Passing:
9903  case AA_Converting:
9904  case AA_Sending:
9905  case AA_Casting:
9906    // The source type comes first.
9907    FirstType = SrcType;
9908    SecondType = DstType;
9909    break;
9910  }
9911
9912  PartialDiagnostic FDiag = PDiag(DiagKind);
9913  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9914
9915  // If we can fix the conversion, suggest the FixIts.
9916  assert(ConvHints.isNull() || Hint.isNull());
9917  if (!ConvHints.isNull()) {
9918    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9919         HE = ConvHints.Hints.end(); HI != HE; ++HI)
9920      FDiag << *HI;
9921  } else {
9922    FDiag << Hint;
9923  }
9924  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9925
9926  if (MayHaveFunctionDiff)
9927    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9928
9929  Diag(Loc, FDiag);
9930
9931  if (SecondType == Context.OverloadTy)
9932    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9933                              FirstType);
9934
9935  if (CheckInferredResultType)
9936    EmitRelatedResultTypeNote(SrcExpr);
9937
9938  if (Complained)
9939    *Complained = true;
9940  return isInvalid;
9941}
9942
9943ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9944                                                 llvm::APSInt *Result) {
9945  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9946  public:
9947    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9948      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9949    }
9950  } Diagnoser;
9951
9952  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9953}
9954
9955ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9956                                                 llvm::APSInt *Result,
9957                                                 unsigned DiagID,
9958                                                 bool AllowFold) {
9959  class IDDiagnoser : public VerifyICEDiagnoser {
9960    unsigned DiagID;
9961
9962  public:
9963    IDDiagnoser(unsigned DiagID)
9964      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9965
9966    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9967      S.Diag(Loc, DiagID) << SR;
9968    }
9969  } Diagnoser(DiagID);
9970
9971  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9972}
9973
9974void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9975                                            SourceRange SR) {
9976  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9977}
9978
9979ExprResult
9980Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9981                                      VerifyICEDiagnoser &Diagnoser,
9982                                      bool AllowFold) {
9983  SourceLocation DiagLoc = E->getLocStart();
9984
9985  if (getLangOpts().CPlusPlus0x) {
9986    // C++11 [expr.const]p5:
9987    //   If an expression of literal class type is used in a context where an
9988    //   integral constant expression is required, then that class type shall
9989    //   have a single non-explicit conversion function to an integral or
9990    //   unscoped enumeration type
9991    ExprResult Converted;
9992    if (!Diagnoser.Suppress) {
9993      class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9994      public:
9995        CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9996
9997        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9998                                                 QualType T) {
9999          return S.Diag(Loc, diag::err_ice_not_integral) << T;
10000        }
10001
10002        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10003                                                     SourceLocation Loc,
10004                                                     QualType T) {
10005          return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10006        }
10007
10008        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10009                                                       SourceLocation Loc,
10010                                                       QualType T,
10011                                                       QualType ConvTy) {
10012          return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10013        }
10014
10015        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10016                                                   CXXConversionDecl *Conv,
10017                                                   QualType ConvTy) {
10018          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10019                   << ConvTy->isEnumeralType() << ConvTy;
10020        }
10021
10022        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10023                                                    QualType T) {
10024          return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10025        }
10026
10027        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10028                                                CXXConversionDecl *Conv,
10029                                                QualType ConvTy) {
10030          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10031                   << ConvTy->isEnumeralType() << ConvTy;
10032        }
10033
10034        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10035                                                     SourceLocation Loc,
10036                                                     QualType T,
10037                                                     QualType ConvTy) {
10038          return DiagnosticBuilder::getEmpty();
10039        }
10040      } ConvertDiagnoser;
10041
10042      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10043                                                     ConvertDiagnoser,
10044                                             /*AllowScopedEnumerations*/ false);
10045    } else {
10046      // The caller wants to silently enquire whether this is an ICE. Don't
10047      // produce any diagnostics if it isn't.
10048      class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
10049      public:
10050        SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
10051
10052        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10053                                                 QualType T) {
10054          return DiagnosticBuilder::getEmpty();
10055        }
10056
10057        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
10058                                                     SourceLocation Loc,
10059                                                     QualType T) {
10060          return DiagnosticBuilder::getEmpty();
10061        }
10062
10063        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
10064                                                       SourceLocation Loc,
10065                                                       QualType T,
10066                                                       QualType ConvTy) {
10067          return DiagnosticBuilder::getEmpty();
10068        }
10069
10070        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
10071                                                   CXXConversionDecl *Conv,
10072                                                   QualType ConvTy) {
10073          return DiagnosticBuilder::getEmpty();
10074        }
10075
10076        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
10077                                                    QualType T) {
10078          return DiagnosticBuilder::getEmpty();
10079        }
10080
10081        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
10082                                                CXXConversionDecl *Conv,
10083                                                QualType ConvTy) {
10084          return DiagnosticBuilder::getEmpty();
10085        }
10086
10087        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
10088                                                     SourceLocation Loc,
10089                                                     QualType T,
10090                                                     QualType ConvTy) {
10091          return DiagnosticBuilder::getEmpty();
10092        }
10093      } ConvertDiagnoser;
10094
10095      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
10096                                                     ConvertDiagnoser, false);
10097    }
10098    if (Converted.isInvalid())
10099      return Converted;
10100    E = Converted.take();
10101    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10102      return ExprError();
10103  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10104    // An ICE must be of integral or unscoped enumeration type.
10105    if (!Diagnoser.Suppress)
10106      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10107    return ExprError();
10108  }
10109
10110  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10111  // in the non-ICE case.
10112  if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
10113    if (Result)
10114      *Result = E->EvaluateKnownConstInt(Context);
10115    return Owned(E);
10116  }
10117
10118  Expr::EvalResult EvalResult;
10119  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
10120  EvalResult.Diag = &Notes;
10121
10122  // Try to evaluate the expression, and produce diagnostics explaining why it's
10123  // not a constant expression as a side-effect.
10124  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10125                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10126
10127  // In C++11, we can rely on diagnostics being produced for any expression
10128  // which is not a constant expression. If no diagnostics were produced, then
10129  // this is a constant expression.
10130  if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
10131    if (Result)
10132      *Result = EvalResult.Val.getInt();
10133    return Owned(E);
10134  }
10135
10136  // If our only note is the usual "invalid subexpression" note, just point
10137  // the caret at its location rather than producing an essentially
10138  // redundant note.
10139  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10140        diag::note_invalid_subexpr_in_const_expr) {
10141    DiagLoc = Notes[0].first;
10142    Notes.clear();
10143  }
10144
10145  if (!Folded || !AllowFold) {
10146    if (!Diagnoser.Suppress) {
10147      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10148      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10149        Diag(Notes[I].first, Notes[I].second);
10150    }
10151
10152    return ExprError();
10153  }
10154
10155  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10156  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10157    Diag(Notes[I].first, Notes[I].second);
10158
10159  if (Result)
10160    *Result = EvalResult.Val.getInt();
10161  return Owned(E);
10162}
10163
10164namespace {
10165  // Handle the case where we conclude a expression which we speculatively
10166  // considered to be unevaluated is actually evaluated.
10167  class TransformToPE : public TreeTransform<TransformToPE> {
10168    typedef TreeTransform<TransformToPE> BaseTransform;
10169
10170  public:
10171    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10172
10173    // Make sure we redo semantic analysis
10174    bool AlwaysRebuild() { return true; }
10175
10176    // Make sure we handle LabelStmts correctly.
10177    // FIXME: This does the right thing, but maybe we need a more general
10178    // fix to TreeTransform?
10179    StmtResult TransformLabelStmt(LabelStmt *S) {
10180      S->getDecl()->setStmt(0);
10181      return BaseTransform::TransformLabelStmt(S);
10182    }
10183
10184    // We need to special-case DeclRefExprs referring to FieldDecls which
10185    // are not part of a member pointer formation; normal TreeTransforming
10186    // doesn't catch this case because of the way we represent them in the AST.
10187    // FIXME: This is a bit ugly; is it really the best way to handle this
10188    // case?
10189    //
10190    // Error on DeclRefExprs referring to FieldDecls.
10191    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10192      if (isa<FieldDecl>(E->getDecl()) &&
10193          !SemaRef.isUnevaluatedContext())
10194        return SemaRef.Diag(E->getLocation(),
10195                            diag::err_invalid_non_static_member_use)
10196            << E->getDecl() << E->getSourceRange();
10197
10198      return BaseTransform::TransformDeclRefExpr(E);
10199    }
10200
10201    // Exception: filter out member pointer formation
10202    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10203      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10204        return E;
10205
10206      return BaseTransform::TransformUnaryOperator(E);
10207    }
10208
10209    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10210      // Lambdas never need to be transformed.
10211      return E;
10212    }
10213  };
10214}
10215
10216ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10217  assert(ExprEvalContexts.back().Context == Unevaluated &&
10218         "Should only transform unevaluated expressions");
10219  ExprEvalContexts.back().Context =
10220      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10221  if (ExprEvalContexts.back().Context == Unevaluated)
10222    return E;
10223  return TransformToPE(*this).TransformExpr(E);
10224}
10225
10226void
10227Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10228                                      Decl *LambdaContextDecl,
10229                                      bool IsDecltype) {
10230  ExprEvalContexts.push_back(
10231             ExpressionEvaluationContextRecord(NewContext,
10232                                               ExprCleanupObjects.size(),
10233                                               ExprNeedsCleanups,
10234                                               LambdaContextDecl,
10235                                               IsDecltype));
10236  ExprNeedsCleanups = false;
10237  if (!MaybeODRUseExprs.empty())
10238    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10239}
10240
10241void
10242Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10243                                      ReuseLambdaContextDecl_t,
10244                                      bool IsDecltype) {
10245  Decl *LambdaContextDecl = ExprEvalContexts.back().LambdaContextDecl;
10246  PushExpressionEvaluationContext(NewContext, LambdaContextDecl, IsDecltype);
10247}
10248
10249void Sema::PopExpressionEvaluationContext() {
10250  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10251
10252  if (!Rec.Lambdas.empty()) {
10253    if (Rec.Context == Unevaluated) {
10254      // C++11 [expr.prim.lambda]p2:
10255      //   A lambda-expression shall not appear in an unevaluated operand
10256      //   (Clause 5).
10257      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10258        Diag(Rec.Lambdas[I]->getLocStart(),
10259             diag::err_lambda_unevaluated_operand);
10260    } else {
10261      // Mark the capture expressions odr-used. This was deferred
10262      // during lambda expression creation.
10263      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10264        LambdaExpr *Lambda = Rec.Lambdas[I];
10265        for (LambdaExpr::capture_init_iterator
10266                  C = Lambda->capture_init_begin(),
10267               CEnd = Lambda->capture_init_end();
10268             C != CEnd; ++C) {
10269          MarkDeclarationsReferencedInExpr(*C);
10270        }
10271      }
10272    }
10273  }
10274
10275  // When are coming out of an unevaluated context, clear out any
10276  // temporaries that we may have created as part of the evaluation of
10277  // the expression in that context: they aren't relevant because they
10278  // will never be constructed.
10279  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10280    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10281                             ExprCleanupObjects.end());
10282    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10283    CleanupVarDeclMarking();
10284    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10285  // Otherwise, merge the contexts together.
10286  } else {
10287    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10288    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10289                            Rec.SavedMaybeODRUseExprs.end());
10290  }
10291
10292  // Pop the current expression evaluation context off the stack.
10293  ExprEvalContexts.pop_back();
10294}
10295
10296void Sema::DiscardCleanupsInEvaluationContext() {
10297  ExprCleanupObjects.erase(
10298         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10299         ExprCleanupObjects.end());
10300  ExprNeedsCleanups = false;
10301  MaybeODRUseExprs.clear();
10302}
10303
10304ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10305  if (!E->getType()->isVariablyModifiedType())
10306    return E;
10307  return TransformToPotentiallyEvaluated(E);
10308}
10309
10310static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10311  // Do not mark anything as "used" within a dependent context; wait for
10312  // an instantiation.
10313  if (SemaRef.CurContext->isDependentContext())
10314    return false;
10315
10316  switch (SemaRef.ExprEvalContexts.back().Context) {
10317    case Sema::Unevaluated:
10318      // We are in an expression that is not potentially evaluated; do nothing.
10319      // (Depending on how you read the standard, we actually do need to do
10320      // something here for null pointer constants, but the standard's
10321      // definition of a null pointer constant is completely crazy.)
10322      return false;
10323
10324    case Sema::ConstantEvaluated:
10325    case Sema::PotentiallyEvaluated:
10326      // We are in a potentially evaluated expression (or a constant-expression
10327      // in C++03); we need to do implicit template instantiation, implicitly
10328      // define class members, and mark most declarations as used.
10329      return true;
10330
10331    case Sema::PotentiallyEvaluatedIfUsed:
10332      // Referenced declarations will only be used if the construct in the
10333      // containing expression is used.
10334      return false;
10335  }
10336  llvm_unreachable("Invalid context");
10337}
10338
10339/// \brief Mark a function referenced, and check whether it is odr-used
10340/// (C++ [basic.def.odr]p2, C99 6.9p3)
10341void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10342  assert(Func && "No function?");
10343
10344  Func->setReferenced();
10345
10346  // C++11 [basic.def.odr]p3:
10347  //   A function whose name appears as a potentially-evaluated expression is
10348  //   odr-used if it is the unique lookup result or the selected member of a
10349  //   set of overloaded functions [...].
10350  //
10351  // We (incorrectly) mark overload resolution as an unevaluated context, so we
10352  // can just check that here. Skip the rest of this function if we've already
10353  // marked the function as used.
10354  if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
10355    // C++11 [temp.inst]p3:
10356    //   Unless a function template specialization has been explicitly
10357    //   instantiated or explicitly specialized, the function template
10358    //   specialization is implicitly instantiated when the specialization is
10359    //   referenced in a context that requires a function definition to exist.
10360    //
10361    // We consider constexpr function templates to be referenced in a context
10362    // that requires a definition to exist whenever they are referenced.
10363    //
10364    // FIXME: This instantiates constexpr functions too frequently. If this is
10365    // really an unevaluated context (and we're not just in the definition of a
10366    // function template or overload resolution or other cases which we
10367    // incorrectly consider to be unevaluated contexts), and we're not in a
10368    // subexpression which we actually need to evaluate (for instance, a
10369    // template argument, array bound or an expression in a braced-init-list),
10370    // we are not permitted to instantiate this constexpr function definition.
10371    //
10372    // FIXME: This also implicitly defines special members too frequently. They
10373    // are only supposed to be implicitly defined if they are odr-used, but they
10374    // are not odr-used from constant expressions in unevaluated contexts.
10375    // However, they cannot be referenced if they are deleted, and they are
10376    // deleted whenever the implicit definition of the special member would
10377    // fail.
10378    if (!Func->isConstexpr() || Func->getBody())
10379      return;
10380    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
10381    if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
10382      return;
10383  }
10384
10385  // Note that this declaration has been used.
10386  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10387    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10388      if (Constructor->isDefaultConstructor()) {
10389        if (Constructor->isTrivial())
10390          return;
10391        if (!Constructor->isUsed(false))
10392          DefineImplicitDefaultConstructor(Loc, Constructor);
10393      } else if (Constructor->isCopyConstructor()) {
10394        if (!Constructor->isUsed(false))
10395          DefineImplicitCopyConstructor(Loc, Constructor);
10396      } else if (Constructor->isMoveConstructor()) {
10397        if (!Constructor->isUsed(false))
10398          DefineImplicitMoveConstructor(Loc, Constructor);
10399      }
10400    }
10401
10402    MarkVTableUsed(Loc, Constructor->getParent());
10403  } else if (CXXDestructorDecl *Destructor =
10404                 dyn_cast<CXXDestructorDecl>(Func)) {
10405    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10406        !Destructor->isUsed(false))
10407      DefineImplicitDestructor(Loc, Destructor);
10408    if (Destructor->isVirtual())
10409      MarkVTableUsed(Loc, Destructor->getParent());
10410  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10411    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10412        MethodDecl->isOverloadedOperator() &&
10413        MethodDecl->getOverloadedOperator() == OO_Equal) {
10414      if (!MethodDecl->isUsed(false)) {
10415        if (MethodDecl->isCopyAssignmentOperator())
10416          DefineImplicitCopyAssignment(Loc, MethodDecl);
10417        else
10418          DefineImplicitMoveAssignment(Loc, MethodDecl);
10419      }
10420    } else if (isa<CXXConversionDecl>(MethodDecl) &&
10421               MethodDecl->getParent()->isLambda()) {
10422      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10423      if (Conversion->isLambdaToBlockPointerConversion())
10424        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10425      else
10426        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10427    } else if (MethodDecl->isVirtual())
10428      MarkVTableUsed(Loc, MethodDecl->getParent());
10429  }
10430
10431  // Recursive functions should be marked when used from another function.
10432  // FIXME: Is this really right?
10433  if (CurContext == Func) return;
10434
10435  // Resolve the exception specification for any function which is
10436  // used: CodeGen will need it.
10437  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10438  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10439    ResolveExceptionSpec(Loc, FPT);
10440
10441  // Implicit instantiation of function templates and member functions of
10442  // class templates.
10443  if (Func->isImplicitlyInstantiable()) {
10444    bool AlreadyInstantiated = false;
10445    SourceLocation PointOfInstantiation = Loc;
10446    if (FunctionTemplateSpecializationInfo *SpecInfo
10447                              = Func->getTemplateSpecializationInfo()) {
10448      if (SpecInfo->getPointOfInstantiation().isInvalid())
10449        SpecInfo->setPointOfInstantiation(Loc);
10450      else if (SpecInfo->getTemplateSpecializationKind()
10451                 == TSK_ImplicitInstantiation) {
10452        AlreadyInstantiated = true;
10453        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10454      }
10455    } else if (MemberSpecializationInfo *MSInfo
10456                                = Func->getMemberSpecializationInfo()) {
10457      if (MSInfo->getPointOfInstantiation().isInvalid())
10458        MSInfo->setPointOfInstantiation(Loc);
10459      else if (MSInfo->getTemplateSpecializationKind()
10460                 == TSK_ImplicitInstantiation) {
10461        AlreadyInstantiated = true;
10462        PointOfInstantiation = MSInfo->getPointOfInstantiation();
10463      }
10464    }
10465
10466    if (!AlreadyInstantiated || Func->isConstexpr()) {
10467      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10468          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10469        PendingLocalImplicitInstantiations.push_back(
10470            std::make_pair(Func, PointOfInstantiation));
10471      else if (Func->isConstexpr())
10472        // Do not defer instantiations of constexpr functions, to avoid the
10473        // expression evaluator needing to call back into Sema if it sees a
10474        // call to such a function.
10475        InstantiateFunctionDefinition(PointOfInstantiation, Func);
10476      else {
10477        PendingInstantiations.push_back(std::make_pair(Func,
10478                                                       PointOfInstantiation));
10479        // Notify the consumer that a function was implicitly instantiated.
10480        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10481      }
10482    }
10483  } else {
10484    // Walk redefinitions, as some of them may be instantiable.
10485    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10486         e(Func->redecls_end()); i != e; ++i) {
10487      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10488        MarkFunctionReferenced(Loc, *i);
10489    }
10490  }
10491
10492  // Keep track of used but undefined functions.
10493  if (!Func->isPure() && !Func->hasBody() &&
10494      Func->getLinkage() != ExternalLinkage) {
10495    SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
10496    if (old.isInvalid()) old = Loc;
10497  }
10498
10499  Func->setUsed(true);
10500}
10501
10502static void
10503diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10504                                   VarDecl *var, DeclContext *DC) {
10505  DeclContext *VarDC = var->getDeclContext();
10506
10507  //  If the parameter still belongs to the translation unit, then
10508  //  we're actually just using one parameter in the declaration of
10509  //  the next.
10510  if (isa<ParmVarDecl>(var) &&
10511      isa<TranslationUnitDecl>(VarDC))
10512    return;
10513
10514  // For C code, don't diagnose about capture if we're not actually in code
10515  // right now; it's impossible to write a non-constant expression outside of
10516  // function context, so we'll get other (more useful) diagnostics later.
10517  //
10518  // For C++, things get a bit more nasty... it would be nice to suppress this
10519  // diagnostic for certain cases like using a local variable in an array bound
10520  // for a member of a local class, but the correct predicate is not obvious.
10521  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10522    return;
10523
10524  if (isa<CXXMethodDecl>(VarDC) &&
10525      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10526    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10527      << var->getIdentifier();
10528  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10529    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10530      << var->getIdentifier() << fn->getDeclName();
10531  } else if (isa<BlockDecl>(VarDC)) {
10532    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10533      << var->getIdentifier();
10534  } else {
10535    // FIXME: Is there any other context where a local variable can be
10536    // declared?
10537    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10538      << var->getIdentifier();
10539  }
10540
10541  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10542    << var->getIdentifier();
10543
10544  // FIXME: Add additional diagnostic info about class etc. which prevents
10545  // capture.
10546}
10547
10548/// \brief Capture the given variable in the given lambda expression.
10549static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10550                                  VarDecl *Var, QualType FieldType,
10551                                  QualType DeclRefType,
10552                                  SourceLocation Loc,
10553                                  bool RefersToEnclosingLocal) {
10554  CXXRecordDecl *Lambda = LSI->Lambda;
10555
10556  // Build the non-static data member.
10557  FieldDecl *Field
10558    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10559                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10560                        0, false, ICIS_NoInit);
10561  Field->setImplicit(true);
10562  Field->setAccess(AS_private);
10563  Lambda->addDecl(Field);
10564
10565  // C++11 [expr.prim.lambda]p21:
10566  //   When the lambda-expression is evaluated, the entities that
10567  //   are captured by copy are used to direct-initialize each
10568  //   corresponding non-static data member of the resulting closure
10569  //   object. (For array members, the array elements are
10570  //   direct-initialized in increasing subscript order.) These
10571  //   initializations are performed in the (unspecified) order in
10572  //   which the non-static data members are declared.
10573
10574  // Introduce a new evaluation context for the initialization, so
10575  // that temporaries introduced as part of the capture are retained
10576  // to be re-"exported" from the lambda expression itself.
10577  S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10578
10579  // C++ [expr.prim.labda]p12:
10580  //   An entity captured by a lambda-expression is odr-used (3.2) in
10581  //   the scope containing the lambda-expression.
10582  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10583                                          DeclRefType, VK_LValue, Loc);
10584  Var->setReferenced(true);
10585  Var->setUsed(true);
10586
10587  // When the field has array type, create index variables for each
10588  // dimension of the array. We use these index variables to subscript
10589  // the source array, and other clients (e.g., CodeGen) will perform
10590  // the necessary iteration with these index variables.
10591  SmallVector<VarDecl *, 4> IndexVariables;
10592  QualType BaseType = FieldType;
10593  QualType SizeType = S.Context.getSizeType();
10594  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10595  while (const ConstantArrayType *Array
10596                        = S.Context.getAsConstantArrayType(BaseType)) {
10597    // Create the iteration variable for this array index.
10598    IdentifierInfo *IterationVarName = 0;
10599    {
10600      SmallString<8> Str;
10601      llvm::raw_svector_ostream OS(Str);
10602      OS << "__i" << IndexVariables.size();
10603      IterationVarName = &S.Context.Idents.get(OS.str());
10604    }
10605    VarDecl *IterationVar
10606      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10607                        IterationVarName, SizeType,
10608                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10609                        SC_None, SC_None);
10610    IndexVariables.push_back(IterationVar);
10611    LSI->ArrayIndexVars.push_back(IterationVar);
10612
10613    // Create a reference to the iteration variable.
10614    ExprResult IterationVarRef
10615      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10616    assert(!IterationVarRef.isInvalid() &&
10617           "Reference to invented variable cannot fail!");
10618    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10619    assert(!IterationVarRef.isInvalid() &&
10620           "Conversion of invented variable cannot fail!");
10621
10622    // Subscript the array with this iteration variable.
10623    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10624                             Ref, Loc, IterationVarRef.take(), Loc);
10625    if (Subscript.isInvalid()) {
10626      S.CleanupVarDeclMarking();
10627      S.DiscardCleanupsInEvaluationContext();
10628      S.PopExpressionEvaluationContext();
10629      return ExprError();
10630    }
10631
10632    Ref = Subscript.take();
10633    BaseType = Array->getElementType();
10634  }
10635
10636  // Construct the entity that we will be initializing. For an array, this
10637  // will be first element in the array, which may require several levels
10638  // of array-subscript entities.
10639  SmallVector<InitializedEntity, 4> Entities;
10640  Entities.reserve(1 + IndexVariables.size());
10641  Entities.push_back(
10642    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10643  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10644    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10645                                                            0,
10646                                                            Entities.back()));
10647
10648  InitializationKind InitKind
10649    = InitializationKind::CreateDirect(Loc, Loc, Loc);
10650  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10651  ExprResult Result(true);
10652  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10653    Result = Init.Perform(S, Entities.back(), InitKind, Ref);
10654
10655  // If this initialization requires any cleanups (e.g., due to a
10656  // default argument to a copy constructor), note that for the
10657  // lambda.
10658  if (S.ExprNeedsCleanups)
10659    LSI->ExprNeedsCleanups = true;
10660
10661  // Exit the expression evaluation context used for the capture.
10662  S.CleanupVarDeclMarking();
10663  S.DiscardCleanupsInEvaluationContext();
10664  S.PopExpressionEvaluationContext();
10665  return Result;
10666}
10667
10668bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10669                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
10670                              bool BuildAndDiagnose,
10671                              QualType &CaptureType,
10672                              QualType &DeclRefType) {
10673  bool Nested = false;
10674
10675  DeclContext *DC = CurContext;
10676  if (Var->getDeclContext() == DC) return true;
10677  if (!Var->hasLocalStorage()) return true;
10678
10679  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10680
10681  // Walk up the stack to determine whether we can capture the variable,
10682  // performing the "simple" checks that don't depend on type. We stop when
10683  // we've either hit the declared scope of the variable or find an existing
10684  // capture of that variable.
10685  CaptureType = Var->getType();
10686  DeclRefType = CaptureType.getNonReferenceType();
10687  bool Explicit = (Kind != TryCapture_Implicit);
10688  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10689  do {
10690    // Only block literals and lambda expressions can capture; other
10691    // scopes don't work.
10692    DeclContext *ParentDC;
10693    if (isa<BlockDecl>(DC))
10694      ParentDC = DC->getParent();
10695    else if (isa<CXXMethodDecl>(DC) &&
10696             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10697             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10698      ParentDC = DC->getParent()->getParent();
10699    else {
10700      if (BuildAndDiagnose)
10701        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10702      return true;
10703    }
10704
10705    CapturingScopeInfo *CSI =
10706      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10707
10708    // Check whether we've already captured it.
10709    if (CSI->CaptureMap.count(Var)) {
10710      // If we found a capture, any subcaptures are nested.
10711      Nested = true;
10712
10713      // Retrieve the capture type for this variable.
10714      CaptureType = CSI->getCapture(Var).getCaptureType();
10715
10716      // Compute the type of an expression that refers to this variable.
10717      DeclRefType = CaptureType.getNonReferenceType();
10718
10719      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10720      if (Cap.isCopyCapture() &&
10721          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10722        DeclRefType.addConst();
10723      break;
10724    }
10725
10726    bool IsBlock = isa<BlockScopeInfo>(CSI);
10727    bool IsLambda = !IsBlock;
10728
10729    // Lambdas are not allowed to capture unnamed variables
10730    // (e.g. anonymous unions).
10731    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10732    // assuming that's the intent.
10733    if (IsLambda && !Var->getDeclName()) {
10734      if (BuildAndDiagnose) {
10735        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10736        Diag(Var->getLocation(), diag::note_declared_at);
10737      }
10738      return true;
10739    }
10740
10741    // Prohibit variably-modified types; they're difficult to deal with.
10742    if (Var->getType()->isVariablyModifiedType()) {
10743      if (BuildAndDiagnose) {
10744        if (IsBlock)
10745          Diag(Loc, diag::err_ref_vm_type);
10746        else
10747          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10748        Diag(Var->getLocation(), diag::note_previous_decl)
10749          << Var->getDeclName();
10750      }
10751      return true;
10752    }
10753
10754    // Lambdas are not allowed to capture __block variables; they don't
10755    // support the expected semantics.
10756    if (IsLambda && HasBlocksAttr) {
10757      if (BuildAndDiagnose) {
10758        Diag(Loc, diag::err_lambda_capture_block)
10759          << Var->getDeclName();
10760        Diag(Var->getLocation(), diag::note_previous_decl)
10761          << Var->getDeclName();
10762      }
10763      return true;
10764    }
10765
10766    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10767      // No capture-default
10768      if (BuildAndDiagnose) {
10769        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10770        Diag(Var->getLocation(), diag::note_previous_decl)
10771          << Var->getDeclName();
10772        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10773             diag::note_lambda_decl);
10774      }
10775      return true;
10776    }
10777
10778    FunctionScopesIndex--;
10779    DC = ParentDC;
10780    Explicit = false;
10781  } while (!Var->getDeclContext()->Equals(DC));
10782
10783  // Walk back down the scope stack, computing the type of the capture at
10784  // each step, checking type-specific requirements, and adding captures if
10785  // requested.
10786  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10787       ++I) {
10788    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10789
10790    // Compute the type of the capture and of a reference to the capture within
10791    // this scope.
10792    if (isa<BlockScopeInfo>(CSI)) {
10793      Expr *CopyExpr = 0;
10794      bool ByRef = false;
10795
10796      // Blocks are not allowed to capture arrays.
10797      if (CaptureType->isArrayType()) {
10798        if (BuildAndDiagnose) {
10799          Diag(Loc, diag::err_ref_array_type);
10800          Diag(Var->getLocation(), diag::note_previous_decl)
10801          << Var->getDeclName();
10802        }
10803        return true;
10804      }
10805
10806      // Forbid the block-capture of autoreleasing variables.
10807      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10808        if (BuildAndDiagnose) {
10809          Diag(Loc, diag::err_arc_autoreleasing_capture)
10810            << /*block*/ 0;
10811          Diag(Var->getLocation(), diag::note_previous_decl)
10812            << Var->getDeclName();
10813        }
10814        return true;
10815      }
10816
10817      if (HasBlocksAttr || CaptureType->isReferenceType()) {
10818        // Block capture by reference does not change the capture or
10819        // declaration reference types.
10820        ByRef = true;
10821      } else {
10822        // Block capture by copy introduces 'const'.
10823        CaptureType = CaptureType.getNonReferenceType().withConst();
10824        DeclRefType = CaptureType;
10825
10826        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10827          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10828            // The capture logic needs the destructor, so make sure we mark it.
10829            // Usually this is unnecessary because most local variables have
10830            // their destructors marked at declaration time, but parameters are
10831            // an exception because it's technically only the call site that
10832            // actually requires the destructor.
10833            if (isa<ParmVarDecl>(Var))
10834              FinalizeVarWithDestructor(Var, Record);
10835
10836            // According to the blocks spec, the capture of a variable from
10837            // the stack requires a const copy constructor.  This is not true
10838            // of the copy/move done to move a __block variable to the heap.
10839            Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10840                                                      DeclRefType.withConst(),
10841                                                      VK_LValue, Loc);
10842            ExprResult Result
10843              = PerformCopyInitialization(
10844                  InitializedEntity::InitializeBlock(Var->getLocation(),
10845                                                     CaptureType, false),
10846                  Loc, Owned(DeclRef));
10847
10848            // Build a full-expression copy expression if initialization
10849            // succeeded and used a non-trivial constructor.  Recover from
10850            // errors by pretending that the copy isn't necessary.
10851            if (!Result.isInvalid() &&
10852                !cast<CXXConstructExpr>(Result.get())->getConstructor()
10853                   ->isTrivial()) {
10854              Result = MaybeCreateExprWithCleanups(Result);
10855              CopyExpr = Result.take();
10856            }
10857          }
10858        }
10859      }
10860
10861      // Actually capture the variable.
10862      if (BuildAndDiagnose)
10863        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10864                        SourceLocation(), CaptureType, CopyExpr);
10865      Nested = true;
10866      continue;
10867    }
10868
10869    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10870
10871    // Determine whether we are capturing by reference or by value.
10872    bool ByRef = false;
10873    if (I == N - 1 && Kind != TryCapture_Implicit) {
10874      ByRef = (Kind == TryCapture_ExplicitByRef);
10875    } else {
10876      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10877    }
10878
10879    // Compute the type of the field that will capture this variable.
10880    if (ByRef) {
10881      // C++11 [expr.prim.lambda]p15:
10882      //   An entity is captured by reference if it is implicitly or
10883      //   explicitly captured but not captured by copy. It is
10884      //   unspecified whether additional unnamed non-static data
10885      //   members are declared in the closure type for entities
10886      //   captured by reference.
10887      //
10888      // FIXME: It is not clear whether we want to build an lvalue reference
10889      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10890      // to do the former, while EDG does the latter. Core issue 1249 will
10891      // clarify, but for now we follow GCC because it's a more permissive and
10892      // easily defensible position.
10893      CaptureType = Context.getLValueReferenceType(DeclRefType);
10894    } else {
10895      // C++11 [expr.prim.lambda]p14:
10896      //   For each entity captured by copy, an unnamed non-static
10897      //   data member is declared in the closure type. The
10898      //   declaration order of these members is unspecified. The type
10899      //   of such a data member is the type of the corresponding
10900      //   captured entity if the entity is not a reference to an
10901      //   object, or the referenced type otherwise. [Note: If the
10902      //   captured entity is a reference to a function, the
10903      //   corresponding data member is also a reference to a
10904      //   function. - end note ]
10905      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10906        if (!RefType->getPointeeType()->isFunctionType())
10907          CaptureType = RefType->getPointeeType();
10908      }
10909
10910      // Forbid the lambda copy-capture of autoreleasing variables.
10911      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10912        if (BuildAndDiagnose) {
10913          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10914          Diag(Var->getLocation(), diag::note_previous_decl)
10915            << Var->getDeclName();
10916        }
10917        return true;
10918      }
10919    }
10920
10921    // Capture this variable in the lambda.
10922    Expr *CopyExpr = 0;
10923    if (BuildAndDiagnose) {
10924      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10925                                          DeclRefType, Loc,
10926                                          I == N-1);
10927      if (!Result.isInvalid())
10928        CopyExpr = Result.take();
10929    }
10930
10931    // Compute the type of a reference to this captured variable.
10932    if (ByRef)
10933      DeclRefType = CaptureType.getNonReferenceType();
10934    else {
10935      // C++ [expr.prim.lambda]p5:
10936      //   The closure type for a lambda-expression has a public inline
10937      //   function call operator [...]. This function call operator is
10938      //   declared const (9.3.1) if and only if the lambda-expression’s
10939      //   parameter-declaration-clause is not followed by mutable.
10940      DeclRefType = CaptureType.getNonReferenceType();
10941      if (!LSI->Mutable && !CaptureType->isReferenceType())
10942        DeclRefType.addConst();
10943    }
10944
10945    // Add the capture.
10946    if (BuildAndDiagnose)
10947      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10948                      EllipsisLoc, CaptureType, CopyExpr);
10949    Nested = true;
10950  }
10951
10952  return false;
10953}
10954
10955bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10956                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10957  QualType CaptureType;
10958  QualType DeclRefType;
10959  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10960                            /*BuildAndDiagnose=*/true, CaptureType,
10961                            DeclRefType);
10962}
10963
10964QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10965  QualType CaptureType;
10966  QualType DeclRefType;
10967
10968  // Determine whether we can capture this variable.
10969  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10970                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10971    return QualType();
10972
10973  return DeclRefType;
10974}
10975
10976static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10977                               SourceLocation Loc) {
10978  // Keep track of used but undefined variables.
10979  // FIXME: We shouldn't suppress this warning for static data members.
10980  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10981      Var->getLinkage() != ExternalLinkage &&
10982      !(Var->isStaticDataMember() && Var->hasInit())) {
10983    SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10984    if (old.isInvalid()) old = Loc;
10985  }
10986
10987  SemaRef.tryCaptureVariable(Var, Loc);
10988
10989  Var->setUsed(true);
10990}
10991
10992void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10993  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10994  // an object that satisfies the requirements for appearing in a
10995  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10996  // is immediately applied."  This function handles the lvalue-to-rvalue
10997  // conversion part.
10998  MaybeODRUseExprs.erase(E->IgnoreParens());
10999}
11000
11001ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
11002  if (!Res.isUsable())
11003    return Res;
11004
11005  // If a constant-expression is a reference to a variable where we delay
11006  // deciding whether it is an odr-use, just assume we will apply the
11007  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
11008  // (a non-type template argument), we have special handling anyway.
11009  UpdateMarkingForLValueToRValue(Res.get());
11010  return Res;
11011}
11012
11013void Sema::CleanupVarDeclMarking() {
11014  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
11015                                        e = MaybeODRUseExprs.end();
11016       i != e; ++i) {
11017    VarDecl *Var;
11018    SourceLocation Loc;
11019    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
11020      Var = cast<VarDecl>(DRE->getDecl());
11021      Loc = DRE->getLocation();
11022    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
11023      Var = cast<VarDecl>(ME->getMemberDecl());
11024      Loc = ME->getMemberLoc();
11025    } else {
11026      llvm_unreachable("Unexpcted expression");
11027    }
11028
11029    MarkVarDeclODRUsed(*this, Var, Loc);
11030  }
11031
11032  MaybeODRUseExprs.clear();
11033}
11034
11035// Mark a VarDecl referenced, and perform the necessary handling to compute
11036// odr-uses.
11037static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
11038                                    VarDecl *Var, Expr *E) {
11039  Var->setReferenced();
11040
11041  if (!IsPotentiallyEvaluatedContext(SemaRef))
11042    return;
11043
11044  // Implicit instantiation of static data members of class templates.
11045  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
11046    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
11047    assert(MSInfo && "Missing member specialization information?");
11048    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
11049    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
11050        (!AlreadyInstantiated ||
11051         Var->isUsableInConstantExpressions(SemaRef.Context))) {
11052      if (!AlreadyInstantiated) {
11053        // This is a modification of an existing AST node. Notify listeners.
11054        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
11055          L->StaticDataMemberInstantiated(Var);
11056        MSInfo->setPointOfInstantiation(Loc);
11057      }
11058      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
11059      if (Var->isUsableInConstantExpressions(SemaRef.Context))
11060        // Do not defer instantiations of variables which could be used in a
11061        // constant expression.
11062        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
11063      else
11064        SemaRef.PendingInstantiations.push_back(
11065            std::make_pair(Var, PointOfInstantiation));
11066    }
11067  }
11068
11069  // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
11070  // the requirements for appearing in a constant expression (5.19) and, if
11071  // it is an object, the lvalue-to-rvalue conversion (4.1)
11072  // is immediately applied."  We check the first part here, and
11073  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
11074  // Note that we use the C++11 definition everywhere because nothing in
11075  // C++03 depends on whether we get the C++03 version correct. The second
11076  // part does not apply to references, since they are not objects.
11077  const VarDecl *DefVD;
11078  if (E && !isa<ParmVarDecl>(Var) &&
11079      Var->isUsableInConstantExpressions(SemaRef.Context) &&
11080      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
11081    if (!Var->getType()->isReferenceType())
11082      SemaRef.MaybeODRUseExprs.insert(E);
11083  } else
11084    MarkVarDeclODRUsed(SemaRef, Var, Loc);
11085}
11086
11087/// \brief Mark a variable referenced, and check whether it is odr-used
11088/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
11089/// used directly for normal expressions referring to VarDecl.
11090void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
11091  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
11092}
11093
11094static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
11095                               Decl *D, Expr *E) {
11096  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
11097    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
11098    return;
11099  }
11100
11101  SemaRef.MarkAnyDeclReferenced(Loc, D);
11102
11103  // If this is a call to a method via a cast, also mark the method in the
11104  // derived class used in case codegen can devirtualize the call.
11105  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11106  if (!ME)
11107    return;
11108  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
11109  if (!MD)
11110    return;
11111  const Expr *Base = ME->getBase();
11112  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
11113  if (!MostDerivedClassDecl)
11114    return;
11115  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
11116  if (!DM)
11117    return;
11118  SemaRef.MarkAnyDeclReferenced(Loc, DM);
11119}
11120
11121/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
11122void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
11123  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
11124}
11125
11126/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
11127void Sema::MarkMemberReferenced(MemberExpr *E) {
11128  MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
11129}
11130
11131/// \brief Perform marking for a reference to an arbitrary declaration.  It
11132/// marks the declaration referenced, and performs odr-use checking for functions
11133/// and variables. This method should not be used when building an normal
11134/// expression which refers to a variable.
11135void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
11136  if (VarDecl *VD = dyn_cast<VarDecl>(D))
11137    MarkVariableReferenced(Loc, VD);
11138  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
11139    MarkFunctionReferenced(Loc, FD);
11140  else
11141    D->setReferenced();
11142}
11143
11144namespace {
11145  // Mark all of the declarations referenced
11146  // FIXME: Not fully implemented yet! We need to have a better understanding
11147  // of when we're entering
11148  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
11149    Sema &S;
11150    SourceLocation Loc;
11151
11152  public:
11153    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
11154
11155    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
11156
11157    bool TraverseTemplateArgument(const TemplateArgument &Arg);
11158    bool TraverseRecordType(RecordType *T);
11159  };
11160}
11161
11162bool MarkReferencedDecls::TraverseTemplateArgument(
11163  const TemplateArgument &Arg) {
11164  if (Arg.getKind() == TemplateArgument::Declaration) {
11165    if (Decl *D = Arg.getAsDecl())
11166      S.MarkAnyDeclReferenced(Loc, D);
11167  }
11168
11169  return Inherited::TraverseTemplateArgument(Arg);
11170}
11171
11172bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
11173  if (ClassTemplateSpecializationDecl *Spec
11174                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
11175    const TemplateArgumentList &Args = Spec->getTemplateArgs();
11176    return TraverseTemplateArguments(Args.data(), Args.size());
11177  }
11178
11179  return true;
11180}
11181
11182void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11183  MarkReferencedDecls Marker(*this, Loc);
11184  Marker.TraverseType(Context.getCanonicalType(T));
11185}
11186
11187namespace {
11188  /// \brief Helper class that marks all of the declarations referenced by
11189  /// potentially-evaluated subexpressions as "referenced".
11190  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11191    Sema &S;
11192    bool SkipLocalVariables;
11193
11194  public:
11195    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11196
11197    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11198      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11199
11200    void VisitDeclRefExpr(DeclRefExpr *E) {
11201      // If we were asked not to visit local variables, don't.
11202      if (SkipLocalVariables) {
11203        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11204          if (VD->hasLocalStorage())
11205            return;
11206      }
11207
11208      S.MarkDeclRefReferenced(E);
11209    }
11210
11211    void VisitMemberExpr(MemberExpr *E) {
11212      S.MarkMemberReferenced(E);
11213      Inherited::VisitMemberExpr(E);
11214    }
11215
11216    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11217      S.MarkFunctionReferenced(E->getLocStart(),
11218            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11219      Visit(E->getSubExpr());
11220    }
11221
11222    void VisitCXXNewExpr(CXXNewExpr *E) {
11223      if (E->getOperatorNew())
11224        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11225      if (E->getOperatorDelete())
11226        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11227      Inherited::VisitCXXNewExpr(E);
11228    }
11229
11230    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11231      if (E->getOperatorDelete())
11232        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11233      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11234      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11235        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11236        S.MarkFunctionReferenced(E->getLocStart(),
11237                                    S.LookupDestructor(Record));
11238      }
11239
11240      Inherited::VisitCXXDeleteExpr(E);
11241    }
11242
11243    void VisitCXXConstructExpr(CXXConstructExpr *E) {
11244      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11245      Inherited::VisitCXXConstructExpr(E);
11246    }
11247
11248    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11249      Visit(E->getExpr());
11250    }
11251
11252    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11253      Inherited::VisitImplicitCastExpr(E);
11254
11255      if (E->getCastKind() == CK_LValueToRValue)
11256        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11257    }
11258  };
11259}
11260
11261/// \brief Mark any declarations that appear within this expression or any
11262/// potentially-evaluated subexpressions as "referenced".
11263///
11264/// \param SkipLocalVariables If true, don't mark local variables as
11265/// 'referenced'.
11266void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11267                                            bool SkipLocalVariables) {
11268  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11269}
11270
11271/// \brief Emit a diagnostic that describes an effect on the run-time behavior
11272/// of the program being compiled.
11273///
11274/// This routine emits the given diagnostic when the code currently being
11275/// type-checked is "potentially evaluated", meaning that there is a
11276/// possibility that the code will actually be executable. Code in sizeof()
11277/// expressions, code used only during overload resolution, etc., are not
11278/// potentially evaluated. This routine will suppress such diagnostics or,
11279/// in the absolutely nutty case of potentially potentially evaluated
11280/// expressions (C++ typeid), queue the diagnostic to potentially emit it
11281/// later.
11282///
11283/// This routine should be used for all diagnostics that describe the run-time
11284/// behavior of a program, such as passing a non-POD value through an ellipsis.
11285/// Failure to do so will likely result in spurious diagnostics or failures
11286/// during overload resolution or within sizeof/alignof/typeof/typeid.
11287bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11288                               const PartialDiagnostic &PD) {
11289  switch (ExprEvalContexts.back().Context) {
11290  case Unevaluated:
11291    // The argument will never be evaluated, so don't complain.
11292    break;
11293
11294  case ConstantEvaluated:
11295    // Relevant diagnostics should be produced by constant evaluation.
11296    break;
11297
11298  case PotentiallyEvaluated:
11299  case PotentiallyEvaluatedIfUsed:
11300    if (Statement && getCurFunctionOrMethodDecl()) {
11301      FunctionScopes.back()->PossiblyUnreachableDiags.
11302        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11303    }
11304    else
11305      Diag(Loc, PD);
11306
11307    return true;
11308  }
11309
11310  return false;
11311}
11312
11313bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11314                               CallExpr *CE, FunctionDecl *FD) {
11315  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11316    return false;
11317
11318  // If we're inside a decltype's expression, don't check for a valid return
11319  // type or construct temporaries until we know whether this is the last call.
11320  if (ExprEvalContexts.back().IsDecltype) {
11321    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11322    return false;
11323  }
11324
11325  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11326    FunctionDecl *FD;
11327    CallExpr *CE;
11328
11329  public:
11330    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11331      : FD(FD), CE(CE) { }
11332
11333    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11334      if (!FD) {
11335        S.Diag(Loc, diag::err_call_incomplete_return)
11336          << T << CE->getSourceRange();
11337        return;
11338      }
11339
11340      S.Diag(Loc, diag::err_call_function_incomplete_return)
11341        << CE->getSourceRange() << FD->getDeclName() << T;
11342      S.Diag(FD->getLocation(),
11343             diag::note_function_with_incomplete_return_type_declared_here)
11344        << FD->getDeclName();
11345    }
11346  } Diagnoser(FD, CE);
11347
11348  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11349    return true;
11350
11351  return false;
11352}
11353
11354// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11355// will prevent this condition from triggering, which is what we want.
11356void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11357  SourceLocation Loc;
11358
11359  unsigned diagnostic = diag::warn_condition_is_assignment;
11360  bool IsOrAssign = false;
11361
11362  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11363    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11364      return;
11365
11366    IsOrAssign = Op->getOpcode() == BO_OrAssign;
11367
11368    // Greylist some idioms by putting them into a warning subcategory.
11369    if (ObjCMessageExpr *ME
11370          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11371      Selector Sel = ME->getSelector();
11372
11373      // self = [<foo> init...]
11374      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11375        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11376
11377      // <foo> = [<bar> nextObject]
11378      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11379        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11380    }
11381
11382    Loc = Op->getOperatorLoc();
11383  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11384    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11385      return;
11386
11387    IsOrAssign = Op->getOperator() == OO_PipeEqual;
11388    Loc = Op->getOperatorLoc();
11389  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
11390    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
11391  else {
11392    // Not an assignment.
11393    return;
11394  }
11395
11396  Diag(Loc, diagnostic) << E->getSourceRange();
11397
11398  SourceLocation Open = E->getLocStart();
11399  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11400  Diag(Loc, diag::note_condition_assign_silence)
11401        << FixItHint::CreateInsertion(Open, "(")
11402        << FixItHint::CreateInsertion(Close, ")");
11403
11404  if (IsOrAssign)
11405    Diag(Loc, diag::note_condition_or_assign_to_comparison)
11406      << FixItHint::CreateReplacement(Loc, "!=");
11407  else
11408    Diag(Loc, diag::note_condition_assign_to_comparison)
11409      << FixItHint::CreateReplacement(Loc, "==");
11410}
11411
11412/// \brief Redundant parentheses over an equality comparison can indicate
11413/// that the user intended an assignment used as condition.
11414void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11415  // Don't warn if the parens came from a macro.
11416  SourceLocation parenLoc = ParenE->getLocStart();
11417  if (parenLoc.isInvalid() || parenLoc.isMacroID())
11418    return;
11419  // Don't warn for dependent expressions.
11420  if (ParenE->isTypeDependent())
11421    return;
11422
11423  Expr *E = ParenE->IgnoreParens();
11424
11425  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11426    if (opE->getOpcode() == BO_EQ &&
11427        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11428                                                           == Expr::MLV_Valid) {
11429      SourceLocation Loc = opE->getOperatorLoc();
11430
11431      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11432      SourceRange ParenERange = ParenE->getSourceRange();
11433      Diag(Loc, diag::note_equality_comparison_silence)
11434        << FixItHint::CreateRemoval(ParenERange.getBegin())
11435        << FixItHint::CreateRemoval(ParenERange.getEnd());
11436      Diag(Loc, diag::note_equality_comparison_to_assign)
11437        << FixItHint::CreateReplacement(Loc, "=");
11438    }
11439}
11440
11441ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11442  DiagnoseAssignmentAsCondition(E);
11443  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11444    DiagnoseEqualityWithExtraParens(parenE);
11445
11446  ExprResult result = CheckPlaceholderExpr(E);
11447  if (result.isInvalid()) return ExprError();
11448  E = result.take();
11449
11450  if (!E->isTypeDependent()) {
11451    if (getLangOpts().CPlusPlus)
11452      return CheckCXXBooleanCondition(E); // C++ 6.4p4
11453
11454    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11455    if (ERes.isInvalid())
11456      return ExprError();
11457    E = ERes.take();
11458
11459    QualType T = E->getType();
11460    if (!T->isScalarType()) { // C99 6.8.4.1p1
11461      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11462        << T << E->getSourceRange();
11463      return ExprError();
11464    }
11465  }
11466
11467  return Owned(E);
11468}
11469
11470ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11471                                       Expr *SubExpr) {
11472  if (!SubExpr)
11473    return ExprError();
11474
11475  return CheckBooleanCondition(SubExpr, Loc);
11476}
11477
11478namespace {
11479  /// A visitor for rebuilding a call to an __unknown_any expression
11480  /// to have an appropriate type.
11481  struct RebuildUnknownAnyFunction
11482    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11483
11484    Sema &S;
11485
11486    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11487
11488    ExprResult VisitStmt(Stmt *S) {
11489      llvm_unreachable("unexpected statement!");
11490    }
11491
11492    ExprResult VisitExpr(Expr *E) {
11493      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11494        << E->getSourceRange();
11495      return ExprError();
11496    }
11497
11498    /// Rebuild an expression which simply semantically wraps another
11499    /// expression which it shares the type and value kind of.
11500    template <class T> ExprResult rebuildSugarExpr(T *E) {
11501      ExprResult SubResult = Visit(E->getSubExpr());
11502      if (SubResult.isInvalid()) return ExprError();
11503
11504      Expr *SubExpr = SubResult.take();
11505      E->setSubExpr(SubExpr);
11506      E->setType(SubExpr->getType());
11507      E->setValueKind(SubExpr->getValueKind());
11508      assert(E->getObjectKind() == OK_Ordinary);
11509      return E;
11510    }
11511
11512    ExprResult VisitParenExpr(ParenExpr *E) {
11513      return rebuildSugarExpr(E);
11514    }
11515
11516    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11517      return rebuildSugarExpr(E);
11518    }
11519
11520    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11521      ExprResult SubResult = Visit(E->getSubExpr());
11522      if (SubResult.isInvalid()) return ExprError();
11523
11524      Expr *SubExpr = SubResult.take();
11525      E->setSubExpr(SubExpr);
11526      E->setType(S.Context.getPointerType(SubExpr->getType()));
11527      assert(E->getValueKind() == VK_RValue);
11528      assert(E->getObjectKind() == OK_Ordinary);
11529      return E;
11530    }
11531
11532    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11533      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11534
11535      E->setType(VD->getType());
11536
11537      assert(E->getValueKind() == VK_RValue);
11538      if (S.getLangOpts().CPlusPlus &&
11539          !(isa<CXXMethodDecl>(VD) &&
11540            cast<CXXMethodDecl>(VD)->isInstance()))
11541        E->setValueKind(VK_LValue);
11542
11543      return E;
11544    }
11545
11546    ExprResult VisitMemberExpr(MemberExpr *E) {
11547      return resolveDecl(E, E->getMemberDecl());
11548    }
11549
11550    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11551      return resolveDecl(E, E->getDecl());
11552    }
11553  };
11554}
11555
11556/// Given a function expression of unknown-any type, try to rebuild it
11557/// to have a function type.
11558static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11559  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11560  if (Result.isInvalid()) return ExprError();
11561  return S.DefaultFunctionArrayConversion(Result.take());
11562}
11563
11564namespace {
11565  /// A visitor for rebuilding an expression of type __unknown_anytype
11566  /// into one which resolves the type directly on the referring
11567  /// expression.  Strict preservation of the original source
11568  /// structure is not a goal.
11569  struct RebuildUnknownAnyExpr
11570    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11571
11572    Sema &S;
11573
11574    /// The current destination type.
11575    QualType DestType;
11576
11577    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11578      : S(S), DestType(CastType) {}
11579
11580    ExprResult VisitStmt(Stmt *S) {
11581      llvm_unreachable("unexpected statement!");
11582    }
11583
11584    ExprResult VisitExpr(Expr *E) {
11585      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11586        << E->getSourceRange();
11587      return ExprError();
11588    }
11589
11590    ExprResult VisitCallExpr(CallExpr *E);
11591    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11592
11593    /// Rebuild an expression which simply semantically wraps another
11594    /// expression which it shares the type and value kind of.
11595    template <class T> ExprResult rebuildSugarExpr(T *E) {
11596      ExprResult SubResult = Visit(E->getSubExpr());
11597      if (SubResult.isInvalid()) return ExprError();
11598      Expr *SubExpr = SubResult.take();
11599      E->setSubExpr(SubExpr);
11600      E->setType(SubExpr->getType());
11601      E->setValueKind(SubExpr->getValueKind());
11602      assert(E->getObjectKind() == OK_Ordinary);
11603      return E;
11604    }
11605
11606    ExprResult VisitParenExpr(ParenExpr *E) {
11607      return rebuildSugarExpr(E);
11608    }
11609
11610    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11611      return rebuildSugarExpr(E);
11612    }
11613
11614    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11615      const PointerType *Ptr = DestType->getAs<PointerType>();
11616      if (!Ptr) {
11617        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11618          << E->getSourceRange();
11619        return ExprError();
11620      }
11621      assert(E->getValueKind() == VK_RValue);
11622      assert(E->getObjectKind() == OK_Ordinary);
11623      E->setType(DestType);
11624
11625      // Build the sub-expression as if it were an object of the pointee type.
11626      DestType = Ptr->getPointeeType();
11627      ExprResult SubResult = Visit(E->getSubExpr());
11628      if (SubResult.isInvalid()) return ExprError();
11629      E->setSubExpr(SubResult.take());
11630      return E;
11631    }
11632
11633    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11634
11635    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11636
11637    ExprResult VisitMemberExpr(MemberExpr *E) {
11638      return resolveDecl(E, E->getMemberDecl());
11639    }
11640
11641    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11642      return resolveDecl(E, E->getDecl());
11643    }
11644  };
11645}
11646
11647/// Rebuilds a call expression which yielded __unknown_anytype.
11648ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11649  Expr *CalleeExpr = E->getCallee();
11650
11651  enum FnKind {
11652    FK_MemberFunction,
11653    FK_FunctionPointer,
11654    FK_BlockPointer
11655  };
11656
11657  FnKind Kind;
11658  QualType CalleeType = CalleeExpr->getType();
11659  if (CalleeType == S.Context.BoundMemberTy) {
11660    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11661    Kind = FK_MemberFunction;
11662    CalleeType = Expr::findBoundMemberType(CalleeExpr);
11663  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11664    CalleeType = Ptr->getPointeeType();
11665    Kind = FK_FunctionPointer;
11666  } else {
11667    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11668    Kind = FK_BlockPointer;
11669  }
11670  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11671
11672  // Verify that this is a legal result type of a function.
11673  if (DestType->isArrayType() || DestType->isFunctionType()) {
11674    unsigned diagID = diag::err_func_returning_array_function;
11675    if (Kind == FK_BlockPointer)
11676      diagID = diag::err_block_returning_array_function;
11677
11678    S.Diag(E->getExprLoc(), diagID)
11679      << DestType->isFunctionType() << DestType;
11680    return ExprError();
11681  }
11682
11683  // Otherwise, go ahead and set DestType as the call's result.
11684  E->setType(DestType.getNonLValueExprType(S.Context));
11685  E->setValueKind(Expr::getValueKindForType(DestType));
11686  assert(E->getObjectKind() == OK_Ordinary);
11687
11688  // Rebuild the function type, replacing the result type with DestType.
11689  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11690    DestType = S.Context.getFunctionType(DestType,
11691                                         Proto->arg_type_begin(),
11692                                         Proto->getNumArgs(),
11693                                         Proto->getExtProtoInfo());
11694  else
11695    DestType = S.Context.getFunctionNoProtoType(DestType,
11696                                                FnType->getExtInfo());
11697
11698  // Rebuild the appropriate pointer-to-function type.
11699  switch (Kind) {
11700  case FK_MemberFunction:
11701    // Nothing to do.
11702    break;
11703
11704  case FK_FunctionPointer:
11705    DestType = S.Context.getPointerType(DestType);
11706    break;
11707
11708  case FK_BlockPointer:
11709    DestType = S.Context.getBlockPointerType(DestType);
11710    break;
11711  }
11712
11713  // Finally, we can recurse.
11714  ExprResult CalleeResult = Visit(CalleeExpr);
11715  if (!CalleeResult.isUsable()) return ExprError();
11716  E->setCallee(CalleeResult.take());
11717
11718  // Bind a temporary if necessary.
11719  return S.MaybeBindToTemporary(E);
11720}
11721
11722ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11723  // Verify that this is a legal result type of a call.
11724  if (DestType->isArrayType() || DestType->isFunctionType()) {
11725    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11726      << DestType->isFunctionType() << DestType;
11727    return ExprError();
11728  }
11729
11730  // Rewrite the method result type if available.
11731  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11732    assert(Method->getResultType() == S.Context.UnknownAnyTy);
11733    Method->setResultType(DestType);
11734  }
11735
11736  // Change the type of the message.
11737  E->setType(DestType.getNonReferenceType());
11738  E->setValueKind(Expr::getValueKindForType(DestType));
11739
11740  return S.MaybeBindToTemporary(E);
11741}
11742
11743ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11744  // The only case we should ever see here is a function-to-pointer decay.
11745  if (E->getCastKind() == CK_FunctionToPointerDecay) {
11746    assert(E->getValueKind() == VK_RValue);
11747    assert(E->getObjectKind() == OK_Ordinary);
11748
11749    E->setType(DestType);
11750
11751    // Rebuild the sub-expression as the pointee (function) type.
11752    DestType = DestType->castAs<PointerType>()->getPointeeType();
11753
11754    ExprResult Result = Visit(E->getSubExpr());
11755    if (!Result.isUsable()) return ExprError();
11756
11757    E->setSubExpr(Result.take());
11758    return S.Owned(E);
11759  } else if (E->getCastKind() == CK_LValueToRValue) {
11760    assert(E->getValueKind() == VK_RValue);
11761    assert(E->getObjectKind() == OK_Ordinary);
11762
11763    assert(isa<BlockPointerType>(E->getType()));
11764
11765    E->setType(DestType);
11766
11767    // The sub-expression has to be a lvalue reference, so rebuild it as such.
11768    DestType = S.Context.getLValueReferenceType(DestType);
11769
11770    ExprResult Result = Visit(E->getSubExpr());
11771    if (!Result.isUsable()) return ExprError();
11772
11773    E->setSubExpr(Result.take());
11774    return S.Owned(E);
11775  } else {
11776    llvm_unreachable("Unhandled cast type!");
11777  }
11778}
11779
11780ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11781  ExprValueKind ValueKind = VK_LValue;
11782  QualType Type = DestType;
11783
11784  // We know how to make this work for certain kinds of decls:
11785
11786  //  - functions
11787  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11788    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11789      DestType = Ptr->getPointeeType();
11790      ExprResult Result = resolveDecl(E, VD);
11791      if (Result.isInvalid()) return ExprError();
11792      return S.ImpCastExprToType(Result.take(), Type,
11793                                 CK_FunctionToPointerDecay, VK_RValue);
11794    }
11795
11796    if (!Type->isFunctionType()) {
11797      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11798        << VD << E->getSourceRange();
11799      return ExprError();
11800    }
11801
11802    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11803      if (MD->isInstance()) {
11804        ValueKind = VK_RValue;
11805        Type = S.Context.BoundMemberTy;
11806      }
11807
11808    // Function references aren't l-values in C.
11809    if (!S.getLangOpts().CPlusPlus)
11810      ValueKind = VK_RValue;
11811
11812  //  - variables
11813  } else if (isa<VarDecl>(VD)) {
11814    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11815      Type = RefTy->getPointeeType();
11816    } else if (Type->isFunctionType()) {
11817      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11818        << VD << E->getSourceRange();
11819      return ExprError();
11820    }
11821
11822  //  - nothing else
11823  } else {
11824    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11825      << VD << E->getSourceRange();
11826    return ExprError();
11827  }
11828
11829  VD->setType(DestType);
11830  E->setType(Type);
11831  E->setValueKind(ValueKind);
11832  return S.Owned(E);
11833}
11834
11835/// Check a cast of an unknown-any type.  We intentionally only
11836/// trigger this for C-style casts.
11837ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11838                                     Expr *CastExpr, CastKind &CastKind,
11839                                     ExprValueKind &VK, CXXCastPath &Path) {
11840  // Rewrite the casted expression from scratch.
11841  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11842  if (!result.isUsable()) return ExprError();
11843
11844  CastExpr = result.take();
11845  VK = CastExpr->getValueKind();
11846  CastKind = CK_NoOp;
11847
11848  return CastExpr;
11849}
11850
11851ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11852  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11853}
11854
11855QualType Sema::checkUnknownAnyArg(Expr *&arg) {
11856  // Filter out placeholders.
11857  ExprResult argR = CheckPlaceholderExpr(arg);
11858  if (argR.isInvalid()) return QualType();
11859  arg = argR.take();
11860
11861  // If the argument is an explicit cast, use that exact type as the
11862  // effective parameter type.
11863  if (ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg)) {
11864    return castArg->getTypeAsWritten();
11865  }
11866
11867  // Otherwise, try to pass by value.
11868  return arg->getType().getUnqualifiedType();
11869}
11870
11871static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11872  Expr *orig = E;
11873  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11874  while (true) {
11875    E = E->IgnoreParenImpCasts();
11876    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11877      E = call->getCallee();
11878      diagID = diag::err_uncasted_call_of_unknown_any;
11879    } else {
11880      break;
11881    }
11882  }
11883
11884  SourceLocation loc;
11885  NamedDecl *d;
11886  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11887    loc = ref->getLocation();
11888    d = ref->getDecl();
11889  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11890    loc = mem->getMemberLoc();
11891    d = mem->getMemberDecl();
11892  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11893    diagID = diag::err_uncasted_call_of_unknown_any;
11894    loc = msg->getSelectorStartLoc();
11895    d = msg->getMethodDecl();
11896    if (!d) {
11897      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11898        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11899        << orig->getSourceRange();
11900      return ExprError();
11901    }
11902  } else {
11903    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11904      << E->getSourceRange();
11905    return ExprError();
11906  }
11907
11908  S.Diag(loc, diagID) << d << orig->getSourceRange();
11909
11910  // Never recoverable.
11911  return ExprError();
11912}
11913
11914/// Check for operands with placeholder types and complain if found.
11915/// Returns true if there was an error and no recovery was possible.
11916ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11917  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11918  if (!placeholderType) return Owned(E);
11919
11920  switch (placeholderType->getKind()) {
11921
11922  // Overloaded expressions.
11923  case BuiltinType::Overload: {
11924    // Try to resolve a single function template specialization.
11925    // This is obligatory.
11926    ExprResult result = Owned(E);
11927    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11928      return result;
11929
11930    // If that failed, try to recover with a call.
11931    } else {
11932      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11933                           /*complain*/ true);
11934      return result;
11935    }
11936  }
11937
11938  // Bound member functions.
11939  case BuiltinType::BoundMember: {
11940    ExprResult result = Owned(E);
11941    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11942                         /*complain*/ true);
11943    return result;
11944  }
11945
11946  // ARC unbridged casts.
11947  case BuiltinType::ARCUnbridgedCast: {
11948    Expr *realCast = stripARCUnbridgedCast(E);
11949    diagnoseARCUnbridgedCast(realCast);
11950    return Owned(realCast);
11951  }
11952
11953  // Expressions of unknown type.
11954  case BuiltinType::UnknownAny:
11955    return diagnoseUnknownAnyExpr(*this, E);
11956
11957  // Pseudo-objects.
11958  case BuiltinType::PseudoObject:
11959    return checkPseudoObjectRValue(E);
11960
11961  case BuiltinType::BuiltinFn:
11962    Diag(E->getLocStart(), diag::err_builtin_fn_use);
11963    return ExprError();
11964
11965  // Everything else should be impossible.
11966#define BUILTIN_TYPE(Id, SingletonId) \
11967  case BuiltinType::Id:
11968#define PLACEHOLDER_TYPE(Id, SingletonId)
11969#include "clang/AST/BuiltinTypes.def"
11970    break;
11971  }
11972
11973  llvm_unreachable("invalid placeholder type!");
11974}
11975
11976bool Sema::CheckCaseExpression(Expr *E) {
11977  if (E->isTypeDependent())
11978    return true;
11979  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11980    return E->getType()->isIntegralOrEnumerationType();
11981  return false;
11982}
11983
11984/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11985ExprResult
11986Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11987  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11988         "Unknown Objective-C Boolean value!");
11989  QualType BoolT = Context.ObjCBuiltinBoolTy;
11990  if (!Context.getBOOLDecl()) {
11991    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
11992                        Sema::LookupOrdinaryName);
11993    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
11994      NamedDecl *ND = Result.getFoundDecl();
11995      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
11996        Context.setBOOLDecl(TD);
11997    }
11998  }
11999  if (Context.getBOOLDecl())
12000    BoolT = Context.getBOOLType();
12001  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
12002                                        BoolT, OpLoc));
12003}
12004