SemaExpr.cpp revision 849ea9cc5d2ee01d571c35347a6f7ce86c00ed76
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90/// UsualArithmeticConversions - Performs various conversions that are common to
91/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
92/// routine returns the first non-arithmetic type found. The client is
93/// responsible for emitting appropriate error diagnostics.
94/// FIXME: verify the conversion rules for "complex int" are consistent with
95/// GCC.
96QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
97                                          bool isCompAssign) {
98  if (!isCompAssign) {
99    UsualUnaryConversions(lhsExpr);
100    UsualUnaryConversions(rhsExpr);
101  }
102
103  // For conversion purposes, we ignore any qualifiers.
104  // For example, "const float" and "float" are equivalent.
105  QualType lhs =
106    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
107  QualType rhs =
108    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
109
110  // If both types are identical, no conversion is needed.
111  if (lhs == rhs)
112    return lhs;
113
114  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
115  // The caller can deal with this (e.g. pointer + int).
116  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
117    return lhs;
118
119  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
120  if (!isCompAssign) {
121    ImpCastExprToType(lhsExpr, destType);
122    ImpCastExprToType(rhsExpr, destType);
123  }
124  return destType;
125}
126
127QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
128  // Perform the usual unary conversions. We do this early so that
129  // integral promotions to "int" can allow us to exit early, in the
130  // lhs == rhs check. Also, for conversion purposes, we ignore any
131  // qualifiers.  For example, "const float" and "float" are
132  // equivalent.
133  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
134  else                                lhs = lhs.getUnqualifiedType();
135  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
136  else                                rhs = rhs.getUnqualifiedType();
137
138  // If both types are identical, no conversion is needed.
139  if (lhs == rhs)
140    return lhs;
141
142  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
143  // The caller can deal with this (e.g. pointer + int).
144  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
145    return lhs;
146
147  // At this point, we have two different arithmetic types.
148
149  // Handle complex types first (C99 6.3.1.8p1).
150  if (lhs->isComplexType() || rhs->isComplexType()) {
151    // if we have an integer operand, the result is the complex type.
152    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
153      // convert the rhs to the lhs complex type.
154      return lhs;
155    }
156    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
157      // convert the lhs to the rhs complex type.
158      return rhs;
159    }
160    // This handles complex/complex, complex/float, or float/complex.
161    // When both operands are complex, the shorter operand is converted to the
162    // type of the longer, and that is the type of the result. This corresponds
163    // to what is done when combining two real floating-point operands.
164    // The fun begins when size promotion occur across type domains.
165    // From H&S 6.3.4: When one operand is complex and the other is a real
166    // floating-point type, the less precise type is converted, within it's
167    // real or complex domain, to the precision of the other type. For example,
168    // when combining a "long double" with a "double _Complex", the
169    // "double _Complex" is promoted to "long double _Complex".
170    int result = Context.getFloatingTypeOrder(lhs, rhs);
171
172    if (result > 0) { // The left side is bigger, convert rhs.
173      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
174    } else if (result < 0) { // The right side is bigger, convert lhs.
175      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
176    }
177    // At this point, lhs and rhs have the same rank/size. Now, make sure the
178    // domains match. This is a requirement for our implementation, C99
179    // does not require this promotion.
180    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
181      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
182        return rhs;
183      } else { // handle "_Complex double, double".
184        return lhs;
185      }
186    }
187    return lhs; // The domain/size match exactly.
188  }
189  // Now handle "real" floating types (i.e. float, double, long double).
190  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
191    // if we have an integer operand, the result is the real floating type.
192    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
193      // convert rhs to the lhs floating point type.
194      return lhs;
195    }
196    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
197      // convert lhs to the rhs floating point type.
198      return rhs;
199    }
200    // We have two real floating types, float/complex combos were handled above.
201    // Convert the smaller operand to the bigger result.
202    int result = Context.getFloatingTypeOrder(lhs, rhs);
203
204    if (result > 0) { // convert the rhs
205      return lhs;
206    }
207    if (result < 0) { // convert the lhs
208      return rhs;
209    }
210    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
211  }
212  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
213    // Handle GCC complex int extension.
214    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
215    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
216
217    if (lhsComplexInt && rhsComplexInt) {
218      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
219                                      rhsComplexInt->getElementType()) >= 0) {
220        // convert the rhs
221        return lhs;
222      }
223      return rhs;
224    } else if (lhsComplexInt && rhs->isIntegerType()) {
225      // convert the rhs to the lhs complex type.
226      return lhs;
227    } else if (rhsComplexInt && lhs->isIntegerType()) {
228      // convert the lhs to the rhs complex type.
229      return rhs;
230    }
231  }
232  // Finally, we have two differing integer types.
233  // The rules for this case are in C99 6.3.1.8
234  int compare = Context.getIntegerTypeOrder(lhs, rhs);
235  bool lhsSigned = lhs->isSignedIntegerType(),
236       rhsSigned = rhs->isSignedIntegerType();
237  QualType destType;
238  if (lhsSigned == rhsSigned) {
239    // Same signedness; use the higher-ranked type
240    destType = compare >= 0 ? lhs : rhs;
241  } else if (compare != (lhsSigned ? 1 : -1)) {
242    // The unsigned type has greater than or equal rank to the
243    // signed type, so use the unsigned type
244    destType = lhsSigned ? rhs : lhs;
245  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
246    // The two types are different widths; if we are here, that
247    // means the signed type is larger than the unsigned type, so
248    // use the signed type.
249    destType = lhsSigned ? lhs : rhs;
250  } else {
251    // The signed type is higher-ranked than the unsigned type,
252    // but isn't actually any bigger (like unsigned int and long
253    // on most 32-bit systems).  Use the unsigned type corresponding
254    // to the signed type.
255    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
256  }
257  return destType;
258}
259
260//===----------------------------------------------------------------------===//
261//  Semantic Analysis for various Expression Types
262//===----------------------------------------------------------------------===//
263
264
265/// ActOnStringLiteral - The specified tokens were lexed as pasted string
266/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
267/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
268/// multiple tokens.  However, the common case is that StringToks points to one
269/// string.
270///
271Action::ExprResult
272Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
273  assert(NumStringToks && "Must have at least one string!");
274
275  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
276  if (Literal.hadError)
277    return ExprResult(true);
278
279  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
280  for (unsigned i = 0; i != NumStringToks; ++i)
281    StringTokLocs.push_back(StringToks[i].getLocation());
282
283  // Verify that pascal strings aren't too large.
284  if (Literal.Pascal && Literal.GetStringLength() > 256)
285    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
286                SourceRange(StringToks[0].getLocation(),
287                            StringToks[NumStringToks-1].getLocation()));
288
289  QualType StrTy = Context.CharTy;
290  if (Literal.AnyWide) StrTy = Context.getWCharType();
291  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
292
293  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
294  if (getLangOptions().CPlusPlus)
295    StrTy.addConst();
296
297  // Get an array type for the string, according to C99 6.4.5.  This includes
298  // the nul terminator character as well as the string length for pascal
299  // strings.
300  StrTy = Context.getConstantArrayType(StrTy,
301                                   llvm::APInt(32, Literal.GetStringLength()+1),
302                                       ArrayType::Normal, 0);
303
304  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
305  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
306                           Literal.AnyWide, StrTy,
307                           StringToks[0].getLocation(),
308                           StringToks[NumStringToks-1].getLocation());
309}
310
311/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
312/// CurBlock to VD should cause it to be snapshotted (as we do for auto
313/// variables defined outside the block) or false if this is not needed (e.g.
314/// for values inside the block or for globals).
315///
316/// FIXME: This will create BlockDeclRefExprs for global variables,
317/// function references, etc which is suboptimal :) and breaks
318/// things like "integer constant expression" tests.
319static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
320                                              ValueDecl *VD) {
321  // If the value is defined inside the block, we couldn't snapshot it even if
322  // we wanted to.
323  if (CurBlock->TheDecl == VD->getDeclContext())
324    return false;
325
326  // If this is an enum constant or function, it is constant, don't snapshot.
327  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
328    return false;
329
330  // If this is a reference to an extern, static, or global variable, no need to
331  // snapshot it.
332  // FIXME: What about 'const' variables in C++?
333  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
334    return Var->hasLocalStorage();
335
336  return true;
337}
338
339
340
341/// ActOnIdentifierExpr - The parser read an identifier in expression context,
342/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
343/// identifier is used in a function call context.
344/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
345/// class or namespace that the identifier must be a member of.
346Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
347                                           IdentifierInfo &II,
348                                           bool HasTrailingLParen,
349                                           const CXXScopeSpec *SS) {
350  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
351}
352
353/// ActOnDeclarationNameExpr - The parser has read some kind of name
354/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
355/// performs lookup on that name and returns an expression that refers
356/// to that name. This routine isn't directly called from the parser,
357/// because the parser doesn't know about DeclarationName. Rather,
358/// this routine is called by ActOnIdentifierExpr,
359/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
360/// which form the DeclarationName from the corresponding syntactic
361/// forms.
362///
363/// HasTrailingLParen indicates whether this identifier is used in a
364/// function call context.  LookupCtx is only used for a C++
365/// qualified-id (foo::bar) to indicate the class or namespace that
366/// the identifier must be a member of.
367Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
368                                                DeclarationName Name,
369                                                bool HasTrailingLParen,
370                                                const CXXScopeSpec *SS) {
371  // Could be enum-constant, value decl, instance variable, etc.
372  Decl *D;
373  if (SS && !SS->isEmpty()) {
374    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
375    if (DC == 0)
376      return true;
377    D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
378  } else
379    D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
380
381  // If this reference is in an Objective-C method, then ivar lookup happens as
382  // well.
383  IdentifierInfo *II = Name.getAsIdentifierInfo();
384  if (II && getCurMethodDecl()) {
385    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
386    // There are two cases to handle here.  1) scoped lookup could have failed,
387    // in which case we should look for an ivar.  2) scoped lookup could have
388    // found a decl, but that decl is outside the current method (i.e. a global
389    // variable).  In these two cases, we do a lookup for an ivar with this
390    // name, if the lookup suceeds, we replace it our current decl.
391    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
392      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
393      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
394        // FIXME: This should use a new expr for a direct reference, don't turn
395        // this into Self->ivar, just return a BareIVarExpr or something.
396        IdentifierInfo &II = Context.Idents.get("self");
397        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
398        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
399                                 static_cast<Expr*>(SelfExpr.Val), true, true);
400      }
401    }
402    // Needed to implement property "super.method" notation.
403    if (SD == 0 && II == SuperID) {
404      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
405                     getCurMethodDecl()->getClassInterface()));
406      return new ObjCSuperExpr(Loc, T);
407    }
408  }
409  if (D == 0) {
410    // Otherwise, this could be an implicitly declared function reference (legal
411    // in C90, extension in C99).
412    if (HasTrailingLParen && II &&
413        !getLangOptions().CPlusPlus) // Not in C++.
414      D = ImplicitlyDefineFunction(Loc, *II, S);
415    else {
416      // If this name wasn't predeclared and if this is not a function call,
417      // diagnose the problem.
418      if (SS && !SS->isEmpty())
419        return Diag(Loc, diag::err_typecheck_no_member,
420                    Name.getAsString(), SS->getRange());
421      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
422               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
423        return Diag(Loc, diag::err_undeclared_use, Name.getAsString());
424      else
425        return Diag(Loc, diag::err_undeclared_var_use, Name.getAsString());
426    }
427  }
428
429  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
430    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
431      if (MD->isStatic())
432        // "invalid use of member 'x' in static member function"
433        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
434                    FD->getName());
435      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
436        // "invalid use of nonstatic data member 'x'"
437        return Diag(Loc, diag::err_invalid_non_static_member_use,
438                    FD->getName());
439
440      if (FD->isInvalidDecl())
441        return true;
442
443      // FIXME: Handle 'mutable'.
444      return new DeclRefExpr(FD,
445        FD->getType().getWithAdditionalQualifiers(MD->getTypeQualifiers()),Loc);
446    }
447
448    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
449  }
450  if (isa<TypedefDecl>(D))
451    return Diag(Loc, diag::err_unexpected_typedef, Name.getAsString());
452  if (isa<ObjCInterfaceDecl>(D))
453    return Diag(Loc, diag::err_unexpected_interface, Name.getAsString());
454  if (isa<NamespaceDecl>(D))
455    return Diag(Loc, diag::err_unexpected_namespace, Name.getAsString());
456
457  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
458  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
459    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
460
461  ValueDecl *VD = cast<ValueDecl>(D);
462
463  // check if referencing an identifier with __attribute__((deprecated)).
464  if (VD->getAttr<DeprecatedAttr>())
465    Diag(Loc, diag::warn_deprecated, VD->getName());
466
467  // Only create DeclRefExpr's for valid Decl's.
468  if (VD->isInvalidDecl())
469    return true;
470
471  // If the identifier reference is inside a block, and it refers to a value
472  // that is outside the block, create a BlockDeclRefExpr instead of a
473  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
474  // the block is formed.
475  //
476  // We do not do this for things like enum constants, global variables, etc,
477  // as they do not get snapshotted.
478  //
479  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
480    // The BlocksAttr indicates the variable is bound by-reference.
481    if (VD->getAttr<BlocksAttr>())
482      return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
483                                  Loc, true);
484
485    // Variable will be bound by-copy, make it const within the closure.
486    VD->getType().addConst();
487    return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
488                                Loc, false);
489  }
490  // If this reference is not in a block or if the referenced variable is
491  // within the block, create a normal DeclRefExpr.
492  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc);
493}
494
495Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
496                                           tok::TokenKind Kind) {
497  PredefinedExpr::IdentType IT;
498
499  switch (Kind) {
500  default: assert(0 && "Unknown simple primary expr!");
501  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
502  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
503  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
504  }
505
506  // Verify that this is in a function context.
507  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
508    return Diag(Loc, diag::err_predef_outside_function);
509
510  // Pre-defined identifiers are of type char[x], where x is the length of the
511  // string.
512  unsigned Length;
513  if (getCurFunctionDecl())
514    Length = getCurFunctionDecl()->getIdentifier()->getLength();
515  else
516    Length = getCurMethodDecl()->getSynthesizedMethodSize();
517
518  llvm::APInt LengthI(32, Length + 1);
519  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
520  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
521  return new PredefinedExpr(Loc, ResTy, IT);
522}
523
524Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
525  llvm::SmallString<16> CharBuffer;
526  CharBuffer.resize(Tok.getLength());
527  const char *ThisTokBegin = &CharBuffer[0];
528  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
529
530  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
531                            Tok.getLocation(), PP);
532  if (Literal.hadError())
533    return ExprResult(true);
534
535  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
536
537  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
538                              Tok.getLocation());
539}
540
541Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
542  // fast path for a single digit (which is quite common). A single digit
543  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
544  if (Tok.getLength() == 1) {
545    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
546
547    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
548    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
549                                         Context.IntTy,
550                                         Tok.getLocation()));
551  }
552  llvm::SmallString<512> IntegerBuffer;
553  // Add padding so that NumericLiteralParser can overread by one character.
554  IntegerBuffer.resize(Tok.getLength()+1);
555  const char *ThisTokBegin = &IntegerBuffer[0];
556
557  // Get the spelling of the token, which eliminates trigraphs, etc.
558  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
559
560  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
561                               Tok.getLocation(), PP);
562  if (Literal.hadError)
563    return ExprResult(true);
564
565  Expr *Res;
566
567  if (Literal.isFloatingLiteral()) {
568    QualType Ty;
569    if (Literal.isFloat)
570      Ty = Context.FloatTy;
571    else if (!Literal.isLong)
572      Ty = Context.DoubleTy;
573    else
574      Ty = Context.LongDoubleTy;
575
576    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
577
578    // isExact will be set by GetFloatValue().
579    bool isExact = false;
580    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
581                              Ty, Tok.getLocation());
582
583  } else if (!Literal.isIntegerLiteral()) {
584    return ExprResult(true);
585  } else {
586    QualType Ty;
587
588    // long long is a C99 feature.
589    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
590        Literal.isLongLong)
591      Diag(Tok.getLocation(), diag::ext_longlong);
592
593    // Get the value in the widest-possible width.
594    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
595
596    if (Literal.GetIntegerValue(ResultVal)) {
597      // If this value didn't fit into uintmax_t, warn and force to ull.
598      Diag(Tok.getLocation(), diag::warn_integer_too_large);
599      Ty = Context.UnsignedLongLongTy;
600      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
601             "long long is not intmax_t?");
602    } else {
603      // If this value fits into a ULL, try to figure out what else it fits into
604      // according to the rules of C99 6.4.4.1p5.
605
606      // Octal, Hexadecimal, and integers with a U suffix are allowed to
607      // be an unsigned int.
608      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
609
610      // Check from smallest to largest, picking the smallest type we can.
611      unsigned Width = 0;
612      if (!Literal.isLong && !Literal.isLongLong) {
613        // Are int/unsigned possibilities?
614        unsigned IntSize = Context.Target.getIntWidth();
615
616        // Does it fit in a unsigned int?
617        if (ResultVal.isIntN(IntSize)) {
618          // Does it fit in a signed int?
619          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
620            Ty = Context.IntTy;
621          else if (AllowUnsigned)
622            Ty = Context.UnsignedIntTy;
623          Width = IntSize;
624        }
625      }
626
627      // Are long/unsigned long possibilities?
628      if (Ty.isNull() && !Literal.isLongLong) {
629        unsigned LongSize = Context.Target.getLongWidth();
630
631        // Does it fit in a unsigned long?
632        if (ResultVal.isIntN(LongSize)) {
633          // Does it fit in a signed long?
634          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
635            Ty = Context.LongTy;
636          else if (AllowUnsigned)
637            Ty = Context.UnsignedLongTy;
638          Width = LongSize;
639        }
640      }
641
642      // Finally, check long long if needed.
643      if (Ty.isNull()) {
644        unsigned LongLongSize = Context.Target.getLongLongWidth();
645
646        // Does it fit in a unsigned long long?
647        if (ResultVal.isIntN(LongLongSize)) {
648          // Does it fit in a signed long long?
649          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
650            Ty = Context.LongLongTy;
651          else if (AllowUnsigned)
652            Ty = Context.UnsignedLongLongTy;
653          Width = LongLongSize;
654        }
655      }
656
657      // If we still couldn't decide a type, we probably have something that
658      // does not fit in a signed long long, but has no U suffix.
659      if (Ty.isNull()) {
660        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
661        Ty = Context.UnsignedLongLongTy;
662        Width = Context.Target.getLongLongWidth();
663      }
664
665      if (ResultVal.getBitWidth() != Width)
666        ResultVal.trunc(Width);
667    }
668
669    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
670  }
671
672  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
673  if (Literal.isImaginary)
674    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
675
676  return Res;
677}
678
679Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
680                                        ExprTy *Val) {
681  Expr *E = (Expr *)Val;
682  assert((E != 0) && "ActOnParenExpr() missing expr");
683  return new ParenExpr(L, R, E);
684}
685
686/// The UsualUnaryConversions() function is *not* called by this routine.
687/// See C99 6.3.2.1p[2-4] for more details.
688bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
689                                     SourceLocation OpLoc,
690                                     const SourceRange &ExprRange,
691                                     bool isSizeof) {
692  // C99 6.5.3.4p1:
693  if (isa<FunctionType>(exprType) && isSizeof)
694    // alignof(function) is allowed.
695    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
696  else if (exprType->isVoidType())
697    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
698         ExprRange);
699  else if (exprType->isIncompleteType()) {
700    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
701                           diag::err_alignof_incomplete_type,
702         exprType.getAsString(), ExprRange);
703    return true; // error
704  }
705
706  return false;
707}
708
709/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
710/// the same for @c alignof and @c __alignof
711/// Note that the ArgRange is invalid if isType is false.
712Action::ExprResult
713Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
714                             void *TyOrEx, const SourceRange &ArgRange) {
715  // If error parsing type, ignore.
716  if (TyOrEx == 0) return true;
717
718  QualType ArgTy;
719  SourceRange Range;
720  if (isType) {
721    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
722    Range = ArgRange;
723  } else {
724    // Get the end location.
725    Expr *ArgEx = (Expr *)TyOrEx;
726    Range = ArgEx->getSourceRange();
727    ArgTy = ArgEx->getType();
728  }
729
730  // Verify that the operand is valid.
731  if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
732    return true;
733
734  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
735  return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
736                               OpLoc, Range.getEnd());
737}
738
739QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
740  DefaultFunctionArrayConversion(V);
741
742  // These operators return the element type of a complex type.
743  if (const ComplexType *CT = V->getType()->getAsComplexType())
744    return CT->getElementType();
745
746  // Otherwise they pass through real integer and floating point types here.
747  if (V->getType()->isArithmeticType())
748    return V->getType();
749
750  // Reject anything else.
751  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
752  return QualType();
753}
754
755
756
757Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
758                                             tok::TokenKind Kind,
759                                             ExprTy *Input) {
760  UnaryOperator::Opcode Opc;
761  switch (Kind) {
762  default: assert(0 && "Unknown unary op!");
763  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
764  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
765  }
766  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
767  if (result.isNull())
768    return true;
769  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
770}
771
772Action::ExprResult Sema::
773ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
774                        ExprTy *Idx, SourceLocation RLoc) {
775  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
776
777  // Perform default conversions.
778  DefaultFunctionArrayConversion(LHSExp);
779  DefaultFunctionArrayConversion(RHSExp);
780
781  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
782
783  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
784  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
785  // in the subscript position. As a result, we need to derive the array base
786  // and index from the expression types.
787  Expr *BaseExpr, *IndexExpr;
788  QualType ResultType;
789  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
790    BaseExpr = LHSExp;
791    IndexExpr = RHSExp;
792    // FIXME: need to deal with const...
793    ResultType = PTy->getPointeeType();
794  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
795     // Handle the uncommon case of "123[Ptr]".
796    BaseExpr = RHSExp;
797    IndexExpr = LHSExp;
798    // FIXME: need to deal with const...
799    ResultType = PTy->getPointeeType();
800  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
801    BaseExpr = LHSExp;    // vectors: V[123]
802    IndexExpr = RHSExp;
803
804    // Component access limited to variables (reject vec4.rg[1]).
805    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
806        !isa<ExtVectorElementExpr>(BaseExpr))
807      return Diag(LLoc, diag::err_ext_vector_component_access,
808                  SourceRange(LLoc, RLoc));
809    // FIXME: need to deal with const...
810    ResultType = VTy->getElementType();
811  } else {
812    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
813                RHSExp->getSourceRange());
814  }
815  // C99 6.5.2.1p1
816  if (!IndexExpr->getType()->isIntegerType())
817    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
818                IndexExpr->getSourceRange());
819
820  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
821  // the following check catches trying to index a pointer to a function (e.g.
822  // void (*)(int)) and pointers to incomplete types.  Functions are not
823  // objects in C99.
824  if (!ResultType->isObjectType())
825    return Diag(BaseExpr->getLocStart(),
826                diag::err_typecheck_subscript_not_object,
827                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
828
829  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
830}
831
832QualType Sema::
833CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
834                        IdentifierInfo &CompName, SourceLocation CompLoc) {
835  const ExtVectorType *vecType = baseType->getAsExtVectorType();
836
837  // This flag determines whether or not the component is to be treated as a
838  // special name, or a regular GLSL-style component access.
839  bool SpecialComponent = false;
840
841  // The vector accessor can't exceed the number of elements.
842  const char *compStr = CompName.getName();
843  if (strlen(compStr) > vecType->getNumElements()) {
844    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
845                baseType.getAsString(), SourceRange(CompLoc));
846    return QualType();
847  }
848
849  // Check that we've found one of the special components, or that the component
850  // names must come from the same set.
851  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
852      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
853    SpecialComponent = true;
854  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
855    do
856      compStr++;
857    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
858  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
859    do
860      compStr++;
861    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
862  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
863    do
864      compStr++;
865    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
866  }
867
868  if (!SpecialComponent && *compStr) {
869    // We didn't get to the end of the string. This means the component names
870    // didn't come from the same set *or* we encountered an illegal name.
871    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
872         std::string(compStr,compStr+1), SourceRange(CompLoc));
873    return QualType();
874  }
875  // Each component accessor can't exceed the vector type.
876  compStr = CompName.getName();
877  while (*compStr) {
878    if (vecType->isAccessorWithinNumElements(*compStr))
879      compStr++;
880    else
881      break;
882  }
883  if (!SpecialComponent && *compStr) {
884    // We didn't get to the end of the string. This means a component accessor
885    // exceeds the number of elements in the vector.
886    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
887                baseType.getAsString(), SourceRange(CompLoc));
888    return QualType();
889  }
890
891  // If we have a special component name, verify that the current vector length
892  // is an even number, since all special component names return exactly half
893  // the elements.
894  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
895    Diag(OpLoc, diag::err_ext_vector_component_requires_even,
896         baseType.getAsString(), SourceRange(CompLoc));
897    return QualType();
898  }
899
900  // The component accessor looks fine - now we need to compute the actual type.
901  // The vector type is implied by the component accessor. For example,
902  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
903  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
904  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
905                                       : strlen(CompName.getName());
906  if (CompSize == 1)
907    return vecType->getElementType();
908
909  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
910  // Now look up the TypeDefDecl from the vector type. Without this,
911  // diagostics look bad. We want extended vector types to appear built-in.
912  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
913    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
914      return Context.getTypedefType(ExtVectorDecls[i]);
915  }
916  return VT; // should never get here (a typedef type should always be found).
917}
918
919/// constructSetterName - Return the setter name for the given
920/// identifier, i.e. "set" + Name where the initial character of Name
921/// has been capitalized.
922// FIXME: Merge with same routine in Parser. But where should this
923// live?
924static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
925                                           const IdentifierInfo *Name) {
926  unsigned N = Name->getLength();
927  char *SelectorName = new char[3 + N];
928  memcpy(SelectorName, "set", 3);
929  memcpy(&SelectorName[3], Name->getName(), N);
930  SelectorName[3] = toupper(SelectorName[3]);
931
932  IdentifierInfo *Setter =
933    &Idents.get(SelectorName, &SelectorName[3 + N]);
934  delete[] SelectorName;
935  return Setter;
936}
937
938Action::ExprResult Sema::
939ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
940                         tok::TokenKind OpKind, SourceLocation MemberLoc,
941                         IdentifierInfo &Member) {
942  Expr *BaseExpr = static_cast<Expr *>(Base);
943  assert(BaseExpr && "no record expression");
944
945  // Perform default conversions.
946  DefaultFunctionArrayConversion(BaseExpr);
947
948  QualType BaseType = BaseExpr->getType();
949  assert(!BaseType.isNull() && "no type for member expression");
950
951  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
952  // must have pointer type, and the accessed type is the pointee.
953  if (OpKind == tok::arrow) {
954    if (const PointerType *PT = BaseType->getAsPointerType())
955      BaseType = PT->getPointeeType();
956    else
957      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
958                  BaseType.getAsString(), BaseExpr->getSourceRange());
959  }
960
961  // Handle field access to simple records.  This also handles access to fields
962  // of the ObjC 'id' struct.
963  if (const RecordType *RTy = BaseType->getAsRecordType()) {
964    RecordDecl *RDecl = RTy->getDecl();
965    if (RTy->isIncompleteType())
966      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
967                  BaseExpr->getSourceRange());
968    // The record definition is complete, now make sure the member is valid.
969    FieldDecl *MemberDecl = RDecl->getMember(&Member);
970    if (!MemberDecl)
971      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
972                  BaseExpr->getSourceRange());
973
974    // Figure out the type of the member; see C99 6.5.2.3p3
975    // FIXME: Handle address space modifiers
976    QualType MemberType = MemberDecl->getType();
977    unsigned combinedQualifiers =
978        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
979    if (CXXFieldDecl *CXXMember = dyn_cast<CXXFieldDecl>(MemberDecl)) {
980      if (CXXMember->isMutable())
981        combinedQualifiers &= ~QualType::Const;
982    }
983    MemberType = MemberType.getQualifiedType(combinedQualifiers);
984
985    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
986                          MemberLoc, MemberType);
987  }
988
989  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
990  // (*Obj).ivar.
991  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
992    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
993      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
994                                 OpKind == tok::arrow);
995    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
996                IFTy->getDecl()->getName(), Member.getName(),
997                BaseExpr->getSourceRange());
998  }
999
1000  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1001  // pointer to a (potentially qualified) interface type.
1002  const PointerType *PTy;
1003  const ObjCInterfaceType *IFTy;
1004  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1005      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1006    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1007
1008    // Search for a declared property first.
1009    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1010      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1011
1012    // Check protocols on qualified interfaces.
1013    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1014         E = IFTy->qual_end(); I != E; ++I)
1015      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1016        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1017
1018    // If that failed, look for an "implicit" property by seeing if the nullary
1019    // selector is implemented.
1020
1021    // FIXME: The logic for looking up nullary and unary selectors should be
1022    // shared with the code in ActOnInstanceMessage.
1023
1024    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1025    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1026
1027    // If this reference is in an @implementation, check for 'private' methods.
1028    if (!Getter)
1029      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1030        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1031          if (ObjCImplementationDecl *ImpDecl =
1032              ObjCImplementations[ClassDecl->getIdentifier()])
1033            Getter = ImpDecl->getInstanceMethod(Sel);
1034
1035    // Look through local category implementations associated with the class.
1036    if (!Getter) {
1037      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1038        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1039          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1040      }
1041    }
1042    if (Getter) {
1043      // If we found a getter then this may be a valid dot-reference, we
1044      // need to also look for the matching setter.
1045      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1046                                                       &Member);
1047      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1048      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1049
1050      if (!Setter) {
1051        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1052          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1053            if (ObjCImplementationDecl *ImpDecl =
1054                ObjCImplementations[ClassDecl->getIdentifier()])
1055              Setter = ImpDecl->getInstanceMethod(SetterSel);
1056      }
1057
1058      // FIXME: There are some issues here. First, we are not
1059      // diagnosing accesses to read-only properties because we do not
1060      // know if this is a getter or setter yet. Second, we are
1061      // checking that the type of the setter matches the type we
1062      // expect.
1063      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
1064                                     MemberLoc, BaseExpr);
1065    }
1066  }
1067  // Handle properties on qualified "id" protocols.
1068  const ObjCQualifiedIdType *QIdTy;
1069  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1070    // Check protocols on qualified interfaces.
1071    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1072         E = QIdTy->qual_end(); I != E; ++I)
1073      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1074        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1075  }
1076  // Handle 'field access' to vectors, such as 'V.xx'.
1077  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1078    // Component access limited to variables (reject vec4.rg.g).
1079    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1080        !isa<ExtVectorElementExpr>(BaseExpr))
1081      return Diag(MemberLoc, diag::err_ext_vector_component_access,
1082                  BaseExpr->getSourceRange());
1083    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1084    if (ret.isNull())
1085      return true;
1086    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1087  }
1088
1089  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1090              BaseType.getAsString(), BaseExpr->getSourceRange());
1091}
1092
1093/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1094/// This provides the location of the left/right parens and a list of comma
1095/// locations.
1096Action::ExprResult Sema::
1097ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1098              ExprTy **args, unsigned NumArgs,
1099              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1100  Expr *Fn = static_cast<Expr *>(fn);
1101  Expr **Args = reinterpret_cast<Expr**>(args);
1102  assert(Fn && "no function call expression");
1103  FunctionDecl *FDecl = NULL;
1104  OverloadedFunctionDecl *Ovl = NULL;
1105
1106  // If we're directly calling a function or a set of overloaded
1107  // functions, get the appropriate declaration.
1108  {
1109    DeclRefExpr *DRExpr = NULL;
1110    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1111      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1112    else
1113      DRExpr = dyn_cast<DeclRefExpr>(Fn);
1114
1115    if (DRExpr) {
1116      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1117      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1118    }
1119  }
1120
1121  // If we have a set of overloaded functions, perform overload
1122  // resolution to pick the function.
1123  if (Ovl) {
1124    OverloadCandidateSet CandidateSet;
1125    OverloadCandidateSet::iterator Best;
1126    AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
1127    switch (BestViableFunction(CandidateSet, Best)) {
1128    case OR_Success:
1129      {
1130        // Success! Let the remainder of this function build a call to
1131        // the function selected by overload resolution.
1132        FDecl = Best->Function;
1133        Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1134                                      Fn->getSourceRange().getBegin());
1135        delete Fn;
1136        Fn = NewFn;
1137      }
1138      break;
1139
1140    case OR_No_Viable_Function:
1141      if (CandidateSet.empty())
1142        Diag(Fn->getSourceRange().getBegin(),
1143             diag::err_ovl_no_viable_function_in_call, Ovl->getName(),
1144             Fn->getSourceRange());
1145      else {
1146        Diag(Fn->getSourceRange().getBegin(),
1147             diag::err_ovl_no_viable_function_in_call_with_cands,
1148             Ovl->getName(), Fn->getSourceRange());
1149        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1150      }
1151      return true;
1152
1153    case OR_Ambiguous:
1154      Diag(Fn->getSourceRange().getBegin(),
1155           diag::err_ovl_ambiguous_call, Ovl->getName(),
1156           Fn->getSourceRange());
1157      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1158      return true;
1159    }
1160  }
1161
1162  // Promote the function operand.
1163  UsualUnaryConversions(Fn);
1164
1165  // Make the call expr early, before semantic checks.  This guarantees cleanup
1166  // of arguments and function on error.
1167  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1168                                                 Context.BoolTy, RParenLoc));
1169  const FunctionType *FuncT;
1170  if (!Fn->getType()->isBlockPointerType()) {
1171    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1172    // have type pointer to function".
1173    const PointerType *PT = Fn->getType()->getAsPointerType();
1174    if (PT == 0)
1175      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1176                  Fn->getSourceRange());
1177    FuncT = PT->getPointeeType()->getAsFunctionType();
1178  } else { // This is a block call.
1179    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1180                getAsFunctionType();
1181  }
1182  if (FuncT == 0)
1183    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1184                Fn->getSourceRange());
1185
1186  // We know the result type of the call, set it.
1187  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1188
1189  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1190    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1191    // assignment, to the types of the corresponding parameter, ...
1192    unsigned NumArgsInProto = Proto->getNumArgs();
1193    unsigned NumArgsToCheck = NumArgs;
1194
1195    // If too few arguments are available (and we don't have default
1196    // arguments for the remaining parameters), don't make the call.
1197    if (NumArgs < NumArgsInProto) {
1198      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1199        // Use default arguments for missing arguments
1200        NumArgsToCheck = NumArgsInProto;
1201        TheCall->setNumArgs(NumArgsInProto);
1202      } else
1203        return Diag(RParenLoc,
1204                    !Fn->getType()->isBlockPointerType()
1205                      ? diag::err_typecheck_call_too_few_args
1206                      : diag::err_typecheck_block_too_few_args,
1207                    Fn->getSourceRange());
1208    }
1209
1210    // If too many are passed and not variadic, error on the extras and drop
1211    // them.
1212    if (NumArgs > NumArgsInProto) {
1213      if (!Proto->isVariadic()) {
1214        Diag(Args[NumArgsInProto]->getLocStart(),
1215               !Fn->getType()->isBlockPointerType()
1216                 ? diag::err_typecheck_call_too_many_args
1217                 : diag::err_typecheck_block_too_many_args,
1218             Fn->getSourceRange(),
1219             SourceRange(Args[NumArgsInProto]->getLocStart(),
1220                         Args[NumArgs-1]->getLocEnd()));
1221        // This deletes the extra arguments.
1222        TheCall->setNumArgs(NumArgsInProto);
1223      }
1224      NumArgsToCheck = NumArgsInProto;
1225    }
1226
1227    // Continue to check argument types (even if we have too few/many args).
1228    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1229      QualType ProtoArgType = Proto->getArgType(i);
1230
1231      Expr *Arg;
1232      if (i < NumArgs)
1233        Arg = Args[i];
1234      else
1235        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1236      QualType ArgType = Arg->getType();
1237
1238      // Pass the argument.
1239      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1240        return true;
1241
1242      TheCall->setArg(i, Arg);
1243    }
1244
1245    // If this is a variadic call, handle args passed through "...".
1246    if (Proto->isVariadic()) {
1247      // Promote the arguments (C99 6.5.2.2p7).
1248      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1249        Expr *Arg = Args[i];
1250        DefaultArgumentPromotion(Arg);
1251        TheCall->setArg(i, Arg);
1252      }
1253    }
1254  } else {
1255    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1256
1257    // Promote the arguments (C99 6.5.2.2p6).
1258    for (unsigned i = 0; i != NumArgs; i++) {
1259      Expr *Arg = Args[i];
1260      DefaultArgumentPromotion(Arg);
1261      TheCall->setArg(i, Arg);
1262    }
1263  }
1264
1265  // Do special checking on direct calls to functions.
1266  if (FDecl)
1267    return CheckFunctionCall(FDecl, TheCall.take());
1268
1269  return TheCall.take();
1270}
1271
1272Action::ExprResult Sema::
1273ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1274                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1275  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1276  QualType literalType = QualType::getFromOpaquePtr(Ty);
1277  // FIXME: put back this assert when initializers are worked out.
1278  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1279  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1280
1281  if (literalType->isArrayType()) {
1282    if (literalType->isVariableArrayType())
1283      return Diag(LParenLoc,
1284                  diag::err_variable_object_no_init,
1285                  SourceRange(LParenLoc,
1286                              literalExpr->getSourceRange().getEnd()));
1287  } else if (literalType->isIncompleteType()) {
1288    return Diag(LParenLoc,
1289                diag::err_typecheck_decl_incomplete_type,
1290                literalType.getAsString(),
1291                SourceRange(LParenLoc,
1292                            literalExpr->getSourceRange().getEnd()));
1293  }
1294
1295  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
1296                            "temporary"))
1297    return true;
1298
1299  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1300  if (isFileScope) { // 6.5.2.5p3
1301    if (CheckForConstantInitializer(literalExpr, literalType))
1302      return true;
1303  }
1304  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
1305                                 isFileScope);
1306}
1307
1308Action::ExprResult Sema::
1309ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1310              InitListDesignations &Designators,
1311              SourceLocation RBraceLoc) {
1312  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1313
1314  // Semantic analysis for initializers is done by ActOnDeclarator() and
1315  // CheckInitializer() - it requires knowledge of the object being intialized.
1316
1317  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
1318                                     Designators.hasAnyDesignators());
1319  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1320  return E;
1321}
1322
1323/// CheckCastTypes - Check type constraints for casting between types.
1324bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1325  UsualUnaryConversions(castExpr);
1326
1327  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1328  // type needs to be scalar.
1329  if (castType->isVoidType()) {
1330    // Cast to void allows any expr type.
1331  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1332    // GCC struct/union extension: allow cast to self.
1333    if (Context.getCanonicalType(castType) !=
1334        Context.getCanonicalType(castExpr->getType()) ||
1335        (!castType->isStructureType() && !castType->isUnionType())) {
1336      // Reject any other conversions to non-scalar types.
1337      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1338                  castType.getAsString(), castExpr->getSourceRange());
1339    }
1340
1341    // accept this, but emit an ext-warn.
1342    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1343         castType.getAsString(), castExpr->getSourceRange());
1344  } else if (!castExpr->getType()->isScalarType() &&
1345             !castExpr->getType()->isVectorType()) {
1346    return Diag(castExpr->getLocStart(),
1347                diag::err_typecheck_expect_scalar_operand,
1348                castExpr->getType().getAsString(),castExpr->getSourceRange());
1349  } else if (castExpr->getType()->isVectorType()) {
1350    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1351      return true;
1352  } else if (castType->isVectorType()) {
1353    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1354      return true;
1355  }
1356  return false;
1357}
1358
1359bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1360  assert(VectorTy->isVectorType() && "Not a vector type!");
1361
1362  if (Ty->isVectorType() || Ty->isIntegerType()) {
1363    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1364      return Diag(R.getBegin(),
1365                  Ty->isVectorType() ?
1366                  diag::err_invalid_conversion_between_vectors :
1367                  diag::err_invalid_conversion_between_vector_and_integer,
1368                  VectorTy.getAsString().c_str(),
1369                  Ty.getAsString().c_str(), R);
1370  } else
1371    return Diag(R.getBegin(),
1372                diag::err_invalid_conversion_between_vector_and_scalar,
1373                VectorTy.getAsString().c_str(),
1374                Ty.getAsString().c_str(), R);
1375
1376  return false;
1377}
1378
1379Action::ExprResult Sema::
1380ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1381              SourceLocation RParenLoc, ExprTy *Op) {
1382  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1383
1384  Expr *castExpr = static_cast<Expr*>(Op);
1385  QualType castType = QualType::getFromOpaquePtr(Ty);
1386
1387  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1388    return true;
1389  return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
1390}
1391
1392/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1393/// In that case, lex = cond.
1394inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1395  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1396  UsualUnaryConversions(cond);
1397  UsualUnaryConversions(lex);
1398  UsualUnaryConversions(rex);
1399  QualType condT = cond->getType();
1400  QualType lexT = lex->getType();
1401  QualType rexT = rex->getType();
1402
1403  // first, check the condition.
1404  if (!condT->isScalarType()) { // C99 6.5.15p2
1405    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1406         condT.getAsString());
1407    return QualType();
1408  }
1409
1410  // Now check the two expressions.
1411
1412  // If both operands have arithmetic type, do the usual arithmetic conversions
1413  // to find a common type: C99 6.5.15p3,5.
1414  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1415    UsualArithmeticConversions(lex, rex);
1416    return lex->getType();
1417  }
1418
1419  // If both operands are the same structure or union type, the result is that
1420  // type.
1421  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1422    if (const RecordType *RHSRT = rexT->getAsRecordType())
1423      if (LHSRT->getDecl() == RHSRT->getDecl())
1424        // "If both the operands have structure or union type, the result has
1425        // that type."  This implies that CV qualifiers are dropped.
1426        return lexT.getUnqualifiedType();
1427  }
1428
1429  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1430  // The following || allows only one side to be void (a GCC-ism).
1431  if (lexT->isVoidType() || rexT->isVoidType()) {
1432    if (!lexT->isVoidType())
1433      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1434           rex->getSourceRange());
1435    if (!rexT->isVoidType())
1436      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1437           lex->getSourceRange());
1438    ImpCastExprToType(lex, Context.VoidTy);
1439    ImpCastExprToType(rex, Context.VoidTy);
1440    return Context.VoidTy;
1441  }
1442  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1443  // the type of the other operand."
1444  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1445       Context.isObjCObjectPointerType(lexT)) &&
1446      rex->isNullPointerConstant(Context)) {
1447    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1448    return lexT;
1449  }
1450  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1451       Context.isObjCObjectPointerType(rexT)) &&
1452      lex->isNullPointerConstant(Context)) {
1453    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1454    return rexT;
1455  }
1456  // Handle the case where both operands are pointers before we handle null
1457  // pointer constants in case both operands are null pointer constants.
1458  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1459    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1460      // get the "pointed to" types
1461      QualType lhptee = LHSPT->getPointeeType();
1462      QualType rhptee = RHSPT->getPointeeType();
1463
1464      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1465      if (lhptee->isVoidType() &&
1466          rhptee->isIncompleteOrObjectType()) {
1467        // Figure out necessary qualifiers (C99 6.5.15p6)
1468        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1469        QualType destType = Context.getPointerType(destPointee);
1470        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1471        ImpCastExprToType(rex, destType); // promote to void*
1472        return destType;
1473      }
1474      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1475        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1476        QualType destType = Context.getPointerType(destPointee);
1477        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1478        ImpCastExprToType(rex, destType); // promote to void*
1479        return destType;
1480      }
1481
1482      QualType compositeType = lexT;
1483
1484      // If either type is an Objective-C object type then check
1485      // compatibility according to Objective-C.
1486      if (Context.isObjCObjectPointerType(lexT) ||
1487          Context.isObjCObjectPointerType(rexT)) {
1488        // If both operands are interfaces and either operand can be
1489        // assigned to the other, use that type as the composite
1490        // type. This allows
1491        //   xxx ? (A*) a : (B*) b
1492        // where B is a subclass of A.
1493        //
1494        // Additionally, as for assignment, if either type is 'id'
1495        // allow silent coercion. Finally, if the types are
1496        // incompatible then make sure to use 'id' as the composite
1497        // type so the result is acceptable for sending messages to.
1498
1499        // FIXME: This code should not be localized to here. Also this
1500        // should use a compatible check instead of abusing the
1501        // canAssignObjCInterfaces code.
1502        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1503        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1504        if (LHSIface && RHSIface &&
1505            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1506          compositeType = lexT;
1507        } else if (LHSIface && RHSIface &&
1508                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1509          compositeType = rexT;
1510        } else if (Context.isObjCIdType(lhptee) ||
1511                   Context.isObjCIdType(rhptee)) {
1512          // FIXME: This code looks wrong, because isObjCIdType checks
1513          // the struct but getObjCIdType returns the pointer to
1514          // struct. This is horrible and should be fixed.
1515          compositeType = Context.getObjCIdType();
1516        } else {
1517          QualType incompatTy = Context.getObjCIdType();
1518          ImpCastExprToType(lex, incompatTy);
1519          ImpCastExprToType(rex, incompatTy);
1520          return incompatTy;
1521        }
1522      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1523                                             rhptee.getUnqualifiedType())) {
1524        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
1525          << lexT.getAsString() << rexT.getAsString()
1526          << lex->getSourceRange() << rex->getSourceRange();
1527        // In this situation, we assume void* type. No especially good
1528        // reason, but this is what gcc does, and we do have to pick
1529        // to get a consistent AST.
1530        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1531        ImpCastExprToType(lex, incompatTy);
1532        ImpCastExprToType(rex, incompatTy);
1533        return incompatTy;
1534      }
1535      // The pointer types are compatible.
1536      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1537      // differently qualified versions of compatible types, the result type is
1538      // a pointer to an appropriately qualified version of the *composite*
1539      // type.
1540      // FIXME: Need to calculate the composite type.
1541      // FIXME: Need to add qualifiers
1542      ImpCastExprToType(lex, compositeType);
1543      ImpCastExprToType(rex, compositeType);
1544      return compositeType;
1545    }
1546  }
1547  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1548  // evaluates to "struct objc_object *" (and is handled above when comparing
1549  // id with statically typed objects).
1550  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1551    // GCC allows qualified id and any Objective-C type to devolve to
1552    // id. Currently localizing to here until clear this should be
1553    // part of ObjCQualifiedIdTypesAreCompatible.
1554    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1555        (lexT->isObjCQualifiedIdType() &&
1556         Context.isObjCObjectPointerType(rexT)) ||
1557        (rexT->isObjCQualifiedIdType() &&
1558         Context.isObjCObjectPointerType(lexT))) {
1559      // FIXME: This is not the correct composite type. This only
1560      // happens to work because id can more or less be used anywhere,
1561      // however this may change the type of method sends.
1562      // FIXME: gcc adds some type-checking of the arguments and emits
1563      // (confusing) incompatible comparison warnings in some
1564      // cases. Investigate.
1565      QualType compositeType = Context.getObjCIdType();
1566      ImpCastExprToType(lex, compositeType);
1567      ImpCastExprToType(rex, compositeType);
1568      return compositeType;
1569    }
1570  }
1571
1572  // Selection between block pointer types is ok as long as they are the same.
1573  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1574      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1575    return lexT;
1576
1577  // Otherwise, the operands are not compatible.
1578  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
1579    << lexT.getAsString() << rexT.getAsString()
1580    << lex->getSourceRange() << rex->getSourceRange();
1581  return QualType();
1582}
1583
1584/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1585/// in the case of a the GNU conditional expr extension.
1586Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1587                                            SourceLocation ColonLoc,
1588                                            ExprTy *Cond, ExprTy *LHS,
1589                                            ExprTy *RHS) {
1590  Expr *CondExpr = (Expr *) Cond;
1591  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1592
1593  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1594  // was the condition.
1595  bool isLHSNull = LHSExpr == 0;
1596  if (isLHSNull)
1597    LHSExpr = CondExpr;
1598
1599  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1600                                             RHSExpr, QuestionLoc);
1601  if (result.isNull())
1602    return true;
1603  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1604                                 RHSExpr, result);
1605}
1606
1607
1608// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1609// being closely modeled after the C99 spec:-). The odd characteristic of this
1610// routine is it effectively iqnores the qualifiers on the top level pointee.
1611// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1612// FIXME: add a couple examples in this comment.
1613Sema::AssignConvertType
1614Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1615  QualType lhptee, rhptee;
1616
1617  // get the "pointed to" type (ignoring qualifiers at the top level)
1618  lhptee = lhsType->getAsPointerType()->getPointeeType();
1619  rhptee = rhsType->getAsPointerType()->getPointeeType();
1620
1621  // make sure we operate on the canonical type
1622  lhptee = Context.getCanonicalType(lhptee);
1623  rhptee = Context.getCanonicalType(rhptee);
1624
1625  AssignConvertType ConvTy = Compatible;
1626
1627  // C99 6.5.16.1p1: This following citation is common to constraints
1628  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1629  // qualifiers of the type *pointed to* by the right;
1630  // FIXME: Handle ASQualType
1631  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
1632    ConvTy = CompatiblePointerDiscardsQualifiers;
1633
1634  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1635  // incomplete type and the other is a pointer to a qualified or unqualified
1636  // version of void...
1637  if (lhptee->isVoidType()) {
1638    if (rhptee->isIncompleteOrObjectType())
1639      return ConvTy;
1640
1641    // As an extension, we allow cast to/from void* to function pointer.
1642    assert(rhptee->isFunctionType());
1643    return FunctionVoidPointer;
1644  }
1645
1646  if (rhptee->isVoidType()) {
1647    if (lhptee->isIncompleteOrObjectType())
1648      return ConvTy;
1649
1650    // As an extension, we allow cast to/from void* to function pointer.
1651    assert(lhptee->isFunctionType());
1652    return FunctionVoidPointer;
1653  }
1654
1655  // Check for ObjC interfaces
1656  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1657  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1658  if (LHSIface && RHSIface &&
1659      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1660    return ConvTy;
1661
1662  // ID acts sort of like void* for ObjC interfaces
1663  if (LHSIface && Context.isObjCIdType(rhptee))
1664    return ConvTy;
1665  if (RHSIface && Context.isObjCIdType(lhptee))
1666    return ConvTy;
1667
1668  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1669  // unqualified versions of compatible types, ...
1670  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1671                                  rhptee.getUnqualifiedType()))
1672    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1673  return ConvTy;
1674}
1675
1676/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1677/// block pointer types are compatible or whether a block and normal pointer
1678/// are compatible. It is more restrict than comparing two function pointer
1679// types.
1680Sema::AssignConvertType
1681Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1682                                          QualType rhsType) {
1683  QualType lhptee, rhptee;
1684
1685  // get the "pointed to" type (ignoring qualifiers at the top level)
1686  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1687  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1688
1689  // make sure we operate on the canonical type
1690  lhptee = Context.getCanonicalType(lhptee);
1691  rhptee = Context.getCanonicalType(rhptee);
1692
1693  AssignConvertType ConvTy = Compatible;
1694
1695  // For blocks we enforce that qualifiers are identical.
1696  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1697    ConvTy = CompatiblePointerDiscardsQualifiers;
1698
1699  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1700    return IncompatibleBlockPointer;
1701  return ConvTy;
1702}
1703
1704/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1705/// has code to accommodate several GCC extensions when type checking
1706/// pointers. Here are some objectionable examples that GCC considers warnings:
1707///
1708///  int a, *pint;
1709///  short *pshort;
1710///  struct foo *pfoo;
1711///
1712///  pint = pshort; // warning: assignment from incompatible pointer type
1713///  a = pint; // warning: assignment makes integer from pointer without a cast
1714///  pint = a; // warning: assignment makes pointer from integer without a cast
1715///  pint = pfoo; // warning: assignment from incompatible pointer type
1716///
1717/// As a result, the code for dealing with pointers is more complex than the
1718/// C99 spec dictates.
1719///
1720Sema::AssignConvertType
1721Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1722  // Get canonical types.  We're not formatting these types, just comparing
1723  // them.
1724  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1725  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1726
1727  if (lhsType == rhsType)
1728    return Compatible; // Common case: fast path an exact match.
1729
1730  // If the left-hand side is a reference type, then we are in a
1731  // (rare!) case where we've allowed the use of references in C,
1732  // e.g., as a parameter type in a built-in function. In this case,
1733  // just make sure that the type referenced is compatible with the
1734  // right-hand side type. The caller is responsible for adjusting
1735  // lhsType so that the resulting expression does not have reference
1736  // type.
1737  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
1738    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
1739      return Compatible;
1740    return Incompatible;
1741  }
1742
1743  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1744    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1745      return Compatible;
1746    // Relax integer conversions like we do for pointers below.
1747    if (rhsType->isIntegerType())
1748      return IntToPointer;
1749    if (lhsType->isIntegerType())
1750      return PointerToInt;
1751    return IncompatibleObjCQualifiedId;
1752  }
1753
1754  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1755    // For ExtVector, allow vector splats; float -> <n x float>
1756    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1757      if (LV->getElementType() == rhsType)
1758        return Compatible;
1759
1760    // If we are allowing lax vector conversions, and LHS and RHS are both
1761    // vectors, the total size only needs to be the same. This is a bitcast;
1762    // no bits are changed but the result type is different.
1763    if (getLangOptions().LaxVectorConversions &&
1764        lhsType->isVectorType() && rhsType->isVectorType()) {
1765      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1766        return Compatible;
1767    }
1768    return Incompatible;
1769  }
1770
1771  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1772    return Compatible;
1773
1774  if (isa<PointerType>(lhsType)) {
1775    if (rhsType->isIntegerType())
1776      return IntToPointer;
1777
1778    if (isa<PointerType>(rhsType))
1779      return CheckPointerTypesForAssignment(lhsType, rhsType);
1780
1781    if (rhsType->getAsBlockPointerType()) {
1782      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1783        return BlockVoidPointer;
1784
1785      // Treat block pointers as objects.
1786      if (getLangOptions().ObjC1 &&
1787          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
1788        return Compatible;
1789    }
1790    return Incompatible;
1791  }
1792
1793  if (isa<BlockPointerType>(lhsType)) {
1794    if (rhsType->isIntegerType())
1795      return IntToPointer;
1796
1797    // Treat block pointers as objects.
1798    if (getLangOptions().ObjC1 &&
1799        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
1800      return Compatible;
1801
1802    if (rhsType->isBlockPointerType())
1803      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1804
1805    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1806      if (RHSPT->getPointeeType()->isVoidType())
1807        return BlockVoidPointer;
1808    }
1809    return Incompatible;
1810  }
1811
1812  if (isa<PointerType>(rhsType)) {
1813    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1814    if (lhsType == Context.BoolTy)
1815      return Compatible;
1816
1817    if (lhsType->isIntegerType())
1818      return PointerToInt;
1819
1820    if (isa<PointerType>(lhsType))
1821      return CheckPointerTypesForAssignment(lhsType, rhsType);
1822
1823    if (isa<BlockPointerType>(lhsType) &&
1824        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1825      return BlockVoidPointer;
1826    return Incompatible;
1827  }
1828
1829  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1830    if (Context.typesAreCompatible(lhsType, rhsType))
1831      return Compatible;
1832  }
1833  return Incompatible;
1834}
1835
1836Sema::AssignConvertType
1837Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1838  if (getLangOptions().CPlusPlus) {
1839    if (!lhsType->isRecordType()) {
1840      // C++ 5.17p3: If the left operand is not of class type, the
1841      // expression is implicitly converted (C++ 4) to the
1842      // cv-unqualified type of the left operand.
1843      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType()))
1844        return Incompatible;
1845      else
1846        return Compatible;
1847    }
1848
1849    // FIXME: Currently, we fall through and treat C++ classes like C
1850    // structures.
1851  }
1852
1853  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1854  // a null pointer constant.
1855  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1856       lhsType->isBlockPointerType())
1857      && rExpr->isNullPointerConstant(Context)) {
1858    ImpCastExprToType(rExpr, lhsType);
1859    return Compatible;
1860  }
1861
1862  // We don't allow conversion of non-null-pointer constants to integers.
1863  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1864    return IntToBlockPointer;
1865
1866  // This check seems unnatural, however it is necessary to ensure the proper
1867  // conversion of functions/arrays. If the conversion were done for all
1868  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1869  // expressions that surpress this implicit conversion (&, sizeof).
1870  //
1871  // Suppress this for references: C++ 8.5.3p5.
1872  if (!lhsType->isReferenceType())
1873    DefaultFunctionArrayConversion(rExpr);
1874
1875  Sema::AssignConvertType result =
1876    CheckAssignmentConstraints(lhsType, rExpr->getType());
1877
1878  // C99 6.5.16.1p2: The value of the right operand is converted to the
1879  // type of the assignment expression.
1880  // CheckAssignmentConstraints allows the left-hand side to be a reference,
1881  // so that we can use references in built-in functions even in C.
1882  // The getNonReferenceType() call makes sure that the resulting expression
1883  // does not have reference type.
1884  if (rExpr->getType() != lhsType)
1885    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
1886  return result;
1887}
1888
1889Sema::AssignConvertType
1890Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1891  return CheckAssignmentConstraints(lhsType, rhsType);
1892}
1893
1894QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
1895  Diag(Loc, diag::err_typecheck_invalid_operands)
1896    << lex->getType().getAsString() << rex->getType().getAsString()
1897    << lex->getSourceRange() << rex->getSourceRange();
1898  return QualType();
1899}
1900
1901inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
1902                                                              Expr *&rex) {
1903  // For conversion purposes, we ignore any qualifiers.
1904  // For example, "const float" and "float" are equivalent.
1905  QualType lhsType =
1906    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1907  QualType rhsType =
1908    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1909
1910  // If the vector types are identical, return.
1911  if (lhsType == rhsType)
1912    return lhsType;
1913
1914  // Handle the case of a vector & extvector type of the same size and element
1915  // type.  It would be nice if we only had one vector type someday.
1916  if (getLangOptions().LaxVectorConversions)
1917    if (const VectorType *LV = lhsType->getAsVectorType())
1918      if (const VectorType *RV = rhsType->getAsVectorType())
1919        if (LV->getElementType() == RV->getElementType() &&
1920            LV->getNumElements() == RV->getNumElements())
1921          return lhsType->isExtVectorType() ? lhsType : rhsType;
1922
1923  // If the lhs is an extended vector and the rhs is a scalar of the same type
1924  // or a literal, promote the rhs to the vector type.
1925  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1926    QualType eltType = V->getElementType();
1927
1928    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1929        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1930        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1931      ImpCastExprToType(rex, lhsType);
1932      return lhsType;
1933    }
1934  }
1935
1936  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1937  // promote the lhs to the vector type.
1938  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1939    QualType eltType = V->getElementType();
1940
1941    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1942        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1943        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1944      ImpCastExprToType(lex, rhsType);
1945      return rhsType;
1946    }
1947  }
1948
1949  // You cannot convert between vector values of different size.
1950  Diag(Loc, diag::err_typecheck_vector_not_convertable)
1951    << lex->getType().getAsString() << rex->getType().getAsString()
1952    << lex->getSourceRange() << rex->getSourceRange();
1953  return QualType();
1954}
1955
1956inline QualType Sema::CheckMultiplyDivideOperands(
1957  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
1958{
1959  QualType lhsType = lex->getType(), rhsType = rex->getType();
1960
1961  if (lhsType->isVectorType() || rhsType->isVectorType())
1962    return CheckVectorOperands(Loc, lex, rex);
1963
1964  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1965
1966  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1967    return compType;
1968  return InvalidOperands(Loc, lex, rex);
1969}
1970
1971inline QualType Sema::CheckRemainderOperands(
1972  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
1973{
1974  QualType lhsType = lex->getType(), rhsType = rex->getType();
1975
1976  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1977
1978  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1979    return compType;
1980  return InvalidOperands(Loc, lex, rex);
1981}
1982
1983inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1984  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
1985{
1986  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1987    return CheckVectorOperands(Loc, lex, rex);
1988
1989  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1990
1991  // handle the common case first (both operands are arithmetic).
1992  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1993    return compType;
1994
1995  // Put any potential pointer into PExp
1996  Expr* PExp = lex, *IExp = rex;
1997  if (IExp->getType()->isPointerType())
1998    std::swap(PExp, IExp);
1999
2000  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2001    if (IExp->getType()->isIntegerType()) {
2002      // Check for arithmetic on pointers to incomplete types
2003      if (!PTy->getPointeeType()->isObjectType()) {
2004        if (PTy->getPointeeType()->isVoidType()) {
2005          Diag(Loc, diag::ext_gnu_void_ptr,
2006               lex->getSourceRange(), rex->getSourceRange());
2007        } else {
2008          Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type,
2009               lex->getType().getAsString(), lex->getSourceRange());
2010          return QualType();
2011        }
2012      }
2013      return PExp->getType();
2014    }
2015  }
2016
2017  return InvalidOperands(Loc, lex, rex);
2018}
2019
2020// C99 6.5.6
2021QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2022                                        SourceLocation Loc, bool isCompAssign) {
2023  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2024    return CheckVectorOperands(Loc, lex, rex);
2025
2026  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2027
2028  // Enforce type constraints: C99 6.5.6p3.
2029
2030  // Handle the common case first (both operands are arithmetic).
2031  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2032    return compType;
2033
2034  // Either ptr - int   or   ptr - ptr.
2035  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2036    QualType lpointee = LHSPTy->getPointeeType();
2037
2038    // The LHS must be an object type, not incomplete, function, etc.
2039    if (!lpointee->isObjectType()) {
2040      // Handle the GNU void* extension.
2041      if (lpointee->isVoidType()) {
2042        Diag(Loc, diag::ext_gnu_void_ptr,
2043             lex->getSourceRange(), rex->getSourceRange());
2044      } else {
2045        Diag(Loc, diag::err_typecheck_sub_ptr_object,
2046             lex->getType().getAsString(), lex->getSourceRange());
2047        return QualType();
2048      }
2049    }
2050
2051    // The result type of a pointer-int computation is the pointer type.
2052    if (rex->getType()->isIntegerType())
2053      return lex->getType();
2054
2055    // Handle pointer-pointer subtractions.
2056    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2057      QualType rpointee = RHSPTy->getPointeeType();
2058
2059      // RHS must be an object type, unless void (GNU).
2060      if (!rpointee->isObjectType()) {
2061        // Handle the GNU void* extension.
2062        if (rpointee->isVoidType()) {
2063          if (!lpointee->isVoidType())
2064            Diag(Loc, diag::ext_gnu_void_ptr,
2065                 lex->getSourceRange(), rex->getSourceRange());
2066        } else {
2067          Diag(Loc, diag::err_typecheck_sub_ptr_object,
2068               rex->getType().getAsString(), rex->getSourceRange());
2069          return QualType();
2070        }
2071      }
2072
2073      // Pointee types must be compatible.
2074      if (!Context.typesAreCompatible(
2075              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2076              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2077        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2078          << lex->getType().getAsString() << rex->getType().getAsString()
2079          << lex->getSourceRange() << rex->getSourceRange();
2080        return QualType();
2081      }
2082
2083      return Context.getPointerDiffType();
2084    }
2085  }
2086
2087  return InvalidOperands(Loc, lex, rex);
2088}
2089
2090// C99 6.5.7
2091QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2092                                  bool isCompAssign) {
2093  // C99 6.5.7p2: Each of the operands shall have integer type.
2094  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2095    return InvalidOperands(Loc, lex, rex);
2096
2097  // Shifts don't perform usual arithmetic conversions, they just do integer
2098  // promotions on each operand. C99 6.5.7p3
2099  if (!isCompAssign)
2100    UsualUnaryConversions(lex);
2101  UsualUnaryConversions(rex);
2102
2103  // "The type of the result is that of the promoted left operand."
2104  return lex->getType();
2105}
2106
2107static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2108                                        ASTContext& Context) {
2109  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2110  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2111  // ID acts sort of like void* for ObjC interfaces
2112  if (LHSIface && Context.isObjCIdType(RHS))
2113    return true;
2114  if (RHSIface && Context.isObjCIdType(LHS))
2115    return true;
2116  if (!LHSIface || !RHSIface)
2117    return false;
2118  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2119         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2120}
2121
2122// C99 6.5.8
2123QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2124                                    bool isRelational) {
2125  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2126    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2127
2128  // C99 6.5.8p3 / C99 6.5.9p4
2129  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2130    UsualArithmeticConversions(lex, rex);
2131  else {
2132    UsualUnaryConversions(lex);
2133    UsualUnaryConversions(rex);
2134  }
2135  QualType lType = lex->getType();
2136  QualType rType = rex->getType();
2137
2138  // For non-floating point types, check for self-comparisons of the form
2139  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2140  // often indicate logic errors in the program.
2141  if (!lType->isFloatingType()) {
2142    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2143      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2144        if (DRL->getDecl() == DRR->getDecl())
2145          Diag(Loc, diag::warn_selfcomparison);
2146  }
2147
2148  // The result of comparisons is 'bool' in C++, 'int' in C.
2149  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2150
2151  if (isRelational) {
2152    if (lType->isRealType() && rType->isRealType())
2153      return ResultTy;
2154  } else {
2155    // Check for comparisons of floating point operands using != and ==.
2156    if (lType->isFloatingType()) {
2157      assert (rType->isFloatingType());
2158      CheckFloatComparison(Loc,lex,rex);
2159    }
2160
2161    if (lType->isArithmeticType() && rType->isArithmeticType())
2162      return ResultTy;
2163  }
2164
2165  bool LHSIsNull = lex->isNullPointerConstant(Context);
2166  bool RHSIsNull = rex->isNullPointerConstant(Context);
2167
2168  // All of the following pointer related warnings are GCC extensions, except
2169  // when handling null pointer constants. One day, we can consider making them
2170  // errors (when -pedantic-errors is enabled).
2171  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2172    QualType LCanPointeeTy =
2173      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2174    QualType RCanPointeeTy =
2175      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2176
2177    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2178        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2179        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2180                                    RCanPointeeTy.getUnqualifiedType()) &&
2181        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2182      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2183        << lType.getAsString() << rType.getAsString()
2184        << lex->getSourceRange() << rex->getSourceRange();
2185    }
2186    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2187    return ResultTy;
2188  }
2189  // Handle block pointer types.
2190  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2191    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2192    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2193
2194    if (!LHSIsNull && !RHSIsNull &&
2195        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2196      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2197        << lType.getAsString() << rType.getAsString()
2198        << lex->getSourceRange() << rex->getSourceRange();
2199    }
2200    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2201    return ResultTy;
2202  }
2203  // Allow block pointers to be compared with null pointer constants.
2204  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2205      (lType->isPointerType() && rType->isBlockPointerType())) {
2206    if (!LHSIsNull && !RHSIsNull) {
2207      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2208        << lType.getAsString() << rType.getAsString()
2209        << lex->getSourceRange() << rex->getSourceRange();
2210    }
2211    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2212    return ResultTy;
2213  }
2214
2215  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2216    if (lType->isPointerType() || rType->isPointerType()) {
2217      const PointerType *LPT = lType->getAsPointerType();
2218      const PointerType *RPT = rType->getAsPointerType();
2219      bool LPtrToVoid = LPT ?
2220        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
2221      bool RPtrToVoid = RPT ?
2222        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
2223
2224      if (!LPtrToVoid && !RPtrToVoid &&
2225          !Context.typesAreCompatible(lType, rType)) {
2226        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2227          << lType.getAsString() << rType.getAsString()
2228          << lex->getSourceRange() << rex->getSourceRange();
2229        ImpCastExprToType(rex, lType);
2230        return ResultTy;
2231      }
2232      ImpCastExprToType(rex, lType);
2233      return ResultTy;
2234    }
2235    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2236      ImpCastExprToType(rex, lType);
2237      return ResultTy;
2238    } else {
2239      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2240        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
2241          << lType.getAsString() << rType.getAsString()
2242          << lex->getSourceRange() << rex->getSourceRange();
2243        ImpCastExprToType(rex, lType);
2244        return ResultTy;
2245      }
2246    }
2247  }
2248  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2249       rType->isIntegerType()) {
2250    if (!RHSIsNull)
2251      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2252        << lType.getAsString() << rType.getAsString()
2253        << lex->getSourceRange() << rex->getSourceRange();
2254    ImpCastExprToType(rex, lType); // promote the integer to pointer
2255    return ResultTy;
2256  }
2257  if (lType->isIntegerType() &&
2258      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2259    if (!LHSIsNull)
2260      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2261        << lType.getAsString() << rType.getAsString()
2262        << lex->getSourceRange() << rex->getSourceRange();
2263    ImpCastExprToType(lex, rType); // promote the integer to pointer
2264    return ResultTy;
2265  }
2266  // Handle block pointers.
2267  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2268    if (!RHSIsNull)
2269      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2270        << lType.getAsString() << rType.getAsString()
2271        << lex->getSourceRange() << rex->getSourceRange();
2272    ImpCastExprToType(rex, lType); // promote the integer to pointer
2273    return ResultTy;
2274  }
2275  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2276    if (!LHSIsNull)
2277      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
2278        << lType.getAsString() << rType.getAsString()
2279        << lex->getSourceRange() << rex->getSourceRange();
2280    ImpCastExprToType(lex, rType); // promote the integer to pointer
2281    return ResultTy;
2282  }
2283  return InvalidOperands(Loc, lex, rex);
2284}
2285
2286/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2287/// operates on extended vector types.  Instead of producing an IntTy result,
2288/// like a scalar comparison, a vector comparison produces a vector of integer
2289/// types.
2290QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2291                                          SourceLocation Loc,
2292                                          bool isRelational) {
2293  // Check to make sure we're operating on vectors of the same type and width,
2294  // Allowing one side to be a scalar of element type.
2295  QualType vType = CheckVectorOperands(Loc, lex, rex);
2296  if (vType.isNull())
2297    return vType;
2298
2299  QualType lType = lex->getType();
2300  QualType rType = rex->getType();
2301
2302  // For non-floating point types, check for self-comparisons of the form
2303  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2304  // often indicate logic errors in the program.
2305  if (!lType->isFloatingType()) {
2306    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2307      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2308        if (DRL->getDecl() == DRR->getDecl())
2309          Diag(Loc, diag::warn_selfcomparison);
2310  }
2311
2312  // Check for comparisons of floating point operands using != and ==.
2313  if (!isRelational && lType->isFloatingType()) {
2314    assert (rType->isFloatingType());
2315    CheckFloatComparison(Loc,lex,rex);
2316  }
2317
2318  // Return the type for the comparison, which is the same as vector type for
2319  // integer vectors, or an integer type of identical size and number of
2320  // elements for floating point vectors.
2321  if (lType->isIntegerType())
2322    return lType;
2323
2324  const VectorType *VTy = lType->getAsVectorType();
2325
2326  // FIXME: need to deal with non-32b int / non-64b long long
2327  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2328  if (TypeSize == 32) {
2329    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2330  }
2331  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2332  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2333}
2334
2335inline QualType Sema::CheckBitwiseOperands(
2336  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2337{
2338  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2339    return CheckVectorOperands(Loc, lex, rex);
2340
2341  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2342
2343  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2344    return compType;
2345  return InvalidOperands(Loc, lex, rex);
2346}
2347
2348inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2349  Expr *&lex, Expr *&rex, SourceLocation Loc)
2350{
2351  UsualUnaryConversions(lex);
2352  UsualUnaryConversions(rex);
2353
2354  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2355    return Context.IntTy;
2356  return InvalidOperands(Loc, lex, rex);
2357}
2358
2359/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
2360/// emit an error and return true.  If so, return false.
2361static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
2362  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
2363  if (IsLV == Expr::MLV_Valid)
2364    return false;
2365
2366  unsigned Diag = 0;
2367  bool NeedType = false;
2368  switch (IsLV) { // C99 6.5.16p2
2369  default: assert(0 && "Unknown result from isModifiableLvalue!");
2370  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
2371  case Expr::MLV_ArrayType:
2372    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
2373    NeedType = true;
2374    break;
2375  case Expr::MLV_NotObjectType:
2376    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
2377    NeedType = true;
2378    break;
2379  case Expr::MLV_LValueCast:
2380    Diag = diag::err_typecheck_lvalue_casts_not_supported;
2381    break;
2382  case Expr::MLV_InvalidExpression:
2383    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
2384    break;
2385  case Expr::MLV_IncompleteType:
2386  case Expr::MLV_IncompleteVoidType:
2387    Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
2388    NeedType = true;
2389    break;
2390  case Expr::MLV_DuplicateVectorComponents:
2391    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
2392    break;
2393  case Expr::MLV_NotBlockQualified:
2394    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
2395    break;
2396  }
2397
2398  if (NeedType)
2399    S.Diag(Loc, Diag, E->getType().getAsString(), E->getSourceRange());
2400  else
2401    S.Diag(Loc, Diag, E->getSourceRange());
2402  return true;
2403}
2404
2405
2406
2407// C99 6.5.16.1
2408QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
2409                                       SourceLocation Loc,
2410                                       QualType CompoundType) {
2411  // Verify that LHS is a modifiable lvalue, and emit error if not.
2412  if (CheckForModifiableLvalue(LHS, Loc, *this))
2413    return QualType();
2414
2415  QualType LHSType = LHS->getType();
2416  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
2417
2418  AssignConvertType ConvTy;
2419  if (CompoundType.isNull()) {
2420    // Simple assignment "x = y".
2421    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
2422
2423    // If the RHS is a unary plus or minus, check to see if they = and + are
2424    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2425    // instead of "x += 4".
2426    Expr *RHSCheck = RHS;
2427    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2428      RHSCheck = ICE->getSubExpr();
2429    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2430      if ((UO->getOpcode() == UnaryOperator::Plus ||
2431           UO->getOpcode() == UnaryOperator::Minus) &&
2432          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2433          // Only if the two operators are exactly adjacent.
2434          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2435        Diag(Loc, diag::warn_not_compound_assign,
2436             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2437             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2438    }
2439  } else {
2440    // Compound assignment "x += y"
2441    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
2442  }
2443
2444  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
2445                               RHS, "assigning"))
2446    return QualType();
2447
2448  // C99 6.5.16p3: The type of an assignment expression is the type of the
2449  // left operand unless the left operand has qualified type, in which case
2450  // it is the unqualified version of the type of the left operand.
2451  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2452  // is converted to the type of the assignment expression (above).
2453  // C++ 5.17p1: the type of the assignment expression is that of its left
2454  // oprdu.
2455  return LHSType.getUnqualifiedType();
2456}
2457
2458// C99 6.5.17
2459QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
2460  // FIXME: what is required for LHS?
2461
2462  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2463  DefaultFunctionArrayConversion(RHS);
2464  return RHS->getType();
2465}
2466
2467/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2468/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2469QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2470  QualType resType = op->getType();
2471  assert(!resType.isNull() && "no type for increment/decrement expression");
2472
2473  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2474  if (const PointerType *pt = resType->getAsPointerType()) {
2475    if (pt->getPointeeType()->isVoidType()) {
2476      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2477    } else if (!pt->getPointeeType()->isObjectType()) {
2478      // C99 6.5.2.4p2, 6.5.6p2
2479      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2480           resType.getAsString(), op->getSourceRange());
2481      return QualType();
2482    }
2483  } else if (!resType->isRealType()) {
2484    if (resType->isComplexType())
2485      // C99 does not support ++/-- on complex types.
2486      Diag(OpLoc, diag::ext_integer_increment_complex,
2487           resType.getAsString(), op->getSourceRange());
2488    else {
2489      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2490           resType.getAsString(), op->getSourceRange());
2491      return QualType();
2492    }
2493  }
2494  // At this point, we know we have a real, complex or pointer type.
2495  // Now make sure the operand is a modifiable lvalue.
2496  if (CheckForModifiableLvalue(op, OpLoc, *this))
2497    return QualType();
2498  return resType;
2499}
2500
2501/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2502/// This routine allows us to typecheck complex/recursive expressions
2503/// where the declaration is needed for type checking. We only need to
2504/// handle cases when the expression references a function designator
2505/// or is an lvalue. Here are some examples:
2506///  - &(x) => x
2507///  - &*****f => f for f a function designator.
2508///  - &s.xx => s
2509///  - &s.zz[1].yy -> s, if zz is an array
2510///  - *(x + 1) -> x, if x is an array
2511///  - &"123"[2] -> 0
2512///  - & __real__ x -> x
2513static NamedDecl *getPrimaryDecl(Expr *E) {
2514  switch (E->getStmtClass()) {
2515  case Stmt::DeclRefExprClass:
2516    return cast<DeclRefExpr>(E)->getDecl();
2517  case Stmt::MemberExprClass:
2518    // Fields cannot be declared with a 'register' storage class.
2519    // &X->f is always ok, even if X is declared register.
2520    if (cast<MemberExpr>(E)->isArrow())
2521      return 0;
2522    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2523  case Stmt::ArraySubscriptExprClass: {
2524    // &X[4] and &4[X] refers to X if X is not a pointer.
2525
2526    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2527    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2528    if (!VD || VD->getType()->isPointerType())
2529      return 0;
2530    else
2531      return VD;
2532  }
2533  case Stmt::UnaryOperatorClass: {
2534    UnaryOperator *UO = cast<UnaryOperator>(E);
2535
2536    switch(UO->getOpcode()) {
2537    case UnaryOperator::Deref: {
2538      // *(X + 1) refers to X if X is not a pointer.
2539      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2540        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2541        if (!VD || VD->getType()->isPointerType())
2542          return 0;
2543        return VD;
2544      }
2545      return 0;
2546    }
2547    case UnaryOperator::Real:
2548    case UnaryOperator::Imag:
2549    case UnaryOperator::Extension:
2550      return getPrimaryDecl(UO->getSubExpr());
2551    default:
2552      return 0;
2553    }
2554  }
2555  case Stmt::BinaryOperatorClass: {
2556    BinaryOperator *BO = cast<BinaryOperator>(E);
2557
2558    // Handle cases involving pointer arithmetic. The result of an
2559    // Assign or AddAssign is not an lvalue so they can be ignored.
2560
2561    // (x + n) or (n + x) => x
2562    if (BO->getOpcode() == BinaryOperator::Add) {
2563      if (BO->getLHS()->getType()->isPointerType()) {
2564        return getPrimaryDecl(BO->getLHS());
2565      } else if (BO->getRHS()->getType()->isPointerType()) {
2566        return getPrimaryDecl(BO->getRHS());
2567      }
2568    }
2569
2570    return 0;
2571  }
2572  case Stmt::ParenExprClass:
2573    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2574  case Stmt::ImplicitCastExprClass:
2575    // &X[4] when X is an array, has an implicit cast from array to pointer.
2576    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2577  default:
2578    return 0;
2579  }
2580}
2581
2582/// CheckAddressOfOperand - The operand of & must be either a function
2583/// designator or an lvalue designating an object. If it is an lvalue, the
2584/// object cannot be declared with storage class register or be a bit field.
2585/// Note: The usual conversions are *not* applied to the operand of the &
2586/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2587/// In C++, the operand might be an overloaded function name, in which case
2588/// we allow the '&' but retain the overloaded-function type.
2589QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2590  if (getLangOptions().C99) {
2591    // Implement C99-only parts of addressof rules.
2592    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2593      if (uOp->getOpcode() == UnaryOperator::Deref)
2594        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2595        // (assuming the deref expression is valid).
2596        return uOp->getSubExpr()->getType();
2597    }
2598    // Technically, there should be a check for array subscript
2599    // expressions here, but the result of one is always an lvalue anyway.
2600  }
2601  NamedDecl *dcl = getPrimaryDecl(op);
2602  Expr::isLvalueResult lval = op->isLvalue(Context);
2603
2604  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2605    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2606      // FIXME: emit more specific diag...
2607      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2608           op->getSourceRange());
2609      return QualType();
2610    }
2611  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2612    if (MemExpr->getMemberDecl()->isBitField()) {
2613      Diag(OpLoc, diag::err_typecheck_address_of,
2614           std::string("bit-field"), op->getSourceRange());
2615      return QualType();
2616    }
2617  // Check for Apple extension for accessing vector components.
2618  } else if (isa<ArraySubscriptExpr>(op) &&
2619           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2620    Diag(OpLoc, diag::err_typecheck_address_of,
2621         std::string("vector"), op->getSourceRange());
2622    return QualType();
2623  } else if (dcl) { // C99 6.5.3.2p1
2624    // We have an lvalue with a decl. Make sure the decl is not declared
2625    // with the register storage-class specifier.
2626    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2627      if (vd->getStorageClass() == VarDecl::Register) {
2628        Diag(OpLoc, diag::err_typecheck_address_of,
2629             std::string("register variable"), op->getSourceRange());
2630        return QualType();
2631      }
2632    } else if (isa<OverloadedFunctionDecl>(dcl))
2633      return Context.OverloadTy;
2634    else
2635      assert(0 && "Unknown/unexpected decl type");
2636  }
2637
2638  // If the operand has type "type", the result has type "pointer to type".
2639  return Context.getPointerType(op->getType());
2640}
2641
2642QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2643  UsualUnaryConversions(op);
2644  QualType qType = op->getType();
2645
2646  if (const PointerType *PT = qType->getAsPointerType()) {
2647    // Note that per both C89 and C99, this is always legal, even
2648    // if ptype is an incomplete type or void.
2649    // It would be possible to warn about dereferencing a
2650    // void pointer, but it's completely well-defined,
2651    // and such a warning is unlikely to catch any mistakes.
2652    return PT->getPointeeType();
2653  }
2654  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2655       qType.getAsString(), op->getSourceRange());
2656  return QualType();
2657}
2658
2659static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2660  tok::TokenKind Kind) {
2661  BinaryOperator::Opcode Opc;
2662  switch (Kind) {
2663  default: assert(0 && "Unknown binop!");
2664  case tok::star:                 Opc = BinaryOperator::Mul; break;
2665  case tok::slash:                Opc = BinaryOperator::Div; break;
2666  case tok::percent:              Opc = BinaryOperator::Rem; break;
2667  case tok::plus:                 Opc = BinaryOperator::Add; break;
2668  case tok::minus:                Opc = BinaryOperator::Sub; break;
2669  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2670  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2671  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2672  case tok::less:                 Opc = BinaryOperator::LT; break;
2673  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2674  case tok::greater:              Opc = BinaryOperator::GT; break;
2675  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2676  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2677  case tok::amp:                  Opc = BinaryOperator::And; break;
2678  case tok::caret:                Opc = BinaryOperator::Xor; break;
2679  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2680  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2681  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2682  case tok::equal:                Opc = BinaryOperator::Assign; break;
2683  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2684  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2685  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2686  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2687  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2688  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2689  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2690  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2691  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2692  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2693  case tok::comma:                Opc = BinaryOperator::Comma; break;
2694  }
2695  return Opc;
2696}
2697
2698static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2699  tok::TokenKind Kind) {
2700  UnaryOperator::Opcode Opc;
2701  switch (Kind) {
2702  default: assert(0 && "Unknown unary op!");
2703  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2704  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2705  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2706  case tok::star:         Opc = UnaryOperator::Deref; break;
2707  case tok::plus:         Opc = UnaryOperator::Plus; break;
2708  case tok::minus:        Opc = UnaryOperator::Minus; break;
2709  case tok::tilde:        Opc = UnaryOperator::Not; break;
2710  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2711  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2712  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2713  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2714  }
2715  return Opc;
2716}
2717
2718/// CreateBuiltinBinOp - Creates a new built-in binary operation with
2719/// operator @p Opc at location @c TokLoc. This routine only supports
2720/// built-in operations; ActOnBinOp handles overloaded operators.
2721Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
2722                                            unsigned Op,
2723                                            Expr *lhs, Expr *rhs) {
2724  QualType ResultTy;  // Result type of the binary operator.
2725  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2726  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
2727
2728  switch (Opc) {
2729  default:
2730    assert(0 && "Unknown binary expr!");
2731  case BinaryOperator::Assign:
2732    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
2733    break;
2734  case BinaryOperator::Mul:
2735  case BinaryOperator::Div:
2736    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
2737    break;
2738  case BinaryOperator::Rem:
2739    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
2740    break;
2741  case BinaryOperator::Add:
2742    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
2743    break;
2744  case BinaryOperator::Sub:
2745    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
2746    break;
2747  case BinaryOperator::Shl:
2748  case BinaryOperator::Shr:
2749    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
2750    break;
2751  case BinaryOperator::LE:
2752  case BinaryOperator::LT:
2753  case BinaryOperator::GE:
2754  case BinaryOperator::GT:
2755    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
2756    break;
2757  case BinaryOperator::EQ:
2758  case BinaryOperator::NE:
2759    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
2760    break;
2761  case BinaryOperator::And:
2762  case BinaryOperator::Xor:
2763  case BinaryOperator::Or:
2764    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
2765    break;
2766  case BinaryOperator::LAnd:
2767  case BinaryOperator::LOr:
2768    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
2769    break;
2770  case BinaryOperator::MulAssign:
2771  case BinaryOperator::DivAssign:
2772    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
2773    if (!CompTy.isNull())
2774      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2775    break;
2776  case BinaryOperator::RemAssign:
2777    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
2778    if (!CompTy.isNull())
2779      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2780    break;
2781  case BinaryOperator::AddAssign:
2782    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
2783    if (!CompTy.isNull())
2784      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2785    break;
2786  case BinaryOperator::SubAssign:
2787    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
2788    if (!CompTy.isNull())
2789      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2790    break;
2791  case BinaryOperator::ShlAssign:
2792  case BinaryOperator::ShrAssign:
2793    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
2794    if (!CompTy.isNull())
2795      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2796    break;
2797  case BinaryOperator::AndAssign:
2798  case BinaryOperator::XorAssign:
2799  case BinaryOperator::OrAssign:
2800    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
2801    if (!CompTy.isNull())
2802      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
2803    break;
2804  case BinaryOperator::Comma:
2805    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
2806    break;
2807  }
2808  if (ResultTy.isNull())
2809    return true;
2810  if (CompTy.isNull())
2811    return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
2812  else
2813    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
2814}
2815
2816// Binary Operators.  'Tok' is the token for the operator.
2817Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
2818                                    tok::TokenKind Kind,
2819                                    ExprTy *LHS, ExprTy *RHS) {
2820  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2821  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2822
2823  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2824  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2825
2826  if (getLangOptions().CPlusPlus &&
2827      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
2828       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
2829    // If this is one of the assignment operators, we only perform
2830    // overload resolution if the left-hand side is a class or
2831    // enumeration type (C++ [expr.ass]p3).
2832    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
2833        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
2834      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
2835    }
2836
2837    // C++ [over.binary]p1:
2838    //   A binary operator shall be implemented either by a non-static
2839    //   member function (9.3) with one parameter or by a non-member
2840    //   function with two parameters. Thus, for any binary operator
2841    //   @, x@y can be interpreted as either x.operator@(y) or
2842    //   operator@(x,y). If both forms of the operator function have
2843    //   been declared, the rules in 13.3.1.2 determines which, if
2844    //   any, interpretation is used.
2845    OverloadCandidateSet CandidateSet;
2846
2847    // Determine which overloaded operator we're dealing with.
2848    static const OverloadedOperatorKind OverOps[] = {
2849      OO_Star, OO_Slash, OO_Percent,
2850      OO_Plus, OO_Minus,
2851      OO_LessLess, OO_GreaterGreater,
2852      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2853      OO_EqualEqual, OO_ExclaimEqual,
2854      OO_Amp,
2855      OO_Caret,
2856      OO_Pipe,
2857      OO_AmpAmp,
2858      OO_PipePipe,
2859      OO_Equal, OO_StarEqual,
2860      OO_SlashEqual, OO_PercentEqual,
2861      OO_PlusEqual, OO_MinusEqual,
2862      OO_LessLessEqual, OO_GreaterGreaterEqual,
2863      OO_AmpEqual, OO_CaretEqual,
2864      OO_PipeEqual,
2865      OO_Comma
2866    };
2867    OverloadedOperatorKind OverOp = OverOps[Opc];
2868
2869    // Add the appropriate overloaded operators (C++ [over.match.oper])
2870    // to the candidate set.
2871    Expr *Args[2] = { lhs, rhs };
2872    AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
2873
2874    // Perform overload resolution.
2875    OverloadCandidateSet::iterator Best;
2876    switch (BestViableFunction(CandidateSet, Best)) {
2877    case OR_Success: {
2878      // We found a built-in operator or an overloaded operator.
2879      FunctionDecl *FnDecl = Best->Function;
2880
2881      if (FnDecl) {
2882        // We matched an overloaded operator. Build a call to that
2883        // operator.
2884
2885        // Convert the arguments.
2886        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
2887          if (PerformObjectArgumentInitialization(lhs, Method) ||
2888              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
2889                                        "passing"))
2890            return true;
2891        } else {
2892          // Convert the arguments.
2893          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
2894                                        "passing") ||
2895              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
2896                                        "passing"))
2897            return true;
2898        }
2899
2900        // Determine the result type
2901        QualType ResultTy
2902          = FnDecl->getType()->getAsFunctionType()->getResultType();
2903        ResultTy = ResultTy.getNonReferenceType();
2904
2905        // Build the actual expression node.
2906        Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
2907                                       SourceLocation());
2908        UsualUnaryConversions(FnExpr);
2909
2910        Expr *Args[2] = { lhs, rhs };
2911        return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
2912      } else {
2913        // We matched a built-in operator. Convert the arguments, then
2914        // break out so that we will build the appropriate built-in
2915        // operator node.
2916        if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
2917                                      "passing") ||
2918            PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
2919                                      "passing"))
2920          return true;
2921
2922        break;
2923      }
2924    }
2925
2926    case OR_No_Viable_Function:
2927      // No viable function; fall through to handling this as a
2928      // built-in operator, which will produce an error message for us.
2929      break;
2930
2931    case OR_Ambiguous:
2932      Diag(TokLoc,
2933           diag::err_ovl_ambiguous_oper,
2934           BinaryOperator::getOpcodeStr(Opc),
2935           lhs->getSourceRange(), rhs->getSourceRange());
2936      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2937      return true;
2938    }
2939
2940    // Either we found no viable overloaded operator or we matched a
2941    // built-in operator. In either case, fall through to trying to
2942    // build a built-in operation.
2943  }
2944
2945
2946  // Build a built-in binary operation.
2947  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
2948}
2949
2950// Unary Operators.  'Tok' is the token for the operator.
2951Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2952                                      ExprTy *input) {
2953  Expr *Input = (Expr*)input;
2954  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2955  QualType resultType;
2956  switch (Opc) {
2957  default:
2958    assert(0 && "Unimplemented unary expr!");
2959  case UnaryOperator::PreInc:
2960  case UnaryOperator::PreDec:
2961    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2962    break;
2963  case UnaryOperator::AddrOf:
2964    resultType = CheckAddressOfOperand(Input, OpLoc);
2965    break;
2966  case UnaryOperator::Deref:
2967    DefaultFunctionArrayConversion(Input);
2968    resultType = CheckIndirectionOperand(Input, OpLoc);
2969    break;
2970  case UnaryOperator::Plus:
2971  case UnaryOperator::Minus:
2972    UsualUnaryConversions(Input);
2973    resultType = Input->getType();
2974    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2975      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2976                  resultType.getAsString());
2977    break;
2978  case UnaryOperator::Not: // bitwise complement
2979    UsualUnaryConversions(Input);
2980    resultType = Input->getType();
2981    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2982    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2983      // C99 does not support '~' for complex conjugation.
2984      Diag(OpLoc, diag::ext_integer_complement_complex,
2985           resultType.getAsString(), Input->getSourceRange());
2986    else if (!resultType->isIntegerType())
2987      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2988                  resultType.getAsString(), Input->getSourceRange());
2989    break;
2990  case UnaryOperator::LNot: // logical negation
2991    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2992    DefaultFunctionArrayConversion(Input);
2993    resultType = Input->getType();
2994    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2995      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2996                  resultType.getAsString());
2997    // LNot always has type int. C99 6.5.3.3p5.
2998    resultType = Context.IntTy;
2999    break;
3000  case UnaryOperator::Real:
3001  case UnaryOperator::Imag:
3002    resultType = CheckRealImagOperand(Input, OpLoc);
3003    break;
3004  case UnaryOperator::Extension:
3005    resultType = Input->getType();
3006    break;
3007  }
3008  if (resultType.isNull())
3009    return true;
3010  return new UnaryOperator(Input, Opc, resultType, OpLoc);
3011}
3012
3013/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
3014Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
3015                                      SourceLocation LabLoc,
3016                                      IdentifierInfo *LabelII) {
3017  // Look up the record for this label identifier.
3018  LabelStmt *&LabelDecl = LabelMap[LabelII];
3019
3020  // If we haven't seen this label yet, create a forward reference. It
3021  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
3022  if (LabelDecl == 0)
3023    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
3024
3025  // Create the AST node.  The address of a label always has type 'void*'.
3026  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
3027                           Context.getPointerType(Context.VoidTy));
3028}
3029
3030Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
3031                                     SourceLocation RPLoc) { // "({..})"
3032  Stmt *SubStmt = static_cast<Stmt*>(substmt);
3033  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
3034  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
3035
3036  // FIXME: there are a variety of strange constraints to enforce here, for
3037  // example, it is not possible to goto into a stmt expression apparently.
3038  // More semantic analysis is needed.
3039
3040  // FIXME: the last statement in the compount stmt has its value used.  We
3041  // should not warn about it being unused.
3042
3043  // If there are sub stmts in the compound stmt, take the type of the last one
3044  // as the type of the stmtexpr.
3045  QualType Ty = Context.VoidTy;
3046
3047  if (!Compound->body_empty()) {
3048    Stmt *LastStmt = Compound->body_back();
3049    // If LastStmt is a label, skip down through into the body.
3050    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
3051      LastStmt = Label->getSubStmt();
3052
3053    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
3054      Ty = LastExpr->getType();
3055  }
3056
3057  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
3058}
3059
3060Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
3061                                            SourceLocation TypeLoc,
3062                                            TypeTy *argty,
3063                                            OffsetOfComponent *CompPtr,
3064                                            unsigned NumComponents,
3065                                            SourceLocation RPLoc) {
3066  QualType ArgTy = QualType::getFromOpaquePtr(argty);
3067  assert(!ArgTy.isNull() && "Missing type argument!");
3068
3069  // We must have at least one component that refers to the type, and the first
3070  // one is known to be a field designator.  Verify that the ArgTy represents
3071  // a struct/union/class.
3072  if (!ArgTy->isRecordType())
3073    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
3074
3075  // Otherwise, create a compound literal expression as the base, and
3076  // iteratively process the offsetof designators.
3077  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
3078
3079  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
3080  // GCC extension, diagnose them.
3081  if (NumComponents != 1)
3082    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
3083         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
3084
3085  for (unsigned i = 0; i != NumComponents; ++i) {
3086    const OffsetOfComponent &OC = CompPtr[i];
3087    if (OC.isBrackets) {
3088      // Offset of an array sub-field.  TODO: Should we allow vector elements?
3089      const ArrayType *AT = Context.getAsArrayType(Res->getType());
3090      if (!AT) {
3091        delete Res;
3092        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
3093                    Res->getType().getAsString());
3094      }
3095
3096      // FIXME: C++: Verify that operator[] isn't overloaded.
3097
3098      // C99 6.5.2.1p1
3099      Expr *Idx = static_cast<Expr*>(OC.U.E);
3100      if (!Idx->getType()->isIntegerType())
3101        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
3102                    Idx->getSourceRange());
3103
3104      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
3105      continue;
3106    }
3107
3108    const RecordType *RC = Res->getType()->getAsRecordType();
3109    if (!RC) {
3110      delete Res;
3111      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
3112                  Res->getType().getAsString());
3113    }
3114
3115    // Get the decl corresponding to this.
3116    RecordDecl *RD = RC->getDecl();
3117    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
3118    if (!MemberDecl)
3119      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
3120                  OC.U.IdentInfo->getName(),
3121                  SourceRange(OC.LocStart, OC.LocEnd));
3122
3123    // FIXME: C++: Verify that MemberDecl isn't a static field.
3124    // FIXME: Verify that MemberDecl isn't a bitfield.
3125    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
3126    // matter here.
3127    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
3128                         MemberDecl->getType().getNonReferenceType());
3129  }
3130
3131  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
3132                           BuiltinLoc);
3133}
3134
3135
3136Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
3137                                                TypeTy *arg1, TypeTy *arg2,
3138                                                SourceLocation RPLoc) {
3139  QualType argT1 = QualType::getFromOpaquePtr(arg1);
3140  QualType argT2 = QualType::getFromOpaquePtr(arg2);
3141
3142  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
3143
3144  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
3145}
3146
3147Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
3148                                       ExprTy *expr1, ExprTy *expr2,
3149                                       SourceLocation RPLoc) {
3150  Expr *CondExpr = static_cast<Expr*>(cond);
3151  Expr *LHSExpr = static_cast<Expr*>(expr1);
3152  Expr *RHSExpr = static_cast<Expr*>(expr2);
3153
3154  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
3155
3156  // The conditional expression is required to be a constant expression.
3157  llvm::APSInt condEval(32);
3158  SourceLocation ExpLoc;
3159  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
3160    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
3161                 CondExpr->getSourceRange());
3162
3163  // If the condition is > zero, then the AST type is the same as the LSHExpr.
3164  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
3165                                               RHSExpr->getType();
3166  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
3167}
3168
3169//===----------------------------------------------------------------------===//
3170// Clang Extensions.
3171//===----------------------------------------------------------------------===//
3172
3173/// ActOnBlockStart - This callback is invoked when a block literal is started.
3174void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
3175  // Analyze block parameters.
3176  BlockSemaInfo *BSI = new BlockSemaInfo();
3177
3178  // Add BSI to CurBlock.
3179  BSI->PrevBlockInfo = CurBlock;
3180  CurBlock = BSI;
3181
3182  BSI->ReturnType = 0;
3183  BSI->TheScope = BlockScope;
3184
3185  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
3186  PushDeclContext(BSI->TheDecl);
3187}
3188
3189void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
3190  // Analyze arguments to block.
3191  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3192         "Not a function declarator!");
3193  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
3194
3195  CurBlock->hasPrototype = FTI.hasPrototype;
3196  CurBlock->isVariadic = true;
3197
3198  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
3199  // no arguments, not a function that takes a single void argument.
3200  if (FTI.hasPrototype &&
3201      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3202      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
3203        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
3204    // empty arg list, don't push any params.
3205    CurBlock->isVariadic = false;
3206  } else if (FTI.hasPrototype) {
3207    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
3208      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
3209    CurBlock->isVariadic = FTI.isVariadic;
3210  }
3211  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
3212
3213  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
3214       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
3215    // If this has an identifier, add it to the scope stack.
3216    if ((*AI)->getIdentifier())
3217      PushOnScopeChains(*AI, CurBlock->TheScope);
3218}
3219
3220/// ActOnBlockError - If there is an error parsing a block, this callback
3221/// is invoked to pop the information about the block from the action impl.
3222void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
3223  // Ensure that CurBlock is deleted.
3224  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3225
3226  // Pop off CurBlock, handle nested blocks.
3227  CurBlock = CurBlock->PrevBlockInfo;
3228
3229  // FIXME: Delete the ParmVarDecl objects as well???
3230
3231}
3232
3233/// ActOnBlockStmtExpr - This is called when the body of a block statement
3234/// literal was successfully completed.  ^(int x){...}
3235Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3236                                          Scope *CurScope) {
3237  // Ensure that CurBlock is deleted.
3238  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3239  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3240
3241  PopDeclContext();
3242
3243  // Pop off CurBlock, handle nested blocks.
3244  CurBlock = CurBlock->PrevBlockInfo;
3245
3246  QualType RetTy = Context.VoidTy;
3247  if (BSI->ReturnType)
3248    RetTy = QualType(BSI->ReturnType, 0);
3249
3250  llvm::SmallVector<QualType, 8> ArgTypes;
3251  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3252    ArgTypes.push_back(BSI->Params[i]->getType());
3253
3254  QualType BlockTy;
3255  if (!BSI->hasPrototype)
3256    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3257  else
3258    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3259                                      BSI->isVariadic, 0);
3260
3261  BlockTy = Context.getBlockPointerType(BlockTy);
3262
3263  BSI->TheDecl->setBody(Body.take());
3264  return new BlockExpr(BSI->TheDecl, BlockTy);
3265}
3266
3267/// ExprsMatchFnType - return true if the Exprs in array Args have
3268/// QualTypes that match the QualTypes of the arguments of the FnType.
3269/// The number of arguments has already been validated to match the number of
3270/// arguments in FnType.
3271static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3272                             ASTContext &Context) {
3273  unsigned NumParams = FnType->getNumArgs();
3274  for (unsigned i = 0; i != NumParams; ++i) {
3275    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3276    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3277
3278    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3279      return false;
3280  }
3281  return true;
3282}
3283
3284Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3285                                         SourceLocation *CommaLocs,
3286                                         SourceLocation BuiltinLoc,
3287                                         SourceLocation RParenLoc) {
3288  // __builtin_overload requires at least 2 arguments
3289  if (NumArgs < 2)
3290    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
3291                SourceRange(BuiltinLoc, RParenLoc));
3292
3293  // The first argument is required to be a constant expression.  It tells us
3294  // the number of arguments to pass to each of the functions to be overloaded.
3295  Expr **Args = reinterpret_cast<Expr**>(args);
3296  Expr *NParamsExpr = Args[0];
3297  llvm::APSInt constEval(32);
3298  SourceLocation ExpLoc;
3299  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3300    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
3301                NParamsExpr->getSourceRange());
3302
3303  // Verify that the number of parameters is > 0
3304  unsigned NumParams = constEval.getZExtValue();
3305  if (NumParams == 0)
3306    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
3307                NParamsExpr->getSourceRange());
3308  // Verify that we have at least 1 + NumParams arguments to the builtin.
3309  if ((NumParams + 1) > NumArgs)
3310    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
3311                SourceRange(BuiltinLoc, RParenLoc));
3312
3313  // Figure out the return type, by matching the args to one of the functions
3314  // listed after the parameters.
3315  OverloadExpr *OE = 0;
3316  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3317    // UsualUnaryConversions will convert the function DeclRefExpr into a
3318    // pointer to function.
3319    Expr *Fn = UsualUnaryConversions(Args[i]);
3320    const FunctionTypeProto *FnType = 0;
3321    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3322      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3323
3324    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3325    // parameters, and the number of parameters must match the value passed to
3326    // the builtin.
3327    if (!FnType || (FnType->getNumArgs() != NumParams))
3328      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
3329                  Fn->getSourceRange());
3330
3331    // Scan the parameter list for the FunctionType, checking the QualType of
3332    // each parameter against the QualTypes of the arguments to the builtin.
3333    // If they match, return a new OverloadExpr.
3334    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3335      if (OE)
3336        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
3337                    OE->getFn()->getSourceRange());
3338      // Remember our match, and continue processing the remaining arguments
3339      // to catch any errors.
3340      OE = new OverloadExpr(Args, NumArgs, i,
3341                            FnType->getResultType().getNonReferenceType(),
3342                            BuiltinLoc, RParenLoc);
3343    }
3344  }
3345  // Return the newly created OverloadExpr node, if we succeded in matching
3346  // exactly one of the candidate functions.
3347  if (OE)
3348    return OE;
3349
3350  // If we didn't find a matching function Expr in the __builtin_overload list
3351  // the return an error.
3352  std::string typeNames;
3353  for (unsigned i = 0; i != NumParams; ++i) {
3354    if (i != 0) typeNames += ", ";
3355    typeNames += Args[i+1]->getType().getAsString();
3356  }
3357
3358  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
3359              SourceRange(BuiltinLoc, RParenLoc));
3360}
3361
3362Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3363                                  ExprTy *expr, TypeTy *type,
3364                                  SourceLocation RPLoc) {
3365  Expr *E = static_cast<Expr*>(expr);
3366  QualType T = QualType::getFromOpaquePtr(type);
3367
3368  InitBuiltinVaListType();
3369
3370  // Get the va_list type
3371  QualType VaListType = Context.getBuiltinVaListType();
3372  // Deal with implicit array decay; for example, on x86-64,
3373  // va_list is an array, but it's supposed to decay to
3374  // a pointer for va_arg.
3375  if (VaListType->isArrayType())
3376    VaListType = Context.getArrayDecayedType(VaListType);
3377  // Make sure the input expression also decays appropriately.
3378  UsualUnaryConversions(E);
3379
3380  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3381    return Diag(E->getLocStart(),
3382                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3383                E->getType().getAsString(),
3384                E->getSourceRange());
3385
3386  // FIXME: Warn if a non-POD type is passed in.
3387
3388  return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
3389}
3390
3391bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3392                                    SourceLocation Loc,
3393                                    QualType DstType, QualType SrcType,
3394                                    Expr *SrcExpr, const char *Flavor) {
3395  // Decode the result (notice that AST's are still created for extensions).
3396  bool isInvalid = false;
3397  unsigned DiagKind;
3398  switch (ConvTy) {
3399  default: assert(0 && "Unknown conversion type");
3400  case Compatible: return false;
3401  case PointerToInt:
3402    DiagKind = diag::ext_typecheck_convert_pointer_int;
3403    break;
3404  case IntToPointer:
3405    DiagKind = diag::ext_typecheck_convert_int_pointer;
3406    break;
3407  case IncompatiblePointer:
3408    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3409    break;
3410  case FunctionVoidPointer:
3411    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3412    break;
3413  case CompatiblePointerDiscardsQualifiers:
3414    // If the qualifiers lost were because we were applying the
3415    // (deprecated) C++ conversion from a string literal to a char*
3416    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3417    // Ideally, this check would be performed in
3418    // CheckPointerTypesForAssignment. However, that would require a
3419    // bit of refactoring (so that the second argument is an
3420    // expression, rather than a type), which should be done as part
3421    // of a larger effort to fix CheckPointerTypesForAssignment for
3422    // C++ semantics.
3423    if (getLangOptions().CPlusPlus &&
3424        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3425      return false;
3426    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3427    break;
3428  case IntToBlockPointer:
3429    DiagKind = diag::err_int_to_block_pointer;
3430    break;
3431  case IncompatibleBlockPointer:
3432    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3433    break;
3434  case BlockVoidPointer:
3435    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3436    break;
3437  case IncompatibleObjCQualifiedId:
3438    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3439    // it can give a more specific diagnostic.
3440    DiagKind = diag::warn_incompatible_qualified_id;
3441    break;
3442  case Incompatible:
3443    DiagKind = diag::err_typecheck_convert_incompatible;
3444    isInvalid = true;
3445    break;
3446  }
3447
3448  Diag(Loc, DiagKind) << DstType.getAsString() << SrcType.getAsString()
3449    << Flavor << SrcExpr->getSourceRange();
3450  return isInvalid;
3451}
3452