SemaExpr.cpp revision 89ee65fb6f6218b45c46537690ae4691b489cf05
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Designator.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Template.h"
37using namespace clang;
38
39
40/// \brief Determine whether the use of this declaration is valid, and
41/// emit any corresponding diagnostics.
42///
43/// This routine diagnoses various problems with referencing
44/// declarations that can occur when using a declaration. For example,
45/// it might warn if a deprecated or unavailable declaration is being
46/// used, or produce an error (and return true) if a C++0x deleted
47/// function is being used.
48///
49/// If IgnoreDeprecated is set to true, this should not want about deprecated
50/// decls.
51///
52/// \returns true if there was an error (this declaration cannot be
53/// referenced), false otherwise.
54///
55bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
56  // See if the decl is deprecated.
57  if (D->getAttr<DeprecatedAttr>()) {
58    EmitDeprecationWarning(D, Loc);
59  }
60
61  // See if the decl is unavailable
62  if (D->getAttr<UnavailableAttr>()) {
63    Diag(Loc, diag::err_unavailable) << D->getDeclName();
64    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
65  }
66
67  // See if this is a deleted function.
68  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
69    if (FD->isDeleted()) {
70      Diag(Loc, diag::err_deleted_function_use);
71      Diag(D->getLocation(), diag::note_unavailable_here) << true;
72      return true;
73    }
74  }
75
76  return false;
77}
78
79/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
80/// (and other functions in future), which have been declared with sentinel
81/// attribute. It warns if call does not have the sentinel argument.
82///
83void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
84                                 Expr **Args, unsigned NumArgs) {
85  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
86  if (!attr)
87    return;
88
89  // FIXME: In C++0x, if any of the arguments are parameter pack
90  // expansions, we can't check for the sentinel now.
91  int sentinelPos = attr->getSentinel();
92  int nullPos = attr->getNullPos();
93
94  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
95  // base class. Then we won't be needing two versions of the same code.
96  unsigned int i = 0;
97  bool warnNotEnoughArgs = false;
98  int isMethod = 0;
99  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
100    // skip over named parameters.
101    ObjCMethodDecl::param_iterator P, E = MD->param_end();
102    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
103      if (nullPos)
104        --nullPos;
105      else
106        ++i;
107    }
108    warnNotEnoughArgs = (P != E || i >= NumArgs);
109    isMethod = 1;
110  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
111    // skip over named parameters.
112    ObjCMethodDecl::param_iterator P, E = FD->param_end();
113    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
114      if (nullPos)
115        --nullPos;
116      else
117        ++i;
118    }
119    warnNotEnoughArgs = (P != E || i >= NumArgs);
120  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
121    // block or function pointer call.
122    QualType Ty = V->getType();
123    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
124      const FunctionType *FT = Ty->isFunctionPointerType()
125      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
126      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
127      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
128        unsigned NumArgsInProto = Proto->getNumArgs();
129        unsigned k;
130        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
131          if (nullPos)
132            --nullPos;
133          else
134            ++i;
135        }
136        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
137      }
138      if (Ty->isBlockPointerType())
139        isMethod = 2;
140    } else
141      return;
142  } else
143    return;
144
145  if (warnNotEnoughArgs) {
146    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
147    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
148    return;
149  }
150  int sentinel = i;
151  while (sentinelPos > 0 && i < NumArgs-1) {
152    --sentinelPos;
153    ++i;
154  }
155  if (sentinelPos > 0) {
156    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
157    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
158    return;
159  }
160  while (i < NumArgs-1) {
161    ++i;
162    ++sentinel;
163  }
164  Expr *sentinelExpr = Args[sentinel];
165  if (!sentinelExpr) return;
166  if (sentinelExpr->isTypeDependent()) return;
167  if (sentinelExpr->isValueDependent()) return;
168  if (sentinelExpr->getType()->isAnyPointerType() &&
169      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
170                                            Expr::NPC_ValueDependentIsNull))
171    return;
172
173  // Unfortunately, __null has type 'int'.
174  if (isa<GNUNullExpr>(sentinelExpr)) return;
175
176  Diag(Loc, diag::warn_missing_sentinel) << isMethod;
177  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
178}
179
180SourceRange Sema::getExprRange(ExprTy *E) const {
181  Expr *Ex = (Expr *)E;
182  return Ex? Ex->getSourceRange() : SourceRange();
183}
184
185//===----------------------------------------------------------------------===//
186//  Standard Promotions and Conversions
187//===----------------------------------------------------------------------===//
188
189/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
190void Sema::DefaultFunctionArrayConversion(Expr *&E) {
191  QualType Ty = E->getType();
192  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
193
194  if (Ty->isFunctionType())
195    ImpCastExprToType(E, Context.getPointerType(Ty),
196                      CastExpr::CK_FunctionToPointerDecay);
197  else if (Ty->isArrayType()) {
198    // In C90 mode, arrays only promote to pointers if the array expression is
199    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
200    // type 'array of type' is converted to an expression that has type 'pointer
201    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
202    // that has type 'array of type' ...".  The relevant change is "an lvalue"
203    // (C90) to "an expression" (C99).
204    //
205    // C++ 4.2p1:
206    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
207    // T" can be converted to an rvalue of type "pointer to T".
208    //
209    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
210        E->isLvalue(Context) == Expr::LV_Valid)
211      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
212                        CastExpr::CK_ArrayToPointerDecay);
213  }
214}
215
216void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
217  DefaultFunctionArrayConversion(E);
218
219  QualType Ty = E->getType();
220  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
221  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
222      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
223      E->isLvalue(Context) == Expr::LV_Valid) {
224    // C++ [conv.lval]p1:
225    //   [...] If T is a non-class type, the type of the rvalue is the
226    //   cv-unqualified version of T. Otherwise, the type of the
227    //   rvalue is T
228    //
229    // C99 6.3.2.1p2:
230    //   If the lvalue has qualified type, the value has the unqualified
231    //   version of the type of the lvalue; otherwise, the value has the
232    //   type of the lvalue.
233    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
234  }
235}
236
237
238/// UsualUnaryConversions - Performs various conversions that are common to most
239/// operators (C99 6.3). The conversions of array and function types are
240/// sometimes surpressed. For example, the array->pointer conversion doesn't
241/// apply if the array is an argument to the sizeof or address (&) operators.
242/// In these instances, this routine should *not* be called.
243Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
244  QualType Ty = Expr->getType();
245  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
246
247  // C99 6.3.1.1p2:
248  //
249  //   The following may be used in an expression wherever an int or
250  //   unsigned int may be used:
251  //     - an object or expression with an integer type whose integer
252  //       conversion rank is less than or equal to the rank of int
253  //       and unsigned int.
254  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
255  //
256  //   If an int can represent all values of the original type, the
257  //   value is converted to an int; otherwise, it is converted to an
258  //   unsigned int. These are called the integer promotions. All
259  //   other types are unchanged by the integer promotions.
260  QualType PTy = Context.isPromotableBitField(Expr);
261  if (!PTy.isNull()) {
262    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
263    return Expr;
264  }
265  if (Ty->isPromotableIntegerType()) {
266    QualType PT = Context.getPromotedIntegerType(Ty);
267    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
268    return Expr;
269  }
270
271  DefaultFunctionArrayLvalueConversion(Expr);
272  return Expr;
273}
274
275/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
276/// do not have a prototype. Arguments that have type float are promoted to
277/// double. All other argument types are converted by UsualUnaryConversions().
278void Sema::DefaultArgumentPromotion(Expr *&Expr) {
279  QualType Ty = Expr->getType();
280  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
281
282  // If this is a 'float' (CVR qualified or typedef) promote to double.
283  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
284    return ImpCastExprToType(Expr, Context.DoubleTy,
285                             CastExpr::CK_FloatingCast);
286
287  UsualUnaryConversions(Expr);
288}
289
290/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
291/// will warn if the resulting type is not a POD type, and rejects ObjC
292/// interfaces passed by value.  This returns true if the argument type is
293/// completely illegal.
294bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
295                                            FunctionDecl *FDecl) {
296  DefaultArgumentPromotion(Expr);
297
298  // __builtin_va_start takes the second argument as a "varargs" argument, but
299  // it doesn't actually do anything with it.  It doesn't need to be non-pod
300  // etc.
301  if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
302    return false;
303
304  if (Expr->getType()->isObjCObjectType() &&
305      DiagRuntimeBehavior(Expr->getLocStart(),
306        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
307          << Expr->getType() << CT))
308    return true;
309
310  if (!Expr->getType()->isPODType() &&
311      DiagRuntimeBehavior(Expr->getLocStart(),
312                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
313                            << Expr->getType() << CT))
314    return true;
315
316  return false;
317}
318
319
320/// UsualArithmeticConversions - Performs various conversions that are common to
321/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
322/// routine returns the first non-arithmetic type found. The client is
323/// responsible for emitting appropriate error diagnostics.
324/// FIXME: verify the conversion rules for "complex int" are consistent with
325/// GCC.
326QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
327                                          bool isCompAssign) {
328  if (!isCompAssign)
329    UsualUnaryConversions(lhsExpr);
330
331  UsualUnaryConversions(rhsExpr);
332
333  // For conversion purposes, we ignore any qualifiers.
334  // For example, "const float" and "float" are equivalent.
335  QualType lhs =
336    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
337  QualType rhs =
338    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
339
340  // If both types are identical, no conversion is needed.
341  if (lhs == rhs)
342    return lhs;
343
344  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
345  // The caller can deal with this (e.g. pointer + int).
346  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
347    return lhs;
348
349  // Perform bitfield promotions.
350  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
351  if (!LHSBitfieldPromoteTy.isNull())
352    lhs = LHSBitfieldPromoteTy;
353  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
354  if (!RHSBitfieldPromoteTy.isNull())
355    rhs = RHSBitfieldPromoteTy;
356
357  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
358  if (!isCompAssign)
359    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
360  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
361  return destType;
362}
363
364//===----------------------------------------------------------------------===//
365//  Semantic Analysis for various Expression Types
366//===----------------------------------------------------------------------===//
367
368
369/// ActOnStringLiteral - The specified tokens were lexed as pasted string
370/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
371/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
372/// multiple tokens.  However, the common case is that StringToks points to one
373/// string.
374///
375ExprResult
376Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
377  assert(NumStringToks && "Must have at least one string!");
378
379  StringLiteralParser Literal(StringToks, NumStringToks, PP);
380  if (Literal.hadError)
381    return ExprError();
382
383  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
384  for (unsigned i = 0; i != NumStringToks; ++i)
385    StringTokLocs.push_back(StringToks[i].getLocation());
386
387  QualType StrTy = Context.CharTy;
388  if (Literal.AnyWide) StrTy = Context.getWCharType();
389  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
390
391  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
392  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
393    StrTy.addConst();
394
395  // Get an array type for the string, according to C99 6.4.5.  This includes
396  // the nul terminator character as well as the string length for pascal
397  // strings.
398  StrTy = Context.getConstantArrayType(StrTy,
399                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
400                                       ArrayType::Normal, 0);
401
402  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
403  return Owned(StringLiteral::Create(Context, Literal.GetString(),
404                                     Literal.GetStringLength(),
405                                     Literal.AnyWide, StrTy,
406                                     &StringTokLocs[0],
407                                     StringTokLocs.size()));
408}
409
410/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
411/// CurBlock to VD should cause it to be snapshotted (as we do for auto
412/// variables defined outside the block) or false if this is not needed (e.g.
413/// for values inside the block or for globals).
414///
415/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
416/// up-to-date.
417///
418static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
419                                              ValueDecl *VD) {
420  // If the value is defined inside the block, we couldn't snapshot it even if
421  // we wanted to.
422  if (CurBlock->TheDecl == VD->getDeclContext())
423    return false;
424
425  // If this is an enum constant or function, it is constant, don't snapshot.
426  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
427    return false;
428
429  // If this is a reference to an extern, static, or global variable, no need to
430  // snapshot it.
431  // FIXME: What about 'const' variables in C++?
432  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
433    if (!Var->hasLocalStorage())
434      return false;
435
436  // Blocks that have these can't be constant.
437  CurBlock->hasBlockDeclRefExprs = true;
438
439  // If we have nested blocks, the decl may be declared in an outer block (in
440  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
441  // be defined outside all of the current blocks (in which case the blocks do
442  // all get the bit).  Walk the nesting chain.
443  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
444    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
445
446    if (!NextBlock)
447      continue;
448
449    // If we found the defining block for the variable, don't mark the block as
450    // having a reference outside it.
451    if (NextBlock->TheDecl == VD->getDeclContext())
452      break;
453
454    // Otherwise, the DeclRef from the inner block causes the outer one to need
455    // a snapshot as well.
456    NextBlock->hasBlockDeclRefExprs = true;
457  }
458
459  return true;
460}
461
462
463ExprResult
464Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
465                       const CXXScopeSpec *SS) {
466  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
467  return BuildDeclRefExpr(D, Ty, NameInfo, SS);
468}
469
470/// BuildDeclRefExpr - Build a DeclRefExpr.
471ExprResult
472Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
473                       const DeclarationNameInfo &NameInfo,
474                       const CXXScopeSpec *SS) {
475  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
476    Diag(NameInfo.getLoc(),
477         diag::err_auto_variable_cannot_appear_in_own_initializer)
478      << D->getDeclName();
479    return ExprError();
480  }
481
482  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
483    if (isa<NonTypeTemplateParmDecl>(VD)) {
484      // Non-type template parameters can be referenced anywhere they are
485      // visible.
486      Ty = Ty.getNonLValueExprType(Context);
487    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
488      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
489        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
490          Diag(NameInfo.getLoc(),
491               diag::err_reference_to_local_var_in_enclosing_function)
492            << D->getIdentifier() << FD->getDeclName();
493          Diag(D->getLocation(), diag::note_local_variable_declared_here)
494            << D->getIdentifier();
495          return ExprError();
496        }
497      }
498    }
499  }
500
501  MarkDeclarationReferenced(NameInfo.getLoc(), D);
502
503  return Owned(DeclRefExpr::Create(Context,
504                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
505                                   SS? SS->getRange() : SourceRange(),
506                                   D, NameInfo, Ty));
507}
508
509/// \brief Given a field that represents a member of an anonymous
510/// struct/union, build the path from that field's context to the
511/// actual member.
512///
513/// Construct the sequence of field member references we'll have to
514/// perform to get to the field in the anonymous union/struct. The
515/// list of members is built from the field outward, so traverse it
516/// backwards to go from an object in the current context to the field
517/// we found.
518///
519/// \returns The variable from which the field access should begin,
520/// for an anonymous struct/union that is not a member of another
521/// class. Otherwise, returns NULL.
522VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
523                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
524  assert(Field->getDeclContext()->isRecord() &&
525         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
526         && "Field must be stored inside an anonymous struct or union");
527
528  Path.push_back(Field);
529  VarDecl *BaseObject = 0;
530  DeclContext *Ctx = Field->getDeclContext();
531  do {
532    RecordDecl *Record = cast<RecordDecl>(Ctx);
533    ValueDecl *AnonObject = Record->getAnonymousStructOrUnionObject();
534    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
535      Path.push_back(AnonField);
536    else {
537      BaseObject = cast<VarDecl>(AnonObject);
538      break;
539    }
540    Ctx = Ctx->getParent();
541  } while (Ctx->isRecord() &&
542           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
543
544  return BaseObject;
545}
546
547ExprResult
548Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
549                                               FieldDecl *Field,
550                                               Expr *BaseObjectExpr,
551                                               SourceLocation OpLoc) {
552  llvm::SmallVector<FieldDecl *, 4> AnonFields;
553  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
554                                                            AnonFields);
555
556  // Build the expression that refers to the base object, from
557  // which we will build a sequence of member references to each
558  // of the anonymous union objects and, eventually, the field we
559  // found via name lookup.
560  bool BaseObjectIsPointer = false;
561  Qualifiers BaseQuals;
562  if (BaseObject) {
563    // BaseObject is an anonymous struct/union variable (and is,
564    // therefore, not part of another non-anonymous record).
565    MarkDeclarationReferenced(Loc, BaseObject);
566    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
567                                               SourceLocation());
568    BaseQuals
569      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
570  } else if (BaseObjectExpr) {
571    // The caller provided the base object expression. Determine
572    // whether its a pointer and whether it adds any qualifiers to the
573    // anonymous struct/union fields we're looking into.
574    QualType ObjectType = BaseObjectExpr->getType();
575    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
576      BaseObjectIsPointer = true;
577      ObjectType = ObjectPtr->getPointeeType();
578    }
579    BaseQuals
580      = Context.getCanonicalType(ObjectType).getQualifiers();
581  } else {
582    // We've found a member of an anonymous struct/union that is
583    // inside a non-anonymous struct/union, so in a well-formed
584    // program our base object expression is "this".
585    DeclContext *DC = getFunctionLevelDeclContext();
586    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
587      if (!MD->isStatic()) {
588        QualType AnonFieldType
589          = Context.getTagDeclType(
590                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
591        QualType ThisType = Context.getTagDeclType(MD->getParent());
592        if ((Context.getCanonicalType(AnonFieldType)
593               == Context.getCanonicalType(ThisType)) ||
594            IsDerivedFrom(ThisType, AnonFieldType)) {
595          // Our base object expression is "this".
596          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
597                                                     MD->getThisType(Context),
598                                                     /*isImplicit=*/true);
599          BaseObjectIsPointer = true;
600        }
601      } else {
602        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
603          << Field->getDeclName());
604      }
605      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
606    }
607
608    if (!BaseObjectExpr)
609      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
610        << Field->getDeclName());
611  }
612
613  // Build the implicit member references to the field of the
614  // anonymous struct/union.
615  Expr *Result = BaseObjectExpr;
616  Qualifiers ResultQuals = BaseQuals;
617  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
618         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
619       FI != FIEnd; ++FI) {
620    QualType MemberType = (*FI)->getType();
621    Qualifiers MemberTypeQuals =
622      Context.getCanonicalType(MemberType).getQualifiers();
623
624    // CVR attributes from the base are picked up by members,
625    // except that 'mutable' members don't pick up 'const'.
626    if ((*FI)->isMutable())
627      ResultQuals.removeConst();
628
629    // GC attributes are never picked up by members.
630    ResultQuals.removeObjCGCAttr();
631
632    // TR 18037 does not allow fields to be declared with address spaces.
633    assert(!MemberTypeQuals.hasAddressSpace());
634
635    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
636    if (NewQuals != MemberTypeQuals)
637      MemberType = Context.getQualifiedType(MemberType, NewQuals);
638
639    MarkDeclarationReferenced(Loc, *FI);
640    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
641    // FIXME: Might this end up being a qualified name?
642    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
643                                      OpLoc, MemberType);
644    BaseObjectIsPointer = false;
645    ResultQuals = NewQuals;
646  }
647
648  return Owned(Result);
649}
650
651/// Decomposes the given name into a DeclarationNameInfo, its location, and
652/// possibly a list of template arguments.
653///
654/// If this produces template arguments, it is permitted to call
655/// DecomposeTemplateName.
656///
657/// This actually loses a lot of source location information for
658/// non-standard name kinds; we should consider preserving that in
659/// some way.
660static void DecomposeUnqualifiedId(Sema &SemaRef,
661                                   const UnqualifiedId &Id,
662                                   TemplateArgumentListInfo &Buffer,
663                                   DeclarationNameInfo &NameInfo,
664                             const TemplateArgumentListInfo *&TemplateArgs) {
665  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
666    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
667    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
668
669    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
670                                       Id.TemplateId->getTemplateArgs(),
671                                       Id.TemplateId->NumArgs);
672    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
673    TemplateArgsPtr.release();
674
675    TemplateName TName = Id.TemplateId->Template.get();
676    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
677    NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
678    TemplateArgs = &Buffer;
679  } else {
680    NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
681    TemplateArgs = 0;
682  }
683}
684
685/// Determines whether the given record is "fully-formed" at the given
686/// location, i.e. whether a qualified lookup into it is assured of
687/// getting consistent results already.
688static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
689  if (!Record->hasDefinition())
690    return false;
691
692  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
693         E = Record->bases_end(); I != E; ++I) {
694    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
695    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
696    if (!BaseRT) return false;
697
698    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
699    if (!BaseRecord->hasDefinition() ||
700        !IsFullyFormedScope(SemaRef, BaseRecord))
701      return false;
702  }
703
704  return true;
705}
706
707/// Determines if the given class is provably not derived from all of
708/// the prospective base classes.
709static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
710                                     CXXRecordDecl *Record,
711                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
712  if (Bases.count(Record->getCanonicalDecl()))
713    return false;
714
715  RecordDecl *RD = Record->getDefinition();
716  if (!RD) return false;
717  Record = cast<CXXRecordDecl>(RD);
718
719  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
720         E = Record->bases_end(); I != E; ++I) {
721    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
722    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
723    if (!BaseRT) return false;
724
725    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
726    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
727      return false;
728  }
729
730  return true;
731}
732
733enum IMAKind {
734  /// The reference is definitely not an instance member access.
735  IMA_Static,
736
737  /// The reference may be an implicit instance member access.
738  IMA_Mixed,
739
740  /// The reference may be to an instance member, but it is invalid if
741  /// so, because the context is not an instance method.
742  IMA_Mixed_StaticContext,
743
744  /// The reference may be to an instance member, but it is invalid if
745  /// so, because the context is from an unrelated class.
746  IMA_Mixed_Unrelated,
747
748  /// The reference is definitely an implicit instance member access.
749  IMA_Instance,
750
751  /// The reference may be to an unresolved using declaration.
752  IMA_Unresolved,
753
754  /// The reference may be to an unresolved using declaration and the
755  /// context is not an instance method.
756  IMA_Unresolved_StaticContext,
757
758  /// The reference is to a member of an anonymous structure in a
759  /// non-class context.
760  IMA_AnonymousMember,
761
762  /// All possible referrents are instance members and the current
763  /// context is not an instance method.
764  IMA_Error_StaticContext,
765
766  /// All possible referrents are instance members of an unrelated
767  /// class.
768  IMA_Error_Unrelated
769};
770
771/// The given lookup names class member(s) and is not being used for
772/// an address-of-member expression.  Classify the type of access
773/// according to whether it's possible that this reference names an
774/// instance member.  This is best-effort; it is okay to
775/// conservatively answer "yes", in which case some errors will simply
776/// not be caught until template-instantiation.
777static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
778                                            const LookupResult &R) {
779  assert(!R.empty() && (*R.begin())->isCXXClassMember());
780
781  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
782  bool isStaticContext =
783    (!isa<CXXMethodDecl>(DC) ||
784     cast<CXXMethodDecl>(DC)->isStatic());
785
786  if (R.isUnresolvableResult())
787    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
788
789  // Collect all the declaring classes of instance members we find.
790  bool hasNonInstance = false;
791  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
792  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
793    NamedDecl *D = *I;
794    if (D->isCXXInstanceMember()) {
795      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
796
797      // If this is a member of an anonymous record, move out to the
798      // innermost non-anonymous struct or union.  If there isn't one,
799      // that's a special case.
800      while (R->isAnonymousStructOrUnion()) {
801        R = dyn_cast<CXXRecordDecl>(R->getParent());
802        if (!R) return IMA_AnonymousMember;
803      }
804      Classes.insert(R->getCanonicalDecl());
805    }
806    else
807      hasNonInstance = true;
808  }
809
810  // If we didn't find any instance members, it can't be an implicit
811  // member reference.
812  if (Classes.empty())
813    return IMA_Static;
814
815  // If the current context is not an instance method, it can't be
816  // an implicit member reference.
817  if (isStaticContext)
818    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
819
820  // If we can prove that the current context is unrelated to all the
821  // declaring classes, it can't be an implicit member reference (in
822  // which case it's an error if any of those members are selected).
823  if (IsProvablyNotDerivedFrom(SemaRef,
824                               cast<CXXMethodDecl>(DC)->getParent(),
825                               Classes))
826    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
827
828  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
829}
830
831/// Diagnose a reference to a field with no object available.
832static void DiagnoseInstanceReference(Sema &SemaRef,
833                                      const CXXScopeSpec &SS,
834                                      const LookupResult &R) {
835  SourceLocation Loc = R.getNameLoc();
836  SourceRange Range(Loc);
837  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
838
839  if (R.getAsSingle<FieldDecl>()) {
840    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
841      if (MD->isStatic()) {
842        // "invalid use of member 'x' in static member function"
843        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
844          << Range << R.getLookupName();
845        return;
846      }
847    }
848
849    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
850      << R.getLookupName() << Range;
851    return;
852  }
853
854  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
855}
856
857/// Diagnose an empty lookup.
858///
859/// \return false if new lookup candidates were found
860bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
861                               CorrectTypoContext CTC) {
862  DeclarationName Name = R.getLookupName();
863
864  unsigned diagnostic = diag::err_undeclared_var_use;
865  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
866  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
867      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
868      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
869    diagnostic = diag::err_undeclared_use;
870    diagnostic_suggest = diag::err_undeclared_use_suggest;
871  }
872
873  // If the original lookup was an unqualified lookup, fake an
874  // unqualified lookup.  This is useful when (for example) the
875  // original lookup would not have found something because it was a
876  // dependent name.
877  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
878       DC; DC = DC->getParent()) {
879    if (isa<CXXRecordDecl>(DC)) {
880      LookupQualifiedName(R, DC);
881
882      if (!R.empty()) {
883        // Don't give errors about ambiguities in this lookup.
884        R.suppressDiagnostics();
885
886        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
887        bool isInstance = CurMethod &&
888                          CurMethod->isInstance() &&
889                          DC == CurMethod->getParent();
890
891        // Give a code modification hint to insert 'this->'.
892        // TODO: fixit for inserting 'Base<T>::' in the other cases.
893        // Actually quite difficult!
894        if (isInstance) {
895          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
896              CallsUndergoingInstantiation.back()->getCallee());
897          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
898              CurMethod->getInstantiatedFromMemberFunction());
899          if (DepMethod) {
900            Diag(R.getNameLoc(), diagnostic) << Name
901              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
902            QualType DepThisType = DepMethod->getThisType(Context);
903            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
904                                       R.getNameLoc(), DepThisType, false);
905            TemplateArgumentListInfo TList;
906            if (ULE->hasExplicitTemplateArgs())
907              ULE->copyTemplateArgumentsInto(TList);
908            CXXDependentScopeMemberExpr *DepExpr =
909                CXXDependentScopeMemberExpr::Create(
910                    Context, DepThis, DepThisType, true, SourceLocation(),
911                    ULE->getQualifier(), ULE->getQualifierRange(), NULL,
912                    R.getLookupNameInfo(), &TList);
913            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
914          } else {
915            // FIXME: we should be able to handle this case too. It is correct
916            // to add this-> here. This is a workaround for PR7947.
917            Diag(R.getNameLoc(), diagnostic) << Name;
918          }
919        } else {
920          Diag(R.getNameLoc(), diagnostic) << Name;
921        }
922
923        // Do we really want to note all of these?
924        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
925          Diag((*I)->getLocation(), diag::note_dependent_var_use);
926
927        // Tell the callee to try to recover.
928        return false;
929      }
930
931      R.clear();
932    }
933  }
934
935  // We didn't find anything, so try to correct for a typo.
936  DeclarationName Corrected;
937  if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
938    if (!R.empty()) {
939      if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
940        if (SS.isEmpty())
941          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
942            << FixItHint::CreateReplacement(R.getNameLoc(),
943                                            R.getLookupName().getAsString());
944        else
945          Diag(R.getNameLoc(), diag::err_no_member_suggest)
946            << Name << computeDeclContext(SS, false) << R.getLookupName()
947            << SS.getRange()
948            << FixItHint::CreateReplacement(R.getNameLoc(),
949                                            R.getLookupName().getAsString());
950        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
951          Diag(ND->getLocation(), diag::note_previous_decl)
952            << ND->getDeclName();
953
954        // Tell the callee to try to recover.
955        return false;
956      }
957
958      if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
959        // FIXME: If we ended up with a typo for a type name or
960        // Objective-C class name, we're in trouble because the parser
961        // is in the wrong place to recover. Suggest the typo
962        // correction, but don't make it a fix-it since we're not going
963        // to recover well anyway.
964        if (SS.isEmpty())
965          Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
966        else
967          Diag(R.getNameLoc(), diag::err_no_member_suggest)
968            << Name << computeDeclContext(SS, false) << R.getLookupName()
969            << SS.getRange();
970
971        // Don't try to recover; it won't work.
972        return true;
973      }
974    } else {
975      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
976      // because we aren't able to recover.
977      if (SS.isEmpty())
978        Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
979      else
980        Diag(R.getNameLoc(), diag::err_no_member_suggest)
981        << Name << computeDeclContext(SS, false) << Corrected
982        << SS.getRange();
983      return true;
984    }
985    R.clear();
986  }
987
988  // Emit a special diagnostic for failed member lookups.
989  // FIXME: computing the declaration context might fail here (?)
990  if (!SS.isEmpty()) {
991    Diag(R.getNameLoc(), diag::err_no_member)
992      << Name << computeDeclContext(SS, false)
993      << SS.getRange();
994    return true;
995  }
996
997  // Give up, we can't recover.
998  Diag(R.getNameLoc(), diagnostic) << Name;
999  return true;
1000}
1001
1002static ObjCPropertyDecl *OkToSynthesizeProvisionalIvar(Sema &SemaRef,
1003                                                       IdentifierInfo *II,
1004                                                       SourceLocation NameLoc) {
1005  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1006  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1007  if (!IDecl)
1008    return 0;
1009  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1010  if (!ClassImpDecl)
1011    return 0;
1012  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1013  if (!property)
1014    return 0;
1015  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1016    if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
1017      return 0;
1018  return property;
1019}
1020
1021static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
1022                                               LookupResult &Lookup,
1023                                               IdentifierInfo *II,
1024                                               SourceLocation NameLoc) {
1025  ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
1026  bool LookForIvars;
1027  if (Lookup.empty())
1028    LookForIvars = true;
1029  else if (CurMeth->isClassMethod())
1030    LookForIvars = false;
1031  else
1032    LookForIvars = (Lookup.isSingleResult() &&
1033                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1034  if (!LookForIvars)
1035    return 0;
1036
1037  ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
1038  if (!IDecl)
1039    return 0;
1040  ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
1041  if (!ClassImpDecl)
1042    return 0;
1043  bool DynamicImplSeen = false;
1044  ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
1045  if (!property)
1046    return 0;
1047  if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
1048    DynamicImplSeen =
1049      (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
1050  if (!DynamicImplSeen) {
1051    QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
1052    ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
1053                                              NameLoc,
1054                                              II, PropType, /*Dinfo=*/0,
1055                                              ObjCIvarDecl::Protected,
1056                                              (Expr *)0, true);
1057    ClassImpDecl->addDecl(Ivar);
1058    IDecl->makeDeclVisibleInContext(Ivar, false);
1059    property->setPropertyIvarDecl(Ivar);
1060    return Ivar;
1061  }
1062  return 0;
1063}
1064
1065ExprResult Sema::ActOnIdExpression(Scope *S,
1066                                               CXXScopeSpec &SS,
1067                                               UnqualifiedId &Id,
1068                                               bool HasTrailingLParen,
1069                                               bool isAddressOfOperand) {
1070  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1071         "cannot be direct & operand and have a trailing lparen");
1072
1073  if (SS.isInvalid())
1074    return ExprError();
1075
1076  TemplateArgumentListInfo TemplateArgsBuffer;
1077
1078  // Decompose the UnqualifiedId into the following data.
1079  DeclarationNameInfo NameInfo;
1080  const TemplateArgumentListInfo *TemplateArgs;
1081  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1082
1083  DeclarationName Name = NameInfo.getName();
1084  IdentifierInfo *II = Name.getAsIdentifierInfo();
1085  SourceLocation NameLoc = NameInfo.getLoc();
1086
1087  // C++ [temp.dep.expr]p3:
1088  //   An id-expression is type-dependent if it contains:
1089  //     -- an identifier that was declared with a dependent type,
1090  //        (note: handled after lookup)
1091  //     -- a template-id that is dependent,
1092  //        (note: handled in BuildTemplateIdExpr)
1093  //     -- a conversion-function-id that specifies a dependent type,
1094  //     -- a nested-name-specifier that contains a class-name that
1095  //        names a dependent type.
1096  // Determine whether this is a member of an unknown specialization;
1097  // we need to handle these differently.
1098  bool DependentID = false;
1099  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1100      Name.getCXXNameType()->isDependentType()) {
1101    DependentID = true;
1102  } else if (SS.isSet()) {
1103    DeclContext *DC = computeDeclContext(SS, false);
1104    if (DC) {
1105      if (RequireCompleteDeclContext(SS, DC))
1106        return ExprError();
1107      // FIXME: We should be checking whether DC is the current instantiation.
1108      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
1109        DependentID = !IsFullyFormedScope(*this, RD);
1110    } else {
1111      DependentID = true;
1112    }
1113  }
1114
1115  if (DependentID) {
1116    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
1117                                      TemplateArgs);
1118  }
1119  bool IvarLookupFollowUp = false;
1120  // Perform the required lookup.
1121  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1122  if (TemplateArgs) {
1123    // Lookup the template name again to correctly establish the context in
1124    // which it was found. This is really unfortunate as we already did the
1125    // lookup to determine that it was a template name in the first place. If
1126    // this becomes a performance hit, we can work harder to preserve those
1127    // results until we get here but it's likely not worth it.
1128    bool MemberOfUnknownSpecialization;
1129    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1130                       MemberOfUnknownSpecialization);
1131  } else {
1132    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1133    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1134
1135    // If this reference is in an Objective-C method, then we need to do
1136    // some special Objective-C lookup, too.
1137    if (IvarLookupFollowUp) {
1138      ExprResult E(LookupInObjCMethod(R, S, II, true));
1139      if (E.isInvalid())
1140        return ExprError();
1141
1142      Expr *Ex = E.takeAs<Expr>();
1143      if (Ex) return Owned(Ex);
1144      // Synthesize ivars lazily
1145      if (getLangOptions().ObjCNonFragileABI2) {
1146        if (SynthesizeProvisionalIvar(*this, R, II, NameLoc))
1147          return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
1148                                   isAddressOfOperand);
1149      }
1150      // for further use, this must be set to false if in class method.
1151      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
1152    }
1153  }
1154
1155  if (R.isAmbiguous())
1156    return ExprError();
1157
1158  // Determine whether this name might be a candidate for
1159  // argument-dependent lookup.
1160  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1161
1162  if (R.empty() && !ADL) {
1163    // Otherwise, this could be an implicitly declared function reference (legal
1164    // in C90, extension in C99, forbidden in C++).
1165    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1166      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1167      if (D) R.addDecl(D);
1168    }
1169
1170    // If this name wasn't predeclared and if this is not a function
1171    // call, diagnose the problem.
1172    if (R.empty()) {
1173      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
1174        return ExprError();
1175
1176      assert(!R.empty() &&
1177             "DiagnoseEmptyLookup returned false but added no results");
1178
1179      // If we found an Objective-C instance variable, let
1180      // LookupInObjCMethod build the appropriate expression to
1181      // reference the ivar.
1182      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1183        R.clear();
1184        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1185        assert(E.isInvalid() || E.get());
1186        return move(E);
1187      }
1188    }
1189  }
1190
1191  // This is guaranteed from this point on.
1192  assert(!R.empty() || ADL);
1193
1194  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1195    if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
1196        !getLangOptions().ObjCNonFragileABI2 &&
1197        Var->isFileVarDecl()) {
1198      ObjCPropertyDecl *Property =
1199        OkToSynthesizeProvisionalIvar(*this, II, NameLoc);
1200      if (Property) {
1201        Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
1202        Diag(Property->getLocation(), diag::note_property_declare);
1203        Diag(Var->getLocation(), diag::note_global_declared_at);
1204      }
1205    }
1206  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1207    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1208      // C99 DR 316 says that, if a function type comes from a
1209      // function definition (without a prototype), that type is only
1210      // used for checking compatibility. Therefore, when referencing
1211      // the function, we pretend that we don't have the full function
1212      // type.
1213      if (DiagnoseUseOfDecl(Func, NameLoc))
1214        return ExprError();
1215
1216      QualType T = Func->getType();
1217      QualType NoProtoType = T;
1218      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1219        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
1220                                                     Proto->getExtInfo());
1221      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1222    }
1223  }
1224
1225  // Check whether this might be a C++ implicit instance member access.
1226  // C++ [expr.prim.general]p6:
1227  //   Within the definition of a non-static member function, an
1228  //   identifier that names a non-static member is transformed to a
1229  //   class member access expression.
1230  // But note that &SomeClass::foo is grammatically distinct, even
1231  // though we don't parse it that way.
1232  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1233    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1234    if (!isAbstractMemberPointer)
1235      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1236  }
1237
1238  if (TemplateArgs)
1239    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1240
1241  return BuildDeclarationNameExpr(SS, R, ADL);
1242}
1243
1244/// Builds an expression which might be an implicit member expression.
1245ExprResult
1246Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1247                                      LookupResult &R,
1248                                const TemplateArgumentListInfo *TemplateArgs) {
1249  switch (ClassifyImplicitMemberAccess(*this, R)) {
1250  case IMA_Instance:
1251    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1252
1253  case IMA_AnonymousMember:
1254    assert(R.isSingleResult());
1255    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1256                                                    R.getAsSingle<FieldDecl>());
1257
1258  case IMA_Mixed:
1259  case IMA_Mixed_Unrelated:
1260  case IMA_Unresolved:
1261    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1262
1263  case IMA_Static:
1264  case IMA_Mixed_StaticContext:
1265  case IMA_Unresolved_StaticContext:
1266    if (TemplateArgs)
1267      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1268    return BuildDeclarationNameExpr(SS, R, false);
1269
1270  case IMA_Error_StaticContext:
1271  case IMA_Error_Unrelated:
1272    DiagnoseInstanceReference(*this, SS, R);
1273    return ExprError();
1274  }
1275
1276  llvm_unreachable("unexpected instance member access kind");
1277  return ExprError();
1278}
1279
1280/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1281/// declaration name, generally during template instantiation.
1282/// There's a large number of things which don't need to be done along
1283/// this path.
1284ExprResult
1285Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1286                                        const DeclarationNameInfo &NameInfo) {
1287  DeclContext *DC;
1288  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1289    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
1290
1291  if (RequireCompleteDeclContext(SS, DC))
1292    return ExprError();
1293
1294  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1295  LookupQualifiedName(R, DC);
1296
1297  if (R.isAmbiguous())
1298    return ExprError();
1299
1300  if (R.empty()) {
1301    Diag(NameInfo.getLoc(), diag::err_no_member)
1302      << NameInfo.getName() << DC << SS.getRange();
1303    return ExprError();
1304  }
1305
1306  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1307}
1308
1309/// LookupInObjCMethod - The parser has read a name in, and Sema has
1310/// detected that we're currently inside an ObjC method.  Perform some
1311/// additional lookup.
1312///
1313/// Ideally, most of this would be done by lookup, but there's
1314/// actually quite a lot of extra work involved.
1315///
1316/// Returns a null sentinel to indicate trivial success.
1317ExprResult
1318Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1319                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1320  SourceLocation Loc = Lookup.getNameLoc();
1321  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1322
1323  // There are two cases to handle here.  1) scoped lookup could have failed,
1324  // in which case we should look for an ivar.  2) scoped lookup could have
1325  // found a decl, but that decl is outside the current instance method (i.e.
1326  // a global variable).  In these two cases, we do a lookup for an ivar with
1327  // this name, if the lookup sucedes, we replace it our current decl.
1328
1329  // If we're in a class method, we don't normally want to look for
1330  // ivars.  But if we don't find anything else, and there's an
1331  // ivar, that's an error.
1332  bool IsClassMethod = CurMethod->isClassMethod();
1333
1334  bool LookForIvars;
1335  if (Lookup.empty())
1336    LookForIvars = true;
1337  else if (IsClassMethod)
1338    LookForIvars = false;
1339  else
1340    LookForIvars = (Lookup.isSingleResult() &&
1341                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1342  ObjCInterfaceDecl *IFace = 0;
1343  if (LookForIvars) {
1344    IFace = CurMethod->getClassInterface();
1345    ObjCInterfaceDecl *ClassDeclared;
1346    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1347      // Diagnose using an ivar in a class method.
1348      if (IsClassMethod)
1349        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1350                         << IV->getDeclName());
1351
1352      // If we're referencing an invalid decl, just return this as a silent
1353      // error node.  The error diagnostic was already emitted on the decl.
1354      if (IV->isInvalidDecl())
1355        return ExprError();
1356
1357      // Check if referencing a field with __attribute__((deprecated)).
1358      if (DiagnoseUseOfDecl(IV, Loc))
1359        return ExprError();
1360
1361      // Diagnose the use of an ivar outside of the declaring class.
1362      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1363          ClassDeclared != IFace)
1364        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1365
1366      // FIXME: This should use a new expr for a direct reference, don't
1367      // turn this into Self->ivar, just return a BareIVarExpr or something.
1368      IdentifierInfo &II = Context.Idents.get("self");
1369      UnqualifiedId SelfName;
1370      SelfName.setIdentifier(&II, SourceLocation());
1371      CXXScopeSpec SelfScopeSpec;
1372      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1373                                                    SelfName, false, false);
1374      MarkDeclarationReferenced(Loc, IV);
1375      return Owned(new (Context)
1376                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1377                                   SelfExpr.takeAs<Expr>(), true, true));
1378    }
1379  } else if (CurMethod->isInstanceMethod()) {
1380    // We should warn if a local variable hides an ivar.
1381    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
1382    ObjCInterfaceDecl *ClassDeclared;
1383    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1384      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1385          IFace == ClassDeclared)
1386        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1387    }
1388  }
1389
1390  if (Lookup.empty() && II && AllowBuiltinCreation) {
1391    // FIXME. Consolidate this with similar code in LookupName.
1392    if (unsigned BuiltinID = II->getBuiltinID()) {
1393      if (!(getLangOptions().CPlusPlus &&
1394            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1395        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1396                                           S, Lookup.isForRedeclaration(),
1397                                           Lookup.getNameLoc());
1398        if (D) Lookup.addDecl(D);
1399      }
1400    }
1401  }
1402  // Sentinel value saying that we didn't do anything special.
1403  return Owned((Expr*) 0);
1404}
1405
1406/// \brief Cast a base object to a member's actual type.
1407///
1408/// Logically this happens in three phases:
1409///
1410/// * First we cast from the base type to the naming class.
1411///   The naming class is the class into which we were looking
1412///   when we found the member;  it's the qualifier type if a
1413///   qualifier was provided, and otherwise it's the base type.
1414///
1415/// * Next we cast from the naming class to the declaring class.
1416///   If the member we found was brought into a class's scope by
1417///   a using declaration, this is that class;  otherwise it's
1418///   the class declaring the member.
1419///
1420/// * Finally we cast from the declaring class to the "true"
1421///   declaring class of the member.  This conversion does not
1422///   obey access control.
1423bool
1424Sema::PerformObjectMemberConversion(Expr *&From,
1425                                    NestedNameSpecifier *Qualifier,
1426                                    NamedDecl *FoundDecl,
1427                                    NamedDecl *Member) {
1428  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1429  if (!RD)
1430    return false;
1431
1432  QualType DestRecordType;
1433  QualType DestType;
1434  QualType FromRecordType;
1435  QualType FromType = From->getType();
1436  bool PointerConversions = false;
1437  if (isa<FieldDecl>(Member)) {
1438    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1439
1440    if (FromType->getAs<PointerType>()) {
1441      DestType = Context.getPointerType(DestRecordType);
1442      FromRecordType = FromType->getPointeeType();
1443      PointerConversions = true;
1444    } else {
1445      DestType = DestRecordType;
1446      FromRecordType = FromType;
1447    }
1448  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1449    if (Method->isStatic())
1450      return false;
1451
1452    DestType = Method->getThisType(Context);
1453    DestRecordType = DestType->getPointeeType();
1454
1455    if (FromType->getAs<PointerType>()) {
1456      FromRecordType = FromType->getPointeeType();
1457      PointerConversions = true;
1458    } else {
1459      FromRecordType = FromType;
1460      DestType = DestRecordType;
1461    }
1462  } else {
1463    // No conversion necessary.
1464    return false;
1465  }
1466
1467  if (DestType->isDependentType() || FromType->isDependentType())
1468    return false;
1469
1470  // If the unqualified types are the same, no conversion is necessary.
1471  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1472    return false;
1473
1474  SourceRange FromRange = From->getSourceRange();
1475  SourceLocation FromLoc = FromRange.getBegin();
1476
1477  ImplicitCastExpr::ResultCategory Category = CastCategory(From);
1478
1479  // C++ [class.member.lookup]p8:
1480  //   [...] Ambiguities can often be resolved by qualifying a name with its
1481  //   class name.
1482  //
1483  // If the member was a qualified name and the qualified referred to a
1484  // specific base subobject type, we'll cast to that intermediate type
1485  // first and then to the object in which the member is declared. That allows
1486  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1487  //
1488  //   class Base { public: int x; };
1489  //   class Derived1 : public Base { };
1490  //   class Derived2 : public Base { };
1491  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1492  //
1493  //   void VeryDerived::f() {
1494  //     x = 17; // error: ambiguous base subobjects
1495  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1496  //   }
1497  if (Qualifier) {
1498    QualType QType = QualType(Qualifier->getAsType(), 0);
1499    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1500    assert(QType->isRecordType() && "lookup done with non-record type");
1501
1502    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1503
1504    // In C++98, the qualifier type doesn't actually have to be a base
1505    // type of the object type, in which case we just ignore it.
1506    // Otherwise build the appropriate casts.
1507    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1508      CXXCastPath BasePath;
1509      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1510                                       FromLoc, FromRange, &BasePath))
1511        return true;
1512
1513      if (PointerConversions)
1514        QType = Context.getPointerType(QType);
1515      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
1516                        Category, &BasePath);
1517
1518      FromType = QType;
1519      FromRecordType = QRecordType;
1520
1521      // If the qualifier type was the same as the destination type,
1522      // we're done.
1523      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1524        return false;
1525    }
1526  }
1527
1528  bool IgnoreAccess = false;
1529
1530  // If we actually found the member through a using declaration, cast
1531  // down to the using declaration's type.
1532  //
1533  // Pointer equality is fine here because only one declaration of a
1534  // class ever has member declarations.
1535  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1536    assert(isa<UsingShadowDecl>(FoundDecl));
1537    QualType URecordType = Context.getTypeDeclType(
1538                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1539
1540    // We only need to do this if the naming-class to declaring-class
1541    // conversion is non-trivial.
1542    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1543      assert(IsDerivedFrom(FromRecordType, URecordType));
1544      CXXCastPath BasePath;
1545      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1546                                       FromLoc, FromRange, &BasePath))
1547        return true;
1548
1549      QualType UType = URecordType;
1550      if (PointerConversions)
1551        UType = Context.getPointerType(UType);
1552      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
1553                        Category, &BasePath);
1554      FromType = UType;
1555      FromRecordType = URecordType;
1556    }
1557
1558    // We don't do access control for the conversion from the
1559    // declaring class to the true declaring class.
1560    IgnoreAccess = true;
1561  }
1562
1563  CXXCastPath BasePath;
1564  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
1565                                   FromLoc, FromRange, &BasePath,
1566                                   IgnoreAccess))
1567    return true;
1568
1569  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
1570                    Category, &BasePath);
1571  return false;
1572}
1573
1574/// \brief Build a MemberExpr AST node.
1575static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1576                                   const CXXScopeSpec &SS, ValueDecl *Member,
1577                                   DeclAccessPair FoundDecl,
1578                                   const DeclarationNameInfo &MemberNameInfo,
1579                                   QualType Ty,
1580                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1581  NestedNameSpecifier *Qualifier = 0;
1582  SourceRange QualifierRange;
1583  if (SS.isSet()) {
1584    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1585    QualifierRange = SS.getRange();
1586  }
1587
1588  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1589                            Member, FoundDecl, MemberNameInfo,
1590                            TemplateArgs, Ty);
1591}
1592
1593/// Builds an implicit member access expression.  The current context
1594/// is known to be an instance method, and the given unqualified lookup
1595/// set is known to contain only instance members, at least one of which
1596/// is from an appropriate type.
1597ExprResult
1598Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1599                              LookupResult &R,
1600                              const TemplateArgumentListInfo *TemplateArgs,
1601                              bool IsKnownInstance) {
1602  assert(!R.empty() && !R.isAmbiguous());
1603
1604  SourceLocation Loc = R.getNameLoc();
1605
1606  // We may have found a field within an anonymous union or struct
1607  // (C++ [class.union]).
1608  // FIXME: This needs to happen post-isImplicitMemberReference?
1609  // FIXME: template-ids inside anonymous structs?
1610  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1611    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1612      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1613
1614  // If this is known to be an instance access, go ahead and build a
1615  // 'this' expression now.
1616  DeclContext *DC = getFunctionLevelDeclContext();
1617  QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
1618  Expr *This = 0; // null signifies implicit access
1619  if (IsKnownInstance) {
1620    SourceLocation Loc = R.getNameLoc();
1621    if (SS.getRange().isValid())
1622      Loc = SS.getRange().getBegin();
1623    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1624  }
1625
1626  return BuildMemberReferenceExpr(This, ThisType,
1627                                  /*OpLoc*/ SourceLocation(),
1628                                  /*IsArrow*/ true,
1629                                  SS,
1630                                  /*FirstQualifierInScope*/ 0,
1631                                  R, TemplateArgs);
1632}
1633
1634bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1635                                      const LookupResult &R,
1636                                      bool HasTrailingLParen) {
1637  // Only when used directly as the postfix-expression of a call.
1638  if (!HasTrailingLParen)
1639    return false;
1640
1641  // Never if a scope specifier was provided.
1642  if (SS.isSet())
1643    return false;
1644
1645  // Only in C++ or ObjC++.
1646  if (!getLangOptions().CPlusPlus)
1647    return false;
1648
1649  // Turn off ADL when we find certain kinds of declarations during
1650  // normal lookup:
1651  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1652    NamedDecl *D = *I;
1653
1654    // C++0x [basic.lookup.argdep]p3:
1655    //     -- a declaration of a class member
1656    // Since using decls preserve this property, we check this on the
1657    // original decl.
1658    if (D->isCXXClassMember())
1659      return false;
1660
1661    // C++0x [basic.lookup.argdep]p3:
1662    //     -- a block-scope function declaration that is not a
1663    //        using-declaration
1664    // NOTE: we also trigger this for function templates (in fact, we
1665    // don't check the decl type at all, since all other decl types
1666    // turn off ADL anyway).
1667    if (isa<UsingShadowDecl>(D))
1668      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1669    else if (D->getDeclContext()->isFunctionOrMethod())
1670      return false;
1671
1672    // C++0x [basic.lookup.argdep]p3:
1673    //     -- a declaration that is neither a function or a function
1674    //        template
1675    // And also for builtin functions.
1676    if (isa<FunctionDecl>(D)) {
1677      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1678
1679      // But also builtin functions.
1680      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1681        return false;
1682    } else if (!isa<FunctionTemplateDecl>(D))
1683      return false;
1684  }
1685
1686  return true;
1687}
1688
1689
1690/// Diagnoses obvious problems with the use of the given declaration
1691/// as an expression.  This is only actually called for lookups that
1692/// were not overloaded, and it doesn't promise that the declaration
1693/// will in fact be used.
1694static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1695  if (isa<TypedefDecl>(D)) {
1696    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1697    return true;
1698  }
1699
1700  if (isa<ObjCInterfaceDecl>(D)) {
1701    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1702    return true;
1703  }
1704
1705  if (isa<NamespaceDecl>(D)) {
1706    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1707    return true;
1708  }
1709
1710  return false;
1711}
1712
1713ExprResult
1714Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1715                               LookupResult &R,
1716                               bool NeedsADL) {
1717  // If this is a single, fully-resolved result and we don't need ADL,
1718  // just build an ordinary singleton decl ref.
1719  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1720    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
1721                                    R.getFoundDecl());
1722
1723  // We only need to check the declaration if there's exactly one
1724  // result, because in the overloaded case the results can only be
1725  // functions and function templates.
1726  if (R.isSingleResult() &&
1727      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1728    return ExprError();
1729
1730  // Otherwise, just build an unresolved lookup expression.  Suppress
1731  // any lookup-related diagnostics; we'll hash these out later, when
1732  // we've picked a target.
1733  R.suppressDiagnostics();
1734
1735  bool Dependent
1736    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1737  UnresolvedLookupExpr *ULE
1738    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1739                                   (NestedNameSpecifier*) SS.getScopeRep(),
1740                                   SS.getRange(), R.getLookupNameInfo(),
1741                                   NeedsADL, R.isOverloadedResult(),
1742                                   R.begin(), R.end());
1743
1744  return Owned(ULE);
1745}
1746
1747
1748/// \brief Complete semantic analysis for a reference to the given declaration.
1749ExprResult
1750Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1751                               const DeclarationNameInfo &NameInfo,
1752                               NamedDecl *D) {
1753  assert(D && "Cannot refer to a NULL declaration");
1754  assert(!isa<FunctionTemplateDecl>(D) &&
1755         "Cannot refer unambiguously to a function template");
1756
1757  SourceLocation Loc = NameInfo.getLoc();
1758  if (CheckDeclInExpr(*this, Loc, D))
1759    return ExprError();
1760
1761  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1762    // Specifically diagnose references to class templates that are missing
1763    // a template argument list.
1764    Diag(Loc, diag::err_template_decl_ref)
1765      << Template << SS.getRange();
1766    Diag(Template->getLocation(), diag::note_template_decl_here);
1767    return ExprError();
1768  }
1769
1770  // Make sure that we're referring to a value.
1771  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1772  if (!VD) {
1773    Diag(Loc, diag::err_ref_non_value)
1774      << D << SS.getRange();
1775    Diag(D->getLocation(), diag::note_declared_at);
1776    return ExprError();
1777  }
1778
1779  // Check whether this declaration can be used. Note that we suppress
1780  // this check when we're going to perform argument-dependent lookup
1781  // on this function name, because this might not be the function
1782  // that overload resolution actually selects.
1783  if (DiagnoseUseOfDecl(VD, Loc))
1784    return ExprError();
1785
1786  // Only create DeclRefExpr's for valid Decl's.
1787  if (VD->isInvalidDecl())
1788    return ExprError();
1789
1790  // If the identifier reference is inside a block, and it refers to a value
1791  // that is outside the block, create a BlockDeclRefExpr instead of a
1792  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1793  // the block is formed.
1794  //
1795  // We do not do this for things like enum constants, global variables, etc,
1796  // as they do not get snapshotted.
1797  //
1798  if (getCurBlock() &&
1799      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1800    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1801      Diag(Loc, diag::err_ref_vm_type);
1802      Diag(D->getLocation(), diag::note_declared_at);
1803      return ExprError();
1804    }
1805
1806    if (VD->getType()->isArrayType()) {
1807      Diag(Loc, diag::err_ref_array_type);
1808      Diag(D->getLocation(), diag::note_declared_at);
1809      return ExprError();
1810    }
1811
1812    MarkDeclarationReferenced(Loc, VD);
1813    QualType ExprTy = VD->getType().getNonReferenceType();
1814    // The BlocksAttr indicates the variable is bound by-reference.
1815    if (VD->getAttr<BlocksAttr>())
1816      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1817    // This is to record that a 'const' was actually synthesize and added.
1818    bool constAdded = !ExprTy.isConstQualified();
1819    // Variable will be bound by-copy, make it const within the closure.
1820
1821    ExprTy.addConst();
1822    QualType T = VD->getType();
1823    BlockDeclRefExpr *BDRE = new (Context) BlockDeclRefExpr(VD,
1824                                                            ExprTy, Loc, false,
1825                                                            constAdded);
1826    if (getLangOptions().CPlusPlus) {
1827      if (!T->isDependentType() && !T->isReferenceType()) {
1828        Expr *E = new (Context)
1829                    DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
1830                                          SourceLocation());
1831
1832        ExprResult Res = PerformCopyInitialization(
1833                          InitializedEntity::InitializeBlock(VD->getLocation(),
1834                                                         T, false),
1835                                                         SourceLocation(),
1836                                                         Owned(E));
1837        if (!Res.isInvalid()) {
1838          Res = MaybeCreateCXXExprWithTemporaries(Res.get());
1839          Expr *Init = Res.takeAs<Expr>();
1840          BDRE->setCopyConstructorExpr(Init);
1841        }
1842      }
1843    }
1844    return Owned(BDRE);
1845  }
1846  // If this reference is not in a block or if the referenced variable is
1847  // within the block, create a normal DeclRefExpr.
1848
1849  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
1850                          NameInfo, &SS);
1851}
1852
1853ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1854                                                 tok::TokenKind Kind) {
1855  PredefinedExpr::IdentType IT;
1856
1857  switch (Kind) {
1858  default: assert(0 && "Unknown simple primary expr!");
1859  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1860  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1861  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1862  }
1863
1864  // Pre-defined identifiers are of type char[x], where x is the length of the
1865  // string.
1866
1867  Decl *currentDecl = getCurFunctionOrMethodDecl();
1868  if (!currentDecl && getCurBlock())
1869    currentDecl = getCurBlock()->TheDecl;
1870  if (!currentDecl) {
1871    Diag(Loc, diag::ext_predef_outside_function);
1872    currentDecl = Context.getTranslationUnitDecl();
1873  }
1874
1875  QualType ResTy;
1876  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1877    ResTy = Context.DependentTy;
1878  } else {
1879    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1880
1881    llvm::APInt LengthI(32, Length + 1);
1882    ResTy = Context.CharTy.withConst();
1883    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1884  }
1885  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1886}
1887
1888ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1889  llvm::SmallString<16> CharBuffer;
1890  bool Invalid = false;
1891  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1892  if (Invalid)
1893    return ExprError();
1894
1895  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1896                            PP);
1897  if (Literal.hadError())
1898    return ExprError();
1899
1900  QualType Ty;
1901  if (!getLangOptions().CPlusPlus)
1902    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1903  else if (Literal.isWide())
1904    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1905  else if (Literal.isMultiChar())
1906    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1907  else
1908    Ty = Context.CharTy;  // 'x' -> char in C++
1909
1910  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1911                                              Literal.isWide(),
1912                                              Ty, Tok.getLocation()));
1913}
1914
1915ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1916  // Fast path for a single digit (which is quite common).  A single digit
1917  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1918  if (Tok.getLength() == 1) {
1919    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1920    unsigned IntSize = Context.Target.getIntWidth();
1921    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1922                    Context.IntTy, Tok.getLocation()));
1923  }
1924
1925  llvm::SmallString<512> IntegerBuffer;
1926  // Add padding so that NumericLiteralParser can overread by one character.
1927  IntegerBuffer.resize(Tok.getLength()+1);
1928  const char *ThisTokBegin = &IntegerBuffer[0];
1929
1930  // Get the spelling of the token, which eliminates trigraphs, etc.
1931  bool Invalid = false;
1932  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1933  if (Invalid)
1934    return ExprError();
1935
1936  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1937                               Tok.getLocation(), PP);
1938  if (Literal.hadError)
1939    return ExprError();
1940
1941  Expr *Res;
1942
1943  if (Literal.isFloatingLiteral()) {
1944    QualType Ty;
1945    if (Literal.isFloat)
1946      Ty = Context.FloatTy;
1947    else if (!Literal.isLong)
1948      Ty = Context.DoubleTy;
1949    else
1950      Ty = Context.LongDoubleTy;
1951
1952    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1953
1954    using llvm::APFloat;
1955    APFloat Val(Format);
1956
1957    APFloat::opStatus result = Literal.GetFloatValue(Val);
1958
1959    // Overflow is always an error, but underflow is only an error if
1960    // we underflowed to zero (APFloat reports denormals as underflow).
1961    if ((result & APFloat::opOverflow) ||
1962        ((result & APFloat::opUnderflow) && Val.isZero())) {
1963      unsigned diagnostic;
1964      llvm::SmallString<20> buffer;
1965      if (result & APFloat::opOverflow) {
1966        diagnostic = diag::warn_float_overflow;
1967        APFloat::getLargest(Format).toString(buffer);
1968      } else {
1969        diagnostic = diag::warn_float_underflow;
1970        APFloat::getSmallest(Format).toString(buffer);
1971      }
1972
1973      Diag(Tok.getLocation(), diagnostic)
1974        << Ty
1975        << llvm::StringRef(buffer.data(), buffer.size());
1976    }
1977
1978    bool isExact = (result == APFloat::opOK);
1979    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1980
1981  } else if (!Literal.isIntegerLiteral()) {
1982    return ExprError();
1983  } else {
1984    QualType Ty;
1985
1986    // long long is a C99 feature.
1987    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1988        Literal.isLongLong)
1989      Diag(Tok.getLocation(), diag::ext_longlong);
1990
1991    // Get the value in the widest-possible width.
1992    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1993
1994    if (Literal.GetIntegerValue(ResultVal)) {
1995      // If this value didn't fit into uintmax_t, warn and force to ull.
1996      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1997      Ty = Context.UnsignedLongLongTy;
1998      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1999             "long long is not intmax_t?");
2000    } else {
2001      // If this value fits into a ULL, try to figure out what else it fits into
2002      // according to the rules of C99 6.4.4.1p5.
2003
2004      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2005      // be an unsigned int.
2006      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2007
2008      // Check from smallest to largest, picking the smallest type we can.
2009      unsigned Width = 0;
2010      if (!Literal.isLong && !Literal.isLongLong) {
2011        // Are int/unsigned possibilities?
2012        unsigned IntSize = Context.Target.getIntWidth();
2013
2014        // Does it fit in a unsigned int?
2015        if (ResultVal.isIntN(IntSize)) {
2016          // Does it fit in a signed int?
2017          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2018            Ty = Context.IntTy;
2019          else if (AllowUnsigned)
2020            Ty = Context.UnsignedIntTy;
2021          Width = IntSize;
2022        }
2023      }
2024
2025      // Are long/unsigned long possibilities?
2026      if (Ty.isNull() && !Literal.isLongLong) {
2027        unsigned LongSize = Context.Target.getLongWidth();
2028
2029        // Does it fit in a unsigned long?
2030        if (ResultVal.isIntN(LongSize)) {
2031          // Does it fit in a signed long?
2032          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2033            Ty = Context.LongTy;
2034          else if (AllowUnsigned)
2035            Ty = Context.UnsignedLongTy;
2036          Width = LongSize;
2037        }
2038      }
2039
2040      // Finally, check long long if needed.
2041      if (Ty.isNull()) {
2042        unsigned LongLongSize = Context.Target.getLongLongWidth();
2043
2044        // Does it fit in a unsigned long long?
2045        if (ResultVal.isIntN(LongLongSize)) {
2046          // Does it fit in a signed long long?
2047          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
2048            Ty = Context.LongLongTy;
2049          else if (AllowUnsigned)
2050            Ty = Context.UnsignedLongLongTy;
2051          Width = LongLongSize;
2052        }
2053      }
2054
2055      // If we still couldn't decide a type, we probably have something that
2056      // does not fit in a signed long long, but has no U suffix.
2057      if (Ty.isNull()) {
2058        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2059        Ty = Context.UnsignedLongLongTy;
2060        Width = Context.Target.getLongLongWidth();
2061      }
2062
2063      if (ResultVal.getBitWidth() != Width)
2064        ResultVal.trunc(Width);
2065    }
2066    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
2067  }
2068
2069  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2070  if (Literal.isImaginary)
2071    Res = new (Context) ImaginaryLiteral(Res,
2072                                        Context.getComplexType(Res->getType()));
2073
2074  return Owned(Res);
2075}
2076
2077ExprResult Sema::ActOnParenExpr(SourceLocation L,
2078                                              SourceLocation R, Expr *E) {
2079  assert((E != 0) && "ActOnParenExpr() missing expr");
2080  return Owned(new (Context) ParenExpr(L, R, E));
2081}
2082
2083/// The UsualUnaryConversions() function is *not* called by this routine.
2084/// See C99 6.3.2.1p[2-4] for more details.
2085bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2086                                     SourceLocation OpLoc,
2087                                     const SourceRange &ExprRange,
2088                                     bool isSizeof) {
2089  if (exprType->isDependentType())
2090    return false;
2091
2092  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2093  //   the result is the size of the referenced type."
2094  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2095  //   result shall be the alignment of the referenced type."
2096  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2097    exprType = Ref->getPointeeType();
2098
2099  // C99 6.5.3.4p1:
2100  if (exprType->isFunctionType()) {
2101    // alignof(function) is allowed as an extension.
2102    if (isSizeof)
2103      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2104    return false;
2105  }
2106
2107  // Allow sizeof(void)/alignof(void) as an extension.
2108  if (exprType->isVoidType()) {
2109    Diag(OpLoc, diag::ext_sizeof_void_type)
2110      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2111    return false;
2112  }
2113
2114  if (RequireCompleteType(OpLoc, exprType,
2115                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2116                          << int(!isSizeof) << ExprRange))
2117    return true;
2118
2119  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2120  if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
2121    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2122      << exprType << isSizeof << ExprRange;
2123    return true;
2124  }
2125
2126  if (Context.hasSameUnqualifiedType(exprType, Context.OverloadTy)) {
2127    Diag(OpLoc, diag::err_sizeof_alignof_overloaded_function_type)
2128      << !isSizeof << ExprRange;
2129    return true;
2130  }
2131
2132  return false;
2133}
2134
2135bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2136                            const SourceRange &ExprRange) {
2137  E = E->IgnoreParens();
2138
2139  // alignof decl is always ok.
2140  if (isa<DeclRefExpr>(E))
2141    return false;
2142
2143  // Cannot know anything else if the expression is dependent.
2144  if (E->isTypeDependent())
2145    return false;
2146
2147  if (E->getBitField()) {
2148    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2149    return true;
2150  }
2151
2152  // Alignment of a field access is always okay, so long as it isn't a
2153  // bit-field.
2154  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2155    if (isa<FieldDecl>(ME->getMemberDecl()))
2156      return false;
2157
2158  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2159}
2160
2161/// \brief Build a sizeof or alignof expression given a type operand.
2162ExprResult
2163Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2164                              SourceLocation OpLoc,
2165                              bool isSizeOf, SourceRange R) {
2166  if (!TInfo)
2167    return ExprError();
2168
2169  QualType T = TInfo->getType();
2170
2171  if (!T->isDependentType() &&
2172      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2173    return ExprError();
2174
2175  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2176  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2177                                               Context.getSizeType(), OpLoc,
2178                                               R.getEnd()));
2179}
2180
2181/// \brief Build a sizeof or alignof expression given an expression
2182/// operand.
2183ExprResult
2184Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2185                              bool isSizeOf, SourceRange R) {
2186  // Verify that the operand is valid.
2187  bool isInvalid = false;
2188  if (E->isTypeDependent()) {
2189    // Delay type-checking for type-dependent expressions.
2190  } else if (!isSizeOf) {
2191    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2192  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2193    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2194    isInvalid = true;
2195  } else {
2196    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2197  }
2198
2199  if (isInvalid)
2200    return ExprError();
2201
2202  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2203  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2204                                               Context.getSizeType(), OpLoc,
2205                                               R.getEnd()));
2206}
2207
2208/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2209/// the same for @c alignof and @c __alignof
2210/// Note that the ArgRange is invalid if isType is false.
2211ExprResult
2212Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2213                             void *TyOrEx, const SourceRange &ArgRange) {
2214  // If error parsing type, ignore.
2215  if (TyOrEx == 0) return ExprError();
2216
2217  if (isType) {
2218    TypeSourceInfo *TInfo;
2219    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
2220    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2221  }
2222
2223  Expr *ArgEx = (Expr *)TyOrEx;
2224  ExprResult Result
2225    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2226
2227  if (Result.isInvalid())
2228    DeleteExpr(ArgEx);
2229
2230  return move(Result);
2231}
2232
2233QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2234  if (V->isTypeDependent())
2235    return Context.DependentTy;
2236
2237  // These operators return the element type of a complex type.
2238  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2239    return CT->getElementType();
2240
2241  // Otherwise they pass through real integer and floating point types here.
2242  if (V->getType()->isArithmeticType())
2243    return V->getType();
2244
2245  // Reject anything else.
2246  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2247    << (isReal ? "__real" : "__imag");
2248  return QualType();
2249}
2250
2251
2252
2253ExprResult
2254Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2255                          tok::TokenKind Kind, Expr *Input) {
2256  UnaryOperator::Opcode Opc;
2257  switch (Kind) {
2258  default: assert(0 && "Unknown unary op!");
2259  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2260  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2261  }
2262
2263  return BuildUnaryOp(S, OpLoc, Opc, Input);
2264}
2265
2266ExprResult
2267Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
2268                              Expr *Idx, SourceLocation RLoc) {
2269  // Since this might be a postfix expression, get rid of ParenListExprs.
2270  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2271  if (Result.isInvalid()) return ExprError();
2272  Base = Result.take();
2273
2274  Expr *LHSExp = Base, *RHSExp = Idx;
2275
2276  if (getLangOptions().CPlusPlus &&
2277      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2278    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2279                                                  Context.DependentTy, RLoc));
2280  }
2281
2282  if (getLangOptions().CPlusPlus &&
2283      (LHSExp->getType()->isRecordType() ||
2284       LHSExp->getType()->isEnumeralType() ||
2285       RHSExp->getType()->isRecordType() ||
2286       RHSExp->getType()->isEnumeralType())) {
2287    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
2288  }
2289
2290  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
2291}
2292
2293
2294ExprResult
2295Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
2296                                     Expr *Idx, SourceLocation RLoc) {
2297  Expr *LHSExp = Base;
2298  Expr *RHSExp = Idx;
2299
2300  // Perform default conversions.
2301  if (!LHSExp->getType()->getAs<VectorType>())
2302      DefaultFunctionArrayLvalueConversion(LHSExp);
2303  DefaultFunctionArrayLvalueConversion(RHSExp);
2304
2305  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2306
2307  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2308  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2309  // in the subscript position. As a result, we need to derive the array base
2310  // and index from the expression types.
2311  Expr *BaseExpr, *IndexExpr;
2312  QualType ResultType;
2313  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2314    BaseExpr = LHSExp;
2315    IndexExpr = RHSExp;
2316    ResultType = Context.DependentTy;
2317  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2318    BaseExpr = LHSExp;
2319    IndexExpr = RHSExp;
2320    ResultType = PTy->getPointeeType();
2321  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2322     // Handle the uncommon case of "123[Ptr]".
2323    BaseExpr = RHSExp;
2324    IndexExpr = LHSExp;
2325    ResultType = PTy->getPointeeType();
2326  } else if (const ObjCObjectPointerType *PTy =
2327               LHSTy->getAs<ObjCObjectPointerType>()) {
2328    BaseExpr = LHSExp;
2329    IndexExpr = RHSExp;
2330    ResultType = PTy->getPointeeType();
2331  } else if (const ObjCObjectPointerType *PTy =
2332               RHSTy->getAs<ObjCObjectPointerType>()) {
2333     // Handle the uncommon case of "123[Ptr]".
2334    BaseExpr = RHSExp;
2335    IndexExpr = LHSExp;
2336    ResultType = PTy->getPointeeType();
2337  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2338    BaseExpr = LHSExp;    // vectors: V[123]
2339    IndexExpr = RHSExp;
2340
2341    // FIXME: need to deal with const...
2342    ResultType = VTy->getElementType();
2343  } else if (LHSTy->isArrayType()) {
2344    // If we see an array that wasn't promoted by
2345    // DefaultFunctionArrayLvalueConversion, it must be an array that
2346    // wasn't promoted because of the C90 rule that doesn't
2347    // allow promoting non-lvalue arrays.  Warn, then
2348    // force the promotion here.
2349    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2350        LHSExp->getSourceRange();
2351    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2352                      CastExpr::CK_ArrayToPointerDecay);
2353    LHSTy = LHSExp->getType();
2354
2355    BaseExpr = LHSExp;
2356    IndexExpr = RHSExp;
2357    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2358  } else if (RHSTy->isArrayType()) {
2359    // Same as previous, except for 123[f().a] case
2360    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2361        RHSExp->getSourceRange();
2362    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2363                      CastExpr::CK_ArrayToPointerDecay);
2364    RHSTy = RHSExp->getType();
2365
2366    BaseExpr = RHSExp;
2367    IndexExpr = LHSExp;
2368    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2369  } else {
2370    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2371       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2372  }
2373  // C99 6.5.2.1p1
2374  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
2375    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2376                     << IndexExpr->getSourceRange());
2377
2378  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2379       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2380         && !IndexExpr->isTypeDependent())
2381    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2382
2383  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2384  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2385  // type. Note that Functions are not objects, and that (in C99 parlance)
2386  // incomplete types are not object types.
2387  if (ResultType->isFunctionType()) {
2388    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2389      << ResultType << BaseExpr->getSourceRange();
2390    return ExprError();
2391  }
2392
2393  if (!ResultType->isDependentType() &&
2394      RequireCompleteType(LLoc, ResultType,
2395                          PDiag(diag::err_subscript_incomplete_type)
2396                            << BaseExpr->getSourceRange()))
2397    return ExprError();
2398
2399  // Diagnose bad cases where we step over interface counts.
2400  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
2401    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2402      << ResultType << BaseExpr->getSourceRange();
2403    return ExprError();
2404  }
2405
2406  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2407                                                ResultType, RLoc));
2408}
2409
2410QualType Sema::
2411CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2412                        const IdentifierInfo *CompName,
2413                        SourceLocation CompLoc) {
2414  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2415  // see FIXME there.
2416  //
2417  // FIXME: This logic can be greatly simplified by splitting it along
2418  // halving/not halving and reworking the component checking.
2419  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2420
2421  // The vector accessor can't exceed the number of elements.
2422  const char *compStr = CompName->getNameStart();
2423
2424  // This flag determines whether or not the component is one of the four
2425  // special names that indicate a subset of exactly half the elements are
2426  // to be selected.
2427  bool HalvingSwizzle = false;
2428
2429  // This flag determines whether or not CompName has an 's' char prefix,
2430  // indicating that it is a string of hex values to be used as vector indices.
2431  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2432
2433  // Check that we've found one of the special components, or that the component
2434  // names must come from the same set.
2435  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2436      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2437    HalvingSwizzle = true;
2438  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2439    do
2440      compStr++;
2441    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2442  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2443    do
2444      compStr++;
2445    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2446  }
2447
2448  if (!HalvingSwizzle && *compStr) {
2449    // We didn't get to the end of the string. This means the component names
2450    // didn't come from the same set *or* we encountered an illegal name.
2451    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2452      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
2453    return QualType();
2454  }
2455
2456  // Ensure no component accessor exceeds the width of the vector type it
2457  // operates on.
2458  if (!HalvingSwizzle) {
2459    compStr = CompName->getNameStart();
2460
2461    if (HexSwizzle)
2462      compStr++;
2463
2464    while (*compStr) {
2465      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2466        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2467          << baseType << SourceRange(CompLoc);
2468        return QualType();
2469      }
2470    }
2471  }
2472
2473  // The component accessor looks fine - now we need to compute the actual type.
2474  // The vector type is implied by the component accessor. For example,
2475  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2476  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2477  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2478  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2479                                     : CompName->getLength();
2480  if (HexSwizzle)
2481    CompSize--;
2482
2483  if (CompSize == 1)
2484    return vecType->getElementType();
2485
2486  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2487  // Now look up the TypeDefDecl from the vector type. Without this,
2488  // diagostics look bad. We want extended vector types to appear built-in.
2489  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2490    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2491      return Context.getTypedefType(ExtVectorDecls[i]);
2492  }
2493  return VT; // should never get here (a typedef type should always be found).
2494}
2495
2496static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2497                                                IdentifierInfo *Member,
2498                                                const Selector &Sel,
2499                                                ASTContext &Context) {
2500
2501  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2502    return PD;
2503  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2504    return OMD;
2505
2506  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2507       E = PDecl->protocol_end(); I != E; ++I) {
2508    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2509                                                     Context))
2510      return D;
2511  }
2512  return 0;
2513}
2514
2515static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2516                                IdentifierInfo *Member,
2517                                const Selector &Sel,
2518                                ASTContext &Context) {
2519  // Check protocols on qualified interfaces.
2520  Decl *GDecl = 0;
2521  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2522       E = QIdTy->qual_end(); I != E; ++I) {
2523    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2524      GDecl = PD;
2525      break;
2526    }
2527    // Also must look for a getter name which uses property syntax.
2528    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2529      GDecl = OMD;
2530      break;
2531    }
2532  }
2533  if (!GDecl) {
2534    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2535         E = QIdTy->qual_end(); I != E; ++I) {
2536      // Search in the protocol-qualifier list of current protocol.
2537      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2538      if (GDecl)
2539        return GDecl;
2540    }
2541  }
2542  return GDecl;
2543}
2544
2545ExprResult
2546Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
2547                               bool IsArrow, SourceLocation OpLoc,
2548                               const CXXScopeSpec &SS,
2549                               NamedDecl *FirstQualifierInScope,
2550                               const DeclarationNameInfo &NameInfo,
2551                               const TemplateArgumentListInfo *TemplateArgs) {
2552  // Even in dependent contexts, try to diagnose base expressions with
2553  // obviously wrong types, e.g.:
2554  //
2555  // T* t;
2556  // t.f;
2557  //
2558  // In Obj-C++, however, the above expression is valid, since it could be
2559  // accessing the 'f' property if T is an Obj-C interface. The extra check
2560  // allows this, while still reporting an error if T is a struct pointer.
2561  if (!IsArrow) {
2562    const PointerType *PT = BaseType->getAs<PointerType>();
2563    if (PT && (!getLangOptions().ObjC1 ||
2564               PT->getPointeeType()->isRecordType())) {
2565      assert(BaseExpr && "cannot happen with implicit member accesses");
2566      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
2567        << BaseType << BaseExpr->getSourceRange();
2568      return ExprError();
2569    }
2570  }
2571
2572  assert(BaseType->isDependentType() ||
2573         NameInfo.getName().isDependentName() ||
2574         isDependentScopeSpecifier(SS));
2575
2576  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2577  // must have pointer type, and the accessed type is the pointee.
2578  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2579                                                   IsArrow, OpLoc,
2580                                                   SS.getScopeRep(),
2581                                                   SS.getRange(),
2582                                                   FirstQualifierInScope,
2583                                                   NameInfo, TemplateArgs));
2584}
2585
2586/// We know that the given qualified member reference points only to
2587/// declarations which do not belong to the static type of the base
2588/// expression.  Diagnose the problem.
2589static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2590                                             Expr *BaseExpr,
2591                                             QualType BaseType,
2592                                             const CXXScopeSpec &SS,
2593                                             const LookupResult &R) {
2594  // If this is an implicit member access, use a different set of
2595  // diagnostics.
2596  if (!BaseExpr)
2597    return DiagnoseInstanceReference(SemaRef, SS, R);
2598
2599  SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
2600    << SS.getRange() << R.getRepresentativeDecl() << BaseType;
2601}
2602
2603// Check whether the declarations we found through a nested-name
2604// specifier in a member expression are actually members of the base
2605// type.  The restriction here is:
2606//
2607//   C++ [expr.ref]p2:
2608//     ... In these cases, the id-expression shall name a
2609//     member of the class or of one of its base classes.
2610//
2611// So it's perfectly legitimate for the nested-name specifier to name
2612// an unrelated class, and for us to find an overload set including
2613// decls from classes which are not superclasses, as long as the decl
2614// we actually pick through overload resolution is from a superclass.
2615bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2616                                         QualType BaseType,
2617                                         const CXXScopeSpec &SS,
2618                                         const LookupResult &R) {
2619  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2620  if (!BaseRT) {
2621    // We can't check this yet because the base type is still
2622    // dependent.
2623    assert(BaseType->isDependentType());
2624    return false;
2625  }
2626  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2627
2628  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2629    // If this is an implicit member reference and we find a
2630    // non-instance member, it's not an error.
2631    if (!BaseExpr && !(*I)->isCXXInstanceMember())
2632      return false;
2633
2634    // Note that we use the DC of the decl, not the underlying decl.
2635    DeclContext *DC = (*I)->getDeclContext();
2636    while (DC->isTransparentContext())
2637      DC = DC->getParent();
2638
2639    if (!DC->isRecord())
2640      continue;
2641
2642    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2643    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
2644
2645    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2646      return false;
2647  }
2648
2649  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2650  return true;
2651}
2652
2653static bool
2654LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2655                         SourceRange BaseRange, const RecordType *RTy,
2656                         SourceLocation OpLoc, CXXScopeSpec &SS,
2657                         bool HasTemplateArgs) {
2658  RecordDecl *RDecl = RTy->getDecl();
2659  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2660                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2661                                    << BaseRange))
2662    return true;
2663
2664  if (HasTemplateArgs) {
2665    // LookupTemplateName doesn't expect these both to exist simultaneously.
2666    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
2667
2668    bool MOUS;
2669    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
2670    return false;
2671  }
2672
2673  DeclContext *DC = RDecl;
2674  if (SS.isSet()) {
2675    // If the member name was a qualified-id, look into the
2676    // nested-name-specifier.
2677    DC = SemaRef.computeDeclContext(SS, false);
2678
2679    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
2680      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2681        << SS.getRange() << DC;
2682      return true;
2683    }
2684
2685    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2686
2687    if (!isa<TypeDecl>(DC)) {
2688      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2689        << DC << SS.getRange();
2690      return true;
2691    }
2692  }
2693
2694  // The record definition is complete, now look up the member.
2695  SemaRef.LookupQualifiedName(R, DC);
2696
2697  if (!R.empty())
2698    return false;
2699
2700  // We didn't find anything with the given name, so try to correct
2701  // for typos.
2702  DeclarationName Name = R.getLookupName();
2703  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
2704      !R.empty() &&
2705      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2706    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2707      << Name << DC << R.getLookupName() << SS.getRange()
2708      << FixItHint::CreateReplacement(R.getNameLoc(),
2709                                      R.getLookupName().getAsString());
2710    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2711      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2712        << ND->getDeclName();
2713    return false;
2714  } else {
2715    R.clear();
2716    R.setLookupName(Name);
2717  }
2718
2719  return false;
2720}
2721
2722ExprResult
2723Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
2724                               SourceLocation OpLoc, bool IsArrow,
2725                               CXXScopeSpec &SS,
2726                               NamedDecl *FirstQualifierInScope,
2727                               const DeclarationNameInfo &NameInfo,
2728                               const TemplateArgumentListInfo *TemplateArgs) {
2729  if (BaseType->isDependentType() ||
2730      (SS.isSet() && isDependentScopeSpecifier(SS)))
2731    return ActOnDependentMemberExpr(Base, BaseType,
2732                                    IsArrow, OpLoc,
2733                                    SS, FirstQualifierInScope,
2734                                    NameInfo, TemplateArgs);
2735
2736  LookupResult R(*this, NameInfo, LookupMemberName);
2737
2738  // Implicit member accesses.
2739  if (!Base) {
2740    QualType RecordTy = BaseType;
2741    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2742    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2743                                 RecordTy->getAs<RecordType>(),
2744                                 OpLoc, SS, TemplateArgs != 0))
2745      return ExprError();
2746
2747  // Explicit member accesses.
2748  } else {
2749    ExprResult Result =
2750      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2751                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
2752
2753    if (Result.isInvalid()) {
2754      Owned(Base);
2755      return ExprError();
2756    }
2757
2758    if (Result.get())
2759      return move(Result);
2760
2761    // LookupMemberExpr can modify Base, and thus change BaseType
2762    BaseType = Base->getType();
2763  }
2764
2765  return BuildMemberReferenceExpr(Base, BaseType,
2766                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2767                                  R, TemplateArgs);
2768}
2769
2770ExprResult
2771Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
2772                               SourceLocation OpLoc, bool IsArrow,
2773                               const CXXScopeSpec &SS,
2774                               NamedDecl *FirstQualifierInScope,
2775                               LookupResult &R,
2776                         const TemplateArgumentListInfo *TemplateArgs,
2777                               bool SuppressQualifierCheck) {
2778  QualType BaseType = BaseExprType;
2779  if (IsArrow) {
2780    assert(BaseType->isPointerType());
2781    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2782  }
2783  R.setBaseObjectType(BaseType);
2784
2785  NestedNameSpecifier *Qualifier = SS.getScopeRep();
2786  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
2787  DeclarationName MemberName = MemberNameInfo.getName();
2788  SourceLocation MemberLoc = MemberNameInfo.getLoc();
2789
2790  if (R.isAmbiguous())
2791    return ExprError();
2792
2793  if (R.empty()) {
2794    // Rederive where we looked up.
2795    DeclContext *DC = (SS.isSet()
2796                       ? computeDeclContext(SS, false)
2797                       : BaseType->getAs<RecordType>()->getDecl());
2798
2799    Diag(R.getNameLoc(), diag::err_no_member)
2800      << MemberName << DC
2801      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2802    return ExprError();
2803  }
2804
2805  // Diagnose lookups that find only declarations from a non-base
2806  // type.  This is possible for either qualified lookups (which may
2807  // have been qualified with an unrelated type) or implicit member
2808  // expressions (which were found with unqualified lookup and thus
2809  // may have come from an enclosing scope).  Note that it's okay for
2810  // lookup to find declarations from a non-base type as long as those
2811  // aren't the ones picked by overload resolution.
2812  if ((SS.isSet() || !BaseExpr ||
2813       (isa<CXXThisExpr>(BaseExpr) &&
2814        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2815      !SuppressQualifierCheck &&
2816      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2817    return ExprError();
2818
2819  // Construct an unresolved result if we in fact got an unresolved
2820  // result.
2821  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2822    bool Dependent =
2823      BaseExprType->isDependentType() ||
2824      R.isUnresolvableResult() ||
2825      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2826
2827    // Suppress any lookup-related diagnostics; we'll do these when we
2828    // pick a member.
2829    R.suppressDiagnostics();
2830
2831    UnresolvedMemberExpr *MemExpr
2832      = UnresolvedMemberExpr::Create(Context, Dependent,
2833                                     R.isUnresolvableResult(),
2834                                     BaseExpr, BaseExprType,
2835                                     IsArrow, OpLoc,
2836                                     Qualifier, SS.getRange(),
2837                                     MemberNameInfo,
2838                                     TemplateArgs, R.begin(), R.end());
2839
2840    return Owned(MemExpr);
2841  }
2842
2843  assert(R.isSingleResult());
2844  DeclAccessPair FoundDecl = R.begin().getPair();
2845  NamedDecl *MemberDecl = R.getFoundDecl();
2846
2847  // FIXME: diagnose the presence of template arguments now.
2848
2849  // If the decl being referenced had an error, return an error for this
2850  // sub-expr without emitting another error, in order to avoid cascading
2851  // error cases.
2852  if (MemberDecl->isInvalidDecl())
2853    return ExprError();
2854
2855  // Handle the implicit-member-access case.
2856  if (!BaseExpr) {
2857    // If this is not an instance member, convert to a non-member access.
2858    if (!MemberDecl->isCXXInstanceMember())
2859      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
2860
2861    SourceLocation Loc = R.getNameLoc();
2862    if (SS.getRange().isValid())
2863      Loc = SS.getRange().getBegin();
2864    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2865  }
2866
2867  bool ShouldCheckUse = true;
2868  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2869    // Don't diagnose the use of a virtual member function unless it's
2870    // explicitly qualified.
2871    if (MD->isVirtual() && !SS.isSet())
2872      ShouldCheckUse = false;
2873  }
2874
2875  // Check the use of this member.
2876  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2877    Owned(BaseExpr);
2878    return ExprError();
2879  }
2880
2881  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2882    // We may have found a field within an anonymous union or struct
2883    // (C++ [class.union]).
2884    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2885        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2886      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2887                                                      BaseExpr, OpLoc);
2888
2889    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2890    QualType MemberType = FD->getType();
2891    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2892      MemberType = Ref->getPointeeType();
2893    else {
2894      Qualifiers BaseQuals = BaseType.getQualifiers();
2895      BaseQuals.removeObjCGCAttr();
2896      if (FD->isMutable()) BaseQuals.removeConst();
2897
2898      Qualifiers MemberQuals
2899        = Context.getCanonicalType(MemberType).getQualifiers();
2900
2901      Qualifiers Combined = BaseQuals + MemberQuals;
2902      if (Combined != MemberQuals)
2903        MemberType = Context.getQualifiedType(MemberType, Combined);
2904    }
2905
2906    MarkDeclarationReferenced(MemberLoc, FD);
2907    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2908      return ExprError();
2909    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2910                                 FD, FoundDecl, MemberNameInfo,
2911                                 MemberType));
2912  }
2913
2914  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2915    MarkDeclarationReferenced(MemberLoc, Var);
2916    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2917                                 Var, FoundDecl, MemberNameInfo,
2918                                 Var->getType().getNonReferenceType()));
2919  }
2920
2921  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2922    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2923    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2924                                 MemberFn, FoundDecl, MemberNameInfo,
2925                                 MemberFn->getType()));
2926  }
2927
2928  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2929    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2930    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2931                                 Enum, FoundDecl, MemberNameInfo,
2932                                 Enum->getType()));
2933  }
2934
2935  Owned(BaseExpr);
2936
2937  // We found something that we didn't expect. Complain.
2938  if (isa<TypeDecl>(MemberDecl))
2939    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
2940      << MemberName << BaseType << int(IsArrow);
2941  else
2942    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
2943      << MemberName << BaseType << int(IsArrow);
2944
2945  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
2946    << MemberName;
2947  R.suppressDiagnostics();
2948  return ExprError();
2949}
2950
2951/// Look up the given member of the given non-type-dependent
2952/// expression.  This can return in one of two ways:
2953///  * If it returns a sentinel null-but-valid result, the caller will
2954///    assume that lookup was performed and the results written into
2955///    the provided structure.  It will take over from there.
2956///  * Otherwise, the returned expression will be produced in place of
2957///    an ordinary member expression.
2958///
2959/// The ObjCImpDecl bit is a gross hack that will need to be properly
2960/// fixed for ObjC++.
2961ExprResult
2962Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2963                       bool &IsArrow, SourceLocation OpLoc,
2964                       CXXScopeSpec &SS,
2965                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
2966  assert(BaseExpr && "no base expression");
2967
2968  // Perform default conversions.
2969  DefaultFunctionArrayConversion(BaseExpr);
2970
2971  QualType BaseType = BaseExpr->getType();
2972  assert(!BaseType->isDependentType());
2973
2974  DeclarationName MemberName = R.getLookupName();
2975  SourceLocation MemberLoc = R.getNameLoc();
2976
2977  // If the user is trying to apply -> or . to a function pointer
2978  // type, it's probably because they forgot parentheses to call that
2979  // function. Suggest the addition of those parentheses, build the
2980  // call, and continue on.
2981  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2982    if (const FunctionProtoType *Fun
2983          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2984      QualType ResultTy = Fun->getResultType();
2985      if (Fun->getNumArgs() == 0 &&
2986          ((!IsArrow && ResultTy->isRecordType()) ||
2987           (IsArrow && ResultTy->isPointerType() &&
2988            ResultTy->getAs<PointerType>()->getPointeeType()
2989                                                          ->isRecordType()))) {
2990        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2991        Diag(Loc, diag::err_member_reference_needs_call)
2992          << QualType(Fun, 0)
2993          << FixItHint::CreateInsertion(Loc, "()");
2994
2995        ExprResult NewBase
2996          = ActOnCallExpr(0, BaseExpr, Loc,
2997                          MultiExprArg(*this, 0, 0), 0, Loc);
2998        BaseExpr = 0;
2999        if (NewBase.isInvalid())
3000          return ExprError();
3001
3002        BaseExpr = NewBase.takeAs<Expr>();
3003        DefaultFunctionArrayConversion(BaseExpr);
3004        BaseType = BaseExpr->getType();
3005      }
3006    }
3007  }
3008
3009  // If this is an Objective-C pseudo-builtin and a definition is provided then
3010  // use that.
3011  if (BaseType->isObjCIdType()) {
3012    if (IsArrow) {
3013      // Handle the following exceptional case PObj->isa.
3014      if (const ObjCObjectPointerType *OPT =
3015          BaseType->getAs<ObjCObjectPointerType>()) {
3016        if (OPT->getObjectType()->isObjCId() &&
3017            MemberName.getAsIdentifierInfo()->isStr("isa"))
3018          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
3019                                                 Context.getObjCClassType()));
3020      }
3021    }
3022    // We have an 'id' type. Rather than fall through, we check if this
3023    // is a reference to 'isa'.
3024    if (BaseType != Context.ObjCIdRedefinitionType) {
3025      BaseType = Context.ObjCIdRedefinitionType;
3026      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
3027    }
3028  }
3029
3030  // If this is an Objective-C pseudo-builtin and a definition is provided then
3031  // use that.
3032  if (Context.isObjCSelType(BaseType)) {
3033    // We have an 'SEL' type. Rather than fall through, we check if this
3034    // is a reference to 'sel_id'.
3035    if (BaseType != Context.ObjCSelRedefinitionType) {
3036      BaseType = Context.ObjCSelRedefinitionType;
3037      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
3038    }
3039  }
3040
3041  assert(!BaseType.isNull() && "no type for member expression");
3042
3043  // Handle properties on ObjC 'Class' types.
3044  if (!IsArrow && BaseType->isObjCClassType()) {
3045    // Also must look for a getter name which uses property syntax.
3046    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3047    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3048    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3049      ObjCInterfaceDecl *IFace = MD->getClassInterface();
3050      ObjCMethodDecl *Getter;
3051      // FIXME: need to also look locally in the implementation.
3052      if ((Getter = IFace->lookupClassMethod(Sel))) {
3053        // Check the use of this method.
3054        if (DiagnoseUseOfDecl(Getter, MemberLoc))
3055          return ExprError();
3056      }
3057      // If we found a getter then this may be a valid dot-reference, we
3058      // will look for the matching setter, in case it is needed.
3059      Selector SetterSel =
3060      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3061                                         PP.getSelectorTable(), Member);
3062      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
3063      if (!Setter) {
3064        // If this reference is in an @implementation, also check for 'private'
3065        // methods.
3066        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3067      }
3068      // Look through local category implementations associated with the class.
3069      if (!Setter)
3070        Setter = IFace->getCategoryClassMethod(SetterSel);
3071
3072      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3073        return ExprError();
3074
3075      if (Getter || Setter) {
3076        QualType PType;
3077
3078        if (Getter)
3079          PType = Getter->getSendResultType();
3080        else
3081          // Get the expression type from Setter's incoming parameter.
3082          PType = (*(Setter->param_end() -1))->getType();
3083        // FIXME: we must check that the setter has property type.
3084        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
3085                                                  PType,
3086                                                  Setter, MemberLoc, BaseExpr));
3087      }
3088      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3089                       << MemberName << BaseType);
3090    }
3091  }
3092
3093  if (BaseType->isObjCClassType() &&
3094      BaseType != Context.ObjCClassRedefinitionType) {
3095    BaseType = Context.ObjCClassRedefinitionType;
3096    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
3097  }
3098
3099  if (IsArrow) {
3100    if (const PointerType *PT = BaseType->getAs<PointerType>())
3101      BaseType = PT->getPointeeType();
3102    else if (BaseType->isObjCObjectPointerType())
3103      ;
3104    else if (BaseType->isRecordType()) {
3105      // Recover from arrow accesses to records, e.g.:
3106      //   struct MyRecord foo;
3107      //   foo->bar
3108      // This is actually well-formed in C++ if MyRecord has an
3109      // overloaded operator->, but that should have been dealt with
3110      // by now.
3111      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3112        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3113        << FixItHint::CreateReplacement(OpLoc, ".");
3114      IsArrow = false;
3115    } else {
3116      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3117        << BaseType << BaseExpr->getSourceRange();
3118      return ExprError();
3119    }
3120  } else {
3121    // Recover from dot accesses to pointers, e.g.:
3122    //   type *foo;
3123    //   foo.bar
3124    // This is actually well-formed in two cases:
3125    //   - 'type' is an Objective C type
3126    //   - 'bar' is a pseudo-destructor name which happens to refer to
3127    //     the appropriate pointer type
3128    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3129      const PointerType *PT = BaseType->getAs<PointerType>();
3130      if (PT && PT->getPointeeType()->isRecordType()) {
3131        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3132          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3133          << FixItHint::CreateReplacement(OpLoc, "->");
3134        BaseType = PT->getPointeeType();
3135        IsArrow = true;
3136      }
3137    }
3138  }
3139
3140  // Handle field access to simple records.
3141  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3142    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3143                                 RTy, OpLoc, SS, HasTemplateArgs))
3144      return ExprError();
3145    return Owned((Expr*) 0);
3146  }
3147
3148  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3149  // (*Obj).ivar.
3150  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3151      (!IsArrow && BaseType->isObjCObjectType())) {
3152    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3153    ObjCInterfaceDecl *IDecl =
3154      OPT ? OPT->getInterfaceDecl()
3155          : BaseType->getAs<ObjCObjectType>()->getInterface();
3156    if (IDecl) {
3157      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3158
3159      ObjCInterfaceDecl *ClassDeclared;
3160      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3161
3162      if (!IV) {
3163        // Attempt to correct for typos in ivar names.
3164        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3165                         LookupMemberName);
3166        if (CorrectTypo(Res, 0, 0, IDecl, false, CTC_MemberLookup) &&
3167            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3168          Diag(R.getNameLoc(),
3169               diag::err_typecheck_member_reference_ivar_suggest)
3170            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3171            << FixItHint::CreateReplacement(R.getNameLoc(),
3172                                            IV->getNameAsString());
3173          Diag(IV->getLocation(), diag::note_previous_decl)
3174            << IV->getDeclName();
3175        } else {
3176          Res.clear();
3177          Res.setLookupName(Member);
3178        }
3179      }
3180
3181      if (IV) {
3182        // If the decl being referenced had an error, return an error for this
3183        // sub-expr without emitting another error, in order to avoid cascading
3184        // error cases.
3185        if (IV->isInvalidDecl())
3186          return ExprError();
3187
3188        // Check whether we can reference this field.
3189        if (DiagnoseUseOfDecl(IV, MemberLoc))
3190          return ExprError();
3191        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3192            IV->getAccessControl() != ObjCIvarDecl::Package) {
3193          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3194          if (ObjCMethodDecl *MD = getCurMethodDecl())
3195            ClassOfMethodDecl =  MD->getClassInterface();
3196          else if (ObjCImpDecl && getCurFunctionDecl()) {
3197            // Case of a c-function declared inside an objc implementation.
3198            // FIXME: For a c-style function nested inside an objc implementation
3199            // class, there is no implementation context available, so we pass
3200            // down the context as argument to this routine. Ideally, this context
3201            // need be passed down in the AST node and somehow calculated from the
3202            // AST for a function decl.
3203            if (ObjCImplementationDecl *IMPD =
3204                dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
3205              ClassOfMethodDecl = IMPD->getClassInterface();
3206            else if (ObjCCategoryImplDecl* CatImplClass =
3207                        dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
3208              ClassOfMethodDecl = CatImplClass->getClassInterface();
3209          }
3210
3211          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3212            if (ClassDeclared != IDecl ||
3213                ClassOfMethodDecl != ClassDeclared)
3214              Diag(MemberLoc, diag::error_private_ivar_access)
3215                << IV->getDeclName();
3216          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3217            // @protected
3218            Diag(MemberLoc, diag::error_protected_ivar_access)
3219              << IV->getDeclName();
3220        }
3221
3222        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3223                                                   MemberLoc, BaseExpr,
3224                                                   IsArrow));
3225      }
3226      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3227                         << IDecl->getDeclName() << MemberName
3228                         << BaseExpr->getSourceRange());
3229    }
3230  }
3231  // Handle properties on 'id' and qualified "id".
3232  if (!IsArrow && (BaseType->isObjCIdType() ||
3233                   BaseType->isObjCQualifiedIdType())) {
3234    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3235    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3236
3237    // Check protocols on qualified interfaces.
3238    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3239    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3240      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3241        // Check the use of this declaration
3242        if (DiagnoseUseOfDecl(PD, MemberLoc))
3243          return ExprError();
3244
3245        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3246                                                       MemberLoc, BaseExpr));
3247      }
3248      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3249        // Check the use of this method.
3250        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3251          return ExprError();
3252
3253        return Owned(ObjCMessageExpr::Create(Context,
3254                                             OMD->getSendResultType(),
3255                                             OpLoc, BaseExpr, Sel,
3256                                             OMD, NULL, 0, MemberLoc));
3257      }
3258    }
3259
3260    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3261                       << MemberName << BaseType);
3262  }
3263
3264  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3265  // pointer to a (potentially qualified) interface type.
3266  if (!IsArrow)
3267    if (const ObjCObjectPointerType *OPT =
3268          BaseType->getAsObjCInterfacePointerType())
3269      return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc);
3270
3271  // Handle the following exceptional case (*Obj).isa.
3272  if (!IsArrow &&
3273      BaseType->isObjCObjectType() &&
3274      BaseType->getAs<ObjCObjectType>()->isObjCId() &&
3275      MemberName.getAsIdentifierInfo()->isStr("isa"))
3276    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3277                                           Context.getObjCClassType()));
3278
3279  // Handle 'field access' to vectors, such as 'V.xx'.
3280  if (BaseType->isExtVectorType()) {
3281    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3282    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3283    if (ret.isNull())
3284      return ExprError();
3285    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3286                                                    MemberLoc));
3287  }
3288
3289  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3290    << BaseType << BaseExpr->getSourceRange();
3291
3292  return ExprError();
3293}
3294
3295/// The main callback when the parser finds something like
3296///   expression . [nested-name-specifier] identifier
3297///   expression -> [nested-name-specifier] identifier
3298/// where 'identifier' encompasses a fairly broad spectrum of
3299/// possibilities, including destructor and operator references.
3300///
3301/// \param OpKind either tok::arrow or tok::period
3302/// \param HasTrailingLParen whether the next token is '(', which
3303///   is used to diagnose mis-uses of special members that can
3304///   only be called
3305/// \param ObjCImpDecl the current ObjC @implementation decl;
3306///   this is an ugly hack around the fact that ObjC @implementations
3307///   aren't properly put in the context chain
3308ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
3309                                                   SourceLocation OpLoc,
3310                                                   tok::TokenKind OpKind,
3311                                                   CXXScopeSpec &SS,
3312                                                   UnqualifiedId &Id,
3313                                                   Decl *ObjCImpDecl,
3314                                                   bool HasTrailingLParen) {
3315  if (SS.isSet() && SS.isInvalid())
3316    return ExprError();
3317
3318  TemplateArgumentListInfo TemplateArgsBuffer;
3319
3320  // Decompose the name into its component parts.
3321  DeclarationNameInfo NameInfo;
3322  const TemplateArgumentListInfo *TemplateArgs;
3323  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3324                         NameInfo, TemplateArgs);
3325
3326  DeclarationName Name = NameInfo.getName();
3327  bool IsArrow = (OpKind == tok::arrow);
3328
3329  NamedDecl *FirstQualifierInScope
3330    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3331                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3332
3333  // This is a postfix expression, so get rid of ParenListExprs.
3334  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3335  if (Result.isInvalid()) return ExprError();
3336  Base = Result.take();
3337
3338  if (Base->getType()->isDependentType() || Name.isDependentName() ||
3339      isDependentScopeSpecifier(SS)) {
3340    Result = ActOnDependentMemberExpr(Base, Base->getType(),
3341                                      IsArrow, OpLoc,
3342                                      SS, FirstQualifierInScope,
3343                                      NameInfo, TemplateArgs);
3344  } else {
3345    LookupResult R(*this, NameInfo, LookupMemberName);
3346    Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3347                              SS, ObjCImpDecl, TemplateArgs != 0);
3348
3349    if (Result.isInvalid()) {
3350      Owned(Base);
3351      return ExprError();
3352    }
3353
3354    if (Result.get()) {
3355      // The only way a reference to a destructor can be used is to
3356      // immediately call it, which falls into this case.  If the
3357      // next token is not a '(', produce a diagnostic and build the
3358      // call now.
3359      if (!HasTrailingLParen &&
3360          Id.getKind() == UnqualifiedId::IK_DestructorName)
3361        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
3362
3363      return move(Result);
3364    }
3365
3366    Result = BuildMemberReferenceExpr(Base, Base->getType(),
3367                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3368                                      R, TemplateArgs);
3369  }
3370
3371  return move(Result);
3372}
3373
3374ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3375                                                    FunctionDecl *FD,
3376                                                    ParmVarDecl *Param) {
3377  if (Param->hasUnparsedDefaultArg()) {
3378    Diag (CallLoc,
3379          diag::err_use_of_default_argument_to_function_declared_later) <<
3380      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3381    Diag(UnparsedDefaultArgLocs[Param],
3382          diag::note_default_argument_declared_here);
3383  } else {
3384    if (Param->hasUninstantiatedDefaultArg()) {
3385      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3386
3387      // Instantiate the expression.
3388      MultiLevelTemplateArgumentList ArgList
3389        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3390
3391      std::pair<const TemplateArgument *, unsigned> Innermost
3392        = ArgList.getInnermost();
3393      InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3394                                 Innermost.second);
3395
3396      ExprResult Result = SubstExpr(UninstExpr, ArgList);
3397      if (Result.isInvalid())
3398        return ExprError();
3399
3400      // Check the expression as an initializer for the parameter.
3401      InitializedEntity Entity
3402        = InitializedEntity::InitializeParameter(Param);
3403      InitializationKind Kind
3404        = InitializationKind::CreateCopy(Param->getLocation(),
3405               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3406      Expr *ResultE = Result.takeAs<Expr>();
3407
3408      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3409      Result = InitSeq.Perform(*this, Entity, Kind,
3410                               MultiExprArg(*this, &ResultE, 1));
3411      if (Result.isInvalid())
3412        return ExprError();
3413
3414      // Build the default argument expression.
3415      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3416                                             Result.takeAs<Expr>()));
3417    }
3418
3419    // If the default expression creates temporaries, we need to
3420    // push them to the current stack of expression temporaries so they'll
3421    // be properly destroyed.
3422    // FIXME: We should really be rebuilding the default argument with new
3423    // bound temporaries; see the comment in PR5810.
3424    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3425      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3426  }
3427
3428  // We already type-checked the argument, so we know it works.
3429  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3430}
3431
3432/// ConvertArgumentsForCall - Converts the arguments specified in
3433/// Args/NumArgs to the parameter types of the function FDecl with
3434/// function prototype Proto. Call is the call expression itself, and
3435/// Fn is the function expression. For a C++ member function, this
3436/// routine does not attempt to convert the object argument. Returns
3437/// true if the call is ill-formed.
3438bool
3439Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3440                              FunctionDecl *FDecl,
3441                              const FunctionProtoType *Proto,
3442                              Expr **Args, unsigned NumArgs,
3443                              SourceLocation RParenLoc) {
3444  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3445  // assignment, to the types of the corresponding parameter, ...
3446  unsigned NumArgsInProto = Proto->getNumArgs();
3447  bool Invalid = false;
3448
3449  // If too few arguments are available (and we don't have default
3450  // arguments for the remaining parameters), don't make the call.
3451  if (NumArgs < NumArgsInProto) {
3452    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3453      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3454        << Fn->getType()->isBlockPointerType()
3455        << NumArgsInProto << NumArgs << Fn->getSourceRange();
3456    Call->setNumArgs(Context, NumArgsInProto);
3457  }
3458
3459  // If too many are passed and not variadic, error on the extras and drop
3460  // them.
3461  if (NumArgs > NumArgsInProto) {
3462    if (!Proto->isVariadic()) {
3463      Diag(Args[NumArgsInProto]->getLocStart(),
3464           diag::err_typecheck_call_too_many_args)
3465        << Fn->getType()->isBlockPointerType()
3466        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3467        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3468                       Args[NumArgs-1]->getLocEnd());
3469      // This deletes the extra arguments.
3470      Call->setNumArgs(Context, NumArgsInProto);
3471      return true;
3472    }
3473  }
3474  llvm::SmallVector<Expr *, 8> AllArgs;
3475  VariadicCallType CallType =
3476    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3477  if (Fn->getType()->isBlockPointerType())
3478    CallType = VariadicBlock; // Block
3479  else if (isa<MemberExpr>(Fn))
3480    CallType = VariadicMethod;
3481  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3482                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3483  if (Invalid)
3484    return true;
3485  unsigned TotalNumArgs = AllArgs.size();
3486  for (unsigned i = 0; i < TotalNumArgs; ++i)
3487    Call->setArg(i, AllArgs[i]);
3488
3489  return false;
3490}
3491
3492bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3493                                  FunctionDecl *FDecl,
3494                                  const FunctionProtoType *Proto,
3495                                  unsigned FirstProtoArg,
3496                                  Expr **Args, unsigned NumArgs,
3497                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3498                                  VariadicCallType CallType) {
3499  unsigned NumArgsInProto = Proto->getNumArgs();
3500  unsigned NumArgsToCheck = NumArgs;
3501  bool Invalid = false;
3502  if (NumArgs != NumArgsInProto)
3503    // Use default arguments for missing arguments
3504    NumArgsToCheck = NumArgsInProto;
3505  unsigned ArgIx = 0;
3506  // Continue to check argument types (even if we have too few/many args).
3507  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3508    QualType ProtoArgType = Proto->getArgType(i);
3509
3510    Expr *Arg;
3511    if (ArgIx < NumArgs) {
3512      Arg = Args[ArgIx++];
3513
3514      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3515                              ProtoArgType,
3516                              PDiag(diag::err_call_incomplete_argument)
3517                              << Arg->getSourceRange()))
3518        return true;
3519
3520      // Pass the argument
3521      ParmVarDecl *Param = 0;
3522      if (FDecl && i < FDecl->getNumParams())
3523        Param = FDecl->getParamDecl(i);
3524
3525
3526      InitializedEntity Entity =
3527        Param? InitializedEntity::InitializeParameter(Param)
3528             : InitializedEntity::InitializeParameter(ProtoArgType);
3529      ExprResult ArgE = PerformCopyInitialization(Entity,
3530                                                        SourceLocation(),
3531                                                        Owned(Arg));
3532      if (ArgE.isInvalid())
3533        return true;
3534
3535      Arg = ArgE.takeAs<Expr>();
3536    } else {
3537      ParmVarDecl *Param = FDecl->getParamDecl(i);
3538
3539      ExprResult ArgExpr =
3540        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3541      if (ArgExpr.isInvalid())
3542        return true;
3543
3544      Arg = ArgExpr.takeAs<Expr>();
3545    }
3546    AllArgs.push_back(Arg);
3547  }
3548
3549  // If this is a variadic call, handle args passed through "...".
3550  if (CallType != VariadicDoesNotApply) {
3551    // Promote the arguments (C99 6.5.2.2p7).
3552    for (unsigned i = ArgIx; i != NumArgs; ++i) {
3553      Expr *Arg = Args[i];
3554      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
3555      AllArgs.push_back(Arg);
3556    }
3557  }
3558  return Invalid;
3559}
3560
3561/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3562/// This provides the location of the left/right parens and a list of comma
3563/// locations.
3564ExprResult
3565Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3566                    MultiExprArg args,
3567                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3568  unsigned NumArgs = args.size();
3569
3570  // Since this might be a postfix expression, get rid of ParenListExprs.
3571  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3572  if (Result.isInvalid()) return ExprError();
3573  Fn = Result.take();
3574
3575  Expr **Args = args.release();
3576
3577  if (getLangOptions().CPlusPlus) {
3578    // If this is a pseudo-destructor expression, build the call immediately.
3579    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3580      if (NumArgs > 0) {
3581        // Pseudo-destructor calls should not have any arguments.
3582        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3583          << FixItHint::CreateRemoval(
3584                                    SourceRange(Args[0]->getLocStart(),
3585                                                Args[NumArgs-1]->getLocEnd()));
3586
3587        NumArgs = 0;
3588      }
3589
3590      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3591                                          RParenLoc));
3592    }
3593
3594    // Determine whether this is a dependent call inside a C++ template,
3595    // in which case we won't do any semantic analysis now.
3596    // FIXME: Will need to cache the results of name lookup (including ADL) in
3597    // Fn.
3598    bool Dependent = false;
3599    if (Fn->isTypeDependent())
3600      Dependent = true;
3601    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3602      Dependent = true;
3603
3604    if (Dependent)
3605      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3606                                          Context.DependentTy, RParenLoc));
3607
3608    // Determine whether this is a call to an object (C++ [over.call.object]).
3609    if (Fn->getType()->isRecordType())
3610      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3611                                                CommaLocs, RParenLoc));
3612
3613    Expr *NakedFn = Fn->IgnoreParens();
3614
3615    // Determine whether this is a call to an unresolved member function.
3616    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3617      // If lookup was unresolved but not dependent (i.e. didn't find
3618      // an unresolved using declaration), it has to be an overloaded
3619      // function set, which means it must contain either multiple
3620      // declarations (all methods or method templates) or a single
3621      // method template.
3622      assert((MemE->getNumDecls() > 1) ||
3623             isa<FunctionTemplateDecl>(
3624                                 (*MemE->decls_begin())->getUnderlyingDecl()));
3625      (void)MemE;
3626
3627      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3628                                       CommaLocs, RParenLoc);
3629    }
3630
3631    // Determine whether this is a call to a member function.
3632    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3633      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3634      if (isa<CXXMethodDecl>(MemDecl))
3635        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3636                                         CommaLocs, RParenLoc);
3637    }
3638
3639    // Determine whether this is a call to a pointer-to-member function.
3640    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3641      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3642          BO->getOpcode() == BinaryOperator::PtrMemI) {
3643        if (const FunctionProtoType *FPT
3644                                = BO->getType()->getAs<FunctionProtoType>()) {
3645          QualType ResultTy = FPT->getCallResultType(Context);
3646
3647          CXXMemberCallExpr *TheCall
3648            = new (Context) CXXMemberCallExpr(Context, BO, Args,
3649                                              NumArgs, ResultTy,
3650                                              RParenLoc);
3651
3652          if (CheckCallReturnType(FPT->getResultType(),
3653                                  BO->getRHS()->getSourceRange().getBegin(),
3654                                  TheCall, 0))
3655            return ExprError();
3656
3657          if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
3658                                      RParenLoc))
3659            return ExprError();
3660
3661          return MaybeBindToTemporary(TheCall);
3662        }
3663        return ExprError(Diag(Fn->getLocStart(),
3664                              diag::err_typecheck_call_not_function)
3665                              << Fn->getType() << Fn->getSourceRange());
3666      }
3667    }
3668  }
3669
3670  // If we're directly calling a function, get the appropriate declaration.
3671  // Also, in C++, keep track of whether we should perform argument-dependent
3672  // lookup and whether there were any explicitly-specified template arguments.
3673
3674  Expr *NakedFn = Fn->IgnoreParens();
3675  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3676    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3677    return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3678                                   CommaLocs, RParenLoc);
3679  }
3680
3681  NamedDecl *NDecl = 0;
3682  if (isa<DeclRefExpr>(NakedFn))
3683    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3684
3685  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3686}
3687
3688/// BuildResolvedCallExpr - Build a call to a resolved expression,
3689/// i.e. an expression not of \p OverloadTy.  The expression should
3690/// unary-convert to an expression of function-pointer or
3691/// block-pointer type.
3692///
3693/// \param NDecl the declaration being called, if available
3694ExprResult
3695Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3696                            SourceLocation LParenLoc,
3697                            Expr **Args, unsigned NumArgs,
3698                            SourceLocation RParenLoc) {
3699  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3700
3701  // Promote the function operand.
3702  UsualUnaryConversions(Fn);
3703
3704  // Make the call expr early, before semantic checks.  This guarantees cleanup
3705  // of arguments and function on error.
3706  CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
3707                                             Args, NumArgs,
3708                                             Context.BoolTy,
3709                                             RParenLoc);
3710
3711  const FunctionType *FuncT;
3712  if (!Fn->getType()->isBlockPointerType()) {
3713    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3714    // have type pointer to function".
3715    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3716    if (PT == 0)
3717      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3718        << Fn->getType() << Fn->getSourceRange());
3719    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3720  } else { // This is a block call.
3721    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3722                getAs<FunctionType>();
3723  }
3724  if (FuncT == 0)
3725    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3726      << Fn->getType() << Fn->getSourceRange());
3727
3728  // Check for a valid return type
3729  if (CheckCallReturnType(FuncT->getResultType(),
3730                          Fn->getSourceRange().getBegin(), TheCall,
3731                          FDecl))
3732    return ExprError();
3733
3734  // We know the result type of the call, set it.
3735  TheCall->setType(FuncT->getCallResultType(Context));
3736
3737  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3738    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3739                                RParenLoc))
3740      return ExprError();
3741  } else {
3742    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3743
3744    if (FDecl) {
3745      // Check if we have too few/too many template arguments, based
3746      // on our knowledge of the function definition.
3747      const FunctionDecl *Def = 0;
3748      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3749        const FunctionProtoType *Proto =
3750            Def->getType()->getAs<FunctionProtoType>();
3751        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3752          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3753            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3754        }
3755      }
3756    }
3757
3758    // Promote the arguments (C99 6.5.2.2p6).
3759    for (unsigned i = 0; i != NumArgs; i++) {
3760      Expr *Arg = Args[i];
3761      DefaultArgumentPromotion(Arg);
3762      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3763                              Arg->getType(),
3764                              PDiag(diag::err_call_incomplete_argument)
3765                                << Arg->getSourceRange()))
3766        return ExprError();
3767      TheCall->setArg(i, Arg);
3768    }
3769  }
3770
3771  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3772    if (!Method->isStatic())
3773      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3774        << Fn->getSourceRange());
3775
3776  // Check for sentinels
3777  if (NDecl)
3778    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3779
3780  // Do special checking on direct calls to functions.
3781  if (FDecl) {
3782    if (CheckFunctionCall(FDecl, TheCall))
3783      return ExprError();
3784
3785    if (unsigned BuiltinID = FDecl->getBuiltinID())
3786      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3787  } else if (NDecl) {
3788    if (CheckBlockCall(NDecl, TheCall))
3789      return ExprError();
3790  }
3791
3792  return MaybeBindToTemporary(TheCall);
3793}
3794
3795ExprResult
3796Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3797                           SourceLocation RParenLoc, Expr *InitExpr) {
3798  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3799  // FIXME: put back this assert when initializers are worked out.
3800  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3801
3802  TypeSourceInfo *TInfo;
3803  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3804  if (!TInfo)
3805    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3806
3807  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3808}
3809
3810ExprResult
3811Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3812                               SourceLocation RParenLoc, Expr *literalExpr) {
3813  QualType literalType = TInfo->getType();
3814
3815  if (literalType->isArrayType()) {
3816    if (literalType->isVariableArrayType())
3817      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3818        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3819  } else if (!literalType->isDependentType() &&
3820             RequireCompleteType(LParenLoc, literalType,
3821                      PDiag(diag::err_typecheck_decl_incomplete_type)
3822                        << SourceRange(LParenLoc,
3823                                       literalExpr->getSourceRange().getEnd())))
3824    return ExprError();
3825
3826  InitializedEntity Entity
3827    = InitializedEntity::InitializeTemporary(literalType);
3828  InitializationKind Kind
3829    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3830                                     /*IsCStyleCast=*/true);
3831  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3832  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3833                                       MultiExprArg(*this, &literalExpr, 1),
3834                                            &literalType);
3835  if (Result.isInvalid())
3836    return ExprError();
3837  literalExpr = Result.get();
3838
3839  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3840  if (isFileScope) { // 6.5.2.5p3
3841    if (CheckForConstantInitializer(literalExpr, literalType))
3842      return ExprError();
3843  }
3844
3845  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3846                                                 literalExpr, isFileScope));
3847}
3848
3849ExprResult
3850Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3851                    SourceLocation RBraceLoc) {
3852  unsigned NumInit = initlist.size();
3853  Expr **InitList = initlist.release();
3854
3855  // Semantic analysis for initializers is done by ActOnDeclarator() and
3856  // CheckInitializer() - it requires knowledge of the object being intialized.
3857
3858  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
3859                                               NumInit, RBraceLoc);
3860  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3861  return Owned(E);
3862}
3863
3864static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3865                                            QualType SrcTy, QualType DestTy) {
3866  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3867    return CastExpr::CK_NoOp;
3868
3869  if (SrcTy->hasPointerRepresentation()) {
3870    if (DestTy->hasPointerRepresentation())
3871      return DestTy->isObjCObjectPointerType() ?
3872                CastExpr::CK_AnyPointerToObjCPointerCast :
3873                CastExpr::CK_BitCast;
3874    if (DestTy->isIntegerType())
3875      return CastExpr::CK_PointerToIntegral;
3876  }
3877
3878  if (SrcTy->isIntegerType()) {
3879    if (DestTy->isIntegerType())
3880      return CastExpr::CK_IntegralCast;
3881    if (DestTy->hasPointerRepresentation())
3882      return CastExpr::CK_IntegralToPointer;
3883    if (DestTy->isRealFloatingType())
3884      return CastExpr::CK_IntegralToFloating;
3885  }
3886
3887  if (SrcTy->isRealFloatingType()) {
3888    if (DestTy->isRealFloatingType())
3889      return CastExpr::CK_FloatingCast;
3890    if (DestTy->isIntegerType())
3891      return CastExpr::CK_FloatingToIntegral;
3892  }
3893
3894  // FIXME: Assert here.
3895  // assert(false && "Unhandled cast combination!");
3896  return CastExpr::CK_Unknown;
3897}
3898
3899/// CheckCastTypes - Check type constraints for casting between types.
3900bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3901                          CastExpr::CastKind& Kind,
3902                          CXXCastPath &BasePath,
3903                          bool FunctionalStyle) {
3904  if (getLangOptions().CPlusPlus)
3905    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, BasePath,
3906                              FunctionalStyle);
3907
3908  DefaultFunctionArrayLvalueConversion(castExpr);
3909
3910  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3911  // type needs to be scalar.
3912  if (castType->isVoidType()) {
3913    // Cast to void allows any expr type.
3914    Kind = CastExpr::CK_ToVoid;
3915    return false;
3916  }
3917
3918  if (RequireCompleteType(TyR.getBegin(), castType,
3919                          diag::err_typecheck_cast_to_incomplete))
3920    return true;
3921
3922  if (!castType->isScalarType() && !castType->isVectorType()) {
3923    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3924        (castType->isStructureType() || castType->isUnionType())) {
3925      // GCC struct/union extension: allow cast to self.
3926      // FIXME: Check that the cast destination type is complete.
3927      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3928        << castType << castExpr->getSourceRange();
3929      Kind = CastExpr::CK_NoOp;
3930      return false;
3931    }
3932
3933    if (castType->isUnionType()) {
3934      // GCC cast to union extension
3935      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3936      RecordDecl::field_iterator Field, FieldEnd;
3937      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3938           Field != FieldEnd; ++Field) {
3939        if (Context.hasSameUnqualifiedType(Field->getType(),
3940                                           castExpr->getType())) {
3941          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3942            << castExpr->getSourceRange();
3943          break;
3944        }
3945      }
3946      if (Field == FieldEnd)
3947        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3948          << castExpr->getType() << castExpr->getSourceRange();
3949      Kind = CastExpr::CK_ToUnion;
3950      return false;
3951    }
3952
3953    // Reject any other conversions to non-scalar types.
3954    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3955      << castType << castExpr->getSourceRange();
3956  }
3957
3958  if (!castExpr->getType()->isScalarType() &&
3959      !castExpr->getType()->isVectorType()) {
3960    return Diag(castExpr->getLocStart(),
3961                diag::err_typecheck_expect_scalar_operand)
3962      << castExpr->getType() << castExpr->getSourceRange();
3963  }
3964
3965  if (castType->isExtVectorType())
3966    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3967
3968  if (castType->isVectorType())
3969    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3970  if (castExpr->getType()->isVectorType())
3971    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3972
3973  if (isa<ObjCSelectorExpr>(castExpr))
3974    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3975
3976  if (!castType->isArithmeticType()) {
3977    QualType castExprType = castExpr->getType();
3978    if (!castExprType->isIntegralType(Context) &&
3979        castExprType->isArithmeticType())
3980      return Diag(castExpr->getLocStart(),
3981                  diag::err_cast_pointer_from_non_pointer_int)
3982        << castExprType << castExpr->getSourceRange();
3983  } else if (!castExpr->getType()->isArithmeticType()) {
3984    if (!castType->isIntegralType(Context) && castType->isArithmeticType())
3985      return Diag(castExpr->getLocStart(),
3986                  diag::err_cast_pointer_to_non_pointer_int)
3987        << castType << castExpr->getSourceRange();
3988  }
3989
3990  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3991
3992  if (Kind == CastExpr::CK_Unknown || Kind == CastExpr::CK_BitCast)
3993    CheckCastAlign(castExpr, castType, TyR);
3994
3995  return false;
3996}
3997
3998bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3999                           CastExpr::CastKind &Kind) {
4000  assert(VectorTy->isVectorType() && "Not a vector type!");
4001
4002  if (Ty->isVectorType() || Ty->isIntegerType()) {
4003    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4004      return Diag(R.getBegin(),
4005                  Ty->isVectorType() ?
4006                  diag::err_invalid_conversion_between_vectors :
4007                  diag::err_invalid_conversion_between_vector_and_integer)
4008        << VectorTy << Ty << R;
4009  } else
4010    return Diag(R.getBegin(),
4011                diag::err_invalid_conversion_between_vector_and_scalar)
4012      << VectorTy << Ty << R;
4013
4014  Kind = CastExpr::CK_BitCast;
4015  return false;
4016}
4017
4018bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4019                              CastExpr::CastKind &Kind) {
4020  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4021
4022  QualType SrcTy = CastExpr->getType();
4023
4024  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4025  // an ExtVectorType.
4026  if (SrcTy->isVectorType()) {
4027    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4028      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4029        << DestTy << SrcTy << R;
4030    Kind = CastExpr::CK_BitCast;
4031    return false;
4032  }
4033
4034  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4035  // conversion will take place first from scalar to elt type, and then
4036  // splat from elt type to vector.
4037  if (SrcTy->isPointerType())
4038    return Diag(R.getBegin(),
4039                diag::err_invalid_conversion_between_vector_and_scalar)
4040      << DestTy << SrcTy << R;
4041
4042  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4043  ImpCastExprToType(CastExpr, DestElemTy,
4044                    getScalarCastKind(Context, SrcTy, DestElemTy));
4045
4046  Kind = CastExpr::CK_VectorSplat;
4047  return false;
4048}
4049
4050ExprResult
4051Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
4052                    SourceLocation RParenLoc, Expr *castExpr) {
4053  assert((Ty != 0) && (castExpr != 0) &&
4054         "ActOnCastExpr(): missing type or expr");
4055
4056  TypeSourceInfo *castTInfo;
4057  QualType castType = GetTypeFromParser(Ty, &castTInfo);
4058  if (!castTInfo)
4059    castTInfo = Context.getTrivialTypeSourceInfo(castType);
4060
4061  // If the Expr being casted is a ParenListExpr, handle it specially.
4062  if (isa<ParenListExpr>(castExpr))
4063    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
4064                                    castTInfo);
4065
4066  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
4067}
4068
4069ExprResult
4070Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4071                          SourceLocation RParenLoc, Expr *castExpr) {
4072  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
4073  CXXCastPath BasePath;
4074  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4075                     Kind, BasePath))
4076    return ExprError();
4077
4078  return Owned(CStyleCastExpr::Create(Context,
4079                                    Ty->getType().getNonLValueExprType(Context),
4080                                      Kind, castExpr, &BasePath, Ty,
4081                                      LParenLoc, RParenLoc));
4082}
4083
4084/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4085/// of comma binary operators.
4086ExprResult
4087Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
4088  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4089  if (!E)
4090    return Owned(expr);
4091
4092  ExprResult Result(E->getExpr(0));
4093
4094  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4095    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4096                        E->getExpr(i));
4097
4098  if (Result.isInvalid()) return ExprError();
4099
4100  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4101}
4102
4103ExprResult
4104Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4105                               SourceLocation RParenLoc, Expr *Op,
4106                               TypeSourceInfo *TInfo) {
4107  ParenListExpr *PE = cast<ParenListExpr>(Op);
4108  QualType Ty = TInfo->getType();
4109  bool isAltiVecLiteral = false;
4110
4111  // Check for an altivec literal,
4112  // i.e. all the elements are integer constants.
4113  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4114    if (PE->getNumExprs() == 0) {
4115      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4116      return ExprError();
4117    }
4118    if (PE->getNumExprs() == 1) {
4119      if (!PE->getExpr(0)->getType()->isVectorType())
4120        isAltiVecLiteral = true;
4121    }
4122    else
4123      isAltiVecLiteral = true;
4124  }
4125
4126  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4127  // then handle it as such.
4128  if (isAltiVecLiteral) {
4129    llvm::SmallVector<Expr *, 8> initExprs;
4130    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4131      initExprs.push_back(PE->getExpr(i));
4132
4133    // FIXME: This means that pretty-printing the final AST will produce curly
4134    // braces instead of the original commas.
4135    InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
4136                                                 &initExprs[0],
4137                                                 initExprs.size(), RParenLoc);
4138    E->setType(Ty);
4139    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
4140  } else {
4141    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4142    // sequence of BinOp comma operators.
4143    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
4144    if (Result.isInvalid()) return ExprError();
4145    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
4146  }
4147}
4148
4149ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4150                                                  SourceLocation R,
4151                                                  MultiExprArg Val,
4152                                                  ParsedType TypeOfCast) {
4153  unsigned nexprs = Val.size();
4154  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4155  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4156  Expr *expr;
4157  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4158    expr = new (Context) ParenExpr(L, R, exprs[0]);
4159  else
4160    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4161  return Owned(expr);
4162}
4163
4164/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4165/// In that case, lhs = cond.
4166/// C99 6.5.15
4167QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4168                                        SourceLocation QuestionLoc) {
4169  // C++ is sufficiently different to merit its own checker.
4170  if (getLangOptions().CPlusPlus)
4171    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4172
4173  UsualUnaryConversions(Cond);
4174  UsualUnaryConversions(LHS);
4175  UsualUnaryConversions(RHS);
4176  QualType CondTy = Cond->getType();
4177  QualType LHSTy = LHS->getType();
4178  QualType RHSTy = RHS->getType();
4179
4180  // first, check the condition.
4181  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4182    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4183      << CondTy;
4184    return QualType();
4185  }
4186
4187  // Now check the two expressions.
4188  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4189    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4190
4191  // If both operands have arithmetic type, do the usual arithmetic conversions
4192  // to find a common type: C99 6.5.15p3,5.
4193  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4194    UsualArithmeticConversions(LHS, RHS);
4195    return LHS->getType();
4196  }
4197
4198  // If both operands are the same structure or union type, the result is that
4199  // type.
4200  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4201    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4202      if (LHSRT->getDecl() == RHSRT->getDecl())
4203        // "If both the operands have structure or union type, the result has
4204        // that type."  This implies that CV qualifiers are dropped.
4205        return LHSTy.getUnqualifiedType();
4206    // FIXME: Type of conditional expression must be complete in C mode.
4207  }
4208
4209  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4210  // The following || allows only one side to be void (a GCC-ism).
4211  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4212    if (!LHSTy->isVoidType())
4213      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4214        << RHS->getSourceRange();
4215    if (!RHSTy->isVoidType())
4216      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4217        << LHS->getSourceRange();
4218    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4219    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4220    return Context.VoidTy;
4221  }
4222  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4223  // the type of the other operand."
4224  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4225      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4226    // promote the null to a pointer.
4227    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4228    return LHSTy;
4229  }
4230  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4231      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4232    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4233    return RHSTy;
4234  }
4235
4236  // All objective-c pointer type analysis is done here.
4237  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4238                                                        QuestionLoc);
4239  if (!compositeType.isNull())
4240    return compositeType;
4241
4242
4243  // Handle block pointer types.
4244  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4245    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4246      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4247        QualType destType = Context.getPointerType(Context.VoidTy);
4248        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4249        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4250        return destType;
4251      }
4252      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4253      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4254      return QualType();
4255    }
4256    // We have 2 block pointer types.
4257    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4258      // Two identical block pointer types are always compatible.
4259      return LHSTy;
4260    }
4261    // The block pointer types aren't identical, continue checking.
4262    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4263    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4264
4265    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4266                                    rhptee.getUnqualifiedType())) {
4267      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4268      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4269      // In this situation, we assume void* type. No especially good
4270      // reason, but this is what gcc does, and we do have to pick
4271      // to get a consistent AST.
4272      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4273      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4274      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4275      return incompatTy;
4276    }
4277    // The block pointer types are compatible.
4278    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4279    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4280    return LHSTy;
4281  }
4282
4283  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4284  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4285    // get the "pointed to" types
4286    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4287    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4288
4289    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4290    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4291      // Figure out necessary qualifiers (C99 6.5.15p6)
4292      QualType destPointee
4293        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4294      QualType destType = Context.getPointerType(destPointee);
4295      // Add qualifiers if necessary.
4296      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4297      // Promote to void*.
4298      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4299      return destType;
4300    }
4301    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4302      QualType destPointee
4303        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4304      QualType destType = Context.getPointerType(destPointee);
4305      // Add qualifiers if necessary.
4306      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4307      // Promote to void*.
4308      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4309      return destType;
4310    }
4311
4312    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4313      // Two identical pointer types are always compatible.
4314      return LHSTy;
4315    }
4316    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4317                                    rhptee.getUnqualifiedType())) {
4318      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4319        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4320      // In this situation, we assume void* type. No especially good
4321      // reason, but this is what gcc does, and we do have to pick
4322      // to get a consistent AST.
4323      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4324      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4325      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4326      return incompatTy;
4327    }
4328    // The pointer types are compatible.
4329    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4330    // differently qualified versions of compatible types, the result type is
4331    // a pointer to an appropriately qualified version of the *composite*
4332    // type.
4333    // FIXME: Need to calculate the composite type.
4334    // FIXME: Need to add qualifiers
4335    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4336    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4337    return LHSTy;
4338  }
4339
4340  // GCC compatibility: soften pointer/integer mismatch.
4341  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4342    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4343      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4344    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4345    return RHSTy;
4346  }
4347  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4348    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4349      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4350    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4351    return LHSTy;
4352  }
4353
4354  // Otherwise, the operands are not compatible.
4355  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4356    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4357  return QualType();
4358}
4359
4360/// FindCompositeObjCPointerType - Helper method to find composite type of
4361/// two objective-c pointer types of the two input expressions.
4362QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4363                                        SourceLocation QuestionLoc) {
4364  QualType LHSTy = LHS->getType();
4365  QualType RHSTy = RHS->getType();
4366
4367  // Handle things like Class and struct objc_class*.  Here we case the result
4368  // to the pseudo-builtin, because that will be implicitly cast back to the
4369  // redefinition type if an attempt is made to access its fields.
4370  if (LHSTy->isObjCClassType() &&
4371      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4372    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4373    return LHSTy;
4374  }
4375  if (RHSTy->isObjCClassType() &&
4376      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4377    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4378    return RHSTy;
4379  }
4380  // And the same for struct objc_object* / id
4381  if (LHSTy->isObjCIdType() &&
4382      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4383    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4384    return LHSTy;
4385  }
4386  if (RHSTy->isObjCIdType() &&
4387      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4388    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4389    return RHSTy;
4390  }
4391  // And the same for struct objc_selector* / SEL
4392  if (Context.isObjCSelType(LHSTy) &&
4393      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4394    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4395    return LHSTy;
4396  }
4397  if (Context.isObjCSelType(RHSTy) &&
4398      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4399    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4400    return RHSTy;
4401  }
4402  // Check constraints for Objective-C object pointers types.
4403  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4404
4405    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4406      // Two identical object pointer types are always compatible.
4407      return LHSTy;
4408    }
4409    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4410    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4411    QualType compositeType = LHSTy;
4412
4413    // If both operands are interfaces and either operand can be
4414    // assigned to the other, use that type as the composite
4415    // type. This allows
4416    //   xxx ? (A*) a : (B*) b
4417    // where B is a subclass of A.
4418    //
4419    // Additionally, as for assignment, if either type is 'id'
4420    // allow silent coercion. Finally, if the types are
4421    // incompatible then make sure to use 'id' as the composite
4422    // type so the result is acceptable for sending messages to.
4423
4424    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4425    // It could return the composite type.
4426    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4427      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4428    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4429      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4430    } else if ((LHSTy->isObjCQualifiedIdType() ||
4431                RHSTy->isObjCQualifiedIdType()) &&
4432               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4433      // Need to handle "id<xx>" explicitly.
4434      // GCC allows qualified id and any Objective-C type to devolve to
4435      // id. Currently localizing to here until clear this should be
4436      // part of ObjCQualifiedIdTypesAreCompatible.
4437      compositeType = Context.getObjCIdType();
4438    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4439      compositeType = Context.getObjCIdType();
4440    } else if (!(compositeType =
4441                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4442      ;
4443    else {
4444      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4445      << LHSTy << RHSTy
4446      << LHS->getSourceRange() << RHS->getSourceRange();
4447      QualType incompatTy = Context.getObjCIdType();
4448      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4449      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4450      return incompatTy;
4451    }
4452    // The object pointer types are compatible.
4453    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4454    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4455    return compositeType;
4456  }
4457  // Check Objective-C object pointer types and 'void *'
4458  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4459    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4460    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4461    QualType destPointee
4462    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4463    QualType destType = Context.getPointerType(destPointee);
4464    // Add qualifiers if necessary.
4465    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4466    // Promote to void*.
4467    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4468    return destType;
4469  }
4470  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4471    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4472    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4473    QualType destPointee
4474    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4475    QualType destType = Context.getPointerType(destPointee);
4476    // Add qualifiers if necessary.
4477    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4478    // Promote to void*.
4479    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4480    return destType;
4481  }
4482  return QualType();
4483}
4484
4485/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4486/// in the case of a the GNU conditional expr extension.
4487ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4488                                                  SourceLocation ColonLoc,
4489                                                  Expr *CondExpr, Expr *LHSExpr,
4490                                                  Expr *RHSExpr) {
4491  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4492  // was the condition.
4493  bool isLHSNull = LHSExpr == 0;
4494  if (isLHSNull)
4495    LHSExpr = CondExpr;
4496
4497  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4498                                             RHSExpr, QuestionLoc);
4499  if (result.isNull())
4500    return ExprError();
4501
4502  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4503                                                 isLHSNull ? 0 : LHSExpr,
4504                                                 ColonLoc, RHSExpr, result));
4505}
4506
4507// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4508// being closely modeled after the C99 spec:-). The odd characteristic of this
4509// routine is it effectively iqnores the qualifiers on the top level pointee.
4510// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4511// FIXME: add a couple examples in this comment.
4512Sema::AssignConvertType
4513Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4514  QualType lhptee, rhptee;
4515
4516  if ((lhsType->isObjCClassType() &&
4517       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4518     (rhsType->isObjCClassType() &&
4519       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4520      return Compatible;
4521  }
4522
4523  // get the "pointed to" type (ignoring qualifiers at the top level)
4524  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4525  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4526
4527  // make sure we operate on the canonical type
4528  lhptee = Context.getCanonicalType(lhptee);
4529  rhptee = Context.getCanonicalType(rhptee);
4530
4531  AssignConvertType ConvTy = Compatible;
4532
4533  // C99 6.5.16.1p1: This following citation is common to constraints
4534  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4535  // qualifiers of the type *pointed to* by the right;
4536  // FIXME: Handle ExtQualType
4537  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4538    ConvTy = CompatiblePointerDiscardsQualifiers;
4539
4540  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4541  // incomplete type and the other is a pointer to a qualified or unqualified
4542  // version of void...
4543  if (lhptee->isVoidType()) {
4544    if (rhptee->isIncompleteOrObjectType())
4545      return ConvTy;
4546
4547    // As an extension, we allow cast to/from void* to function pointer.
4548    assert(rhptee->isFunctionType());
4549    return FunctionVoidPointer;
4550  }
4551
4552  if (rhptee->isVoidType()) {
4553    if (lhptee->isIncompleteOrObjectType())
4554      return ConvTy;
4555
4556    // As an extension, we allow cast to/from void* to function pointer.
4557    assert(lhptee->isFunctionType());
4558    return FunctionVoidPointer;
4559  }
4560  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4561  // unqualified versions of compatible types, ...
4562  lhptee = lhptee.getUnqualifiedType();
4563  rhptee = rhptee.getUnqualifiedType();
4564  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4565    // Check if the pointee types are compatible ignoring the sign.
4566    // We explicitly check for char so that we catch "char" vs
4567    // "unsigned char" on systems where "char" is unsigned.
4568    if (lhptee->isCharType())
4569      lhptee = Context.UnsignedCharTy;
4570    else if (lhptee->hasSignedIntegerRepresentation())
4571      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4572
4573    if (rhptee->isCharType())
4574      rhptee = Context.UnsignedCharTy;
4575    else if (rhptee->hasSignedIntegerRepresentation())
4576      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4577
4578    if (lhptee == rhptee) {
4579      // Types are compatible ignoring the sign. Qualifier incompatibility
4580      // takes priority over sign incompatibility because the sign
4581      // warning can be disabled.
4582      if (ConvTy != Compatible)
4583        return ConvTy;
4584      return IncompatiblePointerSign;
4585    }
4586
4587    // If we are a multi-level pointer, it's possible that our issue is simply
4588    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4589    // the eventual target type is the same and the pointers have the same
4590    // level of indirection, this must be the issue.
4591    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4592      do {
4593        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4594        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4595
4596        lhptee = Context.getCanonicalType(lhptee);
4597        rhptee = Context.getCanonicalType(rhptee);
4598      } while (lhptee->isPointerType() && rhptee->isPointerType());
4599
4600      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4601        return IncompatibleNestedPointerQualifiers;
4602    }
4603
4604    // General pointer incompatibility takes priority over qualifiers.
4605    return IncompatiblePointer;
4606  }
4607  return ConvTy;
4608}
4609
4610/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4611/// block pointer types are compatible or whether a block and normal pointer
4612/// are compatible. It is more restrict than comparing two function pointer
4613// types.
4614Sema::AssignConvertType
4615Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4616                                          QualType rhsType) {
4617  QualType lhptee, rhptee;
4618
4619  // get the "pointed to" type (ignoring qualifiers at the top level)
4620  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4621  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4622
4623  // make sure we operate on the canonical type
4624  lhptee = Context.getCanonicalType(lhptee);
4625  rhptee = Context.getCanonicalType(rhptee);
4626
4627  AssignConvertType ConvTy = Compatible;
4628
4629  // For blocks we enforce that qualifiers are identical.
4630  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4631    ConvTy = CompatiblePointerDiscardsQualifiers;
4632
4633  if (!getLangOptions().CPlusPlus) {
4634    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4635      return IncompatibleBlockPointer;
4636  }
4637  else if (!Context.typesAreCompatible(lhptee, rhptee))
4638    return IncompatibleBlockPointer;
4639  return ConvTy;
4640}
4641
4642/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4643/// for assignment compatibility.
4644Sema::AssignConvertType
4645Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4646  if (lhsType->isObjCBuiltinType()) {
4647    // Class is not compatible with ObjC object pointers.
4648    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4649        !rhsType->isObjCQualifiedClassType())
4650      return IncompatiblePointer;
4651    return Compatible;
4652  }
4653  if (rhsType->isObjCBuiltinType()) {
4654    // Class is not compatible with ObjC object pointers.
4655    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4656        !lhsType->isObjCQualifiedClassType())
4657      return IncompatiblePointer;
4658    return Compatible;
4659  }
4660  QualType lhptee =
4661  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4662  QualType rhptee =
4663  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4664  // make sure we operate on the canonical type
4665  lhptee = Context.getCanonicalType(lhptee);
4666  rhptee = Context.getCanonicalType(rhptee);
4667  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4668    return CompatiblePointerDiscardsQualifiers;
4669
4670  if (Context.typesAreCompatible(lhsType, rhsType))
4671    return Compatible;
4672  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4673    return IncompatibleObjCQualifiedId;
4674  return IncompatiblePointer;
4675}
4676
4677/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4678/// has code to accommodate several GCC extensions when type checking
4679/// pointers. Here are some objectionable examples that GCC considers warnings:
4680///
4681///  int a, *pint;
4682///  short *pshort;
4683///  struct foo *pfoo;
4684///
4685///  pint = pshort; // warning: assignment from incompatible pointer type
4686///  a = pint; // warning: assignment makes integer from pointer without a cast
4687///  pint = a; // warning: assignment makes pointer from integer without a cast
4688///  pint = pfoo; // warning: assignment from incompatible pointer type
4689///
4690/// As a result, the code for dealing with pointers is more complex than the
4691/// C99 spec dictates.
4692///
4693Sema::AssignConvertType
4694Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4695  // Get canonical types.  We're not formatting these types, just comparing
4696  // them.
4697  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4698  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4699
4700  if (lhsType == rhsType)
4701    return Compatible; // Common case: fast path an exact match.
4702
4703  if ((lhsType->isObjCClassType() &&
4704       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4705     (rhsType->isObjCClassType() &&
4706       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4707      return Compatible;
4708  }
4709
4710  // If the left-hand side is a reference type, then we are in a
4711  // (rare!) case where we've allowed the use of references in C,
4712  // e.g., as a parameter type in a built-in function. In this case,
4713  // just make sure that the type referenced is compatible with the
4714  // right-hand side type. The caller is responsible for adjusting
4715  // lhsType so that the resulting expression does not have reference
4716  // type.
4717  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4718    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4719      return Compatible;
4720    return Incompatible;
4721  }
4722  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4723  // to the same ExtVector type.
4724  if (lhsType->isExtVectorType()) {
4725    if (rhsType->isExtVectorType())
4726      return lhsType == rhsType ? Compatible : Incompatible;
4727    if (rhsType->isArithmeticType())
4728      return Compatible;
4729  }
4730
4731  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4732    if (lhsType->isVectorType() && rhsType->isVectorType()) {
4733      // If we are allowing lax vector conversions, and LHS and RHS are both
4734      // vectors, the total size only needs to be the same. This is a bitcast;
4735      // no bits are changed but the result type is different.
4736      if (getLangOptions().LaxVectorConversions &&
4737         (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)))
4738        return IncompatibleVectors;
4739
4740      // Allow assignments of an AltiVec vector type to an equivalent GCC
4741      // vector type and vice versa
4742      if (Context.areCompatibleVectorTypes(lhsType, rhsType))
4743        return Compatible;
4744    }
4745    return Incompatible;
4746  }
4747
4748  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
4749      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType()))
4750    return Compatible;
4751
4752  if (isa<PointerType>(lhsType)) {
4753    if (rhsType->isIntegerType())
4754      return IntToPointer;
4755
4756    if (isa<PointerType>(rhsType))
4757      return CheckPointerTypesForAssignment(lhsType, rhsType);
4758
4759    // In general, C pointers are not compatible with ObjC object pointers.
4760    if (isa<ObjCObjectPointerType>(rhsType)) {
4761      if (lhsType->isVoidPointerType()) // an exception to the rule.
4762        return Compatible;
4763      return IncompatiblePointer;
4764    }
4765    if (rhsType->getAs<BlockPointerType>()) {
4766      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4767        return Compatible;
4768
4769      // Treat block pointers as objects.
4770      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4771        return Compatible;
4772    }
4773    return Incompatible;
4774  }
4775
4776  if (isa<BlockPointerType>(lhsType)) {
4777    if (rhsType->isIntegerType())
4778      return IntToBlockPointer;
4779
4780    // Treat block pointers as objects.
4781    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4782      return Compatible;
4783
4784    if (rhsType->isBlockPointerType())
4785      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4786
4787    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4788      if (RHSPT->getPointeeType()->isVoidType())
4789        return Compatible;
4790    }
4791    return Incompatible;
4792  }
4793
4794  if (isa<ObjCObjectPointerType>(lhsType)) {
4795    if (rhsType->isIntegerType())
4796      return IntToPointer;
4797
4798    // In general, C pointers are not compatible with ObjC object pointers.
4799    if (isa<PointerType>(rhsType)) {
4800      if (rhsType->isVoidPointerType()) // an exception to the rule.
4801        return Compatible;
4802      return IncompatiblePointer;
4803    }
4804    if (rhsType->isObjCObjectPointerType()) {
4805      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4806    }
4807    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4808      if (RHSPT->getPointeeType()->isVoidType())
4809        return Compatible;
4810    }
4811    // Treat block pointers as objects.
4812    if (rhsType->isBlockPointerType())
4813      return Compatible;
4814    return Incompatible;
4815  }
4816  if (isa<PointerType>(rhsType)) {
4817    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4818    if (lhsType == Context.BoolTy)
4819      return Compatible;
4820
4821    if (lhsType->isIntegerType())
4822      return PointerToInt;
4823
4824    if (isa<PointerType>(lhsType))
4825      return CheckPointerTypesForAssignment(lhsType, rhsType);
4826
4827    if (isa<BlockPointerType>(lhsType) &&
4828        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4829      return Compatible;
4830    return Incompatible;
4831  }
4832  if (isa<ObjCObjectPointerType>(rhsType)) {
4833    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4834    if (lhsType == Context.BoolTy)
4835      return Compatible;
4836
4837    if (lhsType->isIntegerType())
4838      return PointerToInt;
4839
4840    // In general, C pointers are not compatible with ObjC object pointers.
4841    if (isa<PointerType>(lhsType)) {
4842      if (lhsType->isVoidPointerType()) // an exception to the rule.
4843        return Compatible;
4844      return IncompatiblePointer;
4845    }
4846    if (isa<BlockPointerType>(lhsType) &&
4847        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4848      return Compatible;
4849    return Incompatible;
4850  }
4851
4852  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4853    if (Context.typesAreCompatible(lhsType, rhsType))
4854      return Compatible;
4855  }
4856  return Incompatible;
4857}
4858
4859/// \brief Constructs a transparent union from an expression that is
4860/// used to initialize the transparent union.
4861static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4862                                      QualType UnionType, FieldDecl *Field) {
4863  // Build an initializer list that designates the appropriate member
4864  // of the transparent union.
4865  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
4866                                                   &E, 1,
4867                                                   SourceLocation());
4868  Initializer->setType(UnionType);
4869  Initializer->setInitializedFieldInUnion(Field);
4870
4871  // Build a compound literal constructing a value of the transparent
4872  // union type from this initializer list.
4873  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4874  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4875                                  Initializer, false);
4876}
4877
4878Sema::AssignConvertType
4879Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4880  QualType FromType = rExpr->getType();
4881
4882  // If the ArgType is a Union type, we want to handle a potential
4883  // transparent_union GCC extension.
4884  const RecordType *UT = ArgType->getAsUnionType();
4885  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4886    return Incompatible;
4887
4888  // The field to initialize within the transparent union.
4889  RecordDecl *UD = UT->getDecl();
4890  FieldDecl *InitField = 0;
4891  // It's compatible if the expression matches any of the fields.
4892  for (RecordDecl::field_iterator it = UD->field_begin(),
4893         itend = UD->field_end();
4894       it != itend; ++it) {
4895    if (it->getType()->isPointerType()) {
4896      // If the transparent union contains a pointer type, we allow:
4897      // 1) void pointer
4898      // 2) null pointer constant
4899      if (FromType->isPointerType())
4900        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4901          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4902          InitField = *it;
4903          break;
4904        }
4905
4906      if (rExpr->isNullPointerConstant(Context,
4907                                       Expr::NPC_ValueDependentIsNull)) {
4908        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4909        InitField = *it;
4910        break;
4911      }
4912    }
4913
4914    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4915          == Compatible) {
4916      InitField = *it;
4917      break;
4918    }
4919  }
4920
4921  if (!InitField)
4922    return Incompatible;
4923
4924  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4925  return Compatible;
4926}
4927
4928Sema::AssignConvertType
4929Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4930  if (getLangOptions().CPlusPlus) {
4931    if (!lhsType->isRecordType()) {
4932      // C++ 5.17p3: If the left operand is not of class type, the
4933      // expression is implicitly converted (C++ 4) to the
4934      // cv-unqualified type of the left operand.
4935      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4936                                    AA_Assigning))
4937        return Incompatible;
4938      return Compatible;
4939    }
4940
4941    // FIXME: Currently, we fall through and treat C++ classes like C
4942    // structures.
4943  }
4944
4945  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4946  // a null pointer constant.
4947  if ((lhsType->isPointerType() ||
4948       lhsType->isObjCObjectPointerType() ||
4949       lhsType->isBlockPointerType())
4950      && rExpr->isNullPointerConstant(Context,
4951                                      Expr::NPC_ValueDependentIsNull)) {
4952    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4953    return Compatible;
4954  }
4955
4956  // This check seems unnatural, however it is necessary to ensure the proper
4957  // conversion of functions/arrays. If the conversion were done for all
4958  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4959  // expressions that suppress this implicit conversion (&, sizeof).
4960  //
4961  // Suppress this for references: C++ 8.5.3p5.
4962  if (!lhsType->isReferenceType())
4963    DefaultFunctionArrayLvalueConversion(rExpr);
4964
4965  Sema::AssignConvertType result =
4966    CheckAssignmentConstraints(lhsType, rExpr->getType());
4967
4968  // C99 6.5.16.1p2: The value of the right operand is converted to the
4969  // type of the assignment expression.
4970  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4971  // so that we can use references in built-in functions even in C.
4972  // The getNonReferenceType() call makes sure that the resulting expression
4973  // does not have reference type.
4974  if (result != Incompatible && rExpr->getType() != lhsType)
4975    ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context),
4976                      CastExpr::CK_Unknown);
4977  return result;
4978}
4979
4980QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4981  Diag(Loc, diag::err_typecheck_invalid_operands)
4982    << lex->getType() << rex->getType()
4983    << lex->getSourceRange() << rex->getSourceRange();
4984  return QualType();
4985}
4986
4987QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4988  // For conversion purposes, we ignore any qualifiers.
4989  // For example, "const float" and "float" are equivalent.
4990  QualType lhsType =
4991    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4992  QualType rhsType =
4993    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4994
4995  // If the vector types are identical, return.
4996  if (lhsType == rhsType)
4997    return lhsType;
4998
4999  // Handle the case of a vector & extvector type of the same size and element
5000  // type.  It would be nice if we only had one vector type someday.
5001  if (getLangOptions().LaxVectorConversions) {
5002    // FIXME: Should we warn here?
5003    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5004      if (const VectorType *RV = rhsType->getAs<VectorType>())
5005        if (LV->getElementType() == RV->getElementType() &&
5006            LV->getNumElements() == RV->getNumElements()) {
5007          if (lhsType->isExtVectorType()) {
5008            ImpCastExprToType(rex, lhsType, CastExpr::CK_BitCast);
5009            return lhsType;
5010          }
5011
5012          ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
5013          return rhsType;
5014        }
5015    }
5016  }
5017
5018  // Handle the case of equivalent AltiVec and GCC vector types
5019  if (lhsType->isVectorType() && rhsType->isVectorType() &&
5020      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
5021    ImpCastExprToType(lex, rhsType, CastExpr::CK_BitCast);
5022    return rhsType;
5023  }
5024
5025  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5026  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5027  bool swapped = false;
5028  if (rhsType->isExtVectorType()) {
5029    swapped = true;
5030    std::swap(rex, lex);
5031    std::swap(rhsType, lhsType);
5032  }
5033
5034  // Handle the case of an ext vector and scalar.
5035  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5036    QualType EltTy = LV->getElementType();
5037    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
5038      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
5039        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
5040        if (swapped) std::swap(rex, lex);
5041        return lhsType;
5042      }
5043    }
5044    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5045        rhsType->isRealFloatingType()) {
5046      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
5047        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
5048        if (swapped) std::swap(rex, lex);
5049        return lhsType;
5050      }
5051    }
5052  }
5053
5054  // Vectors of different size or scalar and non-ext-vector are errors.
5055  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5056    << lex->getType() << rex->getType()
5057    << lex->getSourceRange() << rex->getSourceRange();
5058  return QualType();
5059}
5060
5061QualType Sema::CheckMultiplyDivideOperands(
5062  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5063  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5064    return CheckVectorOperands(Loc, lex, rex);
5065
5066  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5067
5068  if (!lex->getType()->isArithmeticType() ||
5069      !rex->getType()->isArithmeticType())
5070    return InvalidOperands(Loc, lex, rex);
5071
5072  // Check for division by zero.
5073  if (isDiv &&
5074      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5075    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5076                                     << rex->getSourceRange());
5077
5078  return compType;
5079}
5080
5081QualType Sema::CheckRemainderOperands(
5082  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5083  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5084    if (lex->getType()->hasIntegerRepresentation() &&
5085        rex->getType()->hasIntegerRepresentation())
5086      return CheckVectorOperands(Loc, lex, rex);
5087    return InvalidOperands(Loc, lex, rex);
5088  }
5089
5090  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5091
5092  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5093    return InvalidOperands(Loc, lex, rex);
5094
5095  // Check for remainder by zero.
5096  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5097    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5098                                 << rex->getSourceRange());
5099
5100  return compType;
5101}
5102
5103QualType Sema::CheckAdditionOperands( // C99 6.5.6
5104  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5105  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5106    QualType compType = CheckVectorOperands(Loc, lex, rex);
5107    if (CompLHSTy) *CompLHSTy = compType;
5108    return compType;
5109  }
5110
5111  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5112
5113  // handle the common case first (both operands are arithmetic).
5114  if (lex->getType()->isArithmeticType() &&
5115      rex->getType()->isArithmeticType()) {
5116    if (CompLHSTy) *CompLHSTy = compType;
5117    return compType;
5118  }
5119
5120  // Put any potential pointer into PExp
5121  Expr* PExp = lex, *IExp = rex;
5122  if (IExp->getType()->isAnyPointerType())
5123    std::swap(PExp, IExp);
5124
5125  if (PExp->getType()->isAnyPointerType()) {
5126
5127    if (IExp->getType()->isIntegerType()) {
5128      QualType PointeeTy = PExp->getType()->getPointeeType();
5129
5130      // Check for arithmetic on pointers to incomplete types.
5131      if (PointeeTy->isVoidType()) {
5132        if (getLangOptions().CPlusPlus) {
5133          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5134            << lex->getSourceRange() << rex->getSourceRange();
5135          return QualType();
5136        }
5137
5138        // GNU extension: arithmetic on pointer to void
5139        Diag(Loc, diag::ext_gnu_void_ptr)
5140          << lex->getSourceRange() << rex->getSourceRange();
5141      } else if (PointeeTy->isFunctionType()) {
5142        if (getLangOptions().CPlusPlus) {
5143          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5144            << lex->getType() << lex->getSourceRange();
5145          return QualType();
5146        }
5147
5148        // GNU extension: arithmetic on pointer to function
5149        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5150          << lex->getType() << lex->getSourceRange();
5151      } else {
5152        // Check if we require a complete type.
5153        if (((PExp->getType()->isPointerType() &&
5154              !PExp->getType()->isDependentType()) ||
5155              PExp->getType()->isObjCObjectPointerType()) &&
5156             RequireCompleteType(Loc, PointeeTy,
5157                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5158                             << PExp->getSourceRange()
5159                             << PExp->getType()))
5160          return QualType();
5161      }
5162      // Diagnose bad cases where we step over interface counts.
5163      if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5164        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5165          << PointeeTy << PExp->getSourceRange();
5166        return QualType();
5167      }
5168
5169      if (CompLHSTy) {
5170        QualType LHSTy = Context.isPromotableBitField(lex);
5171        if (LHSTy.isNull()) {
5172          LHSTy = lex->getType();
5173          if (LHSTy->isPromotableIntegerType())
5174            LHSTy = Context.getPromotedIntegerType(LHSTy);
5175        }
5176        *CompLHSTy = LHSTy;
5177      }
5178      return PExp->getType();
5179    }
5180  }
5181
5182  return InvalidOperands(Loc, lex, rex);
5183}
5184
5185// C99 6.5.6
5186QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5187                                        SourceLocation Loc, QualType* CompLHSTy) {
5188  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5189    QualType compType = CheckVectorOperands(Loc, lex, rex);
5190    if (CompLHSTy) *CompLHSTy = compType;
5191    return compType;
5192  }
5193
5194  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5195
5196  // Enforce type constraints: C99 6.5.6p3.
5197
5198  // Handle the common case first (both operands are arithmetic).
5199  if (lex->getType()->isArithmeticType()
5200      && rex->getType()->isArithmeticType()) {
5201    if (CompLHSTy) *CompLHSTy = compType;
5202    return compType;
5203  }
5204
5205  // Either ptr - int   or   ptr - ptr.
5206  if (lex->getType()->isAnyPointerType()) {
5207    QualType lpointee = lex->getType()->getPointeeType();
5208
5209    // The LHS must be an completely-defined object type.
5210
5211    bool ComplainAboutVoid = false;
5212    Expr *ComplainAboutFunc = 0;
5213    if (lpointee->isVoidType()) {
5214      if (getLangOptions().CPlusPlus) {
5215        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5216          << lex->getSourceRange() << rex->getSourceRange();
5217        return QualType();
5218      }
5219
5220      // GNU C extension: arithmetic on pointer to void
5221      ComplainAboutVoid = true;
5222    } else if (lpointee->isFunctionType()) {
5223      if (getLangOptions().CPlusPlus) {
5224        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5225          << lex->getType() << lex->getSourceRange();
5226        return QualType();
5227      }
5228
5229      // GNU C extension: arithmetic on pointer to function
5230      ComplainAboutFunc = lex;
5231    } else if (!lpointee->isDependentType() &&
5232               RequireCompleteType(Loc, lpointee,
5233                                   PDiag(diag::err_typecheck_sub_ptr_object)
5234                                     << lex->getSourceRange()
5235                                     << lex->getType()))
5236      return QualType();
5237
5238    // Diagnose bad cases where we step over interface counts.
5239    if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
5240      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5241        << lpointee << lex->getSourceRange();
5242      return QualType();
5243    }
5244
5245    // The result type of a pointer-int computation is the pointer type.
5246    if (rex->getType()->isIntegerType()) {
5247      if (ComplainAboutVoid)
5248        Diag(Loc, diag::ext_gnu_void_ptr)
5249          << lex->getSourceRange() << rex->getSourceRange();
5250      if (ComplainAboutFunc)
5251        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5252          << ComplainAboutFunc->getType()
5253          << ComplainAboutFunc->getSourceRange();
5254
5255      if (CompLHSTy) *CompLHSTy = lex->getType();
5256      return lex->getType();
5257    }
5258
5259    // Handle pointer-pointer subtractions.
5260    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5261      QualType rpointee = RHSPTy->getPointeeType();
5262
5263      // RHS must be a completely-type object type.
5264      // Handle the GNU void* extension.
5265      if (rpointee->isVoidType()) {
5266        if (getLangOptions().CPlusPlus) {
5267          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5268            << lex->getSourceRange() << rex->getSourceRange();
5269          return QualType();
5270        }
5271
5272        ComplainAboutVoid = true;
5273      } else if (rpointee->isFunctionType()) {
5274        if (getLangOptions().CPlusPlus) {
5275          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5276            << rex->getType() << rex->getSourceRange();
5277          return QualType();
5278        }
5279
5280        // GNU extension: arithmetic on pointer to function
5281        if (!ComplainAboutFunc)
5282          ComplainAboutFunc = rex;
5283      } else if (!rpointee->isDependentType() &&
5284                 RequireCompleteType(Loc, rpointee,
5285                                     PDiag(diag::err_typecheck_sub_ptr_object)
5286                                       << rex->getSourceRange()
5287                                       << rex->getType()))
5288        return QualType();
5289
5290      if (getLangOptions().CPlusPlus) {
5291        // Pointee types must be the same: C++ [expr.add]
5292        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5293          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5294            << lex->getType() << rex->getType()
5295            << lex->getSourceRange() << rex->getSourceRange();
5296          return QualType();
5297        }
5298      } else {
5299        // Pointee types must be compatible C99 6.5.6p3
5300        if (!Context.typesAreCompatible(
5301                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5302                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5303          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5304            << lex->getType() << rex->getType()
5305            << lex->getSourceRange() << rex->getSourceRange();
5306          return QualType();
5307        }
5308      }
5309
5310      if (ComplainAboutVoid)
5311        Diag(Loc, diag::ext_gnu_void_ptr)
5312          << lex->getSourceRange() << rex->getSourceRange();
5313      if (ComplainAboutFunc)
5314        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5315          << ComplainAboutFunc->getType()
5316          << ComplainAboutFunc->getSourceRange();
5317
5318      if (CompLHSTy) *CompLHSTy = lex->getType();
5319      return Context.getPointerDiffType();
5320    }
5321  }
5322
5323  return InvalidOperands(Loc, lex, rex);
5324}
5325
5326// C99 6.5.7
5327QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5328                                  bool isCompAssign) {
5329  // C99 6.5.7p2: Each of the operands shall have integer type.
5330  if (!lex->getType()->hasIntegerRepresentation() ||
5331      !rex->getType()->hasIntegerRepresentation())
5332    return InvalidOperands(Loc, lex, rex);
5333
5334  // Vector shifts promote their scalar inputs to vector type.
5335  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5336    return CheckVectorOperands(Loc, lex, rex);
5337
5338  // Shifts don't perform usual arithmetic conversions, they just do integer
5339  // promotions on each operand. C99 6.5.7p3
5340  QualType LHSTy = Context.isPromotableBitField(lex);
5341  if (LHSTy.isNull()) {
5342    LHSTy = lex->getType();
5343    if (LHSTy->isPromotableIntegerType())
5344      LHSTy = Context.getPromotedIntegerType(LHSTy);
5345  }
5346  if (!isCompAssign)
5347    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5348
5349  UsualUnaryConversions(rex);
5350
5351  // Sanity-check shift operands
5352  llvm::APSInt Right;
5353  // Check right/shifter operand
5354  if (!rex->isValueDependent() &&
5355      rex->isIntegerConstantExpr(Right, Context)) {
5356    if (Right.isNegative())
5357      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5358    else {
5359      llvm::APInt LeftBits(Right.getBitWidth(),
5360                          Context.getTypeSize(lex->getType()));
5361      if (Right.uge(LeftBits))
5362        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5363    }
5364  }
5365
5366  // "The type of the result is that of the promoted left operand."
5367  return LHSTy;
5368}
5369
5370static bool IsWithinTemplateSpecialization(Decl *D) {
5371  if (DeclContext *DC = D->getDeclContext()) {
5372    if (isa<ClassTemplateSpecializationDecl>(DC))
5373      return true;
5374    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
5375      return FD->isFunctionTemplateSpecialization();
5376  }
5377  return false;
5378}
5379
5380// C99 6.5.8, C++ [expr.rel]
5381QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5382                                    unsigned OpaqueOpc, bool isRelational) {
5383  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5384
5385  // Handle vector comparisons separately.
5386  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5387    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5388
5389  QualType lType = lex->getType();
5390  QualType rType = rex->getType();
5391
5392  if (!lType->hasFloatingRepresentation() &&
5393      !(lType->isBlockPointerType() && isRelational)) {
5394    // For non-floating point types, check for self-comparisons of the form
5395    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5396    // often indicate logic errors in the program.
5397    //
5398    // NOTE: Don't warn about comparison expressions resulting from macro
5399    // expansion. Also don't warn about comparisons which are only self
5400    // comparisons within a template specialization. The warnings should catch
5401    // obvious cases in the definition of the template anyways. The idea is to
5402    // warn when the typed comparison operator will always evaluate to the same
5403    // result.
5404    Expr *LHSStripped = lex->IgnoreParens();
5405    Expr *RHSStripped = rex->IgnoreParens();
5406    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
5407      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
5408        if (DRL->getDecl() == DRR->getDecl() && !Loc.isMacroID() &&
5409            !IsWithinTemplateSpecialization(DRL->getDecl())) {
5410          DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5411                              << 0 // self-
5412                              << (Opc == BinaryOperator::EQ
5413                                  || Opc == BinaryOperator::LE
5414                                  || Opc == BinaryOperator::GE));
5415        } else if (lType->isArrayType() && rType->isArrayType() &&
5416                   !DRL->getDecl()->getType()->isReferenceType() &&
5417                   !DRR->getDecl()->getType()->isReferenceType()) {
5418            // what is it always going to eval to?
5419            char always_evals_to;
5420            switch(Opc) {
5421            case BinaryOperator::EQ: // e.g. array1 == array2
5422              always_evals_to = 0; // false
5423              break;
5424            case BinaryOperator::NE: // e.g. array1 != array2
5425              always_evals_to = 1; // true
5426              break;
5427            default:
5428              // best we can say is 'a constant'
5429              always_evals_to = 2; // e.g. array1 <= array2
5430              break;
5431            }
5432            DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
5433                                << 1 // array
5434                                << always_evals_to);
5435        }
5436      }
5437    }
5438
5439    if (isa<CastExpr>(LHSStripped))
5440      LHSStripped = LHSStripped->IgnoreParenCasts();
5441    if (isa<CastExpr>(RHSStripped))
5442      RHSStripped = RHSStripped->IgnoreParenCasts();
5443
5444    // Warn about comparisons against a string constant (unless the other
5445    // operand is null), the user probably wants strcmp.
5446    Expr *literalString = 0;
5447    Expr *literalStringStripped = 0;
5448    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5449        !RHSStripped->isNullPointerConstant(Context,
5450                                            Expr::NPC_ValueDependentIsNull)) {
5451      literalString = lex;
5452      literalStringStripped = LHSStripped;
5453    } else if ((isa<StringLiteral>(RHSStripped) ||
5454                isa<ObjCEncodeExpr>(RHSStripped)) &&
5455               !LHSStripped->isNullPointerConstant(Context,
5456                                            Expr::NPC_ValueDependentIsNull)) {
5457      literalString = rex;
5458      literalStringStripped = RHSStripped;
5459    }
5460
5461    if (literalString) {
5462      std::string resultComparison;
5463      switch (Opc) {
5464      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5465      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5466      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5467      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5468      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5469      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5470      default: assert(false && "Invalid comparison operator");
5471      }
5472
5473      DiagRuntimeBehavior(Loc,
5474        PDiag(diag::warn_stringcompare)
5475          << isa<ObjCEncodeExpr>(literalStringStripped)
5476          << literalString->getSourceRange());
5477    }
5478  }
5479
5480  // C99 6.5.8p3 / C99 6.5.9p4
5481  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5482    UsualArithmeticConversions(lex, rex);
5483  else {
5484    UsualUnaryConversions(lex);
5485    UsualUnaryConversions(rex);
5486  }
5487
5488  lType = lex->getType();
5489  rType = rex->getType();
5490
5491  // The result of comparisons is 'bool' in C++, 'int' in C.
5492  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5493
5494  if (isRelational) {
5495    if (lType->isRealType() && rType->isRealType())
5496      return ResultTy;
5497  } else {
5498    // Check for comparisons of floating point operands using != and ==.
5499    if (lType->hasFloatingRepresentation())
5500      CheckFloatComparison(Loc,lex,rex);
5501
5502    if (lType->isArithmeticType() && rType->isArithmeticType())
5503      return ResultTy;
5504  }
5505
5506  bool LHSIsNull = lex->isNullPointerConstant(Context,
5507                                              Expr::NPC_ValueDependentIsNull);
5508  bool RHSIsNull = rex->isNullPointerConstant(Context,
5509                                              Expr::NPC_ValueDependentIsNull);
5510
5511  // All of the following pointer-related warnings are GCC extensions, except
5512  // when handling null pointer constants.
5513  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5514    QualType LCanPointeeTy =
5515      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5516    QualType RCanPointeeTy =
5517      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5518
5519    if (getLangOptions().CPlusPlus) {
5520      if (LCanPointeeTy == RCanPointeeTy)
5521        return ResultTy;
5522      if (!isRelational &&
5523          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5524        // Valid unless comparison between non-null pointer and function pointer
5525        // This is a gcc extension compatibility comparison.
5526        // In a SFINAE context, we treat this as a hard error to maintain
5527        // conformance with the C++ standard.
5528        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5529            && !LHSIsNull && !RHSIsNull) {
5530          Diag(Loc,
5531               isSFINAEContext()?
5532                   diag::err_typecheck_comparison_of_fptr_to_void
5533                 : diag::ext_typecheck_comparison_of_fptr_to_void)
5534            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5535
5536          if (isSFINAEContext())
5537            return QualType();
5538
5539          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5540          return ResultTy;
5541        }
5542      }
5543      // C++ [expr.rel]p2:
5544      //   [...] Pointer conversions (4.10) and qualification
5545      //   conversions (4.4) are performed on pointer operands (or on
5546      //   a pointer operand and a null pointer constant) to bring
5547      //   them to their composite pointer type. [...]
5548      //
5549      // C++ [expr.eq]p1 uses the same notion for (in)equality
5550      // comparisons of pointers.
5551      bool NonStandardCompositeType = false;
5552      QualType T = FindCompositePointerType(Loc, lex, rex,
5553                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5554      if (T.isNull()) {
5555        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5556          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5557        return QualType();
5558      } else if (NonStandardCompositeType) {
5559        Diag(Loc,
5560             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5561          << lType << rType << T
5562          << lex->getSourceRange() << rex->getSourceRange();
5563      }
5564
5565      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5566      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5567      return ResultTy;
5568    }
5569    // C99 6.5.9p2 and C99 6.5.8p2
5570    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5571                                   RCanPointeeTy.getUnqualifiedType())) {
5572      // Valid unless a relational comparison of function pointers
5573      if (isRelational && LCanPointeeTy->isFunctionType()) {
5574        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5575          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5576      }
5577    } else if (!isRelational &&
5578               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5579      // Valid unless comparison between non-null pointer and function pointer
5580      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5581          && !LHSIsNull && !RHSIsNull) {
5582        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5583          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5584      }
5585    } else {
5586      // Invalid
5587      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5588        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5589    }
5590    if (LCanPointeeTy != RCanPointeeTy)
5591      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5592    return ResultTy;
5593  }
5594
5595  if (getLangOptions().CPlusPlus) {
5596    // Comparison of pointers with null pointer constants and equality
5597    // comparisons of member pointers to null pointer constants.
5598    if (RHSIsNull &&
5599        (lType->isPointerType() ||
5600         (!isRelational && lType->isMemberPointerType()))) {
5601      ImpCastExprToType(rex, lType,
5602                        lType->isMemberPointerType()
5603                          ? CastExpr::CK_NullToMemberPointer
5604                          : CastExpr::CK_IntegralToPointer);
5605      return ResultTy;
5606    }
5607    if (LHSIsNull &&
5608        (rType->isPointerType() ||
5609         (!isRelational && rType->isMemberPointerType()))) {
5610      ImpCastExprToType(lex, rType,
5611                        rType->isMemberPointerType()
5612                          ? CastExpr::CK_NullToMemberPointer
5613                          : CastExpr::CK_IntegralToPointer);
5614      return ResultTy;
5615    }
5616
5617    // Comparison of member pointers.
5618    if (!isRelational &&
5619        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5620      // C++ [expr.eq]p2:
5621      //   In addition, pointers to members can be compared, or a pointer to
5622      //   member and a null pointer constant. Pointer to member conversions
5623      //   (4.11) and qualification conversions (4.4) are performed to bring
5624      //   them to a common type. If one operand is a null pointer constant,
5625      //   the common type is the type of the other operand. Otherwise, the
5626      //   common type is a pointer to member type similar (4.4) to the type
5627      //   of one of the operands, with a cv-qualification signature (4.4)
5628      //   that is the union of the cv-qualification signatures of the operand
5629      //   types.
5630      bool NonStandardCompositeType = false;
5631      QualType T = FindCompositePointerType(Loc, lex, rex,
5632                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5633      if (T.isNull()) {
5634        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5635          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5636        return QualType();
5637      } else if (NonStandardCompositeType) {
5638        Diag(Loc,
5639             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5640          << lType << rType << T
5641          << lex->getSourceRange() << rex->getSourceRange();
5642      }
5643
5644      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5645      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5646      return ResultTy;
5647    }
5648
5649    // Comparison of nullptr_t with itself.
5650    if (lType->isNullPtrType() && rType->isNullPtrType())
5651      return ResultTy;
5652  }
5653
5654  // Handle block pointer types.
5655  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5656    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5657    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5658
5659    if (!LHSIsNull && !RHSIsNull &&
5660        !Context.typesAreCompatible(lpointee, rpointee)) {
5661      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5662        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5663    }
5664    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5665    return ResultTy;
5666  }
5667  // Allow block pointers to be compared with null pointer constants.
5668  if (!isRelational
5669      && ((lType->isBlockPointerType() && rType->isPointerType())
5670          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5671    if (!LHSIsNull && !RHSIsNull) {
5672      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5673             ->getPointeeType()->isVoidType())
5674            || (lType->isPointerType() && lType->getAs<PointerType>()
5675                ->getPointeeType()->isVoidType())))
5676        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5677          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5678    }
5679    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5680    return ResultTy;
5681  }
5682
5683  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5684    if (lType->isPointerType() || rType->isPointerType()) {
5685      const PointerType *LPT = lType->getAs<PointerType>();
5686      const PointerType *RPT = rType->getAs<PointerType>();
5687      bool LPtrToVoid = LPT ?
5688        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5689      bool RPtrToVoid = RPT ?
5690        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5691
5692      if (!LPtrToVoid && !RPtrToVoid &&
5693          !Context.typesAreCompatible(lType, rType)) {
5694        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5695          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5696      }
5697      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5698      return ResultTy;
5699    }
5700    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5701      if (!Context.areComparableObjCPointerTypes(lType, rType))
5702        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5703          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5704      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5705      return ResultTy;
5706    }
5707  }
5708  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
5709      (lType->isIntegerType() && rType->isAnyPointerType())) {
5710    unsigned DiagID = 0;
5711    bool isError = false;
5712    if ((LHSIsNull && lType->isIntegerType()) ||
5713        (RHSIsNull && rType->isIntegerType())) {
5714      if (isRelational && !getLangOptions().CPlusPlus)
5715        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5716    } else if (isRelational && !getLangOptions().CPlusPlus)
5717      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5718    else if (getLangOptions().CPlusPlus) {
5719      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
5720      isError = true;
5721    } else
5722      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5723
5724    if (DiagID) {
5725      Diag(Loc, DiagID)
5726        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5727      if (isError)
5728        return QualType();
5729    }
5730
5731    if (lType->isIntegerType())
5732      ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5733    else
5734      ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5735    return ResultTy;
5736  }
5737
5738  // Handle block pointers.
5739  if (!isRelational && RHSIsNull
5740      && lType->isBlockPointerType() && rType->isIntegerType()) {
5741    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5742    return ResultTy;
5743  }
5744  if (!isRelational && LHSIsNull
5745      && lType->isIntegerType() && rType->isBlockPointerType()) {
5746    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5747    return ResultTy;
5748  }
5749  return InvalidOperands(Loc, lex, rex);
5750}
5751
5752/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5753/// operates on extended vector types.  Instead of producing an IntTy result,
5754/// like a scalar comparison, a vector comparison produces a vector of integer
5755/// types.
5756QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5757                                          SourceLocation Loc,
5758                                          bool isRelational) {
5759  // Check to make sure we're operating on vectors of the same type and width,
5760  // Allowing one side to be a scalar of element type.
5761  QualType vType = CheckVectorOperands(Loc, lex, rex);
5762  if (vType.isNull())
5763    return vType;
5764
5765  QualType lType = lex->getType();
5766  QualType rType = rex->getType();
5767
5768  // For non-floating point types, check for self-comparisons of the form
5769  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5770  // often indicate logic errors in the program.
5771  if (!lType->hasFloatingRepresentation()) {
5772    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5773      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5774        if (DRL->getDecl() == DRR->getDecl())
5775          DiagRuntimeBehavior(Loc,
5776                              PDiag(diag::warn_comparison_always)
5777                                << 0 // self-
5778                                << 2 // "a constant"
5779                              );
5780  }
5781
5782  // Check for comparisons of floating point operands using != and ==.
5783  if (!isRelational && lType->hasFloatingRepresentation()) {
5784    assert (rType->hasFloatingRepresentation());
5785    CheckFloatComparison(Loc,lex,rex);
5786  }
5787
5788  // Return the type for the comparison, which is the same as vector type for
5789  // integer vectors, or an integer type of identical size and number of
5790  // elements for floating point vectors.
5791  if (lType->hasIntegerRepresentation())
5792    return lType;
5793
5794  const VectorType *VTy = lType->getAs<VectorType>();
5795  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5796  if (TypeSize == Context.getTypeSize(Context.IntTy))
5797    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5798  if (TypeSize == Context.getTypeSize(Context.LongTy))
5799    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5800
5801  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5802         "Unhandled vector element size in vector compare");
5803  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5804}
5805
5806inline QualType Sema::CheckBitwiseOperands(
5807  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5808  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5809    if (lex->getType()->hasIntegerRepresentation() &&
5810        rex->getType()->hasIntegerRepresentation())
5811      return CheckVectorOperands(Loc, lex, rex);
5812
5813    return InvalidOperands(Loc, lex, rex);
5814  }
5815
5816  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5817
5818  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5819    return compType;
5820  return InvalidOperands(Loc, lex, rex);
5821}
5822
5823inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5824  Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
5825
5826  // Diagnose cases where the user write a logical and/or but probably meant a
5827  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
5828  // is a constant.
5829  if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
5830      rex->getType()->isIntegerType() && !rex->isValueDependent() &&
5831      // Don't warn in macros.
5832      !Loc.isMacroID()) {
5833    // If the RHS can be constant folded, and if it constant folds to something
5834    // that isn't 0 or 1 (which indicate a potential logical operation that
5835    // happened to fold to true/false) then warn.
5836    Expr::EvalResult Result;
5837    if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
5838        Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
5839      Diag(Loc, diag::warn_logical_instead_of_bitwise)
5840       << rex->getSourceRange()
5841        << (Opc == BinaryOperator::LAnd ? "&&" : "||")
5842        << (Opc == BinaryOperator::LAnd ? "&" : "|");
5843    }
5844  }
5845
5846  if (!Context.getLangOptions().CPlusPlus) {
5847    UsualUnaryConversions(lex);
5848    UsualUnaryConversions(rex);
5849
5850    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5851      return InvalidOperands(Loc, lex, rex);
5852
5853    return Context.IntTy;
5854  }
5855
5856  // The following is safe because we only use this method for
5857  // non-overloadable operands.
5858
5859  // C++ [expr.log.and]p1
5860  // C++ [expr.log.or]p1
5861  // The operands are both contextually converted to type bool.
5862  if (PerformContextuallyConvertToBool(lex) ||
5863      PerformContextuallyConvertToBool(rex))
5864    return InvalidOperands(Loc, lex, rex);
5865
5866  // C++ [expr.log.and]p2
5867  // C++ [expr.log.or]p2
5868  // The result is a bool.
5869  return Context.BoolTy;
5870}
5871
5872/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5873/// is a read-only property; return true if so. A readonly property expression
5874/// depends on various declarations and thus must be treated specially.
5875///
5876static bool IsReadonlyProperty(Expr *E, Sema &S) {
5877  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5878    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5879    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5880      QualType BaseType = PropExpr->getBase()->getType();
5881      if (const ObjCObjectPointerType *OPT =
5882            BaseType->getAsObjCInterfacePointerType())
5883        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5884          if (S.isPropertyReadonly(PDecl, IFace))
5885            return true;
5886    }
5887  }
5888  return false;
5889}
5890
5891/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5892/// emit an error and return true.  If so, return false.
5893static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5894  SourceLocation OrigLoc = Loc;
5895  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5896                                                              &Loc);
5897  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5898    IsLV = Expr::MLV_ReadonlyProperty;
5899  if (IsLV == Expr::MLV_Valid)
5900    return false;
5901
5902  unsigned Diag = 0;
5903  bool NeedType = false;
5904  switch (IsLV) { // C99 6.5.16p2
5905  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5906  case Expr::MLV_ArrayType:
5907    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5908    NeedType = true;
5909    break;
5910  case Expr::MLV_NotObjectType:
5911    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5912    NeedType = true;
5913    break;
5914  case Expr::MLV_LValueCast:
5915    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5916    break;
5917  case Expr::MLV_Valid:
5918    llvm_unreachable("did not take early return for MLV_Valid");
5919  case Expr::MLV_InvalidExpression:
5920  case Expr::MLV_MemberFunction:
5921  case Expr::MLV_ClassTemporary:
5922    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5923    break;
5924  case Expr::MLV_IncompleteType:
5925  case Expr::MLV_IncompleteVoidType:
5926    return S.RequireCompleteType(Loc, E->getType(),
5927              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5928                  << E->getSourceRange());
5929  case Expr::MLV_DuplicateVectorComponents:
5930    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5931    break;
5932  case Expr::MLV_NotBlockQualified:
5933    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5934    break;
5935  case Expr::MLV_ReadonlyProperty:
5936    Diag = diag::error_readonly_property_assignment;
5937    break;
5938  case Expr::MLV_NoSetterProperty:
5939    Diag = diag::error_nosetter_property_assignment;
5940    break;
5941  case Expr::MLV_SubObjCPropertySetting:
5942    Diag = diag::error_no_subobject_property_setting;
5943    break;
5944  }
5945
5946  SourceRange Assign;
5947  if (Loc != OrigLoc)
5948    Assign = SourceRange(OrigLoc, OrigLoc);
5949  if (NeedType)
5950    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5951  else
5952    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5953  return true;
5954}
5955
5956
5957
5958// C99 6.5.16.1
5959QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5960                                       SourceLocation Loc,
5961                                       QualType CompoundType) {
5962  // Verify that LHS is a modifiable lvalue, and emit error if not.
5963  if (CheckForModifiableLvalue(LHS, Loc, *this))
5964    return QualType();
5965
5966  QualType LHSType = LHS->getType();
5967  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5968  AssignConvertType ConvTy;
5969  if (CompoundType.isNull()) {
5970    QualType LHSTy(LHSType);
5971    // Simple assignment "x = y".
5972    if (const ObjCImplicitSetterGetterRefExpr *OISGE =
5973        dyn_cast<ObjCImplicitSetterGetterRefExpr>(LHS)) {
5974      // If using property-dot syntax notation for assignment, and there is a
5975      // setter, RHS expression is being passed to the setter argument. So,
5976      // type conversion (and comparison) is RHS to setter's argument type.
5977      if (const ObjCMethodDecl *SetterMD = OISGE->getSetterMethod()) {
5978        ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
5979        LHSTy = (*P)->getType();
5980      }
5981    }
5982
5983    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
5984    // Special case of NSObject attributes on c-style pointer types.
5985    if (ConvTy == IncompatiblePointer &&
5986        ((Context.isObjCNSObjectType(LHSType) &&
5987          RHSType->isObjCObjectPointerType()) ||
5988         (Context.isObjCNSObjectType(RHSType) &&
5989          LHSType->isObjCObjectPointerType())))
5990      ConvTy = Compatible;
5991
5992    // If the RHS is a unary plus or minus, check to see if they = and + are
5993    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5994    // instead of "x += 4".
5995    Expr *RHSCheck = RHS;
5996    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5997      RHSCheck = ICE->getSubExpr();
5998    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5999      if ((UO->getOpcode() == UnaryOperator::Plus ||
6000           UO->getOpcode() == UnaryOperator::Minus) &&
6001          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
6002          // Only if the two operators are exactly adjacent.
6003          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
6004          // And there is a space or other character before the subexpr of the
6005          // unary +/-.  We don't want to warn on "x=-1".
6006          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
6007          UO->getSubExpr()->getLocStart().isFileID()) {
6008        Diag(Loc, diag::warn_not_compound_assign)
6009          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
6010          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
6011      }
6012    }
6013  } else {
6014    // Compound assignment "x += y"
6015    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
6016  }
6017
6018  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
6019                               RHS, AA_Assigning))
6020    return QualType();
6021
6022
6023  // Check to see if the destination operand is a dereferenced null pointer.  If
6024  // so, and if not volatile-qualified, this is undefined behavior that the
6025  // optimizer will delete, so warn about it.  People sometimes try to use this
6026  // to get a deterministic trap and are surprised by clang's behavior.  This
6027  // only handles the pattern "*null = whatever", which is a very syntactic
6028  // check.
6029  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
6030    if (UO->getOpcode() == UnaryOperator::Deref &&
6031        UO->getSubExpr()->IgnoreParenCasts()->
6032          isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
6033        !UO->getType().isVolatileQualified()) {
6034    Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
6035        << UO->getSubExpr()->getSourceRange();
6036    Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
6037  }
6038
6039  // C99 6.5.16p3: The type of an assignment expression is the type of the
6040  // left operand unless the left operand has qualified type, in which case
6041  // it is the unqualified version of the type of the left operand.
6042  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
6043  // is converted to the type of the assignment expression (above).
6044  // C++ 5.17p1: the type of the assignment expression is that of its left
6045  // operand.
6046  return LHSType.getUnqualifiedType();
6047}
6048
6049// C99 6.5.17
6050QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
6051  DiagnoseUnusedExprResult(LHS);
6052
6053  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
6054  // C++ does not perform this conversion (C++ [expr.comma]p1).
6055  if (!getLangOptions().CPlusPlus)
6056    DefaultFunctionArrayLvalueConversion(RHS);
6057
6058  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
6059  // incomplete in C++).
6060
6061  return RHS->getType();
6062}
6063
6064/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
6065/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
6066QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
6067                                              bool isInc, bool isPrefix) {
6068  if (Op->isTypeDependent())
6069    return Context.DependentTy;
6070
6071  QualType ResType = Op->getType();
6072  assert(!ResType.isNull() && "no type for increment/decrement expression");
6073
6074  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
6075    // Decrement of bool is not allowed.
6076    if (!isInc) {
6077      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
6078      return QualType();
6079    }
6080    // Increment of bool sets it to true, but is deprecated.
6081    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
6082  } else if (ResType->isRealType()) {
6083    // OK!
6084  } else if (ResType->isAnyPointerType()) {
6085    QualType PointeeTy = ResType->getPointeeType();
6086
6087    // C99 6.5.2.4p2, 6.5.6p2
6088    if (PointeeTy->isVoidType()) {
6089      if (getLangOptions().CPlusPlus) {
6090        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
6091          << Op->getSourceRange();
6092        return QualType();
6093      }
6094
6095      // Pointer to void is a GNU extension in C.
6096      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
6097    } else if (PointeeTy->isFunctionType()) {
6098      if (getLangOptions().CPlusPlus) {
6099        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
6100          << Op->getType() << Op->getSourceRange();
6101        return QualType();
6102      }
6103
6104      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
6105        << ResType << Op->getSourceRange();
6106    } else if (RequireCompleteType(OpLoc, PointeeTy,
6107                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
6108                             << Op->getSourceRange()
6109                             << ResType))
6110      return QualType();
6111    // Diagnose bad cases where we step over interface counts.
6112    else if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6113      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6114        << PointeeTy << Op->getSourceRange();
6115      return QualType();
6116    }
6117  } else if (ResType->isAnyComplexType()) {
6118    // C99 does not support ++/-- on complex types, we allow as an extension.
6119    Diag(OpLoc, diag::ext_integer_increment_complex)
6120      << ResType << Op->getSourceRange();
6121  } else {
6122    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6123      << ResType << int(isInc) << Op->getSourceRange();
6124    return QualType();
6125  }
6126  // At this point, we know we have a real, complex or pointer type.
6127  // Now make sure the operand is a modifiable lvalue.
6128  if (CheckForModifiableLvalue(Op, OpLoc, *this))
6129    return QualType();
6130  // In C++, a prefix increment is the same type as the operand. Otherwise
6131  // (in C or with postfix), the increment is the unqualified type of the
6132  // operand.
6133  return isPrefix && getLangOptions().CPlusPlus
6134    ? ResType : ResType.getUnqualifiedType();
6135}
6136
6137/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6138/// This routine allows us to typecheck complex/recursive expressions
6139/// where the declaration is needed for type checking. We only need to
6140/// handle cases when the expression references a function designator
6141/// or is an lvalue. Here are some examples:
6142///  - &(x) => x
6143///  - &*****f => f for f a function designator.
6144///  - &s.xx => s
6145///  - &s.zz[1].yy -> s, if zz is an array
6146///  - *(x + 1) -> x, if x is an array
6147///  - &"123"[2] -> 0
6148///  - & __real__ x -> x
6149static NamedDecl *getPrimaryDecl(Expr *E) {
6150  switch (E->getStmtClass()) {
6151  case Stmt::DeclRefExprClass:
6152    return cast<DeclRefExpr>(E)->getDecl();
6153  case Stmt::MemberExprClass:
6154    // If this is an arrow operator, the address is an offset from
6155    // the base's value, so the object the base refers to is
6156    // irrelevant.
6157    if (cast<MemberExpr>(E)->isArrow())
6158      return 0;
6159    // Otherwise, the expression refers to a part of the base
6160    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6161  case Stmt::ArraySubscriptExprClass: {
6162    // FIXME: This code shouldn't be necessary!  We should catch the implicit
6163    // promotion of register arrays earlier.
6164    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6165    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6166      if (ICE->getSubExpr()->getType()->isArrayType())
6167        return getPrimaryDecl(ICE->getSubExpr());
6168    }
6169    return 0;
6170  }
6171  case Stmt::UnaryOperatorClass: {
6172    UnaryOperator *UO = cast<UnaryOperator>(E);
6173
6174    switch(UO->getOpcode()) {
6175    case UnaryOperator::Real:
6176    case UnaryOperator::Imag:
6177    case UnaryOperator::Extension:
6178      return getPrimaryDecl(UO->getSubExpr());
6179    default:
6180      return 0;
6181    }
6182  }
6183  case Stmt::ParenExprClass:
6184    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6185  case Stmt::ImplicitCastExprClass:
6186    // If the result of an implicit cast is an l-value, we care about
6187    // the sub-expression; otherwise, the result here doesn't matter.
6188    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6189  default:
6190    return 0;
6191  }
6192}
6193
6194/// CheckAddressOfOperand - The operand of & must be either a function
6195/// designator or an lvalue designating an object. If it is an lvalue, the
6196/// object cannot be declared with storage class register or be a bit field.
6197/// Note: The usual conversions are *not* applied to the operand of the &
6198/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6199/// In C++, the operand might be an overloaded function name, in which case
6200/// we allow the '&' but retain the overloaded-function type.
6201QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
6202  // Make sure to ignore parentheses in subsequent checks
6203  op = op->IgnoreParens();
6204
6205  if (op->isTypeDependent())
6206    return Context.DependentTy;
6207
6208  if (getLangOptions().C99) {
6209    // Implement C99-only parts of addressof rules.
6210    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6211      if (uOp->getOpcode() == UnaryOperator::Deref)
6212        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6213        // (assuming the deref expression is valid).
6214        return uOp->getSubExpr()->getType();
6215    }
6216    // Technically, there should be a check for array subscript
6217    // expressions here, but the result of one is always an lvalue anyway.
6218  }
6219  NamedDecl *dcl = getPrimaryDecl(op);
6220  Expr::isLvalueResult lval = op->isLvalue(Context);
6221
6222  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6223  if (lval == Expr::LV_MemberFunction && ME &&
6224      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6225    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6226    // &f where f is a member of the current object, or &o.f, or &p->f
6227    // All these are not allowed, and we need to catch them before the dcl
6228    // branch of the if, below.
6229    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6230        << dcl;
6231    // FIXME: Improve this diagnostic and provide a fixit.
6232
6233    // Now recover by acting as if the function had been accessed qualified.
6234    return Context.getMemberPointerType(op->getType(),
6235                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6236                       .getTypePtr());
6237  }
6238
6239  if (lval == Expr::LV_ClassTemporary) {
6240    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6241                                 : diag::ext_typecheck_addrof_class_temporary)
6242      << op->getType() << op->getSourceRange();
6243    if (isSFINAEContext())
6244      return QualType();
6245  } else if (isa<ObjCSelectorExpr>(op))
6246    return Context.getPointerType(op->getType());
6247  else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6248    // C99 6.5.3.2p1
6249    // The operand must be either an l-value or a function designator
6250    if (!op->getType()->isFunctionType()) {
6251      // FIXME: emit more specific diag...
6252      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6253        << op->getSourceRange();
6254      return QualType();
6255    }
6256  } else if (op->getBitField()) { // C99 6.5.3.2p1
6257    // The operand cannot be a bit-field
6258    Diag(OpLoc, diag::err_typecheck_address_of)
6259      << "bit-field" << op->getSourceRange();
6260        return QualType();
6261  } else if (op->refersToVectorElement()) {
6262    // The operand cannot be an element of a vector
6263    Diag(OpLoc, diag::err_typecheck_address_of)
6264      << "vector element" << op->getSourceRange();
6265    return QualType();
6266  } else if (isa<ObjCPropertyRefExpr>(op)) {
6267    // cannot take address of a property expression.
6268    Diag(OpLoc, diag::err_typecheck_address_of)
6269      << "property expression" << op->getSourceRange();
6270    return QualType();
6271  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6272    // FIXME: Can LHS ever be null here?
6273    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6274      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6275  } else if (isa<OverloadExpr>(op)) {
6276    return Context.OverloadTy;
6277  } else if (dcl) { // C99 6.5.3.2p1
6278    // We have an lvalue with a decl. Make sure the decl is not declared
6279    // with the register storage-class specifier.
6280    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6281      if (vd->getStorageClass() == VarDecl::Register) {
6282        Diag(OpLoc, diag::err_typecheck_address_of)
6283          << "register variable" << op->getSourceRange();
6284        return QualType();
6285      }
6286    } else if (isa<FunctionTemplateDecl>(dcl)) {
6287      return Context.OverloadTy;
6288    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6289      // Okay: we can take the address of a field.
6290      // Could be a pointer to member, though, if there is an explicit
6291      // scope qualifier for the class.
6292      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6293        DeclContext *Ctx = dcl->getDeclContext();
6294        if (Ctx && Ctx->isRecord()) {
6295          if (FD->getType()->isReferenceType()) {
6296            Diag(OpLoc,
6297                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6298              << FD->getDeclName() << FD->getType();
6299            return QualType();
6300          }
6301
6302          return Context.getMemberPointerType(op->getType(),
6303                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6304        }
6305      }
6306    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6307      // Okay: we can take the address of a function.
6308      // As above.
6309      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6310          MD->isInstance())
6311        return Context.getMemberPointerType(op->getType(),
6312              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6313    } else if (!isa<FunctionDecl>(dcl))
6314      assert(0 && "Unknown/unexpected decl type");
6315  }
6316
6317  if (lval == Expr::LV_IncompleteVoidType) {
6318    // Taking the address of a void variable is technically illegal, but we
6319    // allow it in cases which are otherwise valid.
6320    // Example: "extern void x; void* y = &x;".
6321    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6322  }
6323
6324  // If the operand has type "type", the result has type "pointer to type".
6325  if (op->getType()->isObjCObjectType())
6326    return Context.getObjCObjectPointerType(op->getType());
6327  return Context.getPointerType(op->getType());
6328}
6329
6330/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
6331QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6332  if (Op->isTypeDependent())
6333    return Context.DependentTy;
6334
6335  UsualUnaryConversions(Op);
6336  QualType OpTy = Op->getType();
6337  QualType Result;
6338
6339  // Note that per both C89 and C99, indirection is always legal, even if OpTy
6340  // is an incomplete type or void.  It would be possible to warn about
6341  // dereferencing a void pointer, but it's completely well-defined, and such a
6342  // warning is unlikely to catch any mistakes.
6343  if (const PointerType *PT = OpTy->getAs<PointerType>())
6344    Result = PT->getPointeeType();
6345  else if (const ObjCObjectPointerType *OPT =
6346             OpTy->getAs<ObjCObjectPointerType>())
6347    Result = OPT->getPointeeType();
6348
6349  if (Result.isNull()) {
6350    Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6351      << OpTy << Op->getSourceRange();
6352    return QualType();
6353  }
6354
6355  return Result;
6356}
6357
6358static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6359  tok::TokenKind Kind) {
6360  BinaryOperator::Opcode Opc;
6361  switch (Kind) {
6362  default: assert(0 && "Unknown binop!");
6363  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6364  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6365  case tok::star:                 Opc = BinaryOperator::Mul; break;
6366  case tok::slash:                Opc = BinaryOperator::Div; break;
6367  case tok::percent:              Opc = BinaryOperator::Rem; break;
6368  case tok::plus:                 Opc = BinaryOperator::Add; break;
6369  case tok::minus:                Opc = BinaryOperator::Sub; break;
6370  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6371  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6372  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6373  case tok::less:                 Opc = BinaryOperator::LT; break;
6374  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6375  case tok::greater:              Opc = BinaryOperator::GT; break;
6376  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6377  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6378  case tok::amp:                  Opc = BinaryOperator::And; break;
6379  case tok::caret:                Opc = BinaryOperator::Xor; break;
6380  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6381  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6382  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6383  case tok::equal:                Opc = BinaryOperator::Assign; break;
6384  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6385  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6386  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6387  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6388  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6389  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6390  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6391  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6392  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6393  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6394  case tok::comma:                Opc = BinaryOperator::Comma; break;
6395  }
6396  return Opc;
6397}
6398
6399static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6400  tok::TokenKind Kind) {
6401  UnaryOperator::Opcode Opc;
6402  switch (Kind) {
6403  default: assert(0 && "Unknown unary op!");
6404  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6405  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6406  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6407  case tok::star:         Opc = UnaryOperator::Deref; break;
6408  case tok::plus:         Opc = UnaryOperator::Plus; break;
6409  case tok::minus:        Opc = UnaryOperator::Minus; break;
6410  case tok::tilde:        Opc = UnaryOperator::Not; break;
6411  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6412  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6413  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6414  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6415  }
6416  return Opc;
6417}
6418
6419/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6420/// operator @p Opc at location @c TokLoc. This routine only supports
6421/// built-in operations; ActOnBinOp handles overloaded operators.
6422ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6423                                                  unsigned Op,
6424                                                  Expr *lhs, Expr *rhs) {
6425  QualType ResultTy;     // Result type of the binary operator.
6426  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6427  // The following two variables are used for compound assignment operators
6428  QualType CompLHSTy;    // Type of LHS after promotions for computation
6429  QualType CompResultTy; // Type of computation result
6430
6431  switch (Opc) {
6432  case BinaryOperator::Assign:
6433    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6434    break;
6435  case BinaryOperator::PtrMemD:
6436  case BinaryOperator::PtrMemI:
6437    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6438                                            Opc == BinaryOperator::PtrMemI);
6439    break;
6440  case BinaryOperator::Mul:
6441  case BinaryOperator::Div:
6442    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6443                                           Opc == BinaryOperator::Div);
6444    break;
6445  case BinaryOperator::Rem:
6446    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6447    break;
6448  case BinaryOperator::Add:
6449    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6450    break;
6451  case BinaryOperator::Sub:
6452    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6453    break;
6454  case BinaryOperator::Shl:
6455  case BinaryOperator::Shr:
6456    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6457    break;
6458  case BinaryOperator::LE:
6459  case BinaryOperator::LT:
6460  case BinaryOperator::GE:
6461  case BinaryOperator::GT:
6462    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6463    break;
6464  case BinaryOperator::EQ:
6465  case BinaryOperator::NE:
6466    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6467    break;
6468  case BinaryOperator::And:
6469  case BinaryOperator::Xor:
6470  case BinaryOperator::Or:
6471    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6472    break;
6473  case BinaryOperator::LAnd:
6474  case BinaryOperator::LOr:
6475    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
6476    break;
6477  case BinaryOperator::MulAssign:
6478  case BinaryOperator::DivAssign:
6479    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6480                                              Opc == BinaryOperator::DivAssign);
6481    CompLHSTy = CompResultTy;
6482    if (!CompResultTy.isNull())
6483      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6484    break;
6485  case BinaryOperator::RemAssign:
6486    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6487    CompLHSTy = CompResultTy;
6488    if (!CompResultTy.isNull())
6489      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6490    break;
6491  case BinaryOperator::AddAssign:
6492    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6493    if (!CompResultTy.isNull())
6494      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6495    break;
6496  case BinaryOperator::SubAssign:
6497    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6498    if (!CompResultTy.isNull())
6499      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6500    break;
6501  case BinaryOperator::ShlAssign:
6502  case BinaryOperator::ShrAssign:
6503    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6504    CompLHSTy = CompResultTy;
6505    if (!CompResultTy.isNull())
6506      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6507    break;
6508  case BinaryOperator::AndAssign:
6509  case BinaryOperator::XorAssign:
6510  case BinaryOperator::OrAssign:
6511    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6512    CompLHSTy = CompResultTy;
6513    if (!CompResultTy.isNull())
6514      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6515    break;
6516  case BinaryOperator::Comma:
6517    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6518    break;
6519  }
6520  if (ResultTy.isNull())
6521    return ExprError();
6522  if (ResultTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
6523    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
6524          Diag(OpLoc, diag::err_assignment_requires_nonfragile_object)
6525                << ResultTy;
6526  }
6527  if (CompResultTy.isNull())
6528    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6529  else
6530    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6531                                                      CompLHSTy, CompResultTy,
6532                                                      OpLoc));
6533}
6534
6535/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6536/// ParenRange in parentheses.
6537static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6538                               const PartialDiagnostic &PD,
6539                               const PartialDiagnostic &FirstNote,
6540                               SourceRange FirstParenRange,
6541                               const PartialDiagnostic &SecondNote,
6542                               SourceRange SecondParenRange) {
6543  Self.Diag(Loc, PD);
6544
6545  if (!FirstNote.getDiagID())
6546    return;
6547
6548  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
6549  if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6550    // We can't display the parentheses, so just return.
6551    return;
6552  }
6553
6554  Self.Diag(Loc, FirstNote)
6555    << FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
6556    << FixItHint::CreateInsertion(EndLoc, ")");
6557
6558  if (!SecondNote.getDiagID())
6559    return;
6560
6561  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6562  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6563    // We can't display the parentheses, so just dig the
6564    // warning/error and return.
6565    Self.Diag(Loc, SecondNote);
6566    return;
6567  }
6568
6569  Self.Diag(Loc, SecondNote)
6570    << FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6571    << FixItHint::CreateInsertion(EndLoc, ")");
6572}
6573
6574/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6575/// operators are mixed in a way that suggests that the programmer forgot that
6576/// comparison operators have higher precedence. The most typical example of
6577/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6578static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6579                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6580  typedef BinaryOperator BinOp;
6581  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6582                rhsopc = static_cast<BinOp::Opcode>(-1);
6583  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6584    lhsopc = BO->getOpcode();
6585  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6586    rhsopc = BO->getOpcode();
6587
6588  // Subs are not binary operators.
6589  if (lhsopc == -1 && rhsopc == -1)
6590    return;
6591
6592  // Bitwise operations are sometimes used as eager logical ops.
6593  // Don't diagnose this.
6594  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6595      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6596    return;
6597
6598  if (BinOp::isComparisonOp(lhsopc))
6599    SuggestParentheses(Self, OpLoc,
6600      Self.PDiag(diag::warn_precedence_bitwise_rel)
6601          << SourceRange(lhs->getLocStart(), OpLoc)
6602          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6603      Self.PDiag(diag::note_precedence_bitwise_first)
6604          << BinOp::getOpcodeStr(Opc),
6605      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
6606      Self.PDiag(diag::note_precedence_bitwise_silence)
6607          << BinOp::getOpcodeStr(lhsopc),
6608                       lhs->getSourceRange());
6609  else if (BinOp::isComparisonOp(rhsopc))
6610    SuggestParentheses(Self, OpLoc,
6611      Self.PDiag(diag::warn_precedence_bitwise_rel)
6612          << SourceRange(OpLoc, rhs->getLocEnd())
6613          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6614      Self.PDiag(diag::note_precedence_bitwise_first)
6615        << BinOp::getOpcodeStr(Opc),
6616      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
6617      Self.PDiag(diag::note_precedence_bitwise_silence)
6618        << BinOp::getOpcodeStr(rhsopc),
6619                       rhs->getSourceRange());
6620}
6621
6622/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6623/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6624/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6625static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6626                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6627  if (BinaryOperator::isBitwiseOp(Opc))
6628    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6629}
6630
6631// Binary Operators.  'Tok' is the token for the operator.
6632ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6633                                          tok::TokenKind Kind,
6634                                          Expr *lhs, Expr *rhs) {
6635  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6636  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6637  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6638
6639  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6640  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6641
6642  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6643}
6644
6645ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6646                                          BinaryOperator::Opcode Opc,
6647                                          Expr *lhs, Expr *rhs) {
6648  if (getLangOptions().CPlusPlus &&
6649      (lhs->getType()->isOverloadableType() ||
6650       rhs->getType()->isOverloadableType())) {
6651    // Find all of the overloaded operators visible from this
6652    // point. We perform both an operator-name lookup from the local
6653    // scope and an argument-dependent lookup based on the types of
6654    // the arguments.
6655    UnresolvedSet<16> Functions;
6656    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6657    if (S && OverOp != OO_None)
6658      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6659                                   Functions);
6660
6661    // Build the (potentially-overloaded, potentially-dependent)
6662    // binary operation.
6663    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6664  }
6665
6666  // Build a built-in binary operation.
6667  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6668}
6669
6670ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6671                                                    unsigned OpcIn,
6672                                                    Expr *Input) {
6673  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6674
6675  QualType resultType;
6676  switch (Opc) {
6677  case UnaryOperator::PreInc:
6678  case UnaryOperator::PreDec:
6679  case UnaryOperator::PostInc:
6680  case UnaryOperator::PostDec:
6681    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6682                                                Opc == UnaryOperator::PreInc ||
6683                                                Opc == UnaryOperator::PostInc,
6684                                                Opc == UnaryOperator::PreInc ||
6685                                                Opc == UnaryOperator::PreDec);
6686    break;
6687  case UnaryOperator::AddrOf:
6688    resultType = CheckAddressOfOperand(Input, OpLoc);
6689    break;
6690  case UnaryOperator::Deref:
6691    DefaultFunctionArrayLvalueConversion(Input);
6692    resultType = CheckIndirectionOperand(Input, OpLoc);
6693    break;
6694  case UnaryOperator::Plus:
6695  case UnaryOperator::Minus:
6696    UsualUnaryConversions(Input);
6697    resultType = Input->getType();
6698    if (resultType->isDependentType())
6699      break;
6700    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
6701        resultType->isVectorType())
6702      break;
6703    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6704             resultType->isEnumeralType())
6705      break;
6706    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6707             Opc == UnaryOperator::Plus &&
6708             resultType->isPointerType())
6709      break;
6710
6711    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6712      << resultType << Input->getSourceRange());
6713  case UnaryOperator::Not: // bitwise complement
6714    UsualUnaryConversions(Input);
6715    resultType = Input->getType();
6716    if (resultType->isDependentType())
6717      break;
6718    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6719    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6720      // C99 does not support '~' for complex conjugation.
6721      Diag(OpLoc, diag::ext_integer_complement_complex)
6722        << resultType << Input->getSourceRange();
6723    else if (!resultType->hasIntegerRepresentation())
6724      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6725        << resultType << Input->getSourceRange());
6726    break;
6727  case UnaryOperator::LNot: // logical negation
6728    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6729    DefaultFunctionArrayLvalueConversion(Input);
6730    resultType = Input->getType();
6731    if (resultType->isDependentType())
6732      break;
6733    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6734      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6735        << resultType << Input->getSourceRange());
6736    // LNot always has type int. C99 6.5.3.3p5.
6737    // In C++, it's bool. C++ 5.3.1p8
6738    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6739    break;
6740  case UnaryOperator::Real:
6741  case UnaryOperator::Imag:
6742    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6743    break;
6744  case UnaryOperator::Extension:
6745    resultType = Input->getType();
6746    break;
6747  }
6748  if (resultType.isNull())
6749    return ExprError();
6750
6751  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6752}
6753
6754ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6755                                            UnaryOperator::Opcode Opc,
6756                                            Expr *Input) {
6757  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6758      Opc != UnaryOperator::Extension) {
6759    // Find all of the overloaded operators visible from this
6760    // point. We perform both an operator-name lookup from the local
6761    // scope and an argument-dependent lookup based on the types of
6762    // the arguments.
6763    UnresolvedSet<16> Functions;
6764    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6765    if (S && OverOp != OO_None)
6766      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6767                                   Functions);
6768
6769    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
6770  }
6771
6772  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
6773}
6774
6775// Unary Operators.  'Tok' is the token for the operator.
6776ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6777                                            tok::TokenKind Op, Expr *Input) {
6778  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
6779}
6780
6781/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6782ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6783                                            SourceLocation LabLoc,
6784                                            IdentifierInfo *LabelII) {
6785  // Look up the record for this label identifier.
6786  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6787
6788  // If we haven't seen this label yet, create a forward reference. It
6789  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6790  if (LabelDecl == 0)
6791    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6792
6793  // Create the AST node.  The address of a label always has type 'void*'.
6794  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6795                                       Context.getPointerType(Context.VoidTy)));
6796}
6797
6798ExprResult
6799Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
6800                    SourceLocation RPLoc) { // "({..})"
6801  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6802  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6803
6804  bool isFileScope
6805    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6806  if (isFileScope)
6807    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6808
6809  // FIXME: there are a variety of strange constraints to enforce here, for
6810  // example, it is not possible to goto into a stmt expression apparently.
6811  // More semantic analysis is needed.
6812
6813  // If there are sub stmts in the compound stmt, take the type of the last one
6814  // as the type of the stmtexpr.
6815  QualType Ty = Context.VoidTy;
6816
6817  if (!Compound->body_empty()) {
6818    Stmt *LastStmt = Compound->body_back();
6819    // If LastStmt is a label, skip down through into the body.
6820    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6821      LastStmt = Label->getSubStmt();
6822
6823    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6824      Ty = LastExpr->getType();
6825  }
6826
6827  // FIXME: Check that expression type is complete/non-abstract; statement
6828  // expressions are not lvalues.
6829
6830  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6831}
6832
6833ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
6834                                                  TypeSourceInfo *TInfo,
6835                                                  OffsetOfComponent *CompPtr,
6836                                                  unsigned NumComponents,
6837                                                  SourceLocation RParenLoc) {
6838  QualType ArgTy = TInfo->getType();
6839  bool Dependent = ArgTy->isDependentType();
6840  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
6841
6842  // We must have at least one component that refers to the type, and the first
6843  // one is known to be a field designator.  Verify that the ArgTy represents
6844  // a struct/union/class.
6845  if (!Dependent && !ArgTy->isRecordType())
6846    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
6847                       << ArgTy << TypeRange);
6848
6849  // Type must be complete per C99 7.17p3 because a declaring a variable
6850  // with an incomplete type would be ill-formed.
6851  if (!Dependent
6852      && RequireCompleteType(BuiltinLoc, ArgTy,
6853                             PDiag(diag::err_offsetof_incomplete_type)
6854                               << TypeRange))
6855    return ExprError();
6856
6857  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6858  // GCC extension, diagnose them.
6859  // FIXME: This diagnostic isn't actually visible because the location is in
6860  // a system header!
6861  if (NumComponents != 1)
6862    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6863      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6864
6865  bool DidWarnAboutNonPOD = false;
6866  QualType CurrentType = ArgTy;
6867  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
6868  llvm::SmallVector<OffsetOfNode, 4> Comps;
6869  llvm::SmallVector<Expr*, 4> Exprs;
6870  for (unsigned i = 0; i != NumComponents; ++i) {
6871    const OffsetOfComponent &OC = CompPtr[i];
6872    if (OC.isBrackets) {
6873      // Offset of an array sub-field.  TODO: Should we allow vector elements?
6874      if (!CurrentType->isDependentType()) {
6875        const ArrayType *AT = Context.getAsArrayType(CurrentType);
6876        if(!AT)
6877          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6878                           << CurrentType);
6879        CurrentType = AT->getElementType();
6880      } else
6881        CurrentType = Context.DependentTy;
6882
6883      // The expression must be an integral expression.
6884      // FIXME: An integral constant expression?
6885      Expr *Idx = static_cast<Expr*>(OC.U.E);
6886      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
6887          !Idx->getType()->isIntegerType())
6888        return ExprError(Diag(Idx->getLocStart(),
6889                              diag::err_typecheck_subscript_not_integer)
6890                         << Idx->getSourceRange());
6891
6892      // Record this array index.
6893      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
6894      Exprs.push_back(Idx);
6895      continue;
6896    }
6897
6898    // Offset of a field.
6899    if (CurrentType->isDependentType()) {
6900      // We have the offset of a field, but we can't look into the dependent
6901      // type. Just record the identifier of the field.
6902      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
6903      CurrentType = Context.DependentTy;
6904      continue;
6905    }
6906
6907    // We need to have a complete type to look into.
6908    if (RequireCompleteType(OC.LocStart, CurrentType,
6909                            diag::err_offsetof_incomplete_type))
6910      return ExprError();
6911
6912    // Look for the designated field.
6913    const RecordType *RC = CurrentType->getAs<RecordType>();
6914    if (!RC)
6915      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6916                       << CurrentType);
6917    RecordDecl *RD = RC->getDecl();
6918
6919    // C++ [lib.support.types]p5:
6920    //   The macro offsetof accepts a restricted set of type arguments in this
6921    //   International Standard. type shall be a POD structure or a POD union
6922    //   (clause 9).
6923    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6924      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6925          DiagRuntimeBehavior(BuiltinLoc,
6926                              PDiag(diag::warn_offsetof_non_pod_type)
6927                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6928                              << CurrentType))
6929        DidWarnAboutNonPOD = true;
6930    }
6931
6932    // Look for the field.
6933    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6934    LookupQualifiedName(R, RD);
6935    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6936    if (!MemberDecl)
6937      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6938                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
6939                                                              OC.LocEnd));
6940
6941    // C99 7.17p3:
6942    //   (If the specified member is a bit-field, the behavior is undefined.)
6943    //
6944    // We diagnose this as an error.
6945    if (MemberDecl->getBitWidth()) {
6946      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
6947        << MemberDecl->getDeclName()
6948        << SourceRange(BuiltinLoc, RParenLoc);
6949      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
6950      return ExprError();
6951    }
6952
6953    RecordDecl *Parent = MemberDecl->getParent();
6954    bool AnonStructUnion = Parent->isAnonymousStructOrUnion();
6955    if (AnonStructUnion) {
6956      do {
6957        Parent = cast<RecordDecl>(Parent->getParent());
6958      } while (Parent->isAnonymousStructOrUnion());
6959    }
6960
6961    // If the member was found in a base class, introduce OffsetOfNodes for
6962    // the base class indirections.
6963    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
6964                       /*DetectVirtual=*/false);
6965    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
6966      CXXBasePath &Path = Paths.front();
6967      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
6968           B != BEnd; ++B)
6969        Comps.push_back(OffsetOfNode(B->Base));
6970    }
6971
6972    if (AnonStructUnion) {
6973      llvm::SmallVector<FieldDecl*, 4> Path;
6974      BuildAnonymousStructUnionMemberPath(MemberDecl, Path);
6975      unsigned n = Path.size();
6976      for (int j = n - 1; j > -1; --j)
6977        Comps.push_back(OffsetOfNode(OC.LocStart, Path[j], OC.LocEnd));
6978    } else {
6979      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
6980    }
6981    CurrentType = MemberDecl->getType().getNonReferenceType();
6982  }
6983
6984  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
6985                                    TInfo, Comps.data(), Comps.size(),
6986                                    Exprs.data(), Exprs.size(), RParenLoc));
6987}
6988
6989ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6990                                                  SourceLocation BuiltinLoc,
6991                                                  SourceLocation TypeLoc,
6992                                                  ParsedType argty,
6993                                                  OffsetOfComponent *CompPtr,
6994                                                  unsigned NumComponents,
6995                                                  SourceLocation RPLoc) {
6996
6997  TypeSourceInfo *ArgTInfo;
6998  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
6999  if (ArgTy.isNull())
7000    return ExprError();
7001
7002  if (!ArgTInfo)
7003    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
7004
7005  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
7006                              RPLoc);
7007}
7008
7009
7010ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
7011                                                      ParsedType arg1,ParsedType arg2,
7012                                                      SourceLocation RPLoc) {
7013  TypeSourceInfo *argTInfo1;
7014  QualType argT1 = GetTypeFromParser(arg1, &argTInfo1);
7015  TypeSourceInfo *argTInfo2;
7016  QualType argT2 = GetTypeFromParser(arg2, &argTInfo2);
7017
7018  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
7019
7020  return BuildTypesCompatibleExpr(BuiltinLoc, argTInfo1, argTInfo2, RPLoc);
7021}
7022
7023ExprResult
7024Sema::BuildTypesCompatibleExpr(SourceLocation BuiltinLoc,
7025                               TypeSourceInfo *argTInfo1,
7026                               TypeSourceInfo *argTInfo2,
7027                               SourceLocation RPLoc) {
7028  if (getLangOptions().CPlusPlus) {
7029    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
7030      << SourceRange(BuiltinLoc, RPLoc);
7031    return ExprError();
7032  }
7033
7034  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
7035                                                 argTInfo1, argTInfo2, RPLoc));
7036}
7037
7038
7039ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
7040                                             Expr *CondExpr,
7041                                             Expr *LHSExpr, Expr *RHSExpr,
7042                                             SourceLocation RPLoc) {
7043  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
7044
7045  QualType resType;
7046  bool ValueDependent = false;
7047  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
7048    resType = Context.DependentTy;
7049    ValueDependent = true;
7050  } else {
7051    // The conditional expression is required to be a constant expression.
7052    llvm::APSInt condEval(32);
7053    SourceLocation ExpLoc;
7054    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
7055      return ExprError(Diag(ExpLoc,
7056                       diag::err_typecheck_choose_expr_requires_constant)
7057        << CondExpr->getSourceRange());
7058
7059    // If the condition is > zero, then the AST type is the same as the LSHExpr.
7060    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
7061    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
7062                                             : RHSExpr->isValueDependent();
7063  }
7064
7065  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
7066                                        resType, RPLoc,
7067                                        resType->isDependentType(),
7068                                        ValueDependent));
7069}
7070
7071//===----------------------------------------------------------------------===//
7072// Clang Extensions.
7073//===----------------------------------------------------------------------===//
7074
7075/// ActOnBlockStart - This callback is invoked when a block literal is started.
7076void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
7077  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
7078  PushBlockScope(BlockScope, Block);
7079  CurContext->addDecl(Block);
7080  if (BlockScope)
7081    PushDeclContext(BlockScope, Block);
7082  else
7083    CurContext = Block;
7084}
7085
7086void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
7087  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
7088  BlockScopeInfo *CurBlock = getCurBlock();
7089
7090  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
7091  CurBlock->TheDecl->setSignatureAsWritten(Sig);
7092  QualType T = Sig->getType();
7093
7094  bool isVariadic;
7095  QualType RetTy;
7096  if (const FunctionType *Fn = T->getAs<FunctionType>()) {
7097    CurBlock->FunctionType = T;
7098    RetTy = Fn->getResultType();
7099    isVariadic =
7100      !isa<FunctionProtoType>(Fn) || cast<FunctionProtoType>(Fn)->isVariadic();
7101  } else {
7102    RetTy = T;
7103    isVariadic = false;
7104  }
7105
7106  CurBlock->TheDecl->setIsVariadic(isVariadic);
7107
7108  // Don't allow returning an array by value.
7109  if (RetTy->isArrayType()) {
7110    Diag(ParamInfo.getSourceRange().getBegin(), diag::err_block_returns_array);
7111    return;
7112  }
7113
7114  // Don't allow returning a objc interface by value.
7115  if (RetTy->isObjCObjectType()) {
7116    Diag(ParamInfo.getSourceRange().getBegin(),
7117         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7118    return;
7119  }
7120
7121  // Context.DependentTy is used as a placeholder for a missing block
7122  // return type.  TODO:  what should we do with declarators like:
7123  //   ^ * { ... }
7124  // If the answer is "apply template argument deduction"....
7125  if (RetTy != Context.DependentTy)
7126    CurBlock->ReturnType = RetTy;
7127
7128  // Push block parameters from the declarator if we had them.
7129  llvm::SmallVector<ParmVarDecl*, 8> Params;
7130  if (isa<FunctionProtoType>(T)) {
7131    FunctionProtoTypeLoc TL = cast<FunctionProtoTypeLoc>(Sig->getTypeLoc());
7132    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
7133      ParmVarDecl *Param = TL.getArg(I);
7134      if (Param->getIdentifier() == 0 &&
7135          !Param->isImplicit() &&
7136          !Param->isInvalidDecl() &&
7137          !getLangOptions().CPlusPlus)
7138        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7139      Params.push_back(Param);
7140    }
7141
7142  // Fake up parameter variables if we have a typedef, like
7143  //   ^ fntype { ... }
7144  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
7145    for (FunctionProtoType::arg_type_iterator
7146           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
7147      ParmVarDecl *Param =
7148        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
7149                                   ParamInfo.getSourceRange().getBegin(),
7150                                   *I);
7151      Params.push_back(Param);
7152    }
7153  }
7154
7155  // Set the parameters on the block decl.
7156  if (!Params.empty())
7157    CurBlock->TheDecl->setParams(Params.data(), Params.size());
7158
7159  // Finally we can process decl attributes.
7160  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
7161
7162  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
7163    Diag(ParamInfo.getAttributes()->getLoc(),
7164         diag::warn_attribute_sentinel_not_variadic) << 1;
7165    // FIXME: remove the attribute.
7166  }
7167
7168  // Put the parameter variables in scope.  We can bail out immediately
7169  // if we don't have any.
7170  if (Params.empty())
7171    return;
7172
7173  bool ShouldCheckShadow =
7174    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
7175
7176  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
7177         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
7178    (*AI)->setOwningFunction(CurBlock->TheDecl);
7179
7180    // If this has an identifier, add it to the scope stack.
7181    if ((*AI)->getIdentifier()) {
7182      if (ShouldCheckShadow)
7183        CheckShadow(CurBlock->TheScope, *AI);
7184
7185      PushOnScopeChains(*AI, CurBlock->TheScope);
7186    }
7187  }
7188}
7189
7190/// ActOnBlockError - If there is an error parsing a block, this callback
7191/// is invoked to pop the information about the block from the action impl.
7192void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7193  // Pop off CurBlock, handle nested blocks.
7194  PopDeclContext();
7195  PopFunctionOrBlockScope();
7196  // FIXME: Delete the ParmVarDecl objects as well???
7197}
7198
7199/// ActOnBlockStmtExpr - This is called when the body of a block statement
7200/// literal was successfully completed.  ^(int x){...}
7201ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7202                                                Stmt *Body, Scope *CurScope) {
7203  // If blocks are disabled, emit an error.
7204  if (!LangOpts.Blocks)
7205    Diag(CaretLoc, diag::err_blocks_disable);
7206
7207  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7208
7209  PopDeclContext();
7210
7211  QualType RetTy = Context.VoidTy;
7212  if (!BSI->ReturnType.isNull())
7213    RetTy = BSI->ReturnType;
7214
7215  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7216  QualType BlockTy;
7217
7218  // If the user wrote a function type in some form, try to use that.
7219  if (!BSI->FunctionType.isNull()) {
7220    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
7221
7222    FunctionType::ExtInfo Ext = FTy->getExtInfo();
7223    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
7224
7225    // Turn protoless block types into nullary block types.
7226    if (isa<FunctionNoProtoType>(FTy)) {
7227      BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7228                                        false, false, 0, 0, Ext);
7229
7230    // Otherwise, if we don't need to change anything about the function type,
7231    // preserve its sugar structure.
7232    } else if (FTy->getResultType() == RetTy &&
7233               (!NoReturn || FTy->getNoReturnAttr())) {
7234      BlockTy = BSI->FunctionType;
7235
7236    // Otherwise, make the minimal modifications to the function type.
7237    } else {
7238      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
7239      BlockTy = Context.getFunctionType(RetTy,
7240                                        FPT->arg_type_begin(),
7241                                        FPT->getNumArgs(),
7242                                        FPT->isVariadic(),
7243                                        /*quals*/ 0,
7244                                        FPT->hasExceptionSpec(),
7245                                        FPT->hasAnyExceptionSpec(),
7246                                        FPT->getNumExceptions(),
7247                                        FPT->exception_begin(),
7248                                        Ext);
7249    }
7250
7251  // If we don't have a function type, just build one from nothing.
7252  } else {
7253    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0,
7254                                      false, false, 0, 0,
7255                             FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7256  }
7257
7258  // FIXME: Check that return/parameter types are complete/non-abstract
7259  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
7260                           BSI->TheDecl->param_end());
7261  BlockTy = Context.getBlockPointerType(BlockTy);
7262
7263  // If needed, diagnose invalid gotos and switches in the block.
7264  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7265    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
7266
7267  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
7268
7269  bool Good = true;
7270  // Check goto/label use.
7271  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7272         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7273    LabelStmt *L = I->second;
7274
7275    // Verify that we have no forward references left.  If so, there was a goto
7276    // or address of a label taken, but no definition of it.
7277    if (L->getSubStmt() != 0)
7278      continue;
7279
7280    // Emit error.
7281    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7282    Good = false;
7283  }
7284  if (!Good) {
7285    PopFunctionOrBlockScope();
7286    return ExprError();
7287  }
7288
7289  // Issue any analysis-based warnings.
7290  const sema::AnalysisBasedWarnings::Policy &WP =
7291    AnalysisWarnings.getDefaultPolicy();
7292  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
7293
7294  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7295                                         BSI->hasBlockDeclRefExprs);
7296  PopFunctionOrBlockScope();
7297  return Owned(Result);
7298}
7299
7300ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7301                                        Expr *expr, ParsedType type,
7302                                        SourceLocation RPLoc) {
7303  TypeSourceInfo *TInfo;
7304  QualType T = GetTypeFromParser(type, &TInfo);
7305  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
7306}
7307
7308ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
7309                                            Expr *E, TypeSourceInfo *TInfo,
7310                                            SourceLocation RPLoc) {
7311  Expr *OrigExpr = E;
7312
7313  InitBuiltinVaListType();
7314
7315  // Get the va_list type
7316  QualType VaListType = Context.getBuiltinVaListType();
7317  if (VaListType->isArrayType()) {
7318    // Deal with implicit array decay; for example, on x86-64,
7319    // va_list is an array, but it's supposed to decay to
7320    // a pointer for va_arg.
7321    VaListType = Context.getArrayDecayedType(VaListType);
7322    // Make sure the input expression also decays appropriately.
7323    UsualUnaryConversions(E);
7324  } else {
7325    // Otherwise, the va_list argument must be an l-value because
7326    // it is modified by va_arg.
7327    if (!E->isTypeDependent() &&
7328        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7329      return ExprError();
7330  }
7331
7332  if (!E->isTypeDependent() &&
7333      !Context.hasSameType(VaListType, E->getType())) {
7334    return ExprError(Diag(E->getLocStart(),
7335                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7336      << OrigExpr->getType() << E->getSourceRange());
7337  }
7338
7339  // FIXME: Check that type is complete/non-abstract
7340  // FIXME: Warn if a non-POD type is passed in.
7341
7342  QualType T = TInfo->getType().getNonLValueExprType(Context);
7343  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
7344}
7345
7346ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7347  // The type of __null will be int or long, depending on the size of
7348  // pointers on the target.
7349  QualType Ty;
7350  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7351    Ty = Context.IntTy;
7352  else
7353    Ty = Context.LongTy;
7354
7355  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7356}
7357
7358static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
7359                                           Expr *SrcExpr, FixItHint &Hint) {
7360  if (!SemaRef.getLangOptions().ObjC1)
7361    return;
7362
7363  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7364  if (!PT)
7365    return;
7366
7367  // Check if the destination is of type 'id'.
7368  if (!PT->isObjCIdType()) {
7369    // Check if the destination is the 'NSString' interface.
7370    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7371    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7372      return;
7373  }
7374
7375  // Strip off any parens and casts.
7376  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7377  if (!SL || SL->isWide())
7378    return;
7379
7380  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
7381}
7382
7383bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7384                                    SourceLocation Loc,
7385                                    QualType DstType, QualType SrcType,
7386                                    Expr *SrcExpr, AssignmentAction Action,
7387                                    bool *Complained) {
7388  if (Complained)
7389    *Complained = false;
7390
7391  // Decode the result (notice that AST's are still created for extensions).
7392  bool isInvalid = false;
7393  unsigned DiagKind;
7394  FixItHint Hint;
7395
7396  switch (ConvTy) {
7397  default: assert(0 && "Unknown conversion type");
7398  case Compatible: return false;
7399  case PointerToInt:
7400    DiagKind = diag::ext_typecheck_convert_pointer_int;
7401    break;
7402  case IntToPointer:
7403    DiagKind = diag::ext_typecheck_convert_int_pointer;
7404    break;
7405  case IncompatiblePointer:
7406    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
7407    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7408    break;
7409  case IncompatiblePointerSign:
7410    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7411    break;
7412  case FunctionVoidPointer:
7413    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7414    break;
7415  case CompatiblePointerDiscardsQualifiers:
7416    // If the qualifiers lost were because we were applying the
7417    // (deprecated) C++ conversion from a string literal to a char*
7418    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7419    // Ideally, this check would be performed in
7420    // CheckPointerTypesForAssignment. However, that would require a
7421    // bit of refactoring (so that the second argument is an
7422    // expression, rather than a type), which should be done as part
7423    // of a larger effort to fix CheckPointerTypesForAssignment for
7424    // C++ semantics.
7425    if (getLangOptions().CPlusPlus &&
7426        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7427      return false;
7428    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7429    break;
7430  case IncompatibleNestedPointerQualifiers:
7431    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7432    break;
7433  case IntToBlockPointer:
7434    DiagKind = diag::err_int_to_block_pointer;
7435    break;
7436  case IncompatibleBlockPointer:
7437    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7438    break;
7439  case IncompatibleObjCQualifiedId:
7440    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7441    // it can give a more specific diagnostic.
7442    DiagKind = diag::warn_incompatible_qualified_id;
7443    break;
7444  case IncompatibleVectors:
7445    DiagKind = diag::warn_incompatible_vectors;
7446    break;
7447  case Incompatible:
7448    DiagKind = diag::err_typecheck_convert_incompatible;
7449    isInvalid = true;
7450    break;
7451  }
7452
7453  QualType FirstType, SecondType;
7454  switch (Action) {
7455  case AA_Assigning:
7456  case AA_Initializing:
7457    // The destination type comes first.
7458    FirstType = DstType;
7459    SecondType = SrcType;
7460    break;
7461
7462  case AA_Returning:
7463  case AA_Passing:
7464  case AA_Converting:
7465  case AA_Sending:
7466  case AA_Casting:
7467    // The source type comes first.
7468    FirstType = SrcType;
7469    SecondType = DstType;
7470    break;
7471  }
7472
7473  Diag(Loc, DiagKind) << FirstType << SecondType << Action
7474    << SrcExpr->getSourceRange() << Hint;
7475  if (Complained)
7476    *Complained = true;
7477  return isInvalid;
7478}
7479
7480bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7481  llvm::APSInt ICEResult;
7482  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7483    if (Result)
7484      *Result = ICEResult;
7485    return false;
7486  }
7487
7488  Expr::EvalResult EvalResult;
7489
7490  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7491      EvalResult.HasSideEffects) {
7492    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7493
7494    if (EvalResult.Diag) {
7495      // We only show the note if it's not the usual "invalid subexpression"
7496      // or if it's actually in a subexpression.
7497      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7498          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7499        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7500    }
7501
7502    return true;
7503  }
7504
7505  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7506    E->getSourceRange();
7507
7508  if (EvalResult.Diag &&
7509      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7510    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7511
7512  if (Result)
7513    *Result = EvalResult.Val.getInt();
7514  return false;
7515}
7516
7517void
7518Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7519  ExprEvalContexts.push_back(
7520        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7521}
7522
7523void
7524Sema::PopExpressionEvaluationContext() {
7525  // Pop the current expression evaluation context off the stack.
7526  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7527  ExprEvalContexts.pop_back();
7528
7529  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7530    if (Rec.PotentiallyReferenced) {
7531      // Mark any remaining declarations in the current position of the stack
7532      // as "referenced". If they were not meant to be referenced, semantic
7533      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7534      for (PotentiallyReferencedDecls::iterator
7535             I = Rec.PotentiallyReferenced->begin(),
7536             IEnd = Rec.PotentiallyReferenced->end();
7537           I != IEnd; ++I)
7538        MarkDeclarationReferenced(I->first, I->second);
7539    }
7540
7541    if (Rec.PotentiallyDiagnosed) {
7542      // Emit any pending diagnostics.
7543      for (PotentiallyEmittedDiagnostics::iterator
7544                I = Rec.PotentiallyDiagnosed->begin(),
7545             IEnd = Rec.PotentiallyDiagnosed->end();
7546           I != IEnd; ++I)
7547        Diag(I->first, I->second);
7548    }
7549  }
7550
7551  // When are coming out of an unevaluated context, clear out any
7552  // temporaries that we may have created as part of the evaluation of
7553  // the expression in that context: they aren't relevant because they
7554  // will never be constructed.
7555  if (Rec.Context == Unevaluated &&
7556      ExprTemporaries.size() > Rec.NumTemporaries)
7557    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7558                          ExprTemporaries.end());
7559
7560  // Destroy the popped expression evaluation record.
7561  Rec.Destroy();
7562}
7563
7564/// \brief Note that the given declaration was referenced in the source code.
7565///
7566/// This routine should be invoke whenever a given declaration is referenced
7567/// in the source code, and where that reference occurred. If this declaration
7568/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7569/// C99 6.9p3), then the declaration will be marked as used.
7570///
7571/// \param Loc the location where the declaration was referenced.
7572///
7573/// \param D the declaration that has been referenced by the source code.
7574void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7575  assert(D && "No declaration?");
7576
7577  if (D->isUsed(false))
7578    return;
7579
7580  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7581  // template or not. The reason for this is that unevaluated expressions
7582  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7583  // -Wunused-parameters)
7584  if (isa<ParmVarDecl>(D) ||
7585      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
7586    D->setUsed(true);
7587    return;
7588  }
7589
7590  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
7591    return;
7592
7593  // Do not mark anything as "used" within a dependent context; wait for
7594  // an instantiation.
7595  if (CurContext->isDependentContext())
7596    return;
7597
7598  switch (ExprEvalContexts.back().Context) {
7599    case Unevaluated:
7600      // We are in an expression that is not potentially evaluated; do nothing.
7601      return;
7602
7603    case PotentiallyEvaluated:
7604      // We are in a potentially-evaluated expression, so this declaration is
7605      // "used"; handle this below.
7606      break;
7607
7608    case PotentiallyPotentiallyEvaluated:
7609      // We are in an expression that may be potentially evaluated; queue this
7610      // declaration reference until we know whether the expression is
7611      // potentially evaluated.
7612      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7613      return;
7614  }
7615
7616  // Note that this declaration has been used.
7617  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7618    unsigned TypeQuals;
7619    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7620      if (Constructor->getParent()->hasTrivialConstructor())
7621        return;
7622      if (!Constructor->isUsed(false))
7623        DefineImplicitDefaultConstructor(Loc, Constructor);
7624    } else if (Constructor->isImplicit() &&
7625               Constructor->isCopyConstructor(TypeQuals)) {
7626      if (!Constructor->isUsed(false))
7627        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7628    }
7629
7630    MarkVTableUsed(Loc, Constructor->getParent());
7631  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7632    if (Destructor->isImplicit() && !Destructor->isUsed(false))
7633      DefineImplicitDestructor(Loc, Destructor);
7634    if (Destructor->isVirtual())
7635      MarkVTableUsed(Loc, Destructor->getParent());
7636  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7637    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7638        MethodDecl->getOverloadedOperator() == OO_Equal) {
7639      if (!MethodDecl->isUsed(false))
7640        DefineImplicitCopyAssignment(Loc, MethodDecl);
7641    } else if (MethodDecl->isVirtual())
7642      MarkVTableUsed(Loc, MethodDecl->getParent());
7643  }
7644  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7645    // Implicit instantiation of function templates and member functions of
7646    // class templates.
7647    if (Function->isImplicitlyInstantiable()) {
7648      bool AlreadyInstantiated = false;
7649      if (FunctionTemplateSpecializationInfo *SpecInfo
7650                                = Function->getTemplateSpecializationInfo()) {
7651        if (SpecInfo->getPointOfInstantiation().isInvalid())
7652          SpecInfo->setPointOfInstantiation(Loc);
7653        else if (SpecInfo->getTemplateSpecializationKind()
7654                   == TSK_ImplicitInstantiation)
7655          AlreadyInstantiated = true;
7656      } else if (MemberSpecializationInfo *MSInfo
7657                                  = Function->getMemberSpecializationInfo()) {
7658        if (MSInfo->getPointOfInstantiation().isInvalid())
7659          MSInfo->setPointOfInstantiation(Loc);
7660        else if (MSInfo->getTemplateSpecializationKind()
7661                   == TSK_ImplicitInstantiation)
7662          AlreadyInstantiated = true;
7663      }
7664
7665      if (!AlreadyInstantiated) {
7666        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7667            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7668          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7669                                                                      Loc));
7670        else
7671          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7672                                                                 Loc));
7673      }
7674    }
7675
7676    // FIXME: keep track of references to static functions
7677    Function->setUsed(true);
7678
7679    return;
7680  }
7681
7682  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7683    // Implicit instantiation of static data members of class templates.
7684    if (Var->isStaticDataMember() &&
7685        Var->getInstantiatedFromStaticDataMember()) {
7686      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7687      assert(MSInfo && "Missing member specialization information?");
7688      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7689          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7690        MSInfo->setPointOfInstantiation(Loc);
7691        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7692      }
7693    }
7694
7695    // FIXME: keep track of references to static data?
7696
7697    D->setUsed(true);
7698    return;
7699  }
7700}
7701
7702namespace {
7703  // Mark all of the declarations referenced
7704  // FIXME: Not fully implemented yet! We need to have a better understanding
7705  // of when we're entering
7706  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
7707    Sema &S;
7708    SourceLocation Loc;
7709
7710  public:
7711    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
7712
7713    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
7714
7715    bool TraverseTemplateArgument(const TemplateArgument &Arg);
7716    bool TraverseRecordType(RecordType *T);
7717  };
7718}
7719
7720bool MarkReferencedDecls::TraverseTemplateArgument(
7721  const TemplateArgument &Arg) {
7722  if (Arg.getKind() == TemplateArgument::Declaration) {
7723    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
7724  }
7725
7726  return Inherited::TraverseTemplateArgument(Arg);
7727}
7728
7729bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
7730  if (ClassTemplateSpecializationDecl *Spec
7731                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
7732    const TemplateArgumentList &Args = Spec->getTemplateArgs();
7733    return TraverseTemplateArguments(Args.getFlatArgumentList(),
7734                                     Args.flat_size());
7735  }
7736
7737  return true;
7738}
7739
7740void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
7741  MarkReferencedDecls Marker(*this, Loc);
7742  Marker.TraverseType(Context.getCanonicalType(T));
7743}
7744
7745/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7746/// of the program being compiled.
7747///
7748/// This routine emits the given diagnostic when the code currently being
7749/// type-checked is "potentially evaluated", meaning that there is a
7750/// possibility that the code will actually be executable. Code in sizeof()
7751/// expressions, code used only during overload resolution, etc., are not
7752/// potentially evaluated. This routine will suppress such diagnostics or,
7753/// in the absolutely nutty case of potentially potentially evaluated
7754/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7755/// later.
7756///
7757/// This routine should be used for all diagnostics that describe the run-time
7758/// behavior of a program, such as passing a non-POD value through an ellipsis.
7759/// Failure to do so will likely result in spurious diagnostics or failures
7760/// during overload resolution or within sizeof/alignof/typeof/typeid.
7761bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7762                               const PartialDiagnostic &PD) {
7763  switch (ExprEvalContexts.back().Context ) {
7764  case Unevaluated:
7765    // The argument will never be evaluated, so don't complain.
7766    break;
7767
7768  case PotentiallyEvaluated:
7769    Diag(Loc, PD);
7770    return true;
7771
7772  case PotentiallyPotentiallyEvaluated:
7773    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7774    break;
7775  }
7776
7777  return false;
7778}
7779
7780bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7781                               CallExpr *CE, FunctionDecl *FD) {
7782  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7783    return false;
7784
7785  PartialDiagnostic Note =
7786    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7787    << FD->getDeclName() : PDiag();
7788  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7789
7790  if (RequireCompleteType(Loc, ReturnType,
7791                          FD ?
7792                          PDiag(diag::err_call_function_incomplete_return)
7793                            << CE->getSourceRange() << FD->getDeclName() :
7794                          PDiag(diag::err_call_incomplete_return)
7795                            << CE->getSourceRange(),
7796                          std::make_pair(NoteLoc, Note)))
7797    return true;
7798
7799  return false;
7800}
7801
7802// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7803// will prevent this condition from triggering, which is what we want.
7804void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7805  SourceLocation Loc;
7806
7807  unsigned diagnostic = diag::warn_condition_is_assignment;
7808
7809  if (isa<BinaryOperator>(E)) {
7810    BinaryOperator *Op = cast<BinaryOperator>(E);
7811    if (Op->getOpcode() != BinaryOperator::Assign)
7812      return;
7813
7814    // Greylist some idioms by putting them into a warning subcategory.
7815    if (ObjCMessageExpr *ME
7816          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7817      Selector Sel = ME->getSelector();
7818
7819      // self = [<foo> init...]
7820      if (isSelfExpr(Op->getLHS())
7821          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7822        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7823
7824      // <foo> = [<bar> nextObject]
7825      else if (Sel.isUnarySelector() &&
7826               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7827        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7828    }
7829
7830    Loc = Op->getOperatorLoc();
7831  } else if (isa<CXXOperatorCallExpr>(E)) {
7832    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7833    if (Op->getOperator() != OO_Equal)
7834      return;
7835
7836    Loc = Op->getOperatorLoc();
7837  } else {
7838    // Not an assignment.
7839    return;
7840  }
7841
7842  SourceLocation Open = E->getSourceRange().getBegin();
7843  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7844
7845  Diag(Loc, diagnostic) << E->getSourceRange();
7846  Diag(Loc, diag::note_condition_assign_to_comparison)
7847    << FixItHint::CreateReplacement(Loc, "==");
7848  Diag(Loc, diag::note_condition_assign_silence)
7849    << FixItHint::CreateInsertion(Open, "(")
7850    << FixItHint::CreateInsertion(Close, ")");
7851}
7852
7853bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7854  DiagnoseAssignmentAsCondition(E);
7855
7856  if (!E->isTypeDependent()) {
7857    DefaultFunctionArrayLvalueConversion(E);
7858
7859    QualType T = E->getType();
7860
7861    if (getLangOptions().CPlusPlus) {
7862      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7863        return true;
7864    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7865      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7866        << T << E->getSourceRange();
7867      return true;
7868    }
7869  }
7870
7871  return false;
7872}
7873
7874ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
7875                                       Expr *Sub) {
7876  if (!Sub)
7877    return ExprError();
7878
7879  if (CheckBooleanCondition(Sub, Loc))
7880    return ExprError();
7881
7882  return Owned(Sub);
7883}
7884