SemaExpr.cpp revision 91de75459b13ad32d3501cdd2eee05727c4a6334
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Scope.h"
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29//  Standard Promotions and Conversions
30//===----------------------------------------------------------------------===//
31
32/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
33void Sema::DefaultFunctionArrayConversion(Expr *&E) {
34  QualType Ty = E->getType();
35  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
36
37  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
38    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
39    Ty = E->getType();
40  }
41  if (Ty->isFunctionType())
42    ImpCastExprToType(E, Context.getPointerType(Ty));
43  else if (Ty->isArrayType()) {
44    // In C90 mode, arrays only promote to pointers if the array expression is
45    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
46    // type 'array of type' is converted to an expression that has type 'pointer
47    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
48    // that has type 'array of type' ...".  The relevant change is "an lvalue"
49    // (C90) to "an expression" (C99).
50    //
51    // C++ 4.2p1:
52    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
53    // T" can be converted to an rvalue of type "pointer to T".
54    //
55    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
56        E->isLvalue(Context) == Expr::LV_Valid)
57      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
58  }
59}
60
61/// UsualUnaryConversions - Performs various conversions that are common to most
62/// operators (C99 6.3). The conversions of array and function types are
63/// sometimes surpressed. For example, the array->pointer conversion doesn't
64/// apply if the array is an argument to the sizeof or address (&) operators.
65/// In these instances, this routine should *not* be called.
66Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
67  QualType Ty = Expr->getType();
68  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
69
70  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
71    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
72    Ty = Expr->getType();
73  }
74  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
75    ImpCastExprToType(Expr, Context.IntTy);
76  else
77    DefaultFunctionArrayConversion(Expr);
78
79  return Expr;
80}
81
82/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
83/// do not have a prototype. Arguments that have type float are promoted to
84/// double. All other argument types are converted by UsualUnaryConversions().
85void Sema::DefaultArgumentPromotion(Expr *&Expr) {
86  QualType Ty = Expr->getType();
87  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
88
89  // If this is a 'float' (CVR qualified or typedef) promote to double.
90  if (const BuiltinType *BT = Ty->getAsBuiltinType())
91    if (BT->getKind() == BuiltinType::Float)
92      return ImpCastExprToType(Expr, Context.DoubleTy);
93
94  UsualUnaryConversions(Expr);
95}
96
97/// UsualArithmeticConversions - Performs various conversions that are common to
98/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
99/// routine returns the first non-arithmetic type found. The client is
100/// responsible for emitting appropriate error diagnostics.
101/// FIXME: verify the conversion rules for "complex int" are consistent with
102/// GCC.
103QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
104                                          bool isCompAssign) {
105  if (!isCompAssign) {
106    UsualUnaryConversions(lhsExpr);
107    UsualUnaryConversions(rhsExpr);
108  }
109  // For conversion purposes, we ignore any qualifiers.
110  // For example, "const float" and "float" are equivalent.
111  QualType lhs =
112    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
113  QualType rhs =
114    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
115
116  // If both types are identical, no conversion is needed.
117  if (lhs == rhs)
118    return lhs;
119
120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
121  // The caller can deal with this (e.g. pointer + int).
122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
123    return lhs;
124
125  // At this point, we have two different arithmetic types.
126
127  // Handle complex types first (C99 6.3.1.8p1).
128  if (lhs->isComplexType() || rhs->isComplexType()) {
129    // if we have an integer operand, the result is the complex type.
130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
131      // convert the rhs to the lhs complex type.
132      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
133      return lhs;
134    }
135    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
136      // convert the lhs to the rhs complex type.
137      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
138      return rhs;
139    }
140    // This handles complex/complex, complex/float, or float/complex.
141    // When both operands are complex, the shorter operand is converted to the
142    // type of the longer, and that is the type of the result. This corresponds
143    // to what is done when combining two real floating-point operands.
144    // The fun begins when size promotion occur across type domains.
145    // From H&S 6.3.4: When one operand is complex and the other is a real
146    // floating-point type, the less precise type is converted, within it's
147    // real or complex domain, to the precision of the other type. For example,
148    // when combining a "long double" with a "double _Complex", the
149    // "double _Complex" is promoted to "long double _Complex".
150    int result = Context.getFloatingTypeOrder(lhs, rhs);
151
152    if (result > 0) { // The left side is bigger, convert rhs.
153      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
154      if (!isCompAssign)
155        ImpCastExprToType(rhsExpr, rhs);
156    } else if (result < 0) { // The right side is bigger, convert lhs.
157      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
158      if (!isCompAssign)
159        ImpCastExprToType(lhsExpr, lhs);
160    }
161    // At this point, lhs and rhs have the same rank/size. Now, make sure the
162    // domains match. This is a requirement for our implementation, C99
163    // does not require this promotion.
164    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
165      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
166        if (!isCompAssign)
167          ImpCastExprToType(lhsExpr, rhs);
168        return rhs;
169      } else { // handle "_Complex double, double".
170        if (!isCompAssign)
171          ImpCastExprToType(rhsExpr, lhs);
172        return lhs;
173      }
174    }
175    return lhs; // The domain/size match exactly.
176  }
177  // Now handle "real" floating types (i.e. float, double, long double).
178  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
179    // if we have an integer operand, the result is the real floating type.
180    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
181      // convert rhs to the lhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
186      // convert lhs to the rhs floating point type.
187      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
188      return rhs;
189    }
190    // We have two real floating types, float/complex combos were handled above.
191    // Convert the smaller operand to the bigger result.
192    int result = Context.getFloatingTypeOrder(lhs, rhs);
193
194    if (result > 0) { // convert the rhs
195      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
196      return lhs;
197    }
198    if (result < 0) { // convert the lhs
199      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
200      return rhs;
201    }
202    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
203  }
204  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
205    // Handle GCC complex int extension.
206    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
207    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
208
209    if (lhsComplexInt && rhsComplexInt) {
210      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
211                                      rhsComplexInt->getElementType()) >= 0) {
212        // convert the rhs
213        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
214        return lhs;
215      }
216      if (!isCompAssign)
217        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
218      return rhs;
219    } else if (lhsComplexInt && rhs->isIntegerType()) {
220      // convert the rhs to the lhs complex type.
221      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
222      return lhs;
223    } else if (rhsComplexInt && lhs->isIntegerType()) {
224      // convert the lhs to the rhs complex type.
225      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
226      return rhs;
227    }
228  }
229  // Finally, we have two differing integer types.
230  // The rules for this case are in C99 6.3.1.8
231  int compare = Context.getIntegerTypeOrder(lhs, rhs);
232  bool lhsSigned = lhs->isSignedIntegerType(),
233       rhsSigned = rhs->isSignedIntegerType();
234  QualType destType;
235  if (lhsSigned == rhsSigned) {
236    // Same signedness; use the higher-ranked type
237    destType = compare >= 0 ? lhs : rhs;
238  } else if (compare != (lhsSigned ? 1 : -1)) {
239    // The unsigned type has greater than or equal rank to the
240    // signed type, so use the unsigned type
241    destType = lhsSigned ? rhs : lhs;
242  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
243    // The two types are different widths; if we are here, that
244    // means the signed type is larger than the unsigned type, so
245    // use the signed type.
246    destType = lhsSigned ? lhs : rhs;
247  } else {
248    // The signed type is higher-ranked than the unsigned type,
249    // but isn't actually any bigger (like unsigned int and long
250    // on most 32-bit systems).  Use the unsigned type corresponding
251    // to the signed type.
252    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
253  }
254  if (!isCompAssign) {
255    ImpCastExprToType(lhsExpr, destType);
256    ImpCastExprToType(rhsExpr, destType);
257  }
258  return destType;
259}
260
261//===----------------------------------------------------------------------===//
262//  Semantic Analysis for various Expression Types
263//===----------------------------------------------------------------------===//
264
265
266/// ActOnStringLiteral - The specified tokens were lexed as pasted string
267/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
268/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
269/// multiple tokens.  However, the common case is that StringToks points to one
270/// string.
271///
272Action::ExprResult
273Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
274  assert(NumStringToks && "Must have at least one string!");
275
276  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
277  if (Literal.hadError)
278    return ExprResult(true);
279
280  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
281  for (unsigned i = 0; i != NumStringToks; ++i)
282    StringTokLocs.push_back(StringToks[i].getLocation());
283
284  // Verify that pascal strings aren't too large.
285  if (Literal.Pascal && Literal.GetStringLength() > 256)
286    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
287                SourceRange(StringToks[0].getLocation(),
288                            StringToks[NumStringToks-1].getLocation()));
289
290  QualType StrTy = Context.CharTy;
291  if (Literal.AnyWide) StrTy = Context.getWCharType();
292  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
293
294  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
295  if (getLangOptions().CPlusPlus)
296    StrTy.addConst();
297
298  // Get an array type for the string, according to C99 6.4.5.  This includes
299  // the nul terminator character as well as the string length for pascal
300  // strings.
301  StrTy = Context.getConstantArrayType(StrTy,
302                                   llvm::APInt(32, Literal.GetStringLength()+1),
303                                       ArrayType::Normal, 0);
304
305  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
306  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
307                           Literal.AnyWide, StrTy,
308                           StringToks[0].getLocation(),
309                           StringToks[NumStringToks-1].getLocation());
310}
311
312/// DeclDefinedWithinScope - Return true if the specified decl is defined at or
313/// within the 'Within' scope.  The current Scope is CurScope.
314///
315/// NOTE: This method is extremely inefficient (linear scan), this should not be
316/// used in common cases.
317///
318static bool DeclDefinedWithinScope(ScopedDecl *D, Scope *Within,
319                                   Scope *CurScope) {
320  while (1) {
321    assert(CurScope && "CurScope not nested within 'Within'?");
322
323    // Check this scope for the decl.
324    if (CurScope->isDeclScope(D)) return true;
325
326    if (CurScope == Within) return false;
327    CurScope = CurScope->getParent();
328  }
329}
330
331/// ActOnIdentifierExpr - The parser read an identifier in expression context,
332/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
333/// identifier is used in a function call context.
334Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
335                                           IdentifierInfo &II,
336                                           bool HasTrailingLParen) {
337  // Could be enum-constant, value decl, instance variable, etc.
338  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
339
340  // If this reference is in an Objective-C method, then ivar lookup happens as
341  // well.
342  if (getCurMethodDecl()) {
343    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
344    // There are two cases to handle here.  1) scoped lookup could have failed,
345    // in which case we should look for an ivar.  2) scoped lookup could have
346    // found a decl, but that decl is outside the current method (i.e. a global
347    // variable).  In these two cases, we do a lookup for an ivar with this
348    // name, if the lookup suceeds, we replace it our current decl.
349    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
350      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
351      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
352        // FIXME: This should use a new expr for a direct reference, don't turn
353        // this into Self->ivar, just return a BareIVarExpr or something.
354        IdentifierInfo &II = Context.Idents.get("self");
355        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
356        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
357                                 static_cast<Expr*>(SelfExpr.Val), true, true);
358      }
359    }
360    // Needed to implement property "super.method" notation.
361    if (SD == 0 && &II == SuperID) {
362      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
363                     getCurMethodDecl()->getClassInterface()));
364      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
365    }
366  }
367  // If we are parsing a block, check the block parameter list.
368  if (CurBlock) {
369    BlockSemaInfo *BLK = CurBlock;
370    do {
371      for (unsigned i = 0, e = BLK->Params.size(); i != e && D == 0; ++i)
372        if (BLK->Params[i]->getIdentifier() == &II)
373          D = BLK->Params[i];
374      if (D)
375        break; // Found!
376    } while ((BLK = BLK->PrevBlockInfo));  // Look through any enclosing blocks.
377  }
378  if (D == 0) {
379    // Otherwise, this could be an implicitly declared function reference (legal
380    // in C90, extension in C99).
381    if (HasTrailingLParen &&
382        !getLangOptions().CPlusPlus) // Not in C++.
383      D = ImplicitlyDefineFunction(Loc, II, S);
384    else {
385      // If this name wasn't predeclared and if this is not a function call,
386      // diagnose the problem.
387      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
388    }
389  }
390
391  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
392    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
393      if (MD->isStatic())
394        // "invalid use of member 'x' in static member function"
395        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
396                    FD->getName());
397      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
398        // "invalid use of nonstatic data member 'x'"
399        return Diag(Loc, diag::err_invalid_non_static_member_use,
400                    FD->getName());
401
402      if (FD->isInvalidDecl())
403        return true;
404
405      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
406      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
407      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
408                            true, FD, Loc, FD->getType());
409    }
410
411    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
412  }
413  if (isa<TypedefDecl>(D))
414    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
415  if (isa<ObjCInterfaceDecl>(D))
416    return Diag(Loc, diag::err_unexpected_interface, II.getName());
417  if (isa<NamespaceDecl>(D))
418    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
419
420  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
421  ValueDecl *VD = cast<ValueDecl>(D);
422
423  // check if referencing an identifier with __attribute__((deprecated)).
424  if (VD->getAttr<DeprecatedAttr>())
425    Diag(Loc, diag::warn_deprecated, VD->getName());
426
427  // Only create DeclRefExpr's for valid Decl's.
428  if (VD->isInvalidDecl())
429    return true;
430
431  // If this reference is not in a block or if the referenced variable is
432  // within the block, create a normal DeclRefExpr.
433  //
434  // FIXME: This will create BlockDeclRefExprs for global variables,
435  // function references, etc which is suboptimal :) and breaks
436  // things like "integer constant expression" tests.
437  //
438  if (!CurBlock || DeclDefinedWithinScope(VD, CurBlock->TheScope, S) ||
439      isa<EnumConstantDecl>(VD) || isa<ParmVarDecl>(VD))
440    return new DeclRefExpr(VD, VD->getType(), Loc);
441
442  // If we are in a block and the variable is outside the current block,
443  // bind the variable reference with a BlockDeclRefExpr.
444
445  // The BlocksAttr indicates the variable is bound by-reference.
446  if (VD->getAttr<BlocksAttr>())
447    return new BlockDeclRefExpr(VD, VD->getType(), Loc, true);
448
449  // Variable will be bound by-copy, make it const within the closure.
450  VD->getType().addConst();
451  return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
452}
453
454Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
455                                           tok::TokenKind Kind) {
456  PredefinedExpr::IdentType IT;
457
458  switch (Kind) {
459  default: assert(0 && "Unknown simple primary expr!");
460  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
461  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
462  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
463  }
464
465  // Verify that this is in a function context.
466  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
467    return Diag(Loc, diag::err_predef_outside_function);
468
469  // Pre-defined identifiers are of type char[x], where x is the length of the
470  // string.
471  unsigned Length;
472  if (getCurFunctionDecl())
473    Length = getCurFunctionDecl()->getIdentifier()->getLength();
474  else
475    Length = getCurMethodDecl()->getSynthesizedMethodSize();
476
477  llvm::APInt LengthI(32, Length + 1);
478  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
479  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
480  return new PredefinedExpr(Loc, ResTy, IT);
481}
482
483Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
484  llvm::SmallString<16> CharBuffer;
485  CharBuffer.resize(Tok.getLength());
486  const char *ThisTokBegin = &CharBuffer[0];
487  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
488
489  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
490                            Tok.getLocation(), PP);
491  if (Literal.hadError())
492    return ExprResult(true);
493
494  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
495
496  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
497                              Tok.getLocation());
498}
499
500Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
501  // fast path for a single digit (which is quite common). A single digit
502  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
503  if (Tok.getLength() == 1) {
504    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
505
506    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
507    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
508                                         Context.IntTy,
509                                         Tok.getLocation()));
510  }
511  llvm::SmallString<512> IntegerBuffer;
512  IntegerBuffer.resize(Tok.getLength());
513  const char *ThisTokBegin = &IntegerBuffer[0];
514
515  // Get the spelling of the token, which eliminates trigraphs, etc.
516  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
517  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
518                               Tok.getLocation(), PP);
519  if (Literal.hadError)
520    return ExprResult(true);
521
522  Expr *Res;
523
524  if (Literal.isFloatingLiteral()) {
525    QualType Ty;
526    if (Literal.isFloat)
527      Ty = Context.FloatTy;
528    else if (!Literal.isLong)
529      Ty = Context.DoubleTy;
530    else
531      Ty = Context.LongDoubleTy;
532
533    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
534
535    // isExact will be set by GetFloatValue().
536    bool isExact = false;
537    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
538                              Ty, Tok.getLocation());
539
540  } else if (!Literal.isIntegerLiteral()) {
541    return ExprResult(true);
542  } else {
543    QualType Ty;
544
545    // long long is a C99 feature.
546    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
547        Literal.isLongLong)
548      Diag(Tok.getLocation(), diag::ext_longlong);
549
550    // Get the value in the widest-possible width.
551    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
552
553    if (Literal.GetIntegerValue(ResultVal)) {
554      // If this value didn't fit into uintmax_t, warn and force to ull.
555      Diag(Tok.getLocation(), diag::warn_integer_too_large);
556      Ty = Context.UnsignedLongLongTy;
557      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
558             "long long is not intmax_t?");
559    } else {
560      // If this value fits into a ULL, try to figure out what else it fits into
561      // according to the rules of C99 6.4.4.1p5.
562
563      // Octal, Hexadecimal, and integers with a U suffix are allowed to
564      // be an unsigned int.
565      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
566
567      // Check from smallest to largest, picking the smallest type we can.
568      unsigned Width = 0;
569      if (!Literal.isLong && !Literal.isLongLong) {
570        // Are int/unsigned possibilities?
571        unsigned IntSize = Context.Target.getIntWidth();
572
573        // Does it fit in a unsigned int?
574        if (ResultVal.isIntN(IntSize)) {
575          // Does it fit in a signed int?
576          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
577            Ty = Context.IntTy;
578          else if (AllowUnsigned)
579            Ty = Context.UnsignedIntTy;
580          Width = IntSize;
581        }
582      }
583
584      // Are long/unsigned long possibilities?
585      if (Ty.isNull() && !Literal.isLongLong) {
586        unsigned LongSize = Context.Target.getLongWidth();
587
588        // Does it fit in a unsigned long?
589        if (ResultVal.isIntN(LongSize)) {
590          // Does it fit in a signed long?
591          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
592            Ty = Context.LongTy;
593          else if (AllowUnsigned)
594            Ty = Context.UnsignedLongTy;
595          Width = LongSize;
596        }
597      }
598
599      // Finally, check long long if needed.
600      if (Ty.isNull()) {
601        unsigned LongLongSize = Context.Target.getLongLongWidth();
602
603        // Does it fit in a unsigned long long?
604        if (ResultVal.isIntN(LongLongSize)) {
605          // Does it fit in a signed long long?
606          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
607            Ty = Context.LongLongTy;
608          else if (AllowUnsigned)
609            Ty = Context.UnsignedLongLongTy;
610          Width = LongLongSize;
611        }
612      }
613
614      // If we still couldn't decide a type, we probably have something that
615      // does not fit in a signed long long, but has no U suffix.
616      if (Ty.isNull()) {
617        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
618        Ty = Context.UnsignedLongLongTy;
619        Width = Context.Target.getLongLongWidth();
620      }
621
622      if (ResultVal.getBitWidth() != Width)
623        ResultVal.trunc(Width);
624    }
625
626    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
627  }
628
629  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
630  if (Literal.isImaginary)
631    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
632
633  return Res;
634}
635
636Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
637                                        ExprTy *Val) {
638  Expr *E = (Expr *)Val;
639  assert((E != 0) && "ActOnParenExpr() missing expr");
640  return new ParenExpr(L, R, E);
641}
642
643/// The UsualUnaryConversions() function is *not* called by this routine.
644/// See C99 6.3.2.1p[2-4] for more details.
645QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
646                                         SourceLocation OpLoc,
647                                         const SourceRange &ExprRange,
648                                         bool isSizeof) {
649  // C99 6.5.3.4p1:
650  if (isa<FunctionType>(exprType) && isSizeof)
651    // alignof(function) is allowed.
652    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
653  else if (exprType->isVoidType())
654    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
655         ExprRange);
656  else if (exprType->isIncompleteType()) {
657    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
658                           diag::err_alignof_incomplete_type,
659         exprType.getAsString(), ExprRange);
660    return QualType(); // error
661  }
662  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
663  return Context.getSizeType();
664}
665
666Action::ExprResult Sema::
667ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
668                           SourceLocation LPLoc, TypeTy *Ty,
669                           SourceLocation RPLoc) {
670  // If error parsing type, ignore.
671  if (Ty == 0) return true;
672
673  // Verify that this is a valid expression.
674  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
675
676  QualType resultType =
677    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
678
679  if (resultType.isNull())
680    return true;
681  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
682}
683
684QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
685  DefaultFunctionArrayConversion(V);
686
687  // These operators return the element type of a complex type.
688  if (const ComplexType *CT = V->getType()->getAsComplexType())
689    return CT->getElementType();
690
691  // Otherwise they pass through real integer and floating point types here.
692  if (V->getType()->isArithmeticType())
693    return V->getType();
694
695  // Reject anything else.
696  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
697  return QualType();
698}
699
700
701
702Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
703                                             tok::TokenKind Kind,
704                                             ExprTy *Input) {
705  UnaryOperator::Opcode Opc;
706  switch (Kind) {
707  default: assert(0 && "Unknown unary op!");
708  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
709  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
710  }
711  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
712  if (result.isNull())
713    return true;
714  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
715}
716
717Action::ExprResult Sema::
718ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
719                        ExprTy *Idx, SourceLocation RLoc) {
720  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
721
722  // Perform default conversions.
723  DefaultFunctionArrayConversion(LHSExp);
724  DefaultFunctionArrayConversion(RHSExp);
725
726  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
727
728  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
729  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
730  // in the subscript position. As a result, we need to derive the array base
731  // and index from the expression types.
732  Expr *BaseExpr, *IndexExpr;
733  QualType ResultType;
734  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
735    BaseExpr = LHSExp;
736    IndexExpr = RHSExp;
737    // FIXME: need to deal with const...
738    ResultType = PTy->getPointeeType();
739  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
740     // Handle the uncommon case of "123[Ptr]".
741    BaseExpr = RHSExp;
742    IndexExpr = LHSExp;
743    // FIXME: need to deal with const...
744    ResultType = PTy->getPointeeType();
745  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
746    BaseExpr = LHSExp;    // vectors: V[123]
747    IndexExpr = RHSExp;
748
749    // Component access limited to variables (reject vec4.rg[1]).
750    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
751        !isa<ExtVectorElementExpr>(BaseExpr))
752      return Diag(LLoc, diag::err_ext_vector_component_access,
753                  SourceRange(LLoc, RLoc));
754    // FIXME: need to deal with const...
755    ResultType = VTy->getElementType();
756  } else {
757    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
758                RHSExp->getSourceRange());
759  }
760  // C99 6.5.2.1p1
761  if (!IndexExpr->getType()->isIntegerType())
762    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
763                IndexExpr->getSourceRange());
764
765  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
766  // the following check catches trying to index a pointer to a function (e.g.
767  // void (*)(int)) and pointers to incomplete types.  Functions are not
768  // objects in C99.
769  if (!ResultType->isObjectType())
770    return Diag(BaseExpr->getLocStart(),
771                diag::err_typecheck_subscript_not_object,
772                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
773
774  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
775}
776
777QualType Sema::
778CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
779                        IdentifierInfo &CompName, SourceLocation CompLoc) {
780  const ExtVectorType *vecType = baseType->getAsExtVectorType();
781
782  // This flag determines whether or not the component is to be treated as a
783  // special name, or a regular GLSL-style component access.
784  bool SpecialComponent = false;
785
786  // The vector accessor can't exceed the number of elements.
787  const char *compStr = CompName.getName();
788  if (strlen(compStr) > vecType->getNumElements()) {
789    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
790                baseType.getAsString(), SourceRange(CompLoc));
791    return QualType();
792  }
793
794  // Check that we've found one of the special components, or that the component
795  // names must come from the same set.
796  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
797      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
798    SpecialComponent = true;
799  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
800    do
801      compStr++;
802    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
803  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
804    do
805      compStr++;
806    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
807  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
808    do
809      compStr++;
810    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
811  }
812
813  if (!SpecialComponent && *compStr) {
814    // We didn't get to the end of the string. This means the component names
815    // didn't come from the same set *or* we encountered an illegal name.
816    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
817         std::string(compStr,compStr+1), SourceRange(CompLoc));
818    return QualType();
819  }
820  // Each component accessor can't exceed the vector type.
821  compStr = CompName.getName();
822  while (*compStr) {
823    if (vecType->isAccessorWithinNumElements(*compStr))
824      compStr++;
825    else
826      break;
827  }
828  if (!SpecialComponent && *compStr) {
829    // We didn't get to the end of the string. This means a component accessor
830    // exceeds the number of elements in the vector.
831    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
832                baseType.getAsString(), SourceRange(CompLoc));
833    return QualType();
834  }
835
836  // If we have a special component name, verify that the current vector length
837  // is an even number, since all special component names return exactly half
838  // the elements.
839  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
840    return QualType();
841  }
842
843  // The component accessor looks fine - now we need to compute the actual type.
844  // The vector type is implied by the component accessor. For example,
845  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
846  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
847  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
848                                       : strlen(CompName.getName());
849  if (CompSize == 1)
850    return vecType->getElementType();
851
852  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
853  // Now look up the TypeDefDecl from the vector type. Without this,
854  // diagostics look bad. We want extended vector types to appear built-in.
855  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
856    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
857      return Context.getTypedefType(ExtVectorDecls[i]);
858  }
859  return VT; // should never get here (a typedef type should always be found).
860}
861
862/// constructSetterName - Return the setter name for the given
863/// identifier, i.e. "set" + Name where the initial character of Name
864/// has been capitalized.
865// FIXME: Merge with same routine in Parser. But where should this
866// live?
867static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
868                                           const IdentifierInfo *Name) {
869  unsigned N = Name->getLength();
870  char *SelectorName = new char[3 + N];
871  memcpy(SelectorName, "set", 3);
872  memcpy(&SelectorName[3], Name->getName(), N);
873  SelectorName[3] = toupper(SelectorName[3]);
874
875  IdentifierInfo *Setter =
876    &Idents.get(SelectorName, &SelectorName[3 + N]);
877  delete[] SelectorName;
878  return Setter;
879}
880
881Action::ExprResult Sema::
882ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
883                         tok::TokenKind OpKind, SourceLocation MemberLoc,
884                         IdentifierInfo &Member) {
885  Expr *BaseExpr = static_cast<Expr *>(Base);
886  assert(BaseExpr && "no record expression");
887
888  // Perform default conversions.
889  DefaultFunctionArrayConversion(BaseExpr);
890
891  QualType BaseType = BaseExpr->getType();
892  assert(!BaseType.isNull() && "no type for member expression");
893
894  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
895  // must have pointer type, and the accessed type is the pointee.
896  if (OpKind == tok::arrow) {
897    if (const PointerType *PT = BaseType->getAsPointerType())
898      BaseType = PT->getPointeeType();
899    else
900      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
901                  BaseType.getAsString(), BaseExpr->getSourceRange());
902  }
903
904  // Handle field access to simple records.  This also handles access to fields
905  // of the ObjC 'id' struct.
906  if (const RecordType *RTy = BaseType->getAsRecordType()) {
907    RecordDecl *RDecl = RTy->getDecl();
908    if (RTy->isIncompleteType())
909      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
910                  BaseExpr->getSourceRange());
911    // The record definition is complete, now make sure the member is valid.
912    FieldDecl *MemberDecl = RDecl->getMember(&Member);
913    if (!MemberDecl)
914      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
915                  BaseExpr->getSourceRange());
916
917    // Figure out the type of the member; see C99 6.5.2.3p3
918    // FIXME: Handle address space modifiers
919    QualType MemberType = MemberDecl->getType();
920    unsigned combinedQualifiers =
921        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
922    MemberType = MemberType.getQualifiedType(combinedQualifiers);
923
924    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
925                          MemberLoc, MemberType);
926  }
927
928  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
929  // (*Obj).ivar.
930  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
931    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
932      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
933                                 OpKind == tok::arrow);
934    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
935                IFTy->getDecl()->getName(), Member.getName(),
936                BaseExpr->getSourceRange());
937  }
938
939  // Handle Objective-C property access, which is "Obj.property" where Obj is a
940  // pointer to a (potentially qualified) interface type.
941  const PointerType *PTy;
942  const ObjCInterfaceType *IFTy;
943  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
944      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
945    ObjCInterfaceDecl *IFace = IFTy->getDecl();
946
947    // Search for a declared property first.
948    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
949      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
950
951    // Check protocols on qualified interfaces.
952    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
953         E = IFTy->qual_end(); I != E; ++I)
954      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
955        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
956
957    // If that failed, look for an "implicit" property by seeing if the nullary
958    // selector is implemented.
959
960    // FIXME: The logic for looking up nullary and unary selectors should be
961    // shared with the code in ActOnInstanceMessage.
962
963    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
964    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
965
966    // If this reference is in an @implementation, check for 'private' methods.
967    if (!Getter)
968      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
969        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
970          if (ObjCImplementationDecl *ImpDecl =
971              ObjCImplementations[ClassDecl->getIdentifier()])
972            Getter = ImpDecl->getInstanceMethod(Sel);
973
974    if (Getter) {
975      // If we found a getter then this may be a valid dot-reference, we
976      // need to also look for the matching setter.
977      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
978                                                       &Member);
979      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
980      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
981
982      if (!Setter) {
983        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
984          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
985            if (ObjCImplementationDecl *ImpDecl =
986                ObjCImplementations[ClassDecl->getIdentifier()])
987              Setter = ImpDecl->getInstanceMethod(SetterSel);
988      }
989
990      // FIXME: There are some issues here. First, we are not
991      // diagnosing accesses to read-only properties because we do not
992      // know if this is a getter or setter yet. Second, we are
993      // checking that the type of the setter matches the type we
994      // expect.
995      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
996                                     MemberLoc, BaseExpr);
997    }
998  }
999
1000  // Handle 'field access' to vectors, such as 'V.xx'.
1001  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1002    // Component access limited to variables (reject vec4.rg.g).
1003    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1004        !isa<ExtVectorElementExpr>(BaseExpr))
1005      return Diag(MemberLoc, diag::err_ext_vector_component_access,
1006                  BaseExpr->getSourceRange());
1007    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1008    if (ret.isNull())
1009      return true;
1010    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1011  }
1012
1013  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1014              BaseType.getAsString(), BaseExpr->getSourceRange());
1015}
1016
1017/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1018/// This provides the location of the left/right parens and a list of comma
1019/// locations.
1020Action::ExprResult Sema::
1021ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1022              ExprTy **args, unsigned NumArgs,
1023              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1024  Expr *Fn = static_cast<Expr *>(fn);
1025  Expr **Args = reinterpret_cast<Expr**>(args);
1026  assert(Fn && "no function call expression");
1027  FunctionDecl *FDecl = NULL;
1028
1029  // Promote the function operand.
1030  UsualUnaryConversions(Fn);
1031
1032  // If we're directly calling a function, get the declaration for
1033  // that function.
1034  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1035    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
1036      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1037
1038  // Make the call expr early, before semantic checks.  This guarantees cleanup
1039  // of arguments and function on error.
1040  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1041                                                 Context.BoolTy, RParenLoc));
1042  const FunctionType *FuncT;
1043  if (!Fn->getType()->isBlockPointerType()) {
1044    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1045    // have type pointer to function".
1046    const PointerType *PT = Fn->getType()->getAsPointerType();
1047    if (PT == 0)
1048      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1049                  Fn->getSourceRange());
1050    FuncT = PT->getPointeeType()->getAsFunctionType();
1051  } else { // This is a block call.
1052    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1053                getAsFunctionType();
1054  }
1055  if (FuncT == 0)
1056    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1057                Fn->getSourceRange());
1058
1059  // We know the result type of the call, set it.
1060  TheCall->setType(FuncT->getResultType());
1061
1062  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1063    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1064    // assignment, to the types of the corresponding parameter, ...
1065    unsigned NumArgsInProto = Proto->getNumArgs();
1066    unsigned NumArgsToCheck = NumArgs;
1067
1068    // If too few arguments are available (and we don't have default
1069    // arguments for the remaining parameters), don't make the call.
1070    if (NumArgs < NumArgsInProto) {
1071      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1072        // Use default arguments for missing arguments
1073        NumArgsToCheck = NumArgsInProto;
1074        TheCall->setNumArgs(NumArgsInProto);
1075      } else
1076        return Diag(RParenLoc,
1077                    !Fn->getType()->isBlockPointerType()
1078                      ? diag::err_typecheck_call_too_few_args
1079                      : diag::err_typecheck_block_too_few_args,
1080                    Fn->getSourceRange());
1081    }
1082
1083    // If too many are passed and not variadic, error on the extras and drop
1084    // them.
1085    if (NumArgs > NumArgsInProto) {
1086      if (!Proto->isVariadic()) {
1087        Diag(Args[NumArgsInProto]->getLocStart(),
1088               !Fn->getType()->isBlockPointerType()
1089                 ? diag::err_typecheck_call_too_many_args
1090                 : diag::err_typecheck_block_too_many_args,
1091             Fn->getSourceRange(),
1092             SourceRange(Args[NumArgsInProto]->getLocStart(),
1093                         Args[NumArgs-1]->getLocEnd()));
1094        // This deletes the extra arguments.
1095        TheCall->setNumArgs(NumArgsInProto);
1096      }
1097      NumArgsToCheck = NumArgsInProto;
1098    }
1099
1100    // Continue to check argument types (even if we have too few/many args).
1101    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1102      QualType ProtoArgType = Proto->getArgType(i);
1103
1104      Expr *Arg;
1105      if (i < NumArgs)
1106        Arg = Args[i];
1107      else
1108        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1109      QualType ArgType = Arg->getType();
1110
1111      // Compute implicit casts from the operand to the formal argument type.
1112      AssignConvertType ConvTy =
1113        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1114      TheCall->setArg(i, Arg);
1115
1116      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1117                                   ArgType, Arg, "passing"))
1118        return true;
1119    }
1120
1121    // If this is a variadic call, handle args passed through "...".
1122    if (Proto->isVariadic()) {
1123      // Promote the arguments (C99 6.5.2.2p7).
1124      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1125        Expr *Arg = Args[i];
1126        DefaultArgumentPromotion(Arg);
1127        TheCall->setArg(i, Arg);
1128      }
1129    }
1130  } else {
1131    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1132
1133    // Promote the arguments (C99 6.5.2.2p6).
1134    for (unsigned i = 0; i != NumArgs; i++) {
1135      Expr *Arg = Args[i];
1136      DefaultArgumentPromotion(Arg);
1137      TheCall->setArg(i, Arg);
1138    }
1139  }
1140
1141  // Do special checking on direct calls to functions.
1142  if (FDecl)
1143    return CheckFunctionCall(FDecl, TheCall.take());
1144
1145  return TheCall.take();
1146}
1147
1148Action::ExprResult Sema::
1149ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1150                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1151  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1152  QualType literalType = QualType::getFromOpaquePtr(Ty);
1153  // FIXME: put back this assert when initializers are worked out.
1154  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1155  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1156
1157  if (literalType->isArrayType()) {
1158    if (literalType->isVariableArrayType())
1159      return Diag(LParenLoc,
1160                  diag::err_variable_object_no_init,
1161                  SourceRange(LParenLoc,
1162                              literalExpr->getSourceRange().getEnd()));
1163  } else if (literalType->isIncompleteType()) {
1164    return Diag(LParenLoc,
1165                diag::err_typecheck_decl_incomplete_type,
1166                literalType.getAsString(),
1167                SourceRange(LParenLoc,
1168                            literalExpr->getSourceRange().getEnd()));
1169  }
1170
1171  if (CheckInitializerTypes(literalExpr, literalType))
1172    return true;
1173
1174  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1175  if (isFileScope) { // 6.5.2.5p3
1176    if (CheckForConstantInitializer(literalExpr, literalType))
1177      return true;
1178  }
1179  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1180}
1181
1182Action::ExprResult Sema::
1183ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1184              SourceLocation RBraceLoc) {
1185  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1186
1187  // Semantic analysis for initializers is done by ActOnDeclarator() and
1188  // CheckInitializer() - it requires knowledge of the object being intialized.
1189
1190  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1191  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1192  return E;
1193}
1194
1195/// CheckCastTypes - Check type constraints for casting between types.
1196bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1197  UsualUnaryConversions(castExpr);
1198
1199  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1200  // type needs to be scalar.
1201  if (castType->isVoidType()) {
1202    // Cast to void allows any expr type.
1203  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1204    // GCC struct/union extension: allow cast to self.
1205    if (Context.getCanonicalType(castType) !=
1206        Context.getCanonicalType(castExpr->getType()) ||
1207        (!castType->isStructureType() && !castType->isUnionType())) {
1208      // Reject any other conversions to non-scalar types.
1209      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1210                  castType.getAsString(), castExpr->getSourceRange());
1211    }
1212
1213    // accept this, but emit an ext-warn.
1214    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1215         castType.getAsString(), castExpr->getSourceRange());
1216  } else if (!castExpr->getType()->isScalarType() &&
1217             !castExpr->getType()->isVectorType()) {
1218    return Diag(castExpr->getLocStart(),
1219                diag::err_typecheck_expect_scalar_operand,
1220                castExpr->getType().getAsString(),castExpr->getSourceRange());
1221  } else if (castExpr->getType()->isVectorType()) {
1222    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1223      return true;
1224  } else if (castType->isVectorType()) {
1225    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1226      return true;
1227  }
1228  return false;
1229}
1230
1231bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1232  assert(VectorTy->isVectorType() && "Not a vector type!");
1233
1234  if (Ty->isVectorType() || Ty->isIntegerType()) {
1235    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1236      return Diag(R.getBegin(),
1237                  Ty->isVectorType() ?
1238                  diag::err_invalid_conversion_between_vectors :
1239                  diag::err_invalid_conversion_between_vector_and_integer,
1240                  VectorTy.getAsString().c_str(),
1241                  Ty.getAsString().c_str(), R);
1242  } else
1243    return Diag(R.getBegin(),
1244                diag::err_invalid_conversion_between_vector_and_scalar,
1245                VectorTy.getAsString().c_str(),
1246                Ty.getAsString().c_str(), R);
1247
1248  return false;
1249}
1250
1251Action::ExprResult Sema::
1252ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1253              SourceLocation RParenLoc, ExprTy *Op) {
1254  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1255
1256  Expr *castExpr = static_cast<Expr*>(Op);
1257  QualType castType = QualType::getFromOpaquePtr(Ty);
1258
1259  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1260    return true;
1261  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
1262}
1263
1264/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1265/// In that case, lex = cond.
1266inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1267  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1268  UsualUnaryConversions(cond);
1269  UsualUnaryConversions(lex);
1270  UsualUnaryConversions(rex);
1271  QualType condT = cond->getType();
1272  QualType lexT = lex->getType();
1273  QualType rexT = rex->getType();
1274
1275  // first, check the condition.
1276  if (!condT->isScalarType()) { // C99 6.5.15p2
1277    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1278         condT.getAsString());
1279    return QualType();
1280  }
1281
1282  // Now check the two expressions.
1283
1284  // If both operands have arithmetic type, do the usual arithmetic conversions
1285  // to find a common type: C99 6.5.15p3,5.
1286  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1287    UsualArithmeticConversions(lex, rex);
1288    return lex->getType();
1289  }
1290
1291  // If both operands are the same structure or union type, the result is that
1292  // type.
1293  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1294    if (const RecordType *RHSRT = rexT->getAsRecordType())
1295      if (LHSRT->getDecl() == RHSRT->getDecl())
1296        // "If both the operands have structure or union type, the result has
1297        // that type."  This implies that CV qualifiers are dropped.
1298        return lexT.getUnqualifiedType();
1299  }
1300
1301  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1302  // The following || allows only one side to be void (a GCC-ism).
1303  if (lexT->isVoidType() || rexT->isVoidType()) {
1304    if (!lexT->isVoidType())
1305      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1306           rex->getSourceRange());
1307    if (!rexT->isVoidType())
1308      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1309           lex->getSourceRange());
1310    ImpCastExprToType(lex, Context.VoidTy);
1311    ImpCastExprToType(rex, Context.VoidTy);
1312    return Context.VoidTy;
1313  }
1314  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1315  // the type of the other operand."
1316  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1317       Context.isObjCObjectPointerType(lexT)) &&
1318      rex->isNullPointerConstant(Context)) {
1319    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1320    return lexT;
1321  }
1322  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1323       Context.isObjCObjectPointerType(rexT)) &&
1324      lex->isNullPointerConstant(Context)) {
1325    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1326    return rexT;
1327  }
1328  // Handle the case where both operands are pointers before we handle null
1329  // pointer constants in case both operands are null pointer constants.
1330  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1331    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1332      // get the "pointed to" types
1333      QualType lhptee = LHSPT->getPointeeType();
1334      QualType rhptee = RHSPT->getPointeeType();
1335
1336      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1337      if (lhptee->isVoidType() &&
1338          rhptee->isIncompleteOrObjectType()) {
1339        // Figure out necessary qualifiers (C99 6.5.15p6)
1340        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1341        QualType destType = Context.getPointerType(destPointee);
1342        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1343        ImpCastExprToType(rex, destType); // promote to void*
1344        return destType;
1345      }
1346      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1347        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1348        QualType destType = Context.getPointerType(destPointee);
1349        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1350        ImpCastExprToType(rex, destType); // promote to void*
1351        return destType;
1352      }
1353
1354      QualType compositeType = lexT;
1355
1356      // If either type is an Objective-C object type then check
1357      // compatibility according to Objective-C.
1358      if (Context.isObjCObjectPointerType(lexT) ||
1359          Context.isObjCObjectPointerType(rexT)) {
1360        // If both operands are interfaces and either operand can be
1361        // assigned to the other, use that type as the composite
1362        // type. This allows
1363        //   xxx ? (A*) a : (B*) b
1364        // where B is a subclass of A.
1365        //
1366        // Additionally, as for assignment, if either type is 'id'
1367        // allow silent coercion. Finally, if the types are
1368        // incompatible then make sure to use 'id' as the composite
1369        // type so the result is acceptable for sending messages to.
1370
1371        // FIXME: This code should not be localized to here. Also this
1372        // should use a compatible check instead of abusing the
1373        // canAssignObjCInterfaces code.
1374        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1375        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1376        if (LHSIface && RHSIface &&
1377            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1378          compositeType = lexT;
1379        } else if (LHSIface && RHSIface &&
1380                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1381          compositeType = rexT;
1382        } else if (Context.isObjCIdType(lhptee) ||
1383                   Context.isObjCIdType(rhptee)) {
1384          // FIXME: This code looks wrong, because isObjCIdType checks
1385          // the struct but getObjCIdType returns the pointer to
1386          // struct. This is horrible and should be fixed.
1387          compositeType = Context.getObjCIdType();
1388        } else {
1389          QualType incompatTy = Context.getObjCIdType();
1390          ImpCastExprToType(lex, incompatTy);
1391          ImpCastExprToType(rex, incompatTy);
1392          return incompatTy;
1393        }
1394      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1395                                             rhptee.getUnqualifiedType())) {
1396        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1397             lexT.getAsString(), rexT.getAsString(),
1398             lex->getSourceRange(), rex->getSourceRange());
1399        // In this situation, we assume void* type. No especially good
1400        // reason, but this is what gcc does, and we do have to pick
1401        // to get a consistent AST.
1402        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1403        ImpCastExprToType(lex, incompatTy);
1404        ImpCastExprToType(rex, incompatTy);
1405        return incompatTy;
1406      }
1407      // The pointer types are compatible.
1408      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1409      // differently qualified versions of compatible types, the result type is
1410      // a pointer to an appropriately qualified version of the *composite*
1411      // type.
1412      // FIXME: Need to calculate the composite type.
1413      // FIXME: Need to add qualifiers
1414      ImpCastExprToType(lex, compositeType);
1415      ImpCastExprToType(rex, compositeType);
1416      return compositeType;
1417    }
1418  }
1419  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1420  // evaluates to "struct objc_object *" (and is handled above when comparing
1421  // id with statically typed objects).
1422  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1423    // GCC allows qualified id and any Objective-C type to devolve to
1424    // id. Currently localizing to here until clear this should be
1425    // part of ObjCQualifiedIdTypesAreCompatible.
1426    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1427        (lexT->isObjCQualifiedIdType() &&
1428         Context.isObjCObjectPointerType(rexT)) ||
1429        (rexT->isObjCQualifiedIdType() &&
1430         Context.isObjCObjectPointerType(lexT))) {
1431      // FIXME: This is not the correct composite type. This only
1432      // happens to work because id can more or less be used anywhere,
1433      // however this may change the type of method sends.
1434      // FIXME: gcc adds some type-checking of the arguments and emits
1435      // (confusing) incompatible comparison warnings in some
1436      // cases. Investigate.
1437      QualType compositeType = Context.getObjCIdType();
1438      ImpCastExprToType(lex, compositeType);
1439      ImpCastExprToType(rex, compositeType);
1440      return compositeType;
1441    }
1442  }
1443
1444  // Selection between block pointer types is ok as long as they are the same.
1445  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1446      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1447    return lexT;
1448
1449  // Otherwise, the operands are not compatible.
1450  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1451       lexT.getAsString(), rexT.getAsString(),
1452       lex->getSourceRange(), rex->getSourceRange());
1453  return QualType();
1454}
1455
1456/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1457/// in the case of a the GNU conditional expr extension.
1458Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1459                                            SourceLocation ColonLoc,
1460                                            ExprTy *Cond, ExprTy *LHS,
1461                                            ExprTy *RHS) {
1462  Expr *CondExpr = (Expr *) Cond;
1463  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1464
1465  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1466  // was the condition.
1467  bool isLHSNull = LHSExpr == 0;
1468  if (isLHSNull)
1469    LHSExpr = CondExpr;
1470
1471  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1472                                             RHSExpr, QuestionLoc);
1473  if (result.isNull())
1474    return true;
1475  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1476                                 RHSExpr, result);
1477}
1478
1479
1480// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1481// being closely modeled after the C99 spec:-). The odd characteristic of this
1482// routine is it effectively iqnores the qualifiers on the top level pointee.
1483// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1484// FIXME: add a couple examples in this comment.
1485Sema::AssignConvertType
1486Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1487  QualType lhptee, rhptee;
1488
1489  // get the "pointed to" type (ignoring qualifiers at the top level)
1490  lhptee = lhsType->getAsPointerType()->getPointeeType();
1491  rhptee = rhsType->getAsPointerType()->getPointeeType();
1492
1493  // make sure we operate on the canonical type
1494  lhptee = Context.getCanonicalType(lhptee);
1495  rhptee = Context.getCanonicalType(rhptee);
1496
1497  AssignConvertType ConvTy = Compatible;
1498
1499  // C99 6.5.16.1p1: This following citation is common to constraints
1500  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1501  // qualifiers of the type *pointed to* by the right;
1502  // FIXME: Handle ASQualType
1503  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1504       rhptee.getCVRQualifiers())
1505    ConvTy = CompatiblePointerDiscardsQualifiers;
1506
1507  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1508  // incomplete type and the other is a pointer to a qualified or unqualified
1509  // version of void...
1510  if (lhptee->isVoidType()) {
1511    if (rhptee->isIncompleteOrObjectType())
1512      return ConvTy;
1513
1514    // As an extension, we allow cast to/from void* to function pointer.
1515    assert(rhptee->isFunctionType());
1516    return FunctionVoidPointer;
1517  }
1518
1519  if (rhptee->isVoidType()) {
1520    if (lhptee->isIncompleteOrObjectType())
1521      return ConvTy;
1522
1523    // As an extension, we allow cast to/from void* to function pointer.
1524    assert(lhptee->isFunctionType());
1525    return FunctionVoidPointer;
1526  }
1527
1528  // Check for ObjC interfaces
1529  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1530  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1531  if (LHSIface && RHSIface &&
1532      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1533    return ConvTy;
1534
1535  // ID acts sort of like void* for ObjC interfaces
1536  if (LHSIface && Context.isObjCIdType(rhptee))
1537    return ConvTy;
1538  if (RHSIface && Context.isObjCIdType(lhptee))
1539    return ConvTy;
1540
1541  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1542  // unqualified versions of compatible types, ...
1543  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1544                                  rhptee.getUnqualifiedType()))
1545    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1546  return ConvTy;
1547}
1548
1549/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1550/// block pointer types are compatible or whether a block and normal pointer
1551/// are compatible. It is more restrict than comparing two function pointer
1552// types.
1553Sema::AssignConvertType
1554Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1555                                          QualType rhsType) {
1556  QualType lhptee, rhptee;
1557
1558  // get the "pointed to" type (ignoring qualifiers at the top level)
1559  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1560  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1561
1562  // make sure we operate on the canonical type
1563  lhptee = Context.getCanonicalType(lhptee);
1564  rhptee = Context.getCanonicalType(rhptee);
1565
1566  AssignConvertType ConvTy = Compatible;
1567
1568  // For blocks we enforce that qualifiers are identical.
1569  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1570    ConvTy = CompatiblePointerDiscardsQualifiers;
1571
1572  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1573    return IncompatibleBlockPointer;
1574  return ConvTy;
1575}
1576
1577/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1578/// has code to accommodate several GCC extensions when type checking
1579/// pointers. Here are some objectionable examples that GCC considers warnings:
1580///
1581///  int a, *pint;
1582///  short *pshort;
1583///  struct foo *pfoo;
1584///
1585///  pint = pshort; // warning: assignment from incompatible pointer type
1586///  a = pint; // warning: assignment makes integer from pointer without a cast
1587///  pint = a; // warning: assignment makes pointer from integer without a cast
1588///  pint = pfoo; // warning: assignment from incompatible pointer type
1589///
1590/// As a result, the code for dealing with pointers is more complex than the
1591/// C99 spec dictates.
1592///
1593Sema::AssignConvertType
1594Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1595  // Get canonical types.  We're not formatting these types, just comparing
1596  // them.
1597  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1598  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1599
1600  if (lhsType == rhsType)
1601    return Compatible; // Common case: fast path an exact match.
1602
1603  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1604    if (Context.typesAreCompatible(lhsType, rhsType))
1605      return Compatible;
1606    return Incompatible;
1607  }
1608
1609  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1610    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1611      return Compatible;
1612    // Relax integer conversions like we do for pointers below.
1613    if (rhsType->isIntegerType())
1614      return IntToPointer;
1615    if (lhsType->isIntegerType())
1616      return PointerToInt;
1617    return Incompatible;
1618  }
1619
1620  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1621    // For ExtVector, allow vector splats; float -> <n x float>
1622    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1623      if (LV->getElementType() == rhsType)
1624        return Compatible;
1625
1626    // If we are allowing lax vector conversions, and LHS and RHS are both
1627    // vectors, the total size only needs to be the same. This is a bitcast;
1628    // no bits are changed but the result type is different.
1629    if (getLangOptions().LaxVectorConversions &&
1630        lhsType->isVectorType() && rhsType->isVectorType()) {
1631      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1632        return Compatible;
1633    }
1634    return Incompatible;
1635  }
1636
1637  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1638    return Compatible;
1639
1640  if (isa<PointerType>(lhsType)) {
1641    if (rhsType->isIntegerType())
1642      return IntToPointer;
1643
1644    if (isa<PointerType>(rhsType))
1645      return CheckPointerTypesForAssignment(lhsType, rhsType);
1646
1647    if (rhsType->getAsBlockPointerType())
1648      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1649        return BlockVoidPointer;
1650
1651    return Incompatible;
1652  }
1653
1654  if (isa<BlockPointerType>(lhsType)) {
1655    if (rhsType->isIntegerType())
1656      return IntToPointer;
1657
1658    if (rhsType->isBlockPointerType())
1659      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1660
1661    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1662      if (RHSPT->getPointeeType()->isVoidType())
1663        return BlockVoidPointer;
1664    }
1665    return Incompatible;
1666  }
1667
1668  if (isa<PointerType>(rhsType)) {
1669    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1670    if (lhsType == Context.BoolTy)
1671      return Compatible;
1672
1673    if (lhsType->isIntegerType())
1674      return PointerToInt;
1675
1676    if (isa<PointerType>(lhsType))
1677      return CheckPointerTypesForAssignment(lhsType, rhsType);
1678
1679    if (isa<BlockPointerType>(lhsType) &&
1680        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1681      return BlockVoidPointer;
1682    return Incompatible;
1683  }
1684
1685  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1686    if (Context.typesAreCompatible(lhsType, rhsType))
1687      return Compatible;
1688  }
1689  return Incompatible;
1690}
1691
1692Sema::AssignConvertType
1693Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1694  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1695  // a null pointer constant.
1696  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1697       lhsType->isBlockPointerType())
1698      && rExpr->isNullPointerConstant(Context)) {
1699    ImpCastExprToType(rExpr, lhsType);
1700    return Compatible;
1701  }
1702
1703  // We don't allow conversion of non-null-pointer constants to integers.
1704  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1705    return IntToBlockPointer;
1706
1707  // This check seems unnatural, however it is necessary to ensure the proper
1708  // conversion of functions/arrays. If the conversion were done for all
1709  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1710  // expressions that surpress this implicit conversion (&, sizeof).
1711  //
1712  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1713  // are better understood.
1714  if (!lhsType->isReferenceType())
1715    DefaultFunctionArrayConversion(rExpr);
1716
1717  Sema::AssignConvertType result =
1718    CheckAssignmentConstraints(lhsType, rExpr->getType());
1719
1720  // C99 6.5.16.1p2: The value of the right operand is converted to the
1721  // type of the assignment expression.
1722  if (rExpr->getType() != lhsType)
1723    ImpCastExprToType(rExpr, lhsType);
1724  return result;
1725}
1726
1727Sema::AssignConvertType
1728Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1729  return CheckAssignmentConstraints(lhsType, rhsType);
1730}
1731
1732QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1733  Diag(loc, diag::err_typecheck_invalid_operands,
1734       lex->getType().getAsString(), rex->getType().getAsString(),
1735       lex->getSourceRange(), rex->getSourceRange());
1736  return QualType();
1737}
1738
1739inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1740                                                              Expr *&rex) {
1741  // For conversion purposes, we ignore any qualifiers.
1742  // For example, "const float" and "float" are equivalent.
1743  QualType lhsType =
1744    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1745  QualType rhsType =
1746    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1747
1748  // If the vector types are identical, return.
1749  if (lhsType == rhsType)
1750    return lhsType;
1751
1752  // Handle the case of a vector & extvector type of the same size and element
1753  // type.  It would be nice if we only had one vector type someday.
1754  if (getLangOptions().LaxVectorConversions)
1755    if (const VectorType *LV = lhsType->getAsVectorType())
1756      if (const VectorType *RV = rhsType->getAsVectorType())
1757        if (LV->getElementType() == RV->getElementType() &&
1758            LV->getNumElements() == RV->getNumElements())
1759          return lhsType->isExtVectorType() ? lhsType : rhsType;
1760
1761  // If the lhs is an extended vector and the rhs is a scalar of the same type
1762  // or a literal, promote the rhs to the vector type.
1763  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1764    QualType eltType = V->getElementType();
1765
1766    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1767        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1768        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1769      ImpCastExprToType(rex, lhsType);
1770      return lhsType;
1771    }
1772  }
1773
1774  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1775  // promote the lhs to the vector type.
1776  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1777    QualType eltType = V->getElementType();
1778
1779    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1780        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1781        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1782      ImpCastExprToType(lex, rhsType);
1783      return rhsType;
1784    }
1785  }
1786
1787  // You cannot convert between vector values of different size.
1788  Diag(loc, diag::err_typecheck_vector_not_convertable,
1789       lex->getType().getAsString(), rex->getType().getAsString(),
1790       lex->getSourceRange(), rex->getSourceRange());
1791  return QualType();
1792}
1793
1794inline QualType Sema::CheckMultiplyDivideOperands(
1795  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1796{
1797  QualType lhsType = lex->getType(), rhsType = rex->getType();
1798
1799  if (lhsType->isVectorType() || rhsType->isVectorType())
1800    return CheckVectorOperands(loc, lex, rex);
1801
1802  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1803
1804  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1805    return compType;
1806  return InvalidOperands(loc, lex, rex);
1807}
1808
1809inline QualType Sema::CheckRemainderOperands(
1810  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1811{
1812  QualType lhsType = lex->getType(), rhsType = rex->getType();
1813
1814  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1815
1816  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1817    return compType;
1818  return InvalidOperands(loc, lex, rex);
1819}
1820
1821inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1822  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1823{
1824  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1825    return CheckVectorOperands(loc, lex, rex);
1826
1827  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1828
1829  // handle the common case first (both operands are arithmetic).
1830  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1831    return compType;
1832
1833  // Put any potential pointer into PExp
1834  Expr* PExp = lex, *IExp = rex;
1835  if (IExp->getType()->isPointerType())
1836    std::swap(PExp, IExp);
1837
1838  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1839    if (IExp->getType()->isIntegerType()) {
1840      // Check for arithmetic on pointers to incomplete types
1841      if (!PTy->getPointeeType()->isObjectType()) {
1842        if (PTy->getPointeeType()->isVoidType()) {
1843          Diag(loc, diag::ext_gnu_void_ptr,
1844               lex->getSourceRange(), rex->getSourceRange());
1845        } else {
1846          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1847               lex->getType().getAsString(), lex->getSourceRange());
1848          return QualType();
1849        }
1850      }
1851      return PExp->getType();
1852    }
1853  }
1854
1855  return InvalidOperands(loc, lex, rex);
1856}
1857
1858// C99 6.5.6
1859QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1860                                        SourceLocation loc, bool isCompAssign) {
1861  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1862    return CheckVectorOperands(loc, lex, rex);
1863
1864  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1865
1866  // Enforce type constraints: C99 6.5.6p3.
1867
1868  // Handle the common case first (both operands are arithmetic).
1869  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1870    return compType;
1871
1872  // Either ptr - int   or   ptr - ptr.
1873  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1874    QualType lpointee = LHSPTy->getPointeeType();
1875
1876    // The LHS must be an object type, not incomplete, function, etc.
1877    if (!lpointee->isObjectType()) {
1878      // Handle the GNU void* extension.
1879      if (lpointee->isVoidType()) {
1880        Diag(loc, diag::ext_gnu_void_ptr,
1881             lex->getSourceRange(), rex->getSourceRange());
1882      } else {
1883        Diag(loc, diag::err_typecheck_sub_ptr_object,
1884             lex->getType().getAsString(), lex->getSourceRange());
1885        return QualType();
1886      }
1887    }
1888
1889    // The result type of a pointer-int computation is the pointer type.
1890    if (rex->getType()->isIntegerType())
1891      return lex->getType();
1892
1893    // Handle pointer-pointer subtractions.
1894    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1895      QualType rpointee = RHSPTy->getPointeeType();
1896
1897      // RHS must be an object type, unless void (GNU).
1898      if (!rpointee->isObjectType()) {
1899        // Handle the GNU void* extension.
1900        if (rpointee->isVoidType()) {
1901          if (!lpointee->isVoidType())
1902            Diag(loc, diag::ext_gnu_void_ptr,
1903                 lex->getSourceRange(), rex->getSourceRange());
1904        } else {
1905          Diag(loc, diag::err_typecheck_sub_ptr_object,
1906               rex->getType().getAsString(), rex->getSourceRange());
1907          return QualType();
1908        }
1909      }
1910
1911      // Pointee types must be compatible.
1912      if (!Context.typesAreCompatible(
1913              Context.getCanonicalType(lpointee).getUnqualifiedType(),
1914              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
1915        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1916             lex->getType().getAsString(), rex->getType().getAsString(),
1917             lex->getSourceRange(), rex->getSourceRange());
1918        return QualType();
1919      }
1920
1921      return Context.getPointerDiffType();
1922    }
1923  }
1924
1925  return InvalidOperands(loc, lex, rex);
1926}
1927
1928// C99 6.5.7
1929QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1930                                  bool isCompAssign) {
1931  // C99 6.5.7p2: Each of the operands shall have integer type.
1932  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1933    return InvalidOperands(loc, lex, rex);
1934
1935  // Shifts don't perform usual arithmetic conversions, they just do integer
1936  // promotions on each operand. C99 6.5.7p3
1937  if (!isCompAssign)
1938    UsualUnaryConversions(lex);
1939  UsualUnaryConversions(rex);
1940
1941  // "The type of the result is that of the promoted left operand."
1942  return lex->getType();
1943}
1944
1945static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
1946                                        ASTContext& Context) {
1947  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
1948  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
1949  // ID acts sort of like void* for ObjC interfaces
1950  if (LHSIface && Context.isObjCIdType(RHS))
1951    return true;
1952  if (RHSIface && Context.isObjCIdType(LHS))
1953    return true;
1954  if (!LHSIface || !RHSIface)
1955    return false;
1956  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
1957         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
1958}
1959
1960// C99 6.5.8
1961QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1962                                    bool isRelational) {
1963  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1964    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1965
1966  // C99 6.5.8p3 / C99 6.5.9p4
1967  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1968    UsualArithmeticConversions(lex, rex);
1969  else {
1970    UsualUnaryConversions(lex);
1971    UsualUnaryConversions(rex);
1972  }
1973  QualType lType = lex->getType();
1974  QualType rType = rex->getType();
1975
1976  // For non-floating point types, check for self-comparisons of the form
1977  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1978  // often indicate logic errors in the program.
1979  if (!lType->isFloatingType()) {
1980    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1981      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1982        if (DRL->getDecl() == DRR->getDecl())
1983          Diag(loc, diag::warn_selfcomparison);
1984  }
1985
1986  if (isRelational) {
1987    if (lType->isRealType() && rType->isRealType())
1988      return Context.IntTy;
1989  } else {
1990    // Check for comparisons of floating point operands using != and ==.
1991    if (lType->isFloatingType()) {
1992      assert (rType->isFloatingType());
1993      CheckFloatComparison(loc,lex,rex);
1994    }
1995
1996    if (lType->isArithmeticType() && rType->isArithmeticType())
1997      return Context.IntTy;
1998  }
1999
2000  bool LHSIsNull = lex->isNullPointerConstant(Context);
2001  bool RHSIsNull = rex->isNullPointerConstant(Context);
2002
2003  // All of the following pointer related warnings are GCC extensions, except
2004  // when handling null pointer constants. One day, we can consider making them
2005  // errors (when -pedantic-errors is enabled).
2006  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2007    QualType LCanPointeeTy =
2008      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2009    QualType RCanPointeeTy =
2010      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2011
2012    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2013        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2014        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2015                                    RCanPointeeTy.getUnqualifiedType()) &&
2016        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2017      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2018           lType.getAsString(), rType.getAsString(),
2019           lex->getSourceRange(), rex->getSourceRange());
2020    }
2021    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2022    return Context.IntTy;
2023  }
2024  // Handle block pointer types.
2025  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2026    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2027    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2028
2029    if (!LHSIsNull && !RHSIsNull &&
2030        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2031      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2032           lType.getAsString(), rType.getAsString(),
2033           lex->getSourceRange(), rex->getSourceRange());
2034    }
2035    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2036    return Context.IntTy;
2037  }
2038  // Allow block pointers to be compared with null pointer constants.
2039  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2040      (lType->isPointerType() && rType->isBlockPointerType())) {
2041    if (!LHSIsNull && !RHSIsNull) {
2042      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2043           lType.getAsString(), rType.getAsString(),
2044           lex->getSourceRange(), rex->getSourceRange());
2045    }
2046    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2047    return Context.IntTy;
2048  }
2049
2050  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2051    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2052      ImpCastExprToType(rex, lType);
2053      return Context.IntTy;
2054    }
2055  }
2056  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2057       rType->isIntegerType()) {
2058    if (!RHSIsNull)
2059      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2060           lType.getAsString(), rType.getAsString(),
2061           lex->getSourceRange(), rex->getSourceRange());
2062    ImpCastExprToType(rex, lType); // promote the integer to pointer
2063    return Context.IntTy;
2064  }
2065  if (lType->isIntegerType() &&
2066      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2067    if (!LHSIsNull)
2068      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2069           lType.getAsString(), rType.getAsString(),
2070           lex->getSourceRange(), rex->getSourceRange());
2071    ImpCastExprToType(lex, rType); // promote the integer to pointer
2072    return Context.IntTy;
2073  }
2074  // Handle block pointers.
2075  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2076    if (!RHSIsNull)
2077      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2078           lType.getAsString(), rType.getAsString(),
2079           lex->getSourceRange(), rex->getSourceRange());
2080    ImpCastExprToType(rex, lType); // promote the integer to pointer
2081    return Context.IntTy;
2082  }
2083  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2084    if (!LHSIsNull)
2085      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2086           lType.getAsString(), rType.getAsString(),
2087           lex->getSourceRange(), rex->getSourceRange());
2088    ImpCastExprToType(lex, rType); // promote the integer to pointer
2089    return Context.IntTy;
2090  }
2091  return InvalidOperands(loc, lex, rex);
2092}
2093
2094/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2095/// operates on extended vector types.  Instead of producing an IntTy result,
2096/// like a scalar comparison, a vector comparison produces a vector of integer
2097/// types.
2098QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2099                                          SourceLocation loc,
2100                                          bool isRelational) {
2101  // Check to make sure we're operating on vectors of the same type and width,
2102  // Allowing one side to be a scalar of element type.
2103  QualType vType = CheckVectorOperands(loc, lex, rex);
2104  if (vType.isNull())
2105    return vType;
2106
2107  QualType lType = lex->getType();
2108  QualType rType = rex->getType();
2109
2110  // For non-floating point types, check for self-comparisons of the form
2111  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2112  // often indicate logic errors in the program.
2113  if (!lType->isFloatingType()) {
2114    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2115      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2116        if (DRL->getDecl() == DRR->getDecl())
2117          Diag(loc, diag::warn_selfcomparison);
2118  }
2119
2120  // Check for comparisons of floating point operands using != and ==.
2121  if (!isRelational && lType->isFloatingType()) {
2122    assert (rType->isFloatingType());
2123    CheckFloatComparison(loc,lex,rex);
2124  }
2125
2126  // Return the type for the comparison, which is the same as vector type for
2127  // integer vectors, or an integer type of identical size and number of
2128  // elements for floating point vectors.
2129  if (lType->isIntegerType())
2130    return lType;
2131
2132  const VectorType *VTy = lType->getAsVectorType();
2133
2134  // FIXME: need to deal with non-32b int / non-64b long long
2135  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2136  if (TypeSize == 32) {
2137    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2138  }
2139  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2140  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2141}
2142
2143inline QualType Sema::CheckBitwiseOperands(
2144  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
2145{
2146  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2147    return CheckVectorOperands(loc, lex, rex);
2148
2149  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2150
2151  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2152    return compType;
2153  return InvalidOperands(loc, lex, rex);
2154}
2155
2156inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2157  Expr *&lex, Expr *&rex, SourceLocation loc)
2158{
2159  UsualUnaryConversions(lex);
2160  UsualUnaryConversions(rex);
2161
2162  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2163    return Context.IntTy;
2164  return InvalidOperands(loc, lex, rex);
2165}
2166
2167inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
2168  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
2169{
2170  QualType lhsType = lex->getType();
2171  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
2172  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context);
2173
2174  switch (mlval) { // C99 6.5.16p2
2175  case Expr::MLV_Valid:
2176    break;
2177  case Expr::MLV_ConstQualified:
2178    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
2179    return QualType();
2180  case Expr::MLV_ArrayType:
2181    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
2182         lhsType.getAsString(), lex->getSourceRange());
2183    return QualType();
2184  case Expr::MLV_NotObjectType:
2185    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
2186         lhsType.getAsString(), lex->getSourceRange());
2187    return QualType();
2188  case Expr::MLV_InvalidExpression:
2189    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
2190         lex->getSourceRange());
2191    return QualType();
2192  case Expr::MLV_IncompleteType:
2193  case Expr::MLV_IncompleteVoidType:
2194    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
2195         lhsType.getAsString(), lex->getSourceRange());
2196    return QualType();
2197  case Expr::MLV_DuplicateVectorComponents:
2198    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
2199         lex->getSourceRange());
2200    return QualType();
2201  case Expr::MLV_NotBlockQualified:
2202    Diag(loc, diag::err_block_decl_ref_not_modifiable_lvalue,
2203         lex->getSourceRange());
2204    return QualType();
2205  }
2206
2207  AssignConvertType ConvTy;
2208  if (compoundType.isNull()) {
2209    // Simple assignment "x = y".
2210    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
2211
2212    // If the RHS is a unary plus or minus, check to see if they = and + are
2213    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2214    // instead of "x += 4".
2215    Expr *RHSCheck = rex;
2216    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2217      RHSCheck = ICE->getSubExpr();
2218    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2219      if ((UO->getOpcode() == UnaryOperator::Plus ||
2220           UO->getOpcode() == UnaryOperator::Minus) &&
2221          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2222          // Only if the two operators are exactly adjacent.
2223          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2224        Diag(loc, diag::warn_not_compound_assign,
2225             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2226             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2227    }
2228  } else {
2229    // Compound assignment "x += y"
2230    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
2231  }
2232
2233  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
2234                               rex, "assigning"))
2235    return QualType();
2236
2237  // C99 6.5.16p3: The type of an assignment expression is the type of the
2238  // left operand unless the left operand has qualified type, in which case
2239  // it is the unqualified version of the type of the left operand.
2240  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2241  // is converted to the type of the assignment expression (above).
2242  // C++ 5.17p1: the type of the assignment expression is that of its left
2243  // oprdu.
2244  return lhsType.getUnqualifiedType();
2245}
2246
2247inline QualType Sema::CheckCommaOperands( // C99 6.5.17
2248  Expr *&lex, Expr *&rex, SourceLocation loc) {
2249
2250  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2251  DefaultFunctionArrayConversion(rex);
2252  return rex->getType();
2253}
2254
2255/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2256/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2257QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2258  QualType resType = op->getType();
2259  assert(!resType.isNull() && "no type for increment/decrement expression");
2260
2261  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2262  if (const PointerType *pt = resType->getAsPointerType()) {
2263    if (pt->getPointeeType()->isVoidType()) {
2264      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2265    } else if (!pt->getPointeeType()->isObjectType()) {
2266      // C99 6.5.2.4p2, 6.5.6p2
2267      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2268           resType.getAsString(), op->getSourceRange());
2269      return QualType();
2270    }
2271  } else if (!resType->isRealType()) {
2272    if (resType->isComplexType())
2273      // C99 does not support ++/-- on complex types.
2274      Diag(OpLoc, diag::ext_integer_increment_complex,
2275           resType.getAsString(), op->getSourceRange());
2276    else {
2277      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2278           resType.getAsString(), op->getSourceRange());
2279      return QualType();
2280    }
2281  }
2282  // At this point, we know we have a real, complex or pointer type.
2283  // Now make sure the operand is a modifiable lvalue.
2284  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
2285  if (mlval != Expr::MLV_Valid) {
2286    // FIXME: emit a more precise diagnostic...
2287    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
2288         op->getSourceRange());
2289    return QualType();
2290  }
2291  return resType;
2292}
2293
2294/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2295/// This routine allows us to typecheck complex/recursive expressions
2296/// where the declaration is needed for type checking. We only need to
2297/// handle cases when the expression references a function designator
2298/// or is an lvalue. Here are some examples:
2299///  - &(x) => x
2300///  - &*****f => f for f a function designator.
2301///  - &s.xx => s
2302///  - &s.zz[1].yy -> s, if zz is an array
2303///  - *(x + 1) -> x, if x is an array
2304///  - &"123"[2] -> 0
2305///  - & __real__ x -> x
2306static ValueDecl *getPrimaryDecl(Expr *E) {
2307  switch (E->getStmtClass()) {
2308  case Stmt::DeclRefExprClass:
2309    return cast<DeclRefExpr>(E)->getDecl();
2310  case Stmt::MemberExprClass:
2311    // Fields cannot be declared with a 'register' storage class.
2312    // &X->f is always ok, even if X is declared register.
2313    if (cast<MemberExpr>(E)->isArrow())
2314      return 0;
2315    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2316  case Stmt::ArraySubscriptExprClass: {
2317    // &X[4] and &4[X] refers to X if X is not a pointer.
2318
2319    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2320    if (!VD || VD->getType()->isPointerType())
2321      return 0;
2322    else
2323      return VD;
2324  }
2325  case Stmt::UnaryOperatorClass: {
2326    UnaryOperator *UO = cast<UnaryOperator>(E);
2327
2328    switch(UO->getOpcode()) {
2329    case UnaryOperator::Deref: {
2330      // *(X + 1) refers to X if X is not a pointer.
2331      ValueDecl *VD = getPrimaryDecl(UO->getSubExpr());
2332      if (!VD || VD->getType()->isPointerType())
2333        return 0;
2334      return VD;
2335    }
2336    case UnaryOperator::Real:
2337    case UnaryOperator::Imag:
2338    case UnaryOperator::Extension:
2339      return getPrimaryDecl(UO->getSubExpr());
2340    default:
2341      return 0;
2342    }
2343  }
2344  case Stmt::BinaryOperatorClass: {
2345    BinaryOperator *BO = cast<BinaryOperator>(E);
2346
2347    // Handle cases involving pointer arithmetic. The result of an
2348    // Assign or AddAssign is not an lvalue so they can be ignored.
2349
2350    // (x + n) or (n + x) => x
2351    if (BO->getOpcode() == BinaryOperator::Add) {
2352      if (BO->getLHS()->getType()->isPointerType()) {
2353        return getPrimaryDecl(BO->getLHS());
2354      } else if (BO->getRHS()->getType()->isPointerType()) {
2355        return getPrimaryDecl(BO->getRHS());
2356      }
2357    }
2358
2359    return 0;
2360  }
2361  case Stmt::ParenExprClass:
2362    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2363  case Stmt::ImplicitCastExprClass:
2364    // &X[4] when X is an array, has an implicit cast from array to pointer.
2365    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2366  default:
2367    return 0;
2368  }
2369}
2370
2371/// CheckAddressOfOperand - The operand of & must be either a function
2372/// designator or an lvalue designating an object. If it is an lvalue, the
2373/// object cannot be declared with storage class register or be a bit field.
2374/// Note: The usual conversions are *not* applied to the operand of the &
2375/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2376QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2377  if (getLangOptions().C99) {
2378    // Implement C99-only parts of addressof rules.
2379    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2380      if (uOp->getOpcode() == UnaryOperator::Deref)
2381        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2382        // (assuming the deref expression is valid).
2383        return uOp->getSubExpr()->getType();
2384    }
2385    // Technically, there should be a check for array subscript
2386    // expressions here, but the result of one is always an lvalue anyway.
2387  }
2388  ValueDecl *dcl = getPrimaryDecl(op);
2389  Expr::isLvalueResult lval = op->isLvalue(Context);
2390
2391  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2392    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2393      // FIXME: emit more specific diag...
2394      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2395           op->getSourceRange());
2396      return QualType();
2397    }
2398  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2399    if (MemExpr->getMemberDecl()->isBitField()) {
2400      Diag(OpLoc, diag::err_typecheck_address_of,
2401           std::string("bit-field"), op->getSourceRange());
2402      return QualType();
2403    }
2404  // Check for Apple extension for accessing vector components.
2405  } else if (isa<ArraySubscriptExpr>(op) &&
2406           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2407    Diag(OpLoc, diag::err_typecheck_address_of,
2408         std::string("vector"), op->getSourceRange());
2409    return QualType();
2410  } else if (dcl) { // C99 6.5.3.2p1
2411    // We have an lvalue with a decl. Make sure the decl is not declared
2412    // with the register storage-class specifier.
2413    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2414      if (vd->getStorageClass() == VarDecl::Register) {
2415        Diag(OpLoc, diag::err_typecheck_address_of,
2416             std::string("register variable"), op->getSourceRange());
2417        return QualType();
2418      }
2419    } else
2420      assert(0 && "Unknown/unexpected decl type");
2421  }
2422
2423  // If the operand has type "type", the result has type "pointer to type".
2424  return Context.getPointerType(op->getType());
2425}
2426
2427QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2428  UsualUnaryConversions(op);
2429  QualType qType = op->getType();
2430
2431  if (const PointerType *PT = qType->getAsPointerType()) {
2432    // Note that per both C89 and C99, this is always legal, even
2433    // if ptype is an incomplete type or void.
2434    // It would be possible to warn about dereferencing a
2435    // void pointer, but it's completely well-defined,
2436    // and such a warning is unlikely to catch any mistakes.
2437    return PT->getPointeeType();
2438  }
2439  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2440       qType.getAsString(), op->getSourceRange());
2441  return QualType();
2442}
2443
2444static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2445  tok::TokenKind Kind) {
2446  BinaryOperator::Opcode Opc;
2447  switch (Kind) {
2448  default: assert(0 && "Unknown binop!");
2449  case tok::star:                 Opc = BinaryOperator::Mul; break;
2450  case tok::slash:                Opc = BinaryOperator::Div; break;
2451  case tok::percent:              Opc = BinaryOperator::Rem; break;
2452  case tok::plus:                 Opc = BinaryOperator::Add; break;
2453  case tok::minus:                Opc = BinaryOperator::Sub; break;
2454  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2455  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2456  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2457  case tok::less:                 Opc = BinaryOperator::LT; break;
2458  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2459  case tok::greater:              Opc = BinaryOperator::GT; break;
2460  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2461  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2462  case tok::amp:                  Opc = BinaryOperator::And; break;
2463  case tok::caret:                Opc = BinaryOperator::Xor; break;
2464  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2465  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2466  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2467  case tok::equal:                Opc = BinaryOperator::Assign; break;
2468  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2469  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2470  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2471  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2472  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2473  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2474  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2475  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2476  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2477  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2478  case tok::comma:                Opc = BinaryOperator::Comma; break;
2479  }
2480  return Opc;
2481}
2482
2483static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2484  tok::TokenKind Kind) {
2485  UnaryOperator::Opcode Opc;
2486  switch (Kind) {
2487  default: assert(0 && "Unknown unary op!");
2488  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2489  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2490  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2491  case tok::star:         Opc = UnaryOperator::Deref; break;
2492  case tok::plus:         Opc = UnaryOperator::Plus; break;
2493  case tok::minus:        Opc = UnaryOperator::Minus; break;
2494  case tok::tilde:        Opc = UnaryOperator::Not; break;
2495  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2496  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2497  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2498  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2499  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2500  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2501  }
2502  return Opc;
2503}
2504
2505// Binary Operators.  'Tok' is the token for the operator.
2506Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2507                                    ExprTy *LHS, ExprTy *RHS) {
2508  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2509  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2510
2511  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2512  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2513
2514  QualType ResultTy;  // Result type of the binary operator.
2515  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2516
2517  switch (Opc) {
2518  default:
2519    assert(0 && "Unknown binary expr!");
2520  case BinaryOperator::Assign:
2521    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2522    break;
2523  case BinaryOperator::Mul:
2524  case BinaryOperator::Div:
2525    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2526    break;
2527  case BinaryOperator::Rem:
2528    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2529    break;
2530  case BinaryOperator::Add:
2531    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2532    break;
2533  case BinaryOperator::Sub:
2534    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2535    break;
2536  case BinaryOperator::Shl:
2537  case BinaryOperator::Shr:
2538    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2539    break;
2540  case BinaryOperator::LE:
2541  case BinaryOperator::LT:
2542  case BinaryOperator::GE:
2543  case BinaryOperator::GT:
2544    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2545    break;
2546  case BinaryOperator::EQ:
2547  case BinaryOperator::NE:
2548    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2549    break;
2550  case BinaryOperator::And:
2551  case BinaryOperator::Xor:
2552  case BinaryOperator::Or:
2553    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2554    break;
2555  case BinaryOperator::LAnd:
2556  case BinaryOperator::LOr:
2557    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2558    break;
2559  case BinaryOperator::MulAssign:
2560  case BinaryOperator::DivAssign:
2561    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2562    if (!CompTy.isNull())
2563      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2564    break;
2565  case BinaryOperator::RemAssign:
2566    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2567    if (!CompTy.isNull())
2568      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2569    break;
2570  case BinaryOperator::AddAssign:
2571    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2572    if (!CompTy.isNull())
2573      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2574    break;
2575  case BinaryOperator::SubAssign:
2576    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2577    if (!CompTy.isNull())
2578      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2579    break;
2580  case BinaryOperator::ShlAssign:
2581  case BinaryOperator::ShrAssign:
2582    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2583    if (!CompTy.isNull())
2584      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2585    break;
2586  case BinaryOperator::AndAssign:
2587  case BinaryOperator::XorAssign:
2588  case BinaryOperator::OrAssign:
2589    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2590    if (!CompTy.isNull())
2591      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2592    break;
2593  case BinaryOperator::Comma:
2594    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2595    break;
2596  }
2597  if (ResultTy.isNull())
2598    return true;
2599  if (CompTy.isNull())
2600    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2601  else
2602    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2603}
2604
2605// Unary Operators.  'Tok' is the token for the operator.
2606Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2607                                      ExprTy *input) {
2608  Expr *Input = (Expr*)input;
2609  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2610  QualType resultType;
2611  switch (Opc) {
2612  default:
2613    assert(0 && "Unimplemented unary expr!");
2614  case UnaryOperator::PreInc:
2615  case UnaryOperator::PreDec:
2616    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2617    break;
2618  case UnaryOperator::AddrOf:
2619    resultType = CheckAddressOfOperand(Input, OpLoc);
2620    break;
2621  case UnaryOperator::Deref:
2622    DefaultFunctionArrayConversion(Input);
2623    resultType = CheckIndirectionOperand(Input, OpLoc);
2624    break;
2625  case UnaryOperator::Plus:
2626  case UnaryOperator::Minus:
2627    UsualUnaryConversions(Input);
2628    resultType = Input->getType();
2629    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2630      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2631                  resultType.getAsString());
2632    break;
2633  case UnaryOperator::Not: // bitwise complement
2634    UsualUnaryConversions(Input);
2635    resultType = Input->getType();
2636    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2637    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2638      // C99 does not support '~' for complex conjugation.
2639      Diag(OpLoc, diag::ext_integer_complement_complex,
2640           resultType.getAsString(), Input->getSourceRange());
2641    else if (!resultType->isIntegerType())
2642      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2643                  resultType.getAsString(), Input->getSourceRange());
2644    break;
2645  case UnaryOperator::LNot: // logical negation
2646    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2647    DefaultFunctionArrayConversion(Input);
2648    resultType = Input->getType();
2649    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2650      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2651                  resultType.getAsString());
2652    // LNot always has type int. C99 6.5.3.3p5.
2653    resultType = Context.IntTy;
2654    break;
2655  case UnaryOperator::SizeOf:
2656    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2657                                           Input->getSourceRange(), true);
2658    break;
2659  case UnaryOperator::AlignOf:
2660    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2661                                           Input->getSourceRange(), false);
2662    break;
2663  case UnaryOperator::Real:
2664  case UnaryOperator::Imag:
2665    resultType = CheckRealImagOperand(Input, OpLoc);
2666    break;
2667  case UnaryOperator::Extension:
2668    resultType = Input->getType();
2669    break;
2670  }
2671  if (resultType.isNull())
2672    return true;
2673  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2674}
2675
2676/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2677Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2678                                      SourceLocation LabLoc,
2679                                      IdentifierInfo *LabelII) {
2680  // Look up the record for this label identifier.
2681  LabelStmt *&LabelDecl = LabelMap[LabelII];
2682
2683  // If we haven't seen this label yet, create a forward reference. It
2684  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
2685  if (LabelDecl == 0)
2686    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2687
2688  // Create the AST node.  The address of a label always has type 'void*'.
2689  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2690                           Context.getPointerType(Context.VoidTy));
2691}
2692
2693Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2694                                     SourceLocation RPLoc) { // "({..})"
2695  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2696  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2697  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2698
2699  // FIXME: there are a variety of strange constraints to enforce here, for
2700  // example, it is not possible to goto into a stmt expression apparently.
2701  // More semantic analysis is needed.
2702
2703  // FIXME: the last statement in the compount stmt has its value used.  We
2704  // should not warn about it being unused.
2705
2706  // If there are sub stmts in the compound stmt, take the type of the last one
2707  // as the type of the stmtexpr.
2708  QualType Ty = Context.VoidTy;
2709
2710  if (!Compound->body_empty()) {
2711    Stmt *LastStmt = Compound->body_back();
2712    // If LastStmt is a label, skip down through into the body.
2713    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
2714      LastStmt = Label->getSubStmt();
2715
2716    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
2717      Ty = LastExpr->getType();
2718  }
2719
2720  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2721}
2722
2723Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2724                                            SourceLocation TypeLoc,
2725                                            TypeTy *argty,
2726                                            OffsetOfComponent *CompPtr,
2727                                            unsigned NumComponents,
2728                                            SourceLocation RPLoc) {
2729  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2730  assert(!ArgTy.isNull() && "Missing type argument!");
2731
2732  // We must have at least one component that refers to the type, and the first
2733  // one is known to be a field designator.  Verify that the ArgTy represents
2734  // a struct/union/class.
2735  if (!ArgTy->isRecordType())
2736    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2737
2738  // Otherwise, create a compound literal expression as the base, and
2739  // iteratively process the offsetof designators.
2740  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2741
2742  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2743  // GCC extension, diagnose them.
2744  if (NumComponents != 1)
2745    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2746         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2747
2748  for (unsigned i = 0; i != NumComponents; ++i) {
2749    const OffsetOfComponent &OC = CompPtr[i];
2750    if (OC.isBrackets) {
2751      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2752      const ArrayType *AT = Context.getAsArrayType(Res->getType());
2753      if (!AT) {
2754        delete Res;
2755        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2756                    Res->getType().getAsString());
2757      }
2758
2759      // FIXME: C++: Verify that operator[] isn't overloaded.
2760
2761      // C99 6.5.2.1p1
2762      Expr *Idx = static_cast<Expr*>(OC.U.E);
2763      if (!Idx->getType()->isIntegerType())
2764        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2765                    Idx->getSourceRange());
2766
2767      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2768      continue;
2769    }
2770
2771    const RecordType *RC = Res->getType()->getAsRecordType();
2772    if (!RC) {
2773      delete Res;
2774      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2775                  Res->getType().getAsString());
2776    }
2777
2778    // Get the decl corresponding to this.
2779    RecordDecl *RD = RC->getDecl();
2780    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2781    if (!MemberDecl)
2782      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2783                  OC.U.IdentInfo->getName(),
2784                  SourceRange(OC.LocStart, OC.LocEnd));
2785
2786    // FIXME: C++: Verify that MemberDecl isn't a static field.
2787    // FIXME: Verify that MemberDecl isn't a bitfield.
2788    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2789    // matter here.
2790    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2791  }
2792
2793  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2794                           BuiltinLoc);
2795}
2796
2797
2798Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2799                                                TypeTy *arg1, TypeTy *arg2,
2800                                                SourceLocation RPLoc) {
2801  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2802  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2803
2804  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2805
2806  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2807}
2808
2809Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2810                                       ExprTy *expr1, ExprTy *expr2,
2811                                       SourceLocation RPLoc) {
2812  Expr *CondExpr = static_cast<Expr*>(cond);
2813  Expr *LHSExpr = static_cast<Expr*>(expr1);
2814  Expr *RHSExpr = static_cast<Expr*>(expr2);
2815
2816  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2817
2818  // The conditional expression is required to be a constant expression.
2819  llvm::APSInt condEval(32);
2820  SourceLocation ExpLoc;
2821  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2822    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2823                 CondExpr->getSourceRange());
2824
2825  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2826  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2827                                               RHSExpr->getType();
2828  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2829}
2830
2831//===----------------------------------------------------------------------===//
2832// Clang Extensions.
2833//===----------------------------------------------------------------------===//
2834
2835/// ActOnBlockStart - This callback is invoked when a block literal is started.
2836void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope,
2837                           Declarator &ParamInfo) {
2838  // Analyze block parameters.
2839  BlockSemaInfo *BSI = new BlockSemaInfo();
2840
2841  // Add BSI to CurBlock.
2842  BSI->PrevBlockInfo = CurBlock;
2843  CurBlock = BSI;
2844
2845  BSI->ReturnType = 0;
2846  BSI->TheScope = BlockScope;
2847
2848  // Analyze arguments to block.
2849  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2850         "Not a function declarator!");
2851  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
2852
2853  BSI->hasPrototype = FTI.hasPrototype;
2854  BSI->isVariadic = true;
2855
2856  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
2857  // no arguments, not a function that takes a single void argument.
2858  if (FTI.hasPrototype &&
2859      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2860      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
2861        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
2862    // empty arg list, don't push any params.
2863    BSI->isVariadic = false;
2864  } else if (FTI.hasPrototype) {
2865    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2866      BSI->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
2867    BSI->isVariadic = FTI.isVariadic;
2868  }
2869}
2870
2871/// ActOnBlockError - If there is an error parsing a block, this callback
2872/// is invoked to pop the information about the block from the action impl.
2873void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
2874  // Ensure that CurBlock is deleted.
2875  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
2876
2877  // Pop off CurBlock, handle nested blocks.
2878  CurBlock = CurBlock->PrevBlockInfo;
2879
2880  // FIXME: Delete the ParmVarDecl objects as well???
2881
2882}
2883
2884/// ActOnBlockStmtExpr - This is called when the body of a block statement
2885/// literal was successfully completed.  ^(int x){...}
2886Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
2887                                          Scope *CurScope) {
2888  // Ensure that CurBlock is deleted.
2889  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
2890  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
2891
2892  // Pop off CurBlock, handle nested blocks.
2893  CurBlock = CurBlock->PrevBlockInfo;
2894
2895  QualType RetTy = Context.VoidTy;
2896  if (BSI->ReturnType)
2897    RetTy = QualType(BSI->ReturnType, 0);
2898
2899  llvm::SmallVector<QualType, 8> ArgTypes;
2900  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
2901    ArgTypes.push_back(BSI->Params[i]->getType());
2902
2903  QualType BlockTy;
2904  if (!BSI->hasPrototype)
2905    BlockTy = Context.getFunctionTypeNoProto(RetTy);
2906  else
2907    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
2908                                      BSI->isVariadic);
2909
2910  BlockTy = Context.getBlockPointerType(BlockTy);
2911  return new BlockExpr(CaretLoc, BlockTy, &BSI->Params[0], BSI->Params.size(),
2912                       Body.take());
2913}
2914
2915/// ExprsMatchFnType - return true if the Exprs in array Args have
2916/// QualTypes that match the QualTypes of the arguments of the FnType.
2917/// The number of arguments has already been validated to match the number of
2918/// arguments in FnType.
2919static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
2920                             ASTContext &Context) {
2921  unsigned NumParams = FnType->getNumArgs();
2922  for (unsigned i = 0; i != NumParams; ++i) {
2923    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
2924    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
2925
2926    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2927      return false;
2928  }
2929  return true;
2930}
2931
2932Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2933                                         SourceLocation *CommaLocs,
2934                                         SourceLocation BuiltinLoc,
2935                                         SourceLocation RParenLoc) {
2936  // __builtin_overload requires at least 2 arguments
2937  if (NumArgs < 2)
2938    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2939                SourceRange(BuiltinLoc, RParenLoc));
2940
2941  // The first argument is required to be a constant expression.  It tells us
2942  // the number of arguments to pass to each of the functions to be overloaded.
2943  Expr **Args = reinterpret_cast<Expr**>(args);
2944  Expr *NParamsExpr = Args[0];
2945  llvm::APSInt constEval(32);
2946  SourceLocation ExpLoc;
2947  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2948    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2949                NParamsExpr->getSourceRange());
2950
2951  // Verify that the number of parameters is > 0
2952  unsigned NumParams = constEval.getZExtValue();
2953  if (NumParams == 0)
2954    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2955                NParamsExpr->getSourceRange());
2956  // Verify that we have at least 1 + NumParams arguments to the builtin.
2957  if ((NumParams + 1) > NumArgs)
2958    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2959                SourceRange(BuiltinLoc, RParenLoc));
2960
2961  // Figure out the return type, by matching the args to one of the functions
2962  // listed after the parameters.
2963  OverloadExpr *OE = 0;
2964  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2965    // UsualUnaryConversions will convert the function DeclRefExpr into a
2966    // pointer to function.
2967    Expr *Fn = UsualUnaryConversions(Args[i]);
2968    const FunctionTypeProto *FnType = 0;
2969    if (const PointerType *PT = Fn->getType()->getAsPointerType())
2970      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
2971
2972    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2973    // parameters, and the number of parameters must match the value passed to
2974    // the builtin.
2975    if (!FnType || (FnType->getNumArgs() != NumParams))
2976      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2977                  Fn->getSourceRange());
2978
2979    // Scan the parameter list for the FunctionType, checking the QualType of
2980    // each parameter against the QualTypes of the arguments to the builtin.
2981    // If they match, return a new OverloadExpr.
2982    if (ExprsMatchFnType(Args+1, FnType, Context)) {
2983      if (OE)
2984        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2985                    OE->getFn()->getSourceRange());
2986      // Remember our match, and continue processing the remaining arguments
2987      // to catch any errors.
2988      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2989                            BuiltinLoc, RParenLoc);
2990    }
2991  }
2992  // Return the newly created OverloadExpr node, if we succeded in matching
2993  // exactly one of the candidate functions.
2994  if (OE)
2995    return OE;
2996
2997  // If we didn't find a matching function Expr in the __builtin_overload list
2998  // the return an error.
2999  std::string typeNames;
3000  for (unsigned i = 0; i != NumParams; ++i) {
3001    if (i != 0) typeNames += ", ";
3002    typeNames += Args[i+1]->getType().getAsString();
3003  }
3004
3005  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
3006              SourceRange(BuiltinLoc, RParenLoc));
3007}
3008
3009Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3010                                  ExprTy *expr, TypeTy *type,
3011                                  SourceLocation RPLoc) {
3012  Expr *E = static_cast<Expr*>(expr);
3013  QualType T = QualType::getFromOpaquePtr(type);
3014
3015  InitBuiltinVaListType();
3016
3017  // Get the va_list type
3018  QualType VaListType = Context.getBuiltinVaListType();
3019  // Deal with implicit array decay; for example, on x86-64,
3020  // va_list is an array, but it's supposed to decay to
3021  // a pointer for va_arg.
3022  if (VaListType->isArrayType())
3023    VaListType = Context.getArrayDecayedType(VaListType);
3024  // Make sure the input expression also decays appropriately.
3025  UsualUnaryConversions(E);
3026
3027  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3028    return Diag(E->getLocStart(),
3029                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3030                E->getType().getAsString(),
3031                E->getSourceRange());
3032
3033  // FIXME: Warn if a non-POD type is passed in.
3034
3035  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
3036}
3037
3038bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3039                                    SourceLocation Loc,
3040                                    QualType DstType, QualType SrcType,
3041                                    Expr *SrcExpr, const char *Flavor) {
3042  // Decode the result (notice that AST's are still created for extensions).
3043  bool isInvalid = false;
3044  unsigned DiagKind;
3045  switch (ConvTy) {
3046  default: assert(0 && "Unknown conversion type");
3047  case Compatible: return false;
3048  case PointerToInt:
3049    DiagKind = diag::ext_typecheck_convert_pointer_int;
3050    break;
3051  case IntToPointer:
3052    DiagKind = diag::ext_typecheck_convert_int_pointer;
3053    break;
3054  case IncompatiblePointer:
3055    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3056    break;
3057  case FunctionVoidPointer:
3058    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3059    break;
3060  case CompatiblePointerDiscardsQualifiers:
3061    // If the qualifiers lost were because we were applying the
3062    // (deprecated) C++ conversion from a string literal to a char*
3063    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3064    // Ideally, this check would be performed in
3065    // CheckPointerTypesForAssignment. However, that would require a
3066    // bit of refactoring (so that the second argument is an
3067    // expression, rather than a type), which should be done as part
3068    // of a larger effort to fix CheckPointerTypesForAssignment for
3069    // C++ semantics.
3070    if (getLangOptions().CPlusPlus &&
3071        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3072      return false;
3073    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3074    break;
3075  case IntToBlockPointer:
3076    DiagKind = diag::err_int_to_block_pointer;
3077    break;
3078  case IncompatibleBlockPointer:
3079    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3080    break;
3081  case BlockVoidPointer:
3082    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3083    break;
3084  case Incompatible:
3085    DiagKind = diag::err_typecheck_convert_incompatible;
3086    isInvalid = true;
3087    break;
3088  }
3089
3090  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
3091       SrcExpr->getSourceRange());
3092  return isInvalid;
3093}
3094