SemaExpr.cpp revision 94b1dd2368dc9eeedf2794db654deae225fac763
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Scope.h"
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29//  Standard Promotions and Conversions
30//===----------------------------------------------------------------------===//
31
32/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
33void Sema::DefaultFunctionArrayConversion(Expr *&E) {
34  QualType Ty = E->getType();
35  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
36
37  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
38    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
39    Ty = E->getType();
40  }
41  if (Ty->isFunctionType())
42    ImpCastExprToType(E, Context.getPointerType(Ty));
43  else if (Ty->isArrayType()) {
44    // In C90 mode, arrays only promote to pointers if the array expression is
45    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
46    // type 'array of type' is converted to an expression that has type 'pointer
47    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
48    // that has type 'array of type' ...".  The relevant change is "an lvalue"
49    // (C90) to "an expression" (C99).
50    //
51    // C++ 4.2p1:
52    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
53    // T" can be converted to an rvalue of type "pointer to T".
54    //
55    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
56        E->isLvalue(Context) == Expr::LV_Valid)
57      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
58  }
59}
60
61/// UsualUnaryConversions - Performs various conversions that are common to most
62/// operators (C99 6.3). The conversions of array and function types are
63/// sometimes surpressed. For example, the array->pointer conversion doesn't
64/// apply if the array is an argument to the sizeof or address (&) operators.
65/// In these instances, this routine should *not* be called.
66Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
67  QualType Ty = Expr->getType();
68  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
69
70  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
71    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
72    Ty = Expr->getType();
73  }
74  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
75    ImpCastExprToType(Expr, Context.IntTy);
76  else
77    DefaultFunctionArrayConversion(Expr);
78
79  return Expr;
80}
81
82/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
83/// do not have a prototype. Arguments that have type float are promoted to
84/// double. All other argument types are converted by UsualUnaryConversions().
85void Sema::DefaultArgumentPromotion(Expr *&Expr) {
86  QualType Ty = Expr->getType();
87  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
88
89  // If this is a 'float' (CVR qualified or typedef) promote to double.
90  if (const BuiltinType *BT = Ty->getAsBuiltinType())
91    if (BT->getKind() == BuiltinType::Float)
92      return ImpCastExprToType(Expr, Context.DoubleTy);
93
94  UsualUnaryConversions(Expr);
95}
96
97/// UsualArithmeticConversions - Performs various conversions that are common to
98/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
99/// routine returns the first non-arithmetic type found. The client is
100/// responsible for emitting appropriate error diagnostics.
101/// FIXME: verify the conversion rules for "complex int" are consistent with
102/// GCC.
103QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
104                                          bool isCompAssign) {
105  if (!isCompAssign) {
106    UsualUnaryConversions(lhsExpr);
107    UsualUnaryConversions(rhsExpr);
108  }
109  // For conversion purposes, we ignore any qualifiers.
110  // For example, "const float" and "float" are equivalent.
111  QualType lhs =
112    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
113  QualType rhs =
114    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
115
116  // If both types are identical, no conversion is needed.
117  if (lhs == rhs)
118    return lhs;
119
120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
121  // The caller can deal with this (e.g. pointer + int).
122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
123    return lhs;
124
125  // At this point, we have two different arithmetic types.
126
127  // Handle complex types first (C99 6.3.1.8p1).
128  if (lhs->isComplexType() || rhs->isComplexType()) {
129    // if we have an integer operand, the result is the complex type.
130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
131      // convert the rhs to the lhs complex type.
132      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
133      return lhs;
134    }
135    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
136      // convert the lhs to the rhs complex type.
137      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
138      return rhs;
139    }
140    // This handles complex/complex, complex/float, or float/complex.
141    // When both operands are complex, the shorter operand is converted to the
142    // type of the longer, and that is the type of the result. This corresponds
143    // to what is done when combining two real floating-point operands.
144    // The fun begins when size promotion occur across type domains.
145    // From H&S 6.3.4: When one operand is complex and the other is a real
146    // floating-point type, the less precise type is converted, within it's
147    // real or complex domain, to the precision of the other type. For example,
148    // when combining a "long double" with a "double _Complex", the
149    // "double _Complex" is promoted to "long double _Complex".
150    int result = Context.getFloatingTypeOrder(lhs, rhs);
151
152    if (result > 0) { // The left side is bigger, convert rhs.
153      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
154      if (!isCompAssign)
155        ImpCastExprToType(rhsExpr, rhs);
156    } else if (result < 0) { // The right side is bigger, convert lhs.
157      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
158      if (!isCompAssign)
159        ImpCastExprToType(lhsExpr, lhs);
160    }
161    // At this point, lhs and rhs have the same rank/size. Now, make sure the
162    // domains match. This is a requirement for our implementation, C99
163    // does not require this promotion.
164    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
165      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
166        if (!isCompAssign)
167          ImpCastExprToType(lhsExpr, rhs);
168        return rhs;
169      } else { // handle "_Complex double, double".
170        if (!isCompAssign)
171          ImpCastExprToType(rhsExpr, lhs);
172        return lhs;
173      }
174    }
175    return lhs; // The domain/size match exactly.
176  }
177  // Now handle "real" floating types (i.e. float, double, long double).
178  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
179    // if we have an integer operand, the result is the real floating type.
180    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
181      // convert rhs to the lhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
186      // convert lhs to the rhs floating point type.
187      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
188      return rhs;
189    }
190    // We have two real floating types, float/complex combos were handled above.
191    // Convert the smaller operand to the bigger result.
192    int result = Context.getFloatingTypeOrder(lhs, rhs);
193
194    if (result > 0) { // convert the rhs
195      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
196      return lhs;
197    }
198    if (result < 0) { // convert the lhs
199      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
200      return rhs;
201    }
202    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
203  }
204  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
205    // Handle GCC complex int extension.
206    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
207    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
208
209    if (lhsComplexInt && rhsComplexInt) {
210      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
211                                      rhsComplexInt->getElementType()) >= 0) {
212        // convert the rhs
213        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
214        return lhs;
215      }
216      if (!isCompAssign)
217        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
218      return rhs;
219    } else if (lhsComplexInt && rhs->isIntegerType()) {
220      // convert the rhs to the lhs complex type.
221      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
222      return lhs;
223    } else if (rhsComplexInt && lhs->isIntegerType()) {
224      // convert the lhs to the rhs complex type.
225      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
226      return rhs;
227    }
228  }
229  // Finally, we have two differing integer types.
230  // The rules for this case are in C99 6.3.1.8
231  int compare = Context.getIntegerTypeOrder(lhs, rhs);
232  bool lhsSigned = lhs->isSignedIntegerType(),
233       rhsSigned = rhs->isSignedIntegerType();
234  QualType destType;
235  if (lhsSigned == rhsSigned) {
236    // Same signedness; use the higher-ranked type
237    destType = compare >= 0 ? lhs : rhs;
238  } else if (compare != (lhsSigned ? 1 : -1)) {
239    // The unsigned type has greater than or equal rank to the
240    // signed type, so use the unsigned type
241    destType = lhsSigned ? rhs : lhs;
242  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
243    // The two types are different widths; if we are here, that
244    // means the signed type is larger than the unsigned type, so
245    // use the signed type.
246    destType = lhsSigned ? lhs : rhs;
247  } else {
248    // The signed type is higher-ranked than the unsigned type,
249    // but isn't actually any bigger (like unsigned int and long
250    // on most 32-bit systems).  Use the unsigned type corresponding
251    // to the signed type.
252    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
253  }
254  if (!isCompAssign) {
255    ImpCastExprToType(lhsExpr, destType);
256    ImpCastExprToType(rhsExpr, destType);
257  }
258  return destType;
259}
260
261//===----------------------------------------------------------------------===//
262//  Semantic Analysis for various Expression Types
263//===----------------------------------------------------------------------===//
264
265
266/// ActOnStringLiteral - The specified tokens were lexed as pasted string
267/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
268/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
269/// multiple tokens.  However, the common case is that StringToks points to one
270/// string.
271///
272Action::ExprResult
273Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
274  assert(NumStringToks && "Must have at least one string!");
275
276  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
277  if (Literal.hadError)
278    return ExprResult(true);
279
280  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
281  for (unsigned i = 0; i != NumStringToks; ++i)
282    StringTokLocs.push_back(StringToks[i].getLocation());
283
284  // Verify that pascal strings aren't too large.
285  if (Literal.Pascal && Literal.GetStringLength() > 256)
286    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
287                SourceRange(StringToks[0].getLocation(),
288                            StringToks[NumStringToks-1].getLocation()));
289
290  QualType StrTy = Context.CharTy;
291  if (Literal.AnyWide) StrTy = Context.getWCharType();
292  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
293
294  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
295  if (getLangOptions().CPlusPlus)
296    StrTy.addConst();
297
298  // Get an array type for the string, according to C99 6.4.5.  This includes
299  // the nul terminator character as well as the string length for pascal
300  // strings.
301  StrTy = Context.getConstantArrayType(StrTy,
302                                   llvm::APInt(32, Literal.GetStringLength()+1),
303                                       ArrayType::Normal, 0);
304
305  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
306  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
307                           Literal.AnyWide, StrTy,
308                           StringToks[0].getLocation(),
309                           StringToks[NumStringToks-1].getLocation());
310}
311
312/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
313/// CurBlock to VD should cause it to be snapshotted (as we do for auto
314/// variables defined outside the block) or false if this is not needed (e.g.
315/// for values inside the block or for globals).
316///
317/// FIXME: This will create BlockDeclRefExprs for global variables,
318/// function references, etc which is suboptimal :) and breaks
319/// things like "integer constant expression" tests.
320static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
321                                              ValueDecl *VD) {
322  // If the value is defined inside the block, we couldn't snapshot it even if
323  // we wanted to.
324  if (CurBlock->TheDecl == VD->getDeclContext())
325    return false;
326
327  // If this is an enum constant or function, it is constant, don't snapshot.
328  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
329    return false;
330
331  // If this is a reference to an extern, static, or global variable, no need to
332  // snapshot it.
333  // FIXME: What about 'const' variables in C++?
334  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
335    return Var->hasLocalStorage();
336
337  return true;
338}
339
340
341
342/// ActOnIdentifierExpr - The parser read an identifier in expression context,
343/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
344/// identifier is used in a function call context.
345Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
346                                           IdentifierInfo &II,
347                                           bool HasTrailingLParen) {
348  // Could be enum-constant, value decl, instance variable, etc.
349  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
350
351  // If this reference is in an Objective-C method, then ivar lookup happens as
352  // well.
353  if (getCurMethodDecl()) {
354    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
355    // There are two cases to handle here.  1) scoped lookup could have failed,
356    // in which case we should look for an ivar.  2) scoped lookup could have
357    // found a decl, but that decl is outside the current method (i.e. a global
358    // variable).  In these two cases, we do a lookup for an ivar with this
359    // name, if the lookup suceeds, we replace it our current decl.
360    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
361      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
362      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
363        // FIXME: This should use a new expr for a direct reference, don't turn
364        // this into Self->ivar, just return a BareIVarExpr or something.
365        IdentifierInfo &II = Context.Idents.get("self");
366        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
367        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
368                                 static_cast<Expr*>(SelfExpr.Val), true, true);
369      }
370    }
371    // Needed to implement property "super.method" notation.
372    if (SD == 0 && &II == SuperID) {
373      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
374                     getCurMethodDecl()->getClassInterface()));
375      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
376    }
377  }
378  if (D == 0) {
379    // Otherwise, this could be an implicitly declared function reference (legal
380    // in C90, extension in C99).
381    if (HasTrailingLParen &&
382        !getLangOptions().CPlusPlus) // Not in C++.
383      D = ImplicitlyDefineFunction(Loc, II, S);
384    else {
385      // If this name wasn't predeclared and if this is not a function call,
386      // diagnose the problem.
387      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
388    }
389  }
390
391  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
392    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
393      if (MD->isStatic())
394        // "invalid use of member 'x' in static member function"
395        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
396                    FD->getName());
397      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
398        // "invalid use of nonstatic data member 'x'"
399        return Diag(Loc, diag::err_invalid_non_static_member_use,
400                    FD->getName());
401
402      if (FD->isInvalidDecl())
403        return true;
404
405      return new DeclRefExpr(FD, FD->getType(), Loc);
406    }
407
408    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
409  }
410  if (isa<TypedefDecl>(D))
411    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
412  if (isa<ObjCInterfaceDecl>(D))
413    return Diag(Loc, diag::err_unexpected_interface, II.getName());
414  if (isa<NamespaceDecl>(D))
415    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
416
417  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
418  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
419    return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
420
421  ValueDecl *VD = cast<ValueDecl>(D);
422
423  // check if referencing an identifier with __attribute__((deprecated)).
424  if (VD->getAttr<DeprecatedAttr>())
425    Diag(Loc, diag::warn_deprecated, VD->getName());
426
427  // Only create DeclRefExpr's for valid Decl's.
428  if (VD->isInvalidDecl())
429    return true;
430
431  // If the identifier reference is inside a block, and it refers to a value
432  // that is outside the block, create a BlockDeclRefExpr instead of a
433  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
434  // the block is formed.
435  //
436  // We do not do this for things like enum constants, global variables, etc,
437  // as they do not get snapshotted.
438  //
439  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
440    // The BlocksAttr indicates the variable is bound by-reference.
441    if (VD->getAttr<BlocksAttr>())
442      return new BlockDeclRefExpr(VD, VD->getType(), Loc, true);
443
444    // Variable will be bound by-copy, make it const within the closure.
445    VD->getType().addConst();
446    return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
447  }
448  // If this reference is not in a block or if the referenced variable is
449  // within the block, create a normal DeclRefExpr.
450  return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc);
451}
452
453Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
454                                           tok::TokenKind Kind) {
455  PredefinedExpr::IdentType IT;
456
457  switch (Kind) {
458  default: assert(0 && "Unknown simple primary expr!");
459  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
460  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
461  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
462  }
463
464  // Verify that this is in a function context.
465  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
466    return Diag(Loc, diag::err_predef_outside_function);
467
468  // Pre-defined identifiers are of type char[x], where x is the length of the
469  // string.
470  unsigned Length;
471  if (getCurFunctionDecl())
472    Length = getCurFunctionDecl()->getIdentifier()->getLength();
473  else
474    Length = getCurMethodDecl()->getSynthesizedMethodSize();
475
476  llvm::APInt LengthI(32, Length + 1);
477  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
478  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
479  return new PredefinedExpr(Loc, ResTy, IT);
480}
481
482Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
483  llvm::SmallString<16> CharBuffer;
484  CharBuffer.resize(Tok.getLength());
485  const char *ThisTokBegin = &CharBuffer[0];
486  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
487
488  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
489                            Tok.getLocation(), PP);
490  if (Literal.hadError())
491    return ExprResult(true);
492
493  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
494
495  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
496                              Tok.getLocation());
497}
498
499Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
500  // fast path for a single digit (which is quite common). A single digit
501  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
502  if (Tok.getLength() == 1) {
503    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
504
505    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
506    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
507                                         Context.IntTy,
508                                         Tok.getLocation()));
509  }
510  llvm::SmallString<512> IntegerBuffer;
511  // Add padding so that NumericLiteralParser can overread by one character.
512  IntegerBuffer.resize(Tok.getLength()+1);
513  const char *ThisTokBegin = &IntegerBuffer[0];
514
515  // Get the spelling of the token, which eliminates trigraphs, etc.
516  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
517
518  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
519                               Tok.getLocation(), PP);
520  if (Literal.hadError)
521    return ExprResult(true);
522
523  Expr *Res;
524
525  if (Literal.isFloatingLiteral()) {
526    QualType Ty;
527    if (Literal.isFloat)
528      Ty = Context.FloatTy;
529    else if (!Literal.isLong)
530      Ty = Context.DoubleTy;
531    else
532      Ty = Context.LongDoubleTy;
533
534    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
535
536    // isExact will be set by GetFloatValue().
537    bool isExact = false;
538    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
539                              Ty, Tok.getLocation());
540
541  } else if (!Literal.isIntegerLiteral()) {
542    return ExprResult(true);
543  } else {
544    QualType Ty;
545
546    // long long is a C99 feature.
547    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
548        Literal.isLongLong)
549      Diag(Tok.getLocation(), diag::ext_longlong);
550
551    // Get the value in the widest-possible width.
552    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
553
554    if (Literal.GetIntegerValue(ResultVal)) {
555      // If this value didn't fit into uintmax_t, warn and force to ull.
556      Diag(Tok.getLocation(), diag::warn_integer_too_large);
557      Ty = Context.UnsignedLongLongTy;
558      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
559             "long long is not intmax_t?");
560    } else {
561      // If this value fits into a ULL, try to figure out what else it fits into
562      // according to the rules of C99 6.4.4.1p5.
563
564      // Octal, Hexadecimal, and integers with a U suffix are allowed to
565      // be an unsigned int.
566      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
567
568      // Check from smallest to largest, picking the smallest type we can.
569      unsigned Width = 0;
570      if (!Literal.isLong && !Literal.isLongLong) {
571        // Are int/unsigned possibilities?
572        unsigned IntSize = Context.Target.getIntWidth();
573
574        // Does it fit in a unsigned int?
575        if (ResultVal.isIntN(IntSize)) {
576          // Does it fit in a signed int?
577          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
578            Ty = Context.IntTy;
579          else if (AllowUnsigned)
580            Ty = Context.UnsignedIntTy;
581          Width = IntSize;
582        }
583      }
584
585      // Are long/unsigned long possibilities?
586      if (Ty.isNull() && !Literal.isLongLong) {
587        unsigned LongSize = Context.Target.getLongWidth();
588
589        // Does it fit in a unsigned long?
590        if (ResultVal.isIntN(LongSize)) {
591          // Does it fit in a signed long?
592          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
593            Ty = Context.LongTy;
594          else if (AllowUnsigned)
595            Ty = Context.UnsignedLongTy;
596          Width = LongSize;
597        }
598      }
599
600      // Finally, check long long if needed.
601      if (Ty.isNull()) {
602        unsigned LongLongSize = Context.Target.getLongLongWidth();
603
604        // Does it fit in a unsigned long long?
605        if (ResultVal.isIntN(LongLongSize)) {
606          // Does it fit in a signed long long?
607          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
608            Ty = Context.LongLongTy;
609          else if (AllowUnsigned)
610            Ty = Context.UnsignedLongLongTy;
611          Width = LongLongSize;
612        }
613      }
614
615      // If we still couldn't decide a type, we probably have something that
616      // does not fit in a signed long long, but has no U suffix.
617      if (Ty.isNull()) {
618        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
619        Ty = Context.UnsignedLongLongTy;
620        Width = Context.Target.getLongLongWidth();
621      }
622
623      if (ResultVal.getBitWidth() != Width)
624        ResultVal.trunc(Width);
625    }
626
627    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
628  }
629
630  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
631  if (Literal.isImaginary)
632    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
633
634  return Res;
635}
636
637Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
638                                        ExprTy *Val) {
639  Expr *E = (Expr *)Val;
640  assert((E != 0) && "ActOnParenExpr() missing expr");
641  return new ParenExpr(L, R, E);
642}
643
644/// The UsualUnaryConversions() function is *not* called by this routine.
645/// See C99 6.3.2.1p[2-4] for more details.
646QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
647                                         SourceLocation OpLoc,
648                                         const SourceRange &ExprRange,
649                                         bool isSizeof) {
650  // C99 6.5.3.4p1:
651  if (isa<FunctionType>(exprType) && isSizeof)
652    // alignof(function) is allowed.
653    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
654  else if (exprType->isVoidType())
655    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
656         ExprRange);
657  else if (exprType->isIncompleteType()) {
658    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
659                           diag::err_alignof_incomplete_type,
660         exprType.getAsString(), ExprRange);
661    return QualType(); // error
662  }
663  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
664  return Context.getSizeType();
665}
666
667Action::ExprResult Sema::
668ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
669                           SourceLocation LPLoc, TypeTy *Ty,
670                           SourceLocation RPLoc) {
671  // If error parsing type, ignore.
672  if (Ty == 0) return true;
673
674  // Verify that this is a valid expression.
675  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
676
677  QualType resultType =
678    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
679
680  if (resultType.isNull())
681    return true;
682  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
683}
684
685QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
686  DefaultFunctionArrayConversion(V);
687
688  // These operators return the element type of a complex type.
689  if (const ComplexType *CT = V->getType()->getAsComplexType())
690    return CT->getElementType();
691
692  // Otherwise they pass through real integer and floating point types here.
693  if (V->getType()->isArithmeticType())
694    return V->getType();
695
696  // Reject anything else.
697  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
698  return QualType();
699}
700
701
702
703Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
704                                             tok::TokenKind Kind,
705                                             ExprTy *Input) {
706  UnaryOperator::Opcode Opc;
707  switch (Kind) {
708  default: assert(0 && "Unknown unary op!");
709  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
710  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
711  }
712  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
713  if (result.isNull())
714    return true;
715  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
716}
717
718Action::ExprResult Sema::
719ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
720                        ExprTy *Idx, SourceLocation RLoc) {
721  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
722
723  // Perform default conversions.
724  DefaultFunctionArrayConversion(LHSExp);
725  DefaultFunctionArrayConversion(RHSExp);
726
727  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
728
729  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
730  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
731  // in the subscript position. As a result, we need to derive the array base
732  // and index from the expression types.
733  Expr *BaseExpr, *IndexExpr;
734  QualType ResultType;
735  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
736    BaseExpr = LHSExp;
737    IndexExpr = RHSExp;
738    // FIXME: need to deal with const...
739    ResultType = PTy->getPointeeType();
740  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
741     // Handle the uncommon case of "123[Ptr]".
742    BaseExpr = RHSExp;
743    IndexExpr = LHSExp;
744    // FIXME: need to deal with const...
745    ResultType = PTy->getPointeeType();
746  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
747    BaseExpr = LHSExp;    // vectors: V[123]
748    IndexExpr = RHSExp;
749
750    // Component access limited to variables (reject vec4.rg[1]).
751    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
752        !isa<ExtVectorElementExpr>(BaseExpr))
753      return Diag(LLoc, diag::err_ext_vector_component_access,
754                  SourceRange(LLoc, RLoc));
755    // FIXME: need to deal with const...
756    ResultType = VTy->getElementType();
757  } else {
758    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
759                RHSExp->getSourceRange());
760  }
761  // C99 6.5.2.1p1
762  if (!IndexExpr->getType()->isIntegerType())
763    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
764                IndexExpr->getSourceRange());
765
766  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
767  // the following check catches trying to index a pointer to a function (e.g.
768  // void (*)(int)) and pointers to incomplete types.  Functions are not
769  // objects in C99.
770  if (!ResultType->isObjectType())
771    return Diag(BaseExpr->getLocStart(),
772                diag::err_typecheck_subscript_not_object,
773                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
774
775  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
776}
777
778QualType Sema::
779CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
780                        IdentifierInfo &CompName, SourceLocation CompLoc) {
781  const ExtVectorType *vecType = baseType->getAsExtVectorType();
782
783  // This flag determines whether or not the component is to be treated as a
784  // special name, or a regular GLSL-style component access.
785  bool SpecialComponent = false;
786
787  // The vector accessor can't exceed the number of elements.
788  const char *compStr = CompName.getName();
789  if (strlen(compStr) > vecType->getNumElements()) {
790    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
791                baseType.getAsString(), SourceRange(CompLoc));
792    return QualType();
793  }
794
795  // Check that we've found one of the special components, or that the component
796  // names must come from the same set.
797  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
798      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
799    SpecialComponent = true;
800  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
801    do
802      compStr++;
803    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
804  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
805    do
806      compStr++;
807    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
808  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
809    do
810      compStr++;
811    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
812  }
813
814  if (!SpecialComponent && *compStr) {
815    // We didn't get to the end of the string. This means the component names
816    // didn't come from the same set *or* we encountered an illegal name.
817    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
818         std::string(compStr,compStr+1), SourceRange(CompLoc));
819    return QualType();
820  }
821  // Each component accessor can't exceed the vector type.
822  compStr = CompName.getName();
823  while (*compStr) {
824    if (vecType->isAccessorWithinNumElements(*compStr))
825      compStr++;
826    else
827      break;
828  }
829  if (!SpecialComponent && *compStr) {
830    // We didn't get to the end of the string. This means a component accessor
831    // exceeds the number of elements in the vector.
832    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
833                baseType.getAsString(), SourceRange(CompLoc));
834    return QualType();
835  }
836
837  // If we have a special component name, verify that the current vector length
838  // is an even number, since all special component names return exactly half
839  // the elements.
840  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
841    Diag(OpLoc, diag::err_ext_vector_component_requires_even,
842         baseType.getAsString(), SourceRange(CompLoc));
843    return QualType();
844  }
845
846  // The component accessor looks fine - now we need to compute the actual type.
847  // The vector type is implied by the component accessor. For example,
848  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
849  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
850  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
851                                       : strlen(CompName.getName());
852  if (CompSize == 1)
853    return vecType->getElementType();
854
855  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
856  // Now look up the TypeDefDecl from the vector type. Without this,
857  // diagostics look bad. We want extended vector types to appear built-in.
858  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
859    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
860      return Context.getTypedefType(ExtVectorDecls[i]);
861  }
862  return VT; // should never get here (a typedef type should always be found).
863}
864
865/// constructSetterName - Return the setter name for the given
866/// identifier, i.e. "set" + Name where the initial character of Name
867/// has been capitalized.
868// FIXME: Merge with same routine in Parser. But where should this
869// live?
870static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
871                                           const IdentifierInfo *Name) {
872  unsigned N = Name->getLength();
873  char *SelectorName = new char[3 + N];
874  memcpy(SelectorName, "set", 3);
875  memcpy(&SelectorName[3], Name->getName(), N);
876  SelectorName[3] = toupper(SelectorName[3]);
877
878  IdentifierInfo *Setter =
879    &Idents.get(SelectorName, &SelectorName[3 + N]);
880  delete[] SelectorName;
881  return Setter;
882}
883
884Action::ExprResult Sema::
885ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
886                         tok::TokenKind OpKind, SourceLocation MemberLoc,
887                         IdentifierInfo &Member) {
888  Expr *BaseExpr = static_cast<Expr *>(Base);
889  assert(BaseExpr && "no record expression");
890
891  // Perform default conversions.
892  DefaultFunctionArrayConversion(BaseExpr);
893
894  QualType BaseType = BaseExpr->getType();
895  assert(!BaseType.isNull() && "no type for member expression");
896
897  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
898  // must have pointer type, and the accessed type is the pointee.
899  if (OpKind == tok::arrow) {
900    if (const PointerType *PT = BaseType->getAsPointerType())
901      BaseType = PT->getPointeeType();
902    else
903      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
904                  BaseType.getAsString(), BaseExpr->getSourceRange());
905  }
906
907  // Handle field access to simple records.  This also handles access to fields
908  // of the ObjC 'id' struct.
909  if (const RecordType *RTy = BaseType->getAsRecordType()) {
910    RecordDecl *RDecl = RTy->getDecl();
911    if (RTy->isIncompleteType())
912      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
913                  BaseExpr->getSourceRange());
914    // The record definition is complete, now make sure the member is valid.
915    FieldDecl *MemberDecl = RDecl->getMember(&Member);
916    if (!MemberDecl)
917      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
918                  BaseExpr->getSourceRange());
919
920    // Figure out the type of the member; see C99 6.5.2.3p3
921    // FIXME: Handle address space modifiers
922    QualType MemberType = MemberDecl->getType();
923    unsigned combinedQualifiers =
924        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
925    MemberType = MemberType.getQualifiedType(combinedQualifiers);
926
927    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
928                          MemberLoc, MemberType);
929  }
930
931  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
932  // (*Obj).ivar.
933  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
934    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
935      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
936                                 OpKind == tok::arrow);
937    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
938                IFTy->getDecl()->getName(), Member.getName(),
939                BaseExpr->getSourceRange());
940  }
941
942  // Handle Objective-C property access, which is "Obj.property" where Obj is a
943  // pointer to a (potentially qualified) interface type.
944  const PointerType *PTy;
945  const ObjCInterfaceType *IFTy;
946  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
947      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
948    ObjCInterfaceDecl *IFace = IFTy->getDecl();
949
950    // Search for a declared property first.
951    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
952      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
953
954    // Check protocols on qualified interfaces.
955    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
956         E = IFTy->qual_end(); I != E; ++I)
957      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
958        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
959
960    // If that failed, look for an "implicit" property by seeing if the nullary
961    // selector is implemented.
962
963    // FIXME: The logic for looking up nullary and unary selectors should be
964    // shared with the code in ActOnInstanceMessage.
965
966    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
967    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
968
969    // If this reference is in an @implementation, check for 'private' methods.
970    if (!Getter)
971      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
972        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
973          if (ObjCImplementationDecl *ImpDecl =
974              ObjCImplementations[ClassDecl->getIdentifier()])
975            Getter = ImpDecl->getInstanceMethod(Sel);
976
977    // Look through local category implementations associated with the class.
978    if (!Getter) {
979      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
980        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
981          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
982      }
983    }
984    if (Getter) {
985      // If we found a getter then this may be a valid dot-reference, we
986      // need to also look for the matching setter.
987      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
988                                                       &Member);
989      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
990      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
991
992      if (!Setter) {
993        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
994          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
995            if (ObjCImplementationDecl *ImpDecl =
996                ObjCImplementations[ClassDecl->getIdentifier()])
997              Setter = ImpDecl->getInstanceMethod(SetterSel);
998      }
999
1000      // FIXME: There are some issues here. First, we are not
1001      // diagnosing accesses to read-only properties because we do not
1002      // know if this is a getter or setter yet. Second, we are
1003      // checking that the type of the setter matches the type we
1004      // expect.
1005      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
1006                                     MemberLoc, BaseExpr);
1007    }
1008  }
1009  // Handle properties on qualified "id" protocols.
1010  const ObjCQualifiedIdType *QIdTy;
1011  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1012    // Check protocols on qualified interfaces.
1013    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1014         E = QIdTy->qual_end(); I != E; ++I)
1015      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1016        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
1017  }
1018  // Handle 'field access' to vectors, such as 'V.xx'.
1019  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1020    // Component access limited to variables (reject vec4.rg.g).
1021    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1022        !isa<ExtVectorElementExpr>(BaseExpr))
1023      return Diag(MemberLoc, diag::err_ext_vector_component_access,
1024                  BaseExpr->getSourceRange());
1025    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1026    if (ret.isNull())
1027      return true;
1028    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1029  }
1030
1031  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1032              BaseType.getAsString(), BaseExpr->getSourceRange());
1033}
1034
1035/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1036/// This provides the location of the left/right parens and a list of comma
1037/// locations.
1038Action::ExprResult Sema::
1039ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1040              ExprTy **args, unsigned NumArgs,
1041              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1042  Expr *Fn = static_cast<Expr *>(fn);
1043  Expr **Args = reinterpret_cast<Expr**>(args);
1044  assert(Fn && "no function call expression");
1045  FunctionDecl *FDecl = NULL;
1046  OverloadedFunctionDecl *Ovl = NULL;
1047
1048  // If we're directly calling a function or a set of overloaded
1049  // functions, get the appropriate declaration.
1050  {
1051    DeclRefExpr *DRExpr = NULL;
1052    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1053      DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
1054    else
1055      DRExpr = dyn_cast<DeclRefExpr>(Fn);
1056
1057    if (DRExpr) {
1058      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1059      Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1060    }
1061  }
1062
1063  // If we have a set of overloaded functions, perform overload
1064  // resolution to pick the function.
1065  if (Ovl) {
1066    OverloadCandidateSet CandidateSet;
1067    OverloadCandidateSet::iterator Best;
1068    AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
1069    switch (BestViableFunction(CandidateSet, Best)) {
1070    case OR_Success:
1071      {
1072        // Success! Let the remainder of this function build a call to
1073        // the function selected by overload resolution.
1074        FDecl = Best->Function;
1075        Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
1076                                      Fn->getSourceRange().getBegin());
1077        delete Fn;
1078        Fn = NewFn;
1079      }
1080      break;
1081
1082    case OR_No_Viable_Function:
1083      if (CandidateSet.empty())
1084        Diag(Fn->getSourceRange().getBegin(),
1085             diag::err_ovl_no_viable_function_in_call, Ovl->getName(),
1086             Fn->getSourceRange());
1087      else {
1088        Diag(Fn->getSourceRange().getBegin(),
1089             diag::err_ovl_no_viable_function_in_call_with_cands,
1090             Ovl->getName(), Fn->getSourceRange());
1091        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1092      }
1093      return true;
1094
1095    case OR_Ambiguous:
1096      Diag(Fn->getSourceRange().getBegin(),
1097           diag::err_ovl_ambiguous_call, Ovl->getName(),
1098           Fn->getSourceRange());
1099      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1100      return true;
1101    }
1102  }
1103
1104  // Promote the function operand.
1105  UsualUnaryConversions(Fn);
1106
1107  // Make the call expr early, before semantic checks.  This guarantees cleanup
1108  // of arguments and function on error.
1109  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1110                                                 Context.BoolTy, RParenLoc));
1111  const FunctionType *FuncT;
1112  if (!Fn->getType()->isBlockPointerType()) {
1113    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1114    // have type pointer to function".
1115    const PointerType *PT = Fn->getType()->getAsPointerType();
1116    if (PT == 0)
1117      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1118                  Fn->getSourceRange());
1119    FuncT = PT->getPointeeType()->getAsFunctionType();
1120  } else { // This is a block call.
1121    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1122                getAsFunctionType();
1123  }
1124  if (FuncT == 0)
1125    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1126                Fn->getSourceRange());
1127
1128  // We know the result type of the call, set it.
1129  TheCall->setType(FuncT->getResultType());
1130
1131  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1132    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1133    // assignment, to the types of the corresponding parameter, ...
1134    unsigned NumArgsInProto = Proto->getNumArgs();
1135    unsigned NumArgsToCheck = NumArgs;
1136
1137    // If too few arguments are available (and we don't have default
1138    // arguments for the remaining parameters), don't make the call.
1139    if (NumArgs < NumArgsInProto) {
1140      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1141        // Use default arguments for missing arguments
1142        NumArgsToCheck = NumArgsInProto;
1143        TheCall->setNumArgs(NumArgsInProto);
1144      } else
1145        return Diag(RParenLoc,
1146                    !Fn->getType()->isBlockPointerType()
1147                      ? diag::err_typecheck_call_too_few_args
1148                      : diag::err_typecheck_block_too_few_args,
1149                    Fn->getSourceRange());
1150    }
1151
1152    // If too many are passed and not variadic, error on the extras and drop
1153    // them.
1154    if (NumArgs > NumArgsInProto) {
1155      if (!Proto->isVariadic()) {
1156        Diag(Args[NumArgsInProto]->getLocStart(),
1157               !Fn->getType()->isBlockPointerType()
1158                 ? diag::err_typecheck_call_too_many_args
1159                 : diag::err_typecheck_block_too_many_args,
1160             Fn->getSourceRange(),
1161             SourceRange(Args[NumArgsInProto]->getLocStart(),
1162                         Args[NumArgs-1]->getLocEnd()));
1163        // This deletes the extra arguments.
1164        TheCall->setNumArgs(NumArgsInProto);
1165      }
1166      NumArgsToCheck = NumArgsInProto;
1167    }
1168
1169    // Continue to check argument types (even if we have too few/many args).
1170    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1171      QualType ProtoArgType = Proto->getArgType(i);
1172
1173      Expr *Arg;
1174      if (i < NumArgs)
1175        Arg = Args[i];
1176      else
1177        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1178      QualType ArgType = Arg->getType();
1179
1180      // Compute implicit casts from the operand to the formal argument type.
1181      AssignConvertType ConvTy =
1182        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1183      TheCall->setArg(i, Arg);
1184
1185      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1186                                   ArgType, Arg, "passing"))
1187        return true;
1188    }
1189
1190    // If this is a variadic call, handle args passed through "...".
1191    if (Proto->isVariadic()) {
1192      // Promote the arguments (C99 6.5.2.2p7).
1193      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1194        Expr *Arg = Args[i];
1195        DefaultArgumentPromotion(Arg);
1196        TheCall->setArg(i, Arg);
1197      }
1198    }
1199  } else {
1200    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1201
1202    // Promote the arguments (C99 6.5.2.2p6).
1203    for (unsigned i = 0; i != NumArgs; i++) {
1204      Expr *Arg = Args[i];
1205      DefaultArgumentPromotion(Arg);
1206      TheCall->setArg(i, Arg);
1207    }
1208  }
1209
1210  // Do special checking on direct calls to functions.
1211  if (FDecl)
1212    return CheckFunctionCall(FDecl, TheCall.take());
1213
1214  return TheCall.take();
1215}
1216
1217Action::ExprResult Sema::
1218ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1219                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1220  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1221  QualType literalType = QualType::getFromOpaquePtr(Ty);
1222  // FIXME: put back this assert when initializers are worked out.
1223  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1224  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1225
1226  if (literalType->isArrayType()) {
1227    if (literalType->isVariableArrayType())
1228      return Diag(LParenLoc,
1229                  diag::err_variable_object_no_init,
1230                  SourceRange(LParenLoc,
1231                              literalExpr->getSourceRange().getEnd()));
1232  } else if (literalType->isIncompleteType()) {
1233    return Diag(LParenLoc,
1234                diag::err_typecheck_decl_incomplete_type,
1235                literalType.getAsString(),
1236                SourceRange(LParenLoc,
1237                            literalExpr->getSourceRange().getEnd()));
1238  }
1239
1240  if (CheckInitializerTypes(literalExpr, literalType))
1241    return true;
1242
1243  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1244  if (isFileScope) { // 6.5.2.5p3
1245    if (CheckForConstantInitializer(literalExpr, literalType))
1246      return true;
1247  }
1248  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1249}
1250
1251Action::ExprResult Sema::
1252ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1253              SourceLocation RBraceLoc) {
1254  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1255
1256  // Semantic analysis for initializers is done by ActOnDeclarator() and
1257  // CheckInitializer() - it requires knowledge of the object being intialized.
1258
1259  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1260  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1261  return E;
1262}
1263
1264/// CheckCastTypes - Check type constraints for casting between types.
1265bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1266  UsualUnaryConversions(castExpr);
1267
1268  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1269  // type needs to be scalar.
1270  if (castType->isVoidType()) {
1271    // Cast to void allows any expr type.
1272  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1273    // GCC struct/union extension: allow cast to self.
1274    if (Context.getCanonicalType(castType) !=
1275        Context.getCanonicalType(castExpr->getType()) ||
1276        (!castType->isStructureType() && !castType->isUnionType())) {
1277      // Reject any other conversions to non-scalar types.
1278      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1279                  castType.getAsString(), castExpr->getSourceRange());
1280    }
1281
1282    // accept this, but emit an ext-warn.
1283    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1284         castType.getAsString(), castExpr->getSourceRange());
1285  } else if (!castExpr->getType()->isScalarType() &&
1286             !castExpr->getType()->isVectorType()) {
1287    return Diag(castExpr->getLocStart(),
1288                diag::err_typecheck_expect_scalar_operand,
1289                castExpr->getType().getAsString(),castExpr->getSourceRange());
1290  } else if (castExpr->getType()->isVectorType()) {
1291    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1292      return true;
1293  } else if (castType->isVectorType()) {
1294    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1295      return true;
1296  }
1297  return false;
1298}
1299
1300bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1301  assert(VectorTy->isVectorType() && "Not a vector type!");
1302
1303  if (Ty->isVectorType() || Ty->isIntegerType()) {
1304    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1305      return Diag(R.getBegin(),
1306                  Ty->isVectorType() ?
1307                  diag::err_invalid_conversion_between_vectors :
1308                  diag::err_invalid_conversion_between_vector_and_integer,
1309                  VectorTy.getAsString().c_str(),
1310                  Ty.getAsString().c_str(), R);
1311  } else
1312    return Diag(R.getBegin(),
1313                diag::err_invalid_conversion_between_vector_and_scalar,
1314                VectorTy.getAsString().c_str(),
1315                Ty.getAsString().c_str(), R);
1316
1317  return false;
1318}
1319
1320Action::ExprResult Sema::
1321ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1322              SourceLocation RParenLoc, ExprTy *Op) {
1323  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1324
1325  Expr *castExpr = static_cast<Expr*>(Op);
1326  QualType castType = QualType::getFromOpaquePtr(Ty);
1327
1328  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1329    return true;
1330  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
1331}
1332
1333/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1334/// In that case, lex = cond.
1335inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1336  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1337  UsualUnaryConversions(cond);
1338  UsualUnaryConversions(lex);
1339  UsualUnaryConversions(rex);
1340  QualType condT = cond->getType();
1341  QualType lexT = lex->getType();
1342  QualType rexT = rex->getType();
1343
1344  // first, check the condition.
1345  if (!condT->isScalarType()) { // C99 6.5.15p2
1346    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1347         condT.getAsString());
1348    return QualType();
1349  }
1350
1351  // Now check the two expressions.
1352
1353  // If both operands have arithmetic type, do the usual arithmetic conversions
1354  // to find a common type: C99 6.5.15p3,5.
1355  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1356    UsualArithmeticConversions(lex, rex);
1357    return lex->getType();
1358  }
1359
1360  // If both operands are the same structure or union type, the result is that
1361  // type.
1362  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1363    if (const RecordType *RHSRT = rexT->getAsRecordType())
1364      if (LHSRT->getDecl() == RHSRT->getDecl())
1365        // "If both the operands have structure or union type, the result has
1366        // that type."  This implies that CV qualifiers are dropped.
1367        return lexT.getUnqualifiedType();
1368  }
1369
1370  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1371  // The following || allows only one side to be void (a GCC-ism).
1372  if (lexT->isVoidType() || rexT->isVoidType()) {
1373    if (!lexT->isVoidType())
1374      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1375           rex->getSourceRange());
1376    if (!rexT->isVoidType())
1377      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1378           lex->getSourceRange());
1379    ImpCastExprToType(lex, Context.VoidTy);
1380    ImpCastExprToType(rex, Context.VoidTy);
1381    return Context.VoidTy;
1382  }
1383  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1384  // the type of the other operand."
1385  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1386       Context.isObjCObjectPointerType(lexT)) &&
1387      rex->isNullPointerConstant(Context)) {
1388    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1389    return lexT;
1390  }
1391  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1392       Context.isObjCObjectPointerType(rexT)) &&
1393      lex->isNullPointerConstant(Context)) {
1394    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1395    return rexT;
1396  }
1397  // Handle the case where both operands are pointers before we handle null
1398  // pointer constants in case both operands are null pointer constants.
1399  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1400    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1401      // get the "pointed to" types
1402      QualType lhptee = LHSPT->getPointeeType();
1403      QualType rhptee = RHSPT->getPointeeType();
1404
1405      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1406      if (lhptee->isVoidType() &&
1407          rhptee->isIncompleteOrObjectType()) {
1408        // Figure out necessary qualifiers (C99 6.5.15p6)
1409        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1410        QualType destType = Context.getPointerType(destPointee);
1411        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1412        ImpCastExprToType(rex, destType); // promote to void*
1413        return destType;
1414      }
1415      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1416        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1417        QualType destType = Context.getPointerType(destPointee);
1418        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1419        ImpCastExprToType(rex, destType); // promote to void*
1420        return destType;
1421      }
1422
1423      QualType compositeType = lexT;
1424
1425      // If either type is an Objective-C object type then check
1426      // compatibility according to Objective-C.
1427      if (Context.isObjCObjectPointerType(lexT) ||
1428          Context.isObjCObjectPointerType(rexT)) {
1429        // If both operands are interfaces and either operand can be
1430        // assigned to the other, use that type as the composite
1431        // type. This allows
1432        //   xxx ? (A*) a : (B*) b
1433        // where B is a subclass of A.
1434        //
1435        // Additionally, as for assignment, if either type is 'id'
1436        // allow silent coercion. Finally, if the types are
1437        // incompatible then make sure to use 'id' as the composite
1438        // type so the result is acceptable for sending messages to.
1439
1440        // FIXME: This code should not be localized to here. Also this
1441        // should use a compatible check instead of abusing the
1442        // canAssignObjCInterfaces code.
1443        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1444        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1445        if (LHSIface && RHSIface &&
1446            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1447          compositeType = lexT;
1448        } else if (LHSIface && RHSIface &&
1449                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1450          compositeType = rexT;
1451        } else if (Context.isObjCIdType(lhptee) ||
1452                   Context.isObjCIdType(rhptee)) {
1453          // FIXME: This code looks wrong, because isObjCIdType checks
1454          // the struct but getObjCIdType returns the pointer to
1455          // struct. This is horrible and should be fixed.
1456          compositeType = Context.getObjCIdType();
1457        } else {
1458          QualType incompatTy = Context.getObjCIdType();
1459          ImpCastExprToType(lex, incompatTy);
1460          ImpCastExprToType(rex, incompatTy);
1461          return incompatTy;
1462        }
1463      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1464                                             rhptee.getUnqualifiedType())) {
1465        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1466             lexT.getAsString(), rexT.getAsString(),
1467             lex->getSourceRange(), rex->getSourceRange());
1468        // In this situation, we assume void* type. No especially good
1469        // reason, but this is what gcc does, and we do have to pick
1470        // to get a consistent AST.
1471        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1472        ImpCastExprToType(lex, incompatTy);
1473        ImpCastExprToType(rex, incompatTy);
1474        return incompatTy;
1475      }
1476      // The pointer types are compatible.
1477      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1478      // differently qualified versions of compatible types, the result type is
1479      // a pointer to an appropriately qualified version of the *composite*
1480      // type.
1481      // FIXME: Need to calculate the composite type.
1482      // FIXME: Need to add qualifiers
1483      ImpCastExprToType(lex, compositeType);
1484      ImpCastExprToType(rex, compositeType);
1485      return compositeType;
1486    }
1487  }
1488  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1489  // evaluates to "struct objc_object *" (and is handled above when comparing
1490  // id with statically typed objects).
1491  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1492    // GCC allows qualified id and any Objective-C type to devolve to
1493    // id. Currently localizing to here until clear this should be
1494    // part of ObjCQualifiedIdTypesAreCompatible.
1495    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1496        (lexT->isObjCQualifiedIdType() &&
1497         Context.isObjCObjectPointerType(rexT)) ||
1498        (rexT->isObjCQualifiedIdType() &&
1499         Context.isObjCObjectPointerType(lexT))) {
1500      // FIXME: This is not the correct composite type. This only
1501      // happens to work because id can more or less be used anywhere,
1502      // however this may change the type of method sends.
1503      // FIXME: gcc adds some type-checking of the arguments and emits
1504      // (confusing) incompatible comparison warnings in some
1505      // cases. Investigate.
1506      QualType compositeType = Context.getObjCIdType();
1507      ImpCastExprToType(lex, compositeType);
1508      ImpCastExprToType(rex, compositeType);
1509      return compositeType;
1510    }
1511  }
1512
1513  // Selection between block pointer types is ok as long as they are the same.
1514  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1515      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1516    return lexT;
1517
1518  // Otherwise, the operands are not compatible.
1519  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1520       lexT.getAsString(), rexT.getAsString(),
1521       lex->getSourceRange(), rex->getSourceRange());
1522  return QualType();
1523}
1524
1525/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1526/// in the case of a the GNU conditional expr extension.
1527Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1528                                            SourceLocation ColonLoc,
1529                                            ExprTy *Cond, ExprTy *LHS,
1530                                            ExprTy *RHS) {
1531  Expr *CondExpr = (Expr *) Cond;
1532  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1533
1534  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1535  // was the condition.
1536  bool isLHSNull = LHSExpr == 0;
1537  if (isLHSNull)
1538    LHSExpr = CondExpr;
1539
1540  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1541                                             RHSExpr, QuestionLoc);
1542  if (result.isNull())
1543    return true;
1544  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1545                                 RHSExpr, result);
1546}
1547
1548
1549// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1550// being closely modeled after the C99 spec:-). The odd characteristic of this
1551// routine is it effectively iqnores the qualifiers on the top level pointee.
1552// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1553// FIXME: add a couple examples in this comment.
1554Sema::AssignConvertType
1555Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1556  QualType lhptee, rhptee;
1557
1558  // get the "pointed to" type (ignoring qualifiers at the top level)
1559  lhptee = lhsType->getAsPointerType()->getPointeeType();
1560  rhptee = rhsType->getAsPointerType()->getPointeeType();
1561
1562  // make sure we operate on the canonical type
1563  lhptee = Context.getCanonicalType(lhptee);
1564  rhptee = Context.getCanonicalType(rhptee);
1565
1566  AssignConvertType ConvTy = Compatible;
1567
1568  // C99 6.5.16.1p1: This following citation is common to constraints
1569  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1570  // qualifiers of the type *pointed to* by the right;
1571  // FIXME: Handle ASQualType
1572  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
1573    ConvTy = CompatiblePointerDiscardsQualifiers;
1574
1575  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1576  // incomplete type and the other is a pointer to a qualified or unqualified
1577  // version of void...
1578  if (lhptee->isVoidType()) {
1579    if (rhptee->isIncompleteOrObjectType())
1580      return ConvTy;
1581
1582    // As an extension, we allow cast to/from void* to function pointer.
1583    assert(rhptee->isFunctionType());
1584    return FunctionVoidPointer;
1585  }
1586
1587  if (rhptee->isVoidType()) {
1588    if (lhptee->isIncompleteOrObjectType())
1589      return ConvTy;
1590
1591    // As an extension, we allow cast to/from void* to function pointer.
1592    assert(lhptee->isFunctionType());
1593    return FunctionVoidPointer;
1594  }
1595
1596  // Check for ObjC interfaces
1597  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1598  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1599  if (LHSIface && RHSIface &&
1600      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1601    return ConvTy;
1602
1603  // ID acts sort of like void* for ObjC interfaces
1604  if (LHSIface && Context.isObjCIdType(rhptee))
1605    return ConvTy;
1606  if (RHSIface && Context.isObjCIdType(lhptee))
1607    return ConvTy;
1608
1609  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1610  // unqualified versions of compatible types, ...
1611  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1612                                  rhptee.getUnqualifiedType()))
1613    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1614  return ConvTy;
1615}
1616
1617/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1618/// block pointer types are compatible or whether a block and normal pointer
1619/// are compatible. It is more restrict than comparing two function pointer
1620// types.
1621Sema::AssignConvertType
1622Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1623                                          QualType rhsType) {
1624  QualType lhptee, rhptee;
1625
1626  // get the "pointed to" type (ignoring qualifiers at the top level)
1627  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1628  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1629
1630  // make sure we operate on the canonical type
1631  lhptee = Context.getCanonicalType(lhptee);
1632  rhptee = Context.getCanonicalType(rhptee);
1633
1634  AssignConvertType ConvTy = Compatible;
1635
1636  // For blocks we enforce that qualifiers are identical.
1637  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1638    ConvTy = CompatiblePointerDiscardsQualifiers;
1639
1640  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1641    return IncompatibleBlockPointer;
1642  return ConvTy;
1643}
1644
1645/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1646/// has code to accommodate several GCC extensions when type checking
1647/// pointers. Here are some objectionable examples that GCC considers warnings:
1648///
1649///  int a, *pint;
1650///  short *pshort;
1651///  struct foo *pfoo;
1652///
1653///  pint = pshort; // warning: assignment from incompatible pointer type
1654///  a = pint; // warning: assignment makes integer from pointer without a cast
1655///  pint = a; // warning: assignment makes pointer from integer without a cast
1656///  pint = pfoo; // warning: assignment from incompatible pointer type
1657///
1658/// As a result, the code for dealing with pointers is more complex than the
1659/// C99 spec dictates.
1660///
1661Sema::AssignConvertType
1662Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1663  // Get canonical types.  We're not formatting these types, just comparing
1664  // them.
1665  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1666  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1667
1668  if (lhsType == rhsType)
1669    return Compatible; // Common case: fast path an exact match.
1670
1671  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1672    if (Context.typesAreCompatible(lhsType, rhsType))
1673      return Compatible;
1674    return Incompatible;
1675  }
1676
1677  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1678    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1679      return Compatible;
1680    // Relax integer conversions like we do for pointers below.
1681    if (rhsType->isIntegerType())
1682      return IntToPointer;
1683    if (lhsType->isIntegerType())
1684      return PointerToInt;
1685    return IncompatibleObjCQualifiedId;
1686  }
1687
1688  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1689    // For ExtVector, allow vector splats; float -> <n x float>
1690    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1691      if (LV->getElementType() == rhsType)
1692        return Compatible;
1693
1694    // If we are allowing lax vector conversions, and LHS and RHS are both
1695    // vectors, the total size only needs to be the same. This is a bitcast;
1696    // no bits are changed but the result type is different.
1697    if (getLangOptions().LaxVectorConversions &&
1698        lhsType->isVectorType() && rhsType->isVectorType()) {
1699      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1700        return Compatible;
1701    }
1702    return Incompatible;
1703  }
1704
1705  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1706    return Compatible;
1707
1708  if (isa<PointerType>(lhsType)) {
1709    if (rhsType->isIntegerType())
1710      return IntToPointer;
1711
1712    if (isa<PointerType>(rhsType))
1713      return CheckPointerTypesForAssignment(lhsType, rhsType);
1714
1715    if (rhsType->getAsBlockPointerType()) {
1716      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1717        return BlockVoidPointer;
1718
1719      // Treat block pointers as objects.
1720      if (getLangOptions().ObjC1 &&
1721          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
1722        return Compatible;
1723    }
1724    return Incompatible;
1725  }
1726
1727  if (isa<BlockPointerType>(lhsType)) {
1728    if (rhsType->isIntegerType())
1729      return IntToPointer;
1730
1731    // Treat block pointers as objects.
1732    if (getLangOptions().ObjC1 &&
1733        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
1734      return Compatible;
1735
1736    if (rhsType->isBlockPointerType())
1737      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1738
1739    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1740      if (RHSPT->getPointeeType()->isVoidType())
1741        return BlockVoidPointer;
1742    }
1743    return Incompatible;
1744  }
1745
1746  if (isa<PointerType>(rhsType)) {
1747    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1748    if (lhsType == Context.BoolTy)
1749      return Compatible;
1750
1751    if (lhsType->isIntegerType())
1752      return PointerToInt;
1753
1754    if (isa<PointerType>(lhsType))
1755      return CheckPointerTypesForAssignment(lhsType, rhsType);
1756
1757    if (isa<BlockPointerType>(lhsType) &&
1758        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1759      return BlockVoidPointer;
1760    return Incompatible;
1761  }
1762
1763  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1764    if (Context.typesAreCompatible(lhsType, rhsType))
1765      return Compatible;
1766  }
1767  return Incompatible;
1768}
1769
1770Sema::AssignConvertType
1771Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1772  if (getLangOptions().CPlusPlus) {
1773    if (!lhsType->isRecordType()) {
1774      // C++ 5.17p3: If the left operand is not of class type, the
1775      // expression is implicitly converted (C++ 4) to the
1776      // cv-unqualified type of the left operand.
1777      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType()))
1778        return Incompatible;
1779      else
1780        return Compatible;
1781    }
1782
1783    // FIXME: Currently, we fall through and treat C++ classes like C
1784    // structures.
1785  }
1786
1787  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1788  // a null pointer constant.
1789  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1790       lhsType->isBlockPointerType())
1791      && rExpr->isNullPointerConstant(Context)) {
1792    ImpCastExprToType(rExpr, lhsType);
1793    return Compatible;
1794  }
1795
1796  // We don't allow conversion of non-null-pointer constants to integers.
1797  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1798    return IntToBlockPointer;
1799
1800  // This check seems unnatural, however it is necessary to ensure the proper
1801  // conversion of functions/arrays. If the conversion were done for all
1802  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1803  // expressions that surpress this implicit conversion (&, sizeof).
1804  //
1805  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1806  // are better understood.
1807  if (!lhsType->isReferenceType())
1808    DefaultFunctionArrayConversion(rExpr);
1809
1810  Sema::AssignConvertType result =
1811    CheckAssignmentConstraints(lhsType, rExpr->getType());
1812
1813  // C99 6.5.16.1p2: The value of the right operand is converted to the
1814  // type of the assignment expression.
1815  if (rExpr->getType() != lhsType)
1816    ImpCastExprToType(rExpr, lhsType);
1817  return result;
1818}
1819
1820Sema::AssignConvertType
1821Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1822  return CheckAssignmentConstraints(lhsType, rhsType);
1823}
1824
1825QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1826  Diag(loc, diag::err_typecheck_invalid_operands,
1827       lex->getType().getAsString(), rex->getType().getAsString(),
1828       lex->getSourceRange(), rex->getSourceRange());
1829  return QualType();
1830}
1831
1832inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1833                                                              Expr *&rex) {
1834  // For conversion purposes, we ignore any qualifiers.
1835  // For example, "const float" and "float" are equivalent.
1836  QualType lhsType =
1837    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1838  QualType rhsType =
1839    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1840
1841  // If the vector types are identical, return.
1842  if (lhsType == rhsType)
1843    return lhsType;
1844
1845  // Handle the case of a vector & extvector type of the same size and element
1846  // type.  It would be nice if we only had one vector type someday.
1847  if (getLangOptions().LaxVectorConversions)
1848    if (const VectorType *LV = lhsType->getAsVectorType())
1849      if (const VectorType *RV = rhsType->getAsVectorType())
1850        if (LV->getElementType() == RV->getElementType() &&
1851            LV->getNumElements() == RV->getNumElements())
1852          return lhsType->isExtVectorType() ? lhsType : rhsType;
1853
1854  // If the lhs is an extended vector and the rhs is a scalar of the same type
1855  // or a literal, promote the rhs to the vector type.
1856  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1857    QualType eltType = V->getElementType();
1858
1859    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1860        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1861        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1862      ImpCastExprToType(rex, lhsType);
1863      return lhsType;
1864    }
1865  }
1866
1867  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1868  // promote the lhs to the vector type.
1869  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1870    QualType eltType = V->getElementType();
1871
1872    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1873        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1874        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1875      ImpCastExprToType(lex, rhsType);
1876      return rhsType;
1877    }
1878  }
1879
1880  // You cannot convert between vector values of different size.
1881  Diag(loc, diag::err_typecheck_vector_not_convertable,
1882       lex->getType().getAsString(), rex->getType().getAsString(),
1883       lex->getSourceRange(), rex->getSourceRange());
1884  return QualType();
1885}
1886
1887inline QualType Sema::CheckMultiplyDivideOperands(
1888  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1889{
1890  QualType lhsType = lex->getType(), rhsType = rex->getType();
1891
1892  if (lhsType->isVectorType() || rhsType->isVectorType())
1893    return CheckVectorOperands(loc, lex, rex);
1894
1895  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1896
1897  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1898    return compType;
1899  return InvalidOperands(loc, lex, rex);
1900}
1901
1902inline QualType Sema::CheckRemainderOperands(
1903  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1904{
1905  QualType lhsType = lex->getType(), rhsType = rex->getType();
1906
1907  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1908
1909  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1910    return compType;
1911  return InvalidOperands(loc, lex, rex);
1912}
1913
1914inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1915  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1916{
1917  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1918    return CheckVectorOperands(loc, lex, rex);
1919
1920  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1921
1922  // handle the common case first (both operands are arithmetic).
1923  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1924    return compType;
1925
1926  // Put any potential pointer into PExp
1927  Expr* PExp = lex, *IExp = rex;
1928  if (IExp->getType()->isPointerType())
1929    std::swap(PExp, IExp);
1930
1931  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1932    if (IExp->getType()->isIntegerType()) {
1933      // Check for arithmetic on pointers to incomplete types
1934      if (!PTy->getPointeeType()->isObjectType()) {
1935        if (PTy->getPointeeType()->isVoidType()) {
1936          Diag(loc, diag::ext_gnu_void_ptr,
1937               lex->getSourceRange(), rex->getSourceRange());
1938        } else {
1939          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1940               lex->getType().getAsString(), lex->getSourceRange());
1941          return QualType();
1942        }
1943      }
1944      return PExp->getType();
1945    }
1946  }
1947
1948  return InvalidOperands(loc, lex, rex);
1949}
1950
1951// C99 6.5.6
1952QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1953                                        SourceLocation loc, bool isCompAssign) {
1954  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1955    return CheckVectorOperands(loc, lex, rex);
1956
1957  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1958
1959  // Enforce type constraints: C99 6.5.6p3.
1960
1961  // Handle the common case first (both operands are arithmetic).
1962  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1963    return compType;
1964
1965  // Either ptr - int   or   ptr - ptr.
1966  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1967    QualType lpointee = LHSPTy->getPointeeType();
1968
1969    // The LHS must be an object type, not incomplete, function, etc.
1970    if (!lpointee->isObjectType()) {
1971      // Handle the GNU void* extension.
1972      if (lpointee->isVoidType()) {
1973        Diag(loc, diag::ext_gnu_void_ptr,
1974             lex->getSourceRange(), rex->getSourceRange());
1975      } else {
1976        Diag(loc, diag::err_typecheck_sub_ptr_object,
1977             lex->getType().getAsString(), lex->getSourceRange());
1978        return QualType();
1979      }
1980    }
1981
1982    // The result type of a pointer-int computation is the pointer type.
1983    if (rex->getType()->isIntegerType())
1984      return lex->getType();
1985
1986    // Handle pointer-pointer subtractions.
1987    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1988      QualType rpointee = RHSPTy->getPointeeType();
1989
1990      // RHS must be an object type, unless void (GNU).
1991      if (!rpointee->isObjectType()) {
1992        // Handle the GNU void* extension.
1993        if (rpointee->isVoidType()) {
1994          if (!lpointee->isVoidType())
1995            Diag(loc, diag::ext_gnu_void_ptr,
1996                 lex->getSourceRange(), rex->getSourceRange());
1997        } else {
1998          Diag(loc, diag::err_typecheck_sub_ptr_object,
1999               rex->getType().getAsString(), rex->getSourceRange());
2000          return QualType();
2001        }
2002      }
2003
2004      // Pointee types must be compatible.
2005      if (!Context.typesAreCompatible(
2006              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2007              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2008        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
2009             lex->getType().getAsString(), rex->getType().getAsString(),
2010             lex->getSourceRange(), rex->getSourceRange());
2011        return QualType();
2012      }
2013
2014      return Context.getPointerDiffType();
2015    }
2016  }
2017
2018  return InvalidOperands(loc, lex, rex);
2019}
2020
2021// C99 6.5.7
2022QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
2023                                  bool isCompAssign) {
2024  // C99 6.5.7p2: Each of the operands shall have integer type.
2025  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2026    return InvalidOperands(loc, lex, rex);
2027
2028  // Shifts don't perform usual arithmetic conversions, they just do integer
2029  // promotions on each operand. C99 6.5.7p3
2030  if (!isCompAssign)
2031    UsualUnaryConversions(lex);
2032  UsualUnaryConversions(rex);
2033
2034  // "The type of the result is that of the promoted left operand."
2035  return lex->getType();
2036}
2037
2038static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
2039                                        ASTContext& Context) {
2040  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
2041  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
2042  // ID acts sort of like void* for ObjC interfaces
2043  if (LHSIface && Context.isObjCIdType(RHS))
2044    return true;
2045  if (RHSIface && Context.isObjCIdType(LHS))
2046    return true;
2047  if (!LHSIface || !RHSIface)
2048    return false;
2049  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
2050         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
2051}
2052
2053// C99 6.5.8
2054QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
2055                                    bool isRelational) {
2056  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2057    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
2058
2059  // C99 6.5.8p3 / C99 6.5.9p4
2060  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2061    UsualArithmeticConversions(lex, rex);
2062  else {
2063    UsualUnaryConversions(lex);
2064    UsualUnaryConversions(rex);
2065  }
2066  QualType lType = lex->getType();
2067  QualType rType = rex->getType();
2068
2069  // For non-floating point types, check for self-comparisons of the form
2070  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2071  // often indicate logic errors in the program.
2072  if (!lType->isFloatingType()) {
2073    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2074      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2075        if (DRL->getDecl() == DRR->getDecl())
2076          Diag(loc, diag::warn_selfcomparison);
2077  }
2078
2079  if (isRelational) {
2080    if (lType->isRealType() && rType->isRealType())
2081      return Context.IntTy;
2082  } else {
2083    // Check for comparisons of floating point operands using != and ==.
2084    if (lType->isFloatingType()) {
2085      assert (rType->isFloatingType());
2086      CheckFloatComparison(loc,lex,rex);
2087    }
2088
2089    if (lType->isArithmeticType() && rType->isArithmeticType())
2090      return Context.IntTy;
2091  }
2092
2093  bool LHSIsNull = lex->isNullPointerConstant(Context);
2094  bool RHSIsNull = rex->isNullPointerConstant(Context);
2095
2096  // All of the following pointer related warnings are GCC extensions, except
2097  // when handling null pointer constants. One day, we can consider making them
2098  // errors (when -pedantic-errors is enabled).
2099  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2100    QualType LCanPointeeTy =
2101      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2102    QualType RCanPointeeTy =
2103      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2104
2105    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2106        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2107        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2108                                    RCanPointeeTy.getUnqualifiedType()) &&
2109        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2110      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2111           lType.getAsString(), rType.getAsString(),
2112           lex->getSourceRange(), rex->getSourceRange());
2113    }
2114    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2115    return Context.IntTy;
2116  }
2117  // Handle block pointer types.
2118  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2119    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2120    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2121
2122    if (!LHSIsNull && !RHSIsNull &&
2123        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2124      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2125           lType.getAsString(), rType.getAsString(),
2126           lex->getSourceRange(), rex->getSourceRange());
2127    }
2128    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2129    return Context.IntTy;
2130  }
2131  // Allow block pointers to be compared with null pointer constants.
2132  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2133      (lType->isPointerType() && rType->isBlockPointerType())) {
2134    if (!LHSIsNull && !RHSIsNull) {
2135      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2136           lType.getAsString(), rType.getAsString(),
2137           lex->getSourceRange(), rex->getSourceRange());
2138    }
2139    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2140    return Context.IntTy;
2141  }
2142
2143  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2144    if ((lType->isPointerType() || rType->isPointerType()) &&
2145        !Context.typesAreCompatible(lType, rType)) {
2146      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2147           lType.getAsString(), rType.getAsString(),
2148           lex->getSourceRange(), rex->getSourceRange());
2149      ImpCastExprToType(rex, lType);
2150      return Context.IntTy;
2151    }
2152    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2153      ImpCastExprToType(rex, lType);
2154      return Context.IntTy;
2155    } else {
2156      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2157        Diag(loc, diag::warn_incompatible_qualified_id_operands,
2158             lType.getAsString(), rType.getAsString(),
2159             lex->getSourceRange(), rex->getSourceRange());
2160        ImpCastExprToType(rex, lType);
2161        return Context.IntTy;
2162      }
2163    }
2164  }
2165  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2166       rType->isIntegerType()) {
2167    if (!RHSIsNull)
2168      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2169           lType.getAsString(), rType.getAsString(),
2170           lex->getSourceRange(), rex->getSourceRange());
2171    ImpCastExprToType(rex, lType); // promote the integer to pointer
2172    return Context.IntTy;
2173  }
2174  if (lType->isIntegerType() &&
2175      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2176    if (!LHSIsNull)
2177      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2178           lType.getAsString(), rType.getAsString(),
2179           lex->getSourceRange(), rex->getSourceRange());
2180    ImpCastExprToType(lex, rType); // promote the integer to pointer
2181    return Context.IntTy;
2182  }
2183  // Handle block pointers.
2184  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2185    if (!RHSIsNull)
2186      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2187           lType.getAsString(), rType.getAsString(),
2188           lex->getSourceRange(), rex->getSourceRange());
2189    ImpCastExprToType(rex, lType); // promote the integer to pointer
2190    return Context.IntTy;
2191  }
2192  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2193    if (!LHSIsNull)
2194      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2195           lType.getAsString(), rType.getAsString(),
2196           lex->getSourceRange(), rex->getSourceRange());
2197    ImpCastExprToType(lex, rType); // promote the integer to pointer
2198    return Context.IntTy;
2199  }
2200  return InvalidOperands(loc, lex, rex);
2201}
2202
2203/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2204/// operates on extended vector types.  Instead of producing an IntTy result,
2205/// like a scalar comparison, a vector comparison produces a vector of integer
2206/// types.
2207QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2208                                          SourceLocation loc,
2209                                          bool isRelational) {
2210  // Check to make sure we're operating on vectors of the same type and width,
2211  // Allowing one side to be a scalar of element type.
2212  QualType vType = CheckVectorOperands(loc, lex, rex);
2213  if (vType.isNull())
2214    return vType;
2215
2216  QualType lType = lex->getType();
2217  QualType rType = rex->getType();
2218
2219  // For non-floating point types, check for self-comparisons of the form
2220  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2221  // often indicate logic errors in the program.
2222  if (!lType->isFloatingType()) {
2223    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2224      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2225        if (DRL->getDecl() == DRR->getDecl())
2226          Diag(loc, diag::warn_selfcomparison);
2227  }
2228
2229  // Check for comparisons of floating point operands using != and ==.
2230  if (!isRelational && lType->isFloatingType()) {
2231    assert (rType->isFloatingType());
2232    CheckFloatComparison(loc,lex,rex);
2233  }
2234
2235  // Return the type for the comparison, which is the same as vector type for
2236  // integer vectors, or an integer type of identical size and number of
2237  // elements for floating point vectors.
2238  if (lType->isIntegerType())
2239    return lType;
2240
2241  const VectorType *VTy = lType->getAsVectorType();
2242
2243  // FIXME: need to deal with non-32b int / non-64b long long
2244  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2245  if (TypeSize == 32) {
2246    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2247  }
2248  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2249  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2250}
2251
2252inline QualType Sema::CheckBitwiseOperands(
2253  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
2254{
2255  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2256    return CheckVectorOperands(loc, lex, rex);
2257
2258  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2259
2260  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2261    return compType;
2262  return InvalidOperands(loc, lex, rex);
2263}
2264
2265inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2266  Expr *&lex, Expr *&rex, SourceLocation loc)
2267{
2268  UsualUnaryConversions(lex);
2269  UsualUnaryConversions(rex);
2270
2271  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2272    return Context.IntTy;
2273  return InvalidOperands(loc, lex, rex);
2274}
2275
2276inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
2277  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
2278{
2279  QualType lhsType = lex->getType();
2280  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
2281  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context);
2282
2283  switch (mlval) { // C99 6.5.16p2
2284  case Expr::MLV_Valid:
2285    break;
2286  case Expr::MLV_ConstQualified:
2287    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
2288    return QualType();
2289  case Expr::MLV_ArrayType:
2290    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
2291         lhsType.getAsString(), lex->getSourceRange());
2292    return QualType();
2293  case Expr::MLV_NotObjectType:
2294    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
2295         lhsType.getAsString(), lex->getSourceRange());
2296    return QualType();
2297  case Expr::MLV_InvalidExpression:
2298    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
2299         lex->getSourceRange());
2300    return QualType();
2301  case Expr::MLV_IncompleteType:
2302  case Expr::MLV_IncompleteVoidType:
2303    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
2304         lhsType.getAsString(), lex->getSourceRange());
2305    return QualType();
2306  case Expr::MLV_DuplicateVectorComponents:
2307    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
2308         lex->getSourceRange());
2309    return QualType();
2310  case Expr::MLV_NotBlockQualified:
2311    Diag(loc, diag::err_block_decl_ref_not_modifiable_lvalue,
2312         lex->getSourceRange());
2313    return QualType();
2314  }
2315
2316  AssignConvertType ConvTy;
2317  if (compoundType.isNull()) {
2318    // Simple assignment "x = y".
2319    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
2320
2321    // If the RHS is a unary plus or minus, check to see if they = and + are
2322    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2323    // instead of "x += 4".
2324    Expr *RHSCheck = rex;
2325    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2326      RHSCheck = ICE->getSubExpr();
2327    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2328      if ((UO->getOpcode() == UnaryOperator::Plus ||
2329           UO->getOpcode() == UnaryOperator::Minus) &&
2330          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2331          // Only if the two operators are exactly adjacent.
2332          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2333        Diag(loc, diag::warn_not_compound_assign,
2334             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2335             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2336    }
2337  } else {
2338    // Compound assignment "x += y"
2339    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
2340  }
2341
2342  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
2343                               rex, "assigning"))
2344    return QualType();
2345
2346  // C99 6.5.16p3: The type of an assignment expression is the type of the
2347  // left operand unless the left operand has qualified type, in which case
2348  // it is the unqualified version of the type of the left operand.
2349  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2350  // is converted to the type of the assignment expression (above).
2351  // C++ 5.17p1: the type of the assignment expression is that of its left
2352  // oprdu.
2353  return lhsType.getUnqualifiedType();
2354}
2355
2356inline QualType Sema::CheckCommaOperands( // C99 6.5.17
2357  Expr *&lex, Expr *&rex, SourceLocation loc) {
2358
2359  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2360  DefaultFunctionArrayConversion(rex);
2361  return rex->getType();
2362}
2363
2364/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2365/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2366QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2367  QualType resType = op->getType();
2368  assert(!resType.isNull() && "no type for increment/decrement expression");
2369
2370  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2371  if (const PointerType *pt = resType->getAsPointerType()) {
2372    if (pt->getPointeeType()->isVoidType()) {
2373      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2374    } else if (!pt->getPointeeType()->isObjectType()) {
2375      // C99 6.5.2.4p2, 6.5.6p2
2376      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2377           resType.getAsString(), op->getSourceRange());
2378      return QualType();
2379    }
2380  } else if (!resType->isRealType()) {
2381    if (resType->isComplexType())
2382      // C99 does not support ++/-- on complex types.
2383      Diag(OpLoc, diag::ext_integer_increment_complex,
2384           resType.getAsString(), op->getSourceRange());
2385    else {
2386      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2387           resType.getAsString(), op->getSourceRange());
2388      return QualType();
2389    }
2390  }
2391  // At this point, we know we have a real, complex or pointer type.
2392  // Now make sure the operand is a modifiable lvalue.
2393  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
2394  if (mlval != Expr::MLV_Valid) {
2395    // FIXME: emit a more precise diagnostic...
2396    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
2397         op->getSourceRange());
2398    return QualType();
2399  }
2400  return resType;
2401}
2402
2403/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2404/// This routine allows us to typecheck complex/recursive expressions
2405/// where the declaration is needed for type checking. We only need to
2406/// handle cases when the expression references a function designator
2407/// or is an lvalue. Here are some examples:
2408///  - &(x) => x
2409///  - &*****f => f for f a function designator.
2410///  - &s.xx => s
2411///  - &s.zz[1].yy -> s, if zz is an array
2412///  - *(x + 1) -> x, if x is an array
2413///  - &"123"[2] -> 0
2414///  - & __real__ x -> x
2415static NamedDecl *getPrimaryDecl(Expr *E) {
2416  switch (E->getStmtClass()) {
2417  case Stmt::DeclRefExprClass:
2418    return cast<DeclRefExpr>(E)->getDecl();
2419  case Stmt::MemberExprClass:
2420    // Fields cannot be declared with a 'register' storage class.
2421    // &X->f is always ok, even if X is declared register.
2422    if (cast<MemberExpr>(E)->isArrow())
2423      return 0;
2424    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2425  case Stmt::ArraySubscriptExprClass: {
2426    // &X[4] and &4[X] refers to X if X is not a pointer.
2427
2428    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2429    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
2430    if (!VD || VD->getType()->isPointerType())
2431      return 0;
2432    else
2433      return VD;
2434  }
2435  case Stmt::UnaryOperatorClass: {
2436    UnaryOperator *UO = cast<UnaryOperator>(E);
2437
2438    switch(UO->getOpcode()) {
2439    case UnaryOperator::Deref: {
2440      // *(X + 1) refers to X if X is not a pointer.
2441      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
2442        ValueDecl *VD = dyn_cast<ValueDecl>(D);
2443        if (!VD || VD->getType()->isPointerType())
2444          return 0;
2445        return VD;
2446      }
2447      return 0;
2448    }
2449    case UnaryOperator::Real:
2450    case UnaryOperator::Imag:
2451    case UnaryOperator::Extension:
2452      return getPrimaryDecl(UO->getSubExpr());
2453    default:
2454      return 0;
2455    }
2456  }
2457  case Stmt::BinaryOperatorClass: {
2458    BinaryOperator *BO = cast<BinaryOperator>(E);
2459
2460    // Handle cases involving pointer arithmetic. The result of an
2461    // Assign or AddAssign is not an lvalue so they can be ignored.
2462
2463    // (x + n) or (n + x) => x
2464    if (BO->getOpcode() == BinaryOperator::Add) {
2465      if (BO->getLHS()->getType()->isPointerType()) {
2466        return getPrimaryDecl(BO->getLHS());
2467      } else if (BO->getRHS()->getType()->isPointerType()) {
2468        return getPrimaryDecl(BO->getRHS());
2469      }
2470    }
2471
2472    return 0;
2473  }
2474  case Stmt::ParenExprClass:
2475    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2476  case Stmt::ImplicitCastExprClass:
2477    // &X[4] when X is an array, has an implicit cast from array to pointer.
2478    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2479  default:
2480    return 0;
2481  }
2482}
2483
2484/// CheckAddressOfOperand - The operand of & must be either a function
2485/// designator or an lvalue designating an object. If it is an lvalue, the
2486/// object cannot be declared with storage class register or be a bit field.
2487/// Note: The usual conversions are *not* applied to the operand of the &
2488/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2489QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2490  if (getLangOptions().C99) {
2491    // Implement C99-only parts of addressof rules.
2492    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2493      if (uOp->getOpcode() == UnaryOperator::Deref)
2494        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2495        // (assuming the deref expression is valid).
2496        return uOp->getSubExpr()->getType();
2497    }
2498    // Technically, there should be a check for array subscript
2499    // expressions here, but the result of one is always an lvalue anyway.
2500  }
2501  NamedDecl *dcl = getPrimaryDecl(op);
2502  Expr::isLvalueResult lval = op->isLvalue(Context);
2503
2504  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2505    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2506      // FIXME: emit more specific diag...
2507      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2508           op->getSourceRange());
2509      return QualType();
2510    }
2511  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2512    if (MemExpr->getMemberDecl()->isBitField()) {
2513      Diag(OpLoc, diag::err_typecheck_address_of,
2514           std::string("bit-field"), op->getSourceRange());
2515      return QualType();
2516    }
2517  // Check for Apple extension for accessing vector components.
2518  } else if (isa<ArraySubscriptExpr>(op) &&
2519           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2520    Diag(OpLoc, diag::err_typecheck_address_of,
2521         std::string("vector"), op->getSourceRange());
2522    return QualType();
2523  } else if (dcl) { // C99 6.5.3.2p1
2524    // We have an lvalue with a decl. Make sure the decl is not declared
2525    // with the register storage-class specifier.
2526    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2527      if (vd->getStorageClass() == VarDecl::Register) {
2528        Diag(OpLoc, diag::err_typecheck_address_of,
2529             std::string("register variable"), op->getSourceRange());
2530        return QualType();
2531      }
2532    } else
2533      assert(0 && "Unknown/unexpected decl type");
2534  }
2535
2536  // If the operand has type "type", the result has type "pointer to type".
2537  return Context.getPointerType(op->getType());
2538}
2539
2540QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2541  UsualUnaryConversions(op);
2542  QualType qType = op->getType();
2543
2544  if (const PointerType *PT = qType->getAsPointerType()) {
2545    // Note that per both C89 and C99, this is always legal, even
2546    // if ptype is an incomplete type or void.
2547    // It would be possible to warn about dereferencing a
2548    // void pointer, but it's completely well-defined,
2549    // and such a warning is unlikely to catch any mistakes.
2550    return PT->getPointeeType();
2551  }
2552  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2553       qType.getAsString(), op->getSourceRange());
2554  return QualType();
2555}
2556
2557static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2558  tok::TokenKind Kind) {
2559  BinaryOperator::Opcode Opc;
2560  switch (Kind) {
2561  default: assert(0 && "Unknown binop!");
2562  case tok::star:                 Opc = BinaryOperator::Mul; break;
2563  case tok::slash:                Opc = BinaryOperator::Div; break;
2564  case tok::percent:              Opc = BinaryOperator::Rem; break;
2565  case tok::plus:                 Opc = BinaryOperator::Add; break;
2566  case tok::minus:                Opc = BinaryOperator::Sub; break;
2567  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2568  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2569  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2570  case tok::less:                 Opc = BinaryOperator::LT; break;
2571  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2572  case tok::greater:              Opc = BinaryOperator::GT; break;
2573  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2574  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2575  case tok::amp:                  Opc = BinaryOperator::And; break;
2576  case tok::caret:                Opc = BinaryOperator::Xor; break;
2577  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2578  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2579  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2580  case tok::equal:                Opc = BinaryOperator::Assign; break;
2581  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2582  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2583  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2584  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2585  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2586  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2587  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2588  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2589  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2590  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2591  case tok::comma:                Opc = BinaryOperator::Comma; break;
2592  }
2593  return Opc;
2594}
2595
2596static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2597  tok::TokenKind Kind) {
2598  UnaryOperator::Opcode Opc;
2599  switch (Kind) {
2600  default: assert(0 && "Unknown unary op!");
2601  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2602  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2603  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2604  case tok::star:         Opc = UnaryOperator::Deref; break;
2605  case tok::plus:         Opc = UnaryOperator::Plus; break;
2606  case tok::minus:        Opc = UnaryOperator::Minus; break;
2607  case tok::tilde:        Opc = UnaryOperator::Not; break;
2608  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2609  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2610  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2611  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2612  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2613  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2614  }
2615  return Opc;
2616}
2617
2618// Binary Operators.  'Tok' is the token for the operator.
2619Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2620                                    ExprTy *LHS, ExprTy *RHS) {
2621  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2622  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2623
2624  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2625  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2626
2627  QualType ResultTy;  // Result type of the binary operator.
2628  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2629
2630  switch (Opc) {
2631  default:
2632    assert(0 && "Unknown binary expr!");
2633  case BinaryOperator::Assign:
2634    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2635    break;
2636  case BinaryOperator::Mul:
2637  case BinaryOperator::Div:
2638    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2639    break;
2640  case BinaryOperator::Rem:
2641    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2642    break;
2643  case BinaryOperator::Add:
2644    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2645    break;
2646  case BinaryOperator::Sub:
2647    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2648    break;
2649  case BinaryOperator::Shl:
2650  case BinaryOperator::Shr:
2651    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2652    break;
2653  case BinaryOperator::LE:
2654  case BinaryOperator::LT:
2655  case BinaryOperator::GE:
2656  case BinaryOperator::GT:
2657    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2658    break;
2659  case BinaryOperator::EQ:
2660  case BinaryOperator::NE:
2661    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2662    break;
2663  case BinaryOperator::And:
2664  case BinaryOperator::Xor:
2665  case BinaryOperator::Or:
2666    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2667    break;
2668  case BinaryOperator::LAnd:
2669  case BinaryOperator::LOr:
2670    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2671    break;
2672  case BinaryOperator::MulAssign:
2673  case BinaryOperator::DivAssign:
2674    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2675    if (!CompTy.isNull())
2676      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2677    break;
2678  case BinaryOperator::RemAssign:
2679    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2680    if (!CompTy.isNull())
2681      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2682    break;
2683  case BinaryOperator::AddAssign:
2684    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2685    if (!CompTy.isNull())
2686      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2687    break;
2688  case BinaryOperator::SubAssign:
2689    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2690    if (!CompTy.isNull())
2691      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2692    break;
2693  case BinaryOperator::ShlAssign:
2694  case BinaryOperator::ShrAssign:
2695    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2696    if (!CompTy.isNull())
2697      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2698    break;
2699  case BinaryOperator::AndAssign:
2700  case BinaryOperator::XorAssign:
2701  case BinaryOperator::OrAssign:
2702    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2703    if (!CompTy.isNull())
2704      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2705    break;
2706  case BinaryOperator::Comma:
2707    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2708    break;
2709  }
2710  if (ResultTy.isNull())
2711    return true;
2712  if (CompTy.isNull())
2713    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2714  else
2715    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2716}
2717
2718// Unary Operators.  'Tok' is the token for the operator.
2719Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2720                                      ExprTy *input) {
2721  Expr *Input = (Expr*)input;
2722  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2723  QualType resultType;
2724  switch (Opc) {
2725  default:
2726    assert(0 && "Unimplemented unary expr!");
2727  case UnaryOperator::PreInc:
2728  case UnaryOperator::PreDec:
2729    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2730    break;
2731  case UnaryOperator::AddrOf:
2732    resultType = CheckAddressOfOperand(Input, OpLoc);
2733    break;
2734  case UnaryOperator::Deref:
2735    DefaultFunctionArrayConversion(Input);
2736    resultType = CheckIndirectionOperand(Input, OpLoc);
2737    break;
2738  case UnaryOperator::Plus:
2739  case UnaryOperator::Minus:
2740    UsualUnaryConversions(Input);
2741    resultType = Input->getType();
2742    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2743      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2744                  resultType.getAsString());
2745    break;
2746  case UnaryOperator::Not: // bitwise complement
2747    UsualUnaryConversions(Input);
2748    resultType = Input->getType();
2749    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2750    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2751      // C99 does not support '~' for complex conjugation.
2752      Diag(OpLoc, diag::ext_integer_complement_complex,
2753           resultType.getAsString(), Input->getSourceRange());
2754    else if (!resultType->isIntegerType())
2755      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2756                  resultType.getAsString(), Input->getSourceRange());
2757    break;
2758  case UnaryOperator::LNot: // logical negation
2759    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2760    DefaultFunctionArrayConversion(Input);
2761    resultType = Input->getType();
2762    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2763      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2764                  resultType.getAsString());
2765    // LNot always has type int. C99 6.5.3.3p5.
2766    resultType = Context.IntTy;
2767    break;
2768  case UnaryOperator::SizeOf:
2769    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2770                                           Input->getSourceRange(), true);
2771    break;
2772  case UnaryOperator::AlignOf:
2773    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2774                                           Input->getSourceRange(), false);
2775    break;
2776  case UnaryOperator::Real:
2777  case UnaryOperator::Imag:
2778    resultType = CheckRealImagOperand(Input, OpLoc);
2779    break;
2780  case UnaryOperator::Extension:
2781    resultType = Input->getType();
2782    break;
2783  }
2784  if (resultType.isNull())
2785    return true;
2786  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2787}
2788
2789/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2790Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2791                                      SourceLocation LabLoc,
2792                                      IdentifierInfo *LabelII) {
2793  // Look up the record for this label identifier.
2794  LabelStmt *&LabelDecl = LabelMap[LabelII];
2795
2796  // If we haven't seen this label yet, create a forward reference. It
2797  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
2798  if (LabelDecl == 0)
2799    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2800
2801  // Create the AST node.  The address of a label always has type 'void*'.
2802  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2803                           Context.getPointerType(Context.VoidTy));
2804}
2805
2806Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2807                                     SourceLocation RPLoc) { // "({..})"
2808  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2809  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2810  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2811
2812  // FIXME: there are a variety of strange constraints to enforce here, for
2813  // example, it is not possible to goto into a stmt expression apparently.
2814  // More semantic analysis is needed.
2815
2816  // FIXME: the last statement in the compount stmt has its value used.  We
2817  // should not warn about it being unused.
2818
2819  // If there are sub stmts in the compound stmt, take the type of the last one
2820  // as the type of the stmtexpr.
2821  QualType Ty = Context.VoidTy;
2822
2823  if (!Compound->body_empty()) {
2824    Stmt *LastStmt = Compound->body_back();
2825    // If LastStmt is a label, skip down through into the body.
2826    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
2827      LastStmt = Label->getSubStmt();
2828
2829    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
2830      Ty = LastExpr->getType();
2831  }
2832
2833  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2834}
2835
2836Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2837                                            SourceLocation TypeLoc,
2838                                            TypeTy *argty,
2839                                            OffsetOfComponent *CompPtr,
2840                                            unsigned NumComponents,
2841                                            SourceLocation RPLoc) {
2842  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2843  assert(!ArgTy.isNull() && "Missing type argument!");
2844
2845  // We must have at least one component that refers to the type, and the first
2846  // one is known to be a field designator.  Verify that the ArgTy represents
2847  // a struct/union/class.
2848  if (!ArgTy->isRecordType())
2849    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2850
2851  // Otherwise, create a compound literal expression as the base, and
2852  // iteratively process the offsetof designators.
2853  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2854
2855  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2856  // GCC extension, diagnose them.
2857  if (NumComponents != 1)
2858    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2859         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2860
2861  for (unsigned i = 0; i != NumComponents; ++i) {
2862    const OffsetOfComponent &OC = CompPtr[i];
2863    if (OC.isBrackets) {
2864      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2865      const ArrayType *AT = Context.getAsArrayType(Res->getType());
2866      if (!AT) {
2867        delete Res;
2868        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2869                    Res->getType().getAsString());
2870      }
2871
2872      // FIXME: C++: Verify that operator[] isn't overloaded.
2873
2874      // C99 6.5.2.1p1
2875      Expr *Idx = static_cast<Expr*>(OC.U.E);
2876      if (!Idx->getType()->isIntegerType())
2877        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2878                    Idx->getSourceRange());
2879
2880      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2881      continue;
2882    }
2883
2884    const RecordType *RC = Res->getType()->getAsRecordType();
2885    if (!RC) {
2886      delete Res;
2887      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2888                  Res->getType().getAsString());
2889    }
2890
2891    // Get the decl corresponding to this.
2892    RecordDecl *RD = RC->getDecl();
2893    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2894    if (!MemberDecl)
2895      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2896                  OC.U.IdentInfo->getName(),
2897                  SourceRange(OC.LocStart, OC.LocEnd));
2898
2899    // FIXME: C++: Verify that MemberDecl isn't a static field.
2900    // FIXME: Verify that MemberDecl isn't a bitfield.
2901    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2902    // matter here.
2903    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2904  }
2905
2906  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2907                           BuiltinLoc);
2908}
2909
2910
2911Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2912                                                TypeTy *arg1, TypeTy *arg2,
2913                                                SourceLocation RPLoc) {
2914  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2915  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2916
2917  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2918
2919  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2920}
2921
2922Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2923                                       ExprTy *expr1, ExprTy *expr2,
2924                                       SourceLocation RPLoc) {
2925  Expr *CondExpr = static_cast<Expr*>(cond);
2926  Expr *LHSExpr = static_cast<Expr*>(expr1);
2927  Expr *RHSExpr = static_cast<Expr*>(expr2);
2928
2929  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2930
2931  // The conditional expression is required to be a constant expression.
2932  llvm::APSInt condEval(32);
2933  SourceLocation ExpLoc;
2934  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2935    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2936                 CondExpr->getSourceRange());
2937
2938  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2939  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2940                                               RHSExpr->getType();
2941  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2942}
2943
2944//===----------------------------------------------------------------------===//
2945// Clang Extensions.
2946//===----------------------------------------------------------------------===//
2947
2948/// ActOnBlockStart - This callback is invoked when a block literal is started.
2949void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
2950  // Analyze block parameters.
2951  BlockSemaInfo *BSI = new BlockSemaInfo();
2952
2953  // Add BSI to CurBlock.
2954  BSI->PrevBlockInfo = CurBlock;
2955  CurBlock = BSI;
2956
2957  BSI->ReturnType = 0;
2958  BSI->TheScope = BlockScope;
2959
2960  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
2961  PushDeclContext(BSI->TheDecl);
2962}
2963
2964void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
2965  // Analyze arguments to block.
2966  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2967         "Not a function declarator!");
2968  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
2969
2970  CurBlock->hasPrototype = FTI.hasPrototype;
2971  CurBlock->isVariadic = true;
2972
2973  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
2974  // no arguments, not a function that takes a single void argument.
2975  if (FTI.hasPrototype &&
2976      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2977      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
2978        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
2979    // empty arg list, don't push any params.
2980    CurBlock->isVariadic = false;
2981  } else if (FTI.hasPrototype) {
2982    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2983      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
2984    CurBlock->isVariadic = FTI.isVariadic;
2985  }
2986  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
2987
2988  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
2989       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
2990    // If this has an identifier, add it to the scope stack.
2991    if ((*AI)->getIdentifier())
2992      PushOnScopeChains(*AI, CurBlock->TheScope);
2993}
2994
2995/// ActOnBlockError - If there is an error parsing a block, this callback
2996/// is invoked to pop the information about the block from the action impl.
2997void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
2998  // Ensure that CurBlock is deleted.
2999  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
3000
3001  // Pop off CurBlock, handle nested blocks.
3002  CurBlock = CurBlock->PrevBlockInfo;
3003
3004  // FIXME: Delete the ParmVarDecl objects as well???
3005
3006}
3007
3008/// ActOnBlockStmtExpr - This is called when the body of a block statement
3009/// literal was successfully completed.  ^(int x){...}
3010Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
3011                                          Scope *CurScope) {
3012  // Ensure that CurBlock is deleted.
3013  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
3014  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
3015
3016  PopDeclContext();
3017
3018  // Pop off CurBlock, handle nested blocks.
3019  CurBlock = CurBlock->PrevBlockInfo;
3020
3021  QualType RetTy = Context.VoidTy;
3022  if (BSI->ReturnType)
3023    RetTy = QualType(BSI->ReturnType, 0);
3024
3025  llvm::SmallVector<QualType, 8> ArgTypes;
3026  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
3027    ArgTypes.push_back(BSI->Params[i]->getType());
3028
3029  QualType BlockTy;
3030  if (!BSI->hasPrototype)
3031    BlockTy = Context.getFunctionTypeNoProto(RetTy);
3032  else
3033    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
3034                                      BSI->isVariadic);
3035
3036  BlockTy = Context.getBlockPointerType(BlockTy);
3037
3038  BSI->TheDecl->setBody(Body.take());
3039  return new BlockExpr(BSI->TheDecl, BlockTy);
3040}
3041
3042/// ExprsMatchFnType - return true if the Exprs in array Args have
3043/// QualTypes that match the QualTypes of the arguments of the FnType.
3044/// The number of arguments has already been validated to match the number of
3045/// arguments in FnType.
3046static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
3047                             ASTContext &Context) {
3048  unsigned NumParams = FnType->getNumArgs();
3049  for (unsigned i = 0; i != NumParams; ++i) {
3050    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
3051    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
3052
3053    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
3054      return false;
3055  }
3056  return true;
3057}
3058
3059Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
3060                                         SourceLocation *CommaLocs,
3061                                         SourceLocation BuiltinLoc,
3062                                         SourceLocation RParenLoc) {
3063  // __builtin_overload requires at least 2 arguments
3064  if (NumArgs < 2)
3065    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
3066                SourceRange(BuiltinLoc, RParenLoc));
3067
3068  // The first argument is required to be a constant expression.  It tells us
3069  // the number of arguments to pass to each of the functions to be overloaded.
3070  Expr **Args = reinterpret_cast<Expr**>(args);
3071  Expr *NParamsExpr = Args[0];
3072  llvm::APSInt constEval(32);
3073  SourceLocation ExpLoc;
3074  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
3075    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
3076                NParamsExpr->getSourceRange());
3077
3078  // Verify that the number of parameters is > 0
3079  unsigned NumParams = constEval.getZExtValue();
3080  if (NumParams == 0)
3081    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
3082                NParamsExpr->getSourceRange());
3083  // Verify that we have at least 1 + NumParams arguments to the builtin.
3084  if ((NumParams + 1) > NumArgs)
3085    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
3086                SourceRange(BuiltinLoc, RParenLoc));
3087
3088  // Figure out the return type, by matching the args to one of the functions
3089  // listed after the parameters.
3090  OverloadExpr *OE = 0;
3091  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
3092    // UsualUnaryConversions will convert the function DeclRefExpr into a
3093    // pointer to function.
3094    Expr *Fn = UsualUnaryConversions(Args[i]);
3095    const FunctionTypeProto *FnType = 0;
3096    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3097      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3098
3099    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3100    // parameters, and the number of parameters must match the value passed to
3101    // the builtin.
3102    if (!FnType || (FnType->getNumArgs() != NumParams))
3103      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
3104                  Fn->getSourceRange());
3105
3106    // Scan the parameter list for the FunctionType, checking the QualType of
3107    // each parameter against the QualTypes of the arguments to the builtin.
3108    // If they match, return a new OverloadExpr.
3109    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3110      if (OE)
3111        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
3112                    OE->getFn()->getSourceRange());
3113      // Remember our match, and continue processing the remaining arguments
3114      // to catch any errors.
3115      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
3116                            BuiltinLoc, RParenLoc);
3117    }
3118  }
3119  // Return the newly created OverloadExpr node, if we succeded in matching
3120  // exactly one of the candidate functions.
3121  if (OE)
3122    return OE;
3123
3124  // If we didn't find a matching function Expr in the __builtin_overload list
3125  // the return an error.
3126  std::string typeNames;
3127  for (unsigned i = 0; i != NumParams; ++i) {
3128    if (i != 0) typeNames += ", ";
3129    typeNames += Args[i+1]->getType().getAsString();
3130  }
3131
3132  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
3133              SourceRange(BuiltinLoc, RParenLoc));
3134}
3135
3136Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3137                                  ExprTy *expr, TypeTy *type,
3138                                  SourceLocation RPLoc) {
3139  Expr *E = static_cast<Expr*>(expr);
3140  QualType T = QualType::getFromOpaquePtr(type);
3141
3142  InitBuiltinVaListType();
3143
3144  // Get the va_list type
3145  QualType VaListType = Context.getBuiltinVaListType();
3146  // Deal with implicit array decay; for example, on x86-64,
3147  // va_list is an array, but it's supposed to decay to
3148  // a pointer for va_arg.
3149  if (VaListType->isArrayType())
3150    VaListType = Context.getArrayDecayedType(VaListType);
3151  // Make sure the input expression also decays appropriately.
3152  UsualUnaryConversions(E);
3153
3154  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3155    return Diag(E->getLocStart(),
3156                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3157                E->getType().getAsString(),
3158                E->getSourceRange());
3159
3160  // FIXME: Warn if a non-POD type is passed in.
3161
3162  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
3163}
3164
3165bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3166                                    SourceLocation Loc,
3167                                    QualType DstType, QualType SrcType,
3168                                    Expr *SrcExpr, const char *Flavor) {
3169  // Decode the result (notice that AST's are still created for extensions).
3170  bool isInvalid = false;
3171  unsigned DiagKind;
3172  switch (ConvTy) {
3173  default: assert(0 && "Unknown conversion type");
3174  case Compatible: return false;
3175  case PointerToInt:
3176    DiagKind = diag::ext_typecheck_convert_pointer_int;
3177    break;
3178  case IntToPointer:
3179    DiagKind = diag::ext_typecheck_convert_int_pointer;
3180    break;
3181  case IncompatiblePointer:
3182    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3183    break;
3184  case FunctionVoidPointer:
3185    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3186    break;
3187  case CompatiblePointerDiscardsQualifiers:
3188    // If the qualifiers lost were because we were applying the
3189    // (deprecated) C++ conversion from a string literal to a char*
3190    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3191    // Ideally, this check would be performed in
3192    // CheckPointerTypesForAssignment. However, that would require a
3193    // bit of refactoring (so that the second argument is an
3194    // expression, rather than a type), which should be done as part
3195    // of a larger effort to fix CheckPointerTypesForAssignment for
3196    // C++ semantics.
3197    if (getLangOptions().CPlusPlus &&
3198        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3199      return false;
3200    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3201    break;
3202  case IntToBlockPointer:
3203    DiagKind = diag::err_int_to_block_pointer;
3204    break;
3205  case IncompatibleBlockPointer:
3206    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3207    break;
3208  case BlockVoidPointer:
3209    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3210    break;
3211  case IncompatibleObjCQualifiedId:
3212    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3213    // it can give a more specific diagnostic.
3214    DiagKind = diag::warn_incompatible_qualified_id;
3215    break;
3216  case Incompatible:
3217    DiagKind = diag::err_typecheck_convert_incompatible;
3218    isInvalid = true;
3219    break;
3220  }
3221
3222  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
3223       SrcExpr->getSourceRange());
3224  return isInvalid;
3225}
3226