SemaExpr.cpp revision 981892622a7fbb6d0e7eb7759ed7e8039e46bef9
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>(Context)) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>(Context);
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(Context,
62                                                    MD->getSelector(),
63                                                    MD->isInstanceMethod());
64          isSilenced |= MD && MD->getAttr<DeprecatedAttr>(Context);
65        }
66      }
67    }
68
69    if (!isSilenced)
70      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
71  }
72
73  // See if this is a deleted function.
74  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75    if (FD->isDeleted()) {
76      Diag(Loc, diag::err_deleted_function_use);
77      Diag(D->getLocation(), diag::note_unavailable_here) << true;
78      return true;
79    }
80  }
81
82  // See if the decl is unavailable
83  if (D->getAttr<UnavailableAttr>(Context)) {
84    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
85    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
86  }
87
88  return false;
89}
90
91/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
92/// (and other functions in future), which have been declared with sentinel
93/// attribute. It warns if call does not have the sentinel argument.
94///
95void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
96                                 Expr **Args, unsigned NumArgs)
97{
98  const SentinelAttr *attr = D->getAttr<SentinelAttr>(Context);
99  if (!attr)
100    return;
101  int sentinelPos = attr->getSentinel();
102  int nullPos = attr->getNullPos();
103
104  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
105  // base class. Then we won't be needing two versions of the same code.
106  unsigned int i = 0;
107  bool warnNotEnoughArgs = false;
108  int isMethod = 0;
109  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
110    // skip over named parameters.
111    ObjCMethodDecl::param_iterator P, E = MD->param_end();
112    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
113      if (nullPos)
114        --nullPos;
115      else
116        ++i;
117    }
118    warnNotEnoughArgs = (P != E || i >= NumArgs);
119    isMethod = 1;
120  }
121  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
122    // skip over named parameters.
123    ObjCMethodDecl::param_iterator P, E = FD->param_end();
124    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
125      if (nullPos)
126        --nullPos;
127      else
128        ++i;
129    }
130    warnNotEnoughArgs = (P != E || i >= NumArgs);
131  }
132  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
133    // block or function pointer call.
134    QualType Ty = V->getType();
135    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
136      const FunctionType *FT = Ty->isFunctionPointerType()
137      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
138      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
139      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
140        unsigned NumArgsInProto = Proto->getNumArgs();
141        unsigned k;
142        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
143          if (nullPos)
144            --nullPos;
145          else
146            ++i;
147        }
148        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
149      }
150      if (Ty->isBlockPointerType())
151        isMethod = 2;
152    }
153    else
154      return;
155  }
156  else
157    return;
158
159  if (warnNotEnoughArgs) {
160    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
161    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
162    return;
163  }
164  int sentinel = i;
165  while (sentinelPos > 0 && i < NumArgs-1) {
166    --sentinelPos;
167    ++i;
168  }
169  if (sentinelPos > 0) {
170    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
171    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
172    return;
173  }
174  while (i < NumArgs-1) {
175    ++i;
176    ++sentinel;
177  }
178  Expr *sentinelExpr = Args[sentinel];
179  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
180                       !sentinelExpr->isNullPointerConstant(Context))) {
181    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
182    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
183  }
184  return;
185}
186
187SourceRange Sema::getExprRange(ExprTy *E) const {
188  Expr *Ex = (Expr *)E;
189  return Ex? Ex->getSourceRange() : SourceRange();
190}
191
192//===----------------------------------------------------------------------===//
193//  Standard Promotions and Conversions
194//===----------------------------------------------------------------------===//
195
196/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
197void Sema::DefaultFunctionArrayConversion(Expr *&E) {
198  QualType Ty = E->getType();
199  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
200
201  if (Ty->isFunctionType())
202    ImpCastExprToType(E, Context.getPointerType(Ty));
203  else if (Ty->isArrayType()) {
204    // In C90 mode, arrays only promote to pointers if the array expression is
205    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
206    // type 'array of type' is converted to an expression that has type 'pointer
207    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
208    // that has type 'array of type' ...".  The relevant change is "an lvalue"
209    // (C90) to "an expression" (C99).
210    //
211    // C++ 4.2p1:
212    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
213    // T" can be converted to an rvalue of type "pointer to T".
214    //
215    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
216        E->isLvalue(Context) == Expr::LV_Valid)
217      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
218  }
219}
220
221/// \brief Whether this is a promotable bitfield reference according
222/// to C99 6.3.1.1p2, bullet 2.
223///
224/// \returns the type this bit-field will promote to, or NULL if no
225/// promotion occurs.
226static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
227  FieldDecl *Field = E->getBitField();
228  if (!Field)
229    return QualType();
230
231  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
232  if (!BT)
233    return QualType();
234
235  if (BT->getKind() != BuiltinType::Bool &&
236      BT->getKind() != BuiltinType::Int &&
237      BT->getKind() != BuiltinType::UInt)
238    return QualType();
239
240  llvm::APSInt BitWidthAP;
241  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
242    return QualType();
243
244  uint64_t BitWidth = BitWidthAP.getZExtValue();
245  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
246  if (BitWidth < IntSize ||
247      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
248    return Context.IntTy;
249
250  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
251    return Context.UnsignedIntTy;
252
253  return QualType();
254}
255
256/// UsualUnaryConversions - Performs various conversions that are common to most
257/// operators (C99 6.3). The conversions of array and function types are
258/// sometimes surpressed. For example, the array->pointer conversion doesn't
259/// apply if the array is an argument to the sizeof or address (&) operators.
260/// In these instances, this routine should *not* be called.
261Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
262  QualType Ty = Expr->getType();
263  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
264
265  // C99 6.3.1.1p2:
266  //
267  //   The following may be used in an expression wherever an int or
268  //   unsigned int may be used:
269  //     - an object or expression with an integer type whose integer
270  //       conversion rank is less than or equal to the rank of int
271  //       and unsigned int.
272  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
273  //
274  //   If an int can represent all values of the original type, the
275  //   value is converted to an int; otherwise, it is converted to an
276  //   unsigned int. These are called the integer promotions. All
277  //   other types are unchanged by the integer promotions.
278  if (Ty->isPromotableIntegerType()) {
279    ImpCastExprToType(Expr, Context.IntTy);
280    return Expr;
281  } else {
282    QualType T = isPromotableBitField(Expr, Context);
283    if (!T.isNull()) {
284      ImpCastExprToType(Expr, T);
285      return Expr;
286    }
287  }
288
289  DefaultFunctionArrayConversion(Expr);
290  return Expr;
291}
292
293/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
294/// do not have a prototype. Arguments that have type float are promoted to
295/// double. All other argument types are converted by UsualUnaryConversions().
296void Sema::DefaultArgumentPromotion(Expr *&Expr) {
297  QualType Ty = Expr->getType();
298  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
299
300  // If this is a 'float' (CVR qualified or typedef) promote to double.
301  if (const BuiltinType *BT = Ty->getAsBuiltinType())
302    if (BT->getKind() == BuiltinType::Float)
303      return ImpCastExprToType(Expr, Context.DoubleTy);
304
305  UsualUnaryConversions(Expr);
306}
307
308/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
309/// will warn if the resulting type is not a POD type, and rejects ObjC
310/// interfaces passed by value.  This returns true if the argument type is
311/// completely illegal.
312bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
313  DefaultArgumentPromotion(Expr);
314
315  if (Expr->getType()->isObjCInterfaceType()) {
316    Diag(Expr->getLocStart(),
317         diag::err_cannot_pass_objc_interface_to_vararg)
318      << Expr->getType() << CT;
319    return true;
320  }
321
322  if (!Expr->getType()->isPODType())
323    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
324      << Expr->getType() << CT;
325
326  return false;
327}
328
329
330/// UsualArithmeticConversions - Performs various conversions that are common to
331/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
332/// routine returns the first non-arithmetic type found. The client is
333/// responsible for emitting appropriate error diagnostics.
334/// FIXME: verify the conversion rules for "complex int" are consistent with
335/// GCC.
336QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
337                                          bool isCompAssign) {
338  if (!isCompAssign)
339    UsualUnaryConversions(lhsExpr);
340
341  UsualUnaryConversions(rhsExpr);
342
343  // For conversion purposes, we ignore any qualifiers.
344  // For example, "const float" and "float" are equivalent.
345  QualType lhs =
346    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
347  QualType rhs =
348    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
349
350  // If both types are identical, no conversion is needed.
351  if (lhs == rhs)
352    return lhs;
353
354  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
355  // The caller can deal with this (e.g. pointer + int).
356  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
357    return lhs;
358
359  // Perform bitfield promotions.
360  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
361  if (!LHSBitfieldPromoteTy.isNull())
362    lhs = LHSBitfieldPromoteTy;
363  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
364  if (!RHSBitfieldPromoteTy.isNull())
365    rhs = RHSBitfieldPromoteTy;
366
367  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
368  if (!isCompAssign)
369    ImpCastExprToType(lhsExpr, destType);
370  ImpCastExprToType(rhsExpr, destType);
371  return destType;
372}
373
374QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
375  // Perform the usual unary conversions. We do this early so that
376  // integral promotions to "int" can allow us to exit early, in the
377  // lhs == rhs check. Also, for conversion purposes, we ignore any
378  // qualifiers.  For example, "const float" and "float" are
379  // equivalent.
380  if (lhs->isPromotableIntegerType())
381    lhs = Context.IntTy;
382  else
383    lhs = lhs.getUnqualifiedType();
384  if (rhs->isPromotableIntegerType())
385    rhs = Context.IntTy;
386  else
387    rhs = rhs.getUnqualifiedType();
388
389  // If both types are identical, no conversion is needed.
390  if (lhs == rhs)
391    return lhs;
392
393  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
394  // The caller can deal with this (e.g. pointer + int).
395  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
396    return lhs;
397
398  // At this point, we have two different arithmetic types.
399
400  // Handle complex types first (C99 6.3.1.8p1).
401  if (lhs->isComplexType() || rhs->isComplexType()) {
402    // if we have an integer operand, the result is the complex type.
403    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
404      // convert the rhs to the lhs complex type.
405      return lhs;
406    }
407    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
408      // convert the lhs to the rhs complex type.
409      return rhs;
410    }
411    // This handles complex/complex, complex/float, or float/complex.
412    // When both operands are complex, the shorter operand is converted to the
413    // type of the longer, and that is the type of the result. This corresponds
414    // to what is done when combining two real floating-point operands.
415    // The fun begins when size promotion occur across type domains.
416    // From H&S 6.3.4: When one operand is complex and the other is a real
417    // floating-point type, the less precise type is converted, within it's
418    // real or complex domain, to the precision of the other type. For example,
419    // when combining a "long double" with a "double _Complex", the
420    // "double _Complex" is promoted to "long double _Complex".
421    int result = Context.getFloatingTypeOrder(lhs, rhs);
422
423    if (result > 0) { // The left side is bigger, convert rhs.
424      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
425    } else if (result < 0) { // The right side is bigger, convert lhs.
426      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
427    }
428    // At this point, lhs and rhs have the same rank/size. Now, make sure the
429    // domains match. This is a requirement for our implementation, C99
430    // does not require this promotion.
431    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
432      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
433        return rhs;
434      } else { // handle "_Complex double, double".
435        return lhs;
436      }
437    }
438    return lhs; // The domain/size match exactly.
439  }
440  // Now handle "real" floating types (i.e. float, double, long double).
441  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
442    // if we have an integer operand, the result is the real floating type.
443    if (rhs->isIntegerType()) {
444      // convert rhs to the lhs floating point type.
445      return lhs;
446    }
447    if (rhs->isComplexIntegerType()) {
448      // convert rhs to the complex floating point type.
449      return Context.getComplexType(lhs);
450    }
451    if (lhs->isIntegerType()) {
452      // convert lhs to the rhs floating point type.
453      return rhs;
454    }
455    if (lhs->isComplexIntegerType()) {
456      // convert lhs to the complex floating point type.
457      return Context.getComplexType(rhs);
458    }
459    // We have two real floating types, float/complex combos were handled above.
460    // Convert the smaller operand to the bigger result.
461    int result = Context.getFloatingTypeOrder(lhs, rhs);
462    if (result > 0) // convert the rhs
463      return lhs;
464    assert(result < 0 && "illegal float comparison");
465    return rhs;   // convert the lhs
466  }
467  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
468    // Handle GCC complex int extension.
469    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
470    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
471
472    if (lhsComplexInt && rhsComplexInt) {
473      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
474                                      rhsComplexInt->getElementType()) >= 0)
475        return lhs; // convert the rhs
476      return rhs;
477    } else if (lhsComplexInt && rhs->isIntegerType()) {
478      // convert the rhs to the lhs complex type.
479      return lhs;
480    } else if (rhsComplexInt && lhs->isIntegerType()) {
481      // convert the lhs to the rhs complex type.
482      return rhs;
483    }
484  }
485  // Finally, we have two differing integer types.
486  // The rules for this case are in C99 6.3.1.8
487  int compare = Context.getIntegerTypeOrder(lhs, rhs);
488  bool lhsSigned = lhs->isSignedIntegerType(),
489       rhsSigned = rhs->isSignedIntegerType();
490  QualType destType;
491  if (lhsSigned == rhsSigned) {
492    // Same signedness; use the higher-ranked type
493    destType = compare >= 0 ? lhs : rhs;
494  } else if (compare != (lhsSigned ? 1 : -1)) {
495    // The unsigned type has greater than or equal rank to the
496    // signed type, so use the unsigned type
497    destType = lhsSigned ? rhs : lhs;
498  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
499    // The two types are different widths; if we are here, that
500    // means the signed type is larger than the unsigned type, so
501    // use the signed type.
502    destType = lhsSigned ? lhs : rhs;
503  } else {
504    // The signed type is higher-ranked than the unsigned type,
505    // but isn't actually any bigger (like unsigned int and long
506    // on most 32-bit systems).  Use the unsigned type corresponding
507    // to the signed type.
508    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
509  }
510  return destType;
511}
512
513//===----------------------------------------------------------------------===//
514//  Semantic Analysis for various Expression Types
515//===----------------------------------------------------------------------===//
516
517
518/// ActOnStringLiteral - The specified tokens were lexed as pasted string
519/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
520/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
521/// multiple tokens.  However, the common case is that StringToks points to one
522/// string.
523///
524Action::OwningExprResult
525Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
526  assert(NumStringToks && "Must have at least one string!");
527
528  StringLiteralParser Literal(StringToks, NumStringToks, PP);
529  if (Literal.hadError)
530    return ExprError();
531
532  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
533  for (unsigned i = 0; i != NumStringToks; ++i)
534    StringTokLocs.push_back(StringToks[i].getLocation());
535
536  QualType StrTy = Context.CharTy;
537  if (Literal.AnyWide) StrTy = Context.getWCharType();
538  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
539
540  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
541  if (getLangOptions().CPlusPlus)
542    StrTy.addConst();
543
544  // Get an array type for the string, according to C99 6.4.5.  This includes
545  // the nul terminator character as well as the string length for pascal
546  // strings.
547  StrTy = Context.getConstantArrayType(StrTy,
548                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
549                                       ArrayType::Normal, 0);
550
551  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
552  return Owned(StringLiteral::Create(Context, Literal.GetString(),
553                                     Literal.GetStringLength(),
554                                     Literal.AnyWide, StrTy,
555                                     &StringTokLocs[0],
556                                     StringTokLocs.size()));
557}
558
559/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
560/// CurBlock to VD should cause it to be snapshotted (as we do for auto
561/// variables defined outside the block) or false if this is not needed (e.g.
562/// for values inside the block or for globals).
563///
564/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
565/// up-to-date.
566///
567static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
568                                              ValueDecl *VD) {
569  // If the value is defined inside the block, we couldn't snapshot it even if
570  // we wanted to.
571  if (CurBlock->TheDecl == VD->getDeclContext())
572    return false;
573
574  // If this is an enum constant or function, it is constant, don't snapshot.
575  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
576    return false;
577
578  // If this is a reference to an extern, static, or global variable, no need to
579  // snapshot it.
580  // FIXME: What about 'const' variables in C++?
581  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
582    if (!Var->hasLocalStorage())
583      return false;
584
585  // Blocks that have these can't be constant.
586  CurBlock->hasBlockDeclRefExprs = true;
587
588  // If we have nested blocks, the decl may be declared in an outer block (in
589  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
590  // be defined outside all of the current blocks (in which case the blocks do
591  // all get the bit).  Walk the nesting chain.
592  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
593       NextBlock = NextBlock->PrevBlockInfo) {
594    // If we found the defining block for the variable, don't mark the block as
595    // having a reference outside it.
596    if (NextBlock->TheDecl == VD->getDeclContext())
597      break;
598
599    // Otherwise, the DeclRef from the inner block causes the outer one to need
600    // a snapshot as well.
601    NextBlock->hasBlockDeclRefExprs = true;
602  }
603
604  return true;
605}
606
607
608
609/// ActOnIdentifierExpr - The parser read an identifier in expression context,
610/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
611/// identifier is used in a function call context.
612/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
613/// class or namespace that the identifier must be a member of.
614Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
615                                                 IdentifierInfo &II,
616                                                 bool HasTrailingLParen,
617                                                 const CXXScopeSpec *SS,
618                                                 bool isAddressOfOperand) {
619  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
620                                  isAddressOfOperand);
621}
622
623/// BuildDeclRefExpr - Build either a DeclRefExpr or a
624/// QualifiedDeclRefExpr based on whether or not SS is a
625/// nested-name-specifier.
626DeclRefExpr *
627Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
628                       bool TypeDependent, bool ValueDependent,
629                       const CXXScopeSpec *SS) {
630  MarkDeclarationReferenced(Loc, D);
631  if (SS && !SS->isEmpty()) {
632    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
633                                              ValueDependent, SS->getRange(),
634                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
635  } else
636    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
637}
638
639/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
640/// variable corresponding to the anonymous union or struct whose type
641/// is Record.
642static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
643                                             RecordDecl *Record) {
644  assert(Record->isAnonymousStructOrUnion() &&
645         "Record must be an anonymous struct or union!");
646
647  // FIXME: Once Decls are directly linked together, this will be an O(1)
648  // operation rather than a slow walk through DeclContext's vector (which
649  // itself will be eliminated). DeclGroups might make this even better.
650  DeclContext *Ctx = Record->getDeclContext();
651  for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
652                               DEnd = Ctx->decls_end(Context);
653       D != DEnd; ++D) {
654    if (*D == Record) {
655      // The object for the anonymous struct/union directly
656      // follows its type in the list of declarations.
657      ++D;
658      assert(D != DEnd && "Missing object for anonymous record");
659      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
660      return *D;
661    }
662  }
663
664  assert(false && "Missing object for anonymous record");
665  return 0;
666}
667
668/// \brief Given a field that represents a member of an anonymous
669/// struct/union, build the path from that field's context to the
670/// actual member.
671///
672/// Construct the sequence of field member references we'll have to
673/// perform to get to the field in the anonymous union/struct. The
674/// list of members is built from the field outward, so traverse it
675/// backwards to go from an object in the current context to the field
676/// we found.
677///
678/// \returns The variable from which the field access should begin,
679/// for an anonymous struct/union that is not a member of another
680/// class. Otherwise, returns NULL.
681VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
682                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
683  assert(Field->getDeclContext()->isRecord() &&
684         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
685         && "Field must be stored inside an anonymous struct or union");
686
687  Path.push_back(Field);
688  VarDecl *BaseObject = 0;
689  DeclContext *Ctx = Field->getDeclContext();
690  do {
691    RecordDecl *Record = cast<RecordDecl>(Ctx);
692    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
693    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
694      Path.push_back(AnonField);
695    else {
696      BaseObject = cast<VarDecl>(AnonObject);
697      break;
698    }
699    Ctx = Ctx->getParent();
700  } while (Ctx->isRecord() &&
701           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
702
703  return BaseObject;
704}
705
706Sema::OwningExprResult
707Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
708                                               FieldDecl *Field,
709                                               Expr *BaseObjectExpr,
710                                               SourceLocation OpLoc) {
711  llvm::SmallVector<FieldDecl *, 4> AnonFields;
712  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
713                                                            AnonFields);
714
715  // Build the expression that refers to the base object, from
716  // which we will build a sequence of member references to each
717  // of the anonymous union objects and, eventually, the field we
718  // found via name lookup.
719  bool BaseObjectIsPointer = false;
720  unsigned ExtraQuals = 0;
721  if (BaseObject) {
722    // BaseObject is an anonymous struct/union variable (and is,
723    // therefore, not part of another non-anonymous record).
724    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
725    MarkDeclarationReferenced(Loc, BaseObject);
726    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
727                                               SourceLocation());
728    ExtraQuals
729      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
730  } else if (BaseObjectExpr) {
731    // The caller provided the base object expression. Determine
732    // whether its a pointer and whether it adds any qualifiers to the
733    // anonymous struct/union fields we're looking into.
734    QualType ObjectType = BaseObjectExpr->getType();
735    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
736      BaseObjectIsPointer = true;
737      ObjectType = ObjectPtr->getPointeeType();
738    }
739    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
740  } else {
741    // We've found a member of an anonymous struct/union that is
742    // inside a non-anonymous struct/union, so in a well-formed
743    // program our base object expression is "this".
744    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
745      if (!MD->isStatic()) {
746        QualType AnonFieldType
747          = Context.getTagDeclType(
748                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
749        QualType ThisType = Context.getTagDeclType(MD->getParent());
750        if ((Context.getCanonicalType(AnonFieldType)
751               == Context.getCanonicalType(ThisType)) ||
752            IsDerivedFrom(ThisType, AnonFieldType)) {
753          // Our base object expression is "this".
754          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
755                                                     MD->getThisType(Context));
756          BaseObjectIsPointer = true;
757        }
758      } else {
759        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
760          << Field->getDeclName());
761      }
762      ExtraQuals = MD->getTypeQualifiers();
763    }
764
765    if (!BaseObjectExpr)
766      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
767        << Field->getDeclName());
768  }
769
770  // Build the implicit member references to the field of the
771  // anonymous struct/union.
772  Expr *Result = BaseObjectExpr;
773  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
774         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
775       FI != FIEnd; ++FI) {
776    QualType MemberType = (*FI)->getType();
777    if (!(*FI)->isMutable()) {
778      unsigned combinedQualifiers
779        = MemberType.getCVRQualifiers() | ExtraQuals;
780      MemberType = MemberType.getQualifiedType(combinedQualifiers);
781    }
782    MarkDeclarationReferenced(Loc, *FI);
783    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
784                                      OpLoc, MemberType);
785    BaseObjectIsPointer = false;
786    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
787  }
788
789  return Owned(Result);
790}
791
792/// ActOnDeclarationNameExpr - The parser has read some kind of name
793/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
794/// performs lookup on that name and returns an expression that refers
795/// to that name. This routine isn't directly called from the parser,
796/// because the parser doesn't know about DeclarationName. Rather,
797/// this routine is called by ActOnIdentifierExpr,
798/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
799/// which form the DeclarationName from the corresponding syntactic
800/// forms.
801///
802/// HasTrailingLParen indicates whether this identifier is used in a
803/// function call context.  LookupCtx is only used for a C++
804/// qualified-id (foo::bar) to indicate the class or namespace that
805/// the identifier must be a member of.
806///
807/// isAddressOfOperand means that this expression is the direct operand
808/// of an address-of operator. This matters because this is the only
809/// situation where a qualified name referencing a non-static member may
810/// appear outside a member function of this class.
811Sema::OwningExprResult
812Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
813                               DeclarationName Name, bool HasTrailingLParen,
814                               const CXXScopeSpec *SS,
815                               bool isAddressOfOperand) {
816  // Could be enum-constant, value decl, instance variable, etc.
817  if (SS && SS->isInvalid())
818    return ExprError();
819
820  // C++ [temp.dep.expr]p3:
821  //   An id-expression is type-dependent if it contains:
822  //     -- a nested-name-specifier that contains a class-name that
823  //        names a dependent type.
824  // FIXME: Member of the current instantiation.
825  if (SS && isDependentScopeSpecifier(*SS)) {
826    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
827                                                     Loc, SS->getRange(),
828                static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
829  }
830
831  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
832                                         false, true, Loc);
833
834  if (Lookup.isAmbiguous()) {
835    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
836                            SS && SS->isSet() ? SS->getRange()
837                                              : SourceRange());
838    return ExprError();
839  }
840
841  NamedDecl *D = Lookup.getAsDecl();
842
843  // If this reference is in an Objective-C method, then ivar lookup happens as
844  // well.
845  IdentifierInfo *II = Name.getAsIdentifierInfo();
846  if (II && getCurMethodDecl()) {
847    // There are two cases to handle here.  1) scoped lookup could have failed,
848    // in which case we should look for an ivar.  2) scoped lookup could have
849    // found a decl, but that decl is outside the current instance method (i.e.
850    // a global variable).  In these two cases, we do a lookup for an ivar with
851    // this name, if the lookup sucedes, we replace it our current decl.
852    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
853      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
854      ObjCInterfaceDecl *ClassDeclared;
855      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
856                                                           ClassDeclared)) {
857        // Check if referencing a field with __attribute__((deprecated)).
858        if (DiagnoseUseOfDecl(IV, Loc))
859          return ExprError();
860
861        // If we're referencing an invalid decl, just return this as a silent
862        // error node.  The error diagnostic was already emitted on the decl.
863        if (IV->isInvalidDecl())
864          return ExprError();
865
866        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
867        // If a class method attemps to use a free standing ivar, this is
868        // an error.
869        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
870           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
871                           << IV->getDeclName());
872        // If a class method uses a global variable, even if an ivar with
873        // same name exists, use the global.
874        if (!IsClsMethod) {
875          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
876              ClassDeclared != IFace)
877           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
878          // FIXME: This should use a new expr for a direct reference, don't
879          // turn this into Self->ivar, just return a BareIVarExpr or something.
880          IdentifierInfo &II = Context.Idents.get("self");
881          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
882          MarkDeclarationReferenced(Loc, IV);
883          return Owned(new (Context)
884                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
885                                       SelfExpr.takeAs<Expr>(), true, true));
886        }
887      }
888    }
889    else if (getCurMethodDecl()->isInstanceMethod()) {
890      // We should warn if a local variable hides an ivar.
891      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
892      ObjCInterfaceDecl *ClassDeclared;
893      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
894                                                           ClassDeclared)) {
895        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
896            IFace == ClassDeclared)
897          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
898      }
899    }
900    // Needed to implement property "super.method" notation.
901    if (D == 0 && II->isStr("super")) {
902      QualType T;
903
904      if (getCurMethodDecl()->isInstanceMethod())
905        T = Context.getPointerType(Context.getObjCInterfaceType(
906                                   getCurMethodDecl()->getClassInterface()));
907      else
908        T = Context.getObjCClassType();
909      return Owned(new (Context) ObjCSuperExpr(Loc, T));
910    }
911  }
912
913  // Determine whether this name might be a candidate for
914  // argument-dependent lookup.
915  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
916             HasTrailingLParen;
917
918  if (ADL && D == 0) {
919    // We've seen something of the form
920    //
921    //   identifier(
922    //
923    // and we did not find any entity by the name
924    // "identifier". However, this identifier is still subject to
925    // argument-dependent lookup, so keep track of the name.
926    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
927                                                          Context.OverloadTy,
928                                                          Loc));
929  }
930
931  if (D == 0) {
932    // Otherwise, this could be an implicitly declared function reference (legal
933    // in C90, extension in C99).
934    if (HasTrailingLParen && II &&
935        !getLangOptions().CPlusPlus) // Not in C++.
936      D = ImplicitlyDefineFunction(Loc, *II, S);
937    else {
938      // If this name wasn't predeclared and if this is not a function call,
939      // diagnose the problem.
940      if (SS && !SS->isEmpty())
941        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
942          << Name << SS->getRange());
943      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
944               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
945        return ExprError(Diag(Loc, diag::err_undeclared_use)
946          << Name.getAsString());
947      else
948        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
949    }
950  }
951
952  // If this is an expression of the form &Class::member, don't build an
953  // implicit member ref, because we want a pointer to the member in general,
954  // not any specific instance's member.
955  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
956    DeclContext *DC = computeDeclContext(*SS);
957    if (D && isa<CXXRecordDecl>(DC)) {
958      QualType DType;
959      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
960        DType = FD->getType().getNonReferenceType();
961      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
962        DType = Method->getType();
963      } else if (isa<OverloadedFunctionDecl>(D)) {
964        DType = Context.OverloadTy;
965      }
966      // Could be an inner type. That's diagnosed below, so ignore it here.
967      if (!DType.isNull()) {
968        // The pointer is type- and value-dependent if it points into something
969        // dependent.
970        bool Dependent = DC->isDependentContext();
971        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
972      }
973    }
974  }
975
976  // We may have found a field within an anonymous union or struct
977  // (C++ [class.union]).
978  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
979    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
980      return BuildAnonymousStructUnionMemberReference(Loc, FD);
981
982  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
983    if (!MD->isStatic()) {
984      // C++ [class.mfct.nonstatic]p2:
985      //   [...] if name lookup (3.4.1) resolves the name in the
986      //   id-expression to a nonstatic nontype member of class X or of
987      //   a base class of X, the id-expression is transformed into a
988      //   class member access expression (5.2.5) using (*this) (9.3.2)
989      //   as the postfix-expression to the left of the '.' operator.
990      DeclContext *Ctx = 0;
991      QualType MemberType;
992      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
993        Ctx = FD->getDeclContext();
994        MemberType = FD->getType();
995
996        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
997          MemberType = RefType->getPointeeType();
998        else if (!FD->isMutable()) {
999          unsigned combinedQualifiers
1000            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1001          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1002        }
1003      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1004        if (!Method->isStatic()) {
1005          Ctx = Method->getParent();
1006          MemberType = Method->getType();
1007        }
1008      } else if (OverloadedFunctionDecl *Ovl
1009                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1010        for (OverloadedFunctionDecl::function_iterator
1011               Func = Ovl->function_begin(),
1012               FuncEnd = Ovl->function_end();
1013             Func != FuncEnd; ++Func) {
1014          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1015            if (!DMethod->isStatic()) {
1016              Ctx = Ovl->getDeclContext();
1017              MemberType = Context.OverloadTy;
1018              break;
1019            }
1020        }
1021      }
1022
1023      if (Ctx && Ctx->isRecord()) {
1024        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1025        QualType ThisType = Context.getTagDeclType(MD->getParent());
1026        if ((Context.getCanonicalType(CtxType)
1027               == Context.getCanonicalType(ThisType)) ||
1028            IsDerivedFrom(ThisType, CtxType)) {
1029          // Build the implicit member access expression.
1030          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1031                                                 MD->getThisType(Context));
1032          MarkDeclarationReferenced(Loc, D);
1033          return Owned(new (Context) MemberExpr(This, true, D,
1034                                                Loc, MemberType));
1035        }
1036      }
1037    }
1038  }
1039
1040  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1041    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1042      if (MD->isStatic())
1043        // "invalid use of member 'x' in static member function"
1044        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1045          << FD->getDeclName());
1046    }
1047
1048    // Any other ways we could have found the field in a well-formed
1049    // program would have been turned into implicit member expressions
1050    // above.
1051    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1052      << FD->getDeclName());
1053  }
1054
1055  if (isa<TypedefDecl>(D))
1056    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1057  if (isa<ObjCInterfaceDecl>(D))
1058    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1059  if (isa<NamespaceDecl>(D))
1060    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1061
1062  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1063  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1064    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1065                                  false, false, SS));
1066  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1067    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1068                                  false, false, SS));
1069  ValueDecl *VD = cast<ValueDecl>(D);
1070
1071  // Check whether this declaration can be used. Note that we suppress
1072  // this check when we're going to perform argument-dependent lookup
1073  // on this function name, because this might not be the function
1074  // that overload resolution actually selects.
1075  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1076    return ExprError();
1077
1078  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
1079    // Warn about constructs like:
1080    //   if (void *X = foo()) { ... } else { X }.
1081    // In the else block, the pointer is always false.
1082
1083    // FIXME: In a template instantiation, we don't have scope
1084    // information to check this property.
1085    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1086      Scope *CheckS = S;
1087      while (CheckS) {
1088        if (CheckS->isWithinElse() &&
1089            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1090          if (Var->getType()->isBooleanType())
1091            ExprError(Diag(Loc, diag::warn_value_always_false)
1092              << Var->getDeclName());
1093          else
1094            ExprError(Diag(Loc, diag::warn_value_always_zero)
1095              << Var->getDeclName());
1096          break;
1097        }
1098
1099        // Move up one more control parent to check again.
1100        CheckS = CheckS->getControlParent();
1101        if (CheckS)
1102          CheckS = CheckS->getParent();
1103      }
1104    }
1105  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
1106    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1107      // C99 DR 316 says that, if a function type comes from a
1108      // function definition (without a prototype), that type is only
1109      // used for checking compatibility. Therefore, when referencing
1110      // the function, we pretend that we don't have the full function
1111      // type.
1112      QualType T = Func->getType();
1113      QualType NoProtoType = T;
1114      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1115        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1116      return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
1117    }
1118  }
1119
1120  // Only create DeclRefExpr's for valid Decl's.
1121  if (VD->isInvalidDecl())
1122    return ExprError();
1123
1124  // If the identifier reference is inside a block, and it refers to a value
1125  // that is outside the block, create a BlockDeclRefExpr instead of a
1126  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1127  // the block is formed.
1128  //
1129  // We do not do this for things like enum constants, global variables, etc,
1130  // as they do not get snapshotted.
1131  //
1132  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1133    MarkDeclarationReferenced(Loc, VD);
1134    QualType ExprTy = VD->getType().getNonReferenceType();
1135    // The BlocksAttr indicates the variable is bound by-reference.
1136    if (VD->getAttr<BlocksAttr>(Context))
1137      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1138    // This is to record that a 'const' was actually synthesize and added.
1139    bool constAdded = !ExprTy.isConstQualified();
1140    // Variable will be bound by-copy, make it const within the closure.
1141
1142    ExprTy.addConst();
1143    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1144                                                constAdded));
1145  }
1146  // If this reference is not in a block or if the referenced variable is
1147  // within the block, create a normal DeclRefExpr.
1148
1149  bool TypeDependent = false;
1150  bool ValueDependent = false;
1151  if (getLangOptions().CPlusPlus) {
1152    // C++ [temp.dep.expr]p3:
1153    //   An id-expression is type-dependent if it contains:
1154    //     - an identifier that was declared with a dependent type,
1155    if (VD->getType()->isDependentType())
1156      TypeDependent = true;
1157    //     - FIXME: a template-id that is dependent,
1158    //     - a conversion-function-id that specifies a dependent type,
1159    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1160             Name.getCXXNameType()->isDependentType())
1161      TypeDependent = true;
1162    //     - a nested-name-specifier that contains a class-name that
1163    //       names a dependent type.
1164    else if (SS && !SS->isEmpty()) {
1165      for (DeclContext *DC = computeDeclContext(*SS);
1166           DC; DC = DC->getParent()) {
1167        // FIXME: could stop early at namespace scope.
1168        if (DC->isRecord()) {
1169          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1170          if (Context.getTypeDeclType(Record)->isDependentType()) {
1171            TypeDependent = true;
1172            break;
1173          }
1174        }
1175      }
1176    }
1177
1178    // C++ [temp.dep.constexpr]p2:
1179    //
1180    //   An identifier is value-dependent if it is:
1181    //     - a name declared with a dependent type,
1182    if (TypeDependent)
1183      ValueDependent = true;
1184    //     - the name of a non-type template parameter,
1185    else if (isa<NonTypeTemplateParmDecl>(VD))
1186      ValueDependent = true;
1187    //    - a constant with integral or enumeration type and is
1188    //      initialized with an expression that is value-dependent
1189    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1190      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1191          Dcl->getInit()) {
1192        ValueDependent = Dcl->getInit()->isValueDependent();
1193      }
1194    }
1195  }
1196
1197  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1198                                TypeDependent, ValueDependent, SS));
1199}
1200
1201Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1202                                                 tok::TokenKind Kind) {
1203  PredefinedExpr::IdentType IT;
1204
1205  switch (Kind) {
1206  default: assert(0 && "Unknown simple primary expr!");
1207  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1208  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1209  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1210  }
1211
1212  // Pre-defined identifiers are of type char[x], where x is the length of the
1213  // string.
1214  unsigned Length;
1215  if (FunctionDecl *FD = getCurFunctionDecl())
1216    Length = FD->getIdentifier()->getLength();
1217  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1218    Length = MD->getSynthesizedMethodSize();
1219  else {
1220    Diag(Loc, diag::ext_predef_outside_function);
1221    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1222    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1223  }
1224
1225
1226  llvm::APInt LengthI(32, Length + 1);
1227  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1228  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1229  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1230}
1231
1232Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1233  llvm::SmallString<16> CharBuffer;
1234  CharBuffer.resize(Tok.getLength());
1235  const char *ThisTokBegin = &CharBuffer[0];
1236  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1237
1238  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1239                            Tok.getLocation(), PP);
1240  if (Literal.hadError())
1241    return ExprError();
1242
1243  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1244
1245  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1246                                              Literal.isWide(),
1247                                              type, Tok.getLocation()));
1248}
1249
1250Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1251  // Fast path for a single digit (which is quite common).  A single digit
1252  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1253  if (Tok.getLength() == 1) {
1254    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1255    unsigned IntSize = Context.Target.getIntWidth();
1256    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1257                    Context.IntTy, Tok.getLocation()));
1258  }
1259
1260  llvm::SmallString<512> IntegerBuffer;
1261  // Add padding so that NumericLiteralParser can overread by one character.
1262  IntegerBuffer.resize(Tok.getLength()+1);
1263  const char *ThisTokBegin = &IntegerBuffer[0];
1264
1265  // Get the spelling of the token, which eliminates trigraphs, etc.
1266  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1267
1268  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1269                               Tok.getLocation(), PP);
1270  if (Literal.hadError)
1271    return ExprError();
1272
1273  Expr *Res;
1274
1275  if (Literal.isFloatingLiteral()) {
1276    QualType Ty;
1277    if (Literal.isFloat)
1278      Ty = Context.FloatTy;
1279    else if (!Literal.isLong)
1280      Ty = Context.DoubleTy;
1281    else
1282      Ty = Context.LongDoubleTy;
1283
1284    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1285
1286    // isExact will be set by GetFloatValue().
1287    bool isExact = false;
1288    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
1289                                        &isExact, Ty, Tok.getLocation());
1290
1291  } else if (!Literal.isIntegerLiteral()) {
1292    return ExprError();
1293  } else {
1294    QualType Ty;
1295
1296    // long long is a C99 feature.
1297    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1298        Literal.isLongLong)
1299      Diag(Tok.getLocation(), diag::ext_longlong);
1300
1301    // Get the value in the widest-possible width.
1302    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1303
1304    if (Literal.GetIntegerValue(ResultVal)) {
1305      // If this value didn't fit into uintmax_t, warn and force to ull.
1306      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1307      Ty = Context.UnsignedLongLongTy;
1308      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1309             "long long is not intmax_t?");
1310    } else {
1311      // If this value fits into a ULL, try to figure out what else it fits into
1312      // according to the rules of C99 6.4.4.1p5.
1313
1314      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1315      // be an unsigned int.
1316      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1317
1318      // Check from smallest to largest, picking the smallest type we can.
1319      unsigned Width = 0;
1320      if (!Literal.isLong && !Literal.isLongLong) {
1321        // Are int/unsigned possibilities?
1322        unsigned IntSize = Context.Target.getIntWidth();
1323
1324        // Does it fit in a unsigned int?
1325        if (ResultVal.isIntN(IntSize)) {
1326          // Does it fit in a signed int?
1327          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1328            Ty = Context.IntTy;
1329          else if (AllowUnsigned)
1330            Ty = Context.UnsignedIntTy;
1331          Width = IntSize;
1332        }
1333      }
1334
1335      // Are long/unsigned long possibilities?
1336      if (Ty.isNull() && !Literal.isLongLong) {
1337        unsigned LongSize = Context.Target.getLongWidth();
1338
1339        // Does it fit in a unsigned long?
1340        if (ResultVal.isIntN(LongSize)) {
1341          // Does it fit in a signed long?
1342          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1343            Ty = Context.LongTy;
1344          else if (AllowUnsigned)
1345            Ty = Context.UnsignedLongTy;
1346          Width = LongSize;
1347        }
1348      }
1349
1350      // Finally, check long long if needed.
1351      if (Ty.isNull()) {
1352        unsigned LongLongSize = Context.Target.getLongLongWidth();
1353
1354        // Does it fit in a unsigned long long?
1355        if (ResultVal.isIntN(LongLongSize)) {
1356          // Does it fit in a signed long long?
1357          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1358            Ty = Context.LongLongTy;
1359          else if (AllowUnsigned)
1360            Ty = Context.UnsignedLongLongTy;
1361          Width = LongLongSize;
1362        }
1363      }
1364
1365      // If we still couldn't decide a type, we probably have something that
1366      // does not fit in a signed long long, but has no U suffix.
1367      if (Ty.isNull()) {
1368        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1369        Ty = Context.UnsignedLongLongTy;
1370        Width = Context.Target.getLongLongWidth();
1371      }
1372
1373      if (ResultVal.getBitWidth() != Width)
1374        ResultVal.trunc(Width);
1375    }
1376    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1377  }
1378
1379  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1380  if (Literal.isImaginary)
1381    Res = new (Context) ImaginaryLiteral(Res,
1382                                        Context.getComplexType(Res->getType()));
1383
1384  return Owned(Res);
1385}
1386
1387Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1388                                              SourceLocation R, ExprArg Val) {
1389  Expr *E = Val.takeAs<Expr>();
1390  assert((E != 0) && "ActOnParenExpr() missing expr");
1391  return Owned(new (Context) ParenExpr(L, R, E));
1392}
1393
1394/// The UsualUnaryConversions() function is *not* called by this routine.
1395/// See C99 6.3.2.1p[2-4] for more details.
1396bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1397                                     SourceLocation OpLoc,
1398                                     const SourceRange &ExprRange,
1399                                     bool isSizeof) {
1400  if (exprType->isDependentType())
1401    return false;
1402
1403  // C99 6.5.3.4p1:
1404  if (isa<FunctionType>(exprType)) {
1405    // alignof(function) is allowed as an extension.
1406    if (isSizeof)
1407      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1408    return false;
1409  }
1410
1411  // Allow sizeof(void)/alignof(void) as an extension.
1412  if (exprType->isVoidType()) {
1413    Diag(OpLoc, diag::ext_sizeof_void_type)
1414      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1415    return false;
1416  }
1417
1418  if (RequireCompleteType(OpLoc, exprType,
1419                          isSizeof ? diag::err_sizeof_incomplete_type :
1420                          diag::err_alignof_incomplete_type,
1421                          ExprRange))
1422    return true;
1423
1424  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1425  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1426    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1427      << exprType << isSizeof << ExprRange;
1428    return true;
1429  }
1430
1431  return false;
1432}
1433
1434bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1435                            const SourceRange &ExprRange) {
1436  E = E->IgnoreParens();
1437
1438  // alignof decl is always ok.
1439  if (isa<DeclRefExpr>(E))
1440    return false;
1441
1442  // Cannot know anything else if the expression is dependent.
1443  if (E->isTypeDependent())
1444    return false;
1445
1446  if (E->getBitField()) {
1447    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1448    return true;
1449  }
1450
1451  // Alignment of a field access is always okay, so long as it isn't a
1452  // bit-field.
1453  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1454    if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
1455      return false;
1456
1457  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1458}
1459
1460/// \brief Build a sizeof or alignof expression given a type operand.
1461Action::OwningExprResult
1462Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1463                              bool isSizeOf, SourceRange R) {
1464  if (T.isNull())
1465    return ExprError();
1466
1467  if (!T->isDependentType() &&
1468      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1469    return ExprError();
1470
1471  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1472  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1473                                               Context.getSizeType(), OpLoc,
1474                                               R.getEnd()));
1475}
1476
1477/// \brief Build a sizeof or alignof expression given an expression
1478/// operand.
1479Action::OwningExprResult
1480Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1481                              bool isSizeOf, SourceRange R) {
1482  // Verify that the operand is valid.
1483  bool isInvalid = false;
1484  if (E->isTypeDependent()) {
1485    // Delay type-checking for type-dependent expressions.
1486  } else if (!isSizeOf) {
1487    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1488  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1489    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1490    isInvalid = true;
1491  } else {
1492    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1493  }
1494
1495  if (isInvalid)
1496    return ExprError();
1497
1498  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1499  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1500                                               Context.getSizeType(), OpLoc,
1501                                               R.getEnd()));
1502}
1503
1504/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1505/// the same for @c alignof and @c __alignof
1506/// Note that the ArgRange is invalid if isType is false.
1507Action::OwningExprResult
1508Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1509                             void *TyOrEx, const SourceRange &ArgRange) {
1510  // If error parsing type, ignore.
1511  if (TyOrEx == 0) return ExprError();
1512
1513  if (isType) {
1514    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1515    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1516  }
1517
1518  // Get the end location.
1519  Expr *ArgEx = (Expr *)TyOrEx;
1520  Action::OwningExprResult Result
1521    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1522
1523  if (Result.isInvalid())
1524    DeleteExpr(ArgEx);
1525
1526  return move(Result);
1527}
1528
1529QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1530  if (V->isTypeDependent())
1531    return Context.DependentTy;
1532
1533  // These operators return the element type of a complex type.
1534  if (const ComplexType *CT = V->getType()->getAsComplexType())
1535    return CT->getElementType();
1536
1537  // Otherwise they pass through real integer and floating point types here.
1538  if (V->getType()->isArithmeticType())
1539    return V->getType();
1540
1541  // Reject anything else.
1542  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1543    << (isReal ? "__real" : "__imag");
1544  return QualType();
1545}
1546
1547
1548
1549Action::OwningExprResult
1550Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1551                          tok::TokenKind Kind, ExprArg Input) {
1552  Expr *Arg = (Expr *)Input.get();
1553
1554  UnaryOperator::Opcode Opc;
1555  switch (Kind) {
1556  default: assert(0 && "Unknown unary op!");
1557  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1558  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1559  }
1560
1561  if (getLangOptions().CPlusPlus &&
1562      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1563    // Which overloaded operator?
1564    OverloadedOperatorKind OverOp =
1565      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1566
1567    // C++ [over.inc]p1:
1568    //
1569    //     [...] If the function is a member function with one
1570    //     parameter (which shall be of type int) or a non-member
1571    //     function with two parameters (the second of which shall be
1572    //     of type int), it defines the postfix increment operator ++
1573    //     for objects of that type. When the postfix increment is
1574    //     called as a result of using the ++ operator, the int
1575    //     argument will have value zero.
1576    Expr *Args[2] = {
1577      Arg,
1578      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1579                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1580    };
1581
1582    // Build the candidate set for overloading
1583    OverloadCandidateSet CandidateSet;
1584    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1585
1586    // Perform overload resolution.
1587    OverloadCandidateSet::iterator Best;
1588    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1589    case OR_Success: {
1590      // We found a built-in operator or an overloaded operator.
1591      FunctionDecl *FnDecl = Best->Function;
1592
1593      if (FnDecl) {
1594        // We matched an overloaded operator. Build a call to that
1595        // operator.
1596
1597        // Convert the arguments.
1598        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1599          if (PerformObjectArgumentInitialization(Arg, Method))
1600            return ExprError();
1601        } else {
1602          // Convert the arguments.
1603          if (PerformCopyInitialization(Arg,
1604                                        FnDecl->getParamDecl(0)->getType(),
1605                                        "passing"))
1606            return ExprError();
1607        }
1608
1609        // Determine the result type
1610        QualType ResultTy
1611          = FnDecl->getType()->getAsFunctionType()->getResultType();
1612        ResultTy = ResultTy.getNonReferenceType();
1613
1614        // Build the actual expression node.
1615        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1616                                                 SourceLocation());
1617        UsualUnaryConversions(FnExpr);
1618
1619        Input.release();
1620        Args[0] = Arg;
1621        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1622                                                       Args, 2, ResultTy,
1623                                                       OpLoc));
1624      } else {
1625        // We matched a built-in operator. Convert the arguments, then
1626        // break out so that we will build the appropriate built-in
1627        // operator node.
1628        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1629                                      "passing"))
1630          return ExprError();
1631
1632        break;
1633      }
1634    }
1635
1636    case OR_No_Viable_Function:
1637      // No viable function; fall through to handling this as a
1638      // built-in operator, which will produce an error message for us.
1639      break;
1640
1641    case OR_Ambiguous:
1642      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1643          << UnaryOperator::getOpcodeStr(Opc)
1644          << Arg->getSourceRange();
1645      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1646      return ExprError();
1647
1648    case OR_Deleted:
1649      Diag(OpLoc, diag::err_ovl_deleted_oper)
1650        << Best->Function->isDeleted()
1651        << UnaryOperator::getOpcodeStr(Opc)
1652        << Arg->getSourceRange();
1653      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1654      return ExprError();
1655    }
1656
1657    // Either we found no viable overloaded operator or we matched a
1658    // built-in operator. In either case, fall through to trying to
1659    // build a built-in operation.
1660  }
1661
1662  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1663                                                 Opc == UnaryOperator::PostInc);
1664  if (result.isNull())
1665    return ExprError();
1666  Input.release();
1667  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1668}
1669
1670Action::OwningExprResult
1671Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1672                              ExprArg Idx, SourceLocation RLoc) {
1673  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1674       *RHSExp = static_cast<Expr*>(Idx.get());
1675
1676  if (getLangOptions().CPlusPlus &&
1677      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1678    Base.release();
1679    Idx.release();
1680    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1681                                                  Context.DependentTy, RLoc));
1682  }
1683
1684  if (getLangOptions().CPlusPlus &&
1685      (LHSExp->getType()->isRecordType() ||
1686       LHSExp->getType()->isEnumeralType() ||
1687       RHSExp->getType()->isRecordType() ||
1688       RHSExp->getType()->isEnumeralType())) {
1689    // Add the appropriate overloaded operators (C++ [over.match.oper])
1690    // to the candidate set.
1691    OverloadCandidateSet CandidateSet;
1692    Expr *Args[2] = { LHSExp, RHSExp };
1693    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1694                          SourceRange(LLoc, RLoc));
1695
1696    // Perform overload resolution.
1697    OverloadCandidateSet::iterator Best;
1698    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1699    case OR_Success: {
1700      // We found a built-in operator or an overloaded operator.
1701      FunctionDecl *FnDecl = Best->Function;
1702
1703      if (FnDecl) {
1704        // We matched an overloaded operator. Build a call to that
1705        // operator.
1706
1707        // Convert the arguments.
1708        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1709          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1710              PerformCopyInitialization(RHSExp,
1711                                        FnDecl->getParamDecl(0)->getType(),
1712                                        "passing"))
1713            return ExprError();
1714        } else {
1715          // Convert the arguments.
1716          if (PerformCopyInitialization(LHSExp,
1717                                        FnDecl->getParamDecl(0)->getType(),
1718                                        "passing") ||
1719              PerformCopyInitialization(RHSExp,
1720                                        FnDecl->getParamDecl(1)->getType(),
1721                                        "passing"))
1722            return ExprError();
1723        }
1724
1725        // Determine the result type
1726        QualType ResultTy
1727          = FnDecl->getType()->getAsFunctionType()->getResultType();
1728        ResultTy = ResultTy.getNonReferenceType();
1729
1730        // Build the actual expression node.
1731        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1732                                                 SourceLocation());
1733        UsualUnaryConversions(FnExpr);
1734
1735        Base.release();
1736        Idx.release();
1737        Args[0] = LHSExp;
1738        Args[1] = RHSExp;
1739        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1740                                                       FnExpr, Args, 2,
1741                                                       ResultTy, LLoc));
1742      } else {
1743        // We matched a built-in operator. Convert the arguments, then
1744        // break out so that we will build the appropriate built-in
1745        // operator node.
1746        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1747                                      "passing") ||
1748            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1749                                      "passing"))
1750          return ExprError();
1751
1752        break;
1753      }
1754    }
1755
1756    case OR_No_Viable_Function:
1757      // No viable function; fall through to handling this as a
1758      // built-in operator, which will produce an error message for us.
1759      break;
1760
1761    case OR_Ambiguous:
1762      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1763          << "[]"
1764          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1765      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1766      return ExprError();
1767
1768    case OR_Deleted:
1769      Diag(LLoc, diag::err_ovl_deleted_oper)
1770        << Best->Function->isDeleted()
1771        << "[]"
1772        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1773      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1774      return ExprError();
1775    }
1776
1777    // Either we found no viable overloaded operator or we matched a
1778    // built-in operator. In either case, fall through to trying to
1779    // build a built-in operation.
1780  }
1781
1782  // Perform default conversions.
1783  DefaultFunctionArrayConversion(LHSExp);
1784  DefaultFunctionArrayConversion(RHSExp);
1785
1786  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1787
1788  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1789  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1790  // in the subscript position. As a result, we need to derive the array base
1791  // and index from the expression types.
1792  Expr *BaseExpr, *IndexExpr;
1793  QualType ResultType;
1794  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1795    BaseExpr = LHSExp;
1796    IndexExpr = RHSExp;
1797    ResultType = Context.DependentTy;
1798  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1799    BaseExpr = LHSExp;
1800    IndexExpr = RHSExp;
1801    ResultType = PTy->getPointeeType();
1802  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1803     // Handle the uncommon case of "123[Ptr]".
1804    BaseExpr = RHSExp;
1805    IndexExpr = LHSExp;
1806    ResultType = PTy->getPointeeType();
1807  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1808    BaseExpr = LHSExp;    // vectors: V[123]
1809    IndexExpr = RHSExp;
1810
1811    // FIXME: need to deal with const...
1812    ResultType = VTy->getElementType();
1813  } else if (LHSTy->isArrayType()) {
1814    // If we see an array that wasn't promoted by
1815    // DefaultFunctionArrayConversion, it must be an array that
1816    // wasn't promoted because of the C90 rule that doesn't
1817    // allow promoting non-lvalue arrays.  Warn, then
1818    // force the promotion here.
1819    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1820        LHSExp->getSourceRange();
1821    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1822    LHSTy = LHSExp->getType();
1823
1824    BaseExpr = LHSExp;
1825    IndexExpr = RHSExp;
1826    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1827  } else if (RHSTy->isArrayType()) {
1828    // Same as previous, except for 123[f().a] case
1829    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1830        RHSExp->getSourceRange();
1831    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1832    RHSTy = RHSExp->getType();
1833
1834    BaseExpr = RHSExp;
1835    IndexExpr = LHSExp;
1836    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1837  } else {
1838    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1839       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1840  }
1841  // C99 6.5.2.1p1
1842  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1843    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1844                     << IndexExpr->getSourceRange());
1845
1846  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1847  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1848  // type. Note that Functions are not objects, and that (in C99 parlance)
1849  // incomplete types are not object types.
1850  if (ResultType->isFunctionType()) {
1851    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1852      << ResultType << BaseExpr->getSourceRange();
1853    return ExprError();
1854  }
1855
1856  if (!ResultType->isDependentType() &&
1857      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1858                          BaseExpr->getSourceRange()))
1859    return ExprError();
1860
1861  // Diagnose bad cases where we step over interface counts.
1862  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1863    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1864      << ResultType << BaseExpr->getSourceRange();
1865    return ExprError();
1866  }
1867
1868  Base.release();
1869  Idx.release();
1870  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1871                                                ResultType, RLoc));
1872}
1873
1874QualType Sema::
1875CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1876                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1877  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1878
1879  // The vector accessor can't exceed the number of elements.
1880  const char *compStr = CompName.getName();
1881
1882  // This flag determines whether or not the component is one of the four
1883  // special names that indicate a subset of exactly half the elements are
1884  // to be selected.
1885  bool HalvingSwizzle = false;
1886
1887  // This flag determines whether or not CompName has an 's' char prefix,
1888  // indicating that it is a string of hex values to be used as vector indices.
1889  bool HexSwizzle = *compStr == 's';
1890
1891  // Check that we've found one of the special components, or that the component
1892  // names must come from the same set.
1893  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1894      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1895    HalvingSwizzle = true;
1896  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1897    do
1898      compStr++;
1899    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1900  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1901    do
1902      compStr++;
1903    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1904  }
1905
1906  if (!HalvingSwizzle && *compStr) {
1907    // We didn't get to the end of the string. This means the component names
1908    // didn't come from the same set *or* we encountered an illegal name.
1909    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1910      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1911    return QualType();
1912  }
1913
1914  // Ensure no component accessor exceeds the width of the vector type it
1915  // operates on.
1916  if (!HalvingSwizzle) {
1917    compStr = CompName.getName();
1918
1919    if (HexSwizzle)
1920      compStr++;
1921
1922    while (*compStr) {
1923      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1924        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1925          << baseType << SourceRange(CompLoc);
1926        return QualType();
1927      }
1928    }
1929  }
1930
1931  // If this is a halving swizzle, verify that the base type has an even
1932  // number of elements.
1933  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1934    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1935      << baseType << SourceRange(CompLoc);
1936    return QualType();
1937  }
1938
1939  // The component accessor looks fine - now we need to compute the actual type.
1940  // The vector type is implied by the component accessor. For example,
1941  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1942  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1943  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1944  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1945                                     : CompName.getLength();
1946  if (HexSwizzle)
1947    CompSize--;
1948
1949  if (CompSize == 1)
1950    return vecType->getElementType();
1951
1952  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1953  // Now look up the TypeDefDecl from the vector type. Without this,
1954  // diagostics look bad. We want extended vector types to appear built-in.
1955  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1956    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1957      return Context.getTypedefType(ExtVectorDecls[i]);
1958  }
1959  return VT; // should never get here (a typedef type should always be found).
1960}
1961
1962static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
1963                                                IdentifierInfo &Member,
1964                                                const Selector &Sel,
1965                                                ASTContext &Context) {
1966
1967  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
1968    return PD;
1969  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
1970    return OMD;
1971
1972  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
1973       E = PDecl->protocol_end(); I != E; ++I) {
1974    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
1975                                                     Context))
1976      return D;
1977  }
1978  return 0;
1979}
1980
1981static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
1982                                IdentifierInfo &Member,
1983                                const Selector &Sel,
1984                                ASTContext &Context) {
1985  // Check protocols on qualified interfaces.
1986  Decl *GDecl = 0;
1987  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
1988       E = QIdTy->qual_end(); I != E; ++I) {
1989    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
1990      GDecl = PD;
1991      break;
1992    }
1993    // Also must look for a getter name which uses property syntax.
1994    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
1995      GDecl = OMD;
1996      break;
1997    }
1998  }
1999  if (!GDecl) {
2000    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2001         E = QIdTy->qual_end(); I != E; ++I) {
2002      // Search in the protocol-qualifier list of current protocol.
2003      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2004      if (GDecl)
2005        return GDecl;
2006    }
2007  }
2008  return GDecl;
2009}
2010
2011/// FindMethodInNestedImplementations - Look up a method in current and
2012/// all base class implementations.
2013///
2014ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2015                                              const ObjCInterfaceDecl *IFace,
2016                                              const Selector &Sel) {
2017  ObjCMethodDecl *Method = 0;
2018  if (ObjCImplementationDecl *ImpDecl
2019        = LookupObjCImplementation(IFace->getIdentifier()))
2020    Method = ImpDecl->getInstanceMethod(Context, Sel);
2021
2022  if (!Method && IFace->getSuperClass())
2023    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2024  return Method;
2025}
2026
2027Action::OwningExprResult
2028Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2029                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2030                               IdentifierInfo &Member,
2031                               DeclPtrTy ObjCImpDecl) {
2032  Expr *BaseExpr = Base.takeAs<Expr>();
2033  assert(BaseExpr && "no record expression");
2034
2035  // Perform default conversions.
2036  DefaultFunctionArrayConversion(BaseExpr);
2037
2038  QualType BaseType = BaseExpr->getType();
2039  assert(!BaseType.isNull() && "no type for member expression");
2040
2041  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2042  // must have pointer type, and the accessed type is the pointee.
2043  if (OpKind == tok::arrow) {
2044    if (BaseType->isDependentType())
2045      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2046                                                         BaseExpr, true,
2047                                                         OpLoc,
2048                                                     DeclarationName(&Member),
2049                                                         MemberLoc));
2050    else if (const PointerType *PT = BaseType->getAsPointerType())
2051      BaseType = PT->getPointeeType();
2052    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2053      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2054                                            MemberLoc, Member));
2055    else
2056      return ExprError(Diag(MemberLoc,
2057                            diag::err_typecheck_member_reference_arrow)
2058        << BaseType << BaseExpr->getSourceRange());
2059  } else {
2060    if (BaseType->isDependentType()) {
2061      // Require that the base type isn't a pointer type
2062      // (so we'll report an error for)
2063      // T* t;
2064      // t.f;
2065      //
2066      // In Obj-C++, however, the above expression is valid, since it could be
2067      // accessing the 'f' property if T is an Obj-C interface. The extra check
2068      // allows this, while still reporting an error if T is a struct pointer.
2069      const PointerType *PT = BaseType->getAsPointerType();
2070
2071      if (!PT || (getLangOptions().ObjC1 &&
2072                  !PT->getPointeeType()->isRecordType()))
2073        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2074                                                           BaseExpr, false,
2075                                                           OpLoc,
2076                                                     DeclarationName(&Member),
2077                                                           MemberLoc));
2078    }
2079  }
2080
2081  // Handle field access to simple records.  This also handles access to fields
2082  // of the ObjC 'id' struct.
2083  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2084    RecordDecl *RDecl = RTy->getDecl();
2085    if (RequireCompleteType(OpLoc, BaseType,
2086                               diag::err_typecheck_incomplete_tag,
2087                               BaseExpr->getSourceRange()))
2088      return ExprError();
2089
2090    // The record definition is complete, now make sure the member is valid.
2091    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2092    LookupResult Result
2093      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2094                            LookupMemberName, false);
2095
2096    if (!Result)
2097      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2098               << &Member << BaseExpr->getSourceRange());
2099    if (Result.isAmbiguous()) {
2100      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2101                              MemberLoc, BaseExpr->getSourceRange());
2102      return ExprError();
2103    }
2104
2105    NamedDecl *MemberDecl = Result;
2106
2107    // If the decl being referenced had an error, return an error for this
2108    // sub-expr without emitting another error, in order to avoid cascading
2109    // error cases.
2110    if (MemberDecl->isInvalidDecl())
2111      return ExprError();
2112
2113    // Check the use of this field
2114    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2115      return ExprError();
2116
2117    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2118      // We may have found a field within an anonymous union or struct
2119      // (C++ [class.union]).
2120      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2121        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2122                                                        BaseExpr, OpLoc);
2123
2124      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2125      // FIXME: Handle address space modifiers
2126      QualType MemberType = FD->getType();
2127      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2128        MemberType = Ref->getPointeeType();
2129      else {
2130        unsigned combinedQualifiers =
2131          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2132        if (FD->isMutable())
2133          combinedQualifiers &= ~QualType::Const;
2134        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2135      }
2136
2137      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2138                                            MemberLoc, MemberType));
2139    }
2140
2141    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
2142      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2143                                            Var, MemberLoc,
2144                                         Var->getType().getNonReferenceType()));
2145    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
2146      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2147                                            MemberFn, MemberLoc,
2148                                            MemberFn->getType()));
2149    if (OverloadedFunctionDecl *Ovl
2150          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2151      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2152                                            MemberLoc, Context.OverloadTy));
2153    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
2154      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2155                                            Enum, MemberLoc, Enum->getType()));
2156    if (isa<TypeDecl>(MemberDecl))
2157      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2158        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2159
2160    // We found a declaration kind that we didn't expect. This is a
2161    // generic error message that tells the user that she can't refer
2162    // to this member with '.' or '->'.
2163    return ExprError(Diag(MemberLoc,
2164                          diag::err_typecheck_member_reference_unknown)
2165      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2166  }
2167
2168  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2169  // (*Obj).ivar.
2170  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
2171    ObjCInterfaceDecl *ClassDeclared;
2172    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
2173                                                                   &Member,
2174                                                             ClassDeclared)) {
2175      // If the decl being referenced had an error, return an error for this
2176      // sub-expr without emitting another error, in order to avoid cascading
2177      // error cases.
2178      if (IV->isInvalidDecl())
2179        return ExprError();
2180
2181      // Check whether we can reference this field.
2182      if (DiagnoseUseOfDecl(IV, MemberLoc))
2183        return ExprError();
2184      if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2185          IV->getAccessControl() != ObjCIvarDecl::Package) {
2186        ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2187        if (ObjCMethodDecl *MD = getCurMethodDecl())
2188          ClassOfMethodDecl =  MD->getClassInterface();
2189        else if (ObjCImpDecl && getCurFunctionDecl()) {
2190          // Case of a c-function declared inside an objc implementation.
2191          // FIXME: For a c-style function nested inside an objc implementation
2192          // class, there is no implementation context available, so we pass
2193          // down the context as argument to this routine. Ideally, this context
2194          // need be passed down in the AST node and somehow calculated from the
2195          // AST for a function decl.
2196          Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2197          if (ObjCImplementationDecl *IMPD =
2198              dyn_cast<ObjCImplementationDecl>(ImplDecl))
2199            ClassOfMethodDecl = IMPD->getClassInterface();
2200          else if (ObjCCategoryImplDecl* CatImplClass =
2201                      dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2202            ClassOfMethodDecl = CatImplClass->getClassInterface();
2203        }
2204
2205        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2206          if (ClassDeclared != IFTy->getDecl() ||
2207              ClassOfMethodDecl != ClassDeclared)
2208            Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
2209        }
2210        // @protected
2211        else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
2212          Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
2213      }
2214
2215      return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2216                                                 MemberLoc, BaseExpr,
2217                                                 OpKind == tok::arrow));
2218    }
2219    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2220                       << IFTy->getDecl()->getDeclName() << &Member
2221                       << BaseExpr->getSourceRange());
2222  }
2223
2224  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2225  // pointer to a (potentially qualified) interface type.
2226  const PointerType *PTy;
2227  const ObjCInterfaceType *IFTy;
2228  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
2229      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
2230    ObjCInterfaceDecl *IFace = IFTy->getDecl();
2231
2232    // Search for a declared property first.
2233    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
2234                                                              &Member)) {
2235      // Check whether we can reference this property.
2236      if (DiagnoseUseOfDecl(PD, MemberLoc))
2237        return ExprError();
2238      QualType ResTy = PD->getType();
2239      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2240      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2241      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2242        ResTy = Getter->getResultType();
2243      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2244                                                     MemberLoc, BaseExpr));
2245    }
2246
2247    // Check protocols on qualified interfaces.
2248    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
2249         E = IFTy->qual_end(); I != E; ++I)
2250      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
2251                                                               &Member)) {
2252        // Check whether we can reference this property.
2253        if (DiagnoseUseOfDecl(PD, MemberLoc))
2254          return ExprError();
2255
2256        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2257                                                       MemberLoc, BaseExpr));
2258      }
2259
2260    // If that failed, look for an "implicit" property by seeing if the nullary
2261    // selector is implemented.
2262
2263    // FIXME: The logic for looking up nullary and unary selectors should be
2264    // shared with the code in ActOnInstanceMessage.
2265
2266    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2267    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
2268
2269    // If this reference is in an @implementation, check for 'private' methods.
2270    if (!Getter)
2271      Getter = FindMethodInNestedImplementations(IFace, Sel);
2272
2273    // Look through local category implementations associated with the class.
2274    if (!Getter) {
2275      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
2276        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2277          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
2278      }
2279    }
2280    if (Getter) {
2281      // Check if we can reference this property.
2282      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2283        return ExprError();
2284    }
2285    // If we found a getter then this may be a valid dot-reference, we
2286    // will look for the matching setter, in case it is needed.
2287    Selector SetterSel =
2288      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2289                                         PP.getSelectorTable(), &Member);
2290    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
2291    if (!Setter) {
2292      // If this reference is in an @implementation, also check for 'private'
2293      // methods.
2294      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2295    }
2296    // Look through local category implementations associated with the class.
2297    if (!Setter) {
2298      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2299        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2300          Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
2301      }
2302    }
2303
2304    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2305      return ExprError();
2306
2307    if (Getter || Setter) {
2308      QualType PType;
2309
2310      if (Getter)
2311        PType = Getter->getResultType();
2312      else {
2313        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2314             E = Setter->param_end(); PI != E; ++PI)
2315          PType = (*PI)->getType();
2316      }
2317      // FIXME: we must check that the setter has property type.
2318      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2319                                      Setter, MemberLoc, BaseExpr));
2320    }
2321    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2322      << &Member << BaseType);
2323  }
2324  // Handle properties on qualified "id" protocols.
2325  const ObjCObjectPointerType *QIdTy;
2326  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
2327    // Check protocols on qualified interfaces.
2328    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2329    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2330      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2331        // Check the use of this declaration
2332        if (DiagnoseUseOfDecl(PD, MemberLoc))
2333          return ExprError();
2334
2335        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2336                                                       MemberLoc, BaseExpr));
2337      }
2338      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2339        // Check the use of this method.
2340        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2341          return ExprError();
2342
2343        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2344                                                   OMD->getResultType(),
2345                                                   OMD, OpLoc, MemberLoc,
2346                                                   NULL, 0));
2347      }
2348    }
2349
2350    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2351                       << &Member << BaseType);
2352  }
2353  // Handle properties on ObjC 'Class' types.
2354  if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
2355    // Also must look for a getter name which uses property syntax.
2356    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2357    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2358      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2359      ObjCMethodDecl *Getter;
2360      // FIXME: need to also look locally in the implementation.
2361      if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
2362        // Check the use of this method.
2363        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2364          return ExprError();
2365      }
2366      // If we found a getter then this may be a valid dot-reference, we
2367      // will look for the matching setter, in case it is needed.
2368      Selector SetterSel =
2369        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2370                                           PP.getSelectorTable(), &Member);
2371      ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
2372      if (!Setter) {
2373        // If this reference is in an @implementation, also check for 'private'
2374        // methods.
2375        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2376      }
2377      // Look through local category implementations associated with the class.
2378      if (!Setter) {
2379        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
2380          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
2381            Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
2382        }
2383      }
2384
2385      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2386        return ExprError();
2387
2388      if (Getter || Setter) {
2389        QualType PType;
2390
2391        if (Getter)
2392          PType = Getter->getResultType();
2393        else {
2394          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2395               E = Setter->param_end(); PI != E; ++PI)
2396            PType = (*PI)->getType();
2397        }
2398        // FIXME: we must check that the setter has property type.
2399        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2400                                        Setter, MemberLoc, BaseExpr));
2401      }
2402      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2403        << &Member << BaseType);
2404    }
2405  }
2406
2407  // Handle 'field access' to vectors, such as 'V.xx'.
2408  if (BaseType->isExtVectorType()) {
2409    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2410    if (ret.isNull())
2411      return ExprError();
2412    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2413                                                    MemberLoc));
2414  }
2415
2416  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2417    << BaseType << BaseExpr->getSourceRange();
2418
2419  // If the user is trying to apply -> or . to a function or function
2420  // pointer, it's probably because they forgot parentheses to call
2421  // the function. Suggest the addition of those parentheses.
2422  if (BaseType == Context.OverloadTy ||
2423      BaseType->isFunctionType() ||
2424      (BaseType->isPointerType() &&
2425       BaseType->getAsPointerType()->isFunctionType())) {
2426    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2427    Diag(Loc, diag::note_member_reference_needs_call)
2428      << CodeModificationHint::CreateInsertion(Loc, "()");
2429  }
2430
2431  return ExprError();
2432}
2433
2434/// ConvertArgumentsForCall - Converts the arguments specified in
2435/// Args/NumArgs to the parameter types of the function FDecl with
2436/// function prototype Proto. Call is the call expression itself, and
2437/// Fn is the function expression. For a C++ member function, this
2438/// routine does not attempt to convert the object argument. Returns
2439/// true if the call is ill-formed.
2440bool
2441Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2442                              FunctionDecl *FDecl,
2443                              const FunctionProtoType *Proto,
2444                              Expr **Args, unsigned NumArgs,
2445                              SourceLocation RParenLoc) {
2446  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2447  // assignment, to the types of the corresponding parameter, ...
2448  unsigned NumArgsInProto = Proto->getNumArgs();
2449  unsigned NumArgsToCheck = NumArgs;
2450  bool Invalid = false;
2451
2452  // If too few arguments are available (and we don't have default
2453  // arguments for the remaining parameters), don't make the call.
2454  if (NumArgs < NumArgsInProto) {
2455    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2456      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2457        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2458    // Use default arguments for missing arguments
2459    NumArgsToCheck = NumArgsInProto;
2460    Call->setNumArgs(Context, NumArgsInProto);
2461  }
2462
2463  // If too many are passed and not variadic, error on the extras and drop
2464  // them.
2465  if (NumArgs > NumArgsInProto) {
2466    if (!Proto->isVariadic()) {
2467      Diag(Args[NumArgsInProto]->getLocStart(),
2468           diag::err_typecheck_call_too_many_args)
2469        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2470        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2471                       Args[NumArgs-1]->getLocEnd());
2472      // This deletes the extra arguments.
2473      Call->setNumArgs(Context, NumArgsInProto);
2474      Invalid = true;
2475    }
2476    NumArgsToCheck = NumArgsInProto;
2477  }
2478
2479  // Continue to check argument types (even if we have too few/many args).
2480  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2481    QualType ProtoArgType = Proto->getArgType(i);
2482
2483    Expr *Arg;
2484    if (i < NumArgs) {
2485      Arg = Args[i];
2486
2487      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2488                              ProtoArgType,
2489                              diag::err_call_incomplete_argument,
2490                              Arg->getSourceRange()))
2491        return true;
2492
2493      // Pass the argument.
2494      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2495        return true;
2496    } else {
2497      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2498        Diag (Call->getSourceRange().getBegin(),
2499              diag::err_use_of_default_argument_to_function_declared_later) <<
2500        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2501        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2502              diag::note_default_argument_declared_here);
2503      } else {
2504        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2505
2506        // If the default expression creates temporaries, we need to
2507        // push them to the current stack of expression temporaries so they'll
2508        // be properly destroyed.
2509        if (CXXExprWithTemporaries *E
2510              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2511          assert(!E->shouldDestroyTemporaries() &&
2512                 "Can't destroy temporaries in a default argument expr!");
2513          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2514            ExprTemporaries.push_back(E->getTemporary(I));
2515        }
2516      }
2517
2518      // We already type-checked the argument, so we know it works.
2519      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2520    }
2521
2522    QualType ArgType = Arg->getType();
2523
2524    Call->setArg(i, Arg);
2525  }
2526
2527  // If this is a variadic call, handle args passed through "...".
2528  if (Proto->isVariadic()) {
2529    VariadicCallType CallType = VariadicFunction;
2530    if (Fn->getType()->isBlockPointerType())
2531      CallType = VariadicBlock; // Block
2532    else if (isa<MemberExpr>(Fn))
2533      CallType = VariadicMethod;
2534
2535    // Promote the arguments (C99 6.5.2.2p7).
2536    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2537      Expr *Arg = Args[i];
2538      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2539      Call->setArg(i, Arg);
2540    }
2541  }
2542
2543  return Invalid;
2544}
2545
2546/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2547/// This provides the location of the left/right parens and a list of comma
2548/// locations.
2549Action::OwningExprResult
2550Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2551                    MultiExprArg args,
2552                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2553  unsigned NumArgs = args.size();
2554  Expr *Fn = fn.takeAs<Expr>();
2555  Expr **Args = reinterpret_cast<Expr**>(args.release());
2556  assert(Fn && "no function call expression");
2557  FunctionDecl *FDecl = NULL;
2558  NamedDecl *NDecl = NULL;
2559  DeclarationName UnqualifiedName;
2560
2561  if (getLangOptions().CPlusPlus) {
2562    // Determine whether this is a dependent call inside a C++ template,
2563    // in which case we won't do any semantic analysis now.
2564    // FIXME: Will need to cache the results of name lookup (including ADL) in
2565    // Fn.
2566    bool Dependent = false;
2567    if (Fn->isTypeDependent())
2568      Dependent = true;
2569    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2570      Dependent = true;
2571
2572    if (Dependent)
2573      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2574                                          Context.DependentTy, RParenLoc));
2575
2576    // Determine whether this is a call to an object (C++ [over.call.object]).
2577    if (Fn->getType()->isRecordType())
2578      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2579                                                CommaLocs, RParenLoc));
2580
2581    // Determine whether this is a call to a member function.
2582    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
2583      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
2584          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
2585        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2586                                               CommaLocs, RParenLoc));
2587  }
2588
2589  // If we're directly calling a function, get the appropriate declaration.
2590  DeclRefExpr *DRExpr = NULL;
2591  Expr *FnExpr = Fn;
2592  bool ADL = true;
2593  while (true) {
2594    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2595      FnExpr = IcExpr->getSubExpr();
2596    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2597      // Parentheses around a function disable ADL
2598      // (C++0x [basic.lookup.argdep]p1).
2599      ADL = false;
2600      FnExpr = PExpr->getSubExpr();
2601    } else if (isa<UnaryOperator>(FnExpr) &&
2602               cast<UnaryOperator>(FnExpr)->getOpcode()
2603                 == UnaryOperator::AddrOf) {
2604      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2605    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
2606      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2607      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2608      break;
2609    } else if (UnresolvedFunctionNameExpr *DepName
2610                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2611      UnqualifiedName = DepName->getName();
2612      break;
2613    } else {
2614      // Any kind of name that does not refer to a declaration (or
2615      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2616      ADL = false;
2617      break;
2618    }
2619  }
2620
2621  OverloadedFunctionDecl *Ovl = 0;
2622  if (DRExpr) {
2623    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
2624    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
2625    NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2626  }
2627
2628  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2629    // We don't perform ADL for implicit declarations of builtins.
2630    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2631      ADL = false;
2632
2633    // We don't perform ADL in C.
2634    if (!getLangOptions().CPlusPlus)
2635      ADL = false;
2636
2637    if (Ovl || ADL) {
2638      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
2639                                      UnqualifiedName, LParenLoc, Args,
2640                                      NumArgs, CommaLocs, RParenLoc, ADL);
2641      if (!FDecl)
2642        return ExprError();
2643
2644      // Update Fn to refer to the actual function selected.
2645      Expr *NewFn = 0;
2646      if (QualifiedDeclRefExpr *QDRExpr
2647            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
2648        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2649                                                   QDRExpr->getLocation(),
2650                                                   false, false,
2651                                                 QDRExpr->getQualifierRange(),
2652                                                   QDRExpr->getQualifier());
2653      else
2654        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2655                                          Fn->getSourceRange().getBegin());
2656      Fn->Destroy(Context);
2657      Fn = NewFn;
2658    }
2659  }
2660
2661  // Promote the function operand.
2662  UsualUnaryConversions(Fn);
2663
2664  // Make the call expr early, before semantic checks.  This guarantees cleanup
2665  // of arguments and function on error.
2666  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2667                                                               Args, NumArgs,
2668                                                               Context.BoolTy,
2669                                                               RParenLoc));
2670
2671  const FunctionType *FuncT;
2672  if (!Fn->getType()->isBlockPointerType()) {
2673    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2674    // have type pointer to function".
2675    const PointerType *PT = Fn->getType()->getAsPointerType();
2676    if (PT == 0)
2677      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2678        << Fn->getType() << Fn->getSourceRange());
2679    FuncT = PT->getPointeeType()->getAsFunctionType();
2680  } else { // This is a block call.
2681    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2682                getAsFunctionType();
2683  }
2684  if (FuncT == 0)
2685    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2686      << Fn->getType() << Fn->getSourceRange());
2687
2688  // Check for a valid return type
2689  if (!FuncT->getResultType()->isVoidType() &&
2690      RequireCompleteType(Fn->getSourceRange().getBegin(),
2691                          FuncT->getResultType(),
2692                          diag::err_call_incomplete_return,
2693                          TheCall->getSourceRange()))
2694    return ExprError();
2695
2696  // We know the result type of the call, set it.
2697  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2698
2699  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2700    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2701                                RParenLoc))
2702      return ExprError();
2703  } else {
2704    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2705
2706    if (FDecl) {
2707      // Check if we have too few/too many template arguments, based
2708      // on our knowledge of the function definition.
2709      const FunctionDecl *Def = 0;
2710      if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) {
2711        const FunctionProtoType *Proto =
2712            Def->getType()->getAsFunctionProtoType();
2713        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2714          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2715            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2716        }
2717      }
2718    }
2719
2720    // Promote the arguments (C99 6.5.2.2p6).
2721    for (unsigned i = 0; i != NumArgs; i++) {
2722      Expr *Arg = Args[i];
2723      DefaultArgumentPromotion(Arg);
2724      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2725                              Arg->getType(),
2726                              diag::err_call_incomplete_argument,
2727                              Arg->getSourceRange()))
2728        return ExprError();
2729      TheCall->setArg(i, Arg);
2730    }
2731  }
2732
2733  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2734    if (!Method->isStatic())
2735      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2736        << Fn->getSourceRange());
2737
2738  // Check for sentinels
2739  if (NDecl)
2740    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2741  // Do special checking on direct calls to functions.
2742  if (FDecl)
2743    return CheckFunctionCall(FDecl, TheCall.take());
2744  if (NDecl)
2745    return CheckBlockCall(NDecl, TheCall.take());
2746
2747  return Owned(TheCall.take());
2748}
2749
2750Action::OwningExprResult
2751Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2752                           SourceLocation RParenLoc, ExprArg InitExpr) {
2753  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2754  QualType literalType = QualType::getFromOpaquePtr(Ty);
2755  // FIXME: put back this assert when initializers are worked out.
2756  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2757  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2758
2759  if (literalType->isArrayType()) {
2760    if (literalType->isVariableArrayType())
2761      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2762        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2763  } else if (!literalType->isDependentType() &&
2764             RequireCompleteType(LParenLoc, literalType,
2765                                 diag::err_typecheck_decl_incomplete_type,
2766                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2767    return ExprError();
2768
2769  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2770                            DeclarationName(), /*FIXME:DirectInit=*/false))
2771    return ExprError();
2772
2773  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2774  if (isFileScope) { // 6.5.2.5p3
2775    if (CheckForConstantInitializer(literalExpr, literalType))
2776      return ExprError();
2777  }
2778  InitExpr.release();
2779  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2780                                                 literalExpr, isFileScope));
2781}
2782
2783Action::OwningExprResult
2784Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2785                    SourceLocation RBraceLoc) {
2786  unsigned NumInit = initlist.size();
2787  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2788
2789  // Semantic analysis for initializers is done by ActOnDeclarator() and
2790  // CheckInitializer() - it requires knowledge of the object being intialized.
2791
2792  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2793                                               RBraceLoc);
2794  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2795  return Owned(E);
2796}
2797
2798/// CheckCastTypes - Check type constraints for casting between types.
2799bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2800  UsualUnaryConversions(castExpr);
2801
2802  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2803  // type needs to be scalar.
2804  if (castType->isVoidType()) {
2805    // Cast to void allows any expr type.
2806  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2807    // We can't check any more until template instantiation time.
2808  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2809    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2810        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2811        (castType->isStructureType() || castType->isUnionType())) {
2812      // GCC struct/union extension: allow cast to self.
2813      // FIXME: Check that the cast destination type is complete.
2814      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2815        << castType << castExpr->getSourceRange();
2816    } else if (castType->isUnionType()) {
2817      // GCC cast to union extension
2818      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2819      RecordDecl::field_iterator Field, FieldEnd;
2820      for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
2821           Field != FieldEnd; ++Field) {
2822        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2823            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2824          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2825            << castExpr->getSourceRange();
2826          break;
2827        }
2828      }
2829      if (Field == FieldEnd)
2830        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2831          << castExpr->getType() << castExpr->getSourceRange();
2832    } else {
2833      // Reject any other conversions to non-scalar types.
2834      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2835        << castType << castExpr->getSourceRange();
2836    }
2837  } else if (!castExpr->getType()->isScalarType() &&
2838             !castExpr->getType()->isVectorType()) {
2839    return Diag(castExpr->getLocStart(),
2840                diag::err_typecheck_expect_scalar_operand)
2841      << castExpr->getType() << castExpr->getSourceRange();
2842  } else if (castExpr->getType()->isVectorType()) {
2843    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2844      return true;
2845  } else if (castType->isVectorType()) {
2846    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2847      return true;
2848  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2849    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2850  } else if (!castType->isArithmeticType()) {
2851    QualType castExprType = castExpr->getType();
2852    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
2853      return Diag(castExpr->getLocStart(),
2854                  diag::err_cast_pointer_from_non_pointer_int)
2855        << castExprType << castExpr->getSourceRange();
2856  } else if (!castExpr->getType()->isArithmeticType()) {
2857    if (!castType->isIntegralType() && castType->isArithmeticType())
2858      return Diag(castExpr->getLocStart(),
2859                  diag::err_cast_pointer_to_non_pointer_int)
2860        << castType << castExpr->getSourceRange();
2861  }
2862  if (isa<ObjCSelectorExpr>(castExpr))
2863    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
2864  return false;
2865}
2866
2867bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2868  assert(VectorTy->isVectorType() && "Not a vector type!");
2869
2870  if (Ty->isVectorType() || Ty->isIntegerType()) {
2871    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2872      return Diag(R.getBegin(),
2873                  Ty->isVectorType() ?
2874                  diag::err_invalid_conversion_between_vectors :
2875                  diag::err_invalid_conversion_between_vector_and_integer)
2876        << VectorTy << Ty << R;
2877  } else
2878    return Diag(R.getBegin(),
2879                diag::err_invalid_conversion_between_vector_and_scalar)
2880      << VectorTy << Ty << R;
2881
2882  return false;
2883}
2884
2885Action::OwningExprResult
2886Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2887                    SourceLocation RParenLoc, ExprArg Op) {
2888  assert((Ty != 0) && (Op.get() != 0) &&
2889         "ActOnCastExpr(): missing type or expr");
2890
2891  Expr *castExpr = Op.takeAs<Expr>();
2892  QualType castType = QualType::getFromOpaquePtr(Ty);
2893
2894  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2895    return ExprError();
2896  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2897                                            LParenLoc, RParenLoc));
2898}
2899
2900/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
2901/// In that case, lhs = cond.
2902/// C99 6.5.15
2903QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2904                                        SourceLocation QuestionLoc) {
2905  // C++ is sufficiently different to merit its own checker.
2906  if (getLangOptions().CPlusPlus)
2907    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
2908
2909  UsualUnaryConversions(Cond);
2910  UsualUnaryConversions(LHS);
2911  UsualUnaryConversions(RHS);
2912  QualType CondTy = Cond->getType();
2913  QualType LHSTy = LHS->getType();
2914  QualType RHSTy = RHS->getType();
2915
2916  // first, check the condition.
2917  if (!CondTy->isScalarType()) { // C99 6.5.15p2
2918    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
2919      << CondTy;
2920    return QualType();
2921  }
2922
2923  // Now check the two expressions.
2924
2925  // If both operands have arithmetic type, do the usual arithmetic conversions
2926  // to find a common type: C99 6.5.15p3,5.
2927  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
2928    UsualArithmeticConversions(LHS, RHS);
2929    return LHS->getType();
2930  }
2931
2932  // If both operands are the same structure or union type, the result is that
2933  // type.
2934  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
2935    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
2936      if (LHSRT->getDecl() == RHSRT->getDecl())
2937        // "If both the operands have structure or union type, the result has
2938        // that type."  This implies that CV qualifiers are dropped.
2939        return LHSTy.getUnqualifiedType();
2940    // FIXME: Type of conditional expression must be complete in C mode.
2941  }
2942
2943  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2944  // The following || allows only one side to be void (a GCC-ism).
2945  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
2946    if (!LHSTy->isVoidType())
2947      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2948        << RHS->getSourceRange();
2949    if (!RHSTy->isVoidType())
2950      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
2951        << LHS->getSourceRange();
2952    ImpCastExprToType(LHS, Context.VoidTy);
2953    ImpCastExprToType(RHS, Context.VoidTy);
2954    return Context.VoidTy;
2955  }
2956  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2957  // the type of the other operand."
2958  if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
2959       Context.isObjCObjectPointerType(LHSTy)) &&
2960      RHS->isNullPointerConstant(Context)) {
2961    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
2962    return LHSTy;
2963  }
2964  if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
2965       Context.isObjCObjectPointerType(RHSTy)) &&
2966      LHS->isNullPointerConstant(Context)) {
2967    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
2968    return RHSTy;
2969  }
2970
2971  const PointerType *LHSPT = LHSTy->getAsPointerType();
2972  const PointerType *RHSPT = RHSTy->getAsPointerType();
2973  const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
2974  const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
2975
2976  // Handle the case where both operands are pointers before we handle null
2977  // pointer constants in case both operands are null pointer constants.
2978  if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
2979    // get the "pointed to" types
2980    QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
2981                       : LHSBPT->getPointeeType());
2982      QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
2983                         : RHSBPT->getPointeeType());
2984
2985    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2986    if (lhptee->isVoidType()
2987        && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
2988      // Figure out necessary qualifiers (C99 6.5.15p6)
2989      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2990      QualType destType = Context.getPointerType(destPointee);
2991      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
2992      ImpCastExprToType(RHS, destType); // promote to void*
2993      return destType;
2994    }
2995    if (rhptee->isVoidType()
2996        && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
2997      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2998      QualType destType = Context.getPointerType(destPointee);
2999      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3000      ImpCastExprToType(RHS, destType); // promote to void*
3001      return destType;
3002    }
3003
3004    bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
3005    if (sameKind
3006        && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3007      // Two identical pointer types are always compatible.
3008      return LHSTy;
3009    }
3010
3011    QualType compositeType = LHSTy;
3012
3013    // If either type is an Objective-C object type then check
3014    // compatibility according to Objective-C.
3015    if (Context.isObjCObjectPointerType(LHSTy) ||
3016        Context.isObjCObjectPointerType(RHSTy)) {
3017      // If both operands are interfaces and either operand can be
3018      // assigned to the other, use that type as the composite
3019      // type. This allows
3020      //   xxx ? (A*) a : (B*) b
3021      // where B is a subclass of A.
3022      //
3023      // Additionally, as for assignment, if either type is 'id'
3024      // allow silent coercion. Finally, if the types are
3025      // incompatible then make sure to use 'id' as the composite
3026      // type so the result is acceptable for sending messages to.
3027
3028      // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3029      // It could return the composite type.
3030      const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
3031      const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
3032      if (LHSIface && RHSIface &&
3033          Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
3034        compositeType = LHSTy;
3035      } else if (LHSIface && RHSIface &&
3036                 Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
3037        compositeType = RHSTy;
3038      } else if (Context.isObjCIdStructType(lhptee) ||
3039                 Context.isObjCIdStructType(rhptee)) {
3040        compositeType = Context.getObjCIdType();
3041      } else if (LHSBPT || RHSBPT) {
3042        if (!sameKind
3043            || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3044                                           rhptee.getUnqualifiedType()))
3045          Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3046            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3047        return QualType();
3048      } else {
3049        Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3050          << LHSTy << RHSTy
3051          << LHS->getSourceRange() << RHS->getSourceRange();
3052        QualType incompatTy = Context.getObjCIdType();
3053        ImpCastExprToType(LHS, incompatTy);
3054        ImpCastExprToType(RHS, incompatTy);
3055        return incompatTy;
3056      }
3057    } else if (!sameKind
3058               || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3059                                              rhptee.getUnqualifiedType())) {
3060      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3061        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3062      // In this situation, we assume void* type. No especially good
3063      // reason, but this is what gcc does, and we do have to pick
3064      // to get a consistent AST.
3065      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3066      ImpCastExprToType(LHS, incompatTy);
3067      ImpCastExprToType(RHS, incompatTy);
3068      return incompatTy;
3069    }
3070    // The pointer types are compatible.
3071    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3072    // differently qualified versions of compatible types, the result type is
3073    // a pointer to an appropriately qualified version of the *composite*
3074    // type.
3075    // FIXME: Need to calculate the composite type.
3076    // FIXME: Need to add qualifiers
3077    ImpCastExprToType(LHS, compositeType);
3078    ImpCastExprToType(RHS, compositeType);
3079    return compositeType;
3080  }
3081
3082  // GCC compatibility: soften pointer/integer mismatch.
3083  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3084    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3085      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3086    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3087    return RHSTy;
3088  }
3089  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3090    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3091      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3092    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3093    return LHSTy;
3094  }
3095
3096  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
3097  // evaluates to "struct objc_object *" (and is handled above when comparing
3098  // id with statically typed objects).
3099  if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
3100    // GCC allows qualified id and any Objective-C type to devolve to
3101    // id. Currently localizing to here until clear this should be
3102    // part of ObjCQualifiedIdTypesAreCompatible.
3103    if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
3104        (LHSTy->isObjCQualifiedIdType() &&
3105         Context.isObjCObjectPointerType(RHSTy)) ||
3106        (RHSTy->isObjCQualifiedIdType() &&
3107         Context.isObjCObjectPointerType(LHSTy))) {
3108      // FIXME: This is not the correct composite type. This only happens to
3109      // work because id can more or less be used anywhere, however this may
3110      // change the type of method sends.
3111
3112      // FIXME: gcc adds some type-checking of the arguments and emits
3113      // (confusing) incompatible comparison warnings in some
3114      // cases. Investigate.
3115      QualType compositeType = Context.getObjCIdType();
3116      ImpCastExprToType(LHS, compositeType);
3117      ImpCastExprToType(RHS, compositeType);
3118      return compositeType;
3119    }
3120  }
3121
3122  // Otherwise, the operands are not compatible.
3123  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3124    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3125  return QualType();
3126}
3127
3128/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3129/// in the case of a the GNU conditional expr extension.
3130Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3131                                                  SourceLocation ColonLoc,
3132                                                  ExprArg Cond, ExprArg LHS,
3133                                                  ExprArg RHS) {
3134  Expr *CondExpr = (Expr *) Cond.get();
3135  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3136
3137  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3138  // was the condition.
3139  bool isLHSNull = LHSExpr == 0;
3140  if (isLHSNull)
3141    LHSExpr = CondExpr;
3142
3143  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3144                                             RHSExpr, QuestionLoc);
3145  if (result.isNull())
3146    return ExprError();
3147
3148  Cond.release();
3149  LHS.release();
3150  RHS.release();
3151  return Owned(new (Context) ConditionalOperator(CondExpr,
3152                                                 isLHSNull ? 0 : LHSExpr,
3153                                                 RHSExpr, result));
3154}
3155
3156
3157// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3158// being closely modeled after the C99 spec:-). The odd characteristic of this
3159// routine is it effectively iqnores the qualifiers on the top level pointee.
3160// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3161// FIXME: add a couple examples in this comment.
3162Sema::AssignConvertType
3163Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3164  QualType lhptee, rhptee;
3165
3166  // get the "pointed to" type (ignoring qualifiers at the top level)
3167  lhptee = lhsType->getAsPointerType()->getPointeeType();
3168  rhptee = rhsType->getAsPointerType()->getPointeeType();
3169
3170  // make sure we operate on the canonical type
3171  lhptee = Context.getCanonicalType(lhptee);
3172  rhptee = Context.getCanonicalType(rhptee);
3173
3174  AssignConvertType ConvTy = Compatible;
3175
3176  // C99 6.5.16.1p1: This following citation is common to constraints
3177  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3178  // qualifiers of the type *pointed to* by the right;
3179  // FIXME: Handle ExtQualType
3180  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3181    ConvTy = CompatiblePointerDiscardsQualifiers;
3182
3183  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3184  // incomplete type and the other is a pointer to a qualified or unqualified
3185  // version of void...
3186  if (lhptee->isVoidType()) {
3187    if (rhptee->isIncompleteOrObjectType())
3188      return ConvTy;
3189
3190    // As an extension, we allow cast to/from void* to function pointer.
3191    assert(rhptee->isFunctionType());
3192    return FunctionVoidPointer;
3193  }
3194
3195  if (rhptee->isVoidType()) {
3196    if (lhptee->isIncompleteOrObjectType())
3197      return ConvTy;
3198
3199    // As an extension, we allow cast to/from void* to function pointer.
3200    assert(lhptee->isFunctionType());
3201    return FunctionVoidPointer;
3202  }
3203  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3204  // unqualified versions of compatible types, ...
3205  lhptee = lhptee.getUnqualifiedType();
3206  rhptee = rhptee.getUnqualifiedType();
3207  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3208    // Check if the pointee types are compatible ignoring the sign.
3209    // We explicitly check for char so that we catch "char" vs
3210    // "unsigned char" on systems where "char" is unsigned.
3211    if (lhptee->isCharType()) {
3212      lhptee = Context.UnsignedCharTy;
3213    } else if (lhptee->isSignedIntegerType()) {
3214      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3215    }
3216    if (rhptee->isCharType()) {
3217      rhptee = Context.UnsignedCharTy;
3218    } else if (rhptee->isSignedIntegerType()) {
3219      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3220    }
3221    if (lhptee == rhptee) {
3222      // Types are compatible ignoring the sign. Qualifier incompatibility
3223      // takes priority over sign incompatibility because the sign
3224      // warning can be disabled.
3225      if (ConvTy != Compatible)
3226        return ConvTy;
3227      return IncompatiblePointerSign;
3228    }
3229    // General pointer incompatibility takes priority over qualifiers.
3230    return IncompatiblePointer;
3231  }
3232  return ConvTy;
3233}
3234
3235/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3236/// block pointer types are compatible or whether a block and normal pointer
3237/// are compatible. It is more restrict than comparing two function pointer
3238// types.
3239Sema::AssignConvertType
3240Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3241                                          QualType rhsType) {
3242  QualType lhptee, rhptee;
3243
3244  // get the "pointed to" type (ignoring qualifiers at the top level)
3245  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3246  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3247
3248  // make sure we operate on the canonical type
3249  lhptee = Context.getCanonicalType(lhptee);
3250  rhptee = Context.getCanonicalType(rhptee);
3251
3252  AssignConvertType ConvTy = Compatible;
3253
3254  // For blocks we enforce that qualifiers are identical.
3255  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3256    ConvTy = CompatiblePointerDiscardsQualifiers;
3257
3258  if (!Context.typesAreCompatible(lhptee, rhptee))
3259    return IncompatibleBlockPointer;
3260  return ConvTy;
3261}
3262
3263/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3264/// has code to accommodate several GCC extensions when type checking
3265/// pointers. Here are some objectionable examples that GCC considers warnings:
3266///
3267///  int a, *pint;
3268///  short *pshort;
3269///  struct foo *pfoo;
3270///
3271///  pint = pshort; // warning: assignment from incompatible pointer type
3272///  a = pint; // warning: assignment makes integer from pointer without a cast
3273///  pint = a; // warning: assignment makes pointer from integer without a cast
3274///  pint = pfoo; // warning: assignment from incompatible pointer type
3275///
3276/// As a result, the code for dealing with pointers is more complex than the
3277/// C99 spec dictates.
3278///
3279Sema::AssignConvertType
3280Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3281  // Get canonical types.  We're not formatting these types, just comparing
3282  // them.
3283  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3284  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3285
3286  if (lhsType == rhsType)
3287    return Compatible; // Common case: fast path an exact match.
3288
3289  // If the left-hand side is a reference type, then we are in a
3290  // (rare!) case where we've allowed the use of references in C,
3291  // e.g., as a parameter type in a built-in function. In this case,
3292  // just make sure that the type referenced is compatible with the
3293  // right-hand side type. The caller is responsible for adjusting
3294  // lhsType so that the resulting expression does not have reference
3295  // type.
3296  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3297    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3298      return Compatible;
3299    return Incompatible;
3300  }
3301
3302  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
3303    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
3304      return Compatible;
3305    // Relax integer conversions like we do for pointers below.
3306    if (rhsType->isIntegerType())
3307      return IntToPointer;
3308    if (lhsType->isIntegerType())
3309      return PointerToInt;
3310    return IncompatibleObjCQualifiedId;
3311  }
3312
3313  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3314    // For ExtVector, allow vector splats; float -> <n x float>
3315    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
3316      if (LV->getElementType() == rhsType)
3317        return Compatible;
3318
3319    // If we are allowing lax vector conversions, and LHS and RHS are both
3320    // vectors, the total size only needs to be the same. This is a bitcast;
3321    // no bits are changed but the result type is different.
3322    if (getLangOptions().LaxVectorConversions &&
3323        lhsType->isVectorType() && rhsType->isVectorType()) {
3324      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3325        return IncompatibleVectors;
3326    }
3327    return Incompatible;
3328  }
3329
3330  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3331    return Compatible;
3332
3333  if (isa<PointerType>(lhsType)) {
3334    if (rhsType->isIntegerType())
3335      return IntToPointer;
3336
3337    if (isa<PointerType>(rhsType))
3338      return CheckPointerTypesForAssignment(lhsType, rhsType);
3339
3340    if (rhsType->getAsBlockPointerType()) {
3341      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3342        return Compatible;
3343
3344      // Treat block pointers as objects.
3345      if (getLangOptions().ObjC1 &&
3346          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
3347        return Compatible;
3348    }
3349    return Incompatible;
3350  }
3351
3352  if (isa<BlockPointerType>(lhsType)) {
3353    if (rhsType->isIntegerType())
3354      return IntToBlockPointer;
3355
3356    // Treat block pointers as objects.
3357    if (getLangOptions().ObjC1 &&
3358        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
3359      return Compatible;
3360
3361    if (rhsType->isBlockPointerType())
3362      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3363
3364    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3365      if (RHSPT->getPointeeType()->isVoidType())
3366        return Compatible;
3367    }
3368    return Incompatible;
3369  }
3370
3371  if (isa<PointerType>(rhsType)) {
3372    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3373    if (lhsType == Context.BoolTy)
3374      return Compatible;
3375
3376    if (lhsType->isIntegerType())
3377      return PointerToInt;
3378
3379    if (isa<PointerType>(lhsType))
3380      return CheckPointerTypesForAssignment(lhsType, rhsType);
3381
3382    if (isa<BlockPointerType>(lhsType) &&
3383        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3384      return Compatible;
3385    return Incompatible;
3386  }
3387
3388  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3389    if (Context.typesAreCompatible(lhsType, rhsType))
3390      return Compatible;
3391  }
3392  return Incompatible;
3393}
3394
3395/// \brief Constructs a transparent union from an expression that is
3396/// used to initialize the transparent union.
3397static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3398                                      QualType UnionType, FieldDecl *Field) {
3399  // Build an initializer list that designates the appropriate member
3400  // of the transparent union.
3401  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3402                                                   &E, 1,
3403                                                   SourceLocation());
3404  Initializer->setType(UnionType);
3405  Initializer->setInitializedFieldInUnion(Field);
3406
3407  // Build a compound literal constructing a value of the transparent
3408  // union type from this initializer list.
3409  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3410                                  false);
3411}
3412
3413Sema::AssignConvertType
3414Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3415  QualType FromType = rExpr->getType();
3416
3417  // If the ArgType is a Union type, we want to handle a potential
3418  // transparent_union GCC extension.
3419  const RecordType *UT = ArgType->getAsUnionType();
3420  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>(Context))
3421    return Incompatible;
3422
3423  // The field to initialize within the transparent union.
3424  RecordDecl *UD = UT->getDecl();
3425  FieldDecl *InitField = 0;
3426  // It's compatible if the expression matches any of the fields.
3427  for (RecordDecl::field_iterator it = UD->field_begin(Context),
3428         itend = UD->field_end(Context);
3429       it != itend; ++it) {
3430    if (it->getType()->isPointerType()) {
3431      // If the transparent union contains a pointer type, we allow:
3432      // 1) void pointer
3433      // 2) null pointer constant
3434      if (FromType->isPointerType())
3435        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3436          ImpCastExprToType(rExpr, it->getType());
3437          InitField = *it;
3438          break;
3439        }
3440
3441      if (rExpr->isNullPointerConstant(Context)) {
3442        ImpCastExprToType(rExpr, it->getType());
3443        InitField = *it;
3444        break;
3445      }
3446    }
3447
3448    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3449          == Compatible) {
3450      InitField = *it;
3451      break;
3452    }
3453  }
3454
3455  if (!InitField)
3456    return Incompatible;
3457
3458  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3459  return Compatible;
3460}
3461
3462Sema::AssignConvertType
3463Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3464  if (getLangOptions().CPlusPlus) {
3465    if (!lhsType->isRecordType()) {
3466      // C++ 5.17p3: If the left operand is not of class type, the
3467      // expression is implicitly converted (C++ 4) to the
3468      // cv-unqualified type of the left operand.
3469      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3470                                    "assigning"))
3471        return Incompatible;
3472      return Compatible;
3473    }
3474
3475    // FIXME: Currently, we fall through and treat C++ classes like C
3476    // structures.
3477  }
3478
3479  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3480  // a null pointer constant.
3481  if ((lhsType->isPointerType() ||
3482       lhsType->isObjCQualifiedIdType() ||
3483       lhsType->isBlockPointerType())
3484      && rExpr->isNullPointerConstant(Context)) {
3485    ImpCastExprToType(rExpr, lhsType);
3486    return Compatible;
3487  }
3488
3489  // This check seems unnatural, however it is necessary to ensure the proper
3490  // conversion of functions/arrays. If the conversion were done for all
3491  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3492  // expressions that surpress this implicit conversion (&, sizeof).
3493  //
3494  // Suppress this for references: C++ 8.5.3p5.
3495  if (!lhsType->isReferenceType())
3496    DefaultFunctionArrayConversion(rExpr);
3497
3498  Sema::AssignConvertType result =
3499    CheckAssignmentConstraints(lhsType, rExpr->getType());
3500
3501  // C99 6.5.16.1p2: The value of the right operand is converted to the
3502  // type of the assignment expression.
3503  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3504  // so that we can use references in built-in functions even in C.
3505  // The getNonReferenceType() call makes sure that the resulting expression
3506  // does not have reference type.
3507  if (result != Incompatible && rExpr->getType() != lhsType)
3508    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3509  return result;
3510}
3511
3512QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3513  Diag(Loc, diag::err_typecheck_invalid_operands)
3514    << lex->getType() << rex->getType()
3515    << lex->getSourceRange() << rex->getSourceRange();
3516  return QualType();
3517}
3518
3519inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3520                                                              Expr *&rex) {
3521  // For conversion purposes, we ignore any qualifiers.
3522  // For example, "const float" and "float" are equivalent.
3523  QualType lhsType =
3524    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3525  QualType rhsType =
3526    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3527
3528  // If the vector types are identical, return.
3529  if (lhsType == rhsType)
3530    return lhsType;
3531
3532  // Handle the case of a vector & extvector type of the same size and element
3533  // type.  It would be nice if we only had one vector type someday.
3534  if (getLangOptions().LaxVectorConversions) {
3535    // FIXME: Should we warn here?
3536    if (const VectorType *LV = lhsType->getAsVectorType()) {
3537      if (const VectorType *RV = rhsType->getAsVectorType())
3538        if (LV->getElementType() == RV->getElementType() &&
3539            LV->getNumElements() == RV->getNumElements()) {
3540          return lhsType->isExtVectorType() ? lhsType : rhsType;
3541        }
3542    }
3543  }
3544
3545  // If the lhs is an extended vector and the rhs is a scalar of the same type
3546  // or a literal, promote the rhs to the vector type.
3547  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
3548    QualType eltType = V->getElementType();
3549
3550    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
3551        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
3552        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
3553      ImpCastExprToType(rex, lhsType);
3554      return lhsType;
3555    }
3556  }
3557
3558  // If the rhs is an extended vector and the lhs is a scalar of the same type,
3559  // promote the lhs to the vector type.
3560  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
3561    QualType eltType = V->getElementType();
3562
3563    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
3564        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
3565        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
3566      ImpCastExprToType(lex, rhsType);
3567      return rhsType;
3568    }
3569  }
3570
3571  // You cannot convert between vector values of different size.
3572  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3573    << lex->getType() << rex->getType()
3574    << lex->getSourceRange() << rex->getSourceRange();
3575  return QualType();
3576}
3577
3578inline QualType Sema::CheckMultiplyDivideOperands(
3579  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3580{
3581  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3582    return CheckVectorOperands(Loc, lex, rex);
3583
3584  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3585
3586  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3587    return compType;
3588  return InvalidOperands(Loc, lex, rex);
3589}
3590
3591inline QualType Sema::CheckRemainderOperands(
3592  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3593{
3594  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3595    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3596      return CheckVectorOperands(Loc, lex, rex);
3597    return InvalidOperands(Loc, lex, rex);
3598  }
3599
3600  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3601
3602  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3603    return compType;
3604  return InvalidOperands(Loc, lex, rex);
3605}
3606
3607inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3608  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3609{
3610  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3611    QualType compType = CheckVectorOperands(Loc, lex, rex);
3612    if (CompLHSTy) *CompLHSTy = compType;
3613    return compType;
3614  }
3615
3616  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3617
3618  // handle the common case first (both operands are arithmetic).
3619  if (lex->getType()->isArithmeticType() &&
3620      rex->getType()->isArithmeticType()) {
3621    if (CompLHSTy) *CompLHSTy = compType;
3622    return compType;
3623  }
3624
3625  // Put any potential pointer into PExp
3626  Expr* PExp = lex, *IExp = rex;
3627  if (IExp->getType()->isPointerType())
3628    std::swap(PExp, IExp);
3629
3630  if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
3631    if (IExp->getType()->isIntegerType()) {
3632      QualType PointeeTy = PTy->getPointeeType();
3633      // Check for arithmetic on pointers to incomplete types.
3634      if (PointeeTy->isVoidType()) {
3635        if (getLangOptions().CPlusPlus) {
3636          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3637            << lex->getSourceRange() << rex->getSourceRange();
3638          return QualType();
3639        }
3640
3641        // GNU extension: arithmetic on pointer to void
3642        Diag(Loc, diag::ext_gnu_void_ptr)
3643          << lex->getSourceRange() << rex->getSourceRange();
3644      } else if (PointeeTy->isFunctionType()) {
3645        if (getLangOptions().CPlusPlus) {
3646          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3647            << lex->getType() << lex->getSourceRange();
3648          return QualType();
3649        }
3650
3651        // GNU extension: arithmetic on pointer to function
3652        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3653          << lex->getType() << lex->getSourceRange();
3654      } else if (!PTy->isDependentType() &&
3655                 RequireCompleteType(Loc, PointeeTy,
3656                                diag::err_typecheck_arithmetic_incomplete_type,
3657                                     PExp->getSourceRange(), SourceRange(),
3658                                     PExp->getType()))
3659        return QualType();
3660
3661      // Diagnose bad cases where we step over interface counts.
3662      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3663        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3664          << PointeeTy << PExp->getSourceRange();
3665        return QualType();
3666      }
3667
3668      if (CompLHSTy) {
3669        QualType LHSTy = lex->getType();
3670        if (LHSTy->isPromotableIntegerType())
3671          LHSTy = Context.IntTy;
3672        else {
3673          QualType T = isPromotableBitField(lex, Context);
3674          if (!T.isNull())
3675            LHSTy = T;
3676        }
3677
3678        *CompLHSTy = LHSTy;
3679      }
3680      return PExp->getType();
3681    }
3682  }
3683
3684  return InvalidOperands(Loc, lex, rex);
3685}
3686
3687// C99 6.5.6
3688QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3689                                        SourceLocation Loc, QualType* CompLHSTy) {
3690  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3691    QualType compType = CheckVectorOperands(Loc, lex, rex);
3692    if (CompLHSTy) *CompLHSTy = compType;
3693    return compType;
3694  }
3695
3696  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3697
3698  // Enforce type constraints: C99 6.5.6p3.
3699
3700  // Handle the common case first (both operands are arithmetic).
3701  if (lex->getType()->isArithmeticType()
3702      && rex->getType()->isArithmeticType()) {
3703    if (CompLHSTy) *CompLHSTy = compType;
3704    return compType;
3705  }
3706
3707  // Either ptr - int   or   ptr - ptr.
3708  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
3709    QualType lpointee = LHSPTy->getPointeeType();
3710
3711    // The LHS must be an completely-defined object type.
3712
3713    bool ComplainAboutVoid = false;
3714    Expr *ComplainAboutFunc = 0;
3715    if (lpointee->isVoidType()) {
3716      if (getLangOptions().CPlusPlus) {
3717        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3718          << lex->getSourceRange() << rex->getSourceRange();
3719        return QualType();
3720      }
3721
3722      // GNU C extension: arithmetic on pointer to void
3723      ComplainAboutVoid = true;
3724    } else if (lpointee->isFunctionType()) {
3725      if (getLangOptions().CPlusPlus) {
3726        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3727          << lex->getType() << lex->getSourceRange();
3728        return QualType();
3729      }
3730
3731      // GNU C extension: arithmetic on pointer to function
3732      ComplainAboutFunc = lex;
3733    } else if (!lpointee->isDependentType() &&
3734               RequireCompleteType(Loc, lpointee,
3735                                   diag::err_typecheck_sub_ptr_object,
3736                                   lex->getSourceRange(),
3737                                   SourceRange(),
3738                                   lex->getType()))
3739      return QualType();
3740
3741    // Diagnose bad cases where we step over interface counts.
3742    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3743      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3744        << lpointee << lex->getSourceRange();
3745      return QualType();
3746    }
3747
3748    // The result type of a pointer-int computation is the pointer type.
3749    if (rex->getType()->isIntegerType()) {
3750      if (ComplainAboutVoid)
3751        Diag(Loc, diag::ext_gnu_void_ptr)
3752          << lex->getSourceRange() << rex->getSourceRange();
3753      if (ComplainAboutFunc)
3754        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3755          << ComplainAboutFunc->getType()
3756          << ComplainAboutFunc->getSourceRange();
3757
3758      if (CompLHSTy) *CompLHSTy = lex->getType();
3759      return lex->getType();
3760    }
3761
3762    // Handle pointer-pointer subtractions.
3763    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
3764      QualType rpointee = RHSPTy->getPointeeType();
3765
3766      // RHS must be a completely-type object type.
3767      // Handle the GNU void* extension.
3768      if (rpointee->isVoidType()) {
3769        if (getLangOptions().CPlusPlus) {
3770          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3771            << lex->getSourceRange() << rex->getSourceRange();
3772          return QualType();
3773        }
3774
3775        ComplainAboutVoid = true;
3776      } else if (rpointee->isFunctionType()) {
3777        if (getLangOptions().CPlusPlus) {
3778          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3779            << rex->getType() << rex->getSourceRange();
3780          return QualType();
3781        }
3782
3783        // GNU extension: arithmetic on pointer to function
3784        if (!ComplainAboutFunc)
3785          ComplainAboutFunc = rex;
3786      } else if (!rpointee->isDependentType() &&
3787                 RequireCompleteType(Loc, rpointee,
3788                                     diag::err_typecheck_sub_ptr_object,
3789                                     rex->getSourceRange(),
3790                                     SourceRange(),
3791                                     rex->getType()))
3792        return QualType();
3793
3794      if (getLangOptions().CPlusPlus) {
3795        // Pointee types must be the same: C++ [expr.add]
3796        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
3797          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3798            << lex->getType() << rex->getType()
3799            << lex->getSourceRange() << rex->getSourceRange();
3800          return QualType();
3801        }
3802      } else {
3803        // Pointee types must be compatible C99 6.5.6p3
3804        if (!Context.typesAreCompatible(
3805                Context.getCanonicalType(lpointee).getUnqualifiedType(),
3806                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
3807          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
3808            << lex->getType() << rex->getType()
3809            << lex->getSourceRange() << rex->getSourceRange();
3810          return QualType();
3811        }
3812      }
3813
3814      if (ComplainAboutVoid)
3815        Diag(Loc, diag::ext_gnu_void_ptr)
3816          << lex->getSourceRange() << rex->getSourceRange();
3817      if (ComplainAboutFunc)
3818        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3819          << ComplainAboutFunc->getType()
3820          << ComplainAboutFunc->getSourceRange();
3821
3822      if (CompLHSTy) *CompLHSTy = lex->getType();
3823      return Context.getPointerDiffType();
3824    }
3825  }
3826
3827  return InvalidOperands(Loc, lex, rex);
3828}
3829
3830// C99 6.5.7
3831QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3832                                  bool isCompAssign) {
3833  // C99 6.5.7p2: Each of the operands shall have integer type.
3834  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
3835    return InvalidOperands(Loc, lex, rex);
3836
3837  // Shifts don't perform usual arithmetic conversions, they just do integer
3838  // promotions on each operand. C99 6.5.7p3
3839  QualType LHSTy;
3840  if (lex->getType()->isPromotableIntegerType())
3841    LHSTy = Context.IntTy;
3842  else {
3843    LHSTy = isPromotableBitField(lex, Context);
3844    if (LHSTy.isNull())
3845      LHSTy = lex->getType();
3846  }
3847  if (!isCompAssign)
3848    ImpCastExprToType(lex, LHSTy);
3849
3850  UsualUnaryConversions(rex);
3851
3852  // "The type of the result is that of the promoted left operand."
3853  return LHSTy;
3854}
3855
3856// C99 6.5.8, C++ [expr.rel]
3857QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
3858                                    unsigned OpaqueOpc, bool isRelational) {
3859  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
3860
3861  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3862    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
3863
3864  // C99 6.5.8p3 / C99 6.5.9p4
3865  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3866    UsualArithmeticConversions(lex, rex);
3867  else {
3868    UsualUnaryConversions(lex);
3869    UsualUnaryConversions(rex);
3870  }
3871  QualType lType = lex->getType();
3872  QualType rType = rex->getType();
3873
3874  if (!lType->isFloatingType()
3875      && !(lType->isBlockPointerType() && isRelational)) {
3876    // For non-floating point types, check for self-comparisons of the form
3877    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3878    // often indicate logic errors in the program.
3879    // NOTE: Don't warn about comparisons of enum constants. These can arise
3880    //  from macro expansions, and are usually quite deliberate.
3881    Expr *LHSStripped = lex->IgnoreParens();
3882    Expr *RHSStripped = rex->IgnoreParens();
3883    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
3884      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
3885        if (DRL->getDecl() == DRR->getDecl() &&
3886            !isa<EnumConstantDecl>(DRL->getDecl()))
3887          Diag(Loc, diag::warn_selfcomparison);
3888
3889    if (isa<CastExpr>(LHSStripped))
3890      LHSStripped = LHSStripped->IgnoreParenCasts();
3891    if (isa<CastExpr>(RHSStripped))
3892      RHSStripped = RHSStripped->IgnoreParenCasts();
3893
3894    // Warn about comparisons against a string constant (unless the other
3895    // operand is null), the user probably wants strcmp.
3896    Expr *literalString = 0;
3897    Expr *literalStringStripped = 0;
3898    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
3899        !RHSStripped->isNullPointerConstant(Context)) {
3900      literalString = lex;
3901      literalStringStripped = LHSStripped;
3902    }
3903    else if ((isa<StringLiteral>(RHSStripped) ||
3904              isa<ObjCEncodeExpr>(RHSStripped)) &&
3905             !LHSStripped->isNullPointerConstant(Context)) {
3906      literalString = rex;
3907      literalStringStripped = RHSStripped;
3908    }
3909
3910    if (literalString) {
3911      std::string resultComparison;
3912      switch (Opc) {
3913      case BinaryOperator::LT: resultComparison = ") < 0"; break;
3914      case BinaryOperator::GT: resultComparison = ") > 0"; break;
3915      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
3916      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
3917      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
3918      case BinaryOperator::NE: resultComparison = ") != 0"; break;
3919      default: assert(false && "Invalid comparison operator");
3920      }
3921      Diag(Loc, diag::warn_stringcompare)
3922        << isa<ObjCEncodeExpr>(literalStringStripped)
3923        << literalString->getSourceRange()
3924        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
3925        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
3926                                                 "strcmp(")
3927        << CodeModificationHint::CreateInsertion(
3928                                       PP.getLocForEndOfToken(rex->getLocEnd()),
3929                                       resultComparison);
3930    }
3931  }
3932
3933  // The result of comparisons is 'bool' in C++, 'int' in C.
3934  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
3935
3936  if (isRelational) {
3937    if (lType->isRealType() && rType->isRealType())
3938      return ResultTy;
3939  } else {
3940    // Check for comparisons of floating point operands using != and ==.
3941    if (lType->isFloatingType()) {
3942      assert(rType->isFloatingType());
3943      CheckFloatComparison(Loc,lex,rex);
3944    }
3945
3946    if (lType->isArithmeticType() && rType->isArithmeticType())
3947      return ResultTy;
3948  }
3949
3950  bool LHSIsNull = lex->isNullPointerConstant(Context);
3951  bool RHSIsNull = rex->isNullPointerConstant(Context);
3952
3953  // All of the following pointer related warnings are GCC extensions, except
3954  // when handling null pointer constants. One day, we can consider making them
3955  // errors (when -pedantic-errors is enabled).
3956  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
3957    QualType LCanPointeeTy =
3958      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
3959    QualType RCanPointeeTy =
3960      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
3961
3962    // Simple check: if the pointee types are identical, we're done.
3963    if (LCanPointeeTy == RCanPointeeTy)
3964      return ResultTy;
3965
3966    if (getLangOptions().CPlusPlus) {
3967      // C++ [expr.rel]p2:
3968      //   [...] Pointer conversions (4.10) and qualification
3969      //   conversions (4.4) are performed on pointer operands (or on
3970      //   a pointer operand and a null pointer constant) to bring
3971      //   them to their composite pointer type. [...]
3972      //
3973      // C++ [expr.eq]p2 uses the same notion for (in)equality
3974      // comparisons of pointers.
3975      QualType T = FindCompositePointerType(lex, rex);
3976      if (T.isNull()) {
3977        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
3978          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3979        return QualType();
3980      }
3981
3982      ImpCastExprToType(lex, T);
3983      ImpCastExprToType(rex, T);
3984      return ResultTy;
3985    }
3986
3987    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
3988        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
3989        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
3990                                    RCanPointeeTy.getUnqualifiedType()) &&
3991        !Context.areComparableObjCPointerTypes(lType, rType)) {
3992      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3993        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3994    }
3995    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3996    return ResultTy;
3997  }
3998  // C++ allows comparison of pointers with null pointer constants.
3999  if (getLangOptions().CPlusPlus) {
4000    if (lType->isPointerType() && RHSIsNull) {
4001      ImpCastExprToType(rex, lType);
4002      return ResultTy;
4003    }
4004    if (rType->isPointerType() && LHSIsNull) {
4005      ImpCastExprToType(lex, rType);
4006      return ResultTy;
4007    }
4008    // And comparison of nullptr_t with itself.
4009    if (lType->isNullPtrType() && rType->isNullPtrType())
4010      return ResultTy;
4011  }
4012  // Handle block pointer types.
4013  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4014    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
4015    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
4016
4017    if (!LHSIsNull && !RHSIsNull &&
4018        !Context.typesAreCompatible(lpointee, rpointee)) {
4019      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4020        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4021    }
4022    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4023    return ResultTy;
4024  }
4025  // Allow block pointers to be compared with null pointer constants.
4026  if (!isRelational
4027      && ((lType->isBlockPointerType() && rType->isPointerType())
4028          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4029    if (!LHSIsNull && !RHSIsNull) {
4030      if (!((rType->isPointerType() && rType->getAsPointerType()
4031             ->getPointeeType()->isVoidType())
4032            || (lType->isPointerType() && lType->getAsPointerType()
4033                ->getPointeeType()->isVoidType())))
4034        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4035          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4036    }
4037    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4038    return ResultTy;
4039  }
4040
4041  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
4042    if (lType->isPointerType() || rType->isPointerType()) {
4043      const PointerType *LPT = lType->getAsPointerType();
4044      const PointerType *RPT = rType->getAsPointerType();
4045      bool LPtrToVoid = LPT ?
4046        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4047      bool RPtrToVoid = RPT ?
4048        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4049
4050      if (!LPtrToVoid && !RPtrToVoid &&
4051          !Context.typesAreCompatible(lType, rType)) {
4052        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4053          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4054        ImpCastExprToType(rex, lType);
4055        return ResultTy;
4056      }
4057      ImpCastExprToType(rex, lType);
4058      return ResultTy;
4059    }
4060    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
4061      ImpCastExprToType(rex, lType);
4062      return ResultTy;
4063    } else {
4064      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
4065        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
4066          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4067        ImpCastExprToType(rex, lType);
4068        return ResultTy;
4069      }
4070    }
4071  }
4072  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
4073       rType->isIntegerType()) {
4074    if (!RHSIsNull)
4075      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4076        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4077    ImpCastExprToType(rex, lType); // promote the integer to pointer
4078    return ResultTy;
4079  }
4080  if (lType->isIntegerType() &&
4081      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
4082    if (!LHSIsNull)
4083      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4084        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4085    ImpCastExprToType(lex, rType); // promote the integer to pointer
4086    return ResultTy;
4087  }
4088  // Handle block pointers.
4089  if (!isRelational && RHSIsNull
4090      && lType->isBlockPointerType() && rType->isIntegerType()) {
4091    ImpCastExprToType(rex, lType); // promote the integer to pointer
4092    return ResultTy;
4093  }
4094  if (!isRelational && LHSIsNull
4095      && lType->isIntegerType() && rType->isBlockPointerType()) {
4096    ImpCastExprToType(lex, rType); // promote the integer to pointer
4097    return ResultTy;
4098  }
4099  return InvalidOperands(Loc, lex, rex);
4100}
4101
4102/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4103/// operates on extended vector types.  Instead of producing an IntTy result,
4104/// like a scalar comparison, a vector comparison produces a vector of integer
4105/// types.
4106QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4107                                          SourceLocation Loc,
4108                                          bool isRelational) {
4109  // Check to make sure we're operating on vectors of the same type and width,
4110  // Allowing one side to be a scalar of element type.
4111  QualType vType = CheckVectorOperands(Loc, lex, rex);
4112  if (vType.isNull())
4113    return vType;
4114
4115  QualType lType = lex->getType();
4116  QualType rType = rex->getType();
4117
4118  // For non-floating point types, check for self-comparisons of the form
4119  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4120  // often indicate logic errors in the program.
4121  if (!lType->isFloatingType()) {
4122    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4123      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4124        if (DRL->getDecl() == DRR->getDecl())
4125          Diag(Loc, diag::warn_selfcomparison);
4126  }
4127
4128  // Check for comparisons of floating point operands using != and ==.
4129  if (!isRelational && lType->isFloatingType()) {
4130    assert (rType->isFloatingType());
4131    CheckFloatComparison(Loc,lex,rex);
4132  }
4133
4134  // FIXME: Vector compare support in the LLVM backend is not fully reliable,
4135  // just reject all vector comparisons for now.
4136  if (1) {
4137    Diag(Loc, diag::err_typecheck_vector_comparison)
4138      << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4139    return QualType();
4140  }
4141
4142  // Return the type for the comparison, which is the same as vector type for
4143  // integer vectors, or an integer type of identical size and number of
4144  // elements for floating point vectors.
4145  if (lType->isIntegerType())
4146    return lType;
4147
4148  const VectorType *VTy = lType->getAsVectorType();
4149  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4150  if (TypeSize == Context.getTypeSize(Context.IntTy))
4151    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4152  if (TypeSize == Context.getTypeSize(Context.LongTy))
4153    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4154
4155  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4156         "Unhandled vector element size in vector compare");
4157  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4158}
4159
4160inline QualType Sema::CheckBitwiseOperands(
4161  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4162{
4163  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4164    return CheckVectorOperands(Loc, lex, rex);
4165
4166  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4167
4168  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4169    return compType;
4170  return InvalidOperands(Loc, lex, rex);
4171}
4172
4173inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4174  Expr *&lex, Expr *&rex, SourceLocation Loc)
4175{
4176  UsualUnaryConversions(lex);
4177  UsualUnaryConversions(rex);
4178
4179  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4180    return Context.IntTy;
4181  return InvalidOperands(Loc, lex, rex);
4182}
4183
4184/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4185/// is a read-only property; return true if so. A readonly property expression
4186/// depends on various declarations and thus must be treated specially.
4187///
4188static bool IsReadonlyProperty(Expr *E, Sema &S)
4189{
4190  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4191    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4192    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4193      QualType BaseType = PropExpr->getBase()->getType();
4194      if (const PointerType *PTy = BaseType->getAsPointerType())
4195        if (const ObjCInterfaceType *IFTy =
4196            PTy->getPointeeType()->getAsObjCInterfaceType())
4197          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
4198            if (S.isPropertyReadonly(PDecl, IFace))
4199              return true;
4200    }
4201  }
4202  return false;
4203}
4204
4205/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4206/// emit an error and return true.  If so, return false.
4207static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4208  SourceLocation OrigLoc = Loc;
4209  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4210                                                              &Loc);
4211  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4212    IsLV = Expr::MLV_ReadonlyProperty;
4213  if (IsLV == Expr::MLV_Valid)
4214    return false;
4215
4216  unsigned Diag = 0;
4217  bool NeedType = false;
4218  switch (IsLV) { // C99 6.5.16p2
4219  default: assert(0 && "Unknown result from isModifiableLvalue!");
4220  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4221  case Expr::MLV_ArrayType:
4222    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4223    NeedType = true;
4224    break;
4225  case Expr::MLV_NotObjectType:
4226    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4227    NeedType = true;
4228    break;
4229  case Expr::MLV_LValueCast:
4230    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4231    break;
4232  case Expr::MLV_InvalidExpression:
4233    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4234    break;
4235  case Expr::MLV_IncompleteType:
4236  case Expr::MLV_IncompleteVoidType:
4237    return S.RequireCompleteType(Loc, E->getType(),
4238                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4239                                    E->getSourceRange());
4240  case Expr::MLV_DuplicateVectorComponents:
4241    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4242    break;
4243  case Expr::MLV_NotBlockQualified:
4244    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4245    break;
4246  case Expr::MLV_ReadonlyProperty:
4247    Diag = diag::error_readonly_property_assignment;
4248    break;
4249  case Expr::MLV_NoSetterProperty:
4250    Diag = diag::error_nosetter_property_assignment;
4251    break;
4252  }
4253
4254  SourceRange Assign;
4255  if (Loc != OrigLoc)
4256    Assign = SourceRange(OrigLoc, OrigLoc);
4257  if (NeedType)
4258    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4259  else
4260    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4261  return true;
4262}
4263
4264
4265
4266// C99 6.5.16.1
4267QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4268                                       SourceLocation Loc,
4269                                       QualType CompoundType) {
4270  // Verify that LHS is a modifiable lvalue, and emit error if not.
4271  if (CheckForModifiableLvalue(LHS, Loc, *this))
4272    return QualType();
4273
4274  QualType LHSType = LHS->getType();
4275  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4276
4277  AssignConvertType ConvTy;
4278  if (CompoundType.isNull()) {
4279    // Simple assignment "x = y".
4280    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4281    // Special case of NSObject attributes on c-style pointer types.
4282    if (ConvTy == IncompatiblePointer &&
4283        ((Context.isObjCNSObjectType(LHSType) &&
4284          Context.isObjCObjectPointerType(RHSType)) ||
4285         (Context.isObjCNSObjectType(RHSType) &&
4286          Context.isObjCObjectPointerType(LHSType))))
4287      ConvTy = Compatible;
4288
4289    // If the RHS is a unary plus or minus, check to see if they = and + are
4290    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4291    // instead of "x += 4".
4292    Expr *RHSCheck = RHS;
4293    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4294      RHSCheck = ICE->getSubExpr();
4295    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4296      if ((UO->getOpcode() == UnaryOperator::Plus ||
4297           UO->getOpcode() == UnaryOperator::Minus) &&
4298          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4299          // Only if the two operators are exactly adjacent.
4300          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4301          // And there is a space or other character before the subexpr of the
4302          // unary +/-.  We don't want to warn on "x=-1".
4303          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4304          UO->getSubExpr()->getLocStart().isFileID()) {
4305        Diag(Loc, diag::warn_not_compound_assign)
4306          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4307          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4308      }
4309    }
4310  } else {
4311    // Compound assignment "x += y"
4312    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4313  }
4314
4315  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4316                               RHS, "assigning"))
4317    return QualType();
4318
4319  // C99 6.5.16p3: The type of an assignment expression is the type of the
4320  // left operand unless the left operand has qualified type, in which case
4321  // it is the unqualified version of the type of the left operand.
4322  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4323  // is converted to the type of the assignment expression (above).
4324  // C++ 5.17p1: the type of the assignment expression is that of its left
4325  // operand.
4326  return LHSType.getUnqualifiedType();
4327}
4328
4329// C99 6.5.17
4330QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4331  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4332  DefaultFunctionArrayConversion(RHS);
4333
4334  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4335  // incomplete in C++).
4336
4337  return RHS->getType();
4338}
4339
4340/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4341/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4342QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4343                                              bool isInc) {
4344  if (Op->isTypeDependent())
4345    return Context.DependentTy;
4346
4347  QualType ResType = Op->getType();
4348  assert(!ResType.isNull() && "no type for increment/decrement expression");
4349
4350  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4351    // Decrement of bool is not allowed.
4352    if (!isInc) {
4353      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4354      return QualType();
4355    }
4356    // Increment of bool sets it to true, but is deprecated.
4357    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4358  } else if (ResType->isRealType()) {
4359    // OK!
4360  } else if (const PointerType *PT = ResType->getAsPointerType()) {
4361    // C99 6.5.2.4p2, 6.5.6p2
4362    if (PT->getPointeeType()->isVoidType()) {
4363      if (getLangOptions().CPlusPlus) {
4364        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4365          << Op->getSourceRange();
4366        return QualType();
4367      }
4368
4369      // Pointer to void is a GNU extension in C.
4370      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4371    } else if (PT->getPointeeType()->isFunctionType()) {
4372      if (getLangOptions().CPlusPlus) {
4373        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4374          << Op->getType() << Op->getSourceRange();
4375        return QualType();
4376      }
4377
4378      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4379        << ResType << Op->getSourceRange();
4380    } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
4381                               diag::err_typecheck_arithmetic_incomplete_type,
4382                                   Op->getSourceRange(), SourceRange(),
4383                                   ResType))
4384      return QualType();
4385  } else if (ResType->isComplexType()) {
4386    // C99 does not support ++/-- on complex types, we allow as an extension.
4387    Diag(OpLoc, diag::ext_integer_increment_complex)
4388      << ResType << Op->getSourceRange();
4389  } else {
4390    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4391      << ResType << Op->getSourceRange();
4392    return QualType();
4393  }
4394  // At this point, we know we have a real, complex or pointer type.
4395  // Now make sure the operand is a modifiable lvalue.
4396  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4397    return QualType();
4398  return ResType;
4399}
4400
4401/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4402/// This routine allows us to typecheck complex/recursive expressions
4403/// where the declaration is needed for type checking. We only need to
4404/// handle cases when the expression references a function designator
4405/// or is an lvalue. Here are some examples:
4406///  - &(x) => x
4407///  - &*****f => f for f a function designator.
4408///  - &s.xx => s
4409///  - &s.zz[1].yy -> s, if zz is an array
4410///  - *(x + 1) -> x, if x is an array
4411///  - &"123"[2] -> 0
4412///  - & __real__ x -> x
4413static NamedDecl *getPrimaryDecl(Expr *E) {
4414  switch (E->getStmtClass()) {
4415  case Stmt::DeclRefExprClass:
4416  case Stmt::QualifiedDeclRefExprClass:
4417    return cast<DeclRefExpr>(E)->getDecl();
4418  case Stmt::MemberExprClass:
4419    // If this is an arrow operator, the address is an offset from
4420    // the base's value, so the object the base refers to is
4421    // irrelevant.
4422    if (cast<MemberExpr>(E)->isArrow())
4423      return 0;
4424    // Otherwise, the expression refers to a part of the base
4425    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4426  case Stmt::ArraySubscriptExprClass: {
4427    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4428    // promotion of register arrays earlier.
4429    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4430    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4431      if (ICE->getSubExpr()->getType()->isArrayType())
4432        return getPrimaryDecl(ICE->getSubExpr());
4433    }
4434    return 0;
4435  }
4436  case Stmt::UnaryOperatorClass: {
4437    UnaryOperator *UO = cast<UnaryOperator>(E);
4438
4439    switch(UO->getOpcode()) {
4440    case UnaryOperator::Real:
4441    case UnaryOperator::Imag:
4442    case UnaryOperator::Extension:
4443      return getPrimaryDecl(UO->getSubExpr());
4444    default:
4445      return 0;
4446    }
4447  }
4448  case Stmt::ParenExprClass:
4449    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4450  case Stmt::ImplicitCastExprClass:
4451    // If the result of an implicit cast is an l-value, we care about
4452    // the sub-expression; otherwise, the result here doesn't matter.
4453    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4454  default:
4455    return 0;
4456  }
4457}
4458
4459/// CheckAddressOfOperand - The operand of & must be either a function
4460/// designator or an lvalue designating an object. If it is an lvalue, the
4461/// object cannot be declared with storage class register or be a bit field.
4462/// Note: The usual conversions are *not* applied to the operand of the &
4463/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4464/// In C++, the operand might be an overloaded function name, in which case
4465/// we allow the '&' but retain the overloaded-function type.
4466QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4467  // Make sure to ignore parentheses in subsequent checks
4468  op = op->IgnoreParens();
4469
4470  if (op->isTypeDependent())
4471    return Context.DependentTy;
4472
4473  if (getLangOptions().C99) {
4474    // Implement C99-only parts of addressof rules.
4475    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4476      if (uOp->getOpcode() == UnaryOperator::Deref)
4477        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4478        // (assuming the deref expression is valid).
4479        return uOp->getSubExpr()->getType();
4480    }
4481    // Technically, there should be a check for array subscript
4482    // expressions here, but the result of one is always an lvalue anyway.
4483  }
4484  NamedDecl *dcl = getPrimaryDecl(op);
4485  Expr::isLvalueResult lval = op->isLvalue(Context);
4486
4487  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4488    // C99 6.5.3.2p1
4489    // The operand must be either an l-value or a function designator
4490    if (!op->getType()->isFunctionType()) {
4491      // FIXME: emit more specific diag...
4492      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4493        << op->getSourceRange();
4494      return QualType();
4495    }
4496  } else if (op->getBitField()) { // C99 6.5.3.2p1
4497    // The operand cannot be a bit-field
4498    Diag(OpLoc, diag::err_typecheck_address_of)
4499      << "bit-field" << op->getSourceRange();
4500        return QualType();
4501  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4502           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4503    // The operand cannot be an element of a vector
4504    Diag(OpLoc, diag::err_typecheck_address_of)
4505      << "vector element" << op->getSourceRange();
4506    return QualType();
4507  } else if (dcl) { // C99 6.5.3.2p1
4508    // We have an lvalue with a decl. Make sure the decl is not declared
4509    // with the register storage-class specifier.
4510    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4511      if (vd->getStorageClass() == VarDecl::Register) {
4512        Diag(OpLoc, diag::err_typecheck_address_of)
4513          << "register variable" << op->getSourceRange();
4514        return QualType();
4515      }
4516    } else if (isa<OverloadedFunctionDecl>(dcl)) {
4517      return Context.OverloadTy;
4518    } else if (isa<FieldDecl>(dcl)) {
4519      // Okay: we can take the address of a field.
4520      // Could be a pointer to member, though, if there is an explicit
4521      // scope qualifier for the class.
4522      if (isa<QualifiedDeclRefExpr>(op)) {
4523        DeclContext *Ctx = dcl->getDeclContext();
4524        if (Ctx && Ctx->isRecord())
4525          return Context.getMemberPointerType(op->getType(),
4526                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4527      }
4528    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4529      // Okay: we can take the address of a function.
4530      // As above.
4531      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4532        return Context.getMemberPointerType(op->getType(),
4533              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4534    } else if (!isa<FunctionDecl>(dcl))
4535      assert(0 && "Unknown/unexpected decl type");
4536  }
4537
4538  if (lval == Expr::LV_IncompleteVoidType) {
4539    // Taking the address of a void variable is technically illegal, but we
4540    // allow it in cases which are otherwise valid.
4541    // Example: "extern void x; void* y = &x;".
4542    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4543  }
4544
4545  // If the operand has type "type", the result has type "pointer to type".
4546  return Context.getPointerType(op->getType());
4547}
4548
4549QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4550  if (Op->isTypeDependent())
4551    return Context.DependentTy;
4552
4553  UsualUnaryConversions(Op);
4554  QualType Ty = Op->getType();
4555
4556  // Note that per both C89 and C99, this is always legal, even if ptype is an
4557  // incomplete type or void.  It would be possible to warn about dereferencing
4558  // a void pointer, but it's completely well-defined, and such a warning is
4559  // unlikely to catch any mistakes.
4560  if (const PointerType *PT = Ty->getAsPointerType())
4561    return PT->getPointeeType();
4562
4563  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4564    << Ty << Op->getSourceRange();
4565  return QualType();
4566}
4567
4568static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4569  tok::TokenKind Kind) {
4570  BinaryOperator::Opcode Opc;
4571  switch (Kind) {
4572  default: assert(0 && "Unknown binop!");
4573  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4574  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4575  case tok::star:                 Opc = BinaryOperator::Mul; break;
4576  case tok::slash:                Opc = BinaryOperator::Div; break;
4577  case tok::percent:              Opc = BinaryOperator::Rem; break;
4578  case tok::plus:                 Opc = BinaryOperator::Add; break;
4579  case tok::minus:                Opc = BinaryOperator::Sub; break;
4580  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4581  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4582  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4583  case tok::less:                 Opc = BinaryOperator::LT; break;
4584  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4585  case tok::greater:              Opc = BinaryOperator::GT; break;
4586  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4587  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4588  case tok::amp:                  Opc = BinaryOperator::And; break;
4589  case tok::caret:                Opc = BinaryOperator::Xor; break;
4590  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4591  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4592  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4593  case tok::equal:                Opc = BinaryOperator::Assign; break;
4594  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4595  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4596  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4597  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4598  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4599  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4600  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4601  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4602  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4603  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4604  case tok::comma:                Opc = BinaryOperator::Comma; break;
4605  }
4606  return Opc;
4607}
4608
4609static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4610  tok::TokenKind Kind) {
4611  UnaryOperator::Opcode Opc;
4612  switch (Kind) {
4613  default: assert(0 && "Unknown unary op!");
4614  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4615  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4616  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4617  case tok::star:         Opc = UnaryOperator::Deref; break;
4618  case tok::plus:         Opc = UnaryOperator::Plus; break;
4619  case tok::minus:        Opc = UnaryOperator::Minus; break;
4620  case tok::tilde:        Opc = UnaryOperator::Not; break;
4621  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4622  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4623  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4624  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4625  }
4626  return Opc;
4627}
4628
4629/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4630/// operator @p Opc at location @c TokLoc. This routine only supports
4631/// built-in operations; ActOnBinOp handles overloaded operators.
4632Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4633                                                  unsigned Op,
4634                                                  Expr *lhs, Expr *rhs) {
4635  QualType ResultTy;     // Result type of the binary operator.
4636  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4637  // The following two variables are used for compound assignment operators
4638  QualType CompLHSTy;    // Type of LHS after promotions for computation
4639  QualType CompResultTy; // Type of computation result
4640
4641  switch (Opc) {
4642  case BinaryOperator::Assign:
4643    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4644    break;
4645  case BinaryOperator::PtrMemD:
4646  case BinaryOperator::PtrMemI:
4647    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4648                                            Opc == BinaryOperator::PtrMemI);
4649    break;
4650  case BinaryOperator::Mul:
4651  case BinaryOperator::Div:
4652    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4653    break;
4654  case BinaryOperator::Rem:
4655    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4656    break;
4657  case BinaryOperator::Add:
4658    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4659    break;
4660  case BinaryOperator::Sub:
4661    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4662    break;
4663  case BinaryOperator::Shl:
4664  case BinaryOperator::Shr:
4665    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4666    break;
4667  case BinaryOperator::LE:
4668  case BinaryOperator::LT:
4669  case BinaryOperator::GE:
4670  case BinaryOperator::GT:
4671    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4672    break;
4673  case BinaryOperator::EQ:
4674  case BinaryOperator::NE:
4675    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4676    break;
4677  case BinaryOperator::And:
4678  case BinaryOperator::Xor:
4679  case BinaryOperator::Or:
4680    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4681    break;
4682  case BinaryOperator::LAnd:
4683  case BinaryOperator::LOr:
4684    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4685    break;
4686  case BinaryOperator::MulAssign:
4687  case BinaryOperator::DivAssign:
4688    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4689    CompLHSTy = CompResultTy;
4690    if (!CompResultTy.isNull())
4691      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4692    break;
4693  case BinaryOperator::RemAssign:
4694    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4695    CompLHSTy = CompResultTy;
4696    if (!CompResultTy.isNull())
4697      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4698    break;
4699  case BinaryOperator::AddAssign:
4700    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4701    if (!CompResultTy.isNull())
4702      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4703    break;
4704  case BinaryOperator::SubAssign:
4705    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4706    if (!CompResultTy.isNull())
4707      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4708    break;
4709  case BinaryOperator::ShlAssign:
4710  case BinaryOperator::ShrAssign:
4711    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4712    CompLHSTy = CompResultTy;
4713    if (!CompResultTy.isNull())
4714      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4715    break;
4716  case BinaryOperator::AndAssign:
4717  case BinaryOperator::XorAssign:
4718  case BinaryOperator::OrAssign:
4719    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4720    CompLHSTy = CompResultTy;
4721    if (!CompResultTy.isNull())
4722      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4723    break;
4724  case BinaryOperator::Comma:
4725    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4726    break;
4727  }
4728  if (ResultTy.isNull())
4729    return ExprError();
4730  if (CompResultTy.isNull())
4731    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
4732  else
4733    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
4734                                                      CompLHSTy, CompResultTy,
4735                                                      OpLoc));
4736}
4737
4738// Binary Operators.  'Tok' is the token for the operator.
4739Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
4740                                          tok::TokenKind Kind,
4741                                          ExprArg LHS, ExprArg RHS) {
4742  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
4743  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
4744
4745  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
4746  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
4747
4748  if (getLangOptions().CPlusPlus &&
4749      (lhs->getType()->isOverloadableType() ||
4750       rhs->getType()->isOverloadableType())) {
4751    // Find all of the overloaded operators visible from this
4752    // point. We perform both an operator-name lookup from the local
4753    // scope and an argument-dependent lookup based on the types of
4754    // the arguments.
4755    FunctionSet Functions;
4756    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
4757    if (OverOp != OO_None) {
4758      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
4759                                   Functions);
4760      Expr *Args[2] = { lhs, rhs };
4761      DeclarationName OpName
4762        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4763      ArgumentDependentLookup(OpName, Args, 2, Functions);
4764    }
4765
4766    // Build the (potentially-overloaded, potentially-dependent)
4767    // binary operation.
4768    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
4769  }
4770
4771  // Build a built-in binary operation.
4772  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
4773}
4774
4775Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
4776                                                    unsigned OpcIn,
4777                                                    ExprArg InputArg) {
4778  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4779
4780  // FIXME: Input is modified below, but InputArg is not updated appropriately.
4781  Expr *Input = (Expr *)InputArg.get();
4782  QualType resultType;
4783  switch (Opc) {
4784  case UnaryOperator::PostInc:
4785  case UnaryOperator::PostDec:
4786  case UnaryOperator::OffsetOf:
4787    assert(false && "Invalid unary operator");
4788    break;
4789
4790  case UnaryOperator::PreInc:
4791  case UnaryOperator::PreDec:
4792    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
4793                                                Opc == UnaryOperator::PreInc);
4794    break;
4795  case UnaryOperator::AddrOf:
4796    resultType = CheckAddressOfOperand(Input, OpLoc);
4797    break;
4798  case UnaryOperator::Deref:
4799    DefaultFunctionArrayConversion(Input);
4800    resultType = CheckIndirectionOperand(Input, OpLoc);
4801    break;
4802  case UnaryOperator::Plus:
4803  case UnaryOperator::Minus:
4804    UsualUnaryConversions(Input);
4805    resultType = Input->getType();
4806    if (resultType->isDependentType())
4807      break;
4808    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
4809      break;
4810    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
4811             resultType->isEnumeralType())
4812      break;
4813    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
4814             Opc == UnaryOperator::Plus &&
4815             resultType->isPointerType())
4816      break;
4817
4818    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4819      << resultType << Input->getSourceRange());
4820  case UnaryOperator::Not: // bitwise complement
4821    UsualUnaryConversions(Input);
4822    resultType = Input->getType();
4823    if (resultType->isDependentType())
4824      break;
4825    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
4826    if (resultType->isComplexType() || resultType->isComplexIntegerType())
4827      // C99 does not support '~' for complex conjugation.
4828      Diag(OpLoc, diag::ext_integer_complement_complex)
4829        << resultType << Input->getSourceRange();
4830    else if (!resultType->isIntegerType())
4831      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4832        << resultType << Input->getSourceRange());
4833    break;
4834  case UnaryOperator::LNot: // logical negation
4835    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
4836    DefaultFunctionArrayConversion(Input);
4837    resultType = Input->getType();
4838    if (resultType->isDependentType())
4839      break;
4840    if (!resultType->isScalarType()) // C99 6.5.3.3p1
4841      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
4842        << resultType << Input->getSourceRange());
4843    // LNot always has type int. C99 6.5.3.3p5.
4844    // In C++, it's bool. C++ 5.3.1p8
4845    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
4846    break;
4847  case UnaryOperator::Real:
4848  case UnaryOperator::Imag:
4849    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
4850    break;
4851  case UnaryOperator::Extension:
4852    resultType = Input->getType();
4853    break;
4854  }
4855  if (resultType.isNull())
4856    return ExprError();
4857
4858  InputArg.release();
4859  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4860}
4861
4862// Unary Operators.  'Tok' is the token for the operator.
4863Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
4864                                            tok::TokenKind Op, ExprArg input) {
4865  Expr *Input = (Expr*)input.get();
4866  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
4867
4868  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
4869    // Find all of the overloaded operators visible from this
4870    // point. We perform both an operator-name lookup from the local
4871    // scope and an argument-dependent lookup based on the types of
4872    // the arguments.
4873    FunctionSet Functions;
4874    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
4875    if (OverOp != OO_None) {
4876      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
4877                                   Functions);
4878      DeclarationName OpName
4879        = Context.DeclarationNames.getCXXOperatorName(OverOp);
4880      ArgumentDependentLookup(OpName, &Input, 1, Functions);
4881    }
4882
4883    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
4884  }
4885
4886  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
4887}
4888
4889/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4890Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4891                                            SourceLocation LabLoc,
4892                                            IdentifierInfo *LabelII) {
4893  // Look up the record for this label identifier.
4894  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
4895
4896  // If we haven't seen this label yet, create a forward reference. It
4897  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4898  if (LabelDecl == 0)
4899    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4900
4901  // Create the AST node.  The address of a label always has type 'void*'.
4902  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4903                                       Context.getPointerType(Context.VoidTy)));
4904}
4905
4906Sema::OwningExprResult
4907Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
4908                    SourceLocation RPLoc) { // "({..})"
4909  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
4910  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4911  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4912
4913  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4914  if (isFileScope)
4915    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
4916
4917  // FIXME: there are a variety of strange constraints to enforce here, for
4918  // example, it is not possible to goto into a stmt expression apparently.
4919  // More semantic analysis is needed.
4920
4921  // If there are sub stmts in the compound stmt, take the type of the last one
4922  // as the type of the stmtexpr.
4923  QualType Ty = Context.VoidTy;
4924
4925  if (!Compound->body_empty()) {
4926    Stmt *LastStmt = Compound->body_back();
4927    // If LastStmt is a label, skip down through into the body.
4928    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4929      LastStmt = Label->getSubStmt();
4930
4931    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4932      Ty = LastExpr->getType();
4933  }
4934
4935  // FIXME: Check that expression type is complete/non-abstract; statement
4936  // expressions are not lvalues.
4937
4938  substmt.release();
4939  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
4940}
4941
4942Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4943                                                  SourceLocation BuiltinLoc,
4944                                                  SourceLocation TypeLoc,
4945                                                  TypeTy *argty,
4946                                                  OffsetOfComponent *CompPtr,
4947                                                  unsigned NumComponents,
4948                                                  SourceLocation RPLoc) {
4949  // FIXME: This function leaks all expressions in the offset components on
4950  // error.
4951  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4952  assert(!ArgTy.isNull() && "Missing type argument!");
4953
4954  bool Dependent = ArgTy->isDependentType();
4955
4956  // We must have at least one component that refers to the type, and the first
4957  // one is known to be a field designator.  Verify that the ArgTy represents
4958  // a struct/union/class.
4959  if (!Dependent && !ArgTy->isRecordType())
4960    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
4961
4962  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
4963  // with an incomplete type would be illegal.
4964
4965  // Otherwise, create a null pointer as the base, and iteratively process
4966  // the offsetof designators.
4967  QualType ArgTyPtr = Context.getPointerType(ArgTy);
4968  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
4969  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
4970                                    ArgTy, SourceLocation());
4971
4972  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4973  // GCC extension, diagnose them.
4974  // FIXME: This diagnostic isn't actually visible because the location is in
4975  // a system header!
4976  if (NumComponents != 1)
4977    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4978      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4979
4980  if (!Dependent) {
4981    bool DidWarnAboutNonPOD = false;
4982
4983    // FIXME: Dependent case loses a lot of information here. And probably
4984    // leaks like a sieve.
4985    for (unsigned i = 0; i != NumComponents; ++i) {
4986      const OffsetOfComponent &OC = CompPtr[i];
4987      if (OC.isBrackets) {
4988        // Offset of an array sub-field.  TODO: Should we allow vector elements?
4989        const ArrayType *AT = Context.getAsArrayType(Res->getType());
4990        if (!AT) {
4991          Res->Destroy(Context);
4992          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
4993            << Res->getType());
4994        }
4995
4996        // FIXME: C++: Verify that operator[] isn't overloaded.
4997
4998        // Promote the array so it looks more like a normal array subscript
4999        // expression.
5000        DefaultFunctionArrayConversion(Res);
5001
5002        // C99 6.5.2.1p1
5003        Expr *Idx = static_cast<Expr*>(OC.U.E);
5004        // FIXME: Leaks Res
5005        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5006          return ExprError(Diag(Idx->getLocStart(),
5007                                diag::err_typecheck_subscript_not_integer)
5008            << Idx->getSourceRange());
5009
5010        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5011                                               OC.LocEnd);
5012        continue;
5013      }
5014
5015      const RecordType *RC = Res->getType()->getAsRecordType();
5016      if (!RC) {
5017        Res->Destroy(Context);
5018        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5019          << Res->getType());
5020      }
5021
5022      // Get the decl corresponding to this.
5023      RecordDecl *RD = RC->getDecl();
5024      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5025        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5026          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5027            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5028            << Res->getType());
5029          DidWarnAboutNonPOD = true;
5030        }
5031      }
5032
5033      FieldDecl *MemberDecl
5034        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5035                                                          LookupMemberName)
5036                                        .getAsDecl());
5037      // FIXME: Leaks Res
5038      if (!MemberDecl)
5039        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5040         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5041
5042      // FIXME: C++: Verify that MemberDecl isn't a static field.
5043      // FIXME: Verify that MemberDecl isn't a bitfield.
5044      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5045        Res = BuildAnonymousStructUnionMemberReference(
5046            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5047      } else {
5048        // MemberDecl->getType() doesn't get the right qualifiers, but it
5049        // doesn't matter here.
5050        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5051                MemberDecl->getType().getNonReferenceType());
5052      }
5053    }
5054  }
5055
5056  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5057                                           Context.getSizeType(), BuiltinLoc));
5058}
5059
5060
5061Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5062                                                      TypeTy *arg1,TypeTy *arg2,
5063                                                      SourceLocation RPLoc) {
5064  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5065  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5066
5067  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5068
5069  if (getLangOptions().CPlusPlus) {
5070    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5071      << SourceRange(BuiltinLoc, RPLoc);
5072    return ExprError();
5073  }
5074
5075  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5076                                                 argT1, argT2, RPLoc));
5077}
5078
5079Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5080                                             ExprArg cond,
5081                                             ExprArg expr1, ExprArg expr2,
5082                                             SourceLocation RPLoc) {
5083  Expr *CondExpr = static_cast<Expr*>(cond.get());
5084  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5085  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5086
5087  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5088
5089  QualType resType;
5090  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5091    resType = Context.DependentTy;
5092  } else {
5093    // The conditional expression is required to be a constant expression.
5094    llvm::APSInt condEval(32);
5095    SourceLocation ExpLoc;
5096    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5097      return ExprError(Diag(ExpLoc,
5098                       diag::err_typecheck_choose_expr_requires_constant)
5099        << CondExpr->getSourceRange());
5100
5101    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5102    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5103  }
5104
5105  cond.release(); expr1.release(); expr2.release();
5106  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5107                                        resType, RPLoc));
5108}
5109
5110//===----------------------------------------------------------------------===//
5111// Clang Extensions.
5112//===----------------------------------------------------------------------===//
5113
5114/// ActOnBlockStart - This callback is invoked when a block literal is started.
5115void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5116  // Analyze block parameters.
5117  BlockSemaInfo *BSI = new BlockSemaInfo();
5118
5119  // Add BSI to CurBlock.
5120  BSI->PrevBlockInfo = CurBlock;
5121  CurBlock = BSI;
5122
5123  BSI->ReturnType = QualType();
5124  BSI->TheScope = BlockScope;
5125  BSI->hasBlockDeclRefExprs = false;
5126  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5127  CurFunctionNeedsScopeChecking = false;
5128
5129  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5130  PushDeclContext(BlockScope, BSI->TheDecl);
5131}
5132
5133void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5134  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5135
5136  if (ParamInfo.getNumTypeObjects() == 0
5137      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5138    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5139    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5140
5141    if (T->isArrayType()) {
5142      Diag(ParamInfo.getSourceRange().getBegin(),
5143           diag::err_block_returns_array);
5144      return;
5145    }
5146
5147    // The parameter list is optional, if there was none, assume ().
5148    if (!T->isFunctionType())
5149      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5150
5151    CurBlock->hasPrototype = true;
5152    CurBlock->isVariadic = false;
5153    // Check for a valid sentinel attribute on this block.
5154    if (CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
5155      Diag(ParamInfo.getAttributes()->getLoc(),
5156           diag::warn_attribute_sentinel_not_variadic) << 1;
5157      // FIXME: remove the attribute.
5158    }
5159    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5160
5161    // Do not allow returning a objc interface by-value.
5162    if (RetTy->isObjCInterfaceType()) {
5163      Diag(ParamInfo.getSourceRange().getBegin(),
5164           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5165      return;
5166    }
5167    return;
5168  }
5169
5170  // Analyze arguments to block.
5171  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5172         "Not a function declarator!");
5173  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5174
5175  CurBlock->hasPrototype = FTI.hasPrototype;
5176  CurBlock->isVariadic = true;
5177
5178  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5179  // no arguments, not a function that takes a single void argument.
5180  if (FTI.hasPrototype &&
5181      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5182     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5183        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5184    // empty arg list, don't push any params.
5185    CurBlock->isVariadic = false;
5186  } else if (FTI.hasPrototype) {
5187    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5188      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5189    CurBlock->isVariadic = FTI.isVariadic;
5190  }
5191  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5192                               CurBlock->Params.size());
5193  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5194  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5195  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5196       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5197    // If this has an identifier, add it to the scope stack.
5198    if ((*AI)->getIdentifier())
5199      PushOnScopeChains(*AI, CurBlock->TheScope);
5200
5201  // Check for a valid sentinel attribute on this block.
5202  if (!CurBlock->isVariadic &&
5203      CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
5204    Diag(ParamInfo.getAttributes()->getLoc(),
5205         diag::warn_attribute_sentinel_not_variadic) << 1;
5206    // FIXME: remove the attribute.
5207  }
5208
5209  // Analyze the return type.
5210  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5211  QualType RetTy = T->getAsFunctionType()->getResultType();
5212
5213  // Do not allow returning a objc interface by-value.
5214  if (RetTy->isObjCInterfaceType()) {
5215    Diag(ParamInfo.getSourceRange().getBegin(),
5216         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5217  } else if (!RetTy->isDependentType())
5218    CurBlock->ReturnType = RetTy;
5219}
5220
5221/// ActOnBlockError - If there is an error parsing a block, this callback
5222/// is invoked to pop the information about the block from the action impl.
5223void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5224  // Ensure that CurBlock is deleted.
5225  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5226
5227  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5228
5229  // Pop off CurBlock, handle nested blocks.
5230  PopDeclContext();
5231  CurBlock = CurBlock->PrevBlockInfo;
5232  // FIXME: Delete the ParmVarDecl objects as well???
5233}
5234
5235/// ActOnBlockStmtExpr - This is called when the body of a block statement
5236/// literal was successfully completed.  ^(int x){...}
5237Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5238                                                StmtArg body, Scope *CurScope) {
5239  // If blocks are disabled, emit an error.
5240  if (!LangOpts.Blocks)
5241    Diag(CaretLoc, diag::err_blocks_disable);
5242
5243  // Ensure that CurBlock is deleted.
5244  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5245
5246  PopDeclContext();
5247
5248  // Pop off CurBlock, handle nested blocks.
5249  CurBlock = CurBlock->PrevBlockInfo;
5250
5251  QualType RetTy = Context.VoidTy;
5252  if (!BSI->ReturnType.isNull())
5253    RetTy = BSI->ReturnType;
5254
5255  llvm::SmallVector<QualType, 8> ArgTypes;
5256  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5257    ArgTypes.push_back(BSI->Params[i]->getType());
5258
5259  QualType BlockTy;
5260  if (!BSI->hasPrototype)
5261    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
5262  else
5263    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5264                                      BSI->isVariadic, 0);
5265
5266  // FIXME: Check that return/parameter types are complete/non-abstract
5267  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5268  BlockTy = Context.getBlockPointerType(BlockTy);
5269
5270  // If needed, diagnose invalid gotos and switches in the block.
5271  if (CurFunctionNeedsScopeChecking)
5272    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5273  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5274
5275  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5276  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5277                                       BSI->hasBlockDeclRefExprs));
5278}
5279
5280Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5281                                        ExprArg expr, TypeTy *type,
5282                                        SourceLocation RPLoc) {
5283  QualType T = QualType::getFromOpaquePtr(type);
5284  Expr *E = static_cast<Expr*>(expr.get());
5285  Expr *OrigExpr = E;
5286
5287  InitBuiltinVaListType();
5288
5289  // Get the va_list type
5290  QualType VaListType = Context.getBuiltinVaListType();
5291  if (VaListType->isArrayType()) {
5292    // Deal with implicit array decay; for example, on x86-64,
5293    // va_list is an array, but it's supposed to decay to
5294    // a pointer for va_arg.
5295    VaListType = Context.getArrayDecayedType(VaListType);
5296    // Make sure the input expression also decays appropriately.
5297    UsualUnaryConversions(E);
5298  } else {
5299    // Otherwise, the va_list argument must be an l-value because
5300    // it is modified by va_arg.
5301    if (!E->isTypeDependent() &&
5302        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5303      return ExprError();
5304  }
5305
5306  if (!E->isTypeDependent() &&
5307      !Context.hasSameType(VaListType, E->getType())) {
5308    return ExprError(Diag(E->getLocStart(),
5309                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5310      << OrigExpr->getType() << E->getSourceRange());
5311  }
5312
5313  // FIXME: Check that type is complete/non-abstract
5314  // FIXME: Warn if a non-POD type is passed in.
5315
5316  expr.release();
5317  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5318                                       RPLoc));
5319}
5320
5321Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5322  // The type of __null will be int or long, depending on the size of
5323  // pointers on the target.
5324  QualType Ty;
5325  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5326    Ty = Context.IntTy;
5327  else
5328    Ty = Context.LongTy;
5329
5330  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5331}
5332
5333bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5334                                    SourceLocation Loc,
5335                                    QualType DstType, QualType SrcType,
5336                                    Expr *SrcExpr, const char *Flavor) {
5337  // Decode the result (notice that AST's are still created for extensions).
5338  bool isInvalid = false;
5339  unsigned DiagKind;
5340  switch (ConvTy) {
5341  default: assert(0 && "Unknown conversion type");
5342  case Compatible: return false;
5343  case PointerToInt:
5344    DiagKind = diag::ext_typecheck_convert_pointer_int;
5345    break;
5346  case IntToPointer:
5347    DiagKind = diag::ext_typecheck_convert_int_pointer;
5348    break;
5349  case IncompatiblePointer:
5350    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5351    break;
5352  case IncompatiblePointerSign:
5353    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5354    break;
5355  case FunctionVoidPointer:
5356    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5357    break;
5358  case CompatiblePointerDiscardsQualifiers:
5359    // If the qualifiers lost were because we were applying the
5360    // (deprecated) C++ conversion from a string literal to a char*
5361    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5362    // Ideally, this check would be performed in
5363    // CheckPointerTypesForAssignment. However, that would require a
5364    // bit of refactoring (so that the second argument is an
5365    // expression, rather than a type), which should be done as part
5366    // of a larger effort to fix CheckPointerTypesForAssignment for
5367    // C++ semantics.
5368    if (getLangOptions().CPlusPlus &&
5369        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5370      return false;
5371    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5372    break;
5373  case IntToBlockPointer:
5374    DiagKind = diag::err_int_to_block_pointer;
5375    break;
5376  case IncompatibleBlockPointer:
5377    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5378    break;
5379  case IncompatibleObjCQualifiedId:
5380    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5381    // it can give a more specific diagnostic.
5382    DiagKind = diag::warn_incompatible_qualified_id;
5383    break;
5384  case IncompatibleVectors:
5385    DiagKind = diag::warn_incompatible_vectors;
5386    break;
5387  case Incompatible:
5388    DiagKind = diag::err_typecheck_convert_incompatible;
5389    isInvalid = true;
5390    break;
5391  }
5392
5393  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5394    << SrcExpr->getSourceRange();
5395  return isInvalid;
5396}
5397
5398bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5399  llvm::APSInt ICEResult;
5400  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5401    if (Result)
5402      *Result = ICEResult;
5403    return false;
5404  }
5405
5406  Expr::EvalResult EvalResult;
5407
5408  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5409      EvalResult.HasSideEffects) {
5410    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5411
5412    if (EvalResult.Diag) {
5413      // We only show the note if it's not the usual "invalid subexpression"
5414      // or if it's actually in a subexpression.
5415      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5416          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5417        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5418    }
5419
5420    return true;
5421  }
5422
5423  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5424    E->getSourceRange();
5425
5426  if (EvalResult.Diag &&
5427      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5428    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5429
5430  if (Result)
5431    *Result = EvalResult.Val.getInt();
5432  return false;
5433}
5434
5435
5436/// \brief Note that the given declaration was referenced in the source code.
5437///
5438/// This routine should be invoke whenever a given declaration is referenced
5439/// in the source code, and where that reference occurred. If this declaration
5440/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5441/// C99 6.9p3), then the declaration will be marked as used.
5442///
5443/// \param Loc the location where the declaration was referenced.
5444///
5445/// \param D the declaration that has been referenced by the source code.
5446void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5447  assert(D && "No declaration?");
5448
5449  // Mark a parameter declaration "used", regardless of whether we're in a
5450  // template or not.
5451  if (isa<ParmVarDecl>(D))
5452    D->setUsed(true);
5453
5454  // Do not mark anything as "used" within a dependent context; wait for
5455  // an instantiation.
5456  if (CurContext->isDependentContext())
5457    return;
5458
5459  // If we are in an unevaluated operand, don't mark any definitions as used.
5460  if (InUnevaluatedOperand)
5461    return;
5462
5463  // Note that this declaration has been used.
5464  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5465    // FIXME: implicit template instantiation
5466    // FIXME: keep track of references to static functions
5467    (void)Function;
5468    Function->setUsed(true);
5469    return;
5470  }
5471
5472  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5473    (void)Var;
5474    // FIXME: implicit template instantiation
5475    // FIXME: keep track of references to static data?
5476    D->setUsed(true);
5477  }
5478}
5479
5480