SemaExpr.cpp revision a75cea3f6be0daa8054d36af81a6ffda1713f82d
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaUtil.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Expr.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/StringExtras.h"
26using namespace clang;
27
28/// ActOnStringLiteral - The specified tokens were lexed as pasted string
29/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
30/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
31/// multiple tokens.  However, the common case is that StringToks points to one
32/// string.
33///
34Action::ExprResult
35Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
36  assert(NumStringToks && "Must have at least one string!");
37
38  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
39  if (Literal.hadError)
40    return ExprResult(true);
41
42  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
43  for (unsigned i = 0; i != NumStringToks; ++i)
44    StringTokLocs.push_back(StringToks[i].getLocation());
45
46  // Verify that pascal strings aren't too large.
47  if (Literal.Pascal && Literal.GetStringLength() > 256)
48    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
49                SourceRange(StringToks[0].getLocation(),
50                            StringToks[NumStringToks-1].getLocation()));
51
52  QualType StrTy = Context.CharTy;
53  // FIXME: handle wchar_t
54  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
55
56  // Get an array type for the string, according to C99 6.4.5.  This includes
57  // the nul terminator character as well as the string length for pascal
58  // strings.
59  StrTy = Context.getConstantArrayType(StrTy,
60                                   llvm::APInt(32, Literal.GetStringLength()+1),
61                                       ArrayType::Normal, 0);
62
63  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
64  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
65                           Literal.AnyWide, StrTy,
66                           StringToks[0].getLocation(),
67                           StringToks[NumStringToks-1].getLocation());
68}
69
70
71/// ActOnIdentifierExpr - The parser read an identifier in expression context,
72/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
73/// identifier is used in a function call context.
74Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
75                                           IdentifierInfo &II,
76                                           bool HasTrailingLParen) {
77  // Could be enum-constant, value decl, instance variable, etc.
78  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
79
80  // If this reference is in an Objective-C method, then ivar lookup happens as
81  // well.
82  if (CurMethodDecl) {
83    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
84    // There are two cases to handle here.  1) scoped lookup could have failed,
85    // in which case we should look for an ivar.  2) scoped lookup could have
86    // found a decl, but that decl is outside the current method (i.e. a global
87    // variable).  In these two cases, we do a lookup for an ivar with this
88    // name, if the lookup suceeds, we replace it our current decl.
89    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
90      ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface(), *DeclClass;
91      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, DeclClass)) {
92        // FIXME: This should use a new expr for a direct reference, don't turn
93        // this into Self->ivar, just return a BareIVarExpr or something.
94        IdentifierInfo &II = Context.Idents.get("self");
95        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
96        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
97                                 static_cast<Expr*>(SelfExpr.Val), true, true);
98      }
99    }
100  }
101
102  if (D == 0) {
103    // Otherwise, this could be an implicitly declared function reference (legal
104    // in C90, extension in C99).
105    if (HasTrailingLParen &&
106        !getLangOptions().CPlusPlus) // Not in C++.
107      D = ImplicitlyDefineFunction(Loc, II, S);
108    else {
109      // If this name wasn't predeclared and if this is not a function call,
110      // diagnose the problem.
111      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
112    }
113  }
114
115  if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
116    // check if referencing an identifier with __attribute__((deprecated)).
117    if (VD->getAttr<DeprecatedAttr>())
118      Diag(Loc, diag::warn_deprecated, VD->getName());
119
120    // Only create DeclRefExpr's for valid Decl's.
121    if (VD->isInvalidDecl())
122      return true;
123    return new DeclRefExpr(VD, VD->getType(), Loc);
124  }
125
126  if (isa<TypedefDecl>(D))
127    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
128  if (isa<ObjCInterfaceDecl>(D))
129    return Diag(Loc, diag::err_unexpected_interface, II.getName());
130
131  assert(0 && "Invalid decl");
132  abort();
133}
134
135Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
136                                           tok::TokenKind Kind) {
137  PreDefinedExpr::IdentType IT;
138
139  switch (Kind) {
140  default: assert(0 && "Unknown simple primary expr!");
141  case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
142  case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
143  case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
144  }
145
146  // Verify that this is in a function context.
147  if (CurFunctionDecl == 0 && CurMethodDecl == 0)
148    return Diag(Loc, diag::err_predef_outside_function);
149
150  // Pre-defined identifiers are of type char[x], where x is the length of the
151  // string.
152  unsigned Length;
153  if (CurFunctionDecl)
154    Length = CurFunctionDecl->getIdentifier()->getLength();
155  else
156    Length = CurMethodDecl->getSynthesizedMethodSize();
157
158  llvm::APInt LengthI(32, Length + 1);
159  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
160  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
161  return new PreDefinedExpr(Loc, ResTy, IT);
162}
163
164Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
165  llvm::SmallString<16> CharBuffer;
166  CharBuffer.resize(Tok.getLength());
167  const char *ThisTokBegin = &CharBuffer[0];
168  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
169
170  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
171                            Tok.getLocation(), PP);
172  if (Literal.hadError())
173    return ExprResult(true);
174
175  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
176
177  return new CharacterLiteral(Literal.getValue(), type, Tok.getLocation());
178}
179
180Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
181  // fast path for a single digit (which is quite common). A single digit
182  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
183  if (Tok.getLength() == 1) {
184    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
185
186    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
187    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
188                                         Context.IntTy,
189                                         Tok.getLocation()));
190  }
191  llvm::SmallString<512> IntegerBuffer;
192  IntegerBuffer.resize(Tok.getLength());
193  const char *ThisTokBegin = &IntegerBuffer[0];
194
195  // Get the spelling of the token, which eliminates trigraphs, etc.
196  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
197  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
198                               Tok.getLocation(), PP);
199  if (Literal.hadError)
200    return ExprResult(true);
201
202  Expr *Res;
203
204  if (Literal.isFloatingLiteral()) {
205    QualType Ty;
206    const llvm::fltSemantics *Format;
207
208    if (Literal.isFloat) {
209      Ty = Context.FloatTy;
210      Format = Context.Target.getFloatFormat();
211    } else if (!Literal.isLong) {
212      Ty = Context.DoubleTy;
213      Format = Context.Target.getDoubleFormat();
214    } else {
215      Ty = Context.LongDoubleTy;
216      Format = Context.Target.getLongDoubleFormat();
217    }
218
219    // isExact will be set by GetFloatValue().
220    bool isExact = false;
221
222    Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact,
223                              Ty, Tok.getLocation());
224
225  } else if (!Literal.isIntegerLiteral()) {
226    return ExprResult(true);
227  } else {
228    QualType Ty;
229
230    // long long is a C99 feature.
231    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
232        Literal.isLongLong)
233      Diag(Tok.getLocation(), diag::ext_longlong);
234
235    // Get the value in the widest-possible width.
236    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
237
238    if (Literal.GetIntegerValue(ResultVal)) {
239      // If this value didn't fit into uintmax_t, warn and force to ull.
240      Diag(Tok.getLocation(), diag::warn_integer_too_large);
241      Ty = Context.UnsignedLongLongTy;
242      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
243             "long long is not intmax_t?");
244    } else {
245      // If this value fits into a ULL, try to figure out what else it fits into
246      // according to the rules of C99 6.4.4.1p5.
247
248      // Octal, Hexadecimal, and integers with a U suffix are allowed to
249      // be an unsigned int.
250      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
251
252      // Check from smallest to largest, picking the smallest type we can.
253      if (!Literal.isLong && !Literal.isLongLong) {
254        // Are int/unsigned possibilities?
255        unsigned IntSize =
256          static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
257        // Does it fit in a unsigned int?
258        if (ResultVal.isIntN(IntSize)) {
259          // Does it fit in a signed int?
260          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
261            Ty = Context.IntTy;
262          else if (AllowUnsigned)
263            Ty = Context.UnsignedIntTy;
264        }
265
266        if (!Ty.isNull())
267          ResultVal.trunc(IntSize);
268      }
269
270      // Are long/unsigned long possibilities?
271      if (Ty.isNull() && !Literal.isLongLong) {
272        unsigned LongSize =
273          static_cast<unsigned>(Context.getTypeSize(Context.LongTy));
274
275        // Does it fit in a unsigned long?
276        if (ResultVal.isIntN(LongSize)) {
277          // Does it fit in a signed long?
278          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
279            Ty = Context.LongTy;
280          else if (AllowUnsigned)
281            Ty = Context.UnsignedLongTy;
282        }
283        if (!Ty.isNull())
284          ResultVal.trunc(LongSize);
285      }
286
287      // Finally, check long long if needed.
288      if (Ty.isNull()) {
289        unsigned LongLongSize =
290          static_cast<unsigned>(Context.getTypeSize(Context.LongLongTy));
291
292        // Does it fit in a unsigned long long?
293        if (ResultVal.isIntN(LongLongSize)) {
294          // Does it fit in a signed long long?
295          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
296            Ty = Context.LongLongTy;
297          else if (AllowUnsigned)
298            Ty = Context.UnsignedLongLongTy;
299        }
300      }
301
302      // If we still couldn't decide a type, we probably have something that
303      // does not fit in a signed long long, but has no U suffix.
304      if (Ty.isNull()) {
305        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
306        Ty = Context.UnsignedLongLongTy;
307      }
308    }
309
310    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
311  }
312
313  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
314  if (Literal.isImaginary)
315    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
316
317  return Res;
318}
319
320Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
321                                        ExprTy *Val) {
322  Expr *E = (Expr *)Val;
323  assert((E != 0) && "ActOnParenExpr() missing expr");
324  return new ParenExpr(L, R, E);
325}
326
327/// The UsualUnaryConversions() function is *not* called by this routine.
328/// See C99 6.3.2.1p[2-4] for more details.
329QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
330                                         SourceLocation OpLoc, bool isSizeof) {
331  // C99 6.5.3.4p1:
332  if (isa<FunctionType>(exprType) && isSizeof)
333    // alignof(function) is allowed.
334    Diag(OpLoc, diag::ext_sizeof_function_type);
335  else if (exprType->isVoidType())
336    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
337  else if (exprType->isIncompleteType()) {
338    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
339                           diag::err_alignof_incomplete_type,
340         exprType.getAsString());
341    return QualType(); // error
342  }
343  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
344  return Context.getSizeType();
345}
346
347Action::ExprResult Sema::
348ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
349                           SourceLocation LPLoc, TypeTy *Ty,
350                           SourceLocation RPLoc) {
351  // If error parsing type, ignore.
352  if (Ty == 0) return true;
353
354  // Verify that this is a valid expression.
355  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
356
357  QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
358
359  if (resultType.isNull())
360    return true;
361  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
362}
363
364QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
365  DefaultFunctionArrayConversion(V);
366
367  // These operators return the element type of a complex type.
368  if (const ComplexType *CT = V->getType()->getAsComplexType())
369    return CT->getElementType();
370
371  // Otherwise they pass through real integer and floating point types here.
372  if (V->getType()->isArithmeticType())
373    return V->getType();
374
375  // Reject anything else.
376  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
377  return QualType();
378}
379
380
381
382Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
383                                             tok::TokenKind Kind,
384                                             ExprTy *Input) {
385  UnaryOperator::Opcode Opc;
386  switch (Kind) {
387  default: assert(0 && "Unknown unary op!");
388  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
389  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
390  }
391  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
392  if (result.isNull())
393    return true;
394  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
395}
396
397Action::ExprResult Sema::
398ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
399                        ExprTy *Idx, SourceLocation RLoc) {
400  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
401
402  // Perform default conversions.
403  DefaultFunctionArrayConversion(LHSExp);
404  DefaultFunctionArrayConversion(RHSExp);
405
406  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
407
408  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
409  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
410  // in the subscript position. As a result, we need to derive the array base
411  // and index from the expression types.
412  Expr *BaseExpr, *IndexExpr;
413  QualType ResultType;
414  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
415    BaseExpr = LHSExp;
416    IndexExpr = RHSExp;
417    // FIXME: need to deal with const...
418    ResultType = PTy->getPointeeType();
419  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
420     // Handle the uncommon case of "123[Ptr]".
421    BaseExpr = RHSExp;
422    IndexExpr = LHSExp;
423    // FIXME: need to deal with const...
424    ResultType = PTy->getPointeeType();
425  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
426    BaseExpr = LHSExp;    // vectors: V[123]
427    IndexExpr = RHSExp;
428
429    // Component access limited to variables (reject vec4.rg[1]).
430    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr))
431      return Diag(LLoc, diag::err_ocuvector_component_access,
432                  SourceRange(LLoc, RLoc));
433    // FIXME: need to deal with const...
434    ResultType = VTy->getElementType();
435  } else {
436    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
437                RHSExp->getSourceRange());
438  }
439  // C99 6.5.2.1p1
440  if (!IndexExpr->getType()->isIntegerType())
441    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
442                IndexExpr->getSourceRange());
443
444  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
445  // the following check catches trying to index a pointer to a function (e.g.
446  // void (*)(int)) and pointers to incomplete types.  Functions are not
447  // objects in C99.
448  if (!ResultType->isObjectType())
449    return Diag(BaseExpr->getLocStart(),
450                diag::err_typecheck_subscript_not_object,
451                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
452
453  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
454}
455
456QualType Sema::
457CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
458                        IdentifierInfo &CompName, SourceLocation CompLoc) {
459  const OCUVectorType *vecType = baseType->getAsOCUVectorType();
460
461  // The vector accessor can't exceed the number of elements.
462  const char *compStr = CompName.getName();
463  if (strlen(compStr) > vecType->getNumElements()) {
464    Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
465                baseType.getAsString(), SourceRange(CompLoc));
466    return QualType();
467  }
468  // The component names must come from the same set.
469  if (vecType->getPointAccessorIdx(*compStr) != -1) {
470    do
471      compStr++;
472    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
473  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
474    do
475      compStr++;
476    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
477  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
478    do
479      compStr++;
480    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
481  }
482
483  if (*compStr) {
484    // We didn't get to the end of the string. This means the component names
485    // didn't come from the same set *or* we encountered an illegal name.
486    Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
487         std::string(compStr,compStr+1), SourceRange(CompLoc));
488    return QualType();
489  }
490  // Each component accessor can't exceed the vector type.
491  compStr = CompName.getName();
492  while (*compStr) {
493    if (vecType->isAccessorWithinNumElements(*compStr))
494      compStr++;
495    else
496      break;
497  }
498  if (*compStr) {
499    // We didn't get to the end of the string. This means a component accessor
500    // exceeds the number of elements in the vector.
501    Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
502                baseType.getAsString(), SourceRange(CompLoc));
503    return QualType();
504  }
505  // The component accessor looks fine - now we need to compute the actual type.
506  // The vector type is implied by the component accessor. For example,
507  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
508  unsigned CompSize = strlen(CompName.getName());
509  if (CompSize == 1)
510    return vecType->getElementType();
511
512  QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
513  // Now look up the TypeDefDecl from the vector type. Without this,
514  // diagostics look bad. We want OCU vector types to appear built-in.
515  for (unsigned i = 0, E = OCUVectorDecls.size(); i != E; ++i) {
516    if (OCUVectorDecls[i]->getUnderlyingType() == VT)
517      return Context.getTypedefType(OCUVectorDecls[i]);
518  }
519  return VT; // should never get here (a typedef type should always be found).
520}
521
522Action::ExprResult Sema::
523ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
524                         tok::TokenKind OpKind, SourceLocation MemberLoc,
525                         IdentifierInfo &Member) {
526  Expr *BaseExpr = static_cast<Expr *>(Base);
527  assert(BaseExpr && "no record expression");
528
529  // Perform default conversions.
530  DefaultFunctionArrayConversion(BaseExpr);
531
532  QualType BaseType = BaseExpr->getType();
533  assert(!BaseType.isNull() && "no type for member expression");
534
535  if (OpKind == tok::arrow) {
536    if (const PointerType *PT = BaseType->getAsPointerType())
537      BaseType = PT->getPointeeType();
538    else
539      return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
540                  SourceRange(MemberLoc));
541  }
542  // The base type is either a record or an OCUVectorType.
543  if (const RecordType *RTy = BaseType->getAsRecordType()) {
544    RecordDecl *RDecl = RTy->getDecl();
545    if (RTy->isIncompleteType())
546      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
547                  BaseExpr->getSourceRange());
548    // The record definition is complete, now make sure the member is valid.
549    FieldDecl *MemberDecl = RDecl->getMember(&Member);
550    if (!MemberDecl)
551      return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
552                  SourceRange(MemberLoc));
553
554    // Figure out the type of the member; see C99 6.5.2.3p3
555    // FIXME: Handle address space modifiers
556    QualType MemberType = MemberDecl->getType();
557    unsigned combinedQualifiers =
558        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
559    MemberType = MemberType.getQualifiedType(combinedQualifiers);
560
561    return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl,
562                          MemberLoc, MemberType);
563  } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
564    // Component access limited to variables (reject vec4.rg.g).
565    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr))
566      return Diag(OpLoc, diag::err_ocuvector_component_access,
567                  SourceRange(MemberLoc));
568    QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
569    if (ret.isNull())
570      return true;
571    return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
572  } else if (BaseType->isObjCInterfaceType()) {
573    ObjCInterfaceDecl *IFace;
574    if (isa<ObjCInterfaceType>(BaseType.getCanonicalType()))
575      IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl();
576    else
577      IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl();
578    ObjCInterfaceDecl *clsDeclared;
579    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared))
580      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
581                                 OpKind==tok::arrow);
582  }
583  return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
584              SourceRange(MemberLoc));
585}
586
587/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
588/// This provides the location of the left/right parens and a list of comma
589/// locations.
590Action::ExprResult Sema::
591ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
592              ExprTy **args, unsigned NumArgs,
593              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
594  Expr *Fn = static_cast<Expr *>(fn);
595  Expr **Args = reinterpret_cast<Expr**>(args);
596  assert(Fn && "no function call expression");
597
598  // Make the call expr early, before semantic checks.  This guarantees cleanup
599  // of arguments and function on error.
600  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
601                                                 Context.BoolTy, RParenLoc));
602
603  // Promote the function operand.
604  TheCall->setCallee(UsualUnaryConversions(Fn));
605
606  // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
607  // type pointer to function".
608  const PointerType *PT = Fn->getType()->getAsPointerType();
609  if (PT == 0)
610    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
611                SourceRange(Fn->getLocStart(), RParenLoc));
612  const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
613  if (FuncT == 0)
614    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
615                SourceRange(Fn->getLocStart(), RParenLoc));
616
617  // We know the result type of the call, set it.
618  TheCall->setType(FuncT->getResultType());
619
620  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
621    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
622    // assignment, to the types of the corresponding parameter, ...
623    unsigned NumArgsInProto = Proto->getNumArgs();
624    unsigned NumArgsToCheck = NumArgs;
625
626    // If too few arguments are available, don't make the call.
627    if (NumArgs < NumArgsInProto)
628      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
629                  Fn->getSourceRange());
630
631    // If too many are passed and not variadic, error on the extras and drop
632    // them.
633    if (NumArgs > NumArgsInProto) {
634      if (!Proto->isVariadic()) {
635        Diag(Args[NumArgsInProto]->getLocStart(),
636             diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
637             SourceRange(Args[NumArgsInProto]->getLocStart(),
638                         Args[NumArgs-1]->getLocEnd()));
639        // This deletes the extra arguments.
640        TheCall->setNumArgs(NumArgsInProto);
641      }
642      NumArgsToCheck = NumArgsInProto;
643    }
644
645    // Continue to check argument types (even if we have too few/many args).
646    for (unsigned i = 0; i != NumArgsToCheck; i++) {
647      Expr *Arg = Args[i];
648      QualType ProtoArgType = Proto->getArgType(i);
649      QualType ArgType = Arg->getType();
650
651      // Compute implicit casts from the operand to the formal argument type.
652      AssignConvertType ConvTy =
653        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
654      TheCall->setArg(i, Arg);
655
656      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
657                                   ArgType, Arg, "passing"))
658        return true;
659    }
660
661    // If this is a variadic call, handle args passed through "...".
662    if (Proto->isVariadic()) {
663      // Promote the arguments (C99 6.5.2.2p7).
664      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
665        Expr *Arg = Args[i];
666        DefaultArgumentPromotion(Arg);
667        TheCall->setArg(i, Arg);
668      }
669    }
670  } else {
671    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
672
673    // Promote the arguments (C99 6.5.2.2p6).
674    for (unsigned i = 0; i != NumArgs; i++) {
675      Expr *Arg = Args[i];
676      DefaultArgumentPromotion(Arg);
677      TheCall->setArg(i, Arg);
678    }
679  }
680
681  // Do special checking on direct calls to functions.
682  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
683    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
684      if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
685        if (CheckFunctionCall(FDecl, TheCall.get()))
686          return true;
687
688  return TheCall.take();
689}
690
691Action::ExprResult Sema::
692ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
693                     SourceLocation RParenLoc, ExprTy *InitExpr) {
694  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
695  QualType literalType = QualType::getFromOpaquePtr(Ty);
696  // FIXME: put back this assert when initializers are worked out.
697  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
698  Expr *literalExpr = static_cast<Expr*>(InitExpr);
699
700  // FIXME: add more semantic analysis (C99 6.5.2.5).
701  if (CheckInitializerTypes(literalExpr, literalType))
702    return true;
703
704  bool isFileScope = !CurFunctionDecl && !CurMethodDecl;
705  if (isFileScope) { // 6.5.2.5p3
706    if (CheckForConstantInitializer(literalExpr, literalType))
707      return true;
708  }
709  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
710}
711
712Action::ExprResult Sema::
713ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
714              SourceLocation RBraceLoc) {
715  Expr **InitList = reinterpret_cast<Expr**>(initlist);
716
717  // Semantic analysis for initializers is done by ActOnDeclarator() and
718  // CheckInitializer() - it requires knowledge of the object being intialized.
719
720  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
721  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
722  return E;
723}
724
725bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
726  assert(VectorTy->isVectorType() && "Not a vector type!");
727
728  if (Ty->isVectorType() || Ty->isIntegerType()) {
729    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
730      return Diag(R.getBegin(),
731                  Ty->isVectorType() ?
732                  diag::err_invalid_conversion_between_vectors :
733                  diag::err_invalid_conversion_between_vector_and_integer,
734                  VectorTy.getAsString().c_str(),
735                  Ty.getAsString().c_str(), R);
736  } else
737    return Diag(R.getBegin(),
738                diag::err_invalid_conversion_between_vector_and_scalar,
739                VectorTy.getAsString().c_str(),
740                Ty.getAsString().c_str(), R);
741
742  return false;
743}
744
745Action::ExprResult Sema::
746ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
747              SourceLocation RParenLoc, ExprTy *Op) {
748  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
749
750  Expr *castExpr = static_cast<Expr*>(Op);
751  QualType castType = QualType::getFromOpaquePtr(Ty);
752
753  UsualUnaryConversions(castExpr);
754
755  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
756  // type needs to be scalar.
757  if (!castType->isVoidType()) {  // Cast to void allows any expr type.
758    if (!castType->isScalarType() && !castType->isVectorType())
759      return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
760                  castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
761    if (!castExpr->getType()->isScalarType() &&
762        !castExpr->getType()->isVectorType())
763      return Diag(castExpr->getLocStart(),
764                  diag::err_typecheck_expect_scalar_operand,
765                  castExpr->getType().getAsString(),castExpr->getSourceRange());
766
767    if (castExpr->getType()->isVectorType()) {
768      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
769                          castExpr->getType(), castType))
770        return true;
771    } else if (castType->isVectorType()) {
772      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
773                          castType, castExpr->getType()))
774        return true;
775    }
776  }
777  return new CastExpr(castType, castExpr, LParenLoc);
778}
779
780/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
781/// In that case, lex = cond.
782inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
783  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
784  UsualUnaryConversions(cond);
785  UsualUnaryConversions(lex);
786  UsualUnaryConversions(rex);
787  QualType condT = cond->getType();
788  QualType lexT = lex->getType();
789  QualType rexT = rex->getType();
790
791  // first, check the condition.
792  if (!condT->isScalarType()) { // C99 6.5.15p2
793    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
794         condT.getAsString());
795    return QualType();
796  }
797
798  // Now check the two expressions.
799
800  // If both operands have arithmetic type, do the usual arithmetic conversions
801  // to find a common type: C99 6.5.15p3,5.
802  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
803    UsualArithmeticConversions(lex, rex);
804    return lex->getType();
805  }
806
807  // If both operands are the same structure or union type, the result is that
808  // type.
809  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
810    if (const RecordType *RHSRT = rexT->getAsRecordType())
811      if (LHSRT->getDecl() == RHSRT->getDecl())
812        // "If both the operands have structure or union type, the result has
813        // that type."  This implies that CV qualifiers are dropped.
814        return lexT.getUnqualifiedType();
815  }
816
817  // C99 6.5.15p5: "If both operands have void type, the result has void type."
818  if (lexT->isVoidType() && rexT->isVoidType())
819    return lexT.getUnqualifiedType();
820
821  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
822  // the type of the other operand."
823  if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
824    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
825    return lexT;
826  }
827  if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
828    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
829    return rexT;
830  }
831  // Handle the case where both operands are pointers before we handle null
832  // pointer constants in case both operands are null pointer constants.
833  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
834    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
835      // get the "pointed to" types
836      QualType lhptee = LHSPT->getPointeeType();
837      QualType rhptee = RHSPT->getPointeeType();
838
839      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
840      if (lhptee->isVoidType() &&
841          rhptee->isIncompleteOrObjectType()) {
842        // Figure out necessary qualifiers (C99 6.5.15p6)
843        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
844        QualType destType = Context.getPointerType(destPointee);
845        ImpCastExprToType(lex, destType); // add qualifiers if necessary
846        ImpCastExprToType(rex, destType); // promote to void*
847        return destType;
848      }
849      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
850        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
851        QualType destType = Context.getPointerType(destPointee);
852        ImpCastExprToType(lex, destType); // add qualifiers if necessary
853        ImpCastExprToType(rex, destType); // promote to void*
854        return destType;
855      }
856
857      if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
858                                      rhptee.getUnqualifiedType())) {
859        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
860             lexT.getAsString(), rexT.getAsString(),
861             lex->getSourceRange(), rex->getSourceRange());
862        // In this situation, we assume void* type. No especially good
863        // reason, but this is what gcc does, and we do have to pick
864        // to get a consistent AST.
865        QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
866        ImpCastExprToType(lex, voidPtrTy);
867        ImpCastExprToType(rex, voidPtrTy);
868        return voidPtrTy;
869      }
870      // The pointer types are compatible.
871      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
872      // differently qualified versions of compatible types, the result type is
873      // a pointer to an appropriately qualified version of the *composite*
874      // type.
875      // FIXME: Need to return the composite type.
876      // FIXME: Need to add qualifiers
877      return lexT;
878    }
879  }
880
881  // Otherwise, the operands are not compatible.
882  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
883       lexT.getAsString(), rexT.getAsString(),
884       lex->getSourceRange(), rex->getSourceRange());
885  return QualType();
886}
887
888/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
889/// in the case of a the GNU conditional expr extension.
890Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
891                                            SourceLocation ColonLoc,
892                                            ExprTy *Cond, ExprTy *LHS,
893                                            ExprTy *RHS) {
894  Expr *CondExpr = (Expr *) Cond;
895  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
896
897  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
898  // was the condition.
899  bool isLHSNull = LHSExpr == 0;
900  if (isLHSNull)
901    LHSExpr = CondExpr;
902
903  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
904                                             RHSExpr, QuestionLoc);
905  if (result.isNull())
906    return true;
907  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
908                                 RHSExpr, result);
909}
910
911/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
912/// do not have a prototype. Arguments that have type float are promoted to
913/// double. All other argument types are converted by UsualUnaryConversions().
914void Sema::DefaultArgumentPromotion(Expr *&Expr) {
915  QualType Ty = Expr->getType();
916  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
917
918  if (Ty == Context.FloatTy)
919    ImpCastExprToType(Expr, Context.DoubleTy);
920  else
921    UsualUnaryConversions(Expr);
922}
923
924/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
925void Sema::DefaultFunctionArrayConversion(Expr *&E) {
926  QualType Ty = E->getType();
927  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
928
929  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
930    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
931    Ty = E->getType();
932  }
933  if (Ty->isFunctionType())
934    ImpCastExprToType(E, Context.getPointerType(Ty));
935  else if (Ty->isArrayType())
936    ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
937}
938
939/// UsualUnaryConversions - Performs various conversions that are common to most
940/// operators (C99 6.3). The conversions of array and function types are
941/// sometimes surpressed. For example, the array->pointer conversion doesn't
942/// apply if the array is an argument to the sizeof or address (&) operators.
943/// In these instances, this routine should *not* be called.
944Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
945  QualType Ty = Expr->getType();
946  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
947
948  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
949    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
950    Ty = Expr->getType();
951  }
952  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
953    ImpCastExprToType(Expr, Context.IntTy);
954  else
955    DefaultFunctionArrayConversion(Expr);
956
957  return Expr;
958}
959
960/// UsualArithmeticConversions - Performs various conversions that are common to
961/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
962/// routine returns the first non-arithmetic type found. The client is
963/// responsible for emitting appropriate error diagnostics.
964/// FIXME: verify the conversion rules for "complex int" are consistent with
965/// GCC.
966QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
967                                          bool isCompAssign) {
968  if (!isCompAssign) {
969    UsualUnaryConversions(lhsExpr);
970    UsualUnaryConversions(rhsExpr);
971  }
972  // For conversion purposes, we ignore any qualifiers.
973  // For example, "const float" and "float" are equivalent.
974  QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
975  QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
976
977  // If both types are identical, no conversion is needed.
978  if (lhs == rhs)
979    return lhs;
980
981  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
982  // The caller can deal with this (e.g. pointer + int).
983  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
984    return lhs;
985
986  // At this point, we have two different arithmetic types.
987
988  // Handle complex types first (C99 6.3.1.8p1).
989  if (lhs->isComplexType() || rhs->isComplexType()) {
990    // if we have an integer operand, the result is the complex type.
991    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
992      // convert the rhs to the lhs complex type.
993      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
994      return lhs;
995    }
996    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
997      // convert the lhs to the rhs complex type.
998      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
999      return rhs;
1000    }
1001    // This handles complex/complex, complex/float, or float/complex.
1002    // When both operands are complex, the shorter operand is converted to the
1003    // type of the longer, and that is the type of the result. This corresponds
1004    // to what is done when combining two real floating-point operands.
1005    // The fun begins when size promotion occur across type domains.
1006    // From H&S 6.3.4: When one operand is complex and the other is a real
1007    // floating-point type, the less precise type is converted, within it's
1008    // real or complex domain, to the precision of the other type. For example,
1009    // when combining a "long double" with a "double _Complex", the
1010    // "double _Complex" is promoted to "long double _Complex".
1011    int result = Context.getFloatingTypeOrder(lhs, rhs);
1012
1013    if (result > 0) { // The left side is bigger, convert rhs.
1014      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
1015      if (!isCompAssign)
1016        ImpCastExprToType(rhsExpr, rhs);
1017    } else if (result < 0) { // The right side is bigger, convert lhs.
1018      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
1019      if (!isCompAssign)
1020        ImpCastExprToType(lhsExpr, lhs);
1021    }
1022    // At this point, lhs and rhs have the same rank/size. Now, make sure the
1023    // domains match. This is a requirement for our implementation, C99
1024    // does not require this promotion.
1025    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
1026      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
1027        if (!isCompAssign)
1028          ImpCastExprToType(lhsExpr, rhs);
1029        return rhs;
1030      } else { // handle "_Complex double, double".
1031        if (!isCompAssign)
1032          ImpCastExprToType(rhsExpr, lhs);
1033        return lhs;
1034      }
1035    }
1036    return lhs; // The domain/size match exactly.
1037  }
1038  // Now handle "real" floating types (i.e. float, double, long double).
1039  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
1040    // if we have an integer operand, the result is the real floating type.
1041    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
1042      // convert rhs to the lhs floating point type.
1043      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1044      return lhs;
1045    }
1046    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
1047      // convert lhs to the rhs floating point type.
1048      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1049      return rhs;
1050    }
1051    // We have two real floating types, float/complex combos were handled above.
1052    // Convert the smaller operand to the bigger result.
1053    int result = Context.getFloatingTypeOrder(lhs, rhs);
1054
1055    if (result > 0) { // convert the rhs
1056      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1057      return lhs;
1058    }
1059    if (result < 0) { // convert the lhs
1060      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1061      return rhs;
1062    }
1063    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
1064  }
1065  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
1066    // Handle GCC complex int extension.
1067    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
1068    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
1069
1070    if (lhsComplexInt && rhsComplexInt) {
1071      if (Context.getMaxIntegerType(lhsComplexInt->getElementType(),
1072                                    rhsComplexInt->getElementType()) == lhs) {
1073        // convert the rhs
1074        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1075        return lhs;
1076      }
1077      if (!isCompAssign)
1078        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1079      return rhs;
1080    } else if (lhsComplexInt && rhs->isIntegerType()) {
1081      // convert the rhs to the lhs complex type.
1082      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1083      return lhs;
1084    } else if (rhsComplexInt && lhs->isIntegerType()) {
1085      // convert the lhs to the rhs complex type.
1086      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1087      return rhs;
1088    }
1089  }
1090  // Finally, we have two differing integer types.
1091  if (Context.getMaxIntegerType(lhs, rhs) == lhs) { // convert the rhs
1092    if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1093    return lhs;
1094  }
1095  if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1096  return rhs;
1097}
1098
1099// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1100// being closely modeled after the C99 spec:-). The odd characteristic of this
1101// routine is it effectively iqnores the qualifiers on the top level pointee.
1102// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1103// FIXME: add a couple examples in this comment.
1104Sema::AssignConvertType
1105Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1106  QualType lhptee, rhptee;
1107
1108  // get the "pointed to" type (ignoring qualifiers at the top level)
1109  lhptee = lhsType->getAsPointerType()->getPointeeType();
1110  rhptee = rhsType->getAsPointerType()->getPointeeType();
1111
1112  // make sure we operate on the canonical type
1113  lhptee = lhptee.getCanonicalType();
1114  rhptee = rhptee.getCanonicalType();
1115
1116  AssignConvertType ConvTy = Compatible;
1117
1118  // C99 6.5.16.1p1: This following citation is common to constraints
1119  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1120  // qualifiers of the type *pointed to* by the right;
1121  // FIXME: Handle ASQualType
1122  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1123       rhptee.getCVRQualifiers())
1124    ConvTy = CompatiblePointerDiscardsQualifiers;
1125
1126  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1127  // incomplete type and the other is a pointer to a qualified or unqualified
1128  // version of void...
1129  if (lhptee->isVoidType()) {
1130    if (rhptee->isIncompleteOrObjectType())
1131      return ConvTy;
1132
1133    // As an extension, we allow cast to/from void* to function pointer.
1134    assert(rhptee->isFunctionType());
1135    return FunctionVoidPointer;
1136  }
1137
1138  if (rhptee->isVoidType()) {
1139    if (lhptee->isIncompleteOrObjectType())
1140      return ConvTy;
1141
1142    // As an extension, we allow cast to/from void* to function pointer.
1143    assert(lhptee->isFunctionType());
1144    return FunctionVoidPointer;
1145  }
1146
1147  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1148  // unqualified versions of compatible types, ...
1149  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1150                                  rhptee.getUnqualifiedType()))
1151    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1152  return ConvTy;
1153}
1154
1155/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1156/// has code to accommodate several GCC extensions when type checking
1157/// pointers. Here are some objectionable examples that GCC considers warnings:
1158///
1159///  int a, *pint;
1160///  short *pshort;
1161///  struct foo *pfoo;
1162///
1163///  pint = pshort; // warning: assignment from incompatible pointer type
1164///  a = pint; // warning: assignment makes integer from pointer without a cast
1165///  pint = a; // warning: assignment makes pointer from integer without a cast
1166///  pint = pfoo; // warning: assignment from incompatible pointer type
1167///
1168/// As a result, the code for dealing with pointers is more complex than the
1169/// C99 spec dictates.
1170/// Note: the warning above turn into errors when -pedantic-errors is enabled.
1171///
1172Sema::AssignConvertType
1173Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1174  // Get canonical types.  We're not formatting these types, just comparing
1175  // them.
1176  lhsType = lhsType.getCanonicalType();
1177  rhsType = rhsType.getCanonicalType();
1178
1179  if (lhsType.getUnqualifiedType() == rhsType.getUnqualifiedType())
1180    return Compatible; // Common case: fast path an exact match.
1181
1182  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1183    if (Context.referenceTypesAreCompatible(lhsType, rhsType))
1184      return Compatible;
1185    return Incompatible;
1186  }
1187
1188  if (lhsType->isObjCQualifiedIdType()
1189           || rhsType->isObjCQualifiedIdType()) {
1190    if (Context.ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType))
1191      return Compatible;
1192    return Incompatible;
1193  }
1194
1195  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1196    // For OCUVector, allow vector splats; float -> <n x float>
1197    if (const OCUVectorType *LV = lhsType->getAsOCUVectorType()) {
1198      if (LV->getElementType().getTypePtr() == rhsType.getTypePtr())
1199        return Compatible;
1200    }
1201
1202    // If LHS and RHS are both vectors of integer or both vectors of floating
1203    // point types, and the total vector length is the same, allow the
1204    // conversion.  This is a bitcast; no bits are changed but the result type
1205    // is different.
1206    if (getLangOptions().LaxVectorConversions &&
1207        lhsType->isVectorType() && rhsType->isVectorType()) {
1208      if ((lhsType->isIntegerType() && rhsType->isIntegerType()) ||
1209          (lhsType->isRealFloatingType() && rhsType->isRealFloatingType())) {
1210        if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1211          return Compatible;
1212      }
1213    }
1214    return Incompatible;
1215  }
1216
1217  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1218    return Compatible;
1219
1220  if (lhsType->isPointerType()) {
1221    if (rhsType->isIntegerType())
1222      return IntToPointer;
1223
1224    if (rhsType->isPointerType())
1225      return CheckPointerTypesForAssignment(lhsType, rhsType);
1226    return Incompatible;
1227  }
1228
1229  if (rhsType->isPointerType()) {
1230    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1231    if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
1232      return PointerToInt;
1233
1234    if (lhsType->isPointerType())
1235      return CheckPointerTypesForAssignment(lhsType, rhsType);
1236    return Incompatible;
1237  }
1238
1239  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1240    if (Context.tagTypesAreCompatible(lhsType, rhsType))
1241      return Compatible;
1242  }
1243  return Incompatible;
1244}
1245
1246Sema::AssignConvertType
1247Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1248  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1249  // a null pointer constant.
1250  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
1251      && rExpr->isNullPointerConstant(Context)) {
1252    ImpCastExprToType(rExpr, lhsType);
1253    return Compatible;
1254  }
1255  // This check seems unnatural, however it is necessary to ensure the proper
1256  // conversion of functions/arrays. If the conversion were done for all
1257  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1258  // expressions that surpress this implicit conversion (&, sizeof).
1259  //
1260  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1261  // are better understood.
1262  if (!lhsType->isReferenceType())
1263    DefaultFunctionArrayConversion(rExpr);
1264
1265  Sema::AssignConvertType result =
1266    CheckAssignmentConstraints(lhsType, rExpr->getType());
1267
1268  // C99 6.5.16.1p2: The value of the right operand is converted to the
1269  // type of the assignment expression.
1270  if (rExpr->getType() != lhsType)
1271    ImpCastExprToType(rExpr, lhsType);
1272  return result;
1273}
1274
1275Sema::AssignConvertType
1276Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1277  return CheckAssignmentConstraints(lhsType, rhsType);
1278}
1279
1280QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1281  Diag(loc, diag::err_typecheck_invalid_operands,
1282       lex->getType().getAsString(), rex->getType().getAsString(),
1283       lex->getSourceRange(), rex->getSourceRange());
1284  return QualType();
1285}
1286
1287inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1288                                                              Expr *&rex) {
1289  // For conversion purposes, we ignore any qualifiers.
1290  // For example, "const float" and "float" are equivalent.
1291  QualType lhsType = lex->getType().getCanonicalType().getUnqualifiedType();
1292  QualType rhsType = rex->getType().getCanonicalType().getUnqualifiedType();
1293
1294  // make sure the vector types are identical.
1295  if (lhsType == rhsType)
1296    return lhsType;
1297
1298  // if the lhs is an ocu vector and the rhs is a scalar of the same type,
1299  // promote the rhs to the vector type.
1300  if (const OCUVectorType *V = lhsType->getAsOCUVectorType()) {
1301    if (V->getElementType().getCanonicalType().getTypePtr()
1302        == rhsType.getCanonicalType().getTypePtr()) {
1303      ImpCastExprToType(rex, lhsType);
1304      return lhsType;
1305    }
1306  }
1307
1308  // if the rhs is an ocu vector and the lhs is a scalar of the same type,
1309  // promote the lhs to the vector type.
1310  if (const OCUVectorType *V = rhsType->getAsOCUVectorType()) {
1311    if (V->getElementType().getCanonicalType().getTypePtr()
1312        == lhsType.getCanonicalType().getTypePtr()) {
1313      ImpCastExprToType(lex, rhsType);
1314      return rhsType;
1315    }
1316  }
1317
1318  // You cannot convert between vector values of different size.
1319  Diag(loc, diag::err_typecheck_vector_not_convertable,
1320       lex->getType().getAsString(), rex->getType().getAsString(),
1321       lex->getSourceRange(), rex->getSourceRange());
1322  return QualType();
1323}
1324
1325inline QualType Sema::CheckMultiplyDivideOperands(
1326  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1327{
1328  QualType lhsType = lex->getType(), rhsType = rex->getType();
1329
1330  if (lhsType->isVectorType() || rhsType->isVectorType())
1331    return CheckVectorOperands(loc, lex, rex);
1332
1333  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1334
1335  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1336    return compType;
1337  return InvalidOperands(loc, lex, rex);
1338}
1339
1340inline QualType Sema::CheckRemainderOperands(
1341  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1342{
1343  QualType lhsType = lex->getType(), rhsType = rex->getType();
1344
1345  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1346
1347  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1348    return compType;
1349  return InvalidOperands(loc, lex, rex);
1350}
1351
1352inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1353  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1354{
1355  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1356    return CheckVectorOperands(loc, lex, rex);
1357
1358  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1359
1360  // handle the common case first (both operands are arithmetic).
1361  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1362    return compType;
1363
1364  if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
1365    return lex->getType();
1366  if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
1367    return rex->getType();
1368  return InvalidOperands(loc, lex, rex);
1369}
1370
1371inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
1372  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1373{
1374  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1375    return CheckVectorOperands(loc, lex, rex);
1376
1377  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1378
1379  // Enforce type constraints: C99 6.5.6p3.
1380
1381  // Handle the common case first (both operands are arithmetic).
1382  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1383    return compType;
1384
1385  // Either ptr - int   or   ptr - ptr.
1386  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1387    QualType lpointee = LHSPTy->getPointeeType();
1388
1389    // The LHS must be an object type, not incomplete, function, etc.
1390    if (!lpointee->isObjectType()) {
1391      // Handle the GNU void* extension.
1392      if (lpointee->isVoidType()) {
1393        Diag(loc, diag::ext_gnu_void_ptr,
1394             lex->getSourceRange(), rex->getSourceRange());
1395      } else {
1396        Diag(loc, diag::err_typecheck_sub_ptr_object,
1397             lex->getType().getAsString(), lex->getSourceRange());
1398        return QualType();
1399      }
1400    }
1401
1402    // The result type of a pointer-int computation is the pointer type.
1403    if (rex->getType()->isIntegerType())
1404      return lex->getType();
1405
1406    // Handle pointer-pointer subtractions.
1407    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1408      QualType rpointee = RHSPTy->getPointeeType();
1409
1410      // RHS must be an object type, unless void (GNU).
1411      if (!rpointee->isObjectType()) {
1412        // Handle the GNU void* extension.
1413        if (rpointee->isVoidType()) {
1414          if (!lpointee->isVoidType())
1415            Diag(loc, diag::ext_gnu_void_ptr,
1416                 lex->getSourceRange(), rex->getSourceRange());
1417        } else {
1418          Diag(loc, diag::err_typecheck_sub_ptr_object,
1419               rex->getType().getAsString(), rex->getSourceRange());
1420          return QualType();
1421        }
1422      }
1423
1424      // Pointee types must be compatible.
1425      if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1426                                      rpointee.getUnqualifiedType())) {
1427        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1428             lex->getType().getAsString(), rex->getType().getAsString(),
1429             lex->getSourceRange(), rex->getSourceRange());
1430        return QualType();
1431      }
1432
1433      return Context.getPointerDiffType();
1434    }
1435  }
1436
1437  return InvalidOperands(loc, lex, rex);
1438}
1439
1440inline QualType Sema::CheckShiftOperands( // C99 6.5.7
1441  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) {
1442  // C99 6.5.7p2: Each of the operands shall have integer type.
1443  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1444    return InvalidOperands(loc, lex, rex);
1445
1446  // Shifts don't perform usual arithmetic conversions, they just do integer
1447  // promotions on each operand. C99 6.5.7p3
1448  if (!isCompAssign)
1449    UsualUnaryConversions(lex);
1450  UsualUnaryConversions(rex);
1451
1452  // "The type of the result is that of the promoted left operand."
1453  return lex->getType();
1454}
1455
1456inline QualType Sema::CheckCompareOperands( // C99 6.5.8
1457  Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational)
1458{
1459  // C99 6.5.8p3 / C99 6.5.9p4
1460  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1461    UsualArithmeticConversions(lex, rex);
1462  else {
1463    UsualUnaryConversions(lex);
1464    UsualUnaryConversions(rex);
1465  }
1466  QualType lType = lex->getType();
1467  QualType rType = rex->getType();
1468
1469  // For non-floating point types, check for self-comparisons of the form
1470  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1471  // often indicate logic errors in the program.
1472  if (!lType->isFloatingType()) {
1473    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1474      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1475        if (DRL->getDecl() == DRR->getDecl())
1476          Diag(loc, diag::warn_selfcomparison);
1477  }
1478
1479  if (isRelational) {
1480    if (lType->isRealType() && rType->isRealType())
1481      return Context.IntTy;
1482  } else {
1483    // Check for comparisons of floating point operands using != and ==.
1484    if (lType->isFloatingType()) {
1485      assert (rType->isFloatingType());
1486      CheckFloatComparison(loc,lex,rex);
1487    }
1488
1489    if (lType->isArithmeticType() && rType->isArithmeticType())
1490      return Context.IntTy;
1491  }
1492
1493  bool LHSIsNull = lex->isNullPointerConstant(Context);
1494  bool RHSIsNull = rex->isNullPointerConstant(Context);
1495
1496  // All of the following pointer related warnings are GCC extensions, except
1497  // when handling null pointer constants. One day, we can consider making them
1498  // errors (when -pedantic-errors is enabled).
1499  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
1500    QualType LCanPointeeTy =
1501      lType->getAsPointerType()->getPointeeType().getCanonicalType();
1502    QualType RCanPointeeTy =
1503      rType->getAsPointerType()->getPointeeType().getCanonicalType();
1504
1505    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
1506        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
1507        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
1508                                    RCanPointeeTy.getUnqualifiedType())) {
1509      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1510           lType.getAsString(), rType.getAsString(),
1511           lex->getSourceRange(), rex->getSourceRange());
1512    }
1513    ImpCastExprToType(rex, lType); // promote the pointer to pointer
1514    return Context.IntTy;
1515  }
1516  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())
1517      && Context.ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
1518    ImpCastExprToType(rex, lType);
1519    return Context.IntTy;
1520  }
1521  if (lType->isPointerType() && rType->isIntegerType()) {
1522    if (!RHSIsNull)
1523      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1524           lType.getAsString(), rType.getAsString(),
1525           lex->getSourceRange(), rex->getSourceRange());
1526    ImpCastExprToType(rex, lType); // promote the integer to pointer
1527    return Context.IntTy;
1528  }
1529  if (lType->isIntegerType() && rType->isPointerType()) {
1530    if (!LHSIsNull)
1531      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1532           lType.getAsString(), rType.getAsString(),
1533           lex->getSourceRange(), rex->getSourceRange());
1534    ImpCastExprToType(lex, rType); // promote the integer to pointer
1535    return Context.IntTy;
1536  }
1537  return InvalidOperands(loc, lex, rex);
1538}
1539
1540inline QualType Sema::CheckBitwiseOperands(
1541  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1542{
1543  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1544    return CheckVectorOperands(loc, lex, rex);
1545
1546  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1547
1548  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1549    return compType;
1550  return InvalidOperands(loc, lex, rex);
1551}
1552
1553inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1554  Expr *&lex, Expr *&rex, SourceLocation loc)
1555{
1556  UsualUnaryConversions(lex);
1557  UsualUnaryConversions(rex);
1558
1559  if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1560    return Context.IntTy;
1561  return InvalidOperands(loc, lex, rex);
1562}
1563
1564inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1565  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
1566{
1567  QualType lhsType = lex->getType();
1568  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1569  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1570
1571  switch (mlval) { // C99 6.5.16p2
1572  case Expr::MLV_Valid:
1573    break;
1574  case Expr::MLV_ConstQualified:
1575    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1576    return QualType();
1577  case Expr::MLV_ArrayType:
1578    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1579         lhsType.getAsString(), lex->getSourceRange());
1580    return QualType();
1581  case Expr::MLV_NotObjectType:
1582    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1583         lhsType.getAsString(), lex->getSourceRange());
1584    return QualType();
1585  case Expr::MLV_InvalidExpression:
1586    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1587         lex->getSourceRange());
1588    return QualType();
1589  case Expr::MLV_IncompleteType:
1590  case Expr::MLV_IncompleteVoidType:
1591    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1592         lhsType.getAsString(), lex->getSourceRange());
1593    return QualType();
1594  case Expr::MLV_DuplicateVectorComponents:
1595    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1596         lex->getSourceRange());
1597    return QualType();
1598  }
1599
1600  AssignConvertType ConvTy;
1601  if (compoundType.isNull())
1602    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
1603  else
1604    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
1605
1606  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
1607                               rex, "assigning"))
1608    return QualType();
1609
1610  // C99 6.5.16p3: The type of an assignment expression is the type of the
1611  // left operand unless the left operand has qualified type, in which case
1612  // it is the unqualified version of the type of the left operand.
1613  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1614  // is converted to the type of the assignment expression (above).
1615  // C++ 5.17p1: the type of the assignment expression is that of its left
1616  // oprdu.
1617  return lhsType.getUnqualifiedType();
1618}
1619
1620inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1621  Expr *&lex, Expr *&rex, SourceLocation loc) {
1622  UsualUnaryConversions(rex);
1623  return rex->getType();
1624}
1625
1626/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1627/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1628QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1629  QualType resType = op->getType();
1630  assert(!resType.isNull() && "no type for increment/decrement expression");
1631
1632  // C99 6.5.2.4p1: We allow complex as a GCC extension.
1633  if (const PointerType *pt = resType->getAsPointerType()) {
1634    if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1635      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1636           resType.getAsString(), op->getSourceRange());
1637      return QualType();
1638    }
1639  } else if (!resType->isRealType()) {
1640    if (resType->isComplexType())
1641      // C99 does not support ++/-- on complex types.
1642      Diag(OpLoc, diag::ext_integer_increment_complex,
1643           resType.getAsString(), op->getSourceRange());
1644    else {
1645      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1646           resType.getAsString(), op->getSourceRange());
1647      return QualType();
1648    }
1649  }
1650  // At this point, we know we have a real, complex or pointer type.
1651  // Now make sure the operand is a modifiable lvalue.
1652  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1653  if (mlval != Expr::MLV_Valid) {
1654    // FIXME: emit a more precise diagnostic...
1655    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1656         op->getSourceRange());
1657    return QualType();
1658  }
1659  return resType;
1660}
1661
1662/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
1663/// This routine allows us to typecheck complex/recursive expressions
1664/// where the declaration is needed for type checking. Here are some
1665/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1666static ValueDecl *getPrimaryDecl(Expr *E) {
1667  switch (E->getStmtClass()) {
1668  case Stmt::DeclRefExprClass:
1669    return cast<DeclRefExpr>(E)->getDecl();
1670  case Stmt::MemberExprClass:
1671    // Fields cannot be declared with a 'register' storage class.
1672    // &X->f is always ok, even if X is declared register.
1673    if (cast<MemberExpr>(E)->isArrow())
1674      return 0;
1675    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
1676  case Stmt::ArraySubscriptExprClass: {
1677    // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
1678
1679    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
1680    if (!VD || VD->getType()->isPointerType())
1681      return 0;
1682    else
1683      return VD;
1684  }
1685  case Stmt::UnaryOperatorClass:
1686    return getPrimaryDecl(cast<UnaryOperator>(E)->getSubExpr());
1687  case Stmt::ParenExprClass:
1688    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
1689  case Stmt::ImplicitCastExprClass:
1690    // &X[4] when X is an array, has an implicit cast from array to pointer.
1691    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
1692  default:
1693    return 0;
1694  }
1695}
1696
1697/// CheckAddressOfOperand - The operand of & must be either a function
1698/// designator or an lvalue designating an object. If it is an lvalue, the
1699/// object cannot be declared with storage class register or be a bit field.
1700/// Note: The usual conversions are *not* applied to the operand of the &
1701/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1702QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1703  if (getLangOptions().C99) {
1704    // Implement C99-only parts of addressof rules.
1705    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
1706      if (uOp->getOpcode() == UnaryOperator::Deref)
1707        // Per C99 6.5.3.2, the address of a deref always returns a valid result
1708        // (assuming the deref expression is valid).
1709        return uOp->getSubExpr()->getType();
1710    }
1711    // Technically, there should be a check for array subscript
1712    // expressions here, but the result of one is always an lvalue anyway.
1713  }
1714  ValueDecl *dcl = getPrimaryDecl(op);
1715  Expr::isLvalueResult lval = op->isLvalue();
1716
1717  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1718    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
1719      // FIXME: emit more specific diag...
1720      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1721           op->getSourceRange());
1722      return QualType();
1723    }
1724  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
1725    if (MemExpr->getMemberDecl()->isBitField()) {
1726      Diag(OpLoc, diag::err_typecheck_address_of,
1727           std::string("bit-field"), op->getSourceRange());
1728      return QualType();
1729    }
1730  // Check for Apple extension for accessing vector components.
1731  } else if (isa<ArraySubscriptExpr>(op) &&
1732           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
1733    Diag(OpLoc, diag::err_typecheck_address_of,
1734         std::string("vector"), op->getSourceRange());
1735    return QualType();
1736  } else if (dcl) { // C99 6.5.3.2p1
1737    // We have an lvalue with a decl. Make sure the decl is not declared
1738    // with the register storage-class specifier.
1739    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1740      if (vd->getStorageClass() == VarDecl::Register) {
1741        Diag(OpLoc, diag::err_typecheck_address_of,
1742             std::string("register variable"), op->getSourceRange());
1743        return QualType();
1744      }
1745    } else
1746      assert(0 && "Unknown/unexpected decl type");
1747  }
1748  // If the operand has type "type", the result has type "pointer to type".
1749  return Context.getPointerType(op->getType());
1750}
1751
1752QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1753  UsualUnaryConversions(op);
1754  QualType qType = op->getType();
1755
1756  if (const PointerType *PT = qType->getAsPointerType()) {
1757    // Note that per both C89 and C99, this is always legal, even
1758    // if ptype is an incomplete type or void.
1759    // It would be possible to warn about dereferencing a
1760    // void pointer, but it's completely well-defined,
1761    // and such a warning is unlikely to catch any mistakes.
1762    return PT->getPointeeType();
1763  }
1764  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1765       qType.getAsString(), op->getSourceRange());
1766  return QualType();
1767}
1768
1769static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1770  tok::TokenKind Kind) {
1771  BinaryOperator::Opcode Opc;
1772  switch (Kind) {
1773  default: assert(0 && "Unknown binop!");
1774  case tok::star:                 Opc = BinaryOperator::Mul; break;
1775  case tok::slash:                Opc = BinaryOperator::Div; break;
1776  case tok::percent:              Opc = BinaryOperator::Rem; break;
1777  case tok::plus:                 Opc = BinaryOperator::Add; break;
1778  case tok::minus:                Opc = BinaryOperator::Sub; break;
1779  case tok::lessless:             Opc = BinaryOperator::Shl; break;
1780  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
1781  case tok::lessequal:            Opc = BinaryOperator::LE; break;
1782  case tok::less:                 Opc = BinaryOperator::LT; break;
1783  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
1784  case tok::greater:              Opc = BinaryOperator::GT; break;
1785  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
1786  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
1787  case tok::amp:                  Opc = BinaryOperator::And; break;
1788  case tok::caret:                Opc = BinaryOperator::Xor; break;
1789  case tok::pipe:                 Opc = BinaryOperator::Or; break;
1790  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
1791  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
1792  case tok::equal:                Opc = BinaryOperator::Assign; break;
1793  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
1794  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
1795  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
1796  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
1797  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
1798  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
1799  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
1800  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
1801  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
1802  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
1803  case tok::comma:                Opc = BinaryOperator::Comma; break;
1804  }
1805  return Opc;
1806}
1807
1808static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1809  tok::TokenKind Kind) {
1810  UnaryOperator::Opcode Opc;
1811  switch (Kind) {
1812  default: assert(0 && "Unknown unary op!");
1813  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
1814  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
1815  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
1816  case tok::star:         Opc = UnaryOperator::Deref; break;
1817  case tok::plus:         Opc = UnaryOperator::Plus; break;
1818  case tok::minus:        Opc = UnaryOperator::Minus; break;
1819  case tok::tilde:        Opc = UnaryOperator::Not; break;
1820  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
1821  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
1822  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1823  case tok::kw___real:    Opc = UnaryOperator::Real; break;
1824  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
1825  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1826  }
1827  return Opc;
1828}
1829
1830// Binary Operators.  'Tok' is the token for the operator.
1831Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1832                                    ExprTy *LHS, ExprTy *RHS) {
1833  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1834  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1835
1836  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
1837  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
1838
1839  QualType ResultTy;  // Result type of the binary operator.
1840  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
1841
1842  switch (Opc) {
1843  default:
1844    assert(0 && "Unknown binary expr!");
1845  case BinaryOperator::Assign:
1846    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1847    break;
1848  case BinaryOperator::Mul:
1849  case BinaryOperator::Div:
1850    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1851    break;
1852  case BinaryOperator::Rem:
1853    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1854    break;
1855  case BinaryOperator::Add:
1856    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1857    break;
1858  case BinaryOperator::Sub:
1859    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1860    break;
1861  case BinaryOperator::Shl:
1862  case BinaryOperator::Shr:
1863    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1864    break;
1865  case BinaryOperator::LE:
1866  case BinaryOperator::LT:
1867  case BinaryOperator::GE:
1868  case BinaryOperator::GT:
1869    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
1870    break;
1871  case BinaryOperator::EQ:
1872  case BinaryOperator::NE:
1873    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
1874    break;
1875  case BinaryOperator::And:
1876  case BinaryOperator::Xor:
1877  case BinaryOperator::Or:
1878    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1879    break;
1880  case BinaryOperator::LAnd:
1881  case BinaryOperator::LOr:
1882    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1883    break;
1884  case BinaryOperator::MulAssign:
1885  case BinaryOperator::DivAssign:
1886    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
1887    if (!CompTy.isNull())
1888      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1889    break;
1890  case BinaryOperator::RemAssign:
1891    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
1892    if (!CompTy.isNull())
1893      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1894    break;
1895  case BinaryOperator::AddAssign:
1896    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
1897    if (!CompTy.isNull())
1898      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1899    break;
1900  case BinaryOperator::SubAssign:
1901    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
1902    if (!CompTy.isNull())
1903      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1904    break;
1905  case BinaryOperator::ShlAssign:
1906  case BinaryOperator::ShrAssign:
1907    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
1908    if (!CompTy.isNull())
1909      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1910    break;
1911  case BinaryOperator::AndAssign:
1912  case BinaryOperator::XorAssign:
1913  case BinaryOperator::OrAssign:
1914    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
1915    if (!CompTy.isNull())
1916      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1917    break;
1918  case BinaryOperator::Comma:
1919    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1920    break;
1921  }
1922  if (ResultTy.isNull())
1923    return true;
1924  if (CompTy.isNull())
1925    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
1926  else
1927    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
1928}
1929
1930// Unary Operators.  'Tok' is the token for the operator.
1931Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1932                                      ExprTy *input) {
1933  Expr *Input = (Expr*)input;
1934  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1935  QualType resultType;
1936  switch (Opc) {
1937  default:
1938    assert(0 && "Unimplemented unary expr!");
1939  case UnaryOperator::PreInc:
1940  case UnaryOperator::PreDec:
1941    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1942    break;
1943  case UnaryOperator::AddrOf:
1944    resultType = CheckAddressOfOperand(Input, OpLoc);
1945    break;
1946  case UnaryOperator::Deref:
1947    DefaultFunctionArrayConversion(Input);
1948    resultType = CheckIndirectionOperand(Input, OpLoc);
1949    break;
1950  case UnaryOperator::Plus:
1951  case UnaryOperator::Minus:
1952    UsualUnaryConversions(Input);
1953    resultType = Input->getType();
1954    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
1955      return Diag(OpLoc, diag::err_typecheck_unary_expr,
1956                  resultType.getAsString());
1957    break;
1958  case UnaryOperator::Not: // bitwise complement
1959    UsualUnaryConversions(Input);
1960    resultType = Input->getType();
1961    // C99 6.5.3.3p1. We allow complex as a GCC extension.
1962    if (!resultType->isIntegerType()) {
1963      if (resultType->isComplexType())
1964        // C99 does not support '~' for complex conjugation.
1965        Diag(OpLoc, diag::ext_integer_complement_complex,
1966                    resultType.getAsString());
1967      else
1968        return Diag(OpLoc, diag::err_typecheck_unary_expr,
1969                    resultType.getAsString());
1970    }
1971    break;
1972  case UnaryOperator::LNot: // logical negation
1973    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1974    DefaultFunctionArrayConversion(Input);
1975    resultType = Input->getType();
1976    if (!resultType->isScalarType()) // C99 6.5.3.3p1
1977      return Diag(OpLoc, diag::err_typecheck_unary_expr,
1978                  resultType.getAsString());
1979    // LNot always has type int. C99 6.5.3.3p5.
1980    resultType = Context.IntTy;
1981    break;
1982  case UnaryOperator::SizeOf:
1983    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1984    break;
1985  case UnaryOperator::AlignOf:
1986    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1987    break;
1988  case UnaryOperator::Real:
1989  case UnaryOperator::Imag:
1990    resultType = CheckRealImagOperand(Input, OpLoc);
1991    break;
1992  case UnaryOperator::Extension:
1993    resultType = Input->getType();
1994    break;
1995  }
1996  if (resultType.isNull())
1997    return true;
1998  return new UnaryOperator(Input, Opc, resultType, OpLoc);
1999}
2000
2001/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2002Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2003                                      SourceLocation LabLoc,
2004                                      IdentifierInfo *LabelII) {
2005  // Look up the record for this label identifier.
2006  LabelStmt *&LabelDecl = LabelMap[LabelII];
2007
2008  // If we haven't seen this label yet, create a forward reference.
2009  if (LabelDecl == 0)
2010    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2011
2012  // Create the AST node.  The address of a label always has type 'void*'.
2013  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2014                           Context.getPointerType(Context.VoidTy));
2015}
2016
2017Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2018                                     SourceLocation RPLoc) { // "({..})"
2019  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2020  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2021  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2022
2023  // FIXME: there are a variety of strange constraints to enforce here, for
2024  // example, it is not possible to goto into a stmt expression apparently.
2025  // More semantic analysis is needed.
2026
2027  // FIXME: the last statement in the compount stmt has its value used.  We
2028  // should not warn about it being unused.
2029
2030  // If there are sub stmts in the compound stmt, take the type of the last one
2031  // as the type of the stmtexpr.
2032  QualType Ty = Context.VoidTy;
2033
2034  if (!Compound->body_empty())
2035    if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
2036      Ty = LastExpr->getType();
2037
2038  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2039}
2040
2041Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2042                                            SourceLocation TypeLoc,
2043                                            TypeTy *argty,
2044                                            OffsetOfComponent *CompPtr,
2045                                            unsigned NumComponents,
2046                                            SourceLocation RPLoc) {
2047  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2048  assert(!ArgTy.isNull() && "Missing type argument!");
2049
2050  // We must have at least one component that refers to the type, and the first
2051  // one is known to be a field designator.  Verify that the ArgTy represents
2052  // a struct/union/class.
2053  if (!ArgTy->isRecordType())
2054    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2055
2056  // Otherwise, create a compound literal expression as the base, and
2057  // iteratively process the offsetof designators.
2058  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2059
2060  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2061  // GCC extension, diagnose them.
2062  if (NumComponents != 1)
2063    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2064         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2065
2066  for (unsigned i = 0; i != NumComponents; ++i) {
2067    const OffsetOfComponent &OC = CompPtr[i];
2068    if (OC.isBrackets) {
2069      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2070      const ArrayType *AT = Res->getType()->getAsArrayType();
2071      if (!AT) {
2072        delete Res;
2073        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2074                    Res->getType().getAsString());
2075      }
2076
2077      // FIXME: C++: Verify that operator[] isn't overloaded.
2078
2079      // C99 6.5.2.1p1
2080      Expr *Idx = static_cast<Expr*>(OC.U.E);
2081      if (!Idx->getType()->isIntegerType())
2082        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2083                    Idx->getSourceRange());
2084
2085      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2086      continue;
2087    }
2088
2089    const RecordType *RC = Res->getType()->getAsRecordType();
2090    if (!RC) {
2091      delete Res;
2092      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2093                  Res->getType().getAsString());
2094    }
2095
2096    // Get the decl corresponding to this.
2097    RecordDecl *RD = RC->getDecl();
2098    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2099    if (!MemberDecl)
2100      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2101                  OC.U.IdentInfo->getName(),
2102                  SourceRange(OC.LocStart, OC.LocEnd));
2103
2104    // FIXME: C++: Verify that MemberDecl isn't a static field.
2105    // FIXME: Verify that MemberDecl isn't a bitfield.
2106    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2107    // matter here.
2108    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2109  }
2110
2111  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2112                           BuiltinLoc);
2113}
2114
2115
2116Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2117                                                TypeTy *arg1, TypeTy *arg2,
2118                                                SourceLocation RPLoc) {
2119  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2120  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2121
2122  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2123
2124  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2125}
2126
2127Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2128                                       ExprTy *expr1, ExprTy *expr2,
2129                                       SourceLocation RPLoc) {
2130  Expr *CondExpr = static_cast<Expr*>(cond);
2131  Expr *LHSExpr = static_cast<Expr*>(expr1);
2132  Expr *RHSExpr = static_cast<Expr*>(expr2);
2133
2134  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2135
2136  // The conditional expression is required to be a constant expression.
2137  llvm::APSInt condEval(32);
2138  SourceLocation ExpLoc;
2139  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2140    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2141                 CondExpr->getSourceRange());
2142
2143  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2144  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2145                                               RHSExpr->getType();
2146  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2147}
2148
2149/// ExprsMatchFnType - return true if the Exprs in array Args have
2150/// QualTypes that match the QualTypes of the arguments of the FnType.
2151/// The number of arguments has already been validated to match the number of
2152/// arguments in FnType.
2153static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
2154  unsigned NumParams = FnType->getNumArgs();
2155  for (unsigned i = 0; i != NumParams; ++i)
2156    if (Args[i]->getType().getCanonicalType() !=
2157        FnType->getArgType(i).getCanonicalType())
2158      return false;
2159  return true;
2160}
2161
2162Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2163                                         SourceLocation *CommaLocs,
2164                                         SourceLocation BuiltinLoc,
2165                                         SourceLocation RParenLoc) {
2166  // __builtin_overload requires at least 2 arguments
2167  if (NumArgs < 2)
2168    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2169                SourceRange(BuiltinLoc, RParenLoc));
2170
2171  // The first argument is required to be a constant expression.  It tells us
2172  // the number of arguments to pass to each of the functions to be overloaded.
2173  Expr **Args = reinterpret_cast<Expr**>(args);
2174  Expr *NParamsExpr = Args[0];
2175  llvm::APSInt constEval(32);
2176  SourceLocation ExpLoc;
2177  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2178    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2179                NParamsExpr->getSourceRange());
2180
2181  // Verify that the number of parameters is > 0
2182  unsigned NumParams = constEval.getZExtValue();
2183  if (NumParams == 0)
2184    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2185                NParamsExpr->getSourceRange());
2186  // Verify that we have at least 1 + NumParams arguments to the builtin.
2187  if ((NumParams + 1) > NumArgs)
2188    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2189                SourceRange(BuiltinLoc, RParenLoc));
2190
2191  // Figure out the return type, by matching the args to one of the functions
2192  // listed after the parameters.
2193  OverloadExpr *OE = 0;
2194  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2195    // UsualUnaryConversions will convert the function DeclRefExpr into a
2196    // pointer to function.
2197    Expr *Fn = UsualUnaryConversions(Args[i]);
2198    FunctionTypeProto *FnType = 0;
2199    if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
2200      QualType PointeeType = PT->getPointeeType().getCanonicalType();
2201      FnType = dyn_cast<FunctionTypeProto>(PointeeType);
2202    }
2203
2204    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2205    // parameters, and the number of parameters must match the value passed to
2206    // the builtin.
2207    if (!FnType || (FnType->getNumArgs() != NumParams))
2208      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2209                  Fn->getSourceRange());
2210
2211    // Scan the parameter list for the FunctionType, checking the QualType of
2212    // each parameter against the QualTypes of the arguments to the builtin.
2213    // If they match, return a new OverloadExpr.
2214    if (ExprsMatchFnType(Args+1, FnType)) {
2215      if (OE)
2216        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2217                    OE->getFn()->getSourceRange());
2218      // Remember our match, and continue processing the remaining arguments
2219      // to catch any errors.
2220      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2221                            BuiltinLoc, RParenLoc);
2222    }
2223  }
2224  // Return the newly created OverloadExpr node, if we succeded in matching
2225  // exactly one of the candidate functions.
2226  if (OE)
2227    return OE;
2228
2229  // If we didn't find a matching function Expr in the __builtin_overload list
2230  // the return an error.
2231  std::string typeNames;
2232  for (unsigned i = 0; i != NumParams; ++i) {
2233    if (i != 0) typeNames += ", ";
2234    typeNames += Args[i+1]->getType().getAsString();
2235  }
2236
2237  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2238              SourceRange(BuiltinLoc, RParenLoc));
2239}
2240
2241Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2242                                  ExprTy *expr, TypeTy *type,
2243                                  SourceLocation RPLoc) {
2244  Expr *E = static_cast<Expr*>(expr);
2245  QualType T = QualType::getFromOpaquePtr(type);
2246
2247  InitBuiltinVaListType();
2248
2249  if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
2250      != Compatible)
2251    return Diag(E->getLocStart(),
2252                diag::err_first_argument_to_va_arg_not_of_type_va_list,
2253                E->getType().getAsString(),
2254                E->getSourceRange());
2255
2256  // FIXME: Warn if a non-POD type is passed in.
2257
2258  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
2259}
2260
2261bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
2262                                    SourceLocation Loc,
2263                                    QualType DstType, QualType SrcType,
2264                                    Expr *SrcExpr, const char *Flavor) {
2265  // Decode the result (notice that AST's are still created for extensions).
2266  bool isInvalid = false;
2267  unsigned DiagKind;
2268  switch (ConvTy) {
2269  default: assert(0 && "Unknown conversion type");
2270  case Compatible: return false;
2271  case PointerToInt:
2272    DiagKind = diag::ext_typecheck_convert_pointer_int;
2273    break;
2274  case IntToPointer:
2275    DiagKind = diag::ext_typecheck_convert_int_pointer;
2276    break;
2277  case IncompatiblePointer:
2278    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
2279    break;
2280  case FunctionVoidPointer:
2281    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
2282    break;
2283  case CompatiblePointerDiscardsQualifiers:
2284    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
2285    break;
2286  case Incompatible:
2287    DiagKind = diag::err_typecheck_convert_incompatible;
2288    isInvalid = true;
2289    break;
2290  }
2291
2292  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
2293       SrcExpr->getSourceRange());
2294  return isInvalid;
2295}
2296
2297