SemaExpr.cpp revision adb1d4c18ee83249d4cffc99ef902f98e846092a
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/AnalysisBasedWarnings.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Lex/LiteralSupport.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44#include "TreeTransform.h"
45using namespace clang;
46using namespace sema;
47
48/// \brief Determine whether the use of this declaration is valid, without
49/// emitting diagnostics.
50bool Sema::CanUseDecl(NamedDecl *D) {
51  // See if this is an auto-typed variable whose initializer we are parsing.
52  if (ParsingInitForAutoVars.count(D))
53    return false;
54
55  // See if this is a deleted function.
56  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57    if (FD->isDeleted())
58      return false;
59  }
60
61  // See if this function is unavailable.
62  if (D->getAvailability() == AR_Unavailable &&
63      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64    return false;
65
66  return true;
67}
68
69static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
70                              NamedDecl *D, SourceLocation Loc,
71                              const ObjCInterfaceDecl *UnknownObjCClass) {
72  // See if this declaration is unavailable or deprecated.
73  std::string Message;
74  AvailabilityResult Result = D->getAvailability(&Message);
75  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
76    if (Result == AR_Available) {
77      const DeclContext *DC = ECD->getDeclContext();
78      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
79        Result = TheEnumDecl->getAvailability(&Message);
80    }
81
82  switch (Result) {
83    case AR_Available:
84    case AR_NotYetIntroduced:
85      break;
86
87    case AR_Deprecated:
88      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
89      break;
90
91    case AR_Unavailable:
92      if (S.getCurContextAvailability() != AR_Unavailable) {
93        if (Message.empty()) {
94          if (!UnknownObjCClass)
95            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
96          else
97            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
98              << D->getDeclName();
99        }
100        else
101          S.Diag(Loc, diag::err_unavailable_message)
102            << D->getDeclName() << Message;
103          S.Diag(D->getLocation(), diag::note_unavailable_here)
104          << isa<FunctionDecl>(D) << false;
105      }
106      break;
107    }
108    return Result;
109}
110
111/// \brief Emit a note explaining that this function is deleted or unavailable.
112void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
113  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
114
115  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
116    // If the method was explicitly defaulted, point at that declaration.
117    if (!Method->isImplicit())
118      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
119
120    // Try to diagnose why this special member function was implicitly
121    // deleted. This might fail, if that reason no longer applies.
122    CXXSpecialMember CSM = getSpecialMember(Method);
123    if (CSM != CXXInvalid)
124      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
125
126    return;
127  }
128
129  Diag(Decl->getLocation(), diag::note_unavailable_here)
130    << 1 << Decl->isDeleted();
131}
132
133/// \brief Determine whether a FunctionDecl was ever declared with an
134/// explicit storage class.
135static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
136  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
137                                     E = D->redecls_end();
138       I != E; ++I) {
139    if (I->getStorageClassAsWritten() != SC_None)
140      return true;
141  }
142  return false;
143}
144
145/// \brief Check whether we're in an extern inline function and referring to a
146/// variable or function with internal linkage (C11 6.7.4p3).
147///
148/// This is only a warning because we used to silently accept this code, but
149/// in many cases it will not behave correctly. This is not enabled in C++ mode
150/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
151/// and so while there may still be user mistakes, most of the time we can't
152/// prove that there are errors.
153static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
154                                                      const NamedDecl *D,
155                                                      SourceLocation Loc) {
156  // This is disabled under C++; there are too many ways for this to fire in
157  // contexts where the warning is a false positive, or where it is technically
158  // correct but benign.
159  if (S.getLangOpts().CPlusPlus)
160    return;
161
162  // Check if this is an inlined function or method.
163  FunctionDecl *Current = S.getCurFunctionDecl();
164  if (!Current)
165    return;
166  if (!Current->isInlined())
167    return;
168  if (Current->getLinkage() != ExternalLinkage)
169    return;
170
171  // Check if the decl has internal linkage.
172  if (D->getLinkage() != InternalLinkage)
173    return;
174
175  // Downgrade from ExtWarn to Extension if
176  //  (1) the supposedly external inline function is in the main file,
177  //      and probably won't be included anywhere else.
178  //  (2) the thing we're referencing is a pure function.
179  //  (3) the thing we're referencing is another inline function.
180  // This last can give us false negatives, but it's better than warning on
181  // wrappers for simple C library functions.
182  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
183  bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
184  if (!DowngradeWarning && UsedFn)
185    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
186
187  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
188                               : diag::warn_internal_in_extern_inline)
189    << /*IsVar=*/!UsedFn << D;
190
191  // Suggest "static" on the inline function, if possible.
192  if (!hasAnyExplicitStorageClass(Current)) {
193    const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
194    SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
195    S.Diag(DeclBegin, diag::note_convert_inline_to_static)
196      << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
197  }
198
199  S.Diag(D->getCanonicalDecl()->getLocation(),
200         diag::note_internal_decl_declared_here)
201    << D;
202}
203
204/// \brief Determine whether the use of this declaration is valid, and
205/// emit any corresponding diagnostics.
206///
207/// This routine diagnoses various problems with referencing
208/// declarations that can occur when using a declaration. For example,
209/// it might warn if a deprecated or unavailable declaration is being
210/// used, or produce an error (and return true) if a C++0x deleted
211/// function is being used.
212///
213/// \returns true if there was an error (this declaration cannot be
214/// referenced), false otherwise.
215///
216bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
217                             const ObjCInterfaceDecl *UnknownObjCClass) {
218  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
219    // If there were any diagnostics suppressed by template argument deduction,
220    // emit them now.
221    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
222      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
223    if (Pos != SuppressedDiagnostics.end()) {
224      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
225      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
226        Diag(Suppressed[I].first, Suppressed[I].second);
227
228      // Clear out the list of suppressed diagnostics, so that we don't emit
229      // them again for this specialization. However, we don't obsolete this
230      // entry from the table, because we want to avoid ever emitting these
231      // diagnostics again.
232      Suppressed.clear();
233    }
234  }
235
236  // See if this is an auto-typed variable whose initializer we are parsing.
237  if (ParsingInitForAutoVars.count(D)) {
238    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
239      << D->getDeclName();
240    return true;
241  }
242
243  // See if this is a deleted function.
244  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
245    if (FD->isDeleted()) {
246      Diag(Loc, diag::err_deleted_function_use);
247      NoteDeletedFunction(FD);
248      return true;
249    }
250  }
251  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
252
253  // Warn if this is used but marked unused.
254  if (D->hasAttr<UnusedAttr>())
255    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
256
257  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
258
259  return false;
260}
261
262/// \brief Retrieve the message suffix that should be added to a
263/// diagnostic complaining about the given function being deleted or
264/// unavailable.
265std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
266  // FIXME: C++0x implicitly-deleted special member functions could be
267  // detected here so that we could improve diagnostics to say, e.g.,
268  // "base class 'A' had a deleted copy constructor".
269  if (FD->isDeleted())
270    return std::string();
271
272  std::string Message;
273  if (FD->getAvailability(&Message))
274    return ": " + Message;
275
276  return std::string();
277}
278
279/// DiagnoseSentinelCalls - This routine checks whether a call or
280/// message-send is to a declaration with the sentinel attribute, and
281/// if so, it checks that the requirements of the sentinel are
282/// satisfied.
283void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
284                                 Expr **args, unsigned numArgs) {
285  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
286  if (!attr)
287    return;
288
289  // The number of formal parameters of the declaration.
290  unsigned numFormalParams;
291
292  // The kind of declaration.  This is also an index into a %select in
293  // the diagnostic.
294  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
295
296  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
297    numFormalParams = MD->param_size();
298    calleeType = CT_Method;
299  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
300    numFormalParams = FD->param_size();
301    calleeType = CT_Function;
302  } else if (isa<VarDecl>(D)) {
303    QualType type = cast<ValueDecl>(D)->getType();
304    const FunctionType *fn = 0;
305    if (const PointerType *ptr = type->getAs<PointerType>()) {
306      fn = ptr->getPointeeType()->getAs<FunctionType>();
307      if (!fn) return;
308      calleeType = CT_Function;
309    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
310      fn = ptr->getPointeeType()->castAs<FunctionType>();
311      calleeType = CT_Block;
312    } else {
313      return;
314    }
315
316    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
317      numFormalParams = proto->getNumArgs();
318    } else {
319      numFormalParams = 0;
320    }
321  } else {
322    return;
323  }
324
325  // "nullPos" is the number of formal parameters at the end which
326  // effectively count as part of the variadic arguments.  This is
327  // useful if you would prefer to not have *any* formal parameters,
328  // but the language forces you to have at least one.
329  unsigned nullPos = attr->getNullPos();
330  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
331  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
332
333  // The number of arguments which should follow the sentinel.
334  unsigned numArgsAfterSentinel = attr->getSentinel();
335
336  // If there aren't enough arguments for all the formal parameters,
337  // the sentinel, and the args after the sentinel, complain.
338  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
339    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
340    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
341    return;
342  }
343
344  // Otherwise, find the sentinel expression.
345  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
346  if (!sentinelExpr) return;
347  if (sentinelExpr->isValueDependent()) return;
348  if (Context.isSentinelNullExpr(sentinelExpr)) return;
349
350  // Pick a reasonable string to insert.  Optimistically use 'nil' or
351  // 'NULL' if those are actually defined in the context.  Only use
352  // 'nil' for ObjC methods, where it's much more likely that the
353  // variadic arguments form a list of object pointers.
354  SourceLocation MissingNilLoc
355    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
356  std::string NullValue;
357  if (calleeType == CT_Method &&
358      PP.getIdentifierInfo("nil")->hasMacroDefinition())
359    NullValue = "nil";
360  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
361    NullValue = "NULL";
362  else
363    NullValue = "(void*) 0";
364
365  if (MissingNilLoc.isInvalid())
366    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
367  else
368    Diag(MissingNilLoc, diag::warn_missing_sentinel)
369      << calleeType
370      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
371  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
372}
373
374SourceRange Sema::getExprRange(Expr *E) const {
375  return E ? E->getSourceRange() : SourceRange();
376}
377
378//===----------------------------------------------------------------------===//
379//  Standard Promotions and Conversions
380//===----------------------------------------------------------------------===//
381
382/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
383ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
384  // Handle any placeholder expressions which made it here.
385  if (E->getType()->isPlaceholderType()) {
386    ExprResult result = CheckPlaceholderExpr(E);
387    if (result.isInvalid()) return ExprError();
388    E = result.take();
389  }
390
391  QualType Ty = E->getType();
392  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
393
394  if (Ty->isFunctionType())
395    E = ImpCastExprToType(E, Context.getPointerType(Ty),
396                          CK_FunctionToPointerDecay).take();
397  else if (Ty->isArrayType()) {
398    // In C90 mode, arrays only promote to pointers if the array expression is
399    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
400    // type 'array of type' is converted to an expression that has type 'pointer
401    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
402    // that has type 'array of type' ...".  The relevant change is "an lvalue"
403    // (C90) to "an expression" (C99).
404    //
405    // C++ 4.2p1:
406    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
407    // T" can be converted to an rvalue of type "pointer to T".
408    //
409    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
410      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
411                            CK_ArrayToPointerDecay).take();
412  }
413  return Owned(E);
414}
415
416static void CheckForNullPointerDereference(Sema &S, Expr *E) {
417  // Check to see if we are dereferencing a null pointer.  If so,
418  // and if not volatile-qualified, this is undefined behavior that the
419  // optimizer will delete, so warn about it.  People sometimes try to use this
420  // to get a deterministic trap and are surprised by clang's behavior.  This
421  // only handles the pattern "*null", which is a very syntactic check.
422  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
423    if (UO->getOpcode() == UO_Deref &&
424        UO->getSubExpr()->IgnoreParenCasts()->
425          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
426        !UO->getType().isVolatileQualified()) {
427    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
428                          S.PDiag(diag::warn_indirection_through_null)
429                            << UO->getSubExpr()->getSourceRange());
430    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
431                        S.PDiag(diag::note_indirection_through_null));
432  }
433}
434
435ExprResult Sema::DefaultLvalueConversion(Expr *E) {
436  // Handle any placeholder expressions which made it here.
437  if (E->getType()->isPlaceholderType()) {
438    ExprResult result = CheckPlaceholderExpr(E);
439    if (result.isInvalid()) return ExprError();
440    E = result.take();
441  }
442
443  // C++ [conv.lval]p1:
444  //   A glvalue of a non-function, non-array type T can be
445  //   converted to a prvalue.
446  if (!E->isGLValue()) return Owned(E);
447
448  QualType T = E->getType();
449  assert(!T.isNull() && "r-value conversion on typeless expression?");
450
451  // We don't want to throw lvalue-to-rvalue casts on top of
452  // expressions of certain types in C++.
453  if (getLangOpts().CPlusPlus &&
454      (E->getType() == Context.OverloadTy ||
455       T->isDependentType() ||
456       T->isRecordType()))
457    return Owned(E);
458
459  // The C standard is actually really unclear on this point, and
460  // DR106 tells us what the result should be but not why.  It's
461  // generally best to say that void types just doesn't undergo
462  // lvalue-to-rvalue at all.  Note that expressions of unqualified
463  // 'void' type are never l-values, but qualified void can be.
464  if (T->isVoidType())
465    return Owned(E);
466
467  CheckForNullPointerDereference(*this, E);
468
469  // C++ [conv.lval]p1:
470  //   [...] If T is a non-class type, the type of the prvalue is the
471  //   cv-unqualified version of T. Otherwise, the type of the
472  //   rvalue is T.
473  //
474  // C99 6.3.2.1p2:
475  //   If the lvalue has qualified type, the value has the unqualified
476  //   version of the type of the lvalue; otherwise, the value has the
477  //   type of the lvalue.
478  if (T.hasQualifiers())
479    T = T.getUnqualifiedType();
480
481  UpdateMarkingForLValueToRValue(E);
482
483  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
484                                                  E, 0, VK_RValue));
485
486  // C11 6.3.2.1p2:
487  //   ... if the lvalue has atomic type, the value has the non-atomic version
488  //   of the type of the lvalue ...
489  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
490    T = Atomic->getValueType().getUnqualifiedType();
491    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
492                                         Res.get(), 0, VK_RValue));
493  }
494
495  return Res;
496}
497
498ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
499  ExprResult Res = DefaultFunctionArrayConversion(E);
500  if (Res.isInvalid())
501    return ExprError();
502  Res = DefaultLvalueConversion(Res.take());
503  if (Res.isInvalid())
504    return ExprError();
505  return move(Res);
506}
507
508
509/// UsualUnaryConversions - Performs various conversions that are common to most
510/// operators (C99 6.3). The conversions of array and function types are
511/// sometimes suppressed. For example, the array->pointer conversion doesn't
512/// apply if the array is an argument to the sizeof or address (&) operators.
513/// In these instances, this routine should *not* be called.
514ExprResult Sema::UsualUnaryConversions(Expr *E) {
515  // First, convert to an r-value.
516  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
517  if (Res.isInvalid())
518    return Owned(E);
519  E = Res.take();
520
521  QualType Ty = E->getType();
522  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
523
524  // Half FP is a bit different: it's a storage-only type, meaning that any
525  // "use" of it should be promoted to float.
526  if (Ty->isHalfType())
527    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
528
529  // Try to perform integral promotions if the object has a theoretically
530  // promotable type.
531  if (Ty->isIntegralOrUnscopedEnumerationType()) {
532    // C99 6.3.1.1p2:
533    //
534    //   The following may be used in an expression wherever an int or
535    //   unsigned int may be used:
536    //     - an object or expression with an integer type whose integer
537    //       conversion rank is less than or equal to the rank of int
538    //       and unsigned int.
539    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
540    //
541    //   If an int can represent all values of the original type, the
542    //   value is converted to an int; otherwise, it is converted to an
543    //   unsigned int. These are called the integer promotions. All
544    //   other types are unchanged by the integer promotions.
545
546    QualType PTy = Context.isPromotableBitField(E);
547    if (!PTy.isNull()) {
548      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
549      return Owned(E);
550    }
551    if (Ty->isPromotableIntegerType()) {
552      QualType PT = Context.getPromotedIntegerType(Ty);
553      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
554      return Owned(E);
555    }
556  }
557  return Owned(E);
558}
559
560/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
561/// do not have a prototype. Arguments that have type float are promoted to
562/// double. All other argument types are converted by UsualUnaryConversions().
563ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
564  QualType Ty = E->getType();
565  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
566
567  ExprResult Res = UsualUnaryConversions(E);
568  if (Res.isInvalid())
569    return Owned(E);
570  E = Res.take();
571
572  // If this is a 'float' (CVR qualified or typedef) promote to double.
573  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
574    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
575
576  // C++ performs lvalue-to-rvalue conversion as a default argument
577  // promotion, even on class types, but note:
578  //   C++11 [conv.lval]p2:
579  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
580  //     operand or a subexpression thereof the value contained in the
581  //     referenced object is not accessed. Otherwise, if the glvalue
582  //     has a class type, the conversion copy-initializes a temporary
583  //     of type T from the glvalue and the result of the conversion
584  //     is a prvalue for the temporary.
585  // FIXME: add some way to gate this entire thing for correctness in
586  // potentially potentially evaluated contexts.
587  if (getLangOpts().CPlusPlus && E->isGLValue() &&
588      ExprEvalContexts.back().Context != Unevaluated) {
589    ExprResult Temp = PerformCopyInitialization(
590                       InitializedEntity::InitializeTemporary(E->getType()),
591                                                E->getExprLoc(),
592                                                Owned(E));
593    if (Temp.isInvalid())
594      return ExprError();
595    E = Temp.get();
596  }
597
598  return Owned(E);
599}
600
601/// Determine the degree of POD-ness for an expression.
602/// Incomplete types are considered POD, since this check can be performed
603/// when we're in an unevaluated context.
604Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
605  if (Ty->isIncompleteType()) {
606    if (Ty->isObjCObjectType())
607      return VAK_Invalid;
608    return VAK_Valid;
609  }
610
611  if (Ty.isCXX98PODType(Context))
612    return VAK_Valid;
613
614  // C++0x [expr.call]p7:
615  //   Passing a potentially-evaluated argument of class type (Clause 9)
616  //   having a non-trivial copy constructor, a non-trivial move constructor,
617  //   or a non-trivial destructor, with no corresponding parameter,
618  //   is conditionally-supported with implementation-defined semantics.
619  if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
620    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
621      if (Record->hasTrivialCopyConstructor() &&
622          Record->hasTrivialMoveConstructor() &&
623          Record->hasTrivialDestructor())
624        return VAK_ValidInCXX11;
625
626  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
627    return VAK_Valid;
628  return VAK_Invalid;
629}
630
631bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
632  // Don't allow one to pass an Objective-C interface to a vararg.
633  const QualType & Ty = E->getType();
634
635  // Complain about passing non-POD types through varargs.
636  switch (isValidVarArgType(Ty)) {
637  case VAK_Valid:
638    break;
639  case VAK_ValidInCXX11:
640    DiagRuntimeBehavior(E->getLocStart(), 0,
641        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
642        << E->getType() << CT);
643    break;
644  case VAK_Invalid: {
645    if (Ty->isObjCObjectType())
646      return DiagRuntimeBehavior(E->getLocStart(), 0,
647                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
648                            << Ty << CT);
649
650    return DiagRuntimeBehavior(E->getLocStart(), 0,
651                   PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
652                   << getLangOpts().CPlusPlus0x << Ty << CT);
653  }
654  }
655  // c++ rules are enforced elsewhere.
656  return false;
657}
658
659/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
660/// will create a trap if the resulting type is not a POD type.
661ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
662                                                  FunctionDecl *FDecl) {
663  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
664    // Strip the unbridged-cast placeholder expression off, if applicable.
665    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
666        (CT == VariadicMethod ||
667         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
668      E = stripARCUnbridgedCast(E);
669
670    // Otherwise, do normal placeholder checking.
671    } else {
672      ExprResult ExprRes = CheckPlaceholderExpr(E);
673      if (ExprRes.isInvalid())
674        return ExprError();
675      E = ExprRes.take();
676    }
677  }
678
679  ExprResult ExprRes = DefaultArgumentPromotion(E);
680  if (ExprRes.isInvalid())
681    return ExprError();
682  E = ExprRes.take();
683
684  // Diagnostics regarding non-POD argument types are
685  // emitted along with format string checking in Sema::CheckFunctionCall().
686  if (isValidVarArgType(E->getType()) == VAK_Invalid) {
687    // Turn this into a trap.
688    CXXScopeSpec SS;
689    SourceLocation TemplateKWLoc;
690    UnqualifiedId Name;
691    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
692                       E->getLocStart());
693    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
694                                          Name, true, false);
695    if (TrapFn.isInvalid())
696      return ExprError();
697
698    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
699                                    E->getLocStart(), MultiExprArg(),
700                                    E->getLocEnd());
701    if (Call.isInvalid())
702      return ExprError();
703
704    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
705                                  Call.get(), E);
706    if (Comma.isInvalid())
707      return ExprError();
708    return Comma.get();
709  }
710
711  if (!getLangOpts().CPlusPlus &&
712      RequireCompleteType(E->getExprLoc(), E->getType(),
713                          diag::err_call_incomplete_argument))
714    return ExprError();
715
716  return Owned(E);
717}
718
719/// \brief Converts an integer to complex float type.  Helper function of
720/// UsualArithmeticConversions()
721///
722/// \return false if the integer expression is an integer type and is
723/// successfully converted to the complex type.
724static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
725                                                  ExprResult &ComplexExpr,
726                                                  QualType IntTy,
727                                                  QualType ComplexTy,
728                                                  bool SkipCast) {
729  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
730  if (SkipCast) return false;
731  if (IntTy->isIntegerType()) {
732    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
733    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
734    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
735                                  CK_FloatingRealToComplex);
736  } else {
737    assert(IntTy->isComplexIntegerType());
738    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
739                                  CK_IntegralComplexToFloatingComplex);
740  }
741  return false;
742}
743
744/// \brief Takes two complex float types and converts them to the same type.
745/// Helper function of UsualArithmeticConversions()
746static QualType
747handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
748                                            ExprResult &RHS, QualType LHSType,
749                                            QualType RHSType,
750                                            bool IsCompAssign) {
751  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
752
753  if (order < 0) {
754    // _Complex float -> _Complex double
755    if (!IsCompAssign)
756      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
757    return RHSType;
758  }
759  if (order > 0)
760    // _Complex float -> _Complex double
761    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
762  return LHSType;
763}
764
765/// \brief Converts otherExpr to complex float and promotes complexExpr if
766/// necessary.  Helper function of UsualArithmeticConversions()
767static QualType handleOtherComplexFloatConversion(Sema &S,
768                                                  ExprResult &ComplexExpr,
769                                                  ExprResult &OtherExpr,
770                                                  QualType ComplexTy,
771                                                  QualType OtherTy,
772                                                  bool ConvertComplexExpr,
773                                                  bool ConvertOtherExpr) {
774  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
775
776  // If just the complexExpr is complex, the otherExpr needs to be converted,
777  // and the complexExpr might need to be promoted.
778  if (order > 0) { // complexExpr is wider
779    // float -> _Complex double
780    if (ConvertOtherExpr) {
781      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
782      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
783      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
784                                      CK_FloatingRealToComplex);
785    }
786    return ComplexTy;
787  }
788
789  // otherTy is at least as wide.  Find its corresponding complex type.
790  QualType result = (order == 0 ? ComplexTy :
791                                  S.Context.getComplexType(OtherTy));
792
793  // double -> _Complex double
794  if (ConvertOtherExpr)
795    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
796                                    CK_FloatingRealToComplex);
797
798  // _Complex float -> _Complex double
799  if (ConvertComplexExpr && order < 0)
800    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
801                                      CK_FloatingComplexCast);
802
803  return result;
804}
805
806/// \brief Handle arithmetic conversion with complex types.  Helper function of
807/// UsualArithmeticConversions()
808static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
809                                             ExprResult &RHS, QualType LHSType,
810                                             QualType RHSType,
811                                             bool IsCompAssign) {
812  // if we have an integer operand, the result is the complex type.
813  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
814                                             /*skipCast*/false))
815    return LHSType;
816  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
817                                             /*skipCast*/IsCompAssign))
818    return RHSType;
819
820  // This handles complex/complex, complex/float, or float/complex.
821  // When both operands are complex, the shorter operand is converted to the
822  // type of the longer, and that is the type of the result. This corresponds
823  // to what is done when combining two real floating-point operands.
824  // The fun begins when size promotion occur across type domains.
825  // From H&S 6.3.4: When one operand is complex and the other is a real
826  // floating-point type, the less precise type is converted, within it's
827  // real or complex domain, to the precision of the other type. For example,
828  // when combining a "long double" with a "double _Complex", the
829  // "double _Complex" is promoted to "long double _Complex".
830
831  bool LHSComplexFloat = LHSType->isComplexType();
832  bool RHSComplexFloat = RHSType->isComplexType();
833
834  // If both are complex, just cast to the more precise type.
835  if (LHSComplexFloat && RHSComplexFloat)
836    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
837                                                       LHSType, RHSType,
838                                                       IsCompAssign);
839
840  // If only one operand is complex, promote it if necessary and convert the
841  // other operand to complex.
842  if (LHSComplexFloat)
843    return handleOtherComplexFloatConversion(
844        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
845        /*convertOtherExpr*/ true);
846
847  assert(RHSComplexFloat);
848  return handleOtherComplexFloatConversion(
849      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
850      /*convertOtherExpr*/ !IsCompAssign);
851}
852
853/// \brief Hande arithmetic conversion from integer to float.  Helper function
854/// of UsualArithmeticConversions()
855static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
856                                           ExprResult &IntExpr,
857                                           QualType FloatTy, QualType IntTy,
858                                           bool ConvertFloat, bool ConvertInt) {
859  if (IntTy->isIntegerType()) {
860    if (ConvertInt)
861      // Convert intExpr to the lhs floating point type.
862      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
863                                    CK_IntegralToFloating);
864    return FloatTy;
865  }
866
867  // Convert both sides to the appropriate complex float.
868  assert(IntTy->isComplexIntegerType());
869  QualType result = S.Context.getComplexType(FloatTy);
870
871  // _Complex int -> _Complex float
872  if (ConvertInt)
873    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
874                                  CK_IntegralComplexToFloatingComplex);
875
876  // float -> _Complex float
877  if (ConvertFloat)
878    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
879                                    CK_FloatingRealToComplex);
880
881  return result;
882}
883
884/// \brief Handle arithmethic conversion with floating point types.  Helper
885/// function of UsualArithmeticConversions()
886static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
887                                      ExprResult &RHS, QualType LHSType,
888                                      QualType RHSType, bool IsCompAssign) {
889  bool LHSFloat = LHSType->isRealFloatingType();
890  bool RHSFloat = RHSType->isRealFloatingType();
891
892  // If we have two real floating types, convert the smaller operand
893  // to the bigger result.
894  if (LHSFloat && RHSFloat) {
895    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
896    if (order > 0) {
897      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
898      return LHSType;
899    }
900
901    assert(order < 0 && "illegal float comparison");
902    if (!IsCompAssign)
903      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
904    return RHSType;
905  }
906
907  if (LHSFloat)
908    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
909                                      /*convertFloat=*/!IsCompAssign,
910                                      /*convertInt=*/ true);
911  assert(RHSFloat);
912  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
913                                    /*convertInt=*/ true,
914                                    /*convertFloat=*/!IsCompAssign);
915}
916
917/// \brief Handle conversions with GCC complex int extension.  Helper function
918/// of UsualArithmeticConversions()
919// FIXME: if the operands are (int, _Complex long), we currently
920// don't promote the complex.  Also, signedness?
921static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
922                                           ExprResult &RHS, QualType LHSType,
923                                           QualType RHSType,
924                                           bool IsCompAssign) {
925  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
926  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
927
928  if (LHSComplexInt && RHSComplexInt) {
929    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
930                                              RHSComplexInt->getElementType());
931    assert(order && "inequal types with equal element ordering");
932    if (order > 0) {
933      // _Complex int -> _Complex long
934      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
935      return LHSType;
936    }
937
938    if (!IsCompAssign)
939      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
940    return RHSType;
941  }
942
943  if (LHSComplexInt) {
944    // int -> _Complex int
945    // FIXME: This needs to take integer ranks into account
946    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
947                              CK_IntegralCast);
948    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
949    return LHSType;
950  }
951
952  assert(RHSComplexInt);
953  // int -> _Complex int
954  // FIXME: This needs to take integer ranks into account
955  if (!IsCompAssign) {
956    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
957                              CK_IntegralCast);
958    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
959  }
960  return RHSType;
961}
962
963/// \brief Handle integer arithmetic conversions.  Helper function of
964/// UsualArithmeticConversions()
965static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
966                                        ExprResult &RHS, QualType LHSType,
967                                        QualType RHSType, bool IsCompAssign) {
968  // The rules for this case are in C99 6.3.1.8
969  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
970  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
971  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
972  if (LHSSigned == RHSSigned) {
973    // Same signedness; use the higher-ranked type
974    if (order >= 0) {
975      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
976      return LHSType;
977    } else if (!IsCompAssign)
978      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
979    return RHSType;
980  } else if (order != (LHSSigned ? 1 : -1)) {
981    // The unsigned type has greater than or equal rank to the
982    // signed type, so use the unsigned type
983    if (RHSSigned) {
984      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
985      return LHSType;
986    } else if (!IsCompAssign)
987      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
988    return RHSType;
989  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
990    // The two types are different widths; if we are here, that
991    // means the signed type is larger than the unsigned type, so
992    // use the signed type.
993    if (LHSSigned) {
994      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
995      return LHSType;
996    } else if (!IsCompAssign)
997      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
998    return RHSType;
999  } else {
1000    // The signed type is higher-ranked than the unsigned type,
1001    // but isn't actually any bigger (like unsigned int and long
1002    // on most 32-bit systems).  Use the unsigned type corresponding
1003    // to the signed type.
1004    QualType result =
1005      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1006    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
1007    if (!IsCompAssign)
1008      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
1009    return result;
1010  }
1011}
1012
1013/// UsualArithmeticConversions - Performs various conversions that are common to
1014/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1015/// routine returns the first non-arithmetic type found. The client is
1016/// responsible for emitting appropriate error diagnostics.
1017/// FIXME: verify the conversion rules for "complex int" are consistent with
1018/// GCC.
1019QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1020                                          bool IsCompAssign) {
1021  if (!IsCompAssign) {
1022    LHS = UsualUnaryConversions(LHS.take());
1023    if (LHS.isInvalid())
1024      return QualType();
1025  }
1026
1027  RHS = UsualUnaryConversions(RHS.take());
1028  if (RHS.isInvalid())
1029    return QualType();
1030
1031  // For conversion purposes, we ignore any qualifiers.
1032  // For example, "const float" and "float" are equivalent.
1033  QualType LHSType =
1034    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1035  QualType RHSType =
1036    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1037
1038  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1039  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1040    LHSType = AtomicLHS->getValueType();
1041
1042  // If both types are identical, no conversion is needed.
1043  if (LHSType == RHSType)
1044    return LHSType;
1045
1046  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1047  // The caller can deal with this (e.g. pointer + int).
1048  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1049    return QualType();
1050
1051  // Apply unary and bitfield promotions to the LHS's type.
1052  QualType LHSUnpromotedType = LHSType;
1053  if (LHSType->isPromotableIntegerType())
1054    LHSType = Context.getPromotedIntegerType(LHSType);
1055  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1056  if (!LHSBitfieldPromoteTy.isNull())
1057    LHSType = LHSBitfieldPromoteTy;
1058  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1059    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1060
1061  // If both types are identical, no conversion is needed.
1062  if (LHSType == RHSType)
1063    return LHSType;
1064
1065  // At this point, we have two different arithmetic types.
1066
1067  // Handle complex types first (C99 6.3.1.8p1).
1068  if (LHSType->isComplexType() || RHSType->isComplexType())
1069    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1070                                        IsCompAssign);
1071
1072  // Now handle "real" floating types (i.e. float, double, long double).
1073  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1074    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1075                                 IsCompAssign);
1076
1077  // Handle GCC complex int extension.
1078  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1079    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1080                                      IsCompAssign);
1081
1082  // Finally, we have two differing integer types.
1083  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
1084                                 IsCompAssign);
1085}
1086
1087//===----------------------------------------------------------------------===//
1088//  Semantic Analysis for various Expression Types
1089//===----------------------------------------------------------------------===//
1090
1091
1092ExprResult
1093Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1094                                SourceLocation DefaultLoc,
1095                                SourceLocation RParenLoc,
1096                                Expr *ControllingExpr,
1097                                MultiTypeArg ArgTypes,
1098                                MultiExprArg ArgExprs) {
1099  unsigned NumAssocs = ArgTypes.size();
1100  assert(NumAssocs == ArgExprs.size());
1101
1102  ParsedType *ParsedTypes = ArgTypes.release();
1103  Expr **Exprs = ArgExprs.release();
1104
1105  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1106  for (unsigned i = 0; i < NumAssocs; ++i) {
1107    if (ParsedTypes[i])
1108      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1109    else
1110      Types[i] = 0;
1111  }
1112
1113  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1114                                             ControllingExpr, Types, Exprs,
1115                                             NumAssocs);
1116  delete [] Types;
1117  return ER;
1118}
1119
1120ExprResult
1121Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1122                                 SourceLocation DefaultLoc,
1123                                 SourceLocation RParenLoc,
1124                                 Expr *ControllingExpr,
1125                                 TypeSourceInfo **Types,
1126                                 Expr **Exprs,
1127                                 unsigned NumAssocs) {
1128  bool TypeErrorFound = false,
1129       IsResultDependent = ControllingExpr->isTypeDependent(),
1130       ContainsUnexpandedParameterPack
1131         = ControllingExpr->containsUnexpandedParameterPack();
1132
1133  for (unsigned i = 0; i < NumAssocs; ++i) {
1134    if (Exprs[i]->containsUnexpandedParameterPack())
1135      ContainsUnexpandedParameterPack = true;
1136
1137    if (Types[i]) {
1138      if (Types[i]->getType()->containsUnexpandedParameterPack())
1139        ContainsUnexpandedParameterPack = true;
1140
1141      if (Types[i]->getType()->isDependentType()) {
1142        IsResultDependent = true;
1143      } else {
1144        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1145        // complete object type other than a variably modified type."
1146        unsigned D = 0;
1147        if (Types[i]->getType()->isIncompleteType())
1148          D = diag::err_assoc_type_incomplete;
1149        else if (!Types[i]->getType()->isObjectType())
1150          D = diag::err_assoc_type_nonobject;
1151        else if (Types[i]->getType()->isVariablyModifiedType())
1152          D = diag::err_assoc_type_variably_modified;
1153
1154        if (D != 0) {
1155          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1156            << Types[i]->getTypeLoc().getSourceRange()
1157            << Types[i]->getType();
1158          TypeErrorFound = true;
1159        }
1160
1161        // C11 6.5.1.1p2 "No two generic associations in the same generic
1162        // selection shall specify compatible types."
1163        for (unsigned j = i+1; j < NumAssocs; ++j)
1164          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1165              Context.typesAreCompatible(Types[i]->getType(),
1166                                         Types[j]->getType())) {
1167            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1168                 diag::err_assoc_compatible_types)
1169              << Types[j]->getTypeLoc().getSourceRange()
1170              << Types[j]->getType()
1171              << Types[i]->getType();
1172            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1173                 diag::note_compat_assoc)
1174              << Types[i]->getTypeLoc().getSourceRange()
1175              << Types[i]->getType();
1176            TypeErrorFound = true;
1177          }
1178      }
1179    }
1180  }
1181  if (TypeErrorFound)
1182    return ExprError();
1183
1184  // If we determined that the generic selection is result-dependent, don't
1185  // try to compute the result expression.
1186  if (IsResultDependent)
1187    return Owned(new (Context) GenericSelectionExpr(
1188                   Context, KeyLoc, ControllingExpr,
1189                   Types, Exprs, NumAssocs, DefaultLoc,
1190                   RParenLoc, ContainsUnexpandedParameterPack));
1191
1192  SmallVector<unsigned, 1> CompatIndices;
1193  unsigned DefaultIndex = -1U;
1194  for (unsigned i = 0; i < NumAssocs; ++i) {
1195    if (!Types[i])
1196      DefaultIndex = i;
1197    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1198                                        Types[i]->getType()))
1199      CompatIndices.push_back(i);
1200  }
1201
1202  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1203  // type compatible with at most one of the types named in its generic
1204  // association list."
1205  if (CompatIndices.size() > 1) {
1206    // We strip parens here because the controlling expression is typically
1207    // parenthesized in macro definitions.
1208    ControllingExpr = ControllingExpr->IgnoreParens();
1209    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1210      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1211      << (unsigned) CompatIndices.size();
1212    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1213         E = CompatIndices.end(); I != E; ++I) {
1214      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1215           diag::note_compat_assoc)
1216        << Types[*I]->getTypeLoc().getSourceRange()
1217        << Types[*I]->getType();
1218    }
1219    return ExprError();
1220  }
1221
1222  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1223  // its controlling expression shall have type compatible with exactly one of
1224  // the types named in its generic association list."
1225  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1226    // We strip parens here because the controlling expression is typically
1227    // parenthesized in macro definitions.
1228    ControllingExpr = ControllingExpr->IgnoreParens();
1229    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1230      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1231    return ExprError();
1232  }
1233
1234  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1235  // type name that is compatible with the type of the controlling expression,
1236  // then the result expression of the generic selection is the expression
1237  // in that generic association. Otherwise, the result expression of the
1238  // generic selection is the expression in the default generic association."
1239  unsigned ResultIndex =
1240    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1241
1242  return Owned(new (Context) GenericSelectionExpr(
1243                 Context, KeyLoc, ControllingExpr,
1244                 Types, Exprs, NumAssocs, DefaultLoc,
1245                 RParenLoc, ContainsUnexpandedParameterPack,
1246                 ResultIndex));
1247}
1248
1249/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1250/// location of the token and the offset of the ud-suffix within it.
1251static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1252                                     unsigned Offset) {
1253  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1254                                        S.getLangOpts());
1255}
1256
1257/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1258/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1259static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1260                                                 IdentifierInfo *UDSuffix,
1261                                                 SourceLocation UDSuffixLoc,
1262                                                 ArrayRef<Expr*> Args,
1263                                                 SourceLocation LitEndLoc) {
1264  assert(Args.size() <= 2 && "too many arguments for literal operator");
1265
1266  QualType ArgTy[2];
1267  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1268    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1269    if (ArgTy[ArgIdx]->isArrayType())
1270      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1271  }
1272
1273  DeclarationName OpName =
1274    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1275  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1276  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1277
1278  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1279  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1280                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1281    return ExprError();
1282
1283  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1284}
1285
1286/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1287/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1288/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1289/// multiple tokens.  However, the common case is that StringToks points to one
1290/// string.
1291///
1292ExprResult
1293Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1294                         Scope *UDLScope) {
1295  assert(NumStringToks && "Must have at least one string!");
1296
1297  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1298  if (Literal.hadError)
1299    return ExprError();
1300
1301  SmallVector<SourceLocation, 4> StringTokLocs;
1302  for (unsigned i = 0; i != NumStringToks; ++i)
1303    StringTokLocs.push_back(StringToks[i].getLocation());
1304
1305  QualType StrTy = Context.CharTy;
1306  if (Literal.isWide())
1307    StrTy = Context.getWCharType();
1308  else if (Literal.isUTF16())
1309    StrTy = Context.Char16Ty;
1310  else if (Literal.isUTF32())
1311    StrTy = Context.Char32Ty;
1312  else if (Literal.isPascal())
1313    StrTy = Context.UnsignedCharTy;
1314
1315  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1316  if (Literal.isWide())
1317    Kind = StringLiteral::Wide;
1318  else if (Literal.isUTF8())
1319    Kind = StringLiteral::UTF8;
1320  else if (Literal.isUTF16())
1321    Kind = StringLiteral::UTF16;
1322  else if (Literal.isUTF32())
1323    Kind = StringLiteral::UTF32;
1324
1325  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1326  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1327    StrTy.addConst();
1328
1329  // Get an array type for the string, according to C99 6.4.5.  This includes
1330  // the nul terminator character as well as the string length for pascal
1331  // strings.
1332  StrTy = Context.getConstantArrayType(StrTy,
1333                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1334                                       ArrayType::Normal, 0);
1335
1336  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1337  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1338                                             Kind, Literal.Pascal, StrTy,
1339                                             &StringTokLocs[0],
1340                                             StringTokLocs.size());
1341  if (Literal.getUDSuffix().empty())
1342    return Owned(Lit);
1343
1344  // We're building a user-defined literal.
1345  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1346  SourceLocation UDSuffixLoc =
1347    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1348                   Literal.getUDSuffixOffset());
1349
1350  // Make sure we're allowed user-defined literals here.
1351  if (!UDLScope)
1352    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1353
1354  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1355  //   operator "" X (str, len)
1356  QualType SizeType = Context.getSizeType();
1357  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1358  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1359                                                  StringTokLocs[0]);
1360  Expr *Args[] = { Lit, LenArg };
1361  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1362                                        Args, StringTokLocs.back());
1363}
1364
1365ExprResult
1366Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1367                       SourceLocation Loc,
1368                       const CXXScopeSpec *SS) {
1369  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1370  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1371}
1372
1373/// BuildDeclRefExpr - Build an expression that references a
1374/// declaration that does not require a closure capture.
1375ExprResult
1376Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1377                       const DeclarationNameInfo &NameInfo,
1378                       const CXXScopeSpec *SS) {
1379  if (getLangOpts().CUDA)
1380    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1381      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1382        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1383                           CalleeTarget = IdentifyCUDATarget(Callee);
1384        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1385          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1386            << CalleeTarget << D->getIdentifier() << CallerTarget;
1387          Diag(D->getLocation(), diag::note_previous_decl)
1388            << D->getIdentifier();
1389          return ExprError();
1390        }
1391      }
1392
1393  bool refersToEnclosingScope =
1394    (CurContext != D->getDeclContext() &&
1395     D->getDeclContext()->isFunctionOrMethod());
1396
1397  DeclRefExpr *E = DeclRefExpr::Create(Context,
1398                                       SS ? SS->getWithLocInContext(Context)
1399                                              : NestedNameSpecifierLoc(),
1400                                       SourceLocation(),
1401                                       D, refersToEnclosingScope,
1402                                       NameInfo, Ty, VK);
1403
1404  MarkDeclRefReferenced(E);
1405
1406  // Just in case we're building an illegal pointer-to-member.
1407  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1408  if (FD && FD->isBitField())
1409    E->setObjectKind(OK_BitField);
1410
1411  return Owned(E);
1412}
1413
1414/// Decomposes the given name into a DeclarationNameInfo, its location, and
1415/// possibly a list of template arguments.
1416///
1417/// If this produces template arguments, it is permitted to call
1418/// DecomposeTemplateName.
1419///
1420/// This actually loses a lot of source location information for
1421/// non-standard name kinds; we should consider preserving that in
1422/// some way.
1423void
1424Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1425                             TemplateArgumentListInfo &Buffer,
1426                             DeclarationNameInfo &NameInfo,
1427                             const TemplateArgumentListInfo *&TemplateArgs) {
1428  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1429    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1430    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1431
1432    ASTTemplateArgsPtr TemplateArgsPtr(*this,
1433                                       Id.TemplateId->getTemplateArgs(),
1434                                       Id.TemplateId->NumArgs);
1435    translateTemplateArguments(TemplateArgsPtr, Buffer);
1436    TemplateArgsPtr.release();
1437
1438    TemplateName TName = Id.TemplateId->Template.get();
1439    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1440    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1441    TemplateArgs = &Buffer;
1442  } else {
1443    NameInfo = GetNameFromUnqualifiedId(Id);
1444    TemplateArgs = 0;
1445  }
1446}
1447
1448/// Diagnose an empty lookup.
1449///
1450/// \return false if new lookup candidates were found
1451bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1452                               CorrectionCandidateCallback &CCC,
1453                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1454                               llvm::ArrayRef<Expr *> Args) {
1455  DeclarationName Name = R.getLookupName();
1456
1457  unsigned diagnostic = diag::err_undeclared_var_use;
1458  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1459  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1460      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1461      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1462    diagnostic = diag::err_undeclared_use;
1463    diagnostic_suggest = diag::err_undeclared_use_suggest;
1464  }
1465
1466  // If the original lookup was an unqualified lookup, fake an
1467  // unqualified lookup.  This is useful when (for example) the
1468  // original lookup would not have found something because it was a
1469  // dependent name.
1470  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1471    ? CurContext : 0;
1472  while (DC) {
1473    if (isa<CXXRecordDecl>(DC)) {
1474      LookupQualifiedName(R, DC);
1475
1476      if (!R.empty()) {
1477        // Don't give errors about ambiguities in this lookup.
1478        R.suppressDiagnostics();
1479
1480        // During a default argument instantiation the CurContext points
1481        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1482        // function parameter list, hence add an explicit check.
1483        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1484                              ActiveTemplateInstantiations.back().Kind ==
1485            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1486        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1487        bool isInstance = CurMethod &&
1488                          CurMethod->isInstance() &&
1489                          DC == CurMethod->getParent() && !isDefaultArgument;
1490
1491
1492        // Give a code modification hint to insert 'this->'.
1493        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1494        // Actually quite difficult!
1495        if (getLangOpts().MicrosoftMode)
1496          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1497        if (isInstance) {
1498          Diag(R.getNameLoc(), diagnostic) << Name
1499            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1500          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1501              CallsUndergoingInstantiation.back()->getCallee());
1502
1503
1504          CXXMethodDecl *DepMethod;
1505          if (CurMethod->getTemplatedKind() ==
1506              FunctionDecl::TK_FunctionTemplateSpecialization)
1507            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1508                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1509          else
1510            DepMethod = cast<CXXMethodDecl>(
1511                CurMethod->getInstantiatedFromMemberFunction());
1512          assert(DepMethod && "No template pattern found");
1513
1514          QualType DepThisType = DepMethod->getThisType(Context);
1515          CheckCXXThisCapture(R.getNameLoc());
1516          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1517                                     R.getNameLoc(), DepThisType, false);
1518          TemplateArgumentListInfo TList;
1519          if (ULE->hasExplicitTemplateArgs())
1520            ULE->copyTemplateArgumentsInto(TList);
1521
1522          CXXScopeSpec SS;
1523          SS.Adopt(ULE->getQualifierLoc());
1524          CXXDependentScopeMemberExpr *DepExpr =
1525              CXXDependentScopeMemberExpr::Create(
1526                  Context, DepThis, DepThisType, true, SourceLocation(),
1527                  SS.getWithLocInContext(Context),
1528                  ULE->getTemplateKeywordLoc(), 0,
1529                  R.getLookupNameInfo(),
1530                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1531          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1532        } else {
1533          Diag(R.getNameLoc(), diagnostic) << Name;
1534        }
1535
1536        // Do we really want to note all of these?
1537        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1538          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1539
1540        // Return true if we are inside a default argument instantiation
1541        // and the found name refers to an instance member function, otherwise
1542        // the function calling DiagnoseEmptyLookup will try to create an
1543        // implicit member call and this is wrong for default argument.
1544        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1545          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1546          return true;
1547        }
1548
1549        // Tell the callee to try to recover.
1550        return false;
1551      }
1552
1553      R.clear();
1554    }
1555
1556    // In Microsoft mode, if we are performing lookup from within a friend
1557    // function definition declared at class scope then we must set
1558    // DC to the lexical parent to be able to search into the parent
1559    // class.
1560    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1561        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1562        DC->getLexicalParent()->isRecord())
1563      DC = DC->getLexicalParent();
1564    else
1565      DC = DC->getParent();
1566  }
1567
1568  // We didn't find anything, so try to correct for a typo.
1569  TypoCorrection Corrected;
1570  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1571                                    S, &SS, CCC))) {
1572    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1573    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1574    R.setLookupName(Corrected.getCorrection());
1575
1576    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1577      if (Corrected.isOverloaded()) {
1578        OverloadCandidateSet OCS(R.getNameLoc());
1579        OverloadCandidateSet::iterator Best;
1580        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1581                                        CDEnd = Corrected.end();
1582             CD != CDEnd; ++CD) {
1583          if (FunctionTemplateDecl *FTD =
1584                   dyn_cast<FunctionTemplateDecl>(*CD))
1585            AddTemplateOverloadCandidate(
1586                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1587                Args, OCS);
1588          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1589            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1590              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1591                                   Args, OCS);
1592        }
1593        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1594          case OR_Success:
1595            ND = Best->Function;
1596            break;
1597          default:
1598            break;
1599        }
1600      }
1601      R.addDecl(ND);
1602      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1603        if (SS.isEmpty())
1604          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1605            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1606        else
1607          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1608            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1609            << SS.getRange()
1610            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1611        if (ND)
1612          Diag(ND->getLocation(), diag::note_previous_decl)
1613            << CorrectedQuotedStr;
1614
1615        // Tell the callee to try to recover.
1616        return false;
1617      }
1618
1619      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1620        // FIXME: If we ended up with a typo for a type name or
1621        // Objective-C class name, we're in trouble because the parser
1622        // is in the wrong place to recover. Suggest the typo
1623        // correction, but don't make it a fix-it since we're not going
1624        // to recover well anyway.
1625        if (SS.isEmpty())
1626          Diag(R.getNameLoc(), diagnostic_suggest)
1627            << Name << CorrectedQuotedStr;
1628        else
1629          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1630            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1631            << SS.getRange();
1632
1633        // Don't try to recover; it won't work.
1634        return true;
1635      }
1636    } else {
1637      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1638      // because we aren't able to recover.
1639      if (SS.isEmpty())
1640        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1641      else
1642        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1643        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1644        << SS.getRange();
1645      return true;
1646    }
1647  }
1648  R.clear();
1649
1650  // Emit a special diagnostic for failed member lookups.
1651  // FIXME: computing the declaration context might fail here (?)
1652  if (!SS.isEmpty()) {
1653    Diag(R.getNameLoc(), diag::err_no_member)
1654      << Name << computeDeclContext(SS, false)
1655      << SS.getRange();
1656    return true;
1657  }
1658
1659  // Give up, we can't recover.
1660  Diag(R.getNameLoc(), diagnostic) << Name;
1661  return true;
1662}
1663
1664ExprResult Sema::ActOnIdExpression(Scope *S,
1665                                   CXXScopeSpec &SS,
1666                                   SourceLocation TemplateKWLoc,
1667                                   UnqualifiedId &Id,
1668                                   bool HasTrailingLParen,
1669                                   bool IsAddressOfOperand,
1670                                   CorrectionCandidateCallback *CCC) {
1671  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1672         "cannot be direct & operand and have a trailing lparen");
1673
1674  if (SS.isInvalid())
1675    return ExprError();
1676
1677  TemplateArgumentListInfo TemplateArgsBuffer;
1678
1679  // Decompose the UnqualifiedId into the following data.
1680  DeclarationNameInfo NameInfo;
1681  const TemplateArgumentListInfo *TemplateArgs;
1682  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1683
1684  DeclarationName Name = NameInfo.getName();
1685  IdentifierInfo *II = Name.getAsIdentifierInfo();
1686  SourceLocation NameLoc = NameInfo.getLoc();
1687
1688  // C++ [temp.dep.expr]p3:
1689  //   An id-expression is type-dependent if it contains:
1690  //     -- an identifier that was declared with a dependent type,
1691  //        (note: handled after lookup)
1692  //     -- a template-id that is dependent,
1693  //        (note: handled in BuildTemplateIdExpr)
1694  //     -- a conversion-function-id that specifies a dependent type,
1695  //     -- a nested-name-specifier that contains a class-name that
1696  //        names a dependent type.
1697  // Determine whether this is a member of an unknown specialization;
1698  // we need to handle these differently.
1699  bool DependentID = false;
1700  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1701      Name.getCXXNameType()->isDependentType()) {
1702    DependentID = true;
1703  } else if (SS.isSet()) {
1704    if (DeclContext *DC = computeDeclContext(SS, false)) {
1705      if (RequireCompleteDeclContext(SS, DC))
1706        return ExprError();
1707    } else {
1708      DependentID = true;
1709    }
1710  }
1711
1712  if (DependentID)
1713    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1714                                      IsAddressOfOperand, TemplateArgs);
1715
1716  // Perform the required lookup.
1717  LookupResult R(*this, NameInfo,
1718                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1719                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1720  if (TemplateArgs) {
1721    // Lookup the template name again to correctly establish the context in
1722    // which it was found. This is really unfortunate as we already did the
1723    // lookup to determine that it was a template name in the first place. If
1724    // this becomes a performance hit, we can work harder to preserve those
1725    // results until we get here but it's likely not worth it.
1726    bool MemberOfUnknownSpecialization;
1727    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1728                       MemberOfUnknownSpecialization);
1729
1730    if (MemberOfUnknownSpecialization ||
1731        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1732      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1733                                        IsAddressOfOperand, TemplateArgs);
1734  } else {
1735    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1736    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1737
1738    // If the result might be in a dependent base class, this is a dependent
1739    // id-expression.
1740    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1741      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1742                                        IsAddressOfOperand, TemplateArgs);
1743
1744    // If this reference is in an Objective-C method, then we need to do
1745    // some special Objective-C lookup, too.
1746    if (IvarLookupFollowUp) {
1747      ExprResult E(LookupInObjCMethod(R, S, II, true));
1748      if (E.isInvalid())
1749        return ExprError();
1750
1751      if (Expr *Ex = E.takeAs<Expr>())
1752        return Owned(Ex);
1753    }
1754  }
1755
1756  if (R.isAmbiguous())
1757    return ExprError();
1758
1759  // Determine whether this name might be a candidate for
1760  // argument-dependent lookup.
1761  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1762
1763  if (R.empty() && !ADL) {
1764    // Otherwise, this could be an implicitly declared function reference (legal
1765    // in C90, extension in C99, forbidden in C++).
1766    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1767      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1768      if (D) R.addDecl(D);
1769    }
1770
1771    // If this name wasn't predeclared and if this is not a function
1772    // call, diagnose the problem.
1773    if (R.empty()) {
1774
1775      // In Microsoft mode, if we are inside a template class member function
1776      // and we can't resolve an identifier then assume the identifier is type
1777      // dependent. The goal is to postpone name lookup to instantiation time
1778      // to be able to search into type dependent base classes.
1779      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1780          isa<CXXMethodDecl>(CurContext))
1781        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1782                                          IsAddressOfOperand, TemplateArgs);
1783
1784      CorrectionCandidateCallback DefaultValidator;
1785      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1786        return ExprError();
1787
1788      assert(!R.empty() &&
1789             "DiagnoseEmptyLookup returned false but added no results");
1790
1791      // If we found an Objective-C instance variable, let
1792      // LookupInObjCMethod build the appropriate expression to
1793      // reference the ivar.
1794      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1795        R.clear();
1796        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1797        // In a hopelessly buggy code, Objective-C instance variable
1798        // lookup fails and no expression will be built to reference it.
1799        if (!E.isInvalid() && !E.get())
1800          return ExprError();
1801        return move(E);
1802      }
1803    }
1804  }
1805
1806  // This is guaranteed from this point on.
1807  assert(!R.empty() || ADL);
1808
1809  // Check whether this might be a C++ implicit instance member access.
1810  // C++ [class.mfct.non-static]p3:
1811  //   When an id-expression that is not part of a class member access
1812  //   syntax and not used to form a pointer to member is used in the
1813  //   body of a non-static member function of class X, if name lookup
1814  //   resolves the name in the id-expression to a non-static non-type
1815  //   member of some class C, the id-expression is transformed into a
1816  //   class member access expression using (*this) as the
1817  //   postfix-expression to the left of the . operator.
1818  //
1819  // But we don't actually need to do this for '&' operands if R
1820  // resolved to a function or overloaded function set, because the
1821  // expression is ill-formed if it actually works out to be a
1822  // non-static member function:
1823  //
1824  // C++ [expr.ref]p4:
1825  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1826  //   [t]he expression can be used only as the left-hand operand of a
1827  //   member function call.
1828  //
1829  // There are other safeguards against such uses, but it's important
1830  // to get this right here so that we don't end up making a
1831  // spuriously dependent expression if we're inside a dependent
1832  // instance method.
1833  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1834    bool MightBeImplicitMember;
1835    if (!IsAddressOfOperand)
1836      MightBeImplicitMember = true;
1837    else if (!SS.isEmpty())
1838      MightBeImplicitMember = false;
1839    else if (R.isOverloadedResult())
1840      MightBeImplicitMember = false;
1841    else if (R.isUnresolvableResult())
1842      MightBeImplicitMember = true;
1843    else
1844      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1845                              isa<IndirectFieldDecl>(R.getFoundDecl());
1846
1847    if (MightBeImplicitMember)
1848      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1849                                             R, TemplateArgs);
1850  }
1851
1852  if (TemplateArgs || TemplateKWLoc.isValid())
1853    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1854
1855  return BuildDeclarationNameExpr(SS, R, ADL);
1856}
1857
1858/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1859/// declaration name, generally during template instantiation.
1860/// There's a large number of things which don't need to be done along
1861/// this path.
1862ExprResult
1863Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1864                                        const DeclarationNameInfo &NameInfo) {
1865  DeclContext *DC;
1866  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1867    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1868                                     NameInfo, /*TemplateArgs=*/0);
1869
1870  if (RequireCompleteDeclContext(SS, DC))
1871    return ExprError();
1872
1873  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1874  LookupQualifiedName(R, DC);
1875
1876  if (R.isAmbiguous())
1877    return ExprError();
1878
1879  if (R.empty()) {
1880    Diag(NameInfo.getLoc(), diag::err_no_member)
1881      << NameInfo.getName() << DC << SS.getRange();
1882    return ExprError();
1883  }
1884
1885  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1886}
1887
1888/// LookupInObjCMethod - The parser has read a name in, and Sema has
1889/// detected that we're currently inside an ObjC method.  Perform some
1890/// additional lookup.
1891///
1892/// Ideally, most of this would be done by lookup, but there's
1893/// actually quite a lot of extra work involved.
1894///
1895/// Returns a null sentinel to indicate trivial success.
1896ExprResult
1897Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1898                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1899  SourceLocation Loc = Lookup.getNameLoc();
1900  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1901
1902  // There are two cases to handle here.  1) scoped lookup could have failed,
1903  // in which case we should look for an ivar.  2) scoped lookup could have
1904  // found a decl, but that decl is outside the current instance method (i.e.
1905  // a global variable).  In these two cases, we do a lookup for an ivar with
1906  // this name, if the lookup sucedes, we replace it our current decl.
1907
1908  // If we're in a class method, we don't normally want to look for
1909  // ivars.  But if we don't find anything else, and there's an
1910  // ivar, that's an error.
1911  bool IsClassMethod = CurMethod->isClassMethod();
1912
1913  bool LookForIvars;
1914  if (Lookup.empty())
1915    LookForIvars = true;
1916  else if (IsClassMethod)
1917    LookForIvars = false;
1918  else
1919    LookForIvars = (Lookup.isSingleResult() &&
1920                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1921  ObjCInterfaceDecl *IFace = 0;
1922  if (LookForIvars) {
1923    IFace = CurMethod->getClassInterface();
1924    ObjCInterfaceDecl *ClassDeclared;
1925    ObjCIvarDecl *IV = 0;
1926    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1927      // Diagnose using an ivar in a class method.
1928      if (IsClassMethod)
1929        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1930                         << IV->getDeclName());
1931
1932      // If we're referencing an invalid decl, just return this as a silent
1933      // error node.  The error diagnostic was already emitted on the decl.
1934      if (IV->isInvalidDecl())
1935        return ExprError();
1936
1937      // Check if referencing a field with __attribute__((deprecated)).
1938      if (DiagnoseUseOfDecl(IV, Loc))
1939        return ExprError();
1940
1941      // Diagnose the use of an ivar outside of the declaring class.
1942      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1943          !declaresSameEntity(ClassDeclared, IFace) &&
1944          !getLangOpts().DebuggerSupport)
1945        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1946
1947      // FIXME: This should use a new expr for a direct reference, don't
1948      // turn this into Self->ivar, just return a BareIVarExpr or something.
1949      IdentifierInfo &II = Context.Idents.get("self");
1950      UnqualifiedId SelfName;
1951      SelfName.setIdentifier(&II, SourceLocation());
1952      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1953      CXXScopeSpec SelfScopeSpec;
1954      SourceLocation TemplateKWLoc;
1955      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1956                                              SelfName, false, false);
1957      if (SelfExpr.isInvalid())
1958        return ExprError();
1959
1960      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1961      if (SelfExpr.isInvalid())
1962        return ExprError();
1963
1964      MarkAnyDeclReferenced(Loc, IV);
1965      return Owned(new (Context)
1966                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1967                                   SelfExpr.take(), true, true));
1968    }
1969  } else if (CurMethod->isInstanceMethod()) {
1970    // We should warn if a local variable hides an ivar.
1971    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1972      ObjCInterfaceDecl *ClassDeclared;
1973      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1974        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1975            declaresSameEntity(IFace, ClassDeclared))
1976          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1977      }
1978    }
1979  } else if (Lookup.isSingleResult() &&
1980             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1981    // If accessing a stand-alone ivar in a class method, this is an error.
1982    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1983      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1984                       << IV->getDeclName());
1985  }
1986
1987  if (Lookup.empty() && II && AllowBuiltinCreation) {
1988    // FIXME. Consolidate this with similar code in LookupName.
1989    if (unsigned BuiltinID = II->getBuiltinID()) {
1990      if (!(getLangOpts().CPlusPlus &&
1991            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1992        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1993                                           S, Lookup.isForRedeclaration(),
1994                                           Lookup.getNameLoc());
1995        if (D) Lookup.addDecl(D);
1996      }
1997    }
1998  }
1999  // Sentinel value saying that we didn't do anything special.
2000  return Owned((Expr*) 0);
2001}
2002
2003/// \brief Cast a base object to a member's actual type.
2004///
2005/// Logically this happens in three phases:
2006///
2007/// * First we cast from the base type to the naming class.
2008///   The naming class is the class into which we were looking
2009///   when we found the member;  it's the qualifier type if a
2010///   qualifier was provided, and otherwise it's the base type.
2011///
2012/// * Next we cast from the naming class to the declaring class.
2013///   If the member we found was brought into a class's scope by
2014///   a using declaration, this is that class;  otherwise it's
2015///   the class declaring the member.
2016///
2017/// * Finally we cast from the declaring class to the "true"
2018///   declaring class of the member.  This conversion does not
2019///   obey access control.
2020ExprResult
2021Sema::PerformObjectMemberConversion(Expr *From,
2022                                    NestedNameSpecifier *Qualifier,
2023                                    NamedDecl *FoundDecl,
2024                                    NamedDecl *Member) {
2025  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2026  if (!RD)
2027    return Owned(From);
2028
2029  QualType DestRecordType;
2030  QualType DestType;
2031  QualType FromRecordType;
2032  QualType FromType = From->getType();
2033  bool PointerConversions = false;
2034  if (isa<FieldDecl>(Member)) {
2035    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2036
2037    if (FromType->getAs<PointerType>()) {
2038      DestType = Context.getPointerType(DestRecordType);
2039      FromRecordType = FromType->getPointeeType();
2040      PointerConversions = true;
2041    } else {
2042      DestType = DestRecordType;
2043      FromRecordType = FromType;
2044    }
2045  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2046    if (Method->isStatic())
2047      return Owned(From);
2048
2049    DestType = Method->getThisType(Context);
2050    DestRecordType = DestType->getPointeeType();
2051
2052    if (FromType->getAs<PointerType>()) {
2053      FromRecordType = FromType->getPointeeType();
2054      PointerConversions = true;
2055    } else {
2056      FromRecordType = FromType;
2057      DestType = DestRecordType;
2058    }
2059  } else {
2060    // No conversion necessary.
2061    return Owned(From);
2062  }
2063
2064  if (DestType->isDependentType() || FromType->isDependentType())
2065    return Owned(From);
2066
2067  // If the unqualified types are the same, no conversion is necessary.
2068  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2069    return Owned(From);
2070
2071  SourceRange FromRange = From->getSourceRange();
2072  SourceLocation FromLoc = FromRange.getBegin();
2073
2074  ExprValueKind VK = From->getValueKind();
2075
2076  // C++ [class.member.lookup]p8:
2077  //   [...] Ambiguities can often be resolved by qualifying a name with its
2078  //   class name.
2079  //
2080  // If the member was a qualified name and the qualified referred to a
2081  // specific base subobject type, we'll cast to that intermediate type
2082  // first and then to the object in which the member is declared. That allows
2083  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2084  //
2085  //   class Base { public: int x; };
2086  //   class Derived1 : public Base { };
2087  //   class Derived2 : public Base { };
2088  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2089  //
2090  //   void VeryDerived::f() {
2091  //     x = 17; // error: ambiguous base subobjects
2092  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2093  //   }
2094  if (Qualifier) {
2095    QualType QType = QualType(Qualifier->getAsType(), 0);
2096    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2097    assert(QType->isRecordType() && "lookup done with non-record type");
2098
2099    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2100
2101    // In C++98, the qualifier type doesn't actually have to be a base
2102    // type of the object type, in which case we just ignore it.
2103    // Otherwise build the appropriate casts.
2104    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2105      CXXCastPath BasePath;
2106      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2107                                       FromLoc, FromRange, &BasePath))
2108        return ExprError();
2109
2110      if (PointerConversions)
2111        QType = Context.getPointerType(QType);
2112      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2113                               VK, &BasePath).take();
2114
2115      FromType = QType;
2116      FromRecordType = QRecordType;
2117
2118      // If the qualifier type was the same as the destination type,
2119      // we're done.
2120      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2121        return Owned(From);
2122    }
2123  }
2124
2125  bool IgnoreAccess = false;
2126
2127  // If we actually found the member through a using declaration, cast
2128  // down to the using declaration's type.
2129  //
2130  // Pointer equality is fine here because only one declaration of a
2131  // class ever has member declarations.
2132  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2133    assert(isa<UsingShadowDecl>(FoundDecl));
2134    QualType URecordType = Context.getTypeDeclType(
2135                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2136
2137    // We only need to do this if the naming-class to declaring-class
2138    // conversion is non-trivial.
2139    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2140      assert(IsDerivedFrom(FromRecordType, URecordType));
2141      CXXCastPath BasePath;
2142      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2143                                       FromLoc, FromRange, &BasePath))
2144        return ExprError();
2145
2146      QualType UType = URecordType;
2147      if (PointerConversions)
2148        UType = Context.getPointerType(UType);
2149      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2150                               VK, &BasePath).take();
2151      FromType = UType;
2152      FromRecordType = URecordType;
2153    }
2154
2155    // We don't do access control for the conversion from the
2156    // declaring class to the true declaring class.
2157    IgnoreAccess = true;
2158  }
2159
2160  CXXCastPath BasePath;
2161  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2162                                   FromLoc, FromRange, &BasePath,
2163                                   IgnoreAccess))
2164    return ExprError();
2165
2166  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2167                           VK, &BasePath);
2168}
2169
2170bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2171                                      const LookupResult &R,
2172                                      bool HasTrailingLParen) {
2173  // Only when used directly as the postfix-expression of a call.
2174  if (!HasTrailingLParen)
2175    return false;
2176
2177  // Never if a scope specifier was provided.
2178  if (SS.isSet())
2179    return false;
2180
2181  // Only in C++ or ObjC++.
2182  if (!getLangOpts().CPlusPlus)
2183    return false;
2184
2185  // Turn off ADL when we find certain kinds of declarations during
2186  // normal lookup:
2187  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2188    NamedDecl *D = *I;
2189
2190    // C++0x [basic.lookup.argdep]p3:
2191    //     -- a declaration of a class member
2192    // Since using decls preserve this property, we check this on the
2193    // original decl.
2194    if (D->isCXXClassMember())
2195      return false;
2196
2197    // C++0x [basic.lookup.argdep]p3:
2198    //     -- a block-scope function declaration that is not a
2199    //        using-declaration
2200    // NOTE: we also trigger this for function templates (in fact, we
2201    // don't check the decl type at all, since all other decl types
2202    // turn off ADL anyway).
2203    if (isa<UsingShadowDecl>(D))
2204      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2205    else if (D->getDeclContext()->isFunctionOrMethod())
2206      return false;
2207
2208    // C++0x [basic.lookup.argdep]p3:
2209    //     -- a declaration that is neither a function or a function
2210    //        template
2211    // And also for builtin functions.
2212    if (isa<FunctionDecl>(D)) {
2213      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2214
2215      // But also builtin functions.
2216      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2217        return false;
2218    } else if (!isa<FunctionTemplateDecl>(D))
2219      return false;
2220  }
2221
2222  return true;
2223}
2224
2225
2226/// Diagnoses obvious problems with the use of the given declaration
2227/// as an expression.  This is only actually called for lookups that
2228/// were not overloaded, and it doesn't promise that the declaration
2229/// will in fact be used.
2230static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2231  if (isa<TypedefNameDecl>(D)) {
2232    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2233    return true;
2234  }
2235
2236  if (isa<ObjCInterfaceDecl>(D)) {
2237    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2238    return true;
2239  }
2240
2241  if (isa<NamespaceDecl>(D)) {
2242    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2243    return true;
2244  }
2245
2246  return false;
2247}
2248
2249ExprResult
2250Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2251                               LookupResult &R,
2252                               bool NeedsADL) {
2253  // If this is a single, fully-resolved result and we don't need ADL,
2254  // just build an ordinary singleton decl ref.
2255  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2256    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2257                                    R.getFoundDecl());
2258
2259  // We only need to check the declaration if there's exactly one
2260  // result, because in the overloaded case the results can only be
2261  // functions and function templates.
2262  if (R.isSingleResult() &&
2263      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2264    return ExprError();
2265
2266  // Otherwise, just build an unresolved lookup expression.  Suppress
2267  // any lookup-related diagnostics; we'll hash these out later, when
2268  // we've picked a target.
2269  R.suppressDiagnostics();
2270
2271  UnresolvedLookupExpr *ULE
2272    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2273                                   SS.getWithLocInContext(Context),
2274                                   R.getLookupNameInfo(),
2275                                   NeedsADL, R.isOverloadedResult(),
2276                                   R.begin(), R.end());
2277
2278  return Owned(ULE);
2279}
2280
2281/// \brief Complete semantic analysis for a reference to the given declaration.
2282ExprResult
2283Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2284                               const DeclarationNameInfo &NameInfo,
2285                               NamedDecl *D) {
2286  assert(D && "Cannot refer to a NULL declaration");
2287  assert(!isa<FunctionTemplateDecl>(D) &&
2288         "Cannot refer unambiguously to a function template");
2289
2290  SourceLocation Loc = NameInfo.getLoc();
2291  if (CheckDeclInExpr(*this, Loc, D))
2292    return ExprError();
2293
2294  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2295    // Specifically diagnose references to class templates that are missing
2296    // a template argument list.
2297    Diag(Loc, diag::err_template_decl_ref)
2298      << Template << SS.getRange();
2299    Diag(Template->getLocation(), diag::note_template_decl_here);
2300    return ExprError();
2301  }
2302
2303  // Make sure that we're referring to a value.
2304  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2305  if (!VD) {
2306    Diag(Loc, diag::err_ref_non_value)
2307      << D << SS.getRange();
2308    Diag(D->getLocation(), diag::note_declared_at);
2309    return ExprError();
2310  }
2311
2312  // Check whether this declaration can be used. Note that we suppress
2313  // this check when we're going to perform argument-dependent lookup
2314  // on this function name, because this might not be the function
2315  // that overload resolution actually selects.
2316  if (DiagnoseUseOfDecl(VD, Loc))
2317    return ExprError();
2318
2319  // Only create DeclRefExpr's for valid Decl's.
2320  if (VD->isInvalidDecl())
2321    return ExprError();
2322
2323  // Handle members of anonymous structs and unions.  If we got here,
2324  // and the reference is to a class member indirect field, then this
2325  // must be the subject of a pointer-to-member expression.
2326  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2327    if (!indirectField->isCXXClassMember())
2328      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2329                                                      indirectField);
2330
2331  {
2332    QualType type = VD->getType();
2333    ExprValueKind valueKind = VK_RValue;
2334
2335    switch (D->getKind()) {
2336    // Ignore all the non-ValueDecl kinds.
2337#define ABSTRACT_DECL(kind)
2338#define VALUE(type, base)
2339#define DECL(type, base) \
2340    case Decl::type:
2341#include "clang/AST/DeclNodes.inc"
2342      llvm_unreachable("invalid value decl kind");
2343
2344    // These shouldn't make it here.
2345    case Decl::ObjCAtDefsField:
2346    case Decl::ObjCIvar:
2347      llvm_unreachable("forming non-member reference to ivar?");
2348
2349    // Enum constants are always r-values and never references.
2350    // Unresolved using declarations are dependent.
2351    case Decl::EnumConstant:
2352    case Decl::UnresolvedUsingValue:
2353      valueKind = VK_RValue;
2354      break;
2355
2356    // Fields and indirect fields that got here must be for
2357    // pointer-to-member expressions; we just call them l-values for
2358    // internal consistency, because this subexpression doesn't really
2359    // exist in the high-level semantics.
2360    case Decl::Field:
2361    case Decl::IndirectField:
2362      assert(getLangOpts().CPlusPlus &&
2363             "building reference to field in C?");
2364
2365      // These can't have reference type in well-formed programs, but
2366      // for internal consistency we do this anyway.
2367      type = type.getNonReferenceType();
2368      valueKind = VK_LValue;
2369      break;
2370
2371    // Non-type template parameters are either l-values or r-values
2372    // depending on the type.
2373    case Decl::NonTypeTemplateParm: {
2374      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2375        type = reftype->getPointeeType();
2376        valueKind = VK_LValue; // even if the parameter is an r-value reference
2377        break;
2378      }
2379
2380      // For non-references, we need to strip qualifiers just in case
2381      // the template parameter was declared as 'const int' or whatever.
2382      valueKind = VK_RValue;
2383      type = type.getUnqualifiedType();
2384      break;
2385    }
2386
2387    case Decl::Var:
2388      // In C, "extern void blah;" is valid and is an r-value.
2389      if (!getLangOpts().CPlusPlus &&
2390          !type.hasQualifiers() &&
2391          type->isVoidType()) {
2392        valueKind = VK_RValue;
2393        break;
2394      }
2395      // fallthrough
2396
2397    case Decl::ImplicitParam:
2398    case Decl::ParmVar: {
2399      // These are always l-values.
2400      valueKind = VK_LValue;
2401      type = type.getNonReferenceType();
2402
2403      // FIXME: Does the addition of const really only apply in
2404      // potentially-evaluated contexts? Since the variable isn't actually
2405      // captured in an unevaluated context, it seems that the answer is no.
2406      if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
2407        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2408        if (!CapturedType.isNull())
2409          type = CapturedType;
2410      }
2411
2412      break;
2413    }
2414
2415    case Decl::Function: {
2416      const FunctionType *fty = type->castAs<FunctionType>();
2417
2418      // If we're referring to a function with an __unknown_anytype
2419      // result type, make the entire expression __unknown_anytype.
2420      if (fty->getResultType() == Context.UnknownAnyTy) {
2421        type = Context.UnknownAnyTy;
2422        valueKind = VK_RValue;
2423        break;
2424      }
2425
2426      // Functions are l-values in C++.
2427      if (getLangOpts().CPlusPlus) {
2428        valueKind = VK_LValue;
2429        break;
2430      }
2431
2432      // C99 DR 316 says that, if a function type comes from a
2433      // function definition (without a prototype), that type is only
2434      // used for checking compatibility. Therefore, when referencing
2435      // the function, we pretend that we don't have the full function
2436      // type.
2437      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2438          isa<FunctionProtoType>(fty))
2439        type = Context.getFunctionNoProtoType(fty->getResultType(),
2440                                              fty->getExtInfo());
2441
2442      // Functions are r-values in C.
2443      valueKind = VK_RValue;
2444      break;
2445    }
2446
2447    case Decl::CXXMethod:
2448      // If we're referring to a method with an __unknown_anytype
2449      // result type, make the entire expression __unknown_anytype.
2450      // This should only be possible with a type written directly.
2451      if (const FunctionProtoType *proto
2452            = dyn_cast<FunctionProtoType>(VD->getType()))
2453        if (proto->getResultType() == Context.UnknownAnyTy) {
2454          type = Context.UnknownAnyTy;
2455          valueKind = VK_RValue;
2456          break;
2457        }
2458
2459      // C++ methods are l-values if static, r-values if non-static.
2460      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2461        valueKind = VK_LValue;
2462        break;
2463      }
2464      // fallthrough
2465
2466    case Decl::CXXConversion:
2467    case Decl::CXXDestructor:
2468    case Decl::CXXConstructor:
2469      valueKind = VK_RValue;
2470      break;
2471    }
2472
2473    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2474  }
2475}
2476
2477ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2478  PredefinedExpr::IdentType IT;
2479
2480  switch (Kind) {
2481  default: llvm_unreachable("Unknown simple primary expr!");
2482  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2483  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2484  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2485  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2486  }
2487
2488  // Pre-defined identifiers are of type char[x], where x is the length of the
2489  // string.
2490
2491  Decl *currentDecl = getCurFunctionOrMethodDecl();
2492  if (!currentDecl && getCurBlock())
2493    currentDecl = getCurBlock()->TheDecl;
2494  if (!currentDecl) {
2495    Diag(Loc, diag::ext_predef_outside_function);
2496    currentDecl = Context.getTranslationUnitDecl();
2497  }
2498
2499  QualType ResTy;
2500  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2501    ResTy = Context.DependentTy;
2502  } else {
2503    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2504
2505    llvm::APInt LengthI(32, Length + 1);
2506    if (IT == PredefinedExpr::LFunction)
2507      ResTy = Context.WCharTy.withConst();
2508    else
2509      ResTy = Context.CharTy.withConst();
2510    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2511  }
2512  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2513}
2514
2515ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2516  SmallString<16> CharBuffer;
2517  bool Invalid = false;
2518  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2519  if (Invalid)
2520    return ExprError();
2521
2522  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2523                            PP, Tok.getKind());
2524  if (Literal.hadError())
2525    return ExprError();
2526
2527  QualType Ty;
2528  if (Literal.isWide())
2529    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2530  else if (Literal.isUTF16())
2531    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2532  else if (Literal.isUTF32())
2533    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2534  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2535    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2536  else
2537    Ty = Context.CharTy;  // 'x' -> char in C++
2538
2539  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2540  if (Literal.isWide())
2541    Kind = CharacterLiteral::Wide;
2542  else if (Literal.isUTF16())
2543    Kind = CharacterLiteral::UTF16;
2544  else if (Literal.isUTF32())
2545    Kind = CharacterLiteral::UTF32;
2546
2547  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2548                                             Tok.getLocation());
2549
2550  if (Literal.getUDSuffix().empty())
2551    return Owned(Lit);
2552
2553  // We're building a user-defined literal.
2554  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2555  SourceLocation UDSuffixLoc =
2556    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2557
2558  // Make sure we're allowed user-defined literals here.
2559  if (!UDLScope)
2560    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2561
2562  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2563  //   operator "" X (ch)
2564  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2565                                        llvm::makeArrayRef(&Lit, 1),
2566                                        Tok.getLocation());
2567}
2568
2569ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2570  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2571  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2572                                      Context.IntTy, Loc));
2573}
2574
2575static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2576                                  QualType Ty, SourceLocation Loc) {
2577  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2578
2579  using llvm::APFloat;
2580  APFloat Val(Format);
2581
2582  APFloat::opStatus result = Literal.GetFloatValue(Val);
2583
2584  // Overflow is always an error, but underflow is only an error if
2585  // we underflowed to zero (APFloat reports denormals as underflow).
2586  if ((result & APFloat::opOverflow) ||
2587      ((result & APFloat::opUnderflow) && Val.isZero())) {
2588    unsigned diagnostic;
2589    SmallString<20> buffer;
2590    if (result & APFloat::opOverflow) {
2591      diagnostic = diag::warn_float_overflow;
2592      APFloat::getLargest(Format).toString(buffer);
2593    } else {
2594      diagnostic = diag::warn_float_underflow;
2595      APFloat::getSmallest(Format).toString(buffer);
2596    }
2597
2598    S.Diag(Loc, diagnostic)
2599      << Ty
2600      << StringRef(buffer.data(), buffer.size());
2601  }
2602
2603  bool isExact = (result == APFloat::opOK);
2604  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2605}
2606
2607ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2608  // Fast path for a single digit (which is quite common).  A single digit
2609  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2610  if (Tok.getLength() == 1) {
2611    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2612    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2613  }
2614
2615  SmallString<512> IntegerBuffer;
2616  // Add padding so that NumericLiteralParser can overread by one character.
2617  IntegerBuffer.resize(Tok.getLength()+1);
2618  const char *ThisTokBegin = &IntegerBuffer[0];
2619
2620  // Get the spelling of the token, which eliminates trigraphs, etc.
2621  bool Invalid = false;
2622  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2623  if (Invalid)
2624    return ExprError();
2625
2626  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2627                               Tok.getLocation(), PP);
2628  if (Literal.hadError)
2629    return ExprError();
2630
2631  if (Literal.hasUDSuffix()) {
2632    // We're building a user-defined literal.
2633    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2634    SourceLocation UDSuffixLoc =
2635      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2636
2637    // Make sure we're allowed user-defined literals here.
2638    if (!UDLScope)
2639      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2640
2641    QualType CookedTy;
2642    if (Literal.isFloatingLiteral()) {
2643      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2644      // long double, the literal is treated as a call of the form
2645      //   operator "" X (f L)
2646      CookedTy = Context.LongDoubleTy;
2647    } else {
2648      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2649      // unsigned long long, the literal is treated as a call of the form
2650      //   operator "" X (n ULL)
2651      CookedTy = Context.UnsignedLongLongTy;
2652    }
2653
2654    DeclarationName OpName =
2655      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2656    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2657    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2658
2659    // Perform literal operator lookup to determine if we're building a raw
2660    // literal or a cooked one.
2661    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2662    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2663                                  /*AllowRawAndTemplate*/true)) {
2664    case LOLR_Error:
2665      return ExprError();
2666
2667    case LOLR_Cooked: {
2668      Expr *Lit;
2669      if (Literal.isFloatingLiteral()) {
2670        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2671      } else {
2672        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2673        if (Literal.GetIntegerValue(ResultVal))
2674          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2675        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2676                                     Tok.getLocation());
2677      }
2678      return BuildLiteralOperatorCall(R, OpNameInfo,
2679                                      llvm::makeArrayRef(&Lit, 1),
2680                                      Tok.getLocation());
2681    }
2682
2683    case LOLR_Raw: {
2684      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2685      // literal is treated as a call of the form
2686      //   operator "" X ("n")
2687      SourceLocation TokLoc = Tok.getLocation();
2688      unsigned Length = Literal.getUDSuffixOffset();
2689      QualType StrTy = Context.getConstantArrayType(
2690          Context.CharTy, llvm::APInt(32, Length + 1),
2691          ArrayType::Normal, 0);
2692      Expr *Lit = StringLiteral::Create(
2693          Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2694          /*Pascal*/false, StrTy, &TokLoc, 1);
2695      return BuildLiteralOperatorCall(R, OpNameInfo,
2696                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2697    }
2698
2699    case LOLR_Template:
2700      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2701      // template), L is treated as a call fo the form
2702      //   operator "" X <'c1', 'c2', ... 'ck'>()
2703      // where n is the source character sequence c1 c2 ... ck.
2704      TemplateArgumentListInfo ExplicitArgs;
2705      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2706      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2707      llvm::APSInt Value(CharBits, CharIsUnsigned);
2708      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2709        Value = ThisTokBegin[I];
2710        TemplateArgument Arg(Context, Value, Context.CharTy);
2711        TemplateArgumentLocInfo ArgInfo;
2712        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2713      }
2714      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2715                                      Tok.getLocation(), &ExplicitArgs);
2716    }
2717
2718    llvm_unreachable("unexpected literal operator lookup result");
2719  }
2720
2721  Expr *Res;
2722
2723  if (Literal.isFloatingLiteral()) {
2724    QualType Ty;
2725    if (Literal.isFloat)
2726      Ty = Context.FloatTy;
2727    else if (!Literal.isLong)
2728      Ty = Context.DoubleTy;
2729    else
2730      Ty = Context.LongDoubleTy;
2731
2732    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2733
2734    if (Ty == Context.DoubleTy) {
2735      if (getLangOpts().SinglePrecisionConstants) {
2736        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2737      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2738        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2739        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2740      }
2741    }
2742  } else if (!Literal.isIntegerLiteral()) {
2743    return ExprError();
2744  } else {
2745    QualType Ty;
2746
2747    // long long is a C99 feature.
2748    if (!getLangOpts().C99 && Literal.isLongLong)
2749      Diag(Tok.getLocation(),
2750           getLangOpts().CPlusPlus0x ?
2751             diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2752
2753    // Get the value in the widest-possible width.
2754    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2755    // The microsoft literal suffix extensions support 128-bit literals, which
2756    // may be wider than [u]intmax_t.
2757    if (Literal.isMicrosoftInteger && MaxWidth < 128)
2758      MaxWidth = 128;
2759    llvm::APInt ResultVal(MaxWidth, 0);
2760
2761    if (Literal.GetIntegerValue(ResultVal)) {
2762      // If this value didn't fit into uintmax_t, warn and force to ull.
2763      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2764      Ty = Context.UnsignedLongLongTy;
2765      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2766             "long long is not intmax_t?");
2767    } else {
2768      // If this value fits into a ULL, try to figure out what else it fits into
2769      // according to the rules of C99 6.4.4.1p5.
2770
2771      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2772      // be an unsigned int.
2773      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2774
2775      // Check from smallest to largest, picking the smallest type we can.
2776      unsigned Width = 0;
2777      if (!Literal.isLong && !Literal.isLongLong) {
2778        // Are int/unsigned possibilities?
2779        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2780
2781        // Does it fit in a unsigned int?
2782        if (ResultVal.isIntN(IntSize)) {
2783          // Does it fit in a signed int?
2784          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2785            Ty = Context.IntTy;
2786          else if (AllowUnsigned)
2787            Ty = Context.UnsignedIntTy;
2788          Width = IntSize;
2789        }
2790      }
2791
2792      // Are long/unsigned long possibilities?
2793      if (Ty.isNull() && !Literal.isLongLong) {
2794        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2795
2796        // Does it fit in a unsigned long?
2797        if (ResultVal.isIntN(LongSize)) {
2798          // Does it fit in a signed long?
2799          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2800            Ty = Context.LongTy;
2801          else if (AllowUnsigned)
2802            Ty = Context.UnsignedLongTy;
2803          Width = LongSize;
2804        }
2805      }
2806
2807      // Check long long if needed.
2808      if (Ty.isNull()) {
2809        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2810
2811        // Does it fit in a unsigned long long?
2812        if (ResultVal.isIntN(LongLongSize)) {
2813          // Does it fit in a signed long long?
2814          // To be compatible with MSVC, hex integer literals ending with the
2815          // LL or i64 suffix are always signed in Microsoft mode.
2816          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2817              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2818            Ty = Context.LongLongTy;
2819          else if (AllowUnsigned)
2820            Ty = Context.UnsignedLongLongTy;
2821          Width = LongLongSize;
2822        }
2823      }
2824
2825      // If it doesn't fit in unsigned long long, and we're using Microsoft
2826      // extensions, then its a 128-bit integer literal.
2827      if (Ty.isNull() && Literal.isMicrosoftInteger) {
2828        if (Literal.isUnsigned)
2829          Ty = Context.UnsignedInt128Ty;
2830        else
2831          Ty = Context.Int128Ty;
2832        Width = 128;
2833      }
2834
2835      // If we still couldn't decide a type, we probably have something that
2836      // does not fit in a signed long long, but has no U suffix.
2837      if (Ty.isNull()) {
2838        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2839        Ty = Context.UnsignedLongLongTy;
2840        Width = Context.getTargetInfo().getLongLongWidth();
2841      }
2842
2843      if (ResultVal.getBitWidth() != Width)
2844        ResultVal = ResultVal.trunc(Width);
2845    }
2846    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2847  }
2848
2849  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2850  if (Literal.isImaginary)
2851    Res = new (Context) ImaginaryLiteral(Res,
2852                                        Context.getComplexType(Res->getType()));
2853
2854  return Owned(Res);
2855}
2856
2857ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2858  assert((E != 0) && "ActOnParenExpr() missing expr");
2859  return Owned(new (Context) ParenExpr(L, R, E));
2860}
2861
2862static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2863                                         SourceLocation Loc,
2864                                         SourceRange ArgRange) {
2865  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2866  // scalar or vector data type argument..."
2867  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2868  // type (C99 6.2.5p18) or void.
2869  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2870    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2871      << T << ArgRange;
2872    return true;
2873  }
2874
2875  assert((T->isVoidType() || !T->isIncompleteType()) &&
2876         "Scalar types should always be complete");
2877  return false;
2878}
2879
2880static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2881                                           SourceLocation Loc,
2882                                           SourceRange ArgRange,
2883                                           UnaryExprOrTypeTrait TraitKind) {
2884  // C99 6.5.3.4p1:
2885  if (T->isFunctionType()) {
2886    // alignof(function) is allowed as an extension.
2887    if (TraitKind == UETT_SizeOf)
2888      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2889    return false;
2890  }
2891
2892  // Allow sizeof(void)/alignof(void) as an extension.
2893  if (T->isVoidType()) {
2894    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2895    return false;
2896  }
2897
2898  return true;
2899}
2900
2901static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2902                                             SourceLocation Loc,
2903                                             SourceRange ArgRange,
2904                                             UnaryExprOrTypeTrait TraitKind) {
2905  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2906  if (S.LangOpts.ObjCRuntime.isNonFragile() && T->isObjCObjectType()) {
2907    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2908      << T << (TraitKind == UETT_SizeOf)
2909      << ArgRange;
2910    return true;
2911  }
2912
2913  return false;
2914}
2915
2916/// \brief Check the constrains on expression operands to unary type expression
2917/// and type traits.
2918///
2919/// Completes any types necessary and validates the constraints on the operand
2920/// expression. The logic mostly mirrors the type-based overload, but may modify
2921/// the expression as it completes the type for that expression through template
2922/// instantiation, etc.
2923bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2924                                            UnaryExprOrTypeTrait ExprKind) {
2925  QualType ExprTy = E->getType();
2926
2927  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2928  //   the result is the size of the referenced type."
2929  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2930  //   result shall be the alignment of the referenced type."
2931  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2932    ExprTy = Ref->getPointeeType();
2933
2934  if (ExprKind == UETT_VecStep)
2935    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2936                                        E->getSourceRange());
2937
2938  // Whitelist some types as extensions
2939  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2940                                      E->getSourceRange(), ExprKind))
2941    return false;
2942
2943  if (RequireCompleteExprType(E,
2944                              diag::err_sizeof_alignof_incomplete_type,
2945                              ExprKind, E->getSourceRange()))
2946    return true;
2947
2948  // Completeing the expression's type may have changed it.
2949  ExprTy = E->getType();
2950  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2951    ExprTy = Ref->getPointeeType();
2952
2953  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2954                                       E->getSourceRange(), ExprKind))
2955    return true;
2956
2957  if (ExprKind == UETT_SizeOf) {
2958    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2959      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2960        QualType OType = PVD->getOriginalType();
2961        QualType Type = PVD->getType();
2962        if (Type->isPointerType() && OType->isArrayType()) {
2963          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2964            << Type << OType;
2965          Diag(PVD->getLocation(), diag::note_declared_at);
2966        }
2967      }
2968    }
2969  }
2970
2971  return false;
2972}
2973
2974/// \brief Check the constraints on operands to unary expression and type
2975/// traits.
2976///
2977/// This will complete any types necessary, and validate the various constraints
2978/// on those operands.
2979///
2980/// The UsualUnaryConversions() function is *not* called by this routine.
2981/// C99 6.3.2.1p[2-4] all state:
2982///   Except when it is the operand of the sizeof operator ...
2983///
2984/// C++ [expr.sizeof]p4
2985///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2986///   standard conversions are not applied to the operand of sizeof.
2987///
2988/// This policy is followed for all of the unary trait expressions.
2989bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2990                                            SourceLocation OpLoc,
2991                                            SourceRange ExprRange,
2992                                            UnaryExprOrTypeTrait ExprKind) {
2993  if (ExprType->isDependentType())
2994    return false;
2995
2996  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2997  //   the result is the size of the referenced type."
2998  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2999  //   result shall be the alignment of the referenced type."
3000  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3001    ExprType = Ref->getPointeeType();
3002
3003  if (ExprKind == UETT_VecStep)
3004    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3005
3006  // Whitelist some types as extensions
3007  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3008                                      ExprKind))
3009    return false;
3010
3011  if (RequireCompleteType(OpLoc, ExprType,
3012                          diag::err_sizeof_alignof_incomplete_type,
3013                          ExprKind, ExprRange))
3014    return true;
3015
3016  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3017                                       ExprKind))
3018    return true;
3019
3020  return false;
3021}
3022
3023static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3024  E = E->IgnoreParens();
3025
3026  // alignof decl is always ok.
3027  if (isa<DeclRefExpr>(E))
3028    return false;
3029
3030  // Cannot know anything else if the expression is dependent.
3031  if (E->isTypeDependent())
3032    return false;
3033
3034  if (E->getBitField()) {
3035    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3036       << 1 << E->getSourceRange();
3037    return true;
3038  }
3039
3040  // Alignment of a field access is always okay, so long as it isn't a
3041  // bit-field.
3042  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3043    if (isa<FieldDecl>(ME->getMemberDecl()))
3044      return false;
3045
3046  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3047}
3048
3049bool Sema::CheckVecStepExpr(Expr *E) {
3050  E = E->IgnoreParens();
3051
3052  // Cannot know anything else if the expression is dependent.
3053  if (E->isTypeDependent())
3054    return false;
3055
3056  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3057}
3058
3059/// \brief Build a sizeof or alignof expression given a type operand.
3060ExprResult
3061Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3062                                     SourceLocation OpLoc,
3063                                     UnaryExprOrTypeTrait ExprKind,
3064                                     SourceRange R) {
3065  if (!TInfo)
3066    return ExprError();
3067
3068  QualType T = TInfo->getType();
3069
3070  if (!T->isDependentType() &&
3071      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3072    return ExprError();
3073
3074  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3075  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3076                                                      Context.getSizeType(),
3077                                                      OpLoc, R.getEnd()));
3078}
3079
3080/// \brief Build a sizeof or alignof expression given an expression
3081/// operand.
3082ExprResult
3083Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3084                                     UnaryExprOrTypeTrait ExprKind) {
3085  ExprResult PE = CheckPlaceholderExpr(E);
3086  if (PE.isInvalid())
3087    return ExprError();
3088
3089  E = PE.get();
3090
3091  // Verify that the operand is valid.
3092  bool isInvalid = false;
3093  if (E->isTypeDependent()) {
3094    // Delay type-checking for type-dependent expressions.
3095  } else if (ExprKind == UETT_AlignOf) {
3096    isInvalid = CheckAlignOfExpr(*this, E);
3097  } else if (ExprKind == UETT_VecStep) {
3098    isInvalid = CheckVecStepExpr(E);
3099  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3100    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3101    isInvalid = true;
3102  } else {
3103    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3104  }
3105
3106  if (isInvalid)
3107    return ExprError();
3108
3109  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3110    PE = TranformToPotentiallyEvaluated(E);
3111    if (PE.isInvalid()) return ExprError();
3112    E = PE.take();
3113  }
3114
3115  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3116  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3117      ExprKind, E, Context.getSizeType(), OpLoc,
3118      E->getSourceRange().getEnd()));
3119}
3120
3121/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3122/// expr and the same for @c alignof and @c __alignof
3123/// Note that the ArgRange is invalid if isType is false.
3124ExprResult
3125Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3126                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3127                                    void *TyOrEx, const SourceRange &ArgRange) {
3128  // If error parsing type, ignore.
3129  if (TyOrEx == 0) return ExprError();
3130
3131  if (IsType) {
3132    TypeSourceInfo *TInfo;
3133    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3134    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3135  }
3136
3137  Expr *ArgEx = (Expr *)TyOrEx;
3138  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3139  return move(Result);
3140}
3141
3142static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3143                                     bool IsReal) {
3144  if (V.get()->isTypeDependent())
3145    return S.Context.DependentTy;
3146
3147  // _Real and _Imag are only l-values for normal l-values.
3148  if (V.get()->getObjectKind() != OK_Ordinary) {
3149    V = S.DefaultLvalueConversion(V.take());
3150    if (V.isInvalid())
3151      return QualType();
3152  }
3153
3154  // These operators return the element type of a complex type.
3155  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3156    return CT->getElementType();
3157
3158  // Otherwise they pass through real integer and floating point types here.
3159  if (V.get()->getType()->isArithmeticType())
3160    return V.get()->getType();
3161
3162  // Test for placeholders.
3163  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3164  if (PR.isInvalid()) return QualType();
3165  if (PR.get() != V.get()) {
3166    V = move(PR);
3167    return CheckRealImagOperand(S, V, Loc, IsReal);
3168  }
3169
3170  // Reject anything else.
3171  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3172    << (IsReal ? "__real" : "__imag");
3173  return QualType();
3174}
3175
3176
3177
3178ExprResult
3179Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3180                          tok::TokenKind Kind, Expr *Input) {
3181  UnaryOperatorKind Opc;
3182  switch (Kind) {
3183  default: llvm_unreachable("Unknown unary op!");
3184  case tok::plusplus:   Opc = UO_PostInc; break;
3185  case tok::minusminus: Opc = UO_PostDec; break;
3186  }
3187
3188  // Since this might is a postfix expression, get rid of ParenListExprs.
3189  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3190  if (Result.isInvalid()) return ExprError();
3191  Input = Result.take();
3192
3193  return BuildUnaryOp(S, OpLoc, Opc, Input);
3194}
3195
3196ExprResult
3197Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3198                              Expr *Idx, SourceLocation RLoc) {
3199  // Since this might be a postfix expression, get rid of ParenListExprs.
3200  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3201  if (Result.isInvalid()) return ExprError();
3202  Base = Result.take();
3203
3204  Expr *LHSExp = Base, *RHSExp = Idx;
3205
3206  if (getLangOpts().CPlusPlus &&
3207      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3208    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3209                                                  Context.DependentTy,
3210                                                  VK_LValue, OK_Ordinary,
3211                                                  RLoc));
3212  }
3213
3214  if (getLangOpts().CPlusPlus &&
3215      (LHSExp->getType()->isRecordType() ||
3216       LHSExp->getType()->isEnumeralType() ||
3217       RHSExp->getType()->isRecordType() ||
3218       RHSExp->getType()->isEnumeralType()) &&
3219      !LHSExp->getType()->isObjCObjectPointerType()) {
3220    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3221  }
3222
3223  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3224}
3225
3226
3227ExprResult
3228Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3229                                      Expr *Idx, SourceLocation RLoc) {
3230  Expr *LHSExp = Base;
3231  Expr *RHSExp = Idx;
3232
3233  // Perform default conversions.
3234  if (!LHSExp->getType()->getAs<VectorType>()) {
3235    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3236    if (Result.isInvalid())
3237      return ExprError();
3238    LHSExp = Result.take();
3239  }
3240  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3241  if (Result.isInvalid())
3242    return ExprError();
3243  RHSExp = Result.take();
3244
3245  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3246  ExprValueKind VK = VK_LValue;
3247  ExprObjectKind OK = OK_Ordinary;
3248
3249  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3250  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3251  // in the subscript position. As a result, we need to derive the array base
3252  // and index from the expression types.
3253  Expr *BaseExpr, *IndexExpr;
3254  QualType ResultType;
3255  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3256    BaseExpr = LHSExp;
3257    IndexExpr = RHSExp;
3258    ResultType = Context.DependentTy;
3259  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3260    BaseExpr = LHSExp;
3261    IndexExpr = RHSExp;
3262    ResultType = PTy->getPointeeType();
3263  } else if (const ObjCObjectPointerType *PTy =
3264             LHSTy->getAs<ObjCObjectPointerType>()) {
3265    BaseExpr = LHSExp;
3266    IndexExpr = RHSExp;
3267    Result = BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3268    if (!Result.isInvalid())
3269      return Owned(Result.take());
3270    ResultType = PTy->getPointeeType();
3271  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3272     // Handle the uncommon case of "123[Ptr]".
3273    BaseExpr = RHSExp;
3274    IndexExpr = LHSExp;
3275    ResultType = PTy->getPointeeType();
3276  } else if (const ObjCObjectPointerType *PTy =
3277               RHSTy->getAs<ObjCObjectPointerType>()) {
3278     // Handle the uncommon case of "123[Ptr]".
3279    BaseExpr = RHSExp;
3280    IndexExpr = LHSExp;
3281    ResultType = PTy->getPointeeType();
3282  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3283    BaseExpr = LHSExp;    // vectors: V[123]
3284    IndexExpr = RHSExp;
3285    VK = LHSExp->getValueKind();
3286    if (VK != VK_RValue)
3287      OK = OK_VectorComponent;
3288
3289    // FIXME: need to deal with const...
3290    ResultType = VTy->getElementType();
3291  } else if (LHSTy->isArrayType()) {
3292    // If we see an array that wasn't promoted by
3293    // DefaultFunctionArrayLvalueConversion, it must be an array that
3294    // wasn't promoted because of the C90 rule that doesn't
3295    // allow promoting non-lvalue arrays.  Warn, then
3296    // force the promotion here.
3297    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3298        LHSExp->getSourceRange();
3299    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3300                               CK_ArrayToPointerDecay).take();
3301    LHSTy = LHSExp->getType();
3302
3303    BaseExpr = LHSExp;
3304    IndexExpr = RHSExp;
3305    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3306  } else if (RHSTy->isArrayType()) {
3307    // Same as previous, except for 123[f().a] case
3308    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3309        RHSExp->getSourceRange();
3310    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3311                               CK_ArrayToPointerDecay).take();
3312    RHSTy = RHSExp->getType();
3313
3314    BaseExpr = RHSExp;
3315    IndexExpr = LHSExp;
3316    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3317  } else {
3318    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3319       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3320  }
3321  // C99 6.5.2.1p1
3322  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3323    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3324                     << IndexExpr->getSourceRange());
3325
3326  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3327       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3328         && !IndexExpr->isTypeDependent())
3329    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3330
3331  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3332  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3333  // type. Note that Functions are not objects, and that (in C99 parlance)
3334  // incomplete types are not object types.
3335  if (ResultType->isFunctionType()) {
3336    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3337      << ResultType << BaseExpr->getSourceRange();
3338    return ExprError();
3339  }
3340
3341  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3342    // GNU extension: subscripting on pointer to void
3343    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3344      << BaseExpr->getSourceRange();
3345
3346    // C forbids expressions of unqualified void type from being l-values.
3347    // See IsCForbiddenLValueType.
3348    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3349  } else if (!ResultType->isDependentType() &&
3350      RequireCompleteType(LLoc, ResultType,
3351                          diag::err_subscript_incomplete_type, BaseExpr))
3352    return ExprError();
3353
3354  // Diagnose bad cases where we step over interface counts.
3355  if (ResultType->isObjCObjectType() && LangOpts.ObjCRuntime.isNonFragile()) {
3356    Diag(LLoc, diag::err_subscript_nonfragile_interface)
3357      << ResultType << BaseExpr->getSourceRange();
3358    return ExprError();
3359  }
3360
3361  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3362         !ResultType.isCForbiddenLValueType());
3363
3364  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3365                                                ResultType, VK, OK, RLoc));
3366}
3367
3368ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3369                                        FunctionDecl *FD,
3370                                        ParmVarDecl *Param) {
3371  if (Param->hasUnparsedDefaultArg()) {
3372    Diag(CallLoc,
3373         diag::err_use_of_default_argument_to_function_declared_later) <<
3374      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3375    Diag(UnparsedDefaultArgLocs[Param],
3376         diag::note_default_argument_declared_here);
3377    return ExprError();
3378  }
3379
3380  if (Param->hasUninstantiatedDefaultArg()) {
3381    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3382
3383    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3384                                                 Param);
3385
3386    // Instantiate the expression.
3387    MultiLevelTemplateArgumentList ArgList
3388      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3389
3390    std::pair<const TemplateArgument *, unsigned> Innermost
3391      = ArgList.getInnermost();
3392    InstantiatingTemplate Inst(*this, CallLoc, Param,
3393                               ArrayRef<TemplateArgument>(Innermost.first,
3394                                                          Innermost.second));
3395    if (Inst)
3396      return ExprError();
3397
3398    ExprResult Result;
3399    {
3400      // C++ [dcl.fct.default]p5:
3401      //   The names in the [default argument] expression are bound, and
3402      //   the semantic constraints are checked, at the point where the
3403      //   default argument expression appears.
3404      ContextRAII SavedContext(*this, FD);
3405      LocalInstantiationScope Local(*this);
3406      Result = SubstExpr(UninstExpr, ArgList);
3407    }
3408    if (Result.isInvalid())
3409      return ExprError();
3410
3411    // Check the expression as an initializer for the parameter.
3412    InitializedEntity Entity
3413      = InitializedEntity::InitializeParameter(Context, Param);
3414    InitializationKind Kind
3415      = InitializationKind::CreateCopy(Param->getLocation(),
3416             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3417    Expr *ResultE = Result.takeAs<Expr>();
3418
3419    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3420    Result = InitSeq.Perform(*this, Entity, Kind,
3421                             MultiExprArg(*this, &ResultE, 1));
3422    if (Result.isInvalid())
3423      return ExprError();
3424
3425    Expr *Arg = Result.takeAs<Expr>();
3426    CheckImplicitConversions(Arg, Param->getOuterLocStart());
3427    // Build the default argument expression.
3428    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3429  }
3430
3431  // If the default expression creates temporaries, we need to
3432  // push them to the current stack of expression temporaries so they'll
3433  // be properly destroyed.
3434  // FIXME: We should really be rebuilding the default argument with new
3435  // bound temporaries; see the comment in PR5810.
3436  // We don't need to do that with block decls, though, because
3437  // blocks in default argument expression can never capture anything.
3438  if (isa<ExprWithCleanups>(Param->getInit())) {
3439    // Set the "needs cleanups" bit regardless of whether there are
3440    // any explicit objects.
3441    ExprNeedsCleanups = true;
3442
3443    // Append all the objects to the cleanup list.  Right now, this
3444    // should always be a no-op, because blocks in default argument
3445    // expressions should never be able to capture anything.
3446    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3447           "default argument expression has capturing blocks?");
3448  }
3449
3450  // We already type-checked the argument, so we know it works.
3451  // Just mark all of the declarations in this potentially-evaluated expression
3452  // as being "referenced".
3453  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3454                                   /*SkipLocalVariables=*/true);
3455  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3456}
3457
3458
3459Sema::VariadicCallType
3460Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3461                          Expr *Fn) {
3462  if (Proto && Proto->isVariadic()) {
3463    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3464      return VariadicConstructor;
3465    else if (Fn && Fn->getType()->isBlockPointerType())
3466      return VariadicBlock;
3467    else if (FDecl) {
3468      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3469        if (Method->isInstance())
3470          return VariadicMethod;
3471    }
3472    return VariadicFunction;
3473  }
3474  return VariadicDoesNotApply;
3475}
3476
3477/// ConvertArgumentsForCall - Converts the arguments specified in
3478/// Args/NumArgs to the parameter types of the function FDecl with
3479/// function prototype Proto. Call is the call expression itself, and
3480/// Fn is the function expression. For a C++ member function, this
3481/// routine does not attempt to convert the object argument. Returns
3482/// true if the call is ill-formed.
3483bool
3484Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3485                              FunctionDecl *FDecl,
3486                              const FunctionProtoType *Proto,
3487                              Expr **Args, unsigned NumArgs,
3488                              SourceLocation RParenLoc,
3489                              bool IsExecConfig) {
3490  // Bail out early if calling a builtin with custom typechecking.
3491  // We don't need to do this in the
3492  if (FDecl)
3493    if (unsigned ID = FDecl->getBuiltinID())
3494      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3495        return false;
3496
3497  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3498  // assignment, to the types of the corresponding parameter, ...
3499  unsigned NumArgsInProto = Proto->getNumArgs();
3500  bool Invalid = false;
3501  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3502  unsigned FnKind = Fn->getType()->isBlockPointerType()
3503                       ? 1 /* block */
3504                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3505                                       : 0 /* function */);
3506
3507  // If too few arguments are available (and we don't have default
3508  // arguments for the remaining parameters), don't make the call.
3509  if (NumArgs < NumArgsInProto) {
3510    if (NumArgs < MinArgs) {
3511      if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3512        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3513                          ? diag::err_typecheck_call_too_few_args_one
3514                          : diag::err_typecheck_call_too_few_args_at_least_one)
3515          << FnKind
3516          << FDecl->getParamDecl(0) << Fn->getSourceRange();
3517      else
3518        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3519                          ? diag::err_typecheck_call_too_few_args
3520                          : diag::err_typecheck_call_too_few_args_at_least)
3521          << FnKind
3522          << MinArgs << NumArgs << Fn->getSourceRange();
3523
3524      // Emit the location of the prototype.
3525      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3526        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3527          << FDecl;
3528
3529      return true;
3530    }
3531    Call->setNumArgs(Context, NumArgsInProto);
3532  }
3533
3534  // If too many are passed and not variadic, error on the extras and drop
3535  // them.
3536  if (NumArgs > NumArgsInProto) {
3537    if (!Proto->isVariadic()) {
3538      if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3539        Diag(Args[NumArgsInProto]->getLocStart(),
3540             MinArgs == NumArgsInProto
3541               ? diag::err_typecheck_call_too_many_args_one
3542               : diag::err_typecheck_call_too_many_args_at_most_one)
3543          << FnKind
3544          << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3545          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3546                         Args[NumArgs-1]->getLocEnd());
3547      else
3548        Diag(Args[NumArgsInProto]->getLocStart(),
3549             MinArgs == NumArgsInProto
3550               ? diag::err_typecheck_call_too_many_args
3551               : diag::err_typecheck_call_too_many_args_at_most)
3552          << FnKind
3553          << NumArgsInProto << NumArgs << Fn->getSourceRange()
3554          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3555                         Args[NumArgs-1]->getLocEnd());
3556
3557      // Emit the location of the prototype.
3558      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3559        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3560          << FDecl;
3561
3562      // This deletes the extra arguments.
3563      Call->setNumArgs(Context, NumArgsInProto);
3564      return true;
3565    }
3566  }
3567  SmallVector<Expr *, 8> AllArgs;
3568  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3569
3570  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3571                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3572  if (Invalid)
3573    return true;
3574  unsigned TotalNumArgs = AllArgs.size();
3575  for (unsigned i = 0; i < TotalNumArgs; ++i)
3576    Call->setArg(i, AllArgs[i]);
3577
3578  return false;
3579}
3580
3581bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3582                                  FunctionDecl *FDecl,
3583                                  const FunctionProtoType *Proto,
3584                                  unsigned FirstProtoArg,
3585                                  Expr **Args, unsigned NumArgs,
3586                                  SmallVector<Expr *, 8> &AllArgs,
3587                                  VariadicCallType CallType,
3588                                  bool AllowExplicit) {
3589  unsigned NumArgsInProto = Proto->getNumArgs();
3590  unsigned NumArgsToCheck = NumArgs;
3591  bool Invalid = false;
3592  if (NumArgs != NumArgsInProto)
3593    // Use default arguments for missing arguments
3594    NumArgsToCheck = NumArgsInProto;
3595  unsigned ArgIx = 0;
3596  // Continue to check argument types (even if we have too few/many args).
3597  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3598    QualType ProtoArgType = Proto->getArgType(i);
3599
3600    Expr *Arg;
3601    ParmVarDecl *Param;
3602    if (ArgIx < NumArgs) {
3603      Arg = Args[ArgIx++];
3604
3605      if (RequireCompleteType(Arg->getLocStart(),
3606                              ProtoArgType,
3607                              diag::err_call_incomplete_argument, Arg))
3608        return true;
3609
3610      // Pass the argument
3611      Param = 0;
3612      if (FDecl && i < FDecl->getNumParams())
3613        Param = FDecl->getParamDecl(i);
3614
3615      // Strip the unbridged-cast placeholder expression off, if applicable.
3616      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3617          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3618          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3619        Arg = stripARCUnbridgedCast(Arg);
3620
3621      InitializedEntity Entity =
3622        Param? InitializedEntity::InitializeParameter(Context, Param)
3623             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3624                                                      Proto->isArgConsumed(i));
3625      ExprResult ArgE = PerformCopyInitialization(Entity,
3626                                                  SourceLocation(),
3627                                                  Owned(Arg),
3628                                                  /*TopLevelOfInitList=*/false,
3629                                                  AllowExplicit);
3630      if (ArgE.isInvalid())
3631        return true;
3632
3633      Arg = ArgE.takeAs<Expr>();
3634    } else {
3635      Param = FDecl->getParamDecl(i);
3636
3637      ExprResult ArgExpr =
3638        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3639      if (ArgExpr.isInvalid())
3640        return true;
3641
3642      Arg = ArgExpr.takeAs<Expr>();
3643    }
3644
3645    // Check for array bounds violations for each argument to the call. This
3646    // check only triggers warnings when the argument isn't a more complex Expr
3647    // with its own checking, such as a BinaryOperator.
3648    CheckArrayAccess(Arg);
3649
3650    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3651    CheckStaticArrayArgument(CallLoc, Param, Arg);
3652
3653    AllArgs.push_back(Arg);
3654  }
3655
3656  // If this is a variadic call, handle args passed through "...".
3657  if (CallType != VariadicDoesNotApply) {
3658    // Assume that extern "C" functions with variadic arguments that
3659    // return __unknown_anytype aren't *really* variadic.
3660    if (Proto->getResultType() == Context.UnknownAnyTy &&
3661        FDecl && FDecl->isExternC()) {
3662      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3663        ExprResult arg;
3664        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3665          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3666        else
3667          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3668        Invalid |= arg.isInvalid();
3669        AllArgs.push_back(arg.take());
3670      }
3671
3672    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3673    } else {
3674      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3675        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3676                                                          FDecl);
3677        Invalid |= Arg.isInvalid();
3678        AllArgs.push_back(Arg.take());
3679      }
3680    }
3681
3682    // Check for array bounds violations.
3683    for (unsigned i = ArgIx; i != NumArgs; ++i)
3684      CheckArrayAccess(Args[i]);
3685  }
3686  return Invalid;
3687}
3688
3689static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3690  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3691  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3692    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3693      << ATL->getLocalSourceRange();
3694}
3695
3696/// CheckStaticArrayArgument - If the given argument corresponds to a static
3697/// array parameter, check that it is non-null, and that if it is formed by
3698/// array-to-pointer decay, the underlying array is sufficiently large.
3699///
3700/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3701/// array type derivation, then for each call to the function, the value of the
3702/// corresponding actual argument shall provide access to the first element of
3703/// an array with at least as many elements as specified by the size expression.
3704void
3705Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3706                               ParmVarDecl *Param,
3707                               const Expr *ArgExpr) {
3708  // Static array parameters are not supported in C++.
3709  if (!Param || getLangOpts().CPlusPlus)
3710    return;
3711
3712  QualType OrigTy = Param->getOriginalType();
3713
3714  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3715  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3716    return;
3717
3718  if (ArgExpr->isNullPointerConstant(Context,
3719                                     Expr::NPC_NeverValueDependent)) {
3720    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3721    DiagnoseCalleeStaticArrayParam(*this, Param);
3722    return;
3723  }
3724
3725  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3726  if (!CAT)
3727    return;
3728
3729  const ConstantArrayType *ArgCAT =
3730    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3731  if (!ArgCAT)
3732    return;
3733
3734  if (ArgCAT->getSize().ult(CAT->getSize())) {
3735    Diag(CallLoc, diag::warn_static_array_too_small)
3736      << ArgExpr->getSourceRange()
3737      << (unsigned) ArgCAT->getSize().getZExtValue()
3738      << (unsigned) CAT->getSize().getZExtValue();
3739    DiagnoseCalleeStaticArrayParam(*this, Param);
3740  }
3741}
3742
3743/// Given a function expression of unknown-any type, try to rebuild it
3744/// to have a function type.
3745static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3746
3747/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3748/// This provides the location of the left/right parens and a list of comma
3749/// locations.
3750ExprResult
3751Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3752                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3753                    Expr *ExecConfig, bool IsExecConfig) {
3754  unsigned NumArgs = ArgExprs.size();
3755
3756  // Since this might be a postfix expression, get rid of ParenListExprs.
3757  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3758  if (Result.isInvalid()) return ExprError();
3759  Fn = Result.take();
3760
3761  Expr **Args = ArgExprs.release();
3762
3763  if (getLangOpts().CPlusPlus) {
3764    // If this is a pseudo-destructor expression, build the call immediately.
3765    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3766      if (NumArgs > 0) {
3767        // Pseudo-destructor calls should not have any arguments.
3768        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3769          << FixItHint::CreateRemoval(
3770                                    SourceRange(Args[0]->getLocStart(),
3771                                                Args[NumArgs-1]->getLocEnd()));
3772      }
3773
3774      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3775                                          VK_RValue, RParenLoc));
3776    }
3777
3778    // Determine whether this is a dependent call inside a C++ template,
3779    // in which case we won't do any semantic analysis now.
3780    // FIXME: Will need to cache the results of name lookup (including ADL) in
3781    // Fn.
3782    bool Dependent = false;
3783    if (Fn->isTypeDependent())
3784      Dependent = true;
3785    else if (Expr::hasAnyTypeDependentArguments(
3786        llvm::makeArrayRef(Args, NumArgs)))
3787      Dependent = true;
3788
3789    if (Dependent) {
3790      if (ExecConfig) {
3791        return Owned(new (Context) CUDAKernelCallExpr(
3792            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3793            Context.DependentTy, VK_RValue, RParenLoc));
3794      } else {
3795        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3796                                            Context.DependentTy, VK_RValue,
3797                                            RParenLoc));
3798      }
3799    }
3800
3801    // Determine whether this is a call to an object (C++ [over.call.object]).
3802    if (Fn->getType()->isRecordType())
3803      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3804                                                RParenLoc));
3805
3806    if (Fn->getType() == Context.UnknownAnyTy) {
3807      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3808      if (result.isInvalid()) return ExprError();
3809      Fn = result.take();
3810    }
3811
3812    if (Fn->getType() == Context.BoundMemberTy) {
3813      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3814                                       RParenLoc);
3815    }
3816  }
3817
3818  // Check for overloaded calls.  This can happen even in C due to extensions.
3819  if (Fn->getType() == Context.OverloadTy) {
3820    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3821
3822    // We aren't supposed to apply this logic for if there's an '&' involved.
3823    if (!find.HasFormOfMemberPointer) {
3824      OverloadExpr *ovl = find.Expression;
3825      if (isa<UnresolvedLookupExpr>(ovl)) {
3826        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3827        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3828                                       RParenLoc, ExecConfig);
3829      } else {
3830        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3831                                         RParenLoc);
3832      }
3833    }
3834  }
3835
3836  // If we're directly calling a function, get the appropriate declaration.
3837  if (Fn->getType() == Context.UnknownAnyTy) {
3838    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3839    if (result.isInvalid()) return ExprError();
3840    Fn = result.take();
3841  }
3842
3843  Expr *NakedFn = Fn->IgnoreParens();
3844
3845  NamedDecl *NDecl = 0;
3846  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3847    if (UnOp->getOpcode() == UO_AddrOf)
3848      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3849
3850  if (isa<DeclRefExpr>(NakedFn))
3851    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3852  else if (isa<MemberExpr>(NakedFn))
3853    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3854
3855  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3856                               ExecConfig, IsExecConfig);
3857}
3858
3859ExprResult
3860Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3861                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3862  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3863  if (!ConfigDecl)
3864    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3865                          << "cudaConfigureCall");
3866  QualType ConfigQTy = ConfigDecl->getType();
3867
3868  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3869      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3870  MarkFunctionReferenced(LLLLoc, ConfigDecl);
3871
3872  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3873                       /*IsExecConfig=*/true);
3874}
3875
3876/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3877///
3878/// __builtin_astype( value, dst type )
3879///
3880ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3881                                 SourceLocation BuiltinLoc,
3882                                 SourceLocation RParenLoc) {
3883  ExprValueKind VK = VK_RValue;
3884  ExprObjectKind OK = OK_Ordinary;
3885  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3886  QualType SrcTy = E->getType();
3887  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3888    return ExprError(Diag(BuiltinLoc,
3889                          diag::err_invalid_astype_of_different_size)
3890                     << DstTy
3891                     << SrcTy
3892                     << E->getSourceRange());
3893  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3894               RParenLoc));
3895}
3896
3897/// BuildResolvedCallExpr - Build a call to a resolved expression,
3898/// i.e. an expression not of \p OverloadTy.  The expression should
3899/// unary-convert to an expression of function-pointer or
3900/// block-pointer type.
3901///
3902/// \param NDecl the declaration being called, if available
3903ExprResult
3904Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3905                            SourceLocation LParenLoc,
3906                            Expr **Args, unsigned NumArgs,
3907                            SourceLocation RParenLoc,
3908                            Expr *Config, bool IsExecConfig) {
3909  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3910
3911  // Promote the function operand.
3912  ExprResult Result = UsualUnaryConversions(Fn);
3913  if (Result.isInvalid())
3914    return ExprError();
3915  Fn = Result.take();
3916
3917  // Make the call expr early, before semantic checks.  This guarantees cleanup
3918  // of arguments and function on error.
3919  CallExpr *TheCall;
3920  if (Config)
3921    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3922                                               cast<CallExpr>(Config),
3923                                               Args, NumArgs,
3924                                               Context.BoolTy,
3925                                               VK_RValue,
3926                                               RParenLoc);
3927  else
3928    TheCall = new (Context) CallExpr(Context, Fn,
3929                                     Args, NumArgs,
3930                                     Context.BoolTy,
3931                                     VK_RValue,
3932                                     RParenLoc);
3933
3934  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3935
3936  // Bail out early if calling a builtin with custom typechecking.
3937  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3938    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3939
3940 retry:
3941  const FunctionType *FuncT;
3942  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3943    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3944    // have type pointer to function".
3945    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3946    if (FuncT == 0)
3947      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3948                         << Fn->getType() << Fn->getSourceRange());
3949  } else if (const BlockPointerType *BPT =
3950               Fn->getType()->getAs<BlockPointerType>()) {
3951    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3952  } else {
3953    // Handle calls to expressions of unknown-any type.
3954    if (Fn->getType() == Context.UnknownAnyTy) {
3955      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3956      if (rewrite.isInvalid()) return ExprError();
3957      Fn = rewrite.take();
3958      TheCall->setCallee(Fn);
3959      goto retry;
3960    }
3961
3962    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3963      << Fn->getType() << Fn->getSourceRange());
3964  }
3965
3966  if (getLangOpts().CUDA) {
3967    if (Config) {
3968      // CUDA: Kernel calls must be to global functions
3969      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3970        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3971            << FDecl->getName() << Fn->getSourceRange());
3972
3973      // CUDA: Kernel function must have 'void' return type
3974      if (!FuncT->getResultType()->isVoidType())
3975        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3976            << Fn->getType() << Fn->getSourceRange());
3977    } else {
3978      // CUDA: Calls to global functions must be configured
3979      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
3980        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
3981            << FDecl->getName() << Fn->getSourceRange());
3982    }
3983  }
3984
3985  // Check for a valid return type
3986  if (CheckCallReturnType(FuncT->getResultType(),
3987                          Fn->getLocStart(), TheCall,
3988                          FDecl))
3989    return ExprError();
3990
3991  // We know the result type of the call, set it.
3992  TheCall->setType(FuncT->getCallResultType(Context));
3993  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3994
3995  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
3996  if (Proto) {
3997    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3998                                RParenLoc, IsExecConfig))
3999      return ExprError();
4000  } else {
4001    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4002
4003    if (FDecl) {
4004      // Check if we have too few/too many template arguments, based
4005      // on our knowledge of the function definition.
4006      const FunctionDecl *Def = 0;
4007      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4008        Proto = Def->getType()->getAs<FunctionProtoType>();
4009        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4010          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4011            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4012      }
4013
4014      // If the function we're calling isn't a function prototype, but we have
4015      // a function prototype from a prior declaratiom, use that prototype.
4016      if (!FDecl->hasPrototype())
4017        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4018    }
4019
4020    // Promote the arguments (C99 6.5.2.2p6).
4021    for (unsigned i = 0; i != NumArgs; i++) {
4022      Expr *Arg = Args[i];
4023
4024      if (Proto && i < Proto->getNumArgs()) {
4025        InitializedEntity Entity
4026          = InitializedEntity::InitializeParameter(Context,
4027                                                   Proto->getArgType(i),
4028                                                   Proto->isArgConsumed(i));
4029        ExprResult ArgE = PerformCopyInitialization(Entity,
4030                                                    SourceLocation(),
4031                                                    Owned(Arg));
4032        if (ArgE.isInvalid())
4033          return true;
4034
4035        Arg = ArgE.takeAs<Expr>();
4036
4037      } else {
4038        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4039
4040        if (ArgE.isInvalid())
4041          return true;
4042
4043        Arg = ArgE.takeAs<Expr>();
4044      }
4045
4046      if (RequireCompleteType(Arg->getLocStart(),
4047                              Arg->getType(),
4048                              diag::err_call_incomplete_argument, Arg))
4049        return ExprError();
4050
4051      TheCall->setArg(i, Arg);
4052    }
4053  }
4054
4055  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4056    if (!Method->isStatic())
4057      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4058        << Fn->getSourceRange());
4059
4060  // Check for sentinels
4061  if (NDecl)
4062    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4063
4064  // Do special checking on direct calls to functions.
4065  if (FDecl) {
4066    if (CheckFunctionCall(FDecl, TheCall, Proto))
4067      return ExprError();
4068
4069    if (BuiltinID)
4070      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4071  } else if (NDecl) {
4072    if (CheckBlockCall(NDecl, TheCall, Proto))
4073      return ExprError();
4074  }
4075
4076  return MaybeBindToTemporary(TheCall);
4077}
4078
4079ExprResult
4080Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4081                           SourceLocation RParenLoc, Expr *InitExpr) {
4082  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4083  // FIXME: put back this assert when initializers are worked out.
4084  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4085
4086  TypeSourceInfo *TInfo;
4087  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4088  if (!TInfo)
4089    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4090
4091  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4092}
4093
4094ExprResult
4095Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4096                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4097  QualType literalType = TInfo->getType();
4098
4099  if (literalType->isArrayType()) {
4100    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4101          diag::err_illegal_decl_array_incomplete_type,
4102          SourceRange(LParenLoc,
4103                      LiteralExpr->getSourceRange().getEnd())))
4104      return ExprError();
4105    if (literalType->isVariableArrayType())
4106      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4107        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4108  } else if (!literalType->isDependentType() &&
4109             RequireCompleteType(LParenLoc, literalType,
4110               diag::err_typecheck_decl_incomplete_type,
4111               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4112    return ExprError();
4113
4114  InitializedEntity Entity
4115    = InitializedEntity::InitializeTemporary(literalType);
4116  InitializationKind Kind
4117    = InitializationKind::CreateCStyleCast(LParenLoc,
4118                                           SourceRange(LParenLoc, RParenLoc),
4119                                           /*InitList=*/true);
4120  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4121  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4122                                       MultiExprArg(*this, &LiteralExpr, 1),
4123                                            &literalType);
4124  if (Result.isInvalid())
4125    return ExprError();
4126  LiteralExpr = Result.get();
4127
4128  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4129  if (isFileScope) { // 6.5.2.5p3
4130    if (CheckForConstantInitializer(LiteralExpr, literalType))
4131      return ExprError();
4132  }
4133
4134  // In C, compound literals are l-values for some reason.
4135  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4136
4137  return MaybeBindToTemporary(
4138           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4139                                             VK, LiteralExpr, isFileScope));
4140}
4141
4142ExprResult
4143Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4144                    SourceLocation RBraceLoc) {
4145  unsigned NumInit = InitArgList.size();
4146  Expr **InitList = InitArgList.release();
4147
4148  // Immediately handle non-overload placeholders.  Overloads can be
4149  // resolved contextually, but everything else here can't.
4150  for (unsigned I = 0; I != NumInit; ++I) {
4151    if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
4152      ExprResult result = CheckPlaceholderExpr(InitList[I]);
4153
4154      // Ignore failures; dropping the entire initializer list because
4155      // of one failure would be terrible for indexing/etc.
4156      if (result.isInvalid()) continue;
4157
4158      InitList[I] = result.take();
4159    }
4160  }
4161
4162  // Semantic analysis for initializers is done by ActOnDeclarator() and
4163  // CheckInitializer() - it requires knowledge of the object being intialized.
4164
4165  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4166                                               NumInit, RBraceLoc);
4167  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4168  return Owned(E);
4169}
4170
4171/// Do an explicit extend of the given block pointer if we're in ARC.
4172static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4173  assert(E.get()->getType()->isBlockPointerType());
4174  assert(E.get()->isRValue());
4175
4176  // Only do this in an r-value context.
4177  if (!S.getLangOpts().ObjCAutoRefCount) return;
4178
4179  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4180                               CK_ARCExtendBlockObject, E.get(),
4181                               /*base path*/ 0, VK_RValue);
4182  S.ExprNeedsCleanups = true;
4183}
4184
4185/// Prepare a conversion of the given expression to an ObjC object
4186/// pointer type.
4187CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4188  QualType type = E.get()->getType();
4189  if (type->isObjCObjectPointerType()) {
4190    return CK_BitCast;
4191  } else if (type->isBlockPointerType()) {
4192    maybeExtendBlockObject(*this, E);
4193    return CK_BlockPointerToObjCPointerCast;
4194  } else {
4195    assert(type->isPointerType());
4196    return CK_CPointerToObjCPointerCast;
4197  }
4198}
4199
4200/// Prepares for a scalar cast, performing all the necessary stages
4201/// except the final cast and returning the kind required.
4202CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4203  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4204  // Also, callers should have filtered out the invalid cases with
4205  // pointers.  Everything else should be possible.
4206
4207  QualType SrcTy = Src.get()->getType();
4208  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4209    return CK_NoOp;
4210
4211  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4212  case Type::STK_MemberPointer:
4213    llvm_unreachable("member pointer type in C");
4214
4215  case Type::STK_CPointer:
4216  case Type::STK_BlockPointer:
4217  case Type::STK_ObjCObjectPointer:
4218    switch (DestTy->getScalarTypeKind()) {
4219    case Type::STK_CPointer:
4220      return CK_BitCast;
4221    case Type::STK_BlockPointer:
4222      return (SrcKind == Type::STK_BlockPointer
4223                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4224    case Type::STK_ObjCObjectPointer:
4225      if (SrcKind == Type::STK_ObjCObjectPointer)
4226        return CK_BitCast;
4227      if (SrcKind == Type::STK_CPointer)
4228        return CK_CPointerToObjCPointerCast;
4229      maybeExtendBlockObject(*this, Src);
4230      return CK_BlockPointerToObjCPointerCast;
4231    case Type::STK_Bool:
4232      return CK_PointerToBoolean;
4233    case Type::STK_Integral:
4234      return CK_PointerToIntegral;
4235    case Type::STK_Floating:
4236    case Type::STK_FloatingComplex:
4237    case Type::STK_IntegralComplex:
4238    case Type::STK_MemberPointer:
4239      llvm_unreachable("illegal cast from pointer");
4240    }
4241    llvm_unreachable("Should have returned before this");
4242
4243  case Type::STK_Bool: // casting from bool is like casting from an integer
4244  case Type::STK_Integral:
4245    switch (DestTy->getScalarTypeKind()) {
4246    case Type::STK_CPointer:
4247    case Type::STK_ObjCObjectPointer:
4248    case Type::STK_BlockPointer:
4249      if (Src.get()->isNullPointerConstant(Context,
4250                                           Expr::NPC_ValueDependentIsNull))
4251        return CK_NullToPointer;
4252      return CK_IntegralToPointer;
4253    case Type::STK_Bool:
4254      return CK_IntegralToBoolean;
4255    case Type::STK_Integral:
4256      return CK_IntegralCast;
4257    case Type::STK_Floating:
4258      return CK_IntegralToFloating;
4259    case Type::STK_IntegralComplex:
4260      Src = ImpCastExprToType(Src.take(),
4261                              DestTy->castAs<ComplexType>()->getElementType(),
4262                              CK_IntegralCast);
4263      return CK_IntegralRealToComplex;
4264    case Type::STK_FloatingComplex:
4265      Src = ImpCastExprToType(Src.take(),
4266                              DestTy->castAs<ComplexType>()->getElementType(),
4267                              CK_IntegralToFloating);
4268      return CK_FloatingRealToComplex;
4269    case Type::STK_MemberPointer:
4270      llvm_unreachable("member pointer type in C");
4271    }
4272    llvm_unreachable("Should have returned before this");
4273
4274  case Type::STK_Floating:
4275    switch (DestTy->getScalarTypeKind()) {
4276    case Type::STK_Floating:
4277      return CK_FloatingCast;
4278    case Type::STK_Bool:
4279      return CK_FloatingToBoolean;
4280    case Type::STK_Integral:
4281      return CK_FloatingToIntegral;
4282    case Type::STK_FloatingComplex:
4283      Src = ImpCastExprToType(Src.take(),
4284                              DestTy->castAs<ComplexType>()->getElementType(),
4285                              CK_FloatingCast);
4286      return CK_FloatingRealToComplex;
4287    case Type::STK_IntegralComplex:
4288      Src = ImpCastExprToType(Src.take(),
4289                              DestTy->castAs<ComplexType>()->getElementType(),
4290                              CK_FloatingToIntegral);
4291      return CK_IntegralRealToComplex;
4292    case Type::STK_CPointer:
4293    case Type::STK_ObjCObjectPointer:
4294    case Type::STK_BlockPointer:
4295      llvm_unreachable("valid float->pointer cast?");
4296    case Type::STK_MemberPointer:
4297      llvm_unreachable("member pointer type in C");
4298    }
4299    llvm_unreachable("Should have returned before this");
4300
4301  case Type::STK_FloatingComplex:
4302    switch (DestTy->getScalarTypeKind()) {
4303    case Type::STK_FloatingComplex:
4304      return CK_FloatingComplexCast;
4305    case Type::STK_IntegralComplex:
4306      return CK_FloatingComplexToIntegralComplex;
4307    case Type::STK_Floating: {
4308      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4309      if (Context.hasSameType(ET, DestTy))
4310        return CK_FloatingComplexToReal;
4311      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4312      return CK_FloatingCast;
4313    }
4314    case Type::STK_Bool:
4315      return CK_FloatingComplexToBoolean;
4316    case Type::STK_Integral:
4317      Src = ImpCastExprToType(Src.take(),
4318                              SrcTy->castAs<ComplexType>()->getElementType(),
4319                              CK_FloatingComplexToReal);
4320      return CK_FloatingToIntegral;
4321    case Type::STK_CPointer:
4322    case Type::STK_ObjCObjectPointer:
4323    case Type::STK_BlockPointer:
4324      llvm_unreachable("valid complex float->pointer cast?");
4325    case Type::STK_MemberPointer:
4326      llvm_unreachable("member pointer type in C");
4327    }
4328    llvm_unreachable("Should have returned before this");
4329
4330  case Type::STK_IntegralComplex:
4331    switch (DestTy->getScalarTypeKind()) {
4332    case Type::STK_FloatingComplex:
4333      return CK_IntegralComplexToFloatingComplex;
4334    case Type::STK_IntegralComplex:
4335      return CK_IntegralComplexCast;
4336    case Type::STK_Integral: {
4337      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4338      if (Context.hasSameType(ET, DestTy))
4339        return CK_IntegralComplexToReal;
4340      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4341      return CK_IntegralCast;
4342    }
4343    case Type::STK_Bool:
4344      return CK_IntegralComplexToBoolean;
4345    case Type::STK_Floating:
4346      Src = ImpCastExprToType(Src.take(),
4347                              SrcTy->castAs<ComplexType>()->getElementType(),
4348                              CK_IntegralComplexToReal);
4349      return CK_IntegralToFloating;
4350    case Type::STK_CPointer:
4351    case Type::STK_ObjCObjectPointer:
4352    case Type::STK_BlockPointer:
4353      llvm_unreachable("valid complex int->pointer cast?");
4354    case Type::STK_MemberPointer:
4355      llvm_unreachable("member pointer type in C");
4356    }
4357    llvm_unreachable("Should have returned before this");
4358  }
4359
4360  llvm_unreachable("Unhandled scalar cast");
4361}
4362
4363bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4364                           CastKind &Kind) {
4365  assert(VectorTy->isVectorType() && "Not a vector type!");
4366
4367  if (Ty->isVectorType() || Ty->isIntegerType()) {
4368    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4369      return Diag(R.getBegin(),
4370                  Ty->isVectorType() ?
4371                  diag::err_invalid_conversion_between_vectors :
4372                  diag::err_invalid_conversion_between_vector_and_integer)
4373        << VectorTy << Ty << R;
4374  } else
4375    return Diag(R.getBegin(),
4376                diag::err_invalid_conversion_between_vector_and_scalar)
4377      << VectorTy << Ty << R;
4378
4379  Kind = CK_BitCast;
4380  return false;
4381}
4382
4383ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4384                                    Expr *CastExpr, CastKind &Kind) {
4385  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4386
4387  QualType SrcTy = CastExpr->getType();
4388
4389  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4390  // an ExtVectorType.
4391  // In OpenCL, casts between vectors of different types are not allowed.
4392  // (See OpenCL 6.2).
4393  if (SrcTy->isVectorType()) {
4394    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4395        || (getLangOpts().OpenCL &&
4396            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4397      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4398        << DestTy << SrcTy << R;
4399      return ExprError();
4400    }
4401    Kind = CK_BitCast;
4402    return Owned(CastExpr);
4403  }
4404
4405  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4406  // conversion will take place first from scalar to elt type, and then
4407  // splat from elt type to vector.
4408  if (SrcTy->isPointerType())
4409    return Diag(R.getBegin(),
4410                diag::err_invalid_conversion_between_vector_and_scalar)
4411      << DestTy << SrcTy << R;
4412
4413  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4414  ExprResult CastExprRes = Owned(CastExpr);
4415  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4416  if (CastExprRes.isInvalid())
4417    return ExprError();
4418  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4419
4420  Kind = CK_VectorSplat;
4421  return Owned(CastExpr);
4422}
4423
4424ExprResult
4425Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4426                    Declarator &D, ParsedType &Ty,
4427                    SourceLocation RParenLoc, Expr *CastExpr) {
4428  assert(!D.isInvalidType() && (CastExpr != 0) &&
4429         "ActOnCastExpr(): missing type or expr");
4430
4431  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4432  if (D.isInvalidType())
4433    return ExprError();
4434
4435  if (getLangOpts().CPlusPlus) {
4436    // Check that there are no default arguments (C++ only).
4437    CheckExtraCXXDefaultArguments(D);
4438  }
4439
4440  checkUnusedDeclAttributes(D);
4441
4442  QualType castType = castTInfo->getType();
4443  Ty = CreateParsedType(castType, castTInfo);
4444
4445  bool isVectorLiteral = false;
4446
4447  // Check for an altivec or OpenCL literal,
4448  // i.e. all the elements are integer constants.
4449  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4450  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4451  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4452       && castType->isVectorType() && (PE || PLE)) {
4453    if (PLE && PLE->getNumExprs() == 0) {
4454      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4455      return ExprError();
4456    }
4457    if (PE || PLE->getNumExprs() == 1) {
4458      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4459      if (!E->getType()->isVectorType())
4460        isVectorLiteral = true;
4461    }
4462    else
4463      isVectorLiteral = true;
4464  }
4465
4466  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4467  // then handle it as such.
4468  if (isVectorLiteral)
4469    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4470
4471  // If the Expr being casted is a ParenListExpr, handle it specially.
4472  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4473  // sequence of BinOp comma operators.
4474  if (isa<ParenListExpr>(CastExpr)) {
4475    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4476    if (Result.isInvalid()) return ExprError();
4477    CastExpr = Result.take();
4478  }
4479
4480  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4481}
4482
4483ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4484                                    SourceLocation RParenLoc, Expr *E,
4485                                    TypeSourceInfo *TInfo) {
4486  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4487         "Expected paren or paren list expression");
4488
4489  Expr **exprs;
4490  unsigned numExprs;
4491  Expr *subExpr;
4492  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4493    exprs = PE->getExprs();
4494    numExprs = PE->getNumExprs();
4495  } else {
4496    subExpr = cast<ParenExpr>(E)->getSubExpr();
4497    exprs = &subExpr;
4498    numExprs = 1;
4499  }
4500
4501  QualType Ty = TInfo->getType();
4502  assert(Ty->isVectorType() && "Expected vector type");
4503
4504  SmallVector<Expr *, 8> initExprs;
4505  const VectorType *VTy = Ty->getAs<VectorType>();
4506  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4507
4508  // '(...)' form of vector initialization in AltiVec: the number of
4509  // initializers must be one or must match the size of the vector.
4510  // If a single value is specified in the initializer then it will be
4511  // replicated to all the components of the vector
4512  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4513    // The number of initializers must be one or must match the size of the
4514    // vector. If a single value is specified in the initializer then it will
4515    // be replicated to all the components of the vector
4516    if (numExprs == 1) {
4517      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4518      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4519      if (Literal.isInvalid())
4520        return ExprError();
4521      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4522                                  PrepareScalarCast(Literal, ElemTy));
4523      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4524    }
4525    else if (numExprs < numElems) {
4526      Diag(E->getExprLoc(),
4527           diag::err_incorrect_number_of_vector_initializers);
4528      return ExprError();
4529    }
4530    else
4531      initExprs.append(exprs, exprs + numExprs);
4532  }
4533  else {
4534    // For OpenCL, when the number of initializers is a single value,
4535    // it will be replicated to all components of the vector.
4536    if (getLangOpts().OpenCL &&
4537        VTy->getVectorKind() == VectorType::GenericVector &&
4538        numExprs == 1) {
4539        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4540        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4541        if (Literal.isInvalid())
4542          return ExprError();
4543        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4544                                    PrepareScalarCast(Literal, ElemTy));
4545        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4546    }
4547
4548    initExprs.append(exprs, exprs + numExprs);
4549  }
4550  // FIXME: This means that pretty-printing the final AST will produce curly
4551  // braces instead of the original commas.
4552  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4553                                                   &initExprs[0],
4554                                                   initExprs.size(), RParenLoc);
4555  initE->setType(Ty);
4556  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4557}
4558
4559/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4560/// the ParenListExpr into a sequence of comma binary operators.
4561ExprResult
4562Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4563  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4564  if (!E)
4565    return Owned(OrigExpr);
4566
4567  ExprResult Result(E->getExpr(0));
4568
4569  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4570    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4571                        E->getExpr(i));
4572
4573  if (Result.isInvalid()) return ExprError();
4574
4575  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4576}
4577
4578ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4579                                    SourceLocation R,
4580                                    MultiExprArg Val) {
4581  unsigned nexprs = Val.size();
4582  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4583  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4584  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4585  return Owned(expr);
4586}
4587
4588/// \brief Emit a specialized diagnostic when one expression is a null pointer
4589/// constant and the other is not a pointer.  Returns true if a diagnostic is
4590/// emitted.
4591bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4592                                      SourceLocation QuestionLoc) {
4593  Expr *NullExpr = LHSExpr;
4594  Expr *NonPointerExpr = RHSExpr;
4595  Expr::NullPointerConstantKind NullKind =
4596      NullExpr->isNullPointerConstant(Context,
4597                                      Expr::NPC_ValueDependentIsNotNull);
4598
4599  if (NullKind == Expr::NPCK_NotNull) {
4600    NullExpr = RHSExpr;
4601    NonPointerExpr = LHSExpr;
4602    NullKind =
4603        NullExpr->isNullPointerConstant(Context,
4604                                        Expr::NPC_ValueDependentIsNotNull);
4605  }
4606
4607  if (NullKind == Expr::NPCK_NotNull)
4608    return false;
4609
4610  if (NullKind == Expr::NPCK_ZeroInteger) {
4611    // In this case, check to make sure that we got here from a "NULL"
4612    // string in the source code.
4613    NullExpr = NullExpr->IgnoreParenImpCasts();
4614    SourceLocation loc = NullExpr->getExprLoc();
4615    if (!findMacroSpelling(loc, "NULL"))
4616      return false;
4617  }
4618
4619  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4620  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4621      << NonPointerExpr->getType() << DiagType
4622      << NonPointerExpr->getSourceRange();
4623  return true;
4624}
4625
4626/// \brief Return false if the condition expression is valid, true otherwise.
4627static bool checkCondition(Sema &S, Expr *Cond) {
4628  QualType CondTy = Cond->getType();
4629
4630  // C99 6.5.15p2
4631  if (CondTy->isScalarType()) return false;
4632
4633  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4634  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4635    return false;
4636
4637  // Emit the proper error message.
4638  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4639                              diag::err_typecheck_cond_expect_scalar :
4640                              diag::err_typecheck_cond_expect_scalar_or_vector)
4641    << CondTy;
4642  return true;
4643}
4644
4645/// \brief Return false if the two expressions can be converted to a vector,
4646/// true otherwise
4647static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4648                                                    ExprResult &RHS,
4649                                                    QualType CondTy) {
4650  // Both operands should be of scalar type.
4651  if (!LHS.get()->getType()->isScalarType()) {
4652    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4653      << CondTy;
4654    return true;
4655  }
4656  if (!RHS.get()->getType()->isScalarType()) {
4657    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4658      << CondTy;
4659    return true;
4660  }
4661
4662  // Implicity convert these scalars to the type of the condition.
4663  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4664  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4665  return false;
4666}
4667
4668/// \brief Handle when one or both operands are void type.
4669static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4670                                         ExprResult &RHS) {
4671    Expr *LHSExpr = LHS.get();
4672    Expr *RHSExpr = RHS.get();
4673
4674    if (!LHSExpr->getType()->isVoidType())
4675      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4676        << RHSExpr->getSourceRange();
4677    if (!RHSExpr->getType()->isVoidType())
4678      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4679        << LHSExpr->getSourceRange();
4680    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4681    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4682    return S.Context.VoidTy;
4683}
4684
4685/// \brief Return false if the NullExpr can be promoted to PointerTy,
4686/// true otherwise.
4687static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4688                                        QualType PointerTy) {
4689  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4690      !NullExpr.get()->isNullPointerConstant(S.Context,
4691                                            Expr::NPC_ValueDependentIsNull))
4692    return true;
4693
4694  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4695  return false;
4696}
4697
4698/// \brief Checks compatibility between two pointers and return the resulting
4699/// type.
4700static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4701                                                     ExprResult &RHS,
4702                                                     SourceLocation Loc) {
4703  QualType LHSTy = LHS.get()->getType();
4704  QualType RHSTy = RHS.get()->getType();
4705
4706  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4707    // Two identical pointers types are always compatible.
4708    return LHSTy;
4709  }
4710
4711  QualType lhptee, rhptee;
4712
4713  // Get the pointee types.
4714  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4715    lhptee = LHSBTy->getPointeeType();
4716    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4717  } else {
4718    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4719    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4720  }
4721
4722  // C99 6.5.15p6: If both operands are pointers to compatible types or to
4723  // differently qualified versions of compatible types, the result type is
4724  // a pointer to an appropriately qualified version of the composite
4725  // type.
4726
4727  // Only CVR-qualifiers exist in the standard, and the differently-qualified
4728  // clause doesn't make sense for our extensions. E.g. address space 2 should
4729  // be incompatible with address space 3: they may live on different devices or
4730  // anything.
4731  Qualifiers lhQual = lhptee.getQualifiers();
4732  Qualifiers rhQual = rhptee.getQualifiers();
4733
4734  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4735  lhQual.removeCVRQualifiers();
4736  rhQual.removeCVRQualifiers();
4737
4738  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4739  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4740
4741  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4742
4743  if (CompositeTy.isNull()) {
4744    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4745      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4746      << RHS.get()->getSourceRange();
4747    // In this situation, we assume void* type. No especially good
4748    // reason, but this is what gcc does, and we do have to pick
4749    // to get a consistent AST.
4750    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4751    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4752    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4753    return incompatTy;
4754  }
4755
4756  // The pointer types are compatible.
4757  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4758  ResultTy = S.Context.getPointerType(ResultTy);
4759
4760  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4761  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4762  return ResultTy;
4763}
4764
4765/// \brief Return the resulting type when the operands are both block pointers.
4766static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4767                                                          ExprResult &LHS,
4768                                                          ExprResult &RHS,
4769                                                          SourceLocation Loc) {
4770  QualType LHSTy = LHS.get()->getType();
4771  QualType RHSTy = RHS.get()->getType();
4772
4773  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4774    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4775      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4776      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4777      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4778      return destType;
4779    }
4780    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4781      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4782      << RHS.get()->getSourceRange();
4783    return QualType();
4784  }
4785
4786  // We have 2 block pointer types.
4787  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4788}
4789
4790/// \brief Return the resulting type when the operands are both pointers.
4791static QualType
4792checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4793                                            ExprResult &RHS,
4794                                            SourceLocation Loc) {
4795  // get the pointer types
4796  QualType LHSTy = LHS.get()->getType();
4797  QualType RHSTy = RHS.get()->getType();
4798
4799  // get the "pointed to" types
4800  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4801  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4802
4803  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4804  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4805    // Figure out necessary qualifiers (C99 6.5.15p6)
4806    QualType destPointee
4807      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4808    QualType destType = S.Context.getPointerType(destPointee);
4809    // Add qualifiers if necessary.
4810    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4811    // Promote to void*.
4812    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4813    return destType;
4814  }
4815  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4816    QualType destPointee
4817      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4818    QualType destType = S.Context.getPointerType(destPointee);
4819    // Add qualifiers if necessary.
4820    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4821    // Promote to void*.
4822    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4823    return destType;
4824  }
4825
4826  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4827}
4828
4829/// \brief Return false if the first expression is not an integer and the second
4830/// expression is not a pointer, true otherwise.
4831static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4832                                        Expr* PointerExpr, SourceLocation Loc,
4833                                        bool IsIntFirstExpr) {
4834  if (!PointerExpr->getType()->isPointerType() ||
4835      !Int.get()->getType()->isIntegerType())
4836    return false;
4837
4838  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4839  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4840
4841  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4842    << Expr1->getType() << Expr2->getType()
4843    << Expr1->getSourceRange() << Expr2->getSourceRange();
4844  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4845                            CK_IntegralToPointer);
4846  return true;
4847}
4848
4849/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4850/// In that case, LHS = cond.
4851/// C99 6.5.15
4852QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4853                                        ExprResult &RHS, ExprValueKind &VK,
4854                                        ExprObjectKind &OK,
4855                                        SourceLocation QuestionLoc) {
4856
4857  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4858  if (!LHSResult.isUsable()) return QualType();
4859  LHS = move(LHSResult);
4860
4861  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4862  if (!RHSResult.isUsable()) return QualType();
4863  RHS = move(RHSResult);
4864
4865  // C++ is sufficiently different to merit its own checker.
4866  if (getLangOpts().CPlusPlus)
4867    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4868
4869  VK = VK_RValue;
4870  OK = OK_Ordinary;
4871
4872  Cond = UsualUnaryConversions(Cond.take());
4873  if (Cond.isInvalid())
4874    return QualType();
4875  LHS = UsualUnaryConversions(LHS.take());
4876  if (LHS.isInvalid())
4877    return QualType();
4878  RHS = UsualUnaryConversions(RHS.take());
4879  if (RHS.isInvalid())
4880    return QualType();
4881
4882  QualType CondTy = Cond.get()->getType();
4883  QualType LHSTy = LHS.get()->getType();
4884  QualType RHSTy = RHS.get()->getType();
4885
4886  // first, check the condition.
4887  if (checkCondition(*this, Cond.get()))
4888    return QualType();
4889
4890  // Now check the two expressions.
4891  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4892    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4893
4894  // OpenCL: If the condition is a vector, and both operands are scalar,
4895  // attempt to implicity convert them to the vector type to act like the
4896  // built in select.
4897  if (getLangOpts().OpenCL && CondTy->isVectorType())
4898    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4899      return QualType();
4900
4901  // If both operands have arithmetic type, do the usual arithmetic conversions
4902  // to find a common type: C99 6.5.15p3,5.
4903  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4904    UsualArithmeticConversions(LHS, RHS);
4905    if (LHS.isInvalid() || RHS.isInvalid())
4906      return QualType();
4907    return LHS.get()->getType();
4908  }
4909
4910  // If both operands are the same structure or union type, the result is that
4911  // type.
4912  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4913    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4914      if (LHSRT->getDecl() == RHSRT->getDecl())
4915        // "If both the operands have structure or union type, the result has
4916        // that type."  This implies that CV qualifiers are dropped.
4917        return LHSTy.getUnqualifiedType();
4918    // FIXME: Type of conditional expression must be complete in C mode.
4919  }
4920
4921  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4922  // The following || allows only one side to be void (a GCC-ism).
4923  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4924    return checkConditionalVoidType(*this, LHS, RHS);
4925  }
4926
4927  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4928  // the type of the other operand."
4929  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4930  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4931
4932  // All objective-c pointer type analysis is done here.
4933  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4934                                                        QuestionLoc);
4935  if (LHS.isInvalid() || RHS.isInvalid())
4936    return QualType();
4937  if (!compositeType.isNull())
4938    return compositeType;
4939
4940
4941  // Handle block pointer types.
4942  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4943    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4944                                                     QuestionLoc);
4945
4946  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4947  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4948    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4949                                                       QuestionLoc);
4950
4951  // GCC compatibility: soften pointer/integer mismatch.  Note that
4952  // null pointers have been filtered out by this point.
4953  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4954      /*isIntFirstExpr=*/true))
4955    return RHSTy;
4956  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4957      /*isIntFirstExpr=*/false))
4958    return LHSTy;
4959
4960  // Emit a better diagnostic if one of the expressions is a null pointer
4961  // constant and the other is not a pointer type. In this case, the user most
4962  // likely forgot to take the address of the other expression.
4963  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4964    return QualType();
4965
4966  // Otherwise, the operands are not compatible.
4967  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4968    << LHSTy << RHSTy << LHS.get()->getSourceRange()
4969    << RHS.get()->getSourceRange();
4970  return QualType();
4971}
4972
4973/// FindCompositeObjCPointerType - Helper method to find composite type of
4974/// two objective-c pointer types of the two input expressions.
4975QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4976                                            SourceLocation QuestionLoc) {
4977  QualType LHSTy = LHS.get()->getType();
4978  QualType RHSTy = RHS.get()->getType();
4979
4980  // Handle things like Class and struct objc_class*.  Here we case the result
4981  // to the pseudo-builtin, because that will be implicitly cast back to the
4982  // redefinition type if an attempt is made to access its fields.
4983  if (LHSTy->isObjCClassType() &&
4984      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4985    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4986    return LHSTy;
4987  }
4988  if (RHSTy->isObjCClassType() &&
4989      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4990    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4991    return RHSTy;
4992  }
4993  // And the same for struct objc_object* / id
4994  if (LHSTy->isObjCIdType() &&
4995      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4996    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4997    return LHSTy;
4998  }
4999  if (RHSTy->isObjCIdType() &&
5000      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5001    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5002    return RHSTy;
5003  }
5004  // And the same for struct objc_selector* / SEL
5005  if (Context.isObjCSelType(LHSTy) &&
5006      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5007    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5008    return LHSTy;
5009  }
5010  if (Context.isObjCSelType(RHSTy) &&
5011      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5012    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5013    return RHSTy;
5014  }
5015  // Check constraints for Objective-C object pointers types.
5016  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5017
5018    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5019      // Two identical object pointer types are always compatible.
5020      return LHSTy;
5021    }
5022    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5023    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5024    QualType compositeType = LHSTy;
5025
5026    // If both operands are interfaces and either operand can be
5027    // assigned to the other, use that type as the composite
5028    // type. This allows
5029    //   xxx ? (A*) a : (B*) b
5030    // where B is a subclass of A.
5031    //
5032    // Additionally, as for assignment, if either type is 'id'
5033    // allow silent coercion. Finally, if the types are
5034    // incompatible then make sure to use 'id' as the composite
5035    // type so the result is acceptable for sending messages to.
5036
5037    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5038    // It could return the composite type.
5039    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5040      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5041    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5042      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5043    } else if ((LHSTy->isObjCQualifiedIdType() ||
5044                RHSTy->isObjCQualifiedIdType()) &&
5045               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5046      // Need to handle "id<xx>" explicitly.
5047      // GCC allows qualified id and any Objective-C type to devolve to
5048      // id. Currently localizing to here until clear this should be
5049      // part of ObjCQualifiedIdTypesAreCompatible.
5050      compositeType = Context.getObjCIdType();
5051    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5052      compositeType = Context.getObjCIdType();
5053    } else if (!(compositeType =
5054                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5055      ;
5056    else {
5057      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5058      << LHSTy << RHSTy
5059      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5060      QualType incompatTy = Context.getObjCIdType();
5061      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5062      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5063      return incompatTy;
5064    }
5065    // The object pointer types are compatible.
5066    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5067    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5068    return compositeType;
5069  }
5070  // Check Objective-C object pointer types and 'void *'
5071  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5072    if (getLangOpts().ObjCAutoRefCount) {
5073      // ARC forbids the implicit conversion of object pointers to 'void *',
5074      // so these types are not compatible.
5075      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5076          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5077      LHS = RHS = true;
5078      return QualType();
5079    }
5080    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5081    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5082    QualType destPointee
5083    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5084    QualType destType = Context.getPointerType(destPointee);
5085    // Add qualifiers if necessary.
5086    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5087    // Promote to void*.
5088    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5089    return destType;
5090  }
5091  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5092    if (getLangOpts().ObjCAutoRefCount) {
5093      // ARC forbids the implicit conversion of object pointers to 'void *',
5094      // so these types are not compatible.
5095      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5096          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5097      LHS = RHS = true;
5098      return QualType();
5099    }
5100    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5101    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5102    QualType destPointee
5103    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5104    QualType destType = Context.getPointerType(destPointee);
5105    // Add qualifiers if necessary.
5106    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5107    // Promote to void*.
5108    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5109    return destType;
5110  }
5111  return QualType();
5112}
5113
5114/// SuggestParentheses - Emit a note with a fixit hint that wraps
5115/// ParenRange in parentheses.
5116static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5117                               const PartialDiagnostic &Note,
5118                               SourceRange ParenRange) {
5119  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5120  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5121      EndLoc.isValid()) {
5122    Self.Diag(Loc, Note)
5123      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5124      << FixItHint::CreateInsertion(EndLoc, ")");
5125  } else {
5126    // We can't display the parentheses, so just show the bare note.
5127    Self.Diag(Loc, Note) << ParenRange;
5128  }
5129}
5130
5131static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5132  return Opc >= BO_Mul && Opc <= BO_Shr;
5133}
5134
5135/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5136/// expression, either using a built-in or overloaded operator,
5137/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5138/// expression.
5139static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5140                                   Expr **RHSExprs) {
5141  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5142  E = E->IgnoreImpCasts();
5143  E = E->IgnoreConversionOperator();
5144  E = E->IgnoreImpCasts();
5145
5146  // Built-in binary operator.
5147  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5148    if (IsArithmeticOp(OP->getOpcode())) {
5149      *Opcode = OP->getOpcode();
5150      *RHSExprs = OP->getRHS();
5151      return true;
5152    }
5153  }
5154
5155  // Overloaded operator.
5156  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5157    if (Call->getNumArgs() != 2)
5158      return false;
5159
5160    // Make sure this is really a binary operator that is safe to pass into
5161    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5162    OverloadedOperatorKind OO = Call->getOperator();
5163    if (OO < OO_Plus || OO > OO_Arrow)
5164      return false;
5165
5166    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5167    if (IsArithmeticOp(OpKind)) {
5168      *Opcode = OpKind;
5169      *RHSExprs = Call->getArg(1);
5170      return true;
5171    }
5172  }
5173
5174  return false;
5175}
5176
5177static bool IsLogicOp(BinaryOperatorKind Opc) {
5178  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5179}
5180
5181/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5182/// or is a logical expression such as (x==y) which has int type, but is
5183/// commonly interpreted as boolean.
5184static bool ExprLooksBoolean(Expr *E) {
5185  E = E->IgnoreParenImpCasts();
5186
5187  if (E->getType()->isBooleanType())
5188    return true;
5189  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5190    return IsLogicOp(OP->getOpcode());
5191  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5192    return OP->getOpcode() == UO_LNot;
5193
5194  return false;
5195}
5196
5197/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5198/// and binary operator are mixed in a way that suggests the programmer assumed
5199/// the conditional operator has higher precedence, for example:
5200/// "int x = a + someBinaryCondition ? 1 : 2".
5201static void DiagnoseConditionalPrecedence(Sema &Self,
5202                                          SourceLocation OpLoc,
5203                                          Expr *Condition,
5204                                          Expr *LHSExpr,
5205                                          Expr *RHSExpr) {
5206  BinaryOperatorKind CondOpcode;
5207  Expr *CondRHS;
5208
5209  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5210    return;
5211  if (!ExprLooksBoolean(CondRHS))
5212    return;
5213
5214  // The condition is an arithmetic binary expression, with a right-
5215  // hand side that looks boolean, so warn.
5216
5217  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5218      << Condition->getSourceRange()
5219      << BinaryOperator::getOpcodeStr(CondOpcode);
5220
5221  SuggestParentheses(Self, OpLoc,
5222    Self.PDiag(diag::note_precedence_conditional_silence)
5223      << BinaryOperator::getOpcodeStr(CondOpcode),
5224    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5225
5226  SuggestParentheses(Self, OpLoc,
5227    Self.PDiag(diag::note_precedence_conditional_first),
5228    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5229}
5230
5231/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5232/// in the case of a the GNU conditional expr extension.
5233ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5234                                    SourceLocation ColonLoc,
5235                                    Expr *CondExpr, Expr *LHSExpr,
5236                                    Expr *RHSExpr) {
5237  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5238  // was the condition.
5239  OpaqueValueExpr *opaqueValue = 0;
5240  Expr *commonExpr = 0;
5241  if (LHSExpr == 0) {
5242    commonExpr = CondExpr;
5243
5244    // We usually want to apply unary conversions *before* saving, except
5245    // in the special case of a C++ l-value conditional.
5246    if (!(getLangOpts().CPlusPlus
5247          && !commonExpr->isTypeDependent()
5248          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5249          && commonExpr->isGLValue()
5250          && commonExpr->isOrdinaryOrBitFieldObject()
5251          && RHSExpr->isOrdinaryOrBitFieldObject()
5252          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5253      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5254      if (commonRes.isInvalid())
5255        return ExprError();
5256      commonExpr = commonRes.take();
5257    }
5258
5259    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5260                                                commonExpr->getType(),
5261                                                commonExpr->getValueKind(),
5262                                                commonExpr->getObjectKind(),
5263                                                commonExpr);
5264    LHSExpr = CondExpr = opaqueValue;
5265  }
5266
5267  ExprValueKind VK = VK_RValue;
5268  ExprObjectKind OK = OK_Ordinary;
5269  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5270  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5271                                             VK, OK, QuestionLoc);
5272  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5273      RHS.isInvalid())
5274    return ExprError();
5275
5276  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5277                                RHS.get());
5278
5279  if (!commonExpr)
5280    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5281                                                   LHS.take(), ColonLoc,
5282                                                   RHS.take(), result, VK, OK));
5283
5284  return Owned(new (Context)
5285    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5286                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5287                              OK));
5288}
5289
5290// checkPointerTypesForAssignment - This is a very tricky routine (despite
5291// being closely modeled after the C99 spec:-). The odd characteristic of this
5292// routine is it effectively iqnores the qualifiers on the top level pointee.
5293// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5294// FIXME: add a couple examples in this comment.
5295static Sema::AssignConvertType
5296checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5297  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5298  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5299
5300  // get the "pointed to" type (ignoring qualifiers at the top level)
5301  const Type *lhptee, *rhptee;
5302  Qualifiers lhq, rhq;
5303  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5304  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5305
5306  Sema::AssignConvertType ConvTy = Sema::Compatible;
5307
5308  // C99 6.5.16.1p1: This following citation is common to constraints
5309  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5310  // qualifiers of the type *pointed to* by the right;
5311  Qualifiers lq;
5312
5313  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5314  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5315      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5316    // Ignore lifetime for further calculation.
5317    lhq.removeObjCLifetime();
5318    rhq.removeObjCLifetime();
5319  }
5320
5321  if (!lhq.compatiblyIncludes(rhq)) {
5322    // Treat address-space mismatches as fatal.  TODO: address subspaces
5323    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5324      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5325
5326    // It's okay to add or remove GC or lifetime qualifiers when converting to
5327    // and from void*.
5328    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5329                        .compatiblyIncludes(
5330                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5331             && (lhptee->isVoidType() || rhptee->isVoidType()))
5332      ; // keep old
5333
5334    // Treat lifetime mismatches as fatal.
5335    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5336      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5337
5338    // For GCC compatibility, other qualifier mismatches are treated
5339    // as still compatible in C.
5340    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5341  }
5342
5343  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5344  // incomplete type and the other is a pointer to a qualified or unqualified
5345  // version of void...
5346  if (lhptee->isVoidType()) {
5347    if (rhptee->isIncompleteOrObjectType())
5348      return ConvTy;
5349
5350    // As an extension, we allow cast to/from void* to function pointer.
5351    assert(rhptee->isFunctionType());
5352    return Sema::FunctionVoidPointer;
5353  }
5354
5355  if (rhptee->isVoidType()) {
5356    if (lhptee->isIncompleteOrObjectType())
5357      return ConvTy;
5358
5359    // As an extension, we allow cast to/from void* to function pointer.
5360    assert(lhptee->isFunctionType());
5361    return Sema::FunctionVoidPointer;
5362  }
5363
5364  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5365  // unqualified versions of compatible types, ...
5366  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5367  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5368    // Check if the pointee types are compatible ignoring the sign.
5369    // We explicitly check for char so that we catch "char" vs
5370    // "unsigned char" on systems where "char" is unsigned.
5371    if (lhptee->isCharType())
5372      ltrans = S.Context.UnsignedCharTy;
5373    else if (lhptee->hasSignedIntegerRepresentation())
5374      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5375
5376    if (rhptee->isCharType())
5377      rtrans = S.Context.UnsignedCharTy;
5378    else if (rhptee->hasSignedIntegerRepresentation())
5379      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5380
5381    if (ltrans == rtrans) {
5382      // Types are compatible ignoring the sign. Qualifier incompatibility
5383      // takes priority over sign incompatibility because the sign
5384      // warning can be disabled.
5385      if (ConvTy != Sema::Compatible)
5386        return ConvTy;
5387
5388      return Sema::IncompatiblePointerSign;
5389    }
5390
5391    // If we are a multi-level pointer, it's possible that our issue is simply
5392    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5393    // the eventual target type is the same and the pointers have the same
5394    // level of indirection, this must be the issue.
5395    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5396      do {
5397        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5398        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5399      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5400
5401      if (lhptee == rhptee)
5402        return Sema::IncompatibleNestedPointerQualifiers;
5403    }
5404
5405    // General pointer incompatibility takes priority over qualifiers.
5406    return Sema::IncompatiblePointer;
5407  }
5408  if (!S.getLangOpts().CPlusPlus &&
5409      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5410    return Sema::IncompatiblePointer;
5411  return ConvTy;
5412}
5413
5414/// checkBlockPointerTypesForAssignment - This routine determines whether two
5415/// block pointer types are compatible or whether a block and normal pointer
5416/// are compatible. It is more restrict than comparing two function pointer
5417// types.
5418static Sema::AssignConvertType
5419checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5420                                    QualType RHSType) {
5421  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5422  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5423
5424  QualType lhptee, rhptee;
5425
5426  // get the "pointed to" type (ignoring qualifiers at the top level)
5427  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5428  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5429
5430  // In C++, the types have to match exactly.
5431  if (S.getLangOpts().CPlusPlus)
5432    return Sema::IncompatibleBlockPointer;
5433
5434  Sema::AssignConvertType ConvTy = Sema::Compatible;
5435
5436  // For blocks we enforce that qualifiers are identical.
5437  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5438    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5439
5440  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5441    return Sema::IncompatibleBlockPointer;
5442
5443  return ConvTy;
5444}
5445
5446/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5447/// for assignment compatibility.
5448static Sema::AssignConvertType
5449checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5450                                   QualType RHSType) {
5451  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5452  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5453
5454  if (LHSType->isObjCBuiltinType()) {
5455    // Class is not compatible with ObjC object pointers.
5456    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5457        !RHSType->isObjCQualifiedClassType())
5458      return Sema::IncompatiblePointer;
5459    return Sema::Compatible;
5460  }
5461  if (RHSType->isObjCBuiltinType()) {
5462    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5463        !LHSType->isObjCQualifiedClassType())
5464      return Sema::IncompatiblePointer;
5465    return Sema::Compatible;
5466  }
5467  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5468  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5469
5470  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5471      // make an exception for id<P>
5472      !LHSType->isObjCQualifiedIdType())
5473    return Sema::CompatiblePointerDiscardsQualifiers;
5474
5475  if (S.Context.typesAreCompatible(LHSType, RHSType))
5476    return Sema::Compatible;
5477  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5478    return Sema::IncompatibleObjCQualifiedId;
5479  return Sema::IncompatiblePointer;
5480}
5481
5482Sema::AssignConvertType
5483Sema::CheckAssignmentConstraints(SourceLocation Loc,
5484                                 QualType LHSType, QualType RHSType) {
5485  // Fake up an opaque expression.  We don't actually care about what
5486  // cast operations are required, so if CheckAssignmentConstraints
5487  // adds casts to this they'll be wasted, but fortunately that doesn't
5488  // usually happen on valid code.
5489  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5490  ExprResult RHSPtr = &RHSExpr;
5491  CastKind K = CK_Invalid;
5492
5493  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5494}
5495
5496/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5497/// has code to accommodate several GCC extensions when type checking
5498/// pointers. Here are some objectionable examples that GCC considers warnings:
5499///
5500///  int a, *pint;
5501///  short *pshort;
5502///  struct foo *pfoo;
5503///
5504///  pint = pshort; // warning: assignment from incompatible pointer type
5505///  a = pint; // warning: assignment makes integer from pointer without a cast
5506///  pint = a; // warning: assignment makes pointer from integer without a cast
5507///  pint = pfoo; // warning: assignment from incompatible pointer type
5508///
5509/// As a result, the code for dealing with pointers is more complex than the
5510/// C99 spec dictates.
5511///
5512/// Sets 'Kind' for any result kind except Incompatible.
5513Sema::AssignConvertType
5514Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5515                                 CastKind &Kind) {
5516  QualType RHSType = RHS.get()->getType();
5517  QualType OrigLHSType = LHSType;
5518
5519  // Get canonical types.  We're not formatting these types, just comparing
5520  // them.
5521  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5522  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5523
5524
5525  // Common case: no conversion required.
5526  if (LHSType == RHSType) {
5527    Kind = CK_NoOp;
5528    return Compatible;
5529  }
5530
5531  // If we have an atomic type, try a non-atomic assignment, then just add an
5532  // atomic qualification step.
5533  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5534    Sema::AssignConvertType result =
5535      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5536    if (result != Compatible)
5537      return result;
5538    if (Kind != CK_NoOp)
5539      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5540    Kind = CK_NonAtomicToAtomic;
5541    return Compatible;
5542  }
5543
5544  // If the left-hand side is a reference type, then we are in a
5545  // (rare!) case where we've allowed the use of references in C,
5546  // e.g., as a parameter type in a built-in function. In this case,
5547  // just make sure that the type referenced is compatible with the
5548  // right-hand side type. The caller is responsible for adjusting
5549  // LHSType so that the resulting expression does not have reference
5550  // type.
5551  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5552    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5553      Kind = CK_LValueBitCast;
5554      return Compatible;
5555    }
5556    return Incompatible;
5557  }
5558
5559  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5560  // to the same ExtVector type.
5561  if (LHSType->isExtVectorType()) {
5562    if (RHSType->isExtVectorType())
5563      return Incompatible;
5564    if (RHSType->isArithmeticType()) {
5565      // CK_VectorSplat does T -> vector T, so first cast to the
5566      // element type.
5567      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5568      if (elType != RHSType) {
5569        Kind = PrepareScalarCast(RHS, elType);
5570        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5571      }
5572      Kind = CK_VectorSplat;
5573      return Compatible;
5574    }
5575  }
5576
5577  // Conversions to or from vector type.
5578  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5579    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5580      // Allow assignments of an AltiVec vector type to an equivalent GCC
5581      // vector type and vice versa
5582      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5583        Kind = CK_BitCast;
5584        return Compatible;
5585      }
5586
5587      // If we are allowing lax vector conversions, and LHS and RHS are both
5588      // vectors, the total size only needs to be the same. This is a bitcast;
5589      // no bits are changed but the result type is different.
5590      if (getLangOpts().LaxVectorConversions &&
5591          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5592        Kind = CK_BitCast;
5593        return IncompatibleVectors;
5594      }
5595    }
5596    return Incompatible;
5597  }
5598
5599  // Arithmetic conversions.
5600  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5601      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5602    Kind = PrepareScalarCast(RHS, LHSType);
5603    return Compatible;
5604  }
5605
5606  // Conversions to normal pointers.
5607  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5608    // U* -> T*
5609    if (isa<PointerType>(RHSType)) {
5610      Kind = CK_BitCast;
5611      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5612    }
5613
5614    // int -> T*
5615    if (RHSType->isIntegerType()) {
5616      Kind = CK_IntegralToPointer; // FIXME: null?
5617      return IntToPointer;
5618    }
5619
5620    // C pointers are not compatible with ObjC object pointers,
5621    // with two exceptions:
5622    if (isa<ObjCObjectPointerType>(RHSType)) {
5623      //  - conversions to void*
5624      if (LHSPointer->getPointeeType()->isVoidType()) {
5625        Kind = CK_BitCast;
5626        return Compatible;
5627      }
5628
5629      //  - conversions from 'Class' to the redefinition type
5630      if (RHSType->isObjCClassType() &&
5631          Context.hasSameType(LHSType,
5632                              Context.getObjCClassRedefinitionType())) {
5633        Kind = CK_BitCast;
5634        return Compatible;
5635      }
5636
5637      Kind = CK_BitCast;
5638      return IncompatiblePointer;
5639    }
5640
5641    // U^ -> void*
5642    if (RHSType->getAs<BlockPointerType>()) {
5643      if (LHSPointer->getPointeeType()->isVoidType()) {
5644        Kind = CK_BitCast;
5645        return Compatible;
5646      }
5647    }
5648
5649    return Incompatible;
5650  }
5651
5652  // Conversions to block pointers.
5653  if (isa<BlockPointerType>(LHSType)) {
5654    // U^ -> T^
5655    if (RHSType->isBlockPointerType()) {
5656      Kind = CK_BitCast;
5657      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5658    }
5659
5660    // int or null -> T^
5661    if (RHSType->isIntegerType()) {
5662      Kind = CK_IntegralToPointer; // FIXME: null
5663      return IntToBlockPointer;
5664    }
5665
5666    // id -> T^
5667    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5668      Kind = CK_AnyPointerToBlockPointerCast;
5669      return Compatible;
5670    }
5671
5672    // void* -> T^
5673    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5674      if (RHSPT->getPointeeType()->isVoidType()) {
5675        Kind = CK_AnyPointerToBlockPointerCast;
5676        return Compatible;
5677      }
5678
5679    return Incompatible;
5680  }
5681
5682  // Conversions to Objective-C pointers.
5683  if (isa<ObjCObjectPointerType>(LHSType)) {
5684    // A* -> B*
5685    if (RHSType->isObjCObjectPointerType()) {
5686      Kind = CK_BitCast;
5687      Sema::AssignConvertType result =
5688        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5689      if (getLangOpts().ObjCAutoRefCount &&
5690          result == Compatible &&
5691          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5692        result = IncompatibleObjCWeakRef;
5693      return result;
5694    }
5695
5696    // int or null -> A*
5697    if (RHSType->isIntegerType()) {
5698      Kind = CK_IntegralToPointer; // FIXME: null
5699      return IntToPointer;
5700    }
5701
5702    // In general, C pointers are not compatible with ObjC object pointers,
5703    // with two exceptions:
5704    if (isa<PointerType>(RHSType)) {
5705      Kind = CK_CPointerToObjCPointerCast;
5706
5707      //  - conversions from 'void*'
5708      if (RHSType->isVoidPointerType()) {
5709        return Compatible;
5710      }
5711
5712      //  - conversions to 'Class' from its redefinition type
5713      if (LHSType->isObjCClassType() &&
5714          Context.hasSameType(RHSType,
5715                              Context.getObjCClassRedefinitionType())) {
5716        return Compatible;
5717      }
5718
5719      return IncompatiblePointer;
5720    }
5721
5722    // T^ -> A*
5723    if (RHSType->isBlockPointerType()) {
5724      maybeExtendBlockObject(*this, RHS);
5725      Kind = CK_BlockPointerToObjCPointerCast;
5726      return Compatible;
5727    }
5728
5729    return Incompatible;
5730  }
5731
5732  // Conversions from pointers that are not covered by the above.
5733  if (isa<PointerType>(RHSType)) {
5734    // T* -> _Bool
5735    if (LHSType == Context.BoolTy) {
5736      Kind = CK_PointerToBoolean;
5737      return Compatible;
5738    }
5739
5740    // T* -> int
5741    if (LHSType->isIntegerType()) {
5742      Kind = CK_PointerToIntegral;
5743      return PointerToInt;
5744    }
5745
5746    return Incompatible;
5747  }
5748
5749  // Conversions from Objective-C pointers that are not covered by the above.
5750  if (isa<ObjCObjectPointerType>(RHSType)) {
5751    // T* -> _Bool
5752    if (LHSType == Context.BoolTy) {
5753      Kind = CK_PointerToBoolean;
5754      return Compatible;
5755    }
5756
5757    // T* -> int
5758    if (LHSType->isIntegerType()) {
5759      Kind = CK_PointerToIntegral;
5760      return PointerToInt;
5761    }
5762
5763    return Incompatible;
5764  }
5765
5766  // struct A -> struct B
5767  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5768    if (Context.typesAreCompatible(LHSType, RHSType)) {
5769      Kind = CK_NoOp;
5770      return Compatible;
5771    }
5772  }
5773
5774  return Incompatible;
5775}
5776
5777/// \brief Constructs a transparent union from an expression that is
5778/// used to initialize the transparent union.
5779static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5780                                      ExprResult &EResult, QualType UnionType,
5781                                      FieldDecl *Field) {
5782  // Build an initializer list that designates the appropriate member
5783  // of the transparent union.
5784  Expr *E = EResult.take();
5785  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5786                                                   &E, 1,
5787                                                   SourceLocation());
5788  Initializer->setType(UnionType);
5789  Initializer->setInitializedFieldInUnion(Field);
5790
5791  // Build a compound literal constructing a value of the transparent
5792  // union type from this initializer list.
5793  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5794  EResult = S.Owned(
5795    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5796                                VK_RValue, Initializer, false));
5797}
5798
5799Sema::AssignConvertType
5800Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5801                                               ExprResult &RHS) {
5802  QualType RHSType = RHS.get()->getType();
5803
5804  // If the ArgType is a Union type, we want to handle a potential
5805  // transparent_union GCC extension.
5806  const RecordType *UT = ArgType->getAsUnionType();
5807  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5808    return Incompatible;
5809
5810  // The field to initialize within the transparent union.
5811  RecordDecl *UD = UT->getDecl();
5812  FieldDecl *InitField = 0;
5813  // It's compatible if the expression matches any of the fields.
5814  for (RecordDecl::field_iterator it = UD->field_begin(),
5815         itend = UD->field_end();
5816       it != itend; ++it) {
5817    if (it->getType()->isPointerType()) {
5818      // If the transparent union contains a pointer type, we allow:
5819      // 1) void pointer
5820      // 2) null pointer constant
5821      if (RHSType->isPointerType())
5822        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5823          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5824          InitField = *it;
5825          break;
5826        }
5827
5828      if (RHS.get()->isNullPointerConstant(Context,
5829                                           Expr::NPC_ValueDependentIsNull)) {
5830        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5831                                CK_NullToPointer);
5832        InitField = *it;
5833        break;
5834      }
5835    }
5836
5837    CastKind Kind = CK_Invalid;
5838    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5839          == Compatible) {
5840      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5841      InitField = *it;
5842      break;
5843    }
5844  }
5845
5846  if (!InitField)
5847    return Incompatible;
5848
5849  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5850  return Compatible;
5851}
5852
5853Sema::AssignConvertType
5854Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5855                                       bool Diagnose) {
5856  if (getLangOpts().CPlusPlus) {
5857    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5858      // C++ 5.17p3: If the left operand is not of class type, the
5859      // expression is implicitly converted (C++ 4) to the
5860      // cv-unqualified type of the left operand.
5861      ExprResult Res;
5862      if (Diagnose) {
5863        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5864                                        AA_Assigning);
5865      } else {
5866        ImplicitConversionSequence ICS =
5867            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5868                                  /*SuppressUserConversions=*/false,
5869                                  /*AllowExplicit=*/false,
5870                                  /*InOverloadResolution=*/false,
5871                                  /*CStyle=*/false,
5872                                  /*AllowObjCWritebackConversion=*/false);
5873        if (ICS.isFailure())
5874          return Incompatible;
5875        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5876                                        ICS, AA_Assigning);
5877      }
5878      if (Res.isInvalid())
5879        return Incompatible;
5880      Sema::AssignConvertType result = Compatible;
5881      if (getLangOpts().ObjCAutoRefCount &&
5882          !CheckObjCARCUnavailableWeakConversion(LHSType,
5883                                                 RHS.get()->getType()))
5884        result = IncompatibleObjCWeakRef;
5885      RHS = move(Res);
5886      return result;
5887    }
5888
5889    // FIXME: Currently, we fall through and treat C++ classes like C
5890    // structures.
5891    // FIXME: We also fall through for atomics; not sure what should
5892    // happen there, though.
5893  }
5894
5895  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5896  // a null pointer constant.
5897  if ((LHSType->isPointerType() ||
5898       LHSType->isObjCObjectPointerType() ||
5899       LHSType->isBlockPointerType())
5900      && RHS.get()->isNullPointerConstant(Context,
5901                                          Expr::NPC_ValueDependentIsNull)) {
5902    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5903    return Compatible;
5904  }
5905
5906  // This check seems unnatural, however it is necessary to ensure the proper
5907  // conversion of functions/arrays. If the conversion were done for all
5908  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5909  // expressions that suppress this implicit conversion (&, sizeof).
5910  //
5911  // Suppress this for references: C++ 8.5.3p5.
5912  if (!LHSType->isReferenceType()) {
5913    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5914    if (RHS.isInvalid())
5915      return Incompatible;
5916  }
5917
5918  CastKind Kind = CK_Invalid;
5919  Sema::AssignConvertType result =
5920    CheckAssignmentConstraints(LHSType, RHS, Kind);
5921
5922  // C99 6.5.16.1p2: The value of the right operand is converted to the
5923  // type of the assignment expression.
5924  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5925  // so that we can use references in built-in functions even in C.
5926  // The getNonReferenceType() call makes sure that the resulting expression
5927  // does not have reference type.
5928  if (result != Incompatible && RHS.get()->getType() != LHSType)
5929    RHS = ImpCastExprToType(RHS.take(),
5930                            LHSType.getNonLValueExprType(Context), Kind);
5931  return result;
5932}
5933
5934QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5935                               ExprResult &RHS) {
5936  Diag(Loc, diag::err_typecheck_invalid_operands)
5937    << LHS.get()->getType() << RHS.get()->getType()
5938    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5939  return QualType();
5940}
5941
5942QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5943                                   SourceLocation Loc, bool IsCompAssign) {
5944  if (!IsCompAssign) {
5945    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5946    if (LHS.isInvalid())
5947      return QualType();
5948  }
5949  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5950  if (RHS.isInvalid())
5951    return QualType();
5952
5953  // For conversion purposes, we ignore any qualifiers.
5954  // For example, "const float" and "float" are equivalent.
5955  QualType LHSType =
5956    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5957  QualType RHSType =
5958    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5959
5960  // If the vector types are identical, return.
5961  if (LHSType == RHSType)
5962    return LHSType;
5963
5964  // Handle the case of equivalent AltiVec and GCC vector types
5965  if (LHSType->isVectorType() && RHSType->isVectorType() &&
5966      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5967    if (LHSType->isExtVectorType()) {
5968      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5969      return LHSType;
5970    }
5971
5972    if (!IsCompAssign)
5973      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5974    return RHSType;
5975  }
5976
5977  if (getLangOpts().LaxVectorConversions &&
5978      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5979    // If we are allowing lax vector conversions, and LHS and RHS are both
5980    // vectors, the total size only needs to be the same. This is a
5981    // bitcast; no bits are changed but the result type is different.
5982    // FIXME: Should we really be allowing this?
5983    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5984    return LHSType;
5985  }
5986
5987  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5988  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5989  bool swapped = false;
5990  if (RHSType->isExtVectorType() && !IsCompAssign) {
5991    swapped = true;
5992    std::swap(RHS, LHS);
5993    std::swap(RHSType, LHSType);
5994  }
5995
5996  // Handle the case of an ext vector and scalar.
5997  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5998    QualType EltTy = LV->getElementType();
5999    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6000      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6001      if (order > 0)
6002        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6003      if (order >= 0) {
6004        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6005        if (swapped) std::swap(RHS, LHS);
6006        return LHSType;
6007      }
6008    }
6009    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6010        RHSType->isRealFloatingType()) {
6011      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6012      if (order > 0)
6013        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6014      if (order >= 0) {
6015        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6016        if (swapped) std::swap(RHS, LHS);
6017        return LHSType;
6018      }
6019    }
6020  }
6021
6022  // Vectors of different size or scalar and non-ext-vector are errors.
6023  if (swapped) std::swap(RHS, LHS);
6024  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6025    << LHS.get()->getType() << RHS.get()->getType()
6026    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6027  return QualType();
6028}
6029
6030// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6031// expression.  These are mainly cases where the null pointer is used as an
6032// integer instead of a pointer.
6033static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6034                                SourceLocation Loc, bool IsCompare) {
6035  // The canonical way to check for a GNU null is with isNullPointerConstant,
6036  // but we use a bit of a hack here for speed; this is a relatively
6037  // hot path, and isNullPointerConstant is slow.
6038  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6039  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6040
6041  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6042
6043  // Avoid analyzing cases where the result will either be invalid (and
6044  // diagnosed as such) or entirely valid and not something to warn about.
6045  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6046      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6047    return;
6048
6049  // Comparison operations would not make sense with a null pointer no matter
6050  // what the other expression is.
6051  if (!IsCompare) {
6052    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6053        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6054        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6055    return;
6056  }
6057
6058  // The rest of the operations only make sense with a null pointer
6059  // if the other expression is a pointer.
6060  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6061      NonNullType->canDecayToPointerType())
6062    return;
6063
6064  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6065      << LHSNull /* LHS is NULL */ << NonNullType
6066      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6067}
6068
6069QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6070                                           SourceLocation Loc,
6071                                           bool IsCompAssign, bool IsDiv) {
6072  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6073
6074  if (LHS.get()->getType()->isVectorType() ||
6075      RHS.get()->getType()->isVectorType())
6076    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6077
6078  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6079  if (LHS.isInvalid() || RHS.isInvalid())
6080    return QualType();
6081
6082
6083  if (compType.isNull() || !compType->isArithmeticType())
6084    return InvalidOperands(Loc, LHS, RHS);
6085
6086  // Check for division by zero.
6087  if (IsDiv &&
6088      RHS.get()->isNullPointerConstant(Context,
6089                                       Expr::NPC_ValueDependentIsNotNull))
6090    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6091                                          << RHS.get()->getSourceRange());
6092
6093  return compType;
6094}
6095
6096QualType Sema::CheckRemainderOperands(
6097  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6098  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6099
6100  if (LHS.get()->getType()->isVectorType() ||
6101      RHS.get()->getType()->isVectorType()) {
6102    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6103        RHS.get()->getType()->hasIntegerRepresentation())
6104      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6105    return InvalidOperands(Loc, LHS, RHS);
6106  }
6107
6108  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6109  if (LHS.isInvalid() || RHS.isInvalid())
6110    return QualType();
6111
6112  if (compType.isNull() || !compType->isIntegerType())
6113    return InvalidOperands(Loc, LHS, RHS);
6114
6115  // Check for remainder by zero.
6116  if (RHS.get()->isNullPointerConstant(Context,
6117                                       Expr::NPC_ValueDependentIsNotNull))
6118    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6119                                 << RHS.get()->getSourceRange());
6120
6121  return compType;
6122}
6123
6124/// \brief Diagnose invalid arithmetic on two void pointers.
6125static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6126                                                Expr *LHSExpr, Expr *RHSExpr) {
6127  S.Diag(Loc, S.getLangOpts().CPlusPlus
6128                ? diag::err_typecheck_pointer_arith_void_type
6129                : diag::ext_gnu_void_ptr)
6130    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6131                            << RHSExpr->getSourceRange();
6132}
6133
6134/// \brief Diagnose invalid arithmetic on a void pointer.
6135static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6136                                            Expr *Pointer) {
6137  S.Diag(Loc, S.getLangOpts().CPlusPlus
6138                ? diag::err_typecheck_pointer_arith_void_type
6139                : diag::ext_gnu_void_ptr)
6140    << 0 /* one pointer */ << Pointer->getSourceRange();
6141}
6142
6143/// \brief Diagnose invalid arithmetic on two function pointers.
6144static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6145                                                    Expr *LHS, Expr *RHS) {
6146  assert(LHS->getType()->isAnyPointerType());
6147  assert(RHS->getType()->isAnyPointerType());
6148  S.Diag(Loc, S.getLangOpts().CPlusPlus
6149                ? diag::err_typecheck_pointer_arith_function_type
6150                : diag::ext_gnu_ptr_func_arith)
6151    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6152    // We only show the second type if it differs from the first.
6153    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6154                                                   RHS->getType())
6155    << RHS->getType()->getPointeeType()
6156    << LHS->getSourceRange() << RHS->getSourceRange();
6157}
6158
6159/// \brief Diagnose invalid arithmetic on a function pointer.
6160static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6161                                                Expr *Pointer) {
6162  assert(Pointer->getType()->isAnyPointerType());
6163  S.Diag(Loc, S.getLangOpts().CPlusPlus
6164                ? diag::err_typecheck_pointer_arith_function_type
6165                : diag::ext_gnu_ptr_func_arith)
6166    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6167    << 0 /* one pointer, so only one type */
6168    << Pointer->getSourceRange();
6169}
6170
6171/// \brief Emit error if Operand is incomplete pointer type
6172///
6173/// \returns True if pointer has incomplete type
6174static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6175                                                 Expr *Operand) {
6176  if ((Operand->getType()->isPointerType() &&
6177       !Operand->getType()->isDependentType()) ||
6178      Operand->getType()->isObjCObjectPointerType()) {
6179    QualType PointeeTy = Operand->getType()->getPointeeType();
6180    if (S.RequireCompleteType(
6181          Loc, PointeeTy,
6182          diag::err_typecheck_arithmetic_incomplete_type,
6183          PointeeTy, Operand->getSourceRange()))
6184      return true;
6185  }
6186  return false;
6187}
6188
6189/// \brief Check the validity of an arithmetic pointer operand.
6190///
6191/// If the operand has pointer type, this code will check for pointer types
6192/// which are invalid in arithmetic operations. These will be diagnosed
6193/// appropriately, including whether or not the use is supported as an
6194/// extension.
6195///
6196/// \returns True when the operand is valid to use (even if as an extension).
6197static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6198                                            Expr *Operand) {
6199  if (!Operand->getType()->isAnyPointerType()) return true;
6200
6201  QualType PointeeTy = Operand->getType()->getPointeeType();
6202  if (PointeeTy->isVoidType()) {
6203    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6204    return !S.getLangOpts().CPlusPlus;
6205  }
6206  if (PointeeTy->isFunctionType()) {
6207    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6208    return !S.getLangOpts().CPlusPlus;
6209  }
6210
6211  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6212
6213  return true;
6214}
6215
6216/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6217/// operands.
6218///
6219/// This routine will diagnose any invalid arithmetic on pointer operands much
6220/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6221/// for emitting a single diagnostic even for operations where both LHS and RHS
6222/// are (potentially problematic) pointers.
6223///
6224/// \returns True when the operand is valid to use (even if as an extension).
6225static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6226                                                Expr *LHSExpr, Expr *RHSExpr) {
6227  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6228  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6229  if (!isLHSPointer && !isRHSPointer) return true;
6230
6231  QualType LHSPointeeTy, RHSPointeeTy;
6232  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6233  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6234
6235  // Check for arithmetic on pointers to incomplete types.
6236  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6237  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6238  if (isLHSVoidPtr || isRHSVoidPtr) {
6239    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6240    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6241    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6242
6243    return !S.getLangOpts().CPlusPlus;
6244  }
6245
6246  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6247  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6248  if (isLHSFuncPtr || isRHSFuncPtr) {
6249    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6250    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6251                                                                RHSExpr);
6252    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6253
6254    return !S.getLangOpts().CPlusPlus;
6255  }
6256
6257  if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
6258  if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
6259
6260  return true;
6261}
6262
6263/// \brief Check bad cases where we step over interface counts.
6264static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
6265                                                   SourceLocation OpLoc,
6266                                                   Expr *Op) {
6267  assert(Op->getType()->isAnyPointerType());
6268  QualType PointeeTy = Op->getType()->getPointeeType();
6269  if (!PointeeTy->isObjCObjectType() || S.LangOpts.ObjCRuntime.isFragile())
6270    return true;
6271
6272  S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6273    << PointeeTy << Op->getSourceRange();
6274  return false;
6275}
6276
6277/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6278/// literal.
6279static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6280                                  Expr *LHSExpr, Expr *RHSExpr) {
6281  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6282  Expr* IndexExpr = RHSExpr;
6283  if (!StrExpr) {
6284    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6285    IndexExpr = LHSExpr;
6286  }
6287
6288  bool IsStringPlusInt = StrExpr &&
6289      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6290  if (!IsStringPlusInt)
6291    return;
6292
6293  llvm::APSInt index;
6294  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6295    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6296    if (index.isNonNegative() &&
6297        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6298                              index.isUnsigned()))
6299      return;
6300  }
6301
6302  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6303  Self.Diag(OpLoc, diag::warn_string_plus_int)
6304      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6305
6306  // Only print a fixit for "str" + int, not for int + "str".
6307  if (IndexExpr == RHSExpr) {
6308    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6309    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6310        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6311        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6312        << FixItHint::CreateInsertion(EndLoc, "]");
6313  } else
6314    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6315}
6316
6317/// \brief Emit error when two pointers are incompatible.
6318static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6319                                           Expr *LHSExpr, Expr *RHSExpr) {
6320  assert(LHSExpr->getType()->isAnyPointerType());
6321  assert(RHSExpr->getType()->isAnyPointerType());
6322  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6323    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6324    << RHSExpr->getSourceRange();
6325}
6326
6327QualType Sema::CheckAdditionOperands( // C99 6.5.6
6328    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6329    QualType* CompLHSTy) {
6330  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6331
6332  if (LHS.get()->getType()->isVectorType() ||
6333      RHS.get()->getType()->isVectorType()) {
6334    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6335    if (CompLHSTy) *CompLHSTy = compType;
6336    return compType;
6337  }
6338
6339  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6340  if (LHS.isInvalid() || RHS.isInvalid())
6341    return QualType();
6342
6343  // Diagnose "string literal" '+' int.
6344  if (Opc == BO_Add)
6345    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6346
6347  // handle the common case first (both operands are arithmetic).
6348  if (!compType.isNull() && compType->isArithmeticType()) {
6349    if (CompLHSTy) *CompLHSTy = compType;
6350    return compType;
6351  }
6352
6353  // Put any potential pointer into PExp
6354  Expr* PExp = LHS.get(), *IExp = RHS.get();
6355  if (IExp->getType()->isAnyPointerType())
6356    std::swap(PExp, IExp);
6357
6358  if (!PExp->getType()->isAnyPointerType())
6359    return InvalidOperands(Loc, LHS, RHS);
6360
6361  if (!IExp->getType()->isIntegerType())
6362    return InvalidOperands(Loc, LHS, RHS);
6363
6364  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6365    return QualType();
6366
6367  // Diagnose bad cases where we step over interface counts.
6368  if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
6369    return QualType();
6370
6371  // Check array bounds for pointer arithemtic
6372  CheckArrayAccess(PExp, IExp);
6373
6374  if (CompLHSTy) {
6375    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6376    if (LHSTy.isNull()) {
6377      LHSTy = LHS.get()->getType();
6378      if (LHSTy->isPromotableIntegerType())
6379        LHSTy = Context.getPromotedIntegerType(LHSTy);
6380    }
6381    *CompLHSTy = LHSTy;
6382  }
6383
6384  return PExp->getType();
6385}
6386
6387// C99 6.5.6
6388QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6389                                        SourceLocation Loc,
6390                                        QualType* CompLHSTy) {
6391  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6392
6393  if (LHS.get()->getType()->isVectorType() ||
6394      RHS.get()->getType()->isVectorType()) {
6395    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6396    if (CompLHSTy) *CompLHSTy = compType;
6397    return compType;
6398  }
6399
6400  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6401  if (LHS.isInvalid() || RHS.isInvalid())
6402    return QualType();
6403
6404  // Enforce type constraints: C99 6.5.6p3.
6405
6406  // Handle the common case first (both operands are arithmetic).
6407  if (!compType.isNull() && compType->isArithmeticType()) {
6408    if (CompLHSTy) *CompLHSTy = compType;
6409    return compType;
6410  }
6411
6412  // Either ptr - int   or   ptr - ptr.
6413  if (LHS.get()->getType()->isAnyPointerType()) {
6414    QualType lpointee = LHS.get()->getType()->getPointeeType();
6415
6416    // Diagnose bad cases where we step over interface counts.
6417    if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
6418      return QualType();
6419
6420    // The result type of a pointer-int computation is the pointer type.
6421    if (RHS.get()->getType()->isIntegerType()) {
6422      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6423        return QualType();
6424
6425      // Check array bounds for pointer arithemtic
6426      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6427                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6428
6429      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6430      return LHS.get()->getType();
6431    }
6432
6433    // Handle pointer-pointer subtractions.
6434    if (const PointerType *RHSPTy
6435          = RHS.get()->getType()->getAs<PointerType>()) {
6436      QualType rpointee = RHSPTy->getPointeeType();
6437
6438      if (getLangOpts().CPlusPlus) {
6439        // Pointee types must be the same: C++ [expr.add]
6440        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6441          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6442        }
6443      } else {
6444        // Pointee types must be compatible C99 6.5.6p3
6445        if (!Context.typesAreCompatible(
6446                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6447                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6448          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6449          return QualType();
6450        }
6451      }
6452
6453      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6454                                               LHS.get(), RHS.get()))
6455        return QualType();
6456
6457      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6458      return Context.getPointerDiffType();
6459    }
6460  }
6461
6462  return InvalidOperands(Loc, LHS, RHS);
6463}
6464
6465static bool isScopedEnumerationType(QualType T) {
6466  if (const EnumType *ET = dyn_cast<EnumType>(T))
6467    return ET->getDecl()->isScoped();
6468  return false;
6469}
6470
6471static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6472                                   SourceLocation Loc, unsigned Opc,
6473                                   QualType LHSType) {
6474  llvm::APSInt Right;
6475  // Check right/shifter operand
6476  if (RHS.get()->isValueDependent() ||
6477      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6478    return;
6479
6480  if (Right.isNegative()) {
6481    S.DiagRuntimeBehavior(Loc, RHS.get(),
6482                          S.PDiag(diag::warn_shift_negative)
6483                            << RHS.get()->getSourceRange());
6484    return;
6485  }
6486  llvm::APInt LeftBits(Right.getBitWidth(),
6487                       S.Context.getTypeSize(LHS.get()->getType()));
6488  if (Right.uge(LeftBits)) {
6489    S.DiagRuntimeBehavior(Loc, RHS.get(),
6490                          S.PDiag(diag::warn_shift_gt_typewidth)
6491                            << RHS.get()->getSourceRange());
6492    return;
6493  }
6494  if (Opc != BO_Shl)
6495    return;
6496
6497  // When left shifting an ICE which is signed, we can check for overflow which
6498  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6499  // integers have defined behavior modulo one more than the maximum value
6500  // representable in the result type, so never warn for those.
6501  llvm::APSInt Left;
6502  if (LHS.get()->isValueDependent() ||
6503      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6504      LHSType->hasUnsignedIntegerRepresentation())
6505    return;
6506  llvm::APInt ResultBits =
6507      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6508  if (LeftBits.uge(ResultBits))
6509    return;
6510  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6511  Result = Result.shl(Right);
6512
6513  // Print the bit representation of the signed integer as an unsigned
6514  // hexadecimal number.
6515  SmallString<40> HexResult;
6516  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6517
6518  // If we are only missing a sign bit, this is less likely to result in actual
6519  // bugs -- if the result is cast back to an unsigned type, it will have the
6520  // expected value. Thus we place this behind a different warning that can be
6521  // turned off separately if needed.
6522  if (LeftBits == ResultBits - 1) {
6523    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6524        << HexResult.str() << LHSType
6525        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6526    return;
6527  }
6528
6529  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6530    << HexResult.str() << Result.getMinSignedBits() << LHSType
6531    << Left.getBitWidth() << LHS.get()->getSourceRange()
6532    << RHS.get()->getSourceRange();
6533}
6534
6535// C99 6.5.7
6536QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6537                                  SourceLocation Loc, unsigned Opc,
6538                                  bool IsCompAssign) {
6539  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6540
6541  // C99 6.5.7p2: Each of the operands shall have integer type.
6542  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6543      !RHS.get()->getType()->hasIntegerRepresentation())
6544    return InvalidOperands(Loc, LHS, RHS);
6545
6546  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6547  // hasIntegerRepresentation() above instead of this.
6548  if (isScopedEnumerationType(LHS.get()->getType()) ||
6549      isScopedEnumerationType(RHS.get()->getType())) {
6550    return InvalidOperands(Loc, LHS, RHS);
6551  }
6552
6553  // Vector shifts promote their scalar inputs to vector type.
6554  if (LHS.get()->getType()->isVectorType() ||
6555      RHS.get()->getType()->isVectorType())
6556    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6557
6558  // Shifts don't perform usual arithmetic conversions, they just do integer
6559  // promotions on each operand. C99 6.5.7p3
6560
6561  // For the LHS, do usual unary conversions, but then reset them away
6562  // if this is a compound assignment.
6563  ExprResult OldLHS = LHS;
6564  LHS = UsualUnaryConversions(LHS.take());
6565  if (LHS.isInvalid())
6566    return QualType();
6567  QualType LHSType = LHS.get()->getType();
6568  if (IsCompAssign) LHS = OldLHS;
6569
6570  // The RHS is simpler.
6571  RHS = UsualUnaryConversions(RHS.take());
6572  if (RHS.isInvalid())
6573    return QualType();
6574
6575  // Sanity-check shift operands
6576  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6577
6578  // "The type of the result is that of the promoted left operand."
6579  return LHSType;
6580}
6581
6582static bool IsWithinTemplateSpecialization(Decl *D) {
6583  if (DeclContext *DC = D->getDeclContext()) {
6584    if (isa<ClassTemplateSpecializationDecl>(DC))
6585      return true;
6586    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6587      return FD->isFunctionTemplateSpecialization();
6588  }
6589  return false;
6590}
6591
6592/// If two different enums are compared, raise a warning.
6593static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6594                                ExprResult &RHS) {
6595  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6596  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6597
6598  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6599  if (!LHSEnumType)
6600    return;
6601  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6602  if (!RHSEnumType)
6603    return;
6604
6605  // Ignore anonymous enums.
6606  if (!LHSEnumType->getDecl()->getIdentifier())
6607    return;
6608  if (!RHSEnumType->getDecl()->getIdentifier())
6609    return;
6610
6611  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6612    return;
6613
6614  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6615      << LHSStrippedType << RHSStrippedType
6616      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6617}
6618
6619/// \brief Diagnose bad pointer comparisons.
6620static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6621                                              ExprResult &LHS, ExprResult &RHS,
6622                                              bool IsError) {
6623  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6624                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6625    << LHS.get()->getType() << RHS.get()->getType()
6626    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6627}
6628
6629/// \brief Returns false if the pointers are converted to a composite type,
6630/// true otherwise.
6631static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6632                                           ExprResult &LHS, ExprResult &RHS) {
6633  // C++ [expr.rel]p2:
6634  //   [...] Pointer conversions (4.10) and qualification
6635  //   conversions (4.4) are performed on pointer operands (or on
6636  //   a pointer operand and a null pointer constant) to bring
6637  //   them to their composite pointer type. [...]
6638  //
6639  // C++ [expr.eq]p1 uses the same notion for (in)equality
6640  // comparisons of pointers.
6641
6642  // C++ [expr.eq]p2:
6643  //   In addition, pointers to members can be compared, or a pointer to
6644  //   member and a null pointer constant. Pointer to member conversions
6645  //   (4.11) and qualification conversions (4.4) are performed to bring
6646  //   them to a common type. If one operand is a null pointer constant,
6647  //   the common type is the type of the other operand. Otherwise, the
6648  //   common type is a pointer to member type similar (4.4) to the type
6649  //   of one of the operands, with a cv-qualification signature (4.4)
6650  //   that is the union of the cv-qualification signatures of the operand
6651  //   types.
6652
6653  QualType LHSType = LHS.get()->getType();
6654  QualType RHSType = RHS.get()->getType();
6655  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6656         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6657
6658  bool NonStandardCompositeType = false;
6659  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6660  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6661  if (T.isNull()) {
6662    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6663    return true;
6664  }
6665
6666  if (NonStandardCompositeType)
6667    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6668      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6669      << RHS.get()->getSourceRange();
6670
6671  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6672  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6673  return false;
6674}
6675
6676static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6677                                                    ExprResult &LHS,
6678                                                    ExprResult &RHS,
6679                                                    bool IsError) {
6680  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6681                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6682    << LHS.get()->getType() << RHS.get()->getType()
6683    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6684}
6685
6686static bool isObjCObjectLiteral(ExprResult &E) {
6687  switch (E.get()->getStmtClass()) {
6688  case Stmt::ObjCArrayLiteralClass:
6689  case Stmt::ObjCDictionaryLiteralClass:
6690  case Stmt::ObjCStringLiteralClass:
6691  case Stmt::ObjCBoxedExprClass:
6692    return true;
6693  default:
6694    // Note that ObjCBoolLiteral is NOT an object literal!
6695    return false;
6696  }
6697}
6698
6699static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6700  // Get the LHS object's interface type.
6701  QualType Type = LHS->getType();
6702  QualType InterfaceType;
6703  if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
6704    InterfaceType = PTy->getPointeeType();
6705    if (const ObjCObjectType *iQFaceTy =
6706        InterfaceType->getAsObjCQualifiedInterfaceType())
6707      InterfaceType = iQFaceTy->getBaseType();
6708  } else {
6709    // If this is not actually an Objective-C object, bail out.
6710    return false;
6711  }
6712
6713  // If the RHS isn't an Objective-C object, bail out.
6714  if (!RHS->getType()->isObjCObjectPointerType())
6715    return false;
6716
6717  // Try to find the -isEqual: method.
6718  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6719  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6720                                                      InterfaceType,
6721                                                      /*instance=*/true);
6722  if (!Method) {
6723    if (Type->isObjCIdType()) {
6724      // For 'id', just check the global pool.
6725      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6726                                                  /*receiverId=*/true,
6727                                                  /*warn=*/false);
6728    } else {
6729      // Check protocols.
6730      Method = S.LookupMethodInQualifiedType(IsEqualSel,
6731                                             cast<ObjCObjectPointerType>(Type),
6732                                             /*instance=*/true);
6733    }
6734  }
6735
6736  if (!Method)
6737    return false;
6738
6739  QualType T = Method->param_begin()[0]->getType();
6740  if (!T->isObjCObjectPointerType())
6741    return false;
6742
6743  QualType R = Method->getResultType();
6744  if (!R->isScalarType())
6745    return false;
6746
6747  return true;
6748}
6749
6750static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6751                                          ExprResult &LHS, ExprResult &RHS,
6752                                          BinaryOperator::Opcode Opc){
6753  Expr *Literal;
6754  Expr *Other;
6755  if (isObjCObjectLiteral(LHS)) {
6756    Literal = LHS.get();
6757    Other = RHS.get();
6758  } else {
6759    Literal = RHS.get();
6760    Other = LHS.get();
6761  }
6762
6763  // Don't warn on comparisons against nil.
6764  Other = Other->IgnoreParenCasts();
6765  if (Other->isNullPointerConstant(S.getASTContext(),
6766                                   Expr::NPC_ValueDependentIsNotNull))
6767    return;
6768
6769  // This should be kept in sync with warn_objc_literal_comparison.
6770  // LK_String should always be last, since it has its own warning flag.
6771  enum {
6772    LK_Array,
6773    LK_Dictionary,
6774    LK_Numeric,
6775    LK_Boxed,
6776    LK_String
6777  } LiteralKind;
6778
6779  switch (Literal->getStmtClass()) {
6780  case Stmt::ObjCStringLiteralClass:
6781    // "string literal"
6782    LiteralKind = LK_String;
6783    break;
6784  case Stmt::ObjCArrayLiteralClass:
6785    // "array literal"
6786    LiteralKind = LK_Array;
6787    break;
6788  case Stmt::ObjCDictionaryLiteralClass:
6789    // "dictionary literal"
6790    LiteralKind = LK_Dictionary;
6791    break;
6792  case Stmt::ObjCBoxedExprClass: {
6793    Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
6794    switch (Inner->getStmtClass()) {
6795    case Stmt::IntegerLiteralClass:
6796    case Stmt::FloatingLiteralClass:
6797    case Stmt::CharacterLiteralClass:
6798    case Stmt::ObjCBoolLiteralExprClass:
6799    case Stmt::CXXBoolLiteralExprClass:
6800      // "numeric literal"
6801      LiteralKind = LK_Numeric;
6802      break;
6803    case Stmt::ImplicitCastExprClass: {
6804      CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6805      // Boolean literals can be represented by implicit casts.
6806      if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
6807        LiteralKind = LK_Numeric;
6808        break;
6809      }
6810      // FALLTHROUGH
6811    }
6812    default:
6813      // "boxed expression"
6814      LiteralKind = LK_Boxed;
6815      break;
6816    }
6817    break;
6818  }
6819  default:
6820    llvm_unreachable("Unknown Objective-C object literal kind");
6821  }
6822
6823  if (LiteralKind == LK_String)
6824    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6825      << Literal->getSourceRange();
6826  else
6827    S.Diag(Loc, diag::warn_objc_literal_comparison)
6828      << LiteralKind << Literal->getSourceRange();
6829
6830  if (BinaryOperator::isEqualityOp(Opc) &&
6831      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
6832    SourceLocation Start = LHS.get()->getLocStart();
6833    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
6834    SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
6835
6836    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
6837      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
6838      << FixItHint::CreateReplacement(OpRange, "isEqual:")
6839      << FixItHint::CreateInsertion(End, "]");
6840  }
6841}
6842
6843// C99 6.5.8, C++ [expr.rel]
6844QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6845                                    SourceLocation Loc, unsigned OpaqueOpc,
6846                                    bool IsRelational) {
6847  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6848
6849  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6850
6851  // Handle vector comparisons separately.
6852  if (LHS.get()->getType()->isVectorType() ||
6853      RHS.get()->getType()->isVectorType())
6854    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6855
6856  QualType LHSType = LHS.get()->getType();
6857  QualType RHSType = RHS.get()->getType();
6858
6859  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6860  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6861
6862  checkEnumComparison(*this, Loc, LHS, RHS);
6863
6864  if (!LHSType->hasFloatingRepresentation() &&
6865      !(LHSType->isBlockPointerType() && IsRelational) &&
6866      !LHS.get()->getLocStart().isMacroID() &&
6867      !RHS.get()->getLocStart().isMacroID()) {
6868    // For non-floating point types, check for self-comparisons of the form
6869    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6870    // often indicate logic errors in the program.
6871    //
6872    // NOTE: Don't warn about comparison expressions resulting from macro
6873    // expansion. Also don't warn about comparisons which are only self
6874    // comparisons within a template specialization. The warnings should catch
6875    // obvious cases in the definition of the template anyways. The idea is to
6876    // warn when the typed comparison operator will always evaluate to the same
6877    // result.
6878    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6879      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6880        if (DRL->getDecl() == DRR->getDecl() &&
6881            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6882          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6883                              << 0 // self-
6884                              << (Opc == BO_EQ
6885                                  || Opc == BO_LE
6886                                  || Opc == BO_GE));
6887        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6888                   !DRL->getDecl()->getType()->isReferenceType() &&
6889                   !DRR->getDecl()->getType()->isReferenceType()) {
6890            // what is it always going to eval to?
6891            char always_evals_to;
6892            switch(Opc) {
6893            case BO_EQ: // e.g. array1 == array2
6894              always_evals_to = 0; // false
6895              break;
6896            case BO_NE: // e.g. array1 != array2
6897              always_evals_to = 1; // true
6898              break;
6899            default:
6900              // best we can say is 'a constant'
6901              always_evals_to = 2; // e.g. array1 <= array2
6902              break;
6903            }
6904            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6905                                << 1 // array
6906                                << always_evals_to);
6907        }
6908      }
6909    }
6910
6911    if (isa<CastExpr>(LHSStripped))
6912      LHSStripped = LHSStripped->IgnoreParenCasts();
6913    if (isa<CastExpr>(RHSStripped))
6914      RHSStripped = RHSStripped->IgnoreParenCasts();
6915
6916    // Warn about comparisons against a string constant (unless the other
6917    // operand is null), the user probably wants strcmp.
6918    Expr *literalString = 0;
6919    Expr *literalStringStripped = 0;
6920    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6921        !RHSStripped->isNullPointerConstant(Context,
6922                                            Expr::NPC_ValueDependentIsNull)) {
6923      literalString = LHS.get();
6924      literalStringStripped = LHSStripped;
6925    } else if ((isa<StringLiteral>(RHSStripped) ||
6926                isa<ObjCEncodeExpr>(RHSStripped)) &&
6927               !LHSStripped->isNullPointerConstant(Context,
6928                                            Expr::NPC_ValueDependentIsNull)) {
6929      literalString = RHS.get();
6930      literalStringStripped = RHSStripped;
6931    }
6932
6933    if (literalString) {
6934      std::string resultComparison;
6935      switch (Opc) {
6936      case BO_LT: resultComparison = ") < 0"; break;
6937      case BO_GT: resultComparison = ") > 0"; break;
6938      case BO_LE: resultComparison = ") <= 0"; break;
6939      case BO_GE: resultComparison = ") >= 0"; break;
6940      case BO_EQ: resultComparison = ") == 0"; break;
6941      case BO_NE: resultComparison = ") != 0"; break;
6942      default: llvm_unreachable("Invalid comparison operator");
6943      }
6944
6945      DiagRuntimeBehavior(Loc, 0,
6946        PDiag(diag::warn_stringcompare)
6947          << isa<ObjCEncodeExpr>(literalStringStripped)
6948          << literalString->getSourceRange());
6949    }
6950  }
6951
6952  // C99 6.5.8p3 / C99 6.5.9p4
6953  if (LHS.get()->getType()->isArithmeticType() &&
6954      RHS.get()->getType()->isArithmeticType()) {
6955    UsualArithmeticConversions(LHS, RHS);
6956    if (LHS.isInvalid() || RHS.isInvalid())
6957      return QualType();
6958  }
6959  else {
6960    LHS = UsualUnaryConversions(LHS.take());
6961    if (LHS.isInvalid())
6962      return QualType();
6963
6964    RHS = UsualUnaryConversions(RHS.take());
6965    if (RHS.isInvalid())
6966      return QualType();
6967  }
6968
6969  LHSType = LHS.get()->getType();
6970  RHSType = RHS.get()->getType();
6971
6972  // The result of comparisons is 'bool' in C++, 'int' in C.
6973  QualType ResultTy = Context.getLogicalOperationType();
6974
6975  if (IsRelational) {
6976    if (LHSType->isRealType() && RHSType->isRealType())
6977      return ResultTy;
6978  } else {
6979    // Check for comparisons of floating point operands using != and ==.
6980    if (LHSType->hasFloatingRepresentation())
6981      CheckFloatComparison(Loc, LHS.get(), RHS.get());
6982
6983    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
6984      return ResultTy;
6985  }
6986
6987  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
6988                                              Expr::NPC_ValueDependentIsNull);
6989  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
6990                                              Expr::NPC_ValueDependentIsNull);
6991
6992  // All of the following pointer-related warnings are GCC extensions, except
6993  // when handling null pointer constants.
6994  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
6995    QualType LCanPointeeTy =
6996      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6997    QualType RCanPointeeTy =
6998      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6999
7000    if (getLangOpts().CPlusPlus) {
7001      if (LCanPointeeTy == RCanPointeeTy)
7002        return ResultTy;
7003      if (!IsRelational &&
7004          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7005        // Valid unless comparison between non-null pointer and function pointer
7006        // This is a gcc extension compatibility comparison.
7007        // In a SFINAE context, we treat this as a hard error to maintain
7008        // conformance with the C++ standard.
7009        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7010            && !LHSIsNull && !RHSIsNull) {
7011          diagnoseFunctionPointerToVoidComparison(
7012              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
7013
7014          if (isSFINAEContext())
7015            return QualType();
7016
7017          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7018          return ResultTy;
7019        }
7020      }
7021
7022      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7023        return QualType();
7024      else
7025        return ResultTy;
7026    }
7027    // C99 6.5.9p2 and C99 6.5.8p2
7028    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7029                                   RCanPointeeTy.getUnqualifiedType())) {
7030      // Valid unless a relational comparison of function pointers
7031      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7032        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7033          << LHSType << RHSType << LHS.get()->getSourceRange()
7034          << RHS.get()->getSourceRange();
7035      }
7036    } else if (!IsRelational &&
7037               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7038      // Valid unless comparison between non-null pointer and function pointer
7039      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7040          && !LHSIsNull && !RHSIsNull)
7041        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7042                                                /*isError*/false);
7043    } else {
7044      // Invalid
7045      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7046    }
7047    if (LCanPointeeTy != RCanPointeeTy) {
7048      if (LHSIsNull && !RHSIsNull)
7049        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7050      else
7051        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7052    }
7053    return ResultTy;
7054  }
7055
7056  if (getLangOpts().CPlusPlus) {
7057    // Comparison of nullptr_t with itself.
7058    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7059      return ResultTy;
7060
7061    // Comparison of pointers with null pointer constants and equality
7062    // comparisons of member pointers to null pointer constants.
7063    if (RHSIsNull &&
7064        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7065         (!IsRelational &&
7066          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7067      RHS = ImpCastExprToType(RHS.take(), LHSType,
7068                        LHSType->isMemberPointerType()
7069                          ? CK_NullToMemberPointer
7070                          : CK_NullToPointer);
7071      return ResultTy;
7072    }
7073    if (LHSIsNull &&
7074        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7075         (!IsRelational &&
7076          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7077      LHS = ImpCastExprToType(LHS.take(), RHSType,
7078                        RHSType->isMemberPointerType()
7079                          ? CK_NullToMemberPointer
7080                          : CK_NullToPointer);
7081      return ResultTy;
7082    }
7083
7084    // Comparison of member pointers.
7085    if (!IsRelational &&
7086        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7087      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7088        return QualType();
7089      else
7090        return ResultTy;
7091    }
7092
7093    // Handle scoped enumeration types specifically, since they don't promote
7094    // to integers.
7095    if (LHS.get()->getType()->isEnumeralType() &&
7096        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7097                                       RHS.get()->getType()))
7098      return ResultTy;
7099  }
7100
7101  // Handle block pointer types.
7102  if (!IsRelational && LHSType->isBlockPointerType() &&
7103      RHSType->isBlockPointerType()) {
7104    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7105    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7106
7107    if (!LHSIsNull && !RHSIsNull &&
7108        !Context.typesAreCompatible(lpointee, rpointee)) {
7109      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7110        << LHSType << RHSType << LHS.get()->getSourceRange()
7111        << RHS.get()->getSourceRange();
7112    }
7113    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7114    return ResultTy;
7115  }
7116
7117  // Allow block pointers to be compared with null pointer constants.
7118  if (!IsRelational
7119      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7120          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7121    if (!LHSIsNull && !RHSIsNull) {
7122      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7123             ->getPointeeType()->isVoidType())
7124            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7125                ->getPointeeType()->isVoidType())))
7126        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7127          << LHSType << RHSType << LHS.get()->getSourceRange()
7128          << RHS.get()->getSourceRange();
7129    }
7130    if (LHSIsNull && !RHSIsNull)
7131      LHS = ImpCastExprToType(LHS.take(), RHSType,
7132                              RHSType->isPointerType() ? CK_BitCast
7133                                : CK_AnyPointerToBlockPointerCast);
7134    else
7135      RHS = ImpCastExprToType(RHS.take(), LHSType,
7136                              LHSType->isPointerType() ? CK_BitCast
7137                                : CK_AnyPointerToBlockPointerCast);
7138    return ResultTy;
7139  }
7140
7141  if (LHSType->isObjCObjectPointerType() ||
7142      RHSType->isObjCObjectPointerType()) {
7143    const PointerType *LPT = LHSType->getAs<PointerType>();
7144    const PointerType *RPT = RHSType->getAs<PointerType>();
7145    if (LPT || RPT) {
7146      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7147      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7148
7149      if (!LPtrToVoid && !RPtrToVoid &&
7150          !Context.typesAreCompatible(LHSType, RHSType)) {
7151        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7152                                          /*isError*/false);
7153      }
7154      if (LHSIsNull && !RHSIsNull)
7155        LHS = ImpCastExprToType(LHS.take(), RHSType,
7156                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7157      else
7158        RHS = ImpCastExprToType(RHS.take(), LHSType,
7159                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7160      return ResultTy;
7161    }
7162    if (LHSType->isObjCObjectPointerType() &&
7163        RHSType->isObjCObjectPointerType()) {
7164      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7165        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7166                                          /*isError*/false);
7167      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7168        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7169
7170      if (LHSIsNull && !RHSIsNull)
7171        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7172      else
7173        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7174      return ResultTy;
7175    }
7176  }
7177  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7178      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7179    unsigned DiagID = 0;
7180    bool isError = false;
7181    if ((LHSIsNull && LHSType->isIntegerType()) ||
7182        (RHSIsNull && RHSType->isIntegerType())) {
7183      if (IsRelational && !getLangOpts().CPlusPlus)
7184        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7185    } else if (IsRelational && !getLangOpts().CPlusPlus)
7186      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7187    else if (getLangOpts().CPlusPlus) {
7188      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7189      isError = true;
7190    } else
7191      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7192
7193    if (DiagID) {
7194      Diag(Loc, DiagID)
7195        << LHSType << RHSType << LHS.get()->getSourceRange()
7196        << RHS.get()->getSourceRange();
7197      if (isError)
7198        return QualType();
7199    }
7200
7201    if (LHSType->isIntegerType())
7202      LHS = ImpCastExprToType(LHS.take(), RHSType,
7203                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7204    else
7205      RHS = ImpCastExprToType(RHS.take(), LHSType,
7206                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7207    return ResultTy;
7208  }
7209
7210  // Handle block pointers.
7211  if (!IsRelational && RHSIsNull
7212      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7213    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7214    return ResultTy;
7215  }
7216  if (!IsRelational && LHSIsNull
7217      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7218    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7219    return ResultTy;
7220  }
7221
7222  return InvalidOperands(Loc, LHS, RHS);
7223}
7224
7225
7226// Return a signed type that is of identical size and number of elements.
7227// For floating point vectors, return an integer type of identical size
7228// and number of elements.
7229QualType Sema::GetSignedVectorType(QualType V) {
7230  const VectorType *VTy = V->getAs<VectorType>();
7231  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7232  if (TypeSize == Context.getTypeSize(Context.CharTy))
7233    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7234  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7235    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7236  else if (TypeSize == Context.getTypeSize(Context.IntTy))
7237    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7238  else if (TypeSize == Context.getTypeSize(Context.LongTy))
7239    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7240  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7241         "Unhandled vector element size in vector compare");
7242  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7243}
7244
7245/// CheckVectorCompareOperands - vector comparisons are a clang extension that
7246/// operates on extended vector types.  Instead of producing an IntTy result,
7247/// like a scalar comparison, a vector comparison produces a vector of integer
7248/// types.
7249QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7250                                          SourceLocation Loc,
7251                                          bool IsRelational) {
7252  // Check to make sure we're operating on vectors of the same type and width,
7253  // Allowing one side to be a scalar of element type.
7254  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7255  if (vType.isNull())
7256    return vType;
7257
7258  QualType LHSType = LHS.get()->getType();
7259
7260  // If AltiVec, the comparison results in a numeric type, i.e.
7261  // bool for C++, int for C
7262  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7263    return Context.getLogicalOperationType();
7264
7265  // For non-floating point types, check for self-comparisons of the form
7266  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7267  // often indicate logic errors in the program.
7268  if (!LHSType->hasFloatingRepresentation()) {
7269    if (DeclRefExpr* DRL
7270          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7271      if (DeclRefExpr* DRR
7272            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7273        if (DRL->getDecl() == DRR->getDecl())
7274          DiagRuntimeBehavior(Loc, 0,
7275                              PDiag(diag::warn_comparison_always)
7276                                << 0 // self-
7277                                << 2 // "a constant"
7278                              );
7279  }
7280
7281  // Check for comparisons of floating point operands using != and ==.
7282  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7283    assert (RHS.get()->getType()->hasFloatingRepresentation());
7284    CheckFloatComparison(Loc, LHS.get(), RHS.get());
7285  }
7286
7287  // Return a signed type for the vector.
7288  return GetSignedVectorType(LHSType);
7289}
7290
7291QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7292                                          SourceLocation Loc) {
7293  // Ensure that either both operands are of the same vector type, or
7294  // one operand is of a vector type and the other is of its element type.
7295  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7296  if (vType.isNull() || vType->isFloatingType())
7297    return InvalidOperands(Loc, LHS, RHS);
7298
7299  return GetSignedVectorType(LHS.get()->getType());
7300}
7301
7302inline QualType Sema::CheckBitwiseOperands(
7303  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7304  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7305
7306  if (LHS.get()->getType()->isVectorType() ||
7307      RHS.get()->getType()->isVectorType()) {
7308    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7309        RHS.get()->getType()->hasIntegerRepresentation())
7310      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7311
7312    return InvalidOperands(Loc, LHS, RHS);
7313  }
7314
7315  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7316  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7317                                                 IsCompAssign);
7318  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7319    return QualType();
7320  LHS = LHSResult.take();
7321  RHS = RHSResult.take();
7322
7323  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7324    return compType;
7325  return InvalidOperands(Loc, LHS, RHS);
7326}
7327
7328inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7329  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7330
7331  // Check vector operands differently.
7332  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7333    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7334
7335  // Diagnose cases where the user write a logical and/or but probably meant a
7336  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7337  // is a constant.
7338  if (LHS.get()->getType()->isIntegerType() &&
7339      !LHS.get()->getType()->isBooleanType() &&
7340      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7341      // Don't warn in macros or template instantiations.
7342      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7343    // If the RHS can be constant folded, and if it constant folds to something
7344    // that isn't 0 or 1 (which indicate a potential logical operation that
7345    // happened to fold to true/false) then warn.
7346    // Parens on the RHS are ignored.
7347    llvm::APSInt Result;
7348    if (RHS.get()->EvaluateAsInt(Result, Context))
7349      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7350          (Result != 0 && Result != 1)) {
7351        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7352          << RHS.get()->getSourceRange()
7353          << (Opc == BO_LAnd ? "&&" : "||");
7354        // Suggest replacing the logical operator with the bitwise version
7355        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7356            << (Opc == BO_LAnd ? "&" : "|")
7357            << FixItHint::CreateReplacement(SourceRange(
7358                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7359                                                getLangOpts())),
7360                                            Opc == BO_LAnd ? "&" : "|");
7361        if (Opc == BO_LAnd)
7362          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7363          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7364              << FixItHint::CreateRemoval(
7365                  SourceRange(
7366                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7367                                                 0, getSourceManager(),
7368                                                 getLangOpts()),
7369                      RHS.get()->getLocEnd()));
7370      }
7371  }
7372
7373  if (!Context.getLangOpts().CPlusPlus) {
7374    LHS = UsualUnaryConversions(LHS.take());
7375    if (LHS.isInvalid())
7376      return QualType();
7377
7378    RHS = UsualUnaryConversions(RHS.take());
7379    if (RHS.isInvalid())
7380      return QualType();
7381
7382    if (!LHS.get()->getType()->isScalarType() ||
7383        !RHS.get()->getType()->isScalarType())
7384      return InvalidOperands(Loc, LHS, RHS);
7385
7386    return Context.IntTy;
7387  }
7388
7389  // The following is safe because we only use this method for
7390  // non-overloadable operands.
7391
7392  // C++ [expr.log.and]p1
7393  // C++ [expr.log.or]p1
7394  // The operands are both contextually converted to type bool.
7395  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7396  if (LHSRes.isInvalid())
7397    return InvalidOperands(Loc, LHS, RHS);
7398  LHS = move(LHSRes);
7399
7400  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7401  if (RHSRes.isInvalid())
7402    return InvalidOperands(Loc, LHS, RHS);
7403  RHS = move(RHSRes);
7404
7405  // C++ [expr.log.and]p2
7406  // C++ [expr.log.or]p2
7407  // The result is a bool.
7408  return Context.BoolTy;
7409}
7410
7411/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7412/// is a read-only property; return true if so. A readonly property expression
7413/// depends on various declarations and thus must be treated specially.
7414///
7415static bool IsReadonlyProperty(Expr *E, Sema &S) {
7416  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7417  if (!PropExpr) return false;
7418  if (PropExpr->isImplicitProperty()) return false;
7419
7420  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7421  QualType BaseType = PropExpr->isSuperReceiver() ?
7422                            PropExpr->getSuperReceiverType() :
7423                            PropExpr->getBase()->getType();
7424
7425  if (const ObjCObjectPointerType *OPT =
7426      BaseType->getAsObjCInterfacePointerType())
7427    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7428      if (S.isPropertyReadonly(PDecl, IFace))
7429        return true;
7430  return false;
7431}
7432
7433static bool IsReadonlyMessage(Expr *E, Sema &S) {
7434  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7435  if (!ME) return false;
7436  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7437  ObjCMessageExpr *Base =
7438    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7439  if (!Base) return false;
7440  return Base->getMethodDecl() != 0;
7441}
7442
7443/// Is the given expression (which must be 'const') a reference to a
7444/// variable which was originally non-const, but which has become
7445/// 'const' due to being captured within a block?
7446enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7447static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7448  assert(E->isLValue() && E->getType().isConstQualified());
7449  E = E->IgnoreParens();
7450
7451  // Must be a reference to a declaration from an enclosing scope.
7452  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7453  if (!DRE) return NCCK_None;
7454  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7455
7456  // The declaration must be a variable which is not declared 'const'.
7457  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7458  if (!var) return NCCK_None;
7459  if (var->getType().isConstQualified()) return NCCK_None;
7460  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7461
7462  // Decide whether the first capture was for a block or a lambda.
7463  DeclContext *DC = S.CurContext;
7464  while (DC->getParent() != var->getDeclContext())
7465    DC = DC->getParent();
7466  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7467}
7468
7469/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7470/// emit an error and return true.  If so, return false.
7471static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7472  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7473  SourceLocation OrigLoc = Loc;
7474  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7475                                                              &Loc);
7476  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7477    IsLV = Expr::MLV_ReadonlyProperty;
7478  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7479    IsLV = Expr::MLV_InvalidMessageExpression;
7480  if (IsLV == Expr::MLV_Valid)
7481    return false;
7482
7483  unsigned Diag = 0;
7484  bool NeedType = false;
7485  switch (IsLV) { // C99 6.5.16p2
7486  case Expr::MLV_ConstQualified:
7487    Diag = diag::err_typecheck_assign_const;
7488
7489    // Use a specialized diagnostic when we're assigning to an object
7490    // from an enclosing function or block.
7491    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7492      if (NCCK == NCCK_Block)
7493        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7494      else
7495        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7496      break;
7497    }
7498
7499    // In ARC, use some specialized diagnostics for occasions where we
7500    // infer 'const'.  These are always pseudo-strong variables.
7501    if (S.getLangOpts().ObjCAutoRefCount) {
7502      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7503      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7504        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7505
7506        // Use the normal diagnostic if it's pseudo-__strong but the
7507        // user actually wrote 'const'.
7508        if (var->isARCPseudoStrong() &&
7509            (!var->getTypeSourceInfo() ||
7510             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7511          // There are two pseudo-strong cases:
7512          //  - self
7513          ObjCMethodDecl *method = S.getCurMethodDecl();
7514          if (method && var == method->getSelfDecl())
7515            Diag = method->isClassMethod()
7516              ? diag::err_typecheck_arc_assign_self_class_method
7517              : diag::err_typecheck_arc_assign_self;
7518
7519          //  - fast enumeration variables
7520          else
7521            Diag = diag::err_typecheck_arr_assign_enumeration;
7522
7523          SourceRange Assign;
7524          if (Loc != OrigLoc)
7525            Assign = SourceRange(OrigLoc, OrigLoc);
7526          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7527          // We need to preserve the AST regardless, so migration tool
7528          // can do its job.
7529          return false;
7530        }
7531      }
7532    }
7533
7534    break;
7535  case Expr::MLV_ArrayType:
7536  case Expr::MLV_ArrayTemporary:
7537    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7538    NeedType = true;
7539    break;
7540  case Expr::MLV_NotObjectType:
7541    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7542    NeedType = true;
7543    break;
7544  case Expr::MLV_LValueCast:
7545    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7546    break;
7547  case Expr::MLV_Valid:
7548    llvm_unreachable("did not take early return for MLV_Valid");
7549  case Expr::MLV_InvalidExpression:
7550  case Expr::MLV_MemberFunction:
7551  case Expr::MLV_ClassTemporary:
7552    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7553    break;
7554  case Expr::MLV_IncompleteType:
7555  case Expr::MLV_IncompleteVoidType:
7556    return S.RequireCompleteType(Loc, E->getType(),
7557             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7558  case Expr::MLV_DuplicateVectorComponents:
7559    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7560    break;
7561  case Expr::MLV_ReadonlyProperty:
7562  case Expr::MLV_NoSetterProperty:
7563    llvm_unreachable("readonly properties should be processed differently");
7564  case Expr::MLV_InvalidMessageExpression:
7565    Diag = diag::error_readonly_message_assignment;
7566    break;
7567  case Expr::MLV_SubObjCPropertySetting:
7568    Diag = diag::error_no_subobject_property_setting;
7569    break;
7570  }
7571
7572  SourceRange Assign;
7573  if (Loc != OrigLoc)
7574    Assign = SourceRange(OrigLoc, OrigLoc);
7575  if (NeedType)
7576    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7577  else
7578    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7579  return true;
7580}
7581
7582static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7583                                         SourceLocation Loc,
7584                                         Sema &Sema) {
7585  // C / C++ fields
7586  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7587  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7588  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7589    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7590      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7591  }
7592
7593  // Objective-C instance variables
7594  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7595  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7596  if (OL && OR && OL->getDecl() == OR->getDecl()) {
7597    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7598    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7599    if (RL && RR && RL->getDecl() == RR->getDecl())
7600      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7601  }
7602}
7603
7604// C99 6.5.16.1
7605QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7606                                       SourceLocation Loc,
7607                                       QualType CompoundType) {
7608  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7609
7610  // Verify that LHS is a modifiable lvalue, and emit error if not.
7611  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7612    return QualType();
7613
7614  QualType LHSType = LHSExpr->getType();
7615  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7616                                             CompoundType;
7617  AssignConvertType ConvTy;
7618  if (CompoundType.isNull()) {
7619    Expr *RHSCheck = RHS.get();
7620
7621    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7622
7623    QualType LHSTy(LHSType);
7624    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7625    if (RHS.isInvalid())
7626      return QualType();
7627    // Special case of NSObject attributes on c-style pointer types.
7628    if (ConvTy == IncompatiblePointer &&
7629        ((Context.isObjCNSObjectType(LHSType) &&
7630          RHSType->isObjCObjectPointerType()) ||
7631         (Context.isObjCNSObjectType(RHSType) &&
7632          LHSType->isObjCObjectPointerType())))
7633      ConvTy = Compatible;
7634
7635    if (ConvTy == Compatible &&
7636        LHSType->isObjCObjectType())
7637        Diag(Loc, diag::err_objc_object_assignment)
7638          << LHSType;
7639
7640    // If the RHS is a unary plus or minus, check to see if they = and + are
7641    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7642    // instead of "x += 4".
7643    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7644      RHSCheck = ICE->getSubExpr();
7645    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7646      if ((UO->getOpcode() == UO_Plus ||
7647           UO->getOpcode() == UO_Minus) &&
7648          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7649          // Only if the two operators are exactly adjacent.
7650          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7651          // And there is a space or other character before the subexpr of the
7652          // unary +/-.  We don't want to warn on "x=-1".
7653          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7654          UO->getSubExpr()->getLocStart().isFileID()) {
7655        Diag(Loc, diag::warn_not_compound_assign)
7656          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7657          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7658      }
7659    }
7660
7661    if (ConvTy == Compatible) {
7662      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7663        checkRetainCycles(LHSExpr, RHS.get());
7664      else if (getLangOpts().ObjCAutoRefCount)
7665        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7666    }
7667  } else {
7668    // Compound assignment "x += y"
7669    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7670  }
7671
7672  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7673                               RHS.get(), AA_Assigning))
7674    return QualType();
7675
7676  CheckForNullPointerDereference(*this, LHSExpr);
7677
7678  // C99 6.5.16p3: The type of an assignment expression is the type of the
7679  // left operand unless the left operand has qualified type, in which case
7680  // it is the unqualified version of the type of the left operand.
7681  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7682  // is converted to the type of the assignment expression (above).
7683  // C++ 5.17p1: the type of the assignment expression is that of its left
7684  // operand.
7685  return (getLangOpts().CPlusPlus
7686          ? LHSType : LHSType.getUnqualifiedType());
7687}
7688
7689// C99 6.5.17
7690static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7691                                   SourceLocation Loc) {
7692  LHS = S.CheckPlaceholderExpr(LHS.take());
7693  RHS = S.CheckPlaceholderExpr(RHS.take());
7694  if (LHS.isInvalid() || RHS.isInvalid())
7695    return QualType();
7696
7697  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7698  // operands, but not unary promotions.
7699  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7700
7701  // So we treat the LHS as a ignored value, and in C++ we allow the
7702  // containing site to determine what should be done with the RHS.
7703  LHS = S.IgnoredValueConversions(LHS.take());
7704  if (LHS.isInvalid())
7705    return QualType();
7706
7707  S.DiagnoseUnusedExprResult(LHS.get());
7708
7709  if (!S.getLangOpts().CPlusPlus) {
7710    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7711    if (RHS.isInvalid())
7712      return QualType();
7713    if (!RHS.get()->getType()->isVoidType())
7714      S.RequireCompleteType(Loc, RHS.get()->getType(),
7715                            diag::err_incomplete_type);
7716  }
7717
7718  return RHS.get()->getType();
7719}
7720
7721/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7722/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7723static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7724                                               ExprValueKind &VK,
7725                                               SourceLocation OpLoc,
7726                                               bool IsInc, bool IsPrefix) {
7727  if (Op->isTypeDependent())
7728    return S.Context.DependentTy;
7729
7730  QualType ResType = Op->getType();
7731  // Atomic types can be used for increment / decrement where the non-atomic
7732  // versions can, so ignore the _Atomic() specifier for the purpose of
7733  // checking.
7734  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7735    ResType = ResAtomicType->getValueType();
7736
7737  assert(!ResType.isNull() && "no type for increment/decrement expression");
7738
7739  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7740    // Decrement of bool is not allowed.
7741    if (!IsInc) {
7742      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7743      return QualType();
7744    }
7745    // Increment of bool sets it to true, but is deprecated.
7746    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7747  } else if (ResType->isRealType()) {
7748    // OK!
7749  } else if (ResType->isAnyPointerType()) {
7750    // C99 6.5.2.4p2, 6.5.6p2
7751    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7752      return QualType();
7753
7754    // Diagnose bad cases where we step over interface counts.
7755    else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7756      return QualType();
7757  } else if (ResType->isAnyComplexType()) {
7758    // C99 does not support ++/-- on complex types, we allow as an extension.
7759    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7760      << ResType << Op->getSourceRange();
7761  } else if (ResType->isPlaceholderType()) {
7762    ExprResult PR = S.CheckPlaceholderExpr(Op);
7763    if (PR.isInvalid()) return QualType();
7764    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7765                                          IsInc, IsPrefix);
7766  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7767    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7768  } else {
7769    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7770      << ResType << int(IsInc) << Op->getSourceRange();
7771    return QualType();
7772  }
7773  // At this point, we know we have a real, complex or pointer type.
7774  // Now make sure the operand is a modifiable lvalue.
7775  if (CheckForModifiableLvalue(Op, OpLoc, S))
7776    return QualType();
7777  // In C++, a prefix increment is the same type as the operand. Otherwise
7778  // (in C or with postfix), the increment is the unqualified type of the
7779  // operand.
7780  if (IsPrefix && S.getLangOpts().CPlusPlus) {
7781    VK = VK_LValue;
7782    return ResType;
7783  } else {
7784    VK = VK_RValue;
7785    return ResType.getUnqualifiedType();
7786  }
7787}
7788
7789
7790/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7791/// This routine allows us to typecheck complex/recursive expressions
7792/// where the declaration is needed for type checking. We only need to
7793/// handle cases when the expression references a function designator
7794/// or is an lvalue. Here are some examples:
7795///  - &(x) => x
7796///  - &*****f => f for f a function designator.
7797///  - &s.xx => s
7798///  - &s.zz[1].yy -> s, if zz is an array
7799///  - *(x + 1) -> x, if x is an array
7800///  - &"123"[2] -> 0
7801///  - & __real__ x -> x
7802static ValueDecl *getPrimaryDecl(Expr *E) {
7803  switch (E->getStmtClass()) {
7804  case Stmt::DeclRefExprClass:
7805    return cast<DeclRefExpr>(E)->getDecl();
7806  case Stmt::MemberExprClass:
7807    // If this is an arrow operator, the address is an offset from
7808    // the base's value, so the object the base refers to is
7809    // irrelevant.
7810    if (cast<MemberExpr>(E)->isArrow())
7811      return 0;
7812    // Otherwise, the expression refers to a part of the base
7813    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7814  case Stmt::ArraySubscriptExprClass: {
7815    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7816    // promotion of register arrays earlier.
7817    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7818    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7819      if (ICE->getSubExpr()->getType()->isArrayType())
7820        return getPrimaryDecl(ICE->getSubExpr());
7821    }
7822    return 0;
7823  }
7824  case Stmt::UnaryOperatorClass: {
7825    UnaryOperator *UO = cast<UnaryOperator>(E);
7826
7827    switch(UO->getOpcode()) {
7828    case UO_Real:
7829    case UO_Imag:
7830    case UO_Extension:
7831      return getPrimaryDecl(UO->getSubExpr());
7832    default:
7833      return 0;
7834    }
7835  }
7836  case Stmt::ParenExprClass:
7837    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7838  case Stmt::ImplicitCastExprClass:
7839    // If the result of an implicit cast is an l-value, we care about
7840    // the sub-expression; otherwise, the result here doesn't matter.
7841    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7842  default:
7843    return 0;
7844  }
7845}
7846
7847namespace {
7848  enum {
7849    AO_Bit_Field = 0,
7850    AO_Vector_Element = 1,
7851    AO_Property_Expansion = 2,
7852    AO_Register_Variable = 3,
7853    AO_No_Error = 4
7854  };
7855}
7856/// \brief Diagnose invalid operand for address of operations.
7857///
7858/// \param Type The type of operand which cannot have its address taken.
7859static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7860                                         Expr *E, unsigned Type) {
7861  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7862}
7863
7864/// CheckAddressOfOperand - The operand of & must be either a function
7865/// designator or an lvalue designating an object. If it is an lvalue, the
7866/// object cannot be declared with storage class register or be a bit field.
7867/// Note: The usual conversions are *not* applied to the operand of the &
7868/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7869/// In C++, the operand might be an overloaded function name, in which case
7870/// we allow the '&' but retain the overloaded-function type.
7871static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7872                                      SourceLocation OpLoc) {
7873  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7874    if (PTy->getKind() == BuiltinType::Overload) {
7875      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7876        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7877          << OrigOp.get()->getSourceRange();
7878        return QualType();
7879      }
7880
7881      return S.Context.OverloadTy;
7882    }
7883
7884    if (PTy->getKind() == BuiltinType::UnknownAny)
7885      return S.Context.UnknownAnyTy;
7886
7887    if (PTy->getKind() == BuiltinType::BoundMember) {
7888      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7889        << OrigOp.get()->getSourceRange();
7890      return QualType();
7891    }
7892
7893    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7894    if (OrigOp.isInvalid()) return QualType();
7895  }
7896
7897  if (OrigOp.get()->isTypeDependent())
7898    return S.Context.DependentTy;
7899
7900  assert(!OrigOp.get()->getType()->isPlaceholderType());
7901
7902  // Make sure to ignore parentheses in subsequent checks
7903  Expr *op = OrigOp.get()->IgnoreParens();
7904
7905  if (S.getLangOpts().C99) {
7906    // Implement C99-only parts of addressof rules.
7907    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7908      if (uOp->getOpcode() == UO_Deref)
7909        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7910        // (assuming the deref expression is valid).
7911        return uOp->getSubExpr()->getType();
7912    }
7913    // Technically, there should be a check for array subscript
7914    // expressions here, but the result of one is always an lvalue anyway.
7915  }
7916  ValueDecl *dcl = getPrimaryDecl(op);
7917  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7918  unsigned AddressOfError = AO_No_Error;
7919
7920  if (lval == Expr::LV_ClassTemporary) {
7921    bool sfinae = S.isSFINAEContext();
7922    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7923                         : diag::ext_typecheck_addrof_class_temporary)
7924      << op->getType() << op->getSourceRange();
7925    if (sfinae)
7926      return QualType();
7927  } else if (isa<ObjCSelectorExpr>(op)) {
7928    return S.Context.getPointerType(op->getType());
7929  } else if (lval == Expr::LV_MemberFunction) {
7930    // If it's an instance method, make a member pointer.
7931    // The expression must have exactly the form &A::foo.
7932
7933    // If the underlying expression isn't a decl ref, give up.
7934    if (!isa<DeclRefExpr>(op)) {
7935      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7936        << OrigOp.get()->getSourceRange();
7937      return QualType();
7938    }
7939    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7940    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7941
7942    // The id-expression was parenthesized.
7943    if (OrigOp.get() != DRE) {
7944      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7945        << OrigOp.get()->getSourceRange();
7946
7947    // The method was named without a qualifier.
7948    } else if (!DRE->getQualifier()) {
7949      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7950        << op->getSourceRange();
7951    }
7952
7953    return S.Context.getMemberPointerType(op->getType(),
7954              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7955  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7956    // C99 6.5.3.2p1
7957    // The operand must be either an l-value or a function designator
7958    if (!op->getType()->isFunctionType()) {
7959      // Use a special diagnostic for loads from property references.
7960      if (isa<PseudoObjectExpr>(op)) {
7961        AddressOfError = AO_Property_Expansion;
7962      } else {
7963        // FIXME: emit more specific diag...
7964        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7965          << op->getSourceRange();
7966        return QualType();
7967      }
7968    }
7969  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7970    // The operand cannot be a bit-field
7971    AddressOfError = AO_Bit_Field;
7972  } else if (op->getObjectKind() == OK_VectorComponent) {
7973    // The operand cannot be an element of a vector
7974    AddressOfError = AO_Vector_Element;
7975  } else if (dcl) { // C99 6.5.3.2p1
7976    // We have an lvalue with a decl. Make sure the decl is not declared
7977    // with the register storage-class specifier.
7978    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7979      // in C++ it is not error to take address of a register
7980      // variable (c++03 7.1.1P3)
7981      if (vd->getStorageClass() == SC_Register &&
7982          !S.getLangOpts().CPlusPlus) {
7983        AddressOfError = AO_Register_Variable;
7984      }
7985    } else if (isa<FunctionTemplateDecl>(dcl)) {
7986      return S.Context.OverloadTy;
7987    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7988      // Okay: we can take the address of a field.
7989      // Could be a pointer to member, though, if there is an explicit
7990      // scope qualifier for the class.
7991      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7992        DeclContext *Ctx = dcl->getDeclContext();
7993        if (Ctx && Ctx->isRecord()) {
7994          if (dcl->getType()->isReferenceType()) {
7995            S.Diag(OpLoc,
7996                   diag::err_cannot_form_pointer_to_member_of_reference_type)
7997              << dcl->getDeclName() << dcl->getType();
7998            return QualType();
7999          }
8000
8001          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8002            Ctx = Ctx->getParent();
8003          return S.Context.getMemberPointerType(op->getType(),
8004                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8005        }
8006      }
8007    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8008      llvm_unreachable("Unknown/unexpected decl type");
8009  }
8010
8011  if (AddressOfError != AO_No_Error) {
8012    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8013    return QualType();
8014  }
8015
8016  if (lval == Expr::LV_IncompleteVoidType) {
8017    // Taking the address of a void variable is technically illegal, but we
8018    // allow it in cases which are otherwise valid.
8019    // Example: "extern void x; void* y = &x;".
8020    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8021  }
8022
8023  // If the operand has type "type", the result has type "pointer to type".
8024  if (op->getType()->isObjCObjectType())
8025    return S.Context.getObjCObjectPointerType(op->getType());
8026  return S.Context.getPointerType(op->getType());
8027}
8028
8029/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8030static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8031                                        SourceLocation OpLoc) {
8032  if (Op->isTypeDependent())
8033    return S.Context.DependentTy;
8034
8035  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8036  if (ConvResult.isInvalid())
8037    return QualType();
8038  Op = ConvResult.take();
8039  QualType OpTy = Op->getType();
8040  QualType Result;
8041
8042  if (isa<CXXReinterpretCastExpr>(Op)) {
8043    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8044    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8045                                     Op->getSourceRange());
8046  }
8047
8048  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8049  // is an incomplete type or void.  It would be possible to warn about
8050  // dereferencing a void pointer, but it's completely well-defined, and such a
8051  // warning is unlikely to catch any mistakes.
8052  if (const PointerType *PT = OpTy->getAs<PointerType>())
8053    Result = PT->getPointeeType();
8054  else if (const ObjCObjectPointerType *OPT =
8055             OpTy->getAs<ObjCObjectPointerType>())
8056    Result = OPT->getPointeeType();
8057  else {
8058    ExprResult PR = S.CheckPlaceholderExpr(Op);
8059    if (PR.isInvalid()) return QualType();
8060    if (PR.take() != Op)
8061      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8062  }
8063
8064  if (Result.isNull()) {
8065    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8066      << OpTy << Op->getSourceRange();
8067    return QualType();
8068  }
8069
8070  // Dereferences are usually l-values...
8071  VK = VK_LValue;
8072
8073  // ...except that certain expressions are never l-values in C.
8074  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8075    VK = VK_RValue;
8076
8077  return Result;
8078}
8079
8080static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8081  tok::TokenKind Kind) {
8082  BinaryOperatorKind Opc;
8083  switch (Kind) {
8084  default: llvm_unreachable("Unknown binop!");
8085  case tok::periodstar:           Opc = BO_PtrMemD; break;
8086  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8087  case tok::star:                 Opc = BO_Mul; break;
8088  case tok::slash:                Opc = BO_Div; break;
8089  case tok::percent:              Opc = BO_Rem; break;
8090  case tok::plus:                 Opc = BO_Add; break;
8091  case tok::minus:                Opc = BO_Sub; break;
8092  case tok::lessless:             Opc = BO_Shl; break;
8093  case tok::greatergreater:       Opc = BO_Shr; break;
8094  case tok::lessequal:            Opc = BO_LE; break;
8095  case tok::less:                 Opc = BO_LT; break;
8096  case tok::greaterequal:         Opc = BO_GE; break;
8097  case tok::greater:              Opc = BO_GT; break;
8098  case tok::exclaimequal:         Opc = BO_NE; break;
8099  case tok::equalequal:           Opc = BO_EQ; break;
8100  case tok::amp:                  Opc = BO_And; break;
8101  case tok::caret:                Opc = BO_Xor; break;
8102  case tok::pipe:                 Opc = BO_Or; break;
8103  case tok::ampamp:               Opc = BO_LAnd; break;
8104  case tok::pipepipe:             Opc = BO_LOr; break;
8105  case tok::equal:                Opc = BO_Assign; break;
8106  case tok::starequal:            Opc = BO_MulAssign; break;
8107  case tok::slashequal:           Opc = BO_DivAssign; break;
8108  case tok::percentequal:         Opc = BO_RemAssign; break;
8109  case tok::plusequal:            Opc = BO_AddAssign; break;
8110  case tok::minusequal:           Opc = BO_SubAssign; break;
8111  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8112  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8113  case tok::ampequal:             Opc = BO_AndAssign; break;
8114  case tok::caretequal:           Opc = BO_XorAssign; break;
8115  case tok::pipeequal:            Opc = BO_OrAssign; break;
8116  case tok::comma:                Opc = BO_Comma; break;
8117  }
8118  return Opc;
8119}
8120
8121static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8122  tok::TokenKind Kind) {
8123  UnaryOperatorKind Opc;
8124  switch (Kind) {
8125  default: llvm_unreachable("Unknown unary op!");
8126  case tok::plusplus:     Opc = UO_PreInc; break;
8127  case tok::minusminus:   Opc = UO_PreDec; break;
8128  case tok::amp:          Opc = UO_AddrOf; break;
8129  case tok::star:         Opc = UO_Deref; break;
8130  case tok::plus:         Opc = UO_Plus; break;
8131  case tok::minus:        Opc = UO_Minus; break;
8132  case tok::tilde:        Opc = UO_Not; break;
8133  case tok::exclaim:      Opc = UO_LNot; break;
8134  case tok::kw___real:    Opc = UO_Real; break;
8135  case tok::kw___imag:    Opc = UO_Imag; break;
8136  case tok::kw___extension__: Opc = UO_Extension; break;
8137  }
8138  return Opc;
8139}
8140
8141/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8142/// This warning is only emitted for builtin assignment operations. It is also
8143/// suppressed in the event of macro expansions.
8144static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8145                                   SourceLocation OpLoc) {
8146  if (!S.ActiveTemplateInstantiations.empty())
8147    return;
8148  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8149    return;
8150  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8151  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8152  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8153  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8154  if (!LHSDeclRef || !RHSDeclRef ||
8155      LHSDeclRef->getLocation().isMacroID() ||
8156      RHSDeclRef->getLocation().isMacroID())
8157    return;
8158  const ValueDecl *LHSDecl =
8159    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8160  const ValueDecl *RHSDecl =
8161    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8162  if (LHSDecl != RHSDecl)
8163    return;
8164  if (LHSDecl->getType().isVolatileQualified())
8165    return;
8166  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8167    if (RefTy->getPointeeType().isVolatileQualified())
8168      return;
8169
8170  S.Diag(OpLoc, diag::warn_self_assignment)
8171      << LHSDeclRef->getType()
8172      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8173}
8174
8175/// CreateBuiltinBinOp - Creates a new built-in binary operation with
8176/// operator @p Opc at location @c TokLoc. This routine only supports
8177/// built-in operations; ActOnBinOp handles overloaded operators.
8178ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8179                                    BinaryOperatorKind Opc,
8180                                    Expr *LHSExpr, Expr *RHSExpr) {
8181  if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
8182    // The syntax only allows initializer lists on the RHS of assignment,
8183    // so we don't need to worry about accepting invalid code for
8184    // non-assignment operators.
8185    // C++11 5.17p9:
8186    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8187    //   of x = {} is x = T().
8188    InitializationKind Kind =
8189        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8190    InitializedEntity Entity =
8191        InitializedEntity::InitializeTemporary(LHSExpr->getType());
8192    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8193    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
8194                                      MultiExprArg(&RHSExpr, 1));
8195    if (Init.isInvalid())
8196      return Init;
8197    RHSExpr = Init.take();
8198  }
8199
8200  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8201  QualType ResultTy;     // Result type of the binary operator.
8202  // The following two variables are used for compound assignment operators
8203  QualType CompLHSTy;    // Type of LHS after promotions for computation
8204  QualType CompResultTy; // Type of computation result
8205  ExprValueKind VK = VK_RValue;
8206  ExprObjectKind OK = OK_Ordinary;
8207
8208  switch (Opc) {
8209  case BO_Assign:
8210    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8211    if (getLangOpts().CPlusPlus &&
8212        LHS.get()->getObjectKind() != OK_ObjCProperty) {
8213      VK = LHS.get()->getValueKind();
8214      OK = LHS.get()->getObjectKind();
8215    }
8216    if (!ResultTy.isNull())
8217      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8218    break;
8219  case BO_PtrMemD:
8220  case BO_PtrMemI:
8221    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8222                                            Opc == BO_PtrMemI);
8223    break;
8224  case BO_Mul:
8225  case BO_Div:
8226    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8227                                           Opc == BO_Div);
8228    break;
8229  case BO_Rem:
8230    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8231    break;
8232  case BO_Add:
8233    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8234    break;
8235  case BO_Sub:
8236    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8237    break;
8238  case BO_Shl:
8239  case BO_Shr:
8240    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8241    break;
8242  case BO_LE:
8243  case BO_LT:
8244  case BO_GE:
8245  case BO_GT:
8246    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8247    break;
8248  case BO_EQ:
8249  case BO_NE:
8250    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8251    break;
8252  case BO_And:
8253  case BO_Xor:
8254  case BO_Or:
8255    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8256    break;
8257  case BO_LAnd:
8258  case BO_LOr:
8259    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8260    break;
8261  case BO_MulAssign:
8262  case BO_DivAssign:
8263    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8264                                               Opc == BO_DivAssign);
8265    CompLHSTy = CompResultTy;
8266    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8267      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8268    break;
8269  case BO_RemAssign:
8270    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8271    CompLHSTy = CompResultTy;
8272    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8273      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8274    break;
8275  case BO_AddAssign:
8276    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8277    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8278      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8279    break;
8280  case BO_SubAssign:
8281    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8282    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8283      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8284    break;
8285  case BO_ShlAssign:
8286  case BO_ShrAssign:
8287    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8288    CompLHSTy = CompResultTy;
8289    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8290      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8291    break;
8292  case BO_AndAssign:
8293  case BO_XorAssign:
8294  case BO_OrAssign:
8295    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8296    CompLHSTy = CompResultTy;
8297    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8298      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8299    break;
8300  case BO_Comma:
8301    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8302    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8303      VK = RHS.get()->getValueKind();
8304      OK = RHS.get()->getObjectKind();
8305    }
8306    break;
8307  }
8308  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8309    return ExprError();
8310
8311  // Check for array bounds violations for both sides of the BinaryOperator
8312  CheckArrayAccess(LHS.get());
8313  CheckArrayAccess(RHS.get());
8314
8315  if (CompResultTy.isNull())
8316    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8317                                              ResultTy, VK, OK, OpLoc));
8318  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8319      OK_ObjCProperty) {
8320    VK = VK_LValue;
8321    OK = LHS.get()->getObjectKind();
8322  }
8323  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8324                                                    ResultTy, VK, OK, CompLHSTy,
8325                                                    CompResultTy, OpLoc));
8326}
8327
8328/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8329/// operators are mixed in a way that suggests that the programmer forgot that
8330/// comparison operators have higher precedence. The most typical example of
8331/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8332static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8333                                      SourceLocation OpLoc, Expr *LHSExpr,
8334                                      Expr *RHSExpr) {
8335  typedef BinaryOperator BinOp;
8336  BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8337                RHSopc = static_cast<BinOp::Opcode>(-1);
8338  if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8339    LHSopc = BO->getOpcode();
8340  if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8341    RHSopc = BO->getOpcode();
8342
8343  // Subs are not binary operators.
8344  if (LHSopc == -1 && RHSopc == -1)
8345    return;
8346
8347  // Bitwise operations are sometimes used as eager logical ops.
8348  // Don't diagnose this.
8349  if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8350      (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8351    return;
8352
8353  bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8354  bool isRightComp = BinOp::isComparisonOp(RHSopc);
8355  if (!isLeftComp && !isRightComp) return;
8356
8357  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8358                                                   OpLoc)
8359                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8360  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8361                                 : BinOp::getOpcodeStr(RHSopc);
8362  SourceRange ParensRange = isLeftComp ?
8363      SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8364                  RHSExpr->getLocEnd())
8365    : SourceRange(LHSExpr->getLocStart(),
8366                  cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8367
8368  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8369    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8370  SuggestParentheses(Self, OpLoc,
8371    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8372    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8373  SuggestParentheses(Self, OpLoc,
8374    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8375    ParensRange);
8376}
8377
8378/// \brief It accepts a '&' expr that is inside a '|' one.
8379/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8380/// in parentheses.
8381static void
8382EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8383                                       BinaryOperator *Bop) {
8384  assert(Bop->getOpcode() == BO_And);
8385  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8386      << Bop->getSourceRange() << OpLoc;
8387  SuggestParentheses(Self, Bop->getOperatorLoc(),
8388    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8389    Bop->getSourceRange());
8390}
8391
8392/// \brief It accepts a '&&' expr that is inside a '||' one.
8393/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8394/// in parentheses.
8395static void
8396EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8397                                       BinaryOperator *Bop) {
8398  assert(Bop->getOpcode() == BO_LAnd);
8399  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8400      << Bop->getSourceRange() << OpLoc;
8401  SuggestParentheses(Self, Bop->getOperatorLoc(),
8402    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8403    Bop->getSourceRange());
8404}
8405
8406/// \brief Returns true if the given expression can be evaluated as a constant
8407/// 'true'.
8408static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8409  bool Res;
8410  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8411}
8412
8413/// \brief Returns true if the given expression can be evaluated as a constant
8414/// 'false'.
8415static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8416  bool Res;
8417  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8418}
8419
8420/// \brief Look for '&&' in the left hand of a '||' expr.
8421static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8422                                             Expr *LHSExpr, Expr *RHSExpr) {
8423  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8424    if (Bop->getOpcode() == BO_LAnd) {
8425      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8426      if (EvaluatesAsFalse(S, RHSExpr))
8427        return;
8428      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8429      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8430        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8431    } else if (Bop->getOpcode() == BO_LOr) {
8432      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8433        // If it's "a || b && 1 || c" we didn't warn earlier for
8434        // "a || b && 1", but warn now.
8435        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8436          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8437      }
8438    }
8439  }
8440}
8441
8442/// \brief Look for '&&' in the right hand of a '||' expr.
8443static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8444                                             Expr *LHSExpr, Expr *RHSExpr) {
8445  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8446    if (Bop->getOpcode() == BO_LAnd) {
8447      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8448      if (EvaluatesAsFalse(S, LHSExpr))
8449        return;
8450      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8451      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8452        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8453    }
8454  }
8455}
8456
8457/// \brief Look for '&' in the left or right hand of a '|' expr.
8458static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8459                                             Expr *OrArg) {
8460  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8461    if (Bop->getOpcode() == BO_And)
8462      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8463  }
8464}
8465
8466/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8467/// precedence.
8468static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8469                                    SourceLocation OpLoc, Expr *LHSExpr,
8470                                    Expr *RHSExpr){
8471  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8472  if (BinaryOperator::isBitwiseOp(Opc))
8473    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8474
8475  // Diagnose "arg1 & arg2 | arg3"
8476  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8477    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8478    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8479  }
8480
8481  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8482  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8483  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8484    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8485    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8486  }
8487}
8488
8489// Binary Operators.  'Tok' is the token for the operator.
8490ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8491                            tok::TokenKind Kind,
8492                            Expr *LHSExpr, Expr *RHSExpr) {
8493  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8494  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8495  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8496
8497  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8498  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8499
8500  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8501}
8502
8503/// Build an overloaded binary operator expression in the given scope.
8504static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8505                                       BinaryOperatorKind Opc,
8506                                       Expr *LHS, Expr *RHS) {
8507  // Find all of the overloaded operators visible from this
8508  // point. We perform both an operator-name lookup from the local
8509  // scope and an argument-dependent lookup based on the types of
8510  // the arguments.
8511  UnresolvedSet<16> Functions;
8512  OverloadedOperatorKind OverOp
8513    = BinaryOperator::getOverloadedOperator(Opc);
8514  if (Sc && OverOp != OO_None)
8515    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8516                                   RHS->getType(), Functions);
8517
8518  // Build the (potentially-overloaded, potentially-dependent)
8519  // binary operation.
8520  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8521}
8522
8523ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8524                            BinaryOperatorKind Opc,
8525                            Expr *LHSExpr, Expr *RHSExpr) {
8526  // We want to end up calling one of checkPseudoObjectAssignment
8527  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8528  // both expressions are overloadable or either is type-dependent),
8529  // or CreateBuiltinBinOp (in any other case).  We also want to get
8530  // any placeholder types out of the way.
8531
8532  // Handle pseudo-objects in the LHS.
8533  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8534    // Assignments with a pseudo-object l-value need special analysis.
8535    if (pty->getKind() == BuiltinType::PseudoObject &&
8536        BinaryOperator::isAssignmentOp(Opc))
8537      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8538
8539    // Don't resolve overloads if the other type is overloadable.
8540    if (pty->getKind() == BuiltinType::Overload) {
8541      // We can't actually test that if we still have a placeholder,
8542      // though.  Fortunately, none of the exceptions we see in that
8543      // code below are valid when the LHS is an overload set.  Note
8544      // that an overload set can be dependently-typed, but it never
8545      // instantiates to having an overloadable type.
8546      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8547      if (resolvedRHS.isInvalid()) return ExprError();
8548      RHSExpr = resolvedRHS.take();
8549
8550      if (RHSExpr->isTypeDependent() ||
8551          RHSExpr->getType()->isOverloadableType())
8552        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8553    }
8554
8555    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8556    if (LHS.isInvalid()) return ExprError();
8557    LHSExpr = LHS.take();
8558  }
8559
8560  // Handle pseudo-objects in the RHS.
8561  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8562    // An overload in the RHS can potentially be resolved by the type
8563    // being assigned to.
8564    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8565      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8566        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8567
8568      if (LHSExpr->getType()->isOverloadableType())
8569        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8570
8571      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8572    }
8573
8574    // Don't resolve overloads if the other type is overloadable.
8575    if (pty->getKind() == BuiltinType::Overload &&
8576        LHSExpr->getType()->isOverloadableType())
8577      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8578
8579    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8580    if (!resolvedRHS.isUsable()) return ExprError();
8581    RHSExpr = resolvedRHS.take();
8582  }
8583
8584  if (getLangOpts().CPlusPlus) {
8585    // If either expression is type-dependent, always build an
8586    // overloaded op.
8587    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8588      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8589
8590    // Otherwise, build an overloaded op if either expression has an
8591    // overloadable type.
8592    if (LHSExpr->getType()->isOverloadableType() ||
8593        RHSExpr->getType()->isOverloadableType())
8594      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8595  }
8596
8597  // Build a built-in binary operation.
8598  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8599}
8600
8601ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8602                                      UnaryOperatorKind Opc,
8603                                      Expr *InputExpr) {
8604  ExprResult Input = Owned(InputExpr);
8605  ExprValueKind VK = VK_RValue;
8606  ExprObjectKind OK = OK_Ordinary;
8607  QualType resultType;
8608  switch (Opc) {
8609  case UO_PreInc:
8610  case UO_PreDec:
8611  case UO_PostInc:
8612  case UO_PostDec:
8613    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8614                                                Opc == UO_PreInc ||
8615                                                Opc == UO_PostInc,
8616                                                Opc == UO_PreInc ||
8617                                                Opc == UO_PreDec);
8618    break;
8619  case UO_AddrOf:
8620    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8621    break;
8622  case UO_Deref: {
8623    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8624    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8625    break;
8626  }
8627  case UO_Plus:
8628  case UO_Minus:
8629    Input = UsualUnaryConversions(Input.take());
8630    if (Input.isInvalid()) return ExprError();
8631    resultType = Input.get()->getType();
8632    if (resultType->isDependentType())
8633      break;
8634    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8635        resultType->isVectorType())
8636      break;
8637    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8638             resultType->isEnumeralType())
8639      break;
8640    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8641             Opc == UO_Plus &&
8642             resultType->isPointerType())
8643      break;
8644
8645    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8646      << resultType << Input.get()->getSourceRange());
8647
8648  case UO_Not: // bitwise complement
8649    Input = UsualUnaryConversions(Input.take());
8650    if (Input.isInvalid()) return ExprError();
8651    resultType = Input.get()->getType();
8652    if (resultType->isDependentType())
8653      break;
8654    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8655    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8656      // C99 does not support '~' for complex conjugation.
8657      Diag(OpLoc, diag::ext_integer_complement_complex)
8658        << resultType << Input.get()->getSourceRange();
8659    else if (resultType->hasIntegerRepresentation())
8660      break;
8661    else {
8662      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8663        << resultType << Input.get()->getSourceRange());
8664    }
8665    break;
8666
8667  case UO_LNot: // logical negation
8668    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8669    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8670    if (Input.isInvalid()) return ExprError();
8671    resultType = Input.get()->getType();
8672
8673    // Though we still have to promote half FP to float...
8674    if (resultType->isHalfType()) {
8675      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8676      resultType = Context.FloatTy;
8677    }
8678
8679    if (resultType->isDependentType())
8680      break;
8681    if (resultType->isScalarType()) {
8682      // C99 6.5.3.3p1: ok, fallthrough;
8683      if (Context.getLangOpts().CPlusPlus) {
8684        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8685        // operand contextually converted to bool.
8686        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8687                                  ScalarTypeToBooleanCastKind(resultType));
8688      }
8689    } else if (resultType->isExtVectorType()) {
8690      // Vector logical not returns the signed variant of the operand type.
8691      resultType = GetSignedVectorType(resultType);
8692      break;
8693    } else {
8694      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8695        << resultType << Input.get()->getSourceRange());
8696    }
8697
8698    // LNot always has type int. C99 6.5.3.3p5.
8699    // In C++, it's bool. C++ 5.3.1p8
8700    resultType = Context.getLogicalOperationType();
8701    break;
8702  case UO_Real:
8703  case UO_Imag:
8704    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8705    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8706    // complex l-values to ordinary l-values and all other values to r-values.
8707    if (Input.isInvalid()) return ExprError();
8708    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8709      if (Input.get()->getValueKind() != VK_RValue &&
8710          Input.get()->getObjectKind() == OK_Ordinary)
8711        VK = Input.get()->getValueKind();
8712    } else if (!getLangOpts().CPlusPlus) {
8713      // In C, a volatile scalar is read by __imag. In C++, it is not.
8714      Input = DefaultLvalueConversion(Input.take());
8715    }
8716    break;
8717  case UO_Extension:
8718    resultType = Input.get()->getType();
8719    VK = Input.get()->getValueKind();
8720    OK = Input.get()->getObjectKind();
8721    break;
8722  }
8723  if (resultType.isNull() || Input.isInvalid())
8724    return ExprError();
8725
8726  // Check for array bounds violations in the operand of the UnaryOperator,
8727  // except for the '*' and '&' operators that have to be handled specially
8728  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8729  // that are explicitly defined as valid by the standard).
8730  if (Opc != UO_AddrOf && Opc != UO_Deref)
8731    CheckArrayAccess(Input.get());
8732
8733  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8734                                           VK, OK, OpLoc));
8735}
8736
8737/// \brief Determine whether the given expression is a qualified member
8738/// access expression, of a form that could be turned into a pointer to member
8739/// with the address-of operator.
8740static bool isQualifiedMemberAccess(Expr *E) {
8741  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8742    if (!DRE->getQualifier())
8743      return false;
8744
8745    ValueDecl *VD = DRE->getDecl();
8746    if (!VD->isCXXClassMember())
8747      return false;
8748
8749    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8750      return true;
8751    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8752      return Method->isInstance();
8753
8754    return false;
8755  }
8756
8757  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8758    if (!ULE->getQualifier())
8759      return false;
8760
8761    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8762                                           DEnd = ULE->decls_end();
8763         D != DEnd; ++D) {
8764      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8765        if (Method->isInstance())
8766          return true;
8767      } else {
8768        // Overload set does not contain methods.
8769        break;
8770      }
8771    }
8772
8773    return false;
8774  }
8775
8776  return false;
8777}
8778
8779ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8780                              UnaryOperatorKind Opc, Expr *Input) {
8781  // First things first: handle placeholders so that the
8782  // overloaded-operator check considers the right type.
8783  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8784    // Increment and decrement of pseudo-object references.
8785    if (pty->getKind() == BuiltinType::PseudoObject &&
8786        UnaryOperator::isIncrementDecrementOp(Opc))
8787      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8788
8789    // extension is always a builtin operator.
8790    if (Opc == UO_Extension)
8791      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8792
8793    // & gets special logic for several kinds of placeholder.
8794    // The builtin code knows what to do.
8795    if (Opc == UO_AddrOf &&
8796        (pty->getKind() == BuiltinType::Overload ||
8797         pty->getKind() == BuiltinType::UnknownAny ||
8798         pty->getKind() == BuiltinType::BoundMember))
8799      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8800
8801    // Anything else needs to be handled now.
8802    ExprResult Result = CheckPlaceholderExpr(Input);
8803    if (Result.isInvalid()) return ExprError();
8804    Input = Result.take();
8805  }
8806
8807  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8808      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8809      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8810    // Find all of the overloaded operators visible from this
8811    // point. We perform both an operator-name lookup from the local
8812    // scope and an argument-dependent lookup based on the types of
8813    // the arguments.
8814    UnresolvedSet<16> Functions;
8815    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8816    if (S && OverOp != OO_None)
8817      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8818                                   Functions);
8819
8820    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8821  }
8822
8823  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8824}
8825
8826// Unary Operators.  'Tok' is the token for the operator.
8827ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8828                              tok::TokenKind Op, Expr *Input) {
8829  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8830}
8831
8832/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8833ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8834                                LabelDecl *TheDecl) {
8835  TheDecl->setUsed();
8836  // Create the AST node.  The address of a label always has type 'void*'.
8837  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8838                                       Context.getPointerType(Context.VoidTy)));
8839}
8840
8841/// Given the last statement in a statement-expression, check whether
8842/// the result is a producing expression (like a call to an
8843/// ns_returns_retained function) and, if so, rebuild it to hoist the
8844/// release out of the full-expression.  Otherwise, return null.
8845/// Cannot fail.
8846static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8847  // Should always be wrapped with one of these.
8848  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8849  if (!cleanups) return 0;
8850
8851  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8852  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8853    return 0;
8854
8855  // Splice out the cast.  This shouldn't modify any interesting
8856  // features of the statement.
8857  Expr *producer = cast->getSubExpr();
8858  assert(producer->getType() == cast->getType());
8859  assert(producer->getValueKind() == cast->getValueKind());
8860  cleanups->setSubExpr(producer);
8861  return cleanups;
8862}
8863
8864void Sema::ActOnStartStmtExpr() {
8865  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8866}
8867
8868void Sema::ActOnStmtExprError() {
8869  // Note that function is also called by TreeTransform when leaving a
8870  // StmtExpr scope without rebuilding anything.
8871
8872  DiscardCleanupsInEvaluationContext();
8873  PopExpressionEvaluationContext();
8874}
8875
8876ExprResult
8877Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8878                    SourceLocation RPLoc) { // "({..})"
8879  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8880  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8881
8882  if (hasAnyUnrecoverableErrorsInThisFunction())
8883    DiscardCleanupsInEvaluationContext();
8884  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8885  PopExpressionEvaluationContext();
8886
8887  bool isFileScope
8888    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8889  if (isFileScope)
8890    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8891
8892  // FIXME: there are a variety of strange constraints to enforce here, for
8893  // example, it is not possible to goto into a stmt expression apparently.
8894  // More semantic analysis is needed.
8895
8896  // If there are sub stmts in the compound stmt, take the type of the last one
8897  // as the type of the stmtexpr.
8898  QualType Ty = Context.VoidTy;
8899  bool StmtExprMayBindToTemp = false;
8900  if (!Compound->body_empty()) {
8901    Stmt *LastStmt = Compound->body_back();
8902    LabelStmt *LastLabelStmt = 0;
8903    // If LastStmt is a label, skip down through into the body.
8904    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8905      LastLabelStmt = Label;
8906      LastStmt = Label->getSubStmt();
8907    }
8908
8909    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8910      // Do function/array conversion on the last expression, but not
8911      // lvalue-to-rvalue.  However, initialize an unqualified type.
8912      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8913      if (LastExpr.isInvalid())
8914        return ExprError();
8915      Ty = LastExpr.get()->getType().getUnqualifiedType();
8916
8917      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8918        // In ARC, if the final expression ends in a consume, splice
8919        // the consume out and bind it later.  In the alternate case
8920        // (when dealing with a retainable type), the result
8921        // initialization will create a produce.  In both cases the
8922        // result will be +1, and we'll need to balance that out with
8923        // a bind.
8924        if (Expr *rebuiltLastStmt
8925              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8926          LastExpr = rebuiltLastStmt;
8927        } else {
8928          LastExpr = PerformCopyInitialization(
8929                            InitializedEntity::InitializeResult(LPLoc,
8930                                                                Ty,
8931                                                                false),
8932                                                   SourceLocation(),
8933                                               LastExpr);
8934        }
8935
8936        if (LastExpr.isInvalid())
8937          return ExprError();
8938        if (LastExpr.get() != 0) {
8939          if (!LastLabelStmt)
8940            Compound->setLastStmt(LastExpr.take());
8941          else
8942            LastLabelStmt->setSubStmt(LastExpr.take());
8943          StmtExprMayBindToTemp = true;
8944        }
8945      }
8946    }
8947  }
8948
8949  // FIXME: Check that expression type is complete/non-abstract; statement
8950  // expressions are not lvalues.
8951  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8952  if (StmtExprMayBindToTemp)
8953    return MaybeBindToTemporary(ResStmtExpr);
8954  return Owned(ResStmtExpr);
8955}
8956
8957ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8958                                      TypeSourceInfo *TInfo,
8959                                      OffsetOfComponent *CompPtr,
8960                                      unsigned NumComponents,
8961                                      SourceLocation RParenLoc) {
8962  QualType ArgTy = TInfo->getType();
8963  bool Dependent = ArgTy->isDependentType();
8964  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8965
8966  // We must have at least one component that refers to the type, and the first
8967  // one is known to be a field designator.  Verify that the ArgTy represents
8968  // a struct/union/class.
8969  if (!Dependent && !ArgTy->isRecordType())
8970    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8971                       << ArgTy << TypeRange);
8972
8973  // Type must be complete per C99 7.17p3 because a declaring a variable
8974  // with an incomplete type would be ill-formed.
8975  if (!Dependent
8976      && RequireCompleteType(BuiltinLoc, ArgTy,
8977                             diag::err_offsetof_incomplete_type, TypeRange))
8978    return ExprError();
8979
8980  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8981  // GCC extension, diagnose them.
8982  // FIXME: This diagnostic isn't actually visible because the location is in
8983  // a system header!
8984  if (NumComponents != 1)
8985    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8986      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8987
8988  bool DidWarnAboutNonPOD = false;
8989  QualType CurrentType = ArgTy;
8990  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8991  SmallVector<OffsetOfNode, 4> Comps;
8992  SmallVector<Expr*, 4> Exprs;
8993  for (unsigned i = 0; i != NumComponents; ++i) {
8994    const OffsetOfComponent &OC = CompPtr[i];
8995    if (OC.isBrackets) {
8996      // Offset of an array sub-field.  TODO: Should we allow vector elements?
8997      if (!CurrentType->isDependentType()) {
8998        const ArrayType *AT = Context.getAsArrayType(CurrentType);
8999        if(!AT)
9000          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9001                           << CurrentType);
9002        CurrentType = AT->getElementType();
9003      } else
9004        CurrentType = Context.DependentTy;
9005
9006      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9007      if (IdxRval.isInvalid())
9008        return ExprError();
9009      Expr *Idx = IdxRval.take();
9010
9011      // The expression must be an integral expression.
9012      // FIXME: An integral constant expression?
9013      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9014          !Idx->getType()->isIntegerType())
9015        return ExprError(Diag(Idx->getLocStart(),
9016                              diag::err_typecheck_subscript_not_integer)
9017                         << Idx->getSourceRange());
9018
9019      // Record this array index.
9020      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9021      Exprs.push_back(Idx);
9022      continue;
9023    }
9024
9025    // Offset of a field.
9026    if (CurrentType->isDependentType()) {
9027      // We have the offset of a field, but we can't look into the dependent
9028      // type. Just record the identifier of the field.
9029      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9030      CurrentType = Context.DependentTy;
9031      continue;
9032    }
9033
9034    // We need to have a complete type to look into.
9035    if (RequireCompleteType(OC.LocStart, CurrentType,
9036                            diag::err_offsetof_incomplete_type))
9037      return ExprError();
9038
9039    // Look for the designated field.
9040    const RecordType *RC = CurrentType->getAs<RecordType>();
9041    if (!RC)
9042      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9043                       << CurrentType);
9044    RecordDecl *RD = RC->getDecl();
9045
9046    // C++ [lib.support.types]p5:
9047    //   The macro offsetof accepts a restricted set of type arguments in this
9048    //   International Standard. type shall be a POD structure or a POD union
9049    //   (clause 9).
9050    // C++11 [support.types]p4:
9051    //   If type is not a standard-layout class (Clause 9), the results are
9052    //   undefined.
9053    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9054      bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
9055      unsigned DiagID =
9056        LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
9057                            : diag::warn_offsetof_non_pod_type;
9058
9059      if (!IsSafe && !DidWarnAboutNonPOD &&
9060          DiagRuntimeBehavior(BuiltinLoc, 0,
9061                              PDiag(DiagID)
9062                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9063                              << CurrentType))
9064        DidWarnAboutNonPOD = true;
9065    }
9066
9067    // Look for the field.
9068    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9069    LookupQualifiedName(R, RD);
9070    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9071    IndirectFieldDecl *IndirectMemberDecl = 0;
9072    if (!MemberDecl) {
9073      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9074        MemberDecl = IndirectMemberDecl->getAnonField();
9075    }
9076
9077    if (!MemberDecl)
9078      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9079                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9080                                                              OC.LocEnd));
9081
9082    // C99 7.17p3:
9083    //   (If the specified member is a bit-field, the behavior is undefined.)
9084    //
9085    // We diagnose this as an error.
9086    if (MemberDecl->isBitField()) {
9087      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9088        << MemberDecl->getDeclName()
9089        << SourceRange(BuiltinLoc, RParenLoc);
9090      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9091      return ExprError();
9092    }
9093
9094    RecordDecl *Parent = MemberDecl->getParent();
9095    if (IndirectMemberDecl)
9096      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9097
9098    // If the member was found in a base class, introduce OffsetOfNodes for
9099    // the base class indirections.
9100    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9101                       /*DetectVirtual=*/false);
9102    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9103      CXXBasePath &Path = Paths.front();
9104      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9105           B != BEnd; ++B)
9106        Comps.push_back(OffsetOfNode(B->Base));
9107    }
9108
9109    if (IndirectMemberDecl) {
9110      for (IndirectFieldDecl::chain_iterator FI =
9111           IndirectMemberDecl->chain_begin(),
9112           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9113        assert(isa<FieldDecl>(*FI));
9114        Comps.push_back(OffsetOfNode(OC.LocStart,
9115                                     cast<FieldDecl>(*FI), OC.LocEnd));
9116      }
9117    } else
9118      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9119
9120    CurrentType = MemberDecl->getType().getNonReferenceType();
9121  }
9122
9123  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9124                                    TInfo, Comps.data(), Comps.size(),
9125                                    Exprs.data(), Exprs.size(), RParenLoc));
9126}
9127
9128ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9129                                      SourceLocation BuiltinLoc,
9130                                      SourceLocation TypeLoc,
9131                                      ParsedType ParsedArgTy,
9132                                      OffsetOfComponent *CompPtr,
9133                                      unsigned NumComponents,
9134                                      SourceLocation RParenLoc) {
9135
9136  TypeSourceInfo *ArgTInfo;
9137  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9138  if (ArgTy.isNull())
9139    return ExprError();
9140
9141  if (!ArgTInfo)
9142    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9143
9144  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9145                              RParenLoc);
9146}
9147
9148
9149ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9150                                 Expr *CondExpr,
9151                                 Expr *LHSExpr, Expr *RHSExpr,
9152                                 SourceLocation RPLoc) {
9153  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9154
9155  ExprValueKind VK = VK_RValue;
9156  ExprObjectKind OK = OK_Ordinary;
9157  QualType resType;
9158  bool ValueDependent = false;
9159  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9160    resType = Context.DependentTy;
9161    ValueDependent = true;
9162  } else {
9163    // The conditional expression is required to be a constant expression.
9164    llvm::APSInt condEval(32);
9165    ExprResult CondICE
9166      = VerifyIntegerConstantExpression(CondExpr, &condEval,
9167          diag::err_typecheck_choose_expr_requires_constant, false);
9168    if (CondICE.isInvalid())
9169      return ExprError();
9170    CondExpr = CondICE.take();
9171
9172    // If the condition is > zero, then the AST type is the same as the LSHExpr.
9173    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9174
9175    resType = ActiveExpr->getType();
9176    ValueDependent = ActiveExpr->isValueDependent();
9177    VK = ActiveExpr->getValueKind();
9178    OK = ActiveExpr->getObjectKind();
9179  }
9180
9181  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9182                                        resType, VK, OK, RPLoc,
9183                                        resType->isDependentType(),
9184                                        ValueDependent));
9185}
9186
9187//===----------------------------------------------------------------------===//
9188// Clang Extensions.
9189//===----------------------------------------------------------------------===//
9190
9191/// ActOnBlockStart - This callback is invoked when a block literal is started.
9192void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9193  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9194  PushBlockScope(CurScope, Block);
9195  CurContext->addDecl(Block);
9196  if (CurScope)
9197    PushDeclContext(CurScope, Block);
9198  else
9199    CurContext = Block;
9200
9201  getCurBlock()->HasImplicitReturnType = true;
9202
9203  // Enter a new evaluation context to insulate the block from any
9204  // cleanups from the enclosing full-expression.
9205  PushExpressionEvaluationContext(PotentiallyEvaluated);
9206}
9207
9208void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9209                               Scope *CurScope) {
9210  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9211  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9212  BlockScopeInfo *CurBlock = getCurBlock();
9213
9214  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9215  QualType T = Sig->getType();
9216
9217  // FIXME: We should allow unexpanded parameter packs here, but that would,
9218  // in turn, make the block expression contain unexpanded parameter packs.
9219  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9220    // Drop the parameters.
9221    FunctionProtoType::ExtProtoInfo EPI;
9222    EPI.HasTrailingReturn = false;
9223    EPI.TypeQuals |= DeclSpec::TQ_const;
9224    T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
9225                                EPI);
9226    Sig = Context.getTrivialTypeSourceInfo(T);
9227  }
9228
9229  // GetTypeForDeclarator always produces a function type for a block
9230  // literal signature.  Furthermore, it is always a FunctionProtoType
9231  // unless the function was written with a typedef.
9232  assert(T->isFunctionType() &&
9233         "GetTypeForDeclarator made a non-function block signature");
9234
9235  // Look for an explicit signature in that function type.
9236  FunctionProtoTypeLoc ExplicitSignature;
9237
9238  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9239  if (isa<FunctionProtoTypeLoc>(tmp)) {
9240    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9241
9242    // Check whether that explicit signature was synthesized by
9243    // GetTypeForDeclarator.  If so, don't save that as part of the
9244    // written signature.
9245    if (ExplicitSignature.getLocalRangeBegin() ==
9246        ExplicitSignature.getLocalRangeEnd()) {
9247      // This would be much cheaper if we stored TypeLocs instead of
9248      // TypeSourceInfos.
9249      TypeLoc Result = ExplicitSignature.getResultLoc();
9250      unsigned Size = Result.getFullDataSize();
9251      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9252      Sig->getTypeLoc().initializeFullCopy(Result, Size);
9253
9254      ExplicitSignature = FunctionProtoTypeLoc();
9255    }
9256  }
9257
9258  CurBlock->TheDecl->setSignatureAsWritten(Sig);
9259  CurBlock->FunctionType = T;
9260
9261  const FunctionType *Fn = T->getAs<FunctionType>();
9262  QualType RetTy = Fn->getResultType();
9263  bool isVariadic =
9264    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9265
9266  CurBlock->TheDecl->setIsVariadic(isVariadic);
9267
9268  // Don't allow returning a objc interface by value.
9269  if (RetTy->isObjCObjectType()) {
9270    Diag(ParamInfo.getLocStart(),
9271         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9272    return;
9273  }
9274
9275  // Context.DependentTy is used as a placeholder for a missing block
9276  // return type.  TODO:  what should we do with declarators like:
9277  //   ^ * { ... }
9278  // If the answer is "apply template argument deduction"....
9279  if (RetTy != Context.DependentTy) {
9280    CurBlock->ReturnType = RetTy;
9281    CurBlock->TheDecl->setBlockMissingReturnType(false);
9282    CurBlock->HasImplicitReturnType = false;
9283  }
9284
9285  // Push block parameters from the declarator if we had them.
9286  SmallVector<ParmVarDecl*, 8> Params;
9287  if (ExplicitSignature) {
9288    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9289      ParmVarDecl *Param = ExplicitSignature.getArg(I);
9290      if (Param->getIdentifier() == 0 &&
9291          !Param->isImplicit() &&
9292          !Param->isInvalidDecl() &&
9293          !getLangOpts().CPlusPlus)
9294        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9295      Params.push_back(Param);
9296    }
9297
9298  // Fake up parameter variables if we have a typedef, like
9299  //   ^ fntype { ... }
9300  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9301    for (FunctionProtoType::arg_type_iterator
9302           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9303      ParmVarDecl *Param =
9304        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9305                                   ParamInfo.getLocStart(),
9306                                   *I);
9307      Params.push_back(Param);
9308    }
9309  }
9310
9311  // Set the parameters on the block decl.
9312  if (!Params.empty()) {
9313    CurBlock->TheDecl->setParams(Params);
9314    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9315                             CurBlock->TheDecl->param_end(),
9316                             /*CheckParameterNames=*/false);
9317  }
9318
9319  // Finally we can process decl attributes.
9320  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9321
9322  // Put the parameter variables in scope.  We can bail out immediately
9323  // if we don't have any.
9324  if (Params.empty())
9325    return;
9326
9327  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9328         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9329    (*AI)->setOwningFunction(CurBlock->TheDecl);
9330
9331    // If this has an identifier, add it to the scope stack.
9332    if ((*AI)->getIdentifier()) {
9333      CheckShadow(CurBlock->TheScope, *AI);
9334
9335      PushOnScopeChains(*AI, CurBlock->TheScope);
9336    }
9337  }
9338}
9339
9340/// ActOnBlockError - If there is an error parsing a block, this callback
9341/// is invoked to pop the information about the block from the action impl.
9342void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9343  // Leave the expression-evaluation context.
9344  DiscardCleanupsInEvaluationContext();
9345  PopExpressionEvaluationContext();
9346
9347  // Pop off CurBlock, handle nested blocks.
9348  PopDeclContext();
9349  PopFunctionScopeInfo();
9350}
9351
9352/// ActOnBlockStmtExpr - This is called when the body of a block statement
9353/// literal was successfully completed.  ^(int x){...}
9354ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9355                                    Stmt *Body, Scope *CurScope) {
9356  // If blocks are disabled, emit an error.
9357  if (!LangOpts.Blocks)
9358    Diag(CaretLoc, diag::err_blocks_disable);
9359
9360  // Leave the expression-evaluation context.
9361  if (hasAnyUnrecoverableErrorsInThisFunction())
9362    DiscardCleanupsInEvaluationContext();
9363  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9364  PopExpressionEvaluationContext();
9365
9366  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9367
9368  if (BSI->HasImplicitReturnType)
9369    deduceClosureReturnType(*BSI);
9370
9371  PopDeclContext();
9372
9373  QualType RetTy = Context.VoidTy;
9374  if (!BSI->ReturnType.isNull())
9375    RetTy = BSI->ReturnType;
9376
9377  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9378  QualType BlockTy;
9379
9380  // Set the captured variables on the block.
9381  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9382  SmallVector<BlockDecl::Capture, 4> Captures;
9383  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9384    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9385    if (Cap.isThisCapture())
9386      continue;
9387    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9388                              Cap.isNested(), Cap.getCopyExpr());
9389    Captures.push_back(NewCap);
9390  }
9391  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9392                            BSI->CXXThisCaptureIndex != 0);
9393
9394  // If the user wrote a function type in some form, try to use that.
9395  if (!BSI->FunctionType.isNull()) {
9396    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9397
9398    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9399    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9400
9401    // Turn protoless block types into nullary block types.
9402    if (isa<FunctionNoProtoType>(FTy)) {
9403      FunctionProtoType::ExtProtoInfo EPI;
9404      EPI.ExtInfo = Ext;
9405      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9406
9407    // Otherwise, if we don't need to change anything about the function type,
9408    // preserve its sugar structure.
9409    } else if (FTy->getResultType() == RetTy &&
9410               (!NoReturn || FTy->getNoReturnAttr())) {
9411      BlockTy = BSI->FunctionType;
9412
9413    // Otherwise, make the minimal modifications to the function type.
9414    } else {
9415      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9416      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9417      EPI.TypeQuals = 0; // FIXME: silently?
9418      EPI.ExtInfo = Ext;
9419      BlockTy = Context.getFunctionType(RetTy,
9420                                        FPT->arg_type_begin(),
9421                                        FPT->getNumArgs(),
9422                                        EPI);
9423    }
9424
9425  // If we don't have a function type, just build one from nothing.
9426  } else {
9427    FunctionProtoType::ExtProtoInfo EPI;
9428    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9429    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9430  }
9431
9432  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9433                           BSI->TheDecl->param_end());
9434  BlockTy = Context.getBlockPointerType(BlockTy);
9435
9436  // If needed, diagnose invalid gotos and switches in the block.
9437  if (getCurFunction()->NeedsScopeChecking() &&
9438      !hasAnyUnrecoverableErrorsInThisFunction())
9439    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9440
9441  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9442
9443  // Try to apply the named return value optimization. We have to check again
9444  // if we can do this, though, because blocks keep return statements around
9445  // to deduce an implicit return type.
9446  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9447      !BSI->TheDecl->isDependentContext())
9448    computeNRVO(Body, getCurBlock());
9449
9450  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9451  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9452  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9453
9454  // If the block isn't obviously global, i.e. it captures anything at
9455  // all, then we need to do a few things in the surrounding context:
9456  if (Result->getBlockDecl()->hasCaptures()) {
9457    // First, this expression has a new cleanup object.
9458    ExprCleanupObjects.push_back(Result->getBlockDecl());
9459    ExprNeedsCleanups = true;
9460
9461    // It also gets a branch-protected scope if any of the captured
9462    // variables needs destruction.
9463    for (BlockDecl::capture_const_iterator
9464           ci = Result->getBlockDecl()->capture_begin(),
9465           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9466      const VarDecl *var = ci->getVariable();
9467      if (var->getType().isDestructedType() != QualType::DK_none) {
9468        getCurFunction()->setHasBranchProtectedScope();
9469        break;
9470      }
9471    }
9472  }
9473
9474  return Owned(Result);
9475}
9476
9477ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9478                                        Expr *E, ParsedType Ty,
9479                                        SourceLocation RPLoc) {
9480  TypeSourceInfo *TInfo;
9481  GetTypeFromParser(Ty, &TInfo);
9482  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9483}
9484
9485ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9486                                Expr *E, TypeSourceInfo *TInfo,
9487                                SourceLocation RPLoc) {
9488  Expr *OrigExpr = E;
9489
9490  // Get the va_list type
9491  QualType VaListType = Context.getBuiltinVaListType();
9492  if (VaListType->isArrayType()) {
9493    // Deal with implicit array decay; for example, on x86-64,
9494    // va_list is an array, but it's supposed to decay to
9495    // a pointer for va_arg.
9496    VaListType = Context.getArrayDecayedType(VaListType);
9497    // Make sure the input expression also decays appropriately.
9498    ExprResult Result = UsualUnaryConversions(E);
9499    if (Result.isInvalid())
9500      return ExprError();
9501    E = Result.take();
9502  } else {
9503    // Otherwise, the va_list argument must be an l-value because
9504    // it is modified by va_arg.
9505    if (!E->isTypeDependent() &&
9506        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9507      return ExprError();
9508  }
9509
9510  if (!E->isTypeDependent() &&
9511      !Context.hasSameType(VaListType, E->getType())) {
9512    return ExprError(Diag(E->getLocStart(),
9513                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9514      << OrigExpr->getType() << E->getSourceRange());
9515  }
9516
9517  if (!TInfo->getType()->isDependentType()) {
9518    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9519                            diag::err_second_parameter_to_va_arg_incomplete,
9520                            TInfo->getTypeLoc()))
9521      return ExprError();
9522
9523    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9524                               TInfo->getType(),
9525                               diag::err_second_parameter_to_va_arg_abstract,
9526                               TInfo->getTypeLoc()))
9527      return ExprError();
9528
9529    if (!TInfo->getType().isPODType(Context)) {
9530      Diag(TInfo->getTypeLoc().getBeginLoc(),
9531           TInfo->getType()->isObjCLifetimeType()
9532             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9533             : diag::warn_second_parameter_to_va_arg_not_pod)
9534        << TInfo->getType()
9535        << TInfo->getTypeLoc().getSourceRange();
9536    }
9537
9538    // Check for va_arg where arguments of the given type will be promoted
9539    // (i.e. this va_arg is guaranteed to have undefined behavior).
9540    QualType PromoteType;
9541    if (TInfo->getType()->isPromotableIntegerType()) {
9542      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9543      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9544        PromoteType = QualType();
9545    }
9546    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9547      PromoteType = Context.DoubleTy;
9548    if (!PromoteType.isNull())
9549      Diag(TInfo->getTypeLoc().getBeginLoc(),
9550          diag::warn_second_parameter_to_va_arg_never_compatible)
9551        << TInfo->getType()
9552        << PromoteType
9553        << TInfo->getTypeLoc().getSourceRange();
9554  }
9555
9556  QualType T = TInfo->getType().getNonLValueExprType(Context);
9557  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9558}
9559
9560ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9561  // The type of __null will be int or long, depending on the size of
9562  // pointers on the target.
9563  QualType Ty;
9564  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9565  if (pw == Context.getTargetInfo().getIntWidth())
9566    Ty = Context.IntTy;
9567  else if (pw == Context.getTargetInfo().getLongWidth())
9568    Ty = Context.LongTy;
9569  else if (pw == Context.getTargetInfo().getLongLongWidth())
9570    Ty = Context.LongLongTy;
9571  else {
9572    llvm_unreachable("I don't know size of pointer!");
9573  }
9574
9575  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9576}
9577
9578static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9579                                           Expr *SrcExpr, FixItHint &Hint) {
9580  if (!SemaRef.getLangOpts().ObjC1)
9581    return;
9582
9583  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9584  if (!PT)
9585    return;
9586
9587  // Check if the destination is of type 'id'.
9588  if (!PT->isObjCIdType()) {
9589    // Check if the destination is the 'NSString' interface.
9590    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9591    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9592      return;
9593  }
9594
9595  // Ignore any parens, implicit casts (should only be
9596  // array-to-pointer decays), and not-so-opaque values.  The last is
9597  // important for making this trigger for property assignments.
9598  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9599  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9600    if (OV->getSourceExpr())
9601      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9602
9603  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9604  if (!SL || !SL->isAscii())
9605    return;
9606
9607  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9608}
9609
9610bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9611                                    SourceLocation Loc,
9612                                    QualType DstType, QualType SrcType,
9613                                    Expr *SrcExpr, AssignmentAction Action,
9614                                    bool *Complained) {
9615  if (Complained)
9616    *Complained = false;
9617
9618  // Decode the result (notice that AST's are still created for extensions).
9619  bool CheckInferredResultType = false;
9620  bool isInvalid = false;
9621  unsigned DiagKind = 0;
9622  FixItHint Hint;
9623  ConversionFixItGenerator ConvHints;
9624  bool MayHaveConvFixit = false;
9625  bool MayHaveFunctionDiff = false;
9626
9627  switch (ConvTy) {
9628  case Compatible:
9629      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9630      return false;
9631
9632  case PointerToInt:
9633    DiagKind = diag::ext_typecheck_convert_pointer_int;
9634    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9635    MayHaveConvFixit = true;
9636    break;
9637  case IntToPointer:
9638    DiagKind = diag::ext_typecheck_convert_int_pointer;
9639    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9640    MayHaveConvFixit = true;
9641    break;
9642  case IncompatiblePointer:
9643    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9644    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9645    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9646      SrcType->isObjCObjectPointerType();
9647    if (Hint.isNull() && !CheckInferredResultType) {
9648      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9649    }
9650    MayHaveConvFixit = true;
9651    break;
9652  case IncompatiblePointerSign:
9653    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9654    break;
9655  case FunctionVoidPointer:
9656    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9657    break;
9658  case IncompatiblePointerDiscardsQualifiers: {
9659    // Perform array-to-pointer decay if necessary.
9660    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9661
9662    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9663    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9664    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9665      DiagKind = diag::err_typecheck_incompatible_address_space;
9666      break;
9667
9668
9669    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9670      DiagKind = diag::err_typecheck_incompatible_ownership;
9671      break;
9672    }
9673
9674    llvm_unreachable("unknown error case for discarding qualifiers!");
9675    // fallthrough
9676  }
9677  case CompatiblePointerDiscardsQualifiers:
9678    // If the qualifiers lost were because we were applying the
9679    // (deprecated) C++ conversion from a string literal to a char*
9680    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9681    // Ideally, this check would be performed in
9682    // checkPointerTypesForAssignment. However, that would require a
9683    // bit of refactoring (so that the second argument is an
9684    // expression, rather than a type), which should be done as part
9685    // of a larger effort to fix checkPointerTypesForAssignment for
9686    // C++ semantics.
9687    if (getLangOpts().CPlusPlus &&
9688        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9689      return false;
9690    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9691    break;
9692  case IncompatibleNestedPointerQualifiers:
9693    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9694    break;
9695  case IntToBlockPointer:
9696    DiagKind = diag::err_int_to_block_pointer;
9697    break;
9698  case IncompatibleBlockPointer:
9699    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9700    break;
9701  case IncompatibleObjCQualifiedId:
9702    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9703    // it can give a more specific diagnostic.
9704    DiagKind = diag::warn_incompatible_qualified_id;
9705    break;
9706  case IncompatibleVectors:
9707    DiagKind = diag::warn_incompatible_vectors;
9708    break;
9709  case IncompatibleObjCWeakRef:
9710    DiagKind = diag::err_arc_weak_unavailable_assign;
9711    break;
9712  case Incompatible:
9713    DiagKind = diag::err_typecheck_convert_incompatible;
9714    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9715    MayHaveConvFixit = true;
9716    isInvalid = true;
9717    MayHaveFunctionDiff = true;
9718    break;
9719  }
9720
9721  QualType FirstType, SecondType;
9722  switch (Action) {
9723  case AA_Assigning:
9724  case AA_Initializing:
9725    // The destination type comes first.
9726    FirstType = DstType;
9727    SecondType = SrcType;
9728    break;
9729
9730  case AA_Returning:
9731  case AA_Passing:
9732  case AA_Converting:
9733  case AA_Sending:
9734  case AA_Casting:
9735    // The source type comes first.
9736    FirstType = SrcType;
9737    SecondType = DstType;
9738    break;
9739  }
9740
9741  PartialDiagnostic FDiag = PDiag(DiagKind);
9742  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9743
9744  // If we can fix the conversion, suggest the FixIts.
9745  assert(ConvHints.isNull() || Hint.isNull());
9746  if (!ConvHints.isNull()) {
9747    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9748         HE = ConvHints.Hints.end(); HI != HE; ++HI)
9749      FDiag << *HI;
9750  } else {
9751    FDiag << Hint;
9752  }
9753  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9754
9755  if (MayHaveFunctionDiff)
9756    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9757
9758  Diag(Loc, FDiag);
9759
9760  if (SecondType == Context.OverloadTy)
9761    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9762                              FirstType);
9763
9764  if (CheckInferredResultType)
9765    EmitRelatedResultTypeNote(SrcExpr);
9766
9767  if (Complained)
9768    *Complained = true;
9769  return isInvalid;
9770}
9771
9772ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9773                                                 llvm::APSInt *Result) {
9774  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9775  public:
9776    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9777      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9778    }
9779  } Diagnoser;
9780
9781  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9782}
9783
9784ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9785                                                 llvm::APSInt *Result,
9786                                                 unsigned DiagID,
9787                                                 bool AllowFold) {
9788  class IDDiagnoser : public VerifyICEDiagnoser {
9789    unsigned DiagID;
9790
9791  public:
9792    IDDiagnoser(unsigned DiagID)
9793      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9794
9795    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9796      S.Diag(Loc, DiagID) << SR;
9797    }
9798  } Diagnoser(DiagID);
9799
9800  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9801}
9802
9803void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9804                                            SourceRange SR) {
9805  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9806}
9807
9808ExprResult
9809Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9810                                      VerifyICEDiagnoser &Diagnoser,
9811                                      bool AllowFold) {
9812  SourceLocation DiagLoc = E->getLocStart();
9813
9814  if (getLangOpts().CPlusPlus0x) {
9815    // C++11 [expr.const]p5:
9816    //   If an expression of literal class type is used in a context where an
9817    //   integral constant expression is required, then that class type shall
9818    //   have a single non-explicit conversion function to an integral or
9819    //   unscoped enumeration type
9820    ExprResult Converted;
9821    if (!Diagnoser.Suppress) {
9822      class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9823      public:
9824        CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9825
9826        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9827                                                 QualType T) {
9828          return S.Diag(Loc, diag::err_ice_not_integral) << T;
9829        }
9830
9831        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9832                                                     SourceLocation Loc,
9833                                                     QualType T) {
9834          return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
9835        }
9836
9837        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9838                                                       SourceLocation Loc,
9839                                                       QualType T,
9840                                                       QualType ConvTy) {
9841          return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
9842        }
9843
9844        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9845                                                   CXXConversionDecl *Conv,
9846                                                   QualType ConvTy) {
9847          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9848                   << ConvTy->isEnumeralType() << ConvTy;
9849        }
9850
9851        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9852                                                    QualType T) {
9853          return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
9854        }
9855
9856        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9857                                                CXXConversionDecl *Conv,
9858                                                QualType ConvTy) {
9859          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9860                   << ConvTy->isEnumeralType() << ConvTy;
9861        }
9862
9863        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9864                                                     SourceLocation Loc,
9865                                                     QualType T,
9866                                                     QualType ConvTy) {
9867          return DiagnosticBuilder::getEmpty();
9868        }
9869      } ConvertDiagnoser;
9870
9871      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9872                                                     ConvertDiagnoser,
9873                                             /*AllowScopedEnumerations*/ false);
9874    } else {
9875      // The caller wants to silently enquire whether this is an ICE. Don't
9876      // produce any diagnostics if it isn't.
9877      class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
9878      public:
9879        SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
9880
9881        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9882                                                 QualType T) {
9883          return DiagnosticBuilder::getEmpty();
9884        }
9885
9886        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9887                                                     SourceLocation Loc,
9888                                                     QualType T) {
9889          return DiagnosticBuilder::getEmpty();
9890        }
9891
9892        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9893                                                       SourceLocation Loc,
9894                                                       QualType T,
9895                                                       QualType ConvTy) {
9896          return DiagnosticBuilder::getEmpty();
9897        }
9898
9899        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9900                                                   CXXConversionDecl *Conv,
9901                                                   QualType ConvTy) {
9902          return DiagnosticBuilder::getEmpty();
9903        }
9904
9905        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9906                                                    QualType T) {
9907          return DiagnosticBuilder::getEmpty();
9908        }
9909
9910        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9911                                                CXXConversionDecl *Conv,
9912                                                QualType ConvTy) {
9913          return DiagnosticBuilder::getEmpty();
9914        }
9915
9916        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9917                                                     SourceLocation Loc,
9918                                                     QualType T,
9919                                                     QualType ConvTy) {
9920          return DiagnosticBuilder::getEmpty();
9921        }
9922      } ConvertDiagnoser;
9923
9924      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9925                                                     ConvertDiagnoser, false);
9926    }
9927    if (Converted.isInvalid())
9928      return Converted;
9929    E = Converted.take();
9930    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9931      return ExprError();
9932  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9933    // An ICE must be of integral or unscoped enumeration type.
9934    if (!Diagnoser.Suppress)
9935      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9936    return ExprError();
9937  }
9938
9939  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9940  // in the non-ICE case.
9941  if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9942    if (Result)
9943      *Result = E->EvaluateKnownConstInt(Context);
9944    return Owned(E);
9945  }
9946
9947  Expr::EvalResult EvalResult;
9948  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9949  EvalResult.Diag = &Notes;
9950
9951  // Try to evaluate the expression, and produce diagnostics explaining why it's
9952  // not a constant expression as a side-effect.
9953  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9954                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9955
9956  // In C++11, we can rely on diagnostics being produced for any expression
9957  // which is not a constant expression. If no diagnostics were produced, then
9958  // this is a constant expression.
9959  if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9960    if (Result)
9961      *Result = EvalResult.Val.getInt();
9962    return Owned(E);
9963  }
9964
9965  // If our only note is the usual "invalid subexpression" note, just point
9966  // the caret at its location rather than producing an essentially
9967  // redundant note.
9968  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9969        diag::note_invalid_subexpr_in_const_expr) {
9970    DiagLoc = Notes[0].first;
9971    Notes.clear();
9972  }
9973
9974  if (!Folded || !AllowFold) {
9975    if (!Diagnoser.Suppress) {
9976      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9977      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9978        Diag(Notes[I].first, Notes[I].second);
9979    }
9980
9981    return ExprError();
9982  }
9983
9984  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
9985  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9986    Diag(Notes[I].first, Notes[I].second);
9987
9988  if (Result)
9989    *Result = EvalResult.Val.getInt();
9990  return Owned(E);
9991}
9992
9993namespace {
9994  // Handle the case where we conclude a expression which we speculatively
9995  // considered to be unevaluated is actually evaluated.
9996  class TransformToPE : public TreeTransform<TransformToPE> {
9997    typedef TreeTransform<TransformToPE> BaseTransform;
9998
9999  public:
10000    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10001
10002    // Make sure we redo semantic analysis
10003    bool AlwaysRebuild() { return true; }
10004
10005    // Make sure we handle LabelStmts correctly.
10006    // FIXME: This does the right thing, but maybe we need a more general
10007    // fix to TreeTransform?
10008    StmtResult TransformLabelStmt(LabelStmt *S) {
10009      S->getDecl()->setStmt(0);
10010      return BaseTransform::TransformLabelStmt(S);
10011    }
10012
10013    // We need to special-case DeclRefExprs referring to FieldDecls which
10014    // are not part of a member pointer formation; normal TreeTransforming
10015    // doesn't catch this case because of the way we represent them in the AST.
10016    // FIXME: This is a bit ugly; is it really the best way to handle this
10017    // case?
10018    //
10019    // Error on DeclRefExprs referring to FieldDecls.
10020    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10021      if (isa<FieldDecl>(E->getDecl()) &&
10022          SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
10023        return SemaRef.Diag(E->getLocation(),
10024                            diag::err_invalid_non_static_member_use)
10025            << E->getDecl() << E->getSourceRange();
10026
10027      return BaseTransform::TransformDeclRefExpr(E);
10028    }
10029
10030    // Exception: filter out member pointer formation
10031    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10032      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10033        return E;
10034
10035      return BaseTransform::TransformUnaryOperator(E);
10036    }
10037
10038    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10039      // Lambdas never need to be transformed.
10040      return E;
10041    }
10042  };
10043}
10044
10045ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
10046  assert(ExprEvalContexts.back().Context == Unevaluated &&
10047         "Should only transform unevaluated expressions");
10048  ExprEvalContexts.back().Context =
10049      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10050  if (ExprEvalContexts.back().Context == Unevaluated)
10051    return E;
10052  return TransformToPE(*this).TransformExpr(E);
10053}
10054
10055void
10056Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10057                                      Decl *LambdaContextDecl,
10058                                      bool IsDecltype) {
10059  ExprEvalContexts.push_back(
10060             ExpressionEvaluationContextRecord(NewContext,
10061                                               ExprCleanupObjects.size(),
10062                                               ExprNeedsCleanups,
10063                                               LambdaContextDecl,
10064                                               IsDecltype));
10065  ExprNeedsCleanups = false;
10066  if (!MaybeODRUseExprs.empty())
10067    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10068}
10069
10070void Sema::PopExpressionEvaluationContext() {
10071  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10072
10073  if (!Rec.Lambdas.empty()) {
10074    if (Rec.Context == Unevaluated) {
10075      // C++11 [expr.prim.lambda]p2:
10076      //   A lambda-expression shall not appear in an unevaluated operand
10077      //   (Clause 5).
10078      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10079        Diag(Rec.Lambdas[I]->getLocStart(),
10080             diag::err_lambda_unevaluated_operand);
10081    } else {
10082      // Mark the capture expressions odr-used. This was deferred
10083      // during lambda expression creation.
10084      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10085        LambdaExpr *Lambda = Rec.Lambdas[I];
10086        for (LambdaExpr::capture_init_iterator
10087                  C = Lambda->capture_init_begin(),
10088               CEnd = Lambda->capture_init_end();
10089             C != CEnd; ++C) {
10090          MarkDeclarationsReferencedInExpr(*C);
10091        }
10092      }
10093    }
10094  }
10095
10096  // When are coming out of an unevaluated context, clear out any
10097  // temporaries that we may have created as part of the evaluation of
10098  // the expression in that context: they aren't relevant because they
10099  // will never be constructed.
10100  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10101    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10102                             ExprCleanupObjects.end());
10103    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10104    CleanupVarDeclMarking();
10105    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10106  // Otherwise, merge the contexts together.
10107  } else {
10108    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10109    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10110                            Rec.SavedMaybeODRUseExprs.end());
10111  }
10112
10113  // Pop the current expression evaluation context off the stack.
10114  ExprEvalContexts.pop_back();
10115}
10116
10117void Sema::DiscardCleanupsInEvaluationContext() {
10118  ExprCleanupObjects.erase(
10119         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10120         ExprCleanupObjects.end());
10121  ExprNeedsCleanups = false;
10122  MaybeODRUseExprs.clear();
10123}
10124
10125ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10126  if (!E->getType()->isVariablyModifiedType())
10127    return E;
10128  return TranformToPotentiallyEvaluated(E);
10129}
10130
10131static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10132  // Do not mark anything as "used" within a dependent context; wait for
10133  // an instantiation.
10134  if (SemaRef.CurContext->isDependentContext())
10135    return false;
10136
10137  switch (SemaRef.ExprEvalContexts.back().Context) {
10138    case Sema::Unevaluated:
10139      // We are in an expression that is not potentially evaluated; do nothing.
10140      // (Depending on how you read the standard, we actually do need to do
10141      // something here for null pointer constants, but the standard's
10142      // definition of a null pointer constant is completely crazy.)
10143      return false;
10144
10145    case Sema::ConstantEvaluated:
10146    case Sema::PotentiallyEvaluated:
10147      // We are in a potentially evaluated expression (or a constant-expression
10148      // in C++03); we need to do implicit template instantiation, implicitly
10149      // define class members, and mark most declarations as used.
10150      return true;
10151
10152    case Sema::PotentiallyEvaluatedIfUsed:
10153      // Referenced declarations will only be used if the construct in the
10154      // containing expression is used.
10155      return false;
10156  }
10157  llvm_unreachable("Invalid context");
10158}
10159
10160/// \brief Mark a function referenced, and check whether it is odr-used
10161/// (C++ [basic.def.odr]p2, C99 6.9p3)
10162void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10163  assert(Func && "No function?");
10164
10165  Func->setReferenced();
10166
10167  // Don't mark this function as used multiple times, unless it's a constexpr
10168  // function which we need to instantiate.
10169  if (Func->isUsed(false) &&
10170      !(Func->isConstexpr() && !Func->getBody() &&
10171        Func->isImplicitlyInstantiable()))
10172    return;
10173
10174  if (!IsPotentiallyEvaluatedContext(*this))
10175    return;
10176
10177  // Note that this declaration has been used.
10178  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10179    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10180      if (Constructor->isDefaultConstructor()) {
10181        if (Constructor->isTrivial())
10182          return;
10183        if (!Constructor->isUsed(false))
10184          DefineImplicitDefaultConstructor(Loc, Constructor);
10185      } else if (Constructor->isCopyConstructor()) {
10186        if (!Constructor->isUsed(false))
10187          DefineImplicitCopyConstructor(Loc, Constructor);
10188      } else if (Constructor->isMoveConstructor()) {
10189        if (!Constructor->isUsed(false))
10190          DefineImplicitMoveConstructor(Loc, Constructor);
10191      }
10192    }
10193
10194    MarkVTableUsed(Loc, Constructor->getParent());
10195  } else if (CXXDestructorDecl *Destructor =
10196                 dyn_cast<CXXDestructorDecl>(Func)) {
10197    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10198        !Destructor->isUsed(false))
10199      DefineImplicitDestructor(Loc, Destructor);
10200    if (Destructor->isVirtual())
10201      MarkVTableUsed(Loc, Destructor->getParent());
10202  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10203    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10204        MethodDecl->isOverloadedOperator() &&
10205        MethodDecl->getOverloadedOperator() == OO_Equal) {
10206      if (!MethodDecl->isUsed(false)) {
10207        if (MethodDecl->isCopyAssignmentOperator())
10208          DefineImplicitCopyAssignment(Loc, MethodDecl);
10209        else
10210          DefineImplicitMoveAssignment(Loc, MethodDecl);
10211      }
10212    } else if (isa<CXXConversionDecl>(MethodDecl) &&
10213               MethodDecl->getParent()->isLambda()) {
10214      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10215      if (Conversion->isLambdaToBlockPointerConversion())
10216        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10217      else
10218        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10219    } else if (MethodDecl->isVirtual())
10220      MarkVTableUsed(Loc, MethodDecl->getParent());
10221  }
10222
10223  // Recursive functions should be marked when used from another function.
10224  // FIXME: Is this really right?
10225  if (CurContext == Func) return;
10226
10227  // Instantiate the exception specification for any function which is
10228  // used: CodeGen will need it.
10229  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10230  if (FPT && FPT->getExceptionSpecType() == EST_Uninstantiated)
10231    InstantiateExceptionSpec(Loc, Func);
10232
10233  // Implicit instantiation of function templates and member functions of
10234  // class templates.
10235  if (Func->isImplicitlyInstantiable()) {
10236    bool AlreadyInstantiated = false;
10237    SourceLocation PointOfInstantiation = Loc;
10238    if (FunctionTemplateSpecializationInfo *SpecInfo
10239                              = Func->getTemplateSpecializationInfo()) {
10240      if (SpecInfo->getPointOfInstantiation().isInvalid())
10241        SpecInfo->setPointOfInstantiation(Loc);
10242      else if (SpecInfo->getTemplateSpecializationKind()
10243                 == TSK_ImplicitInstantiation) {
10244        AlreadyInstantiated = true;
10245        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10246      }
10247    } else if (MemberSpecializationInfo *MSInfo
10248                                = Func->getMemberSpecializationInfo()) {
10249      if (MSInfo->getPointOfInstantiation().isInvalid())
10250        MSInfo->setPointOfInstantiation(Loc);
10251      else if (MSInfo->getTemplateSpecializationKind()
10252                 == TSK_ImplicitInstantiation) {
10253        AlreadyInstantiated = true;
10254        PointOfInstantiation = MSInfo->getPointOfInstantiation();
10255      }
10256    }
10257
10258    if (!AlreadyInstantiated || Func->isConstexpr()) {
10259      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10260          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10261        PendingLocalImplicitInstantiations.push_back(
10262            std::make_pair(Func, PointOfInstantiation));
10263      else if (Func->isConstexpr())
10264        // Do not defer instantiations of constexpr functions, to avoid the
10265        // expression evaluator needing to call back into Sema if it sees a
10266        // call to such a function.
10267        InstantiateFunctionDefinition(PointOfInstantiation, Func);
10268      else {
10269        PendingInstantiations.push_back(std::make_pair(Func,
10270                                                       PointOfInstantiation));
10271        // Notify the consumer that a function was implicitly instantiated.
10272        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10273      }
10274    }
10275  } else {
10276    // Walk redefinitions, as some of them may be instantiable.
10277    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10278         e(Func->redecls_end()); i != e; ++i) {
10279      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10280        MarkFunctionReferenced(Loc, *i);
10281    }
10282  }
10283
10284  // Keep track of used but undefined functions.
10285  if (!Func->isPure() && !Func->hasBody() &&
10286      Func->getLinkage() != ExternalLinkage) {
10287    SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
10288    if (old.isInvalid()) old = Loc;
10289  }
10290
10291  Func->setUsed(true);
10292}
10293
10294static void
10295diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10296                                   VarDecl *var, DeclContext *DC) {
10297  DeclContext *VarDC = var->getDeclContext();
10298
10299  //  If the parameter still belongs to the translation unit, then
10300  //  we're actually just using one parameter in the declaration of
10301  //  the next.
10302  if (isa<ParmVarDecl>(var) &&
10303      isa<TranslationUnitDecl>(VarDC))
10304    return;
10305
10306  // For C code, don't diagnose about capture if we're not actually in code
10307  // right now; it's impossible to write a non-constant expression outside of
10308  // function context, so we'll get other (more useful) diagnostics later.
10309  //
10310  // For C++, things get a bit more nasty... it would be nice to suppress this
10311  // diagnostic for certain cases like using a local variable in an array bound
10312  // for a member of a local class, but the correct predicate is not obvious.
10313  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10314    return;
10315
10316  if (isa<CXXMethodDecl>(VarDC) &&
10317      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10318    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10319      << var->getIdentifier();
10320  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10321    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10322      << var->getIdentifier() << fn->getDeclName();
10323  } else if (isa<BlockDecl>(VarDC)) {
10324    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10325      << var->getIdentifier();
10326  } else {
10327    // FIXME: Is there any other context where a local variable can be
10328    // declared?
10329    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10330      << var->getIdentifier();
10331  }
10332
10333  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10334    << var->getIdentifier();
10335
10336  // FIXME: Add additional diagnostic info about class etc. which prevents
10337  // capture.
10338}
10339
10340/// \brief Capture the given variable in the given lambda expression.
10341static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10342                                  VarDecl *Var, QualType FieldType,
10343                                  QualType DeclRefType,
10344                                  SourceLocation Loc,
10345                                  bool RefersToEnclosingLocal) {
10346  CXXRecordDecl *Lambda = LSI->Lambda;
10347
10348  // Build the non-static data member.
10349  FieldDecl *Field
10350    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10351                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10352                        0, false, ICIS_NoInit);
10353  Field->setImplicit(true);
10354  Field->setAccess(AS_private);
10355  Lambda->addDecl(Field);
10356
10357  // C++11 [expr.prim.lambda]p21:
10358  //   When the lambda-expression is evaluated, the entities that
10359  //   are captured by copy are used to direct-initialize each
10360  //   corresponding non-static data member of the resulting closure
10361  //   object. (For array members, the array elements are
10362  //   direct-initialized in increasing subscript order.) These
10363  //   initializations are performed in the (unspecified) order in
10364  //   which the non-static data members are declared.
10365
10366  // Introduce a new evaluation context for the initialization, so
10367  // that temporaries introduced as part of the capture are retained
10368  // to be re-"exported" from the lambda expression itself.
10369  S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10370
10371  // C++ [expr.prim.labda]p12:
10372  //   An entity captured by a lambda-expression is odr-used (3.2) in
10373  //   the scope containing the lambda-expression.
10374  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10375                                          DeclRefType, VK_LValue, Loc);
10376  Var->setReferenced(true);
10377  Var->setUsed(true);
10378
10379  // When the field has array type, create index variables for each
10380  // dimension of the array. We use these index variables to subscript
10381  // the source array, and other clients (e.g., CodeGen) will perform
10382  // the necessary iteration with these index variables.
10383  SmallVector<VarDecl *, 4> IndexVariables;
10384  QualType BaseType = FieldType;
10385  QualType SizeType = S.Context.getSizeType();
10386  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10387  while (const ConstantArrayType *Array
10388                        = S.Context.getAsConstantArrayType(BaseType)) {
10389    // Create the iteration variable for this array index.
10390    IdentifierInfo *IterationVarName = 0;
10391    {
10392      SmallString<8> Str;
10393      llvm::raw_svector_ostream OS(Str);
10394      OS << "__i" << IndexVariables.size();
10395      IterationVarName = &S.Context.Idents.get(OS.str());
10396    }
10397    VarDecl *IterationVar
10398      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10399                        IterationVarName, SizeType,
10400                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10401                        SC_None, SC_None);
10402    IndexVariables.push_back(IterationVar);
10403    LSI->ArrayIndexVars.push_back(IterationVar);
10404
10405    // Create a reference to the iteration variable.
10406    ExprResult IterationVarRef
10407      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10408    assert(!IterationVarRef.isInvalid() &&
10409           "Reference to invented variable cannot fail!");
10410    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10411    assert(!IterationVarRef.isInvalid() &&
10412           "Conversion of invented variable cannot fail!");
10413
10414    // Subscript the array with this iteration variable.
10415    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10416                             Ref, Loc, IterationVarRef.take(), Loc);
10417    if (Subscript.isInvalid()) {
10418      S.CleanupVarDeclMarking();
10419      S.DiscardCleanupsInEvaluationContext();
10420      S.PopExpressionEvaluationContext();
10421      return ExprError();
10422    }
10423
10424    Ref = Subscript.take();
10425    BaseType = Array->getElementType();
10426  }
10427
10428  // Construct the entity that we will be initializing. For an array, this
10429  // will be first element in the array, which may require several levels
10430  // of array-subscript entities.
10431  SmallVector<InitializedEntity, 4> Entities;
10432  Entities.reserve(1 + IndexVariables.size());
10433  Entities.push_back(
10434    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10435  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10436    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10437                                                            0,
10438                                                            Entities.back()));
10439
10440  InitializationKind InitKind
10441    = InitializationKind::CreateDirect(Loc, Loc, Loc);
10442  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10443  ExprResult Result(true);
10444  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10445    Result = Init.Perform(S, Entities.back(), InitKind,
10446                          MultiExprArg(S, &Ref, 1));
10447
10448  // If this initialization requires any cleanups (e.g., due to a
10449  // default argument to a copy constructor), note that for the
10450  // lambda.
10451  if (S.ExprNeedsCleanups)
10452    LSI->ExprNeedsCleanups = true;
10453
10454  // Exit the expression evaluation context used for the capture.
10455  S.CleanupVarDeclMarking();
10456  S.DiscardCleanupsInEvaluationContext();
10457  S.PopExpressionEvaluationContext();
10458  return Result;
10459}
10460
10461bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10462                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
10463                              bool BuildAndDiagnose,
10464                              QualType &CaptureType,
10465                              QualType &DeclRefType) {
10466  bool Nested = false;
10467
10468  DeclContext *DC = CurContext;
10469  if (Var->getDeclContext() == DC) return true;
10470  if (!Var->hasLocalStorage()) return true;
10471
10472  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10473
10474  // Walk up the stack to determine whether we can capture the variable,
10475  // performing the "simple" checks that don't depend on type. We stop when
10476  // we've either hit the declared scope of the variable or find an existing
10477  // capture of that variable.
10478  CaptureType = Var->getType();
10479  DeclRefType = CaptureType.getNonReferenceType();
10480  bool Explicit = (Kind != TryCapture_Implicit);
10481  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10482  do {
10483    // Only block literals and lambda expressions can capture; other
10484    // scopes don't work.
10485    DeclContext *ParentDC;
10486    if (isa<BlockDecl>(DC))
10487      ParentDC = DC->getParent();
10488    else if (isa<CXXMethodDecl>(DC) &&
10489             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10490             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10491      ParentDC = DC->getParent()->getParent();
10492    else {
10493      if (BuildAndDiagnose)
10494        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10495      return true;
10496    }
10497
10498    CapturingScopeInfo *CSI =
10499      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10500
10501    // Check whether we've already captured it.
10502    if (CSI->CaptureMap.count(Var)) {
10503      // If we found a capture, any subcaptures are nested.
10504      Nested = true;
10505
10506      // Retrieve the capture type for this variable.
10507      CaptureType = CSI->getCapture(Var).getCaptureType();
10508
10509      // Compute the type of an expression that refers to this variable.
10510      DeclRefType = CaptureType.getNonReferenceType();
10511
10512      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10513      if (Cap.isCopyCapture() &&
10514          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10515        DeclRefType.addConst();
10516      break;
10517    }
10518
10519    bool IsBlock = isa<BlockScopeInfo>(CSI);
10520    bool IsLambda = !IsBlock;
10521
10522    // Lambdas are not allowed to capture unnamed variables
10523    // (e.g. anonymous unions).
10524    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10525    // assuming that's the intent.
10526    if (IsLambda && !Var->getDeclName()) {
10527      if (BuildAndDiagnose) {
10528        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10529        Diag(Var->getLocation(), diag::note_declared_at);
10530      }
10531      return true;
10532    }
10533
10534    // Prohibit variably-modified types; they're difficult to deal with.
10535    if (Var->getType()->isVariablyModifiedType()) {
10536      if (BuildAndDiagnose) {
10537        if (IsBlock)
10538          Diag(Loc, diag::err_ref_vm_type);
10539        else
10540          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10541        Diag(Var->getLocation(), diag::note_previous_decl)
10542          << Var->getDeclName();
10543      }
10544      return true;
10545    }
10546
10547    // Lambdas are not allowed to capture __block variables; they don't
10548    // support the expected semantics.
10549    if (IsLambda && HasBlocksAttr) {
10550      if (BuildAndDiagnose) {
10551        Diag(Loc, diag::err_lambda_capture_block)
10552          << Var->getDeclName();
10553        Diag(Var->getLocation(), diag::note_previous_decl)
10554          << Var->getDeclName();
10555      }
10556      return true;
10557    }
10558
10559    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10560      // No capture-default
10561      if (BuildAndDiagnose) {
10562        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10563        Diag(Var->getLocation(), diag::note_previous_decl)
10564          << Var->getDeclName();
10565        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10566             diag::note_lambda_decl);
10567      }
10568      return true;
10569    }
10570
10571    FunctionScopesIndex--;
10572    DC = ParentDC;
10573    Explicit = false;
10574  } while (!Var->getDeclContext()->Equals(DC));
10575
10576  // Walk back down the scope stack, computing the type of the capture at
10577  // each step, checking type-specific requirements, and adding captures if
10578  // requested.
10579  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10580       ++I) {
10581    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10582
10583    // Compute the type of the capture and of a reference to the capture within
10584    // this scope.
10585    if (isa<BlockScopeInfo>(CSI)) {
10586      Expr *CopyExpr = 0;
10587      bool ByRef = false;
10588
10589      // Blocks are not allowed to capture arrays.
10590      if (CaptureType->isArrayType()) {
10591        if (BuildAndDiagnose) {
10592          Diag(Loc, diag::err_ref_array_type);
10593          Diag(Var->getLocation(), diag::note_previous_decl)
10594          << Var->getDeclName();
10595        }
10596        return true;
10597      }
10598
10599      // Forbid the block-capture of autoreleasing variables.
10600      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10601        if (BuildAndDiagnose) {
10602          Diag(Loc, diag::err_arc_autoreleasing_capture)
10603            << /*block*/ 0;
10604          Diag(Var->getLocation(), diag::note_previous_decl)
10605            << Var->getDeclName();
10606        }
10607        return true;
10608      }
10609
10610      if (HasBlocksAttr || CaptureType->isReferenceType()) {
10611        // Block capture by reference does not change the capture or
10612        // declaration reference types.
10613        ByRef = true;
10614      } else {
10615        // Block capture by copy introduces 'const'.
10616        CaptureType = CaptureType.getNonReferenceType().withConst();
10617        DeclRefType = CaptureType;
10618
10619        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10620          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10621            // The capture logic needs the destructor, so make sure we mark it.
10622            // Usually this is unnecessary because most local variables have
10623            // their destructors marked at declaration time, but parameters are
10624            // an exception because it's technically only the call site that
10625            // actually requires the destructor.
10626            if (isa<ParmVarDecl>(Var))
10627              FinalizeVarWithDestructor(Var, Record);
10628
10629            // According to the blocks spec, the capture of a variable from
10630            // the stack requires a const copy constructor.  This is not true
10631            // of the copy/move done to move a __block variable to the heap.
10632            Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10633                                                      DeclRefType.withConst(),
10634                                                      VK_LValue, Loc);
10635            ExprResult Result
10636              = PerformCopyInitialization(
10637                  InitializedEntity::InitializeBlock(Var->getLocation(),
10638                                                     CaptureType, false),
10639                  Loc, Owned(DeclRef));
10640
10641            // Build a full-expression copy expression if initialization
10642            // succeeded and used a non-trivial constructor.  Recover from
10643            // errors by pretending that the copy isn't necessary.
10644            if (!Result.isInvalid() &&
10645                !cast<CXXConstructExpr>(Result.get())->getConstructor()
10646                   ->isTrivial()) {
10647              Result = MaybeCreateExprWithCleanups(Result);
10648              CopyExpr = Result.take();
10649            }
10650          }
10651        }
10652      }
10653
10654      // Actually capture the variable.
10655      if (BuildAndDiagnose)
10656        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10657                        SourceLocation(), CaptureType, CopyExpr);
10658      Nested = true;
10659      continue;
10660    }
10661
10662    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10663
10664    // Determine whether we are capturing by reference or by value.
10665    bool ByRef = false;
10666    if (I == N - 1 && Kind != TryCapture_Implicit) {
10667      ByRef = (Kind == TryCapture_ExplicitByRef);
10668    } else {
10669      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10670    }
10671
10672    // Compute the type of the field that will capture this variable.
10673    if (ByRef) {
10674      // C++11 [expr.prim.lambda]p15:
10675      //   An entity is captured by reference if it is implicitly or
10676      //   explicitly captured but not captured by copy. It is
10677      //   unspecified whether additional unnamed non-static data
10678      //   members are declared in the closure type for entities
10679      //   captured by reference.
10680      //
10681      // FIXME: It is not clear whether we want to build an lvalue reference
10682      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10683      // to do the former, while EDG does the latter. Core issue 1249 will
10684      // clarify, but for now we follow GCC because it's a more permissive and
10685      // easily defensible position.
10686      CaptureType = Context.getLValueReferenceType(DeclRefType);
10687    } else {
10688      // C++11 [expr.prim.lambda]p14:
10689      //   For each entity captured by copy, an unnamed non-static
10690      //   data member is declared in the closure type. The
10691      //   declaration order of these members is unspecified. The type
10692      //   of such a data member is the type of the corresponding
10693      //   captured entity if the entity is not a reference to an
10694      //   object, or the referenced type otherwise. [Note: If the
10695      //   captured entity is a reference to a function, the
10696      //   corresponding data member is also a reference to a
10697      //   function. - end note ]
10698      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10699        if (!RefType->getPointeeType()->isFunctionType())
10700          CaptureType = RefType->getPointeeType();
10701      }
10702
10703      // Forbid the lambda copy-capture of autoreleasing variables.
10704      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10705        if (BuildAndDiagnose) {
10706          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10707          Diag(Var->getLocation(), diag::note_previous_decl)
10708            << Var->getDeclName();
10709        }
10710        return true;
10711      }
10712    }
10713
10714    // Capture this variable in the lambda.
10715    Expr *CopyExpr = 0;
10716    if (BuildAndDiagnose) {
10717      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10718                                          DeclRefType, Loc,
10719                                          I == N-1);
10720      if (!Result.isInvalid())
10721        CopyExpr = Result.take();
10722    }
10723
10724    // Compute the type of a reference to this captured variable.
10725    if (ByRef)
10726      DeclRefType = CaptureType.getNonReferenceType();
10727    else {
10728      // C++ [expr.prim.lambda]p5:
10729      //   The closure type for a lambda-expression has a public inline
10730      //   function call operator [...]. This function call operator is
10731      //   declared const (9.3.1) if and only if the lambda-expression’s
10732      //   parameter-declaration-clause is not followed by mutable.
10733      DeclRefType = CaptureType.getNonReferenceType();
10734      if (!LSI->Mutable && !CaptureType->isReferenceType())
10735        DeclRefType.addConst();
10736    }
10737
10738    // Add the capture.
10739    if (BuildAndDiagnose)
10740      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10741                      EllipsisLoc, CaptureType, CopyExpr);
10742    Nested = true;
10743  }
10744
10745  return false;
10746}
10747
10748bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10749                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10750  QualType CaptureType;
10751  QualType DeclRefType;
10752  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10753                            /*BuildAndDiagnose=*/true, CaptureType,
10754                            DeclRefType);
10755}
10756
10757QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10758  QualType CaptureType;
10759  QualType DeclRefType;
10760
10761  // Determine whether we can capture this variable.
10762  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10763                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10764    return QualType();
10765
10766  return DeclRefType;
10767}
10768
10769static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10770                               SourceLocation Loc) {
10771  // Keep track of used but undefined variables.
10772  // FIXME: We shouldn't suppress this warning for static data members.
10773  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10774      Var->getLinkage() != ExternalLinkage &&
10775      !(Var->isStaticDataMember() && Var->hasInit())) {
10776    SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10777    if (old.isInvalid()) old = Loc;
10778  }
10779
10780  SemaRef.tryCaptureVariable(Var, Loc);
10781
10782  Var->setUsed(true);
10783}
10784
10785void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10786  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10787  // an object that satisfies the requirements for appearing in a
10788  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10789  // is immediately applied."  This function handles the lvalue-to-rvalue
10790  // conversion part.
10791  MaybeODRUseExprs.erase(E->IgnoreParens());
10792}
10793
10794ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10795  if (!Res.isUsable())
10796    return Res;
10797
10798  // If a constant-expression is a reference to a variable where we delay
10799  // deciding whether it is an odr-use, just assume we will apply the
10800  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10801  // (a non-type template argument), we have special handling anyway.
10802  UpdateMarkingForLValueToRValue(Res.get());
10803  return Res;
10804}
10805
10806void Sema::CleanupVarDeclMarking() {
10807  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10808                                        e = MaybeODRUseExprs.end();
10809       i != e; ++i) {
10810    VarDecl *Var;
10811    SourceLocation Loc;
10812    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10813      Var = cast<VarDecl>(DRE->getDecl());
10814      Loc = DRE->getLocation();
10815    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10816      Var = cast<VarDecl>(ME->getMemberDecl());
10817      Loc = ME->getMemberLoc();
10818    } else {
10819      llvm_unreachable("Unexpcted expression");
10820    }
10821
10822    MarkVarDeclODRUsed(*this, Var, Loc);
10823  }
10824
10825  MaybeODRUseExprs.clear();
10826}
10827
10828// Mark a VarDecl referenced, and perform the necessary handling to compute
10829// odr-uses.
10830static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10831                                    VarDecl *Var, Expr *E) {
10832  Var->setReferenced();
10833
10834  if (!IsPotentiallyEvaluatedContext(SemaRef))
10835    return;
10836
10837  // Implicit instantiation of static data members of class templates.
10838  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10839    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10840    assert(MSInfo && "Missing member specialization information?");
10841    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10842    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10843        (!AlreadyInstantiated ||
10844         Var->isUsableInConstantExpressions(SemaRef.Context))) {
10845      if (!AlreadyInstantiated) {
10846        // This is a modification of an existing AST node. Notify listeners.
10847        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10848          L->StaticDataMemberInstantiated(Var);
10849        MSInfo->setPointOfInstantiation(Loc);
10850      }
10851      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10852      if (Var->isUsableInConstantExpressions(SemaRef.Context))
10853        // Do not defer instantiations of variables which could be used in a
10854        // constant expression.
10855        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10856      else
10857        SemaRef.PendingInstantiations.push_back(
10858            std::make_pair(Var, PointOfInstantiation));
10859    }
10860  }
10861
10862  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10863  // an object that satisfies the requirements for appearing in a
10864  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10865  // is immediately applied."  We check the first part here, and
10866  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10867  // Note that we use the C++11 definition everywhere because nothing in
10868  // C++03 depends on whether we get the C++03 version correct. This does not
10869  // apply to references, since they are not objects.
10870  const VarDecl *DefVD;
10871  if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10872      Var->isUsableInConstantExpressions(SemaRef.Context) &&
10873      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10874    SemaRef.MaybeODRUseExprs.insert(E);
10875  else
10876    MarkVarDeclODRUsed(SemaRef, Var, Loc);
10877}
10878
10879/// \brief Mark a variable referenced, and check whether it is odr-used
10880/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10881/// used directly for normal expressions referring to VarDecl.
10882void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10883  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10884}
10885
10886static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10887                               Decl *D, Expr *E) {
10888  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10889    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10890    return;
10891  }
10892
10893  SemaRef.MarkAnyDeclReferenced(Loc, D);
10894
10895  // If this is a call to a method via a cast, also mark the method in the
10896  // derived class used in case codegen can devirtualize the call.
10897  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
10898  if (!ME)
10899    return;
10900  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
10901  if (!MD)
10902    return;
10903  const Expr *Base = ME->getBase();
10904  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
10905  if (!MostDerivedClassDecl)
10906    return;
10907  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
10908  if (!DM)
10909    return;
10910  SemaRef.MarkAnyDeclReferenced(Loc, DM);
10911}
10912
10913/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
10914void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10915  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10916}
10917
10918/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
10919void Sema::MarkMemberReferenced(MemberExpr *E) {
10920  MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10921}
10922
10923/// \brief Perform marking for a reference to an arbitrary declaration.  It
10924/// marks the declaration referenced, and performs odr-use checking for functions
10925/// and variables. This method should not be used when building an normal
10926/// expression which refers to a variable.
10927void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10928  if (VarDecl *VD = dyn_cast<VarDecl>(D))
10929    MarkVariableReferenced(Loc, VD);
10930  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10931    MarkFunctionReferenced(Loc, FD);
10932  else
10933    D->setReferenced();
10934}
10935
10936namespace {
10937  // Mark all of the declarations referenced
10938  // FIXME: Not fully implemented yet! We need to have a better understanding
10939  // of when we're entering
10940  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10941    Sema &S;
10942    SourceLocation Loc;
10943
10944  public:
10945    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10946
10947    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10948
10949    bool TraverseTemplateArgument(const TemplateArgument &Arg);
10950    bool TraverseRecordType(RecordType *T);
10951  };
10952}
10953
10954bool MarkReferencedDecls::TraverseTemplateArgument(
10955  const TemplateArgument &Arg) {
10956  if (Arg.getKind() == TemplateArgument::Declaration) {
10957    if (Decl *D = Arg.getAsDecl())
10958      S.MarkAnyDeclReferenced(Loc, D);
10959  }
10960
10961  return Inherited::TraverseTemplateArgument(Arg);
10962}
10963
10964bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10965  if (ClassTemplateSpecializationDecl *Spec
10966                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10967    const TemplateArgumentList &Args = Spec->getTemplateArgs();
10968    return TraverseTemplateArguments(Args.data(), Args.size());
10969  }
10970
10971  return true;
10972}
10973
10974void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
10975  MarkReferencedDecls Marker(*this, Loc);
10976  Marker.TraverseType(Context.getCanonicalType(T));
10977}
10978
10979namespace {
10980  /// \brief Helper class that marks all of the declarations referenced by
10981  /// potentially-evaluated subexpressions as "referenced".
10982  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
10983    Sema &S;
10984    bool SkipLocalVariables;
10985
10986  public:
10987    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
10988
10989    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
10990      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
10991
10992    void VisitDeclRefExpr(DeclRefExpr *E) {
10993      // If we were asked not to visit local variables, don't.
10994      if (SkipLocalVariables) {
10995        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
10996          if (VD->hasLocalStorage())
10997            return;
10998      }
10999
11000      S.MarkDeclRefReferenced(E);
11001    }
11002
11003    void VisitMemberExpr(MemberExpr *E) {
11004      S.MarkMemberReferenced(E);
11005      Inherited::VisitMemberExpr(E);
11006    }
11007
11008    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11009      S.MarkFunctionReferenced(E->getLocStart(),
11010            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11011      Visit(E->getSubExpr());
11012    }
11013
11014    void VisitCXXNewExpr(CXXNewExpr *E) {
11015      if (E->getOperatorNew())
11016        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11017      if (E->getOperatorDelete())
11018        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11019      Inherited::VisitCXXNewExpr(E);
11020    }
11021
11022    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11023      if (E->getOperatorDelete())
11024        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11025      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11026      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11027        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11028        S.MarkFunctionReferenced(E->getLocStart(),
11029                                    S.LookupDestructor(Record));
11030      }
11031
11032      Inherited::VisitCXXDeleteExpr(E);
11033    }
11034
11035    void VisitCXXConstructExpr(CXXConstructExpr *E) {
11036      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11037      Inherited::VisitCXXConstructExpr(E);
11038    }
11039
11040    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11041      Visit(E->getExpr());
11042    }
11043
11044    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11045      Inherited::VisitImplicitCastExpr(E);
11046
11047      if (E->getCastKind() == CK_LValueToRValue)
11048        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11049    }
11050  };
11051}
11052
11053/// \brief Mark any declarations that appear within this expression or any
11054/// potentially-evaluated subexpressions as "referenced".
11055///
11056/// \param SkipLocalVariables If true, don't mark local variables as
11057/// 'referenced'.
11058void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11059                                            bool SkipLocalVariables) {
11060  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11061}
11062
11063/// \brief Emit a diagnostic that describes an effect on the run-time behavior
11064/// of the program being compiled.
11065///
11066/// This routine emits the given diagnostic when the code currently being
11067/// type-checked is "potentially evaluated", meaning that there is a
11068/// possibility that the code will actually be executable. Code in sizeof()
11069/// expressions, code used only during overload resolution, etc., are not
11070/// potentially evaluated. This routine will suppress such diagnostics or,
11071/// in the absolutely nutty case of potentially potentially evaluated
11072/// expressions (C++ typeid), queue the diagnostic to potentially emit it
11073/// later.
11074///
11075/// This routine should be used for all diagnostics that describe the run-time
11076/// behavior of a program, such as passing a non-POD value through an ellipsis.
11077/// Failure to do so will likely result in spurious diagnostics or failures
11078/// during overload resolution or within sizeof/alignof/typeof/typeid.
11079bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11080                               const PartialDiagnostic &PD) {
11081  switch (ExprEvalContexts.back().Context) {
11082  case Unevaluated:
11083    // The argument will never be evaluated, so don't complain.
11084    break;
11085
11086  case ConstantEvaluated:
11087    // Relevant diagnostics should be produced by constant evaluation.
11088    break;
11089
11090  case PotentiallyEvaluated:
11091  case PotentiallyEvaluatedIfUsed:
11092    if (Statement && getCurFunctionOrMethodDecl()) {
11093      FunctionScopes.back()->PossiblyUnreachableDiags.
11094        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11095    }
11096    else
11097      Diag(Loc, PD);
11098
11099    return true;
11100  }
11101
11102  return false;
11103}
11104
11105bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11106                               CallExpr *CE, FunctionDecl *FD) {
11107  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11108    return false;
11109
11110  // If we're inside a decltype's expression, don't check for a valid return
11111  // type or construct temporaries until we know whether this is the last call.
11112  if (ExprEvalContexts.back().IsDecltype) {
11113    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11114    return false;
11115  }
11116
11117  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11118    FunctionDecl *FD;
11119    CallExpr *CE;
11120
11121  public:
11122    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11123      : FD(FD), CE(CE) { }
11124
11125    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11126      if (!FD) {
11127        S.Diag(Loc, diag::err_call_incomplete_return)
11128          << T << CE->getSourceRange();
11129        return;
11130      }
11131
11132      S.Diag(Loc, diag::err_call_function_incomplete_return)
11133        << CE->getSourceRange() << FD->getDeclName() << T;
11134      S.Diag(FD->getLocation(),
11135             diag::note_function_with_incomplete_return_type_declared_here)
11136        << FD->getDeclName();
11137    }
11138  } Diagnoser(FD, CE);
11139
11140  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11141    return true;
11142
11143  return false;
11144}
11145
11146// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11147// will prevent this condition from triggering, which is what we want.
11148void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11149  SourceLocation Loc;
11150
11151  unsigned diagnostic = diag::warn_condition_is_assignment;
11152  bool IsOrAssign = false;
11153
11154  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11155    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11156      return;
11157
11158    IsOrAssign = Op->getOpcode() == BO_OrAssign;
11159
11160    // Greylist some idioms by putting them into a warning subcategory.
11161    if (ObjCMessageExpr *ME
11162          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11163      Selector Sel = ME->getSelector();
11164
11165      // self = [<foo> init...]
11166      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11167        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11168
11169      // <foo> = [<bar> nextObject]
11170      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11171        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11172    }
11173
11174    Loc = Op->getOperatorLoc();
11175  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11176    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11177      return;
11178
11179    IsOrAssign = Op->getOperator() == OO_PipeEqual;
11180    Loc = Op->getOperatorLoc();
11181  } else {
11182    // Not an assignment.
11183    return;
11184  }
11185
11186  Diag(Loc, diagnostic) << E->getSourceRange();
11187
11188  SourceLocation Open = E->getLocStart();
11189  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11190  Diag(Loc, diag::note_condition_assign_silence)
11191        << FixItHint::CreateInsertion(Open, "(")
11192        << FixItHint::CreateInsertion(Close, ")");
11193
11194  if (IsOrAssign)
11195    Diag(Loc, diag::note_condition_or_assign_to_comparison)
11196      << FixItHint::CreateReplacement(Loc, "!=");
11197  else
11198    Diag(Loc, diag::note_condition_assign_to_comparison)
11199      << FixItHint::CreateReplacement(Loc, "==");
11200}
11201
11202/// \brief Redundant parentheses over an equality comparison can indicate
11203/// that the user intended an assignment used as condition.
11204void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11205  // Don't warn if the parens came from a macro.
11206  SourceLocation parenLoc = ParenE->getLocStart();
11207  if (parenLoc.isInvalid() || parenLoc.isMacroID())
11208    return;
11209  // Don't warn for dependent expressions.
11210  if (ParenE->isTypeDependent())
11211    return;
11212
11213  Expr *E = ParenE->IgnoreParens();
11214
11215  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11216    if (opE->getOpcode() == BO_EQ &&
11217        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11218                                                           == Expr::MLV_Valid) {
11219      SourceLocation Loc = opE->getOperatorLoc();
11220
11221      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11222      SourceRange ParenERange = ParenE->getSourceRange();
11223      Diag(Loc, diag::note_equality_comparison_silence)
11224        << FixItHint::CreateRemoval(ParenERange.getBegin())
11225        << FixItHint::CreateRemoval(ParenERange.getEnd());
11226      Diag(Loc, diag::note_equality_comparison_to_assign)
11227        << FixItHint::CreateReplacement(Loc, "=");
11228    }
11229}
11230
11231ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11232  DiagnoseAssignmentAsCondition(E);
11233  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11234    DiagnoseEqualityWithExtraParens(parenE);
11235
11236  ExprResult result = CheckPlaceholderExpr(E);
11237  if (result.isInvalid()) return ExprError();
11238  E = result.take();
11239
11240  if (!E->isTypeDependent()) {
11241    if (getLangOpts().CPlusPlus)
11242      return CheckCXXBooleanCondition(E); // C++ 6.4p4
11243
11244    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11245    if (ERes.isInvalid())
11246      return ExprError();
11247    E = ERes.take();
11248
11249    QualType T = E->getType();
11250    if (!T->isScalarType()) { // C99 6.8.4.1p1
11251      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11252        << T << E->getSourceRange();
11253      return ExprError();
11254    }
11255  }
11256
11257  return Owned(E);
11258}
11259
11260ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11261                                       Expr *SubExpr) {
11262  if (!SubExpr)
11263    return ExprError();
11264
11265  return CheckBooleanCondition(SubExpr, Loc);
11266}
11267
11268namespace {
11269  /// A visitor for rebuilding a call to an __unknown_any expression
11270  /// to have an appropriate type.
11271  struct RebuildUnknownAnyFunction
11272    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11273
11274    Sema &S;
11275
11276    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11277
11278    ExprResult VisitStmt(Stmt *S) {
11279      llvm_unreachable("unexpected statement!");
11280    }
11281
11282    ExprResult VisitExpr(Expr *E) {
11283      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11284        << E->getSourceRange();
11285      return ExprError();
11286    }
11287
11288    /// Rebuild an expression which simply semantically wraps another
11289    /// expression which it shares the type and value kind of.
11290    template <class T> ExprResult rebuildSugarExpr(T *E) {
11291      ExprResult SubResult = Visit(E->getSubExpr());
11292      if (SubResult.isInvalid()) return ExprError();
11293
11294      Expr *SubExpr = SubResult.take();
11295      E->setSubExpr(SubExpr);
11296      E->setType(SubExpr->getType());
11297      E->setValueKind(SubExpr->getValueKind());
11298      assert(E->getObjectKind() == OK_Ordinary);
11299      return E;
11300    }
11301
11302    ExprResult VisitParenExpr(ParenExpr *E) {
11303      return rebuildSugarExpr(E);
11304    }
11305
11306    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11307      return rebuildSugarExpr(E);
11308    }
11309
11310    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11311      ExprResult SubResult = Visit(E->getSubExpr());
11312      if (SubResult.isInvalid()) return ExprError();
11313
11314      Expr *SubExpr = SubResult.take();
11315      E->setSubExpr(SubExpr);
11316      E->setType(S.Context.getPointerType(SubExpr->getType()));
11317      assert(E->getValueKind() == VK_RValue);
11318      assert(E->getObjectKind() == OK_Ordinary);
11319      return E;
11320    }
11321
11322    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11323      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11324
11325      E->setType(VD->getType());
11326
11327      assert(E->getValueKind() == VK_RValue);
11328      if (S.getLangOpts().CPlusPlus &&
11329          !(isa<CXXMethodDecl>(VD) &&
11330            cast<CXXMethodDecl>(VD)->isInstance()))
11331        E->setValueKind(VK_LValue);
11332
11333      return E;
11334    }
11335
11336    ExprResult VisitMemberExpr(MemberExpr *E) {
11337      return resolveDecl(E, E->getMemberDecl());
11338    }
11339
11340    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11341      return resolveDecl(E, E->getDecl());
11342    }
11343  };
11344}
11345
11346/// Given a function expression of unknown-any type, try to rebuild it
11347/// to have a function type.
11348static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11349  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11350  if (Result.isInvalid()) return ExprError();
11351  return S.DefaultFunctionArrayConversion(Result.take());
11352}
11353
11354namespace {
11355  /// A visitor for rebuilding an expression of type __unknown_anytype
11356  /// into one which resolves the type directly on the referring
11357  /// expression.  Strict preservation of the original source
11358  /// structure is not a goal.
11359  struct RebuildUnknownAnyExpr
11360    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11361
11362    Sema &S;
11363
11364    /// The current destination type.
11365    QualType DestType;
11366
11367    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11368      : S(S), DestType(CastType) {}
11369
11370    ExprResult VisitStmt(Stmt *S) {
11371      llvm_unreachable("unexpected statement!");
11372    }
11373
11374    ExprResult VisitExpr(Expr *E) {
11375      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11376        << E->getSourceRange();
11377      return ExprError();
11378    }
11379
11380    ExprResult VisitCallExpr(CallExpr *E);
11381    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11382
11383    /// Rebuild an expression which simply semantically wraps another
11384    /// expression which it shares the type and value kind of.
11385    template <class T> ExprResult rebuildSugarExpr(T *E) {
11386      ExprResult SubResult = Visit(E->getSubExpr());
11387      if (SubResult.isInvalid()) return ExprError();
11388      Expr *SubExpr = SubResult.take();
11389      E->setSubExpr(SubExpr);
11390      E->setType(SubExpr->getType());
11391      E->setValueKind(SubExpr->getValueKind());
11392      assert(E->getObjectKind() == OK_Ordinary);
11393      return E;
11394    }
11395
11396    ExprResult VisitParenExpr(ParenExpr *E) {
11397      return rebuildSugarExpr(E);
11398    }
11399
11400    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11401      return rebuildSugarExpr(E);
11402    }
11403
11404    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11405      const PointerType *Ptr = DestType->getAs<PointerType>();
11406      if (!Ptr) {
11407        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11408          << E->getSourceRange();
11409        return ExprError();
11410      }
11411      assert(E->getValueKind() == VK_RValue);
11412      assert(E->getObjectKind() == OK_Ordinary);
11413      E->setType(DestType);
11414
11415      // Build the sub-expression as if it were an object of the pointee type.
11416      DestType = Ptr->getPointeeType();
11417      ExprResult SubResult = Visit(E->getSubExpr());
11418      if (SubResult.isInvalid()) return ExprError();
11419      E->setSubExpr(SubResult.take());
11420      return E;
11421    }
11422
11423    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11424
11425    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11426
11427    ExprResult VisitMemberExpr(MemberExpr *E) {
11428      return resolveDecl(E, E->getMemberDecl());
11429    }
11430
11431    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11432      return resolveDecl(E, E->getDecl());
11433    }
11434  };
11435}
11436
11437/// Rebuilds a call expression which yielded __unknown_anytype.
11438ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11439  Expr *CalleeExpr = E->getCallee();
11440
11441  enum FnKind {
11442    FK_MemberFunction,
11443    FK_FunctionPointer,
11444    FK_BlockPointer
11445  };
11446
11447  FnKind Kind;
11448  QualType CalleeType = CalleeExpr->getType();
11449  if (CalleeType == S.Context.BoundMemberTy) {
11450    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11451    Kind = FK_MemberFunction;
11452    CalleeType = Expr::findBoundMemberType(CalleeExpr);
11453  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11454    CalleeType = Ptr->getPointeeType();
11455    Kind = FK_FunctionPointer;
11456  } else {
11457    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11458    Kind = FK_BlockPointer;
11459  }
11460  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11461
11462  // Verify that this is a legal result type of a function.
11463  if (DestType->isArrayType() || DestType->isFunctionType()) {
11464    unsigned diagID = diag::err_func_returning_array_function;
11465    if (Kind == FK_BlockPointer)
11466      diagID = diag::err_block_returning_array_function;
11467
11468    S.Diag(E->getExprLoc(), diagID)
11469      << DestType->isFunctionType() << DestType;
11470    return ExprError();
11471  }
11472
11473  // Otherwise, go ahead and set DestType as the call's result.
11474  E->setType(DestType.getNonLValueExprType(S.Context));
11475  E->setValueKind(Expr::getValueKindForType(DestType));
11476  assert(E->getObjectKind() == OK_Ordinary);
11477
11478  // Rebuild the function type, replacing the result type with DestType.
11479  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11480    DestType = S.Context.getFunctionType(DestType,
11481                                         Proto->arg_type_begin(),
11482                                         Proto->getNumArgs(),
11483                                         Proto->getExtProtoInfo());
11484  else
11485    DestType = S.Context.getFunctionNoProtoType(DestType,
11486                                                FnType->getExtInfo());
11487
11488  // Rebuild the appropriate pointer-to-function type.
11489  switch (Kind) {
11490  case FK_MemberFunction:
11491    // Nothing to do.
11492    break;
11493
11494  case FK_FunctionPointer:
11495    DestType = S.Context.getPointerType(DestType);
11496    break;
11497
11498  case FK_BlockPointer:
11499    DestType = S.Context.getBlockPointerType(DestType);
11500    break;
11501  }
11502
11503  // Finally, we can recurse.
11504  ExprResult CalleeResult = Visit(CalleeExpr);
11505  if (!CalleeResult.isUsable()) return ExprError();
11506  E->setCallee(CalleeResult.take());
11507
11508  // Bind a temporary if necessary.
11509  return S.MaybeBindToTemporary(E);
11510}
11511
11512ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11513  // Verify that this is a legal result type of a call.
11514  if (DestType->isArrayType() || DestType->isFunctionType()) {
11515    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11516      << DestType->isFunctionType() << DestType;
11517    return ExprError();
11518  }
11519
11520  // Rewrite the method result type if available.
11521  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11522    assert(Method->getResultType() == S.Context.UnknownAnyTy);
11523    Method->setResultType(DestType);
11524  }
11525
11526  // Change the type of the message.
11527  E->setType(DestType.getNonReferenceType());
11528  E->setValueKind(Expr::getValueKindForType(DestType));
11529
11530  return S.MaybeBindToTemporary(E);
11531}
11532
11533ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11534  // The only case we should ever see here is a function-to-pointer decay.
11535  if (E->getCastKind() == CK_FunctionToPointerDecay) {
11536    assert(E->getValueKind() == VK_RValue);
11537    assert(E->getObjectKind() == OK_Ordinary);
11538
11539    E->setType(DestType);
11540
11541    // Rebuild the sub-expression as the pointee (function) type.
11542    DestType = DestType->castAs<PointerType>()->getPointeeType();
11543
11544    ExprResult Result = Visit(E->getSubExpr());
11545    if (!Result.isUsable()) return ExprError();
11546
11547    E->setSubExpr(Result.take());
11548    return S.Owned(E);
11549  } else if (E->getCastKind() == CK_LValueToRValue) {
11550    assert(E->getValueKind() == VK_RValue);
11551    assert(E->getObjectKind() == OK_Ordinary);
11552
11553    assert(isa<BlockPointerType>(E->getType()));
11554
11555    E->setType(DestType);
11556
11557    // The sub-expression has to be a lvalue reference, so rebuild it as such.
11558    DestType = S.Context.getLValueReferenceType(DestType);
11559
11560    ExprResult Result = Visit(E->getSubExpr());
11561    if (!Result.isUsable()) return ExprError();
11562
11563    E->setSubExpr(Result.take());
11564    return S.Owned(E);
11565  } else {
11566    llvm_unreachable("Unhandled cast type!");
11567  }
11568}
11569
11570ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11571  ExprValueKind ValueKind = VK_LValue;
11572  QualType Type = DestType;
11573
11574  // We know how to make this work for certain kinds of decls:
11575
11576  //  - functions
11577  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11578    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11579      DestType = Ptr->getPointeeType();
11580      ExprResult Result = resolveDecl(E, VD);
11581      if (Result.isInvalid()) return ExprError();
11582      return S.ImpCastExprToType(Result.take(), Type,
11583                                 CK_FunctionToPointerDecay, VK_RValue);
11584    }
11585
11586    if (!Type->isFunctionType()) {
11587      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11588        << VD << E->getSourceRange();
11589      return ExprError();
11590    }
11591
11592    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11593      if (MD->isInstance()) {
11594        ValueKind = VK_RValue;
11595        Type = S.Context.BoundMemberTy;
11596      }
11597
11598    // Function references aren't l-values in C.
11599    if (!S.getLangOpts().CPlusPlus)
11600      ValueKind = VK_RValue;
11601
11602  //  - variables
11603  } else if (isa<VarDecl>(VD)) {
11604    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11605      Type = RefTy->getPointeeType();
11606    } else if (Type->isFunctionType()) {
11607      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11608        << VD << E->getSourceRange();
11609      return ExprError();
11610    }
11611
11612  //  - nothing else
11613  } else {
11614    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11615      << VD << E->getSourceRange();
11616    return ExprError();
11617  }
11618
11619  VD->setType(DestType);
11620  E->setType(Type);
11621  E->setValueKind(ValueKind);
11622  return S.Owned(E);
11623}
11624
11625/// Check a cast of an unknown-any type.  We intentionally only
11626/// trigger this for C-style casts.
11627ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11628                                     Expr *CastExpr, CastKind &CastKind,
11629                                     ExprValueKind &VK, CXXCastPath &Path) {
11630  // Rewrite the casted expression from scratch.
11631  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11632  if (!result.isUsable()) return ExprError();
11633
11634  CastExpr = result.take();
11635  VK = CastExpr->getValueKind();
11636  CastKind = CK_NoOp;
11637
11638  return CastExpr;
11639}
11640
11641ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11642  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11643}
11644
11645static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11646  Expr *orig = E;
11647  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11648  while (true) {
11649    E = E->IgnoreParenImpCasts();
11650    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11651      E = call->getCallee();
11652      diagID = diag::err_uncasted_call_of_unknown_any;
11653    } else {
11654      break;
11655    }
11656  }
11657
11658  SourceLocation loc;
11659  NamedDecl *d;
11660  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11661    loc = ref->getLocation();
11662    d = ref->getDecl();
11663  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11664    loc = mem->getMemberLoc();
11665    d = mem->getMemberDecl();
11666  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11667    diagID = diag::err_uncasted_call_of_unknown_any;
11668    loc = msg->getSelectorStartLoc();
11669    d = msg->getMethodDecl();
11670    if (!d) {
11671      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11672        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11673        << orig->getSourceRange();
11674      return ExprError();
11675    }
11676  } else {
11677    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11678      << E->getSourceRange();
11679    return ExprError();
11680  }
11681
11682  S.Diag(loc, diagID) << d << orig->getSourceRange();
11683
11684  // Never recoverable.
11685  return ExprError();
11686}
11687
11688/// Check for operands with placeholder types and complain if found.
11689/// Returns true if there was an error and no recovery was possible.
11690ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11691  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11692  if (!placeholderType) return Owned(E);
11693
11694  switch (placeholderType->getKind()) {
11695
11696  // Overloaded expressions.
11697  case BuiltinType::Overload: {
11698    // Try to resolve a single function template specialization.
11699    // This is obligatory.
11700    ExprResult result = Owned(E);
11701    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11702      return result;
11703
11704    // If that failed, try to recover with a call.
11705    } else {
11706      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11707                           /*complain*/ true);
11708      return result;
11709    }
11710  }
11711
11712  // Bound member functions.
11713  case BuiltinType::BoundMember: {
11714    ExprResult result = Owned(E);
11715    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11716                         /*complain*/ true);
11717    return result;
11718  }
11719
11720  // ARC unbridged casts.
11721  case BuiltinType::ARCUnbridgedCast: {
11722    Expr *realCast = stripARCUnbridgedCast(E);
11723    diagnoseARCUnbridgedCast(realCast);
11724    return Owned(realCast);
11725  }
11726
11727  // Expressions of unknown type.
11728  case BuiltinType::UnknownAny:
11729    return diagnoseUnknownAnyExpr(*this, E);
11730
11731  // Pseudo-objects.
11732  case BuiltinType::PseudoObject:
11733    return checkPseudoObjectRValue(E);
11734
11735  // Everything else should be impossible.
11736#define BUILTIN_TYPE(Id, SingletonId) \
11737  case BuiltinType::Id:
11738#define PLACEHOLDER_TYPE(Id, SingletonId)
11739#include "clang/AST/BuiltinTypes.def"
11740    break;
11741  }
11742
11743  llvm_unreachable("invalid placeholder type!");
11744}
11745
11746bool Sema::CheckCaseExpression(Expr *E) {
11747  if (E->isTypeDependent())
11748    return true;
11749  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11750    return E->getType()->isIntegralOrEnumerationType();
11751  return false;
11752}
11753
11754/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11755ExprResult
11756Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11757  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11758         "Unknown Objective-C Boolean value!");
11759  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11760                                        Context.ObjCBuiltinBoolTy, OpLoc));
11761}
11762