SemaExpr.cpp revision b28e006e904273e8215c3d51612fbbd5dfc14f92
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "AnalysisBasedWarnings.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/LiteralSupport.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/Designator.h"
30#include "clang/Parse/Scope.h"
31#include "clang/Parse/Template.h"
32using namespace clang;
33
34
35/// \brief Determine whether the use of this declaration is valid, and
36/// emit any corresponding diagnostics.
37///
38/// This routine diagnoses various problems with referencing
39/// declarations that can occur when using a declaration. For example,
40/// it might warn if a deprecated or unavailable declaration is being
41/// used, or produce an error (and return true) if a C++0x deleted
42/// function is being used.
43///
44/// If IgnoreDeprecated is set to true, this should not want about deprecated
45/// decls.
46///
47/// \returns true if there was an error (this declaration cannot be
48/// referenced), false otherwise.
49///
50bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
51  // See if the decl is deprecated.
52  if (D->getAttr<DeprecatedAttr>()) {
53    EmitDeprecationWarning(D, Loc);
54  }
55
56  // See if the decl is unavailable
57  if (D->getAttr<UnavailableAttr>()) {
58    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
59    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
60  }
61
62  // See if this is a deleted function.
63  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64    if (FD->isDeleted()) {
65      Diag(Loc, diag::err_deleted_function_use);
66      Diag(D->getLocation(), diag::note_unavailable_here) << true;
67      return true;
68    }
69  }
70
71  return false;
72}
73
74/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
75/// (and other functions in future), which have been declared with sentinel
76/// attribute. It warns if call does not have the sentinel argument.
77///
78void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
79                                 Expr **Args, unsigned NumArgs) {
80  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
81  if (!attr)
82    return;
83  int sentinelPos = attr->getSentinel();
84  int nullPos = attr->getNullPos();
85
86  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
87  // base class. Then we won't be needing two versions of the same code.
88  unsigned int i = 0;
89  bool warnNotEnoughArgs = false;
90  int isMethod = 0;
91  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
92    // skip over named parameters.
93    ObjCMethodDecl::param_iterator P, E = MD->param_end();
94    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
95      if (nullPos)
96        --nullPos;
97      else
98        ++i;
99    }
100    warnNotEnoughArgs = (P != E || i >= NumArgs);
101    isMethod = 1;
102  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
103    // skip over named parameters.
104    ObjCMethodDecl::param_iterator P, E = FD->param_end();
105    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
106      if (nullPos)
107        --nullPos;
108      else
109        ++i;
110    }
111    warnNotEnoughArgs = (P != E || i >= NumArgs);
112  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
113    // block or function pointer call.
114    QualType Ty = V->getType();
115    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
116      const FunctionType *FT = Ty->isFunctionPointerType()
117      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
118      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
119      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
120        unsigned NumArgsInProto = Proto->getNumArgs();
121        unsigned k;
122        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
123          if (nullPos)
124            --nullPos;
125          else
126            ++i;
127        }
128        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
129      }
130      if (Ty->isBlockPointerType())
131        isMethod = 2;
132    } else
133      return;
134  } else
135    return;
136
137  if (warnNotEnoughArgs) {
138    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
139    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
140    return;
141  }
142  int sentinel = i;
143  while (sentinelPos > 0 && i < NumArgs-1) {
144    --sentinelPos;
145    ++i;
146  }
147  if (sentinelPos > 0) {
148    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
149    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
150    return;
151  }
152  while (i < NumArgs-1) {
153    ++i;
154    ++sentinel;
155  }
156  Expr *sentinelExpr = Args[sentinel];
157  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
158                       (!sentinelExpr->getType()->isPointerType() ||
159                        !sentinelExpr->isNullPointerConstant(Context,
160                                            Expr::NPC_ValueDependentIsNull)))) {
161    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
162    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
163  }
164  return;
165}
166
167SourceRange Sema::getExprRange(ExprTy *E) const {
168  Expr *Ex = (Expr *)E;
169  return Ex? Ex->getSourceRange() : SourceRange();
170}
171
172//===----------------------------------------------------------------------===//
173//  Standard Promotions and Conversions
174//===----------------------------------------------------------------------===//
175
176/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
177void Sema::DefaultFunctionArrayConversion(Expr *&E) {
178  QualType Ty = E->getType();
179  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
180
181  if (Ty->isFunctionType())
182    ImpCastExprToType(E, Context.getPointerType(Ty),
183                      CastExpr::CK_FunctionToPointerDecay);
184  else if (Ty->isArrayType()) {
185    // In C90 mode, arrays only promote to pointers if the array expression is
186    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
187    // type 'array of type' is converted to an expression that has type 'pointer
188    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
189    // that has type 'array of type' ...".  The relevant change is "an lvalue"
190    // (C90) to "an expression" (C99).
191    //
192    // C++ 4.2p1:
193    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
194    // T" can be converted to an rvalue of type "pointer to T".
195    //
196    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
197        E->isLvalue(Context) == Expr::LV_Valid)
198      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
199                        CastExpr::CK_ArrayToPointerDecay);
200  }
201}
202
203void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
204  DefaultFunctionArrayConversion(E);
205
206  QualType Ty = E->getType();
207  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
208  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
209      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
210      E->isLvalue(Context) == Expr::LV_Valid) {
211    // C++ [conv.lval]p1:
212    //   [...] If T is a non-class type, the type of the rvalue is the
213    //   cv-unqualified version of T. Otherwise, the type of the
214    //   rvalue is T
215    //
216    // C99 6.3.2.1p2:
217    //   If the lvalue has qualified type, the value has the unqualified
218    //   version of the type of the lvalue; otherwise, the value has the
219    //   type of the lvalue.
220    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
221  }
222}
223
224
225/// UsualUnaryConversions - Performs various conversions that are common to most
226/// operators (C99 6.3). The conversions of array and function types are
227/// sometimes surpressed. For example, the array->pointer conversion doesn't
228/// apply if the array is an argument to the sizeof or address (&) operators.
229/// In these instances, this routine should *not* be called.
230Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
231  QualType Ty = Expr->getType();
232  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
233
234  // C99 6.3.1.1p2:
235  //
236  //   The following may be used in an expression wherever an int or
237  //   unsigned int may be used:
238  //     - an object or expression with an integer type whose integer
239  //       conversion rank is less than or equal to the rank of int
240  //       and unsigned int.
241  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
242  //
243  //   If an int can represent all values of the original type, the
244  //   value is converted to an int; otherwise, it is converted to an
245  //   unsigned int. These are called the integer promotions. All
246  //   other types are unchanged by the integer promotions.
247  QualType PTy = Context.isPromotableBitField(Expr);
248  if (!PTy.isNull()) {
249    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
250    return Expr;
251  }
252  if (Ty->isPromotableIntegerType()) {
253    QualType PT = Context.getPromotedIntegerType(Ty);
254    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
255    return Expr;
256  }
257
258  DefaultFunctionArrayLvalueConversion(Expr);
259  return Expr;
260}
261
262/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
263/// do not have a prototype. Arguments that have type float are promoted to
264/// double. All other argument types are converted by UsualUnaryConversions().
265void Sema::DefaultArgumentPromotion(Expr *&Expr) {
266  QualType Ty = Expr->getType();
267  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
268
269  // If this is a 'float' (CVR qualified or typedef) promote to double.
270  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
271    if (BT->getKind() == BuiltinType::Float)
272      return ImpCastExprToType(Expr, Context.DoubleTy,
273                               CastExpr::CK_FloatingCast);
274
275  UsualUnaryConversions(Expr);
276}
277
278/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
279/// will warn if the resulting type is not a POD type, and rejects ObjC
280/// interfaces passed by value.  This returns true if the argument type is
281/// completely illegal.
282bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
283  DefaultArgumentPromotion(Expr);
284
285  if (Expr->getType()->isObjCInterfaceType() &&
286      DiagRuntimeBehavior(Expr->getLocStart(),
287        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
288          << Expr->getType() << CT))
289    return true;
290
291  if (!Expr->getType()->isPODType() &&
292      DiagRuntimeBehavior(Expr->getLocStart(),
293                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
294                            << Expr->getType() << CT))
295    return true;
296
297  return false;
298}
299
300
301/// UsualArithmeticConversions - Performs various conversions that are common to
302/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
303/// routine returns the first non-arithmetic type found. The client is
304/// responsible for emitting appropriate error diagnostics.
305/// FIXME: verify the conversion rules for "complex int" are consistent with
306/// GCC.
307QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
308                                          bool isCompAssign) {
309  if (!isCompAssign)
310    UsualUnaryConversions(lhsExpr);
311
312  UsualUnaryConversions(rhsExpr);
313
314  // For conversion purposes, we ignore any qualifiers.
315  // For example, "const float" and "float" are equivalent.
316  QualType lhs =
317    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
318  QualType rhs =
319    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
320
321  // If both types are identical, no conversion is needed.
322  if (lhs == rhs)
323    return lhs;
324
325  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
326  // The caller can deal with this (e.g. pointer + int).
327  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
328    return lhs;
329
330  // Perform bitfield promotions.
331  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
332  if (!LHSBitfieldPromoteTy.isNull())
333    lhs = LHSBitfieldPromoteTy;
334  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
335  if (!RHSBitfieldPromoteTy.isNull())
336    rhs = RHSBitfieldPromoteTy;
337
338  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
339  if (!isCompAssign)
340    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
341  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
342  return destType;
343}
344
345//===----------------------------------------------------------------------===//
346//  Semantic Analysis for various Expression Types
347//===----------------------------------------------------------------------===//
348
349
350/// ActOnStringLiteral - The specified tokens were lexed as pasted string
351/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
352/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
353/// multiple tokens.  However, the common case is that StringToks points to one
354/// string.
355///
356Action::OwningExprResult
357Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
358  assert(NumStringToks && "Must have at least one string!");
359
360  StringLiteralParser Literal(StringToks, NumStringToks, PP);
361  if (Literal.hadError)
362    return ExprError();
363
364  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
365  for (unsigned i = 0; i != NumStringToks; ++i)
366    StringTokLocs.push_back(StringToks[i].getLocation());
367
368  QualType StrTy = Context.CharTy;
369  if (Literal.AnyWide) StrTy = Context.getWCharType();
370  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
371
372  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
373  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings )
374    StrTy.addConst();
375
376  // Get an array type for the string, according to C99 6.4.5.  This includes
377  // the nul terminator character as well as the string length for pascal
378  // strings.
379  StrTy = Context.getConstantArrayType(StrTy,
380                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
381                                       ArrayType::Normal, 0);
382
383  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
384  return Owned(StringLiteral::Create(Context, Literal.GetString(),
385                                     Literal.GetStringLength(),
386                                     Literal.AnyWide, StrTy,
387                                     &StringTokLocs[0],
388                                     StringTokLocs.size()));
389}
390
391/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
392/// CurBlock to VD should cause it to be snapshotted (as we do for auto
393/// variables defined outside the block) or false if this is not needed (e.g.
394/// for values inside the block or for globals).
395///
396/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
397/// up-to-date.
398///
399static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
400                                              ValueDecl *VD) {
401  // If the value is defined inside the block, we couldn't snapshot it even if
402  // we wanted to.
403  if (CurBlock->TheDecl == VD->getDeclContext())
404    return false;
405
406  // If this is an enum constant or function, it is constant, don't snapshot.
407  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
408    return false;
409
410  // If this is a reference to an extern, static, or global variable, no need to
411  // snapshot it.
412  // FIXME: What about 'const' variables in C++?
413  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
414    if (!Var->hasLocalStorage())
415      return false;
416
417  // Blocks that have these can't be constant.
418  CurBlock->hasBlockDeclRefExprs = true;
419
420  // If we have nested blocks, the decl may be declared in an outer block (in
421  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
422  // be defined outside all of the current blocks (in which case the blocks do
423  // all get the bit).  Walk the nesting chain.
424  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
425    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
426
427    if (!NextBlock)
428      continue;
429
430    // If we found the defining block for the variable, don't mark the block as
431    // having a reference outside it.
432    if (NextBlock->TheDecl == VD->getDeclContext())
433      break;
434
435    // Otherwise, the DeclRef from the inner block causes the outer one to need
436    // a snapshot as well.
437    NextBlock->hasBlockDeclRefExprs = true;
438  }
439
440  return true;
441}
442
443
444
445/// BuildDeclRefExpr - Build a DeclRefExpr.
446Sema::OwningExprResult
447Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
448                       const CXXScopeSpec *SS) {
449  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
450    Diag(Loc,
451         diag::err_auto_variable_cannot_appear_in_own_initializer)
452      << D->getDeclName();
453    return ExprError();
454  }
455
456  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
457    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
458      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
459        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
460          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
461            << D->getIdentifier() << FD->getDeclName();
462          Diag(D->getLocation(), diag::note_local_variable_declared_here)
463            << D->getIdentifier();
464          return ExprError();
465        }
466      }
467    }
468  }
469
470  MarkDeclarationReferenced(Loc, D);
471
472  return Owned(DeclRefExpr::Create(Context,
473                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
474                                   SS? SS->getRange() : SourceRange(),
475                                   D, Loc, Ty));
476}
477
478/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
479/// variable corresponding to the anonymous union or struct whose type
480/// is Record.
481static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
482                                             RecordDecl *Record) {
483  assert(Record->isAnonymousStructOrUnion() &&
484         "Record must be an anonymous struct or union!");
485
486  // FIXME: Once Decls are directly linked together, this will be an O(1)
487  // operation rather than a slow walk through DeclContext's vector (which
488  // itself will be eliminated). DeclGroups might make this even better.
489  DeclContext *Ctx = Record->getDeclContext();
490  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
491                               DEnd = Ctx->decls_end();
492       D != DEnd; ++D) {
493    if (*D == Record) {
494      // The object for the anonymous struct/union directly
495      // follows its type in the list of declarations.
496      ++D;
497      assert(D != DEnd && "Missing object for anonymous record");
498      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
499      return *D;
500    }
501  }
502
503  assert(false && "Missing object for anonymous record");
504  return 0;
505}
506
507/// \brief Given a field that represents a member of an anonymous
508/// struct/union, build the path from that field's context to the
509/// actual member.
510///
511/// Construct the sequence of field member references we'll have to
512/// perform to get to the field in the anonymous union/struct. The
513/// list of members is built from the field outward, so traverse it
514/// backwards to go from an object in the current context to the field
515/// we found.
516///
517/// \returns The variable from which the field access should begin,
518/// for an anonymous struct/union that is not a member of another
519/// class. Otherwise, returns NULL.
520VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
521                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
522  assert(Field->getDeclContext()->isRecord() &&
523         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
524         && "Field must be stored inside an anonymous struct or union");
525
526  Path.push_back(Field);
527  VarDecl *BaseObject = 0;
528  DeclContext *Ctx = Field->getDeclContext();
529  do {
530    RecordDecl *Record = cast<RecordDecl>(Ctx);
531    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
532    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
533      Path.push_back(AnonField);
534    else {
535      BaseObject = cast<VarDecl>(AnonObject);
536      break;
537    }
538    Ctx = Ctx->getParent();
539  } while (Ctx->isRecord() &&
540           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
541
542  return BaseObject;
543}
544
545Sema::OwningExprResult
546Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
547                                               FieldDecl *Field,
548                                               Expr *BaseObjectExpr,
549                                               SourceLocation OpLoc) {
550  llvm::SmallVector<FieldDecl *, 4> AnonFields;
551  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
552                                                            AnonFields);
553
554  // Build the expression that refers to the base object, from
555  // which we will build a sequence of member references to each
556  // of the anonymous union objects and, eventually, the field we
557  // found via name lookup.
558  bool BaseObjectIsPointer = false;
559  Qualifiers BaseQuals;
560  if (BaseObject) {
561    // BaseObject is an anonymous struct/union variable (and is,
562    // therefore, not part of another non-anonymous record).
563    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
564    MarkDeclarationReferenced(Loc, BaseObject);
565    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
566                                               SourceLocation());
567    BaseQuals
568      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
569  } else if (BaseObjectExpr) {
570    // The caller provided the base object expression. Determine
571    // whether its a pointer and whether it adds any qualifiers to the
572    // anonymous struct/union fields we're looking into.
573    QualType ObjectType = BaseObjectExpr->getType();
574    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
575      BaseObjectIsPointer = true;
576      ObjectType = ObjectPtr->getPointeeType();
577    }
578    BaseQuals
579      = Context.getCanonicalType(ObjectType).getQualifiers();
580  } else {
581    // We've found a member of an anonymous struct/union that is
582    // inside a non-anonymous struct/union, so in a well-formed
583    // program our base object expression is "this".
584    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
585      if (!MD->isStatic()) {
586        QualType AnonFieldType
587          = Context.getTagDeclType(
588                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
589        QualType ThisType = Context.getTagDeclType(MD->getParent());
590        if ((Context.getCanonicalType(AnonFieldType)
591               == Context.getCanonicalType(ThisType)) ||
592            IsDerivedFrom(ThisType, AnonFieldType)) {
593          // Our base object expression is "this".
594          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
595                                                     MD->getThisType(Context),
596                                                     /*isImplicit=*/true);
597          BaseObjectIsPointer = true;
598        }
599      } else {
600        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
601          << Field->getDeclName());
602      }
603      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
604    }
605
606    if (!BaseObjectExpr)
607      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
608        << Field->getDeclName());
609  }
610
611  // Build the implicit member references to the field of the
612  // anonymous struct/union.
613  Expr *Result = BaseObjectExpr;
614  Qualifiers ResultQuals = BaseQuals;
615  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
616         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
617       FI != FIEnd; ++FI) {
618    QualType MemberType = (*FI)->getType();
619    Qualifiers MemberTypeQuals =
620      Context.getCanonicalType(MemberType).getQualifiers();
621
622    // CVR attributes from the base are picked up by members,
623    // except that 'mutable' members don't pick up 'const'.
624    if ((*FI)->isMutable())
625      ResultQuals.removeConst();
626
627    // GC attributes are never picked up by members.
628    ResultQuals.removeObjCGCAttr();
629
630    // TR 18037 does not allow fields to be declared with address spaces.
631    assert(!MemberTypeQuals.hasAddressSpace());
632
633    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
634    if (NewQuals != MemberTypeQuals)
635      MemberType = Context.getQualifiedType(MemberType, NewQuals);
636
637    MarkDeclarationReferenced(Loc, *FI);
638    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI, *FI);
639    // FIXME: Might this end up being a qualified name?
640    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
641                                      OpLoc, MemberType);
642    BaseObjectIsPointer = false;
643    ResultQuals = NewQuals;
644  }
645
646  return Owned(Result);
647}
648
649/// Decomposes the given name into a DeclarationName, its location, and
650/// possibly a list of template arguments.
651///
652/// If this produces template arguments, it is permitted to call
653/// DecomposeTemplateName.
654///
655/// This actually loses a lot of source location information for
656/// non-standard name kinds; we should consider preserving that in
657/// some way.
658static void DecomposeUnqualifiedId(Sema &SemaRef,
659                                   const UnqualifiedId &Id,
660                                   TemplateArgumentListInfo &Buffer,
661                                   DeclarationName &Name,
662                                   SourceLocation &NameLoc,
663                             const TemplateArgumentListInfo *&TemplateArgs) {
664  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
665    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
666    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
667
668    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
669                                       Id.TemplateId->getTemplateArgs(),
670                                       Id.TemplateId->NumArgs);
671    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
672    TemplateArgsPtr.release();
673
674    TemplateName TName =
675      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
676
677    Name = SemaRef.Context.getNameForTemplate(TName);
678    NameLoc = Id.TemplateId->TemplateNameLoc;
679    TemplateArgs = &Buffer;
680  } else {
681    Name = SemaRef.GetNameFromUnqualifiedId(Id);
682    NameLoc = Id.StartLocation;
683    TemplateArgs = 0;
684  }
685}
686
687/// Decompose the given template name into a list of lookup results.
688///
689/// The unqualified ID must name a non-dependent template, which can
690/// be more easily tested by checking whether DecomposeUnqualifiedId
691/// found template arguments.
692static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
693  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
694  TemplateName TName =
695    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();
696
697  if (TemplateDecl *TD = TName.getAsTemplateDecl())
698    R.addDecl(TD);
699  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
700    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
701           I != E; ++I)
702      R.addDecl(*I);
703
704  R.resolveKind();
705}
706
707/// Determines whether the given record is "fully-formed" at the given
708/// location, i.e. whether a qualified lookup into it is assured of
709/// getting consistent results already.
710static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
711  if (!Record->hasDefinition())
712    return false;
713
714  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
715         E = Record->bases_end(); I != E; ++I) {
716    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
717    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
718    if (!BaseRT) return false;
719
720    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
721    if (!BaseRecord->hasDefinition() ||
722        !IsFullyFormedScope(SemaRef, BaseRecord))
723      return false;
724  }
725
726  return true;
727}
728
729/// Determines whether we can lookup this id-expression now or whether
730/// we have to wait until template instantiation is complete.
731static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
732  DeclContext *DC = SemaRef.computeDeclContext(SS, false);
733
734  // If the qualifier scope isn't computable, it's definitely dependent.
735  if (!DC) return true;
736
737  // If the qualifier scope doesn't name a record, we can always look into it.
738  if (!isa<CXXRecordDecl>(DC)) return false;
739
740  // We can't look into record types unless they're fully-formed.
741  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;
742
743  return false;
744}
745
746/// Determines if the given class is provably not derived from all of
747/// the prospective base classes.
748static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
749                                     CXXRecordDecl *Record,
750                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
751  if (Bases.count(Record->getCanonicalDecl()))
752    return false;
753
754  RecordDecl *RD = Record->getDefinition();
755  if (!RD) return false;
756  Record = cast<CXXRecordDecl>(RD);
757
758  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
759         E = Record->bases_end(); I != E; ++I) {
760    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
761    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
762    if (!BaseRT) return false;
763
764    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
765    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
766      return false;
767  }
768
769  return true;
770}
771
772/// Determines if this is an instance member of a class.
773static bool IsInstanceMember(NamedDecl *D) {
774  assert(D->isCXXClassMember() &&
775         "checking whether non-member is instance member");
776
777  if (isa<FieldDecl>(D)) return true;
778
779  if (isa<CXXMethodDecl>(D))
780    return !cast<CXXMethodDecl>(D)->isStatic();
781
782  if (isa<FunctionTemplateDecl>(D)) {
783    D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
784    return !cast<CXXMethodDecl>(D)->isStatic();
785  }
786
787  return false;
788}
789
790enum IMAKind {
791  /// The reference is definitely not an instance member access.
792  IMA_Static,
793
794  /// The reference may be an implicit instance member access.
795  IMA_Mixed,
796
797  /// The reference may be to an instance member, but it is invalid if
798  /// so, because the context is not an instance method.
799  IMA_Mixed_StaticContext,
800
801  /// The reference may be to an instance member, but it is invalid if
802  /// so, because the context is from an unrelated class.
803  IMA_Mixed_Unrelated,
804
805  /// The reference is definitely an implicit instance member access.
806  IMA_Instance,
807
808  /// The reference may be to an unresolved using declaration.
809  IMA_Unresolved,
810
811  /// The reference may be to an unresolved using declaration and the
812  /// context is not an instance method.
813  IMA_Unresolved_StaticContext,
814
815  /// The reference is to a member of an anonymous structure in a
816  /// non-class context.
817  IMA_AnonymousMember,
818
819  /// All possible referrents are instance members and the current
820  /// context is not an instance method.
821  IMA_Error_StaticContext,
822
823  /// All possible referrents are instance members of an unrelated
824  /// class.
825  IMA_Error_Unrelated
826};
827
828/// The given lookup names class member(s) and is not being used for
829/// an address-of-member expression.  Classify the type of access
830/// according to whether it's possible that this reference names an
831/// instance member.  This is best-effort; it is okay to
832/// conservatively answer "yes", in which case some errors will simply
833/// not be caught until template-instantiation.
834static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
835                                            const LookupResult &R) {
836  assert(!R.empty() && (*R.begin())->isCXXClassMember());
837
838  bool isStaticContext =
839    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
840     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());
841
842  if (R.isUnresolvableResult())
843    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
844
845  // Collect all the declaring classes of instance members we find.
846  bool hasNonInstance = false;
847  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
848  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
849    NamedDecl *D = (*I)->getUnderlyingDecl();
850    if (IsInstanceMember(D)) {
851      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
852
853      // If this is a member of an anonymous record, move out to the
854      // innermost non-anonymous struct or union.  If there isn't one,
855      // that's a special case.
856      while (R->isAnonymousStructOrUnion()) {
857        R = dyn_cast<CXXRecordDecl>(R->getParent());
858        if (!R) return IMA_AnonymousMember;
859      }
860      Classes.insert(R->getCanonicalDecl());
861    }
862    else
863      hasNonInstance = true;
864  }
865
866  // If we didn't find any instance members, it can't be an implicit
867  // member reference.
868  if (Classes.empty())
869    return IMA_Static;
870
871  // If the current context is not an instance method, it can't be
872  // an implicit member reference.
873  if (isStaticContext)
874    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);
875
876  // If we can prove that the current context is unrelated to all the
877  // declaring classes, it can't be an implicit member reference (in
878  // which case it's an error if any of those members are selected).
879  if (IsProvablyNotDerivedFrom(SemaRef,
880                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
881                               Classes))
882    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
883
884  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
885}
886
887/// Diagnose a reference to a field with no object available.
888static void DiagnoseInstanceReference(Sema &SemaRef,
889                                      const CXXScopeSpec &SS,
890                                      const LookupResult &R) {
891  SourceLocation Loc = R.getNameLoc();
892  SourceRange Range(Loc);
893  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
894
895  if (R.getAsSingle<FieldDecl>()) {
896    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
897      if (MD->isStatic()) {
898        // "invalid use of member 'x' in static member function"
899        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
900          << Range << R.getLookupName();
901        return;
902      }
903    }
904
905    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
906      << R.getLookupName() << Range;
907    return;
908  }
909
910  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
911}
912
913/// Diagnose an empty lookup.
914///
915/// \return false if new lookup candidates were found
916bool Sema::DiagnoseEmptyLookup(Scope *S, const CXXScopeSpec &SS,
917                               LookupResult &R) {
918  DeclarationName Name = R.getLookupName();
919
920  unsigned diagnostic = diag::err_undeclared_var_use;
921  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
922  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
923      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
924      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
925    diagnostic = diag::err_undeclared_use;
926    diagnostic_suggest = diag::err_undeclared_use_suggest;
927  }
928
929  // If the original lookup was an unqualified lookup, fake an
930  // unqualified lookup.  This is useful when (for example) the
931  // original lookup would not have found something because it was a
932  // dependent name.
933  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
934       DC; DC = DC->getParent()) {
935    if (isa<CXXRecordDecl>(DC)) {
936      LookupQualifiedName(R, DC);
937
938      if (!R.empty()) {
939        // Don't give errors about ambiguities in this lookup.
940        R.suppressDiagnostics();
941
942        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
943        bool isInstance = CurMethod &&
944                          CurMethod->isInstance() &&
945                          DC == CurMethod->getParent();
946
947        // Give a code modification hint to insert 'this->'.
948        // TODO: fixit for inserting 'Base<T>::' in the other cases.
949        // Actually quite difficult!
950        if (isInstance)
951          Diag(R.getNameLoc(), diagnostic) << Name
952            << CodeModificationHint::CreateInsertion(R.getNameLoc(),
953                                                     "this->");
954        else
955          Diag(R.getNameLoc(), diagnostic) << Name;
956
957        // Do we really want to note all of these?
958        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
959          Diag((*I)->getLocation(), diag::note_dependent_var_use);
960
961        // Tell the callee to try to recover.
962        return false;
963      }
964    }
965  }
966
967  // We didn't find anything, so try to correct for a typo.
968  if (S && CorrectTypo(R, S, &SS)) {
969    if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
970      if (SS.isEmpty())
971        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
972          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
973                                              R.getLookupName().getAsString());
974      else
975        Diag(R.getNameLoc(), diag::err_no_member_suggest)
976          << Name << computeDeclContext(SS, false) << R.getLookupName()
977          << SS.getRange()
978          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
979                                              R.getLookupName().getAsString());
980      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
981        Diag(ND->getLocation(), diag::note_previous_decl)
982          << ND->getDeclName();
983
984      // Tell the callee to try to recover.
985      return false;
986    }
987
988    if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
989      // FIXME: If we ended up with a typo for a type name or
990      // Objective-C class name, we're in trouble because the parser
991      // is in the wrong place to recover. Suggest the typo
992      // correction, but don't make it a fix-it since we're not going
993      // to recover well anyway.
994      if (SS.isEmpty())
995        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
996      else
997        Diag(R.getNameLoc(), diag::err_no_member_suggest)
998          << Name << computeDeclContext(SS, false) << R.getLookupName()
999          << SS.getRange();
1000
1001      // Don't try to recover; it won't work.
1002      return true;
1003    }
1004
1005    R.clear();
1006  }
1007
1008  // Emit a special diagnostic for failed member lookups.
1009  // FIXME: computing the declaration context might fail here (?)
1010  if (!SS.isEmpty()) {
1011    Diag(R.getNameLoc(), diag::err_no_member)
1012      << Name << computeDeclContext(SS, false)
1013      << SS.getRange();
1014    return true;
1015  }
1016
1017  // Give up, we can't recover.
1018  Diag(R.getNameLoc(), diagnostic) << Name;
1019  return true;
1020}
1021
1022Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
1023                                               const CXXScopeSpec &SS,
1024                                               UnqualifiedId &Id,
1025                                               bool HasTrailingLParen,
1026                                               bool isAddressOfOperand) {
1027  assert(!(isAddressOfOperand && HasTrailingLParen) &&
1028         "cannot be direct & operand and have a trailing lparen");
1029
1030  if (SS.isInvalid())
1031    return ExprError();
1032
1033  TemplateArgumentListInfo TemplateArgsBuffer;
1034
1035  // Decompose the UnqualifiedId into the following data.
1036  DeclarationName Name;
1037  SourceLocation NameLoc;
1038  const TemplateArgumentListInfo *TemplateArgs;
1039  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
1040                         Name, NameLoc, TemplateArgs);
1041
1042  IdentifierInfo *II = Name.getAsIdentifierInfo();
1043
1044  // C++ [temp.dep.expr]p3:
1045  //   An id-expression is type-dependent if it contains:
1046  //     -- an identifier that was declared with a dependent type,
1047  //        (note: handled after lookup)
1048  //     -- a template-id that is dependent,
1049  //        (note: handled in BuildTemplateIdExpr)
1050  //     -- a conversion-function-id that specifies a dependent type,
1051  //     -- a nested-name-specifier that contains a class-name that
1052  //        names a dependent type.
1053  // Determine whether this is a member of an unknown specialization;
1054  // we need to handle these differently.
1055  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1056       Name.getCXXNameType()->isDependentType()) ||
1057      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
1058    return ActOnDependentIdExpression(SS, Name, NameLoc,
1059                                      isAddressOfOperand,
1060                                      TemplateArgs);
1061  }
1062
1063  // Perform the required lookup.
1064  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1065  if (TemplateArgs) {
1066    // Just re-use the lookup done by isTemplateName.
1067    DecomposeTemplateName(R, Id);
1068  } else {
1069    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
1070    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1071
1072    // If this reference is in an Objective-C method, then we need to do
1073    // some special Objective-C lookup, too.
1074    if (IvarLookupFollowUp) {
1075      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
1076      if (E.isInvalid())
1077        return ExprError();
1078
1079      Expr *Ex = E.takeAs<Expr>();
1080      if (Ex) return Owned(Ex);
1081    }
1082  }
1083
1084  if (R.isAmbiguous())
1085    return ExprError();
1086
1087  // Determine whether this name might be a candidate for
1088  // argument-dependent lookup.
1089  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1090
1091  if (R.empty() && !ADL) {
1092    // Otherwise, this could be an implicitly declared function reference (legal
1093    // in C90, extension in C99, forbidden in C++).
1094    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
1095      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1096      if (D) R.addDecl(D);
1097    }
1098
1099    // If this name wasn't predeclared and if this is not a function
1100    // call, diagnose the problem.
1101    if (R.empty()) {
1102      if (DiagnoseEmptyLookup(S, SS, R))
1103        return ExprError();
1104
1105      assert(!R.empty() &&
1106             "DiagnoseEmptyLookup returned false but added no results");
1107
1108      // If we found an Objective-C instance variable, let
1109      // LookupInObjCMethod build the appropriate expression to
1110      // reference the ivar.
1111      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1112        R.clear();
1113        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1114        assert(E.isInvalid() || E.get());
1115        return move(E);
1116      }
1117    }
1118  }
1119
1120  // This is guaranteed from this point on.
1121  assert(!R.empty() || ADL);
1122
1123  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
1124    // Warn about constructs like:
1125    //   if (void *X = foo()) { ... } else { X }.
1126    // In the else block, the pointer is always false.
1127
1128    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
1129      Scope *CheckS = S;
1130      while (CheckS && CheckS->getControlParent()) {
1131        if (CheckS->isWithinElse() &&
1132            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
1133          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
1134            << Var->getDeclName()
1135            << (Var->getType()->isPointerType()? 2 :
1136                Var->getType()->isBooleanType()? 1 : 0));
1137          break;
1138        }
1139
1140        // Move to the parent of this scope.
1141        CheckS = CheckS->getParent();
1142      }
1143    }
1144  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
1145    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1146      // C99 DR 316 says that, if a function type comes from a
1147      // function definition (without a prototype), that type is only
1148      // used for checking compatibility. Therefore, when referencing
1149      // the function, we pretend that we don't have the full function
1150      // type.
1151      if (DiagnoseUseOfDecl(Func, NameLoc))
1152        return ExprError();
1153
1154      QualType T = Func->getType();
1155      QualType NoProtoType = T;
1156      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
1157        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1158      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
1159    }
1160  }
1161
1162  // Check whether this might be a C++ implicit instance member access.
1163  // C++ [expr.prim.general]p6:
1164  //   Within the definition of a non-static member function, an
1165  //   identifier that names a non-static member is transformed to a
1166  //   class member access expression.
1167  // But note that &SomeClass::foo is grammatically distinct, even
1168  // though we don't parse it that way.
1169  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1170    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
1171    if (!isAbstractMemberPointer)
1172      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
1173  }
1174
1175  if (TemplateArgs)
1176    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
1177
1178  return BuildDeclarationNameExpr(SS, R, ADL);
1179}
1180
1181/// Builds an expression which might be an implicit member expression.
1182Sema::OwningExprResult
1183Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
1184                                      LookupResult &R,
1185                                const TemplateArgumentListInfo *TemplateArgs) {
1186  switch (ClassifyImplicitMemberAccess(*this, R)) {
1187  case IMA_Instance:
1188    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
1189
1190  case IMA_AnonymousMember:
1191    assert(R.isSingleResult());
1192    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
1193                                                    R.getAsSingle<FieldDecl>());
1194
1195  case IMA_Mixed:
1196  case IMA_Mixed_Unrelated:
1197  case IMA_Unresolved:
1198    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
1199
1200  case IMA_Static:
1201  case IMA_Mixed_StaticContext:
1202  case IMA_Unresolved_StaticContext:
1203    if (TemplateArgs)
1204      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
1205    return BuildDeclarationNameExpr(SS, R, false);
1206
1207  case IMA_Error_StaticContext:
1208  case IMA_Error_Unrelated:
1209    DiagnoseInstanceReference(*this, SS, R);
1210    return ExprError();
1211  }
1212
1213  llvm_unreachable("unexpected instance member access kind");
1214  return ExprError();
1215}
1216
1217/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1218/// declaration name, generally during template instantiation.
1219/// There's a large number of things which don't need to be done along
1220/// this path.
1221Sema::OwningExprResult
1222Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
1223                                        DeclarationName Name,
1224                                        SourceLocation NameLoc) {
1225  DeclContext *DC;
1226  if (!(DC = computeDeclContext(SS, false)) ||
1227      DC->isDependentContext() ||
1228      RequireCompleteDeclContext(SS))
1229    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);
1230
1231  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1232  LookupQualifiedName(R, DC);
1233
1234  if (R.isAmbiguous())
1235    return ExprError();
1236
1237  if (R.empty()) {
1238    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
1239    return ExprError();
1240  }
1241
1242  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1243}
1244
1245/// LookupInObjCMethod - The parser has read a name in, and Sema has
1246/// detected that we're currently inside an ObjC method.  Perform some
1247/// additional lookup.
1248///
1249/// Ideally, most of this would be done by lookup, but there's
1250/// actually quite a lot of extra work involved.
1251///
1252/// Returns a null sentinel to indicate trivial success.
1253Sema::OwningExprResult
1254Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1255                         IdentifierInfo *II,
1256                         bool AllowBuiltinCreation) {
1257  SourceLocation Loc = Lookup.getNameLoc();
1258
1259  // There are two cases to handle here.  1) scoped lookup could have failed,
1260  // in which case we should look for an ivar.  2) scoped lookup could have
1261  // found a decl, but that decl is outside the current instance method (i.e.
1262  // a global variable).  In these two cases, we do a lookup for an ivar with
1263  // this name, if the lookup sucedes, we replace it our current decl.
1264
1265  // If we're in a class method, we don't normally want to look for
1266  // ivars.  But if we don't find anything else, and there's an
1267  // ivar, that's an error.
1268  bool IsClassMethod = getCurMethodDecl()->isClassMethod();
1269
1270  bool LookForIvars;
1271  if (Lookup.empty())
1272    LookForIvars = true;
1273  else if (IsClassMethod)
1274    LookForIvars = false;
1275  else
1276    LookForIvars = (Lookup.isSingleResult() &&
1277                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1278  ObjCInterfaceDecl *IFace = 0;
1279  if (LookForIvars) {
1280    IFace = getCurMethodDecl()->getClassInterface();
1281    ObjCInterfaceDecl *ClassDeclared;
1282    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1283      // Diagnose using an ivar in a class method.
1284      if (IsClassMethod)
1285        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1286                         << IV->getDeclName());
1287
1288      // If we're referencing an invalid decl, just return this as a silent
1289      // error node.  The error diagnostic was already emitted on the decl.
1290      if (IV->isInvalidDecl())
1291        return ExprError();
1292
1293      // Check if referencing a field with __attribute__((deprecated)).
1294      if (DiagnoseUseOfDecl(IV, Loc))
1295        return ExprError();
1296
1297      // Diagnose the use of an ivar outside of the declaring class.
1298      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1299          ClassDeclared != IFace)
1300        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1301
1302      // FIXME: This should use a new expr for a direct reference, don't
1303      // turn this into Self->ivar, just return a BareIVarExpr or something.
1304      IdentifierInfo &II = Context.Idents.get("self");
1305      UnqualifiedId SelfName;
1306      SelfName.setIdentifier(&II, SourceLocation());
1307      CXXScopeSpec SelfScopeSpec;
1308      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
1309                                                    SelfName, false, false);
1310      MarkDeclarationReferenced(Loc, IV);
1311      return Owned(new (Context)
1312                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1313                                   SelfExpr.takeAs<Expr>(), true, true));
1314    }
1315  } else if (getCurMethodDecl()->isInstanceMethod()) {
1316    // We should warn if a local variable hides an ivar.
1317    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
1318    ObjCInterfaceDecl *ClassDeclared;
1319    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1320      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1321          IFace == ClassDeclared)
1322        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1323    }
1324  }
1325
1326  // Needed to implement property "super.method" notation.
1327  if (Lookup.empty() && II->isStr("super")) {
1328    QualType T;
1329
1330    if (getCurMethodDecl()->isInstanceMethod())
1331      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
1332                                    getCurMethodDecl()->getClassInterface()));
1333    else
1334      T = Context.getObjCClassType();
1335    return Owned(new (Context) ObjCSuperExpr(Loc, T));
1336  }
1337  if (Lookup.empty() && II && AllowBuiltinCreation) {
1338    // FIXME. Consolidate this with similar code in LookupName.
1339    if (unsigned BuiltinID = II->getBuiltinID()) {
1340      if (!(getLangOptions().CPlusPlus &&
1341            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1342        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1343                                           S, Lookup.isForRedeclaration(),
1344                                           Lookup.getNameLoc());
1345        if (D) Lookup.addDecl(D);
1346      }
1347    }
1348  }
1349  if (LangOpts.ObjCNonFragileABI2 && LookForIvars && Lookup.empty()) {
1350    ObjCIvarDecl *Ivar = SynthesizeNewPropertyIvar(IFace, II);
1351    if (Ivar)
1352      return LookupInObjCMethod(Lookup, S, II, AllowBuiltinCreation);
1353  }
1354  // Sentinel value saying that we didn't do anything special.
1355  return Owned((Expr*) 0);
1356}
1357
1358/// \brief Cast a base object to a member's actual type.
1359///
1360/// Logically this happens in three phases:
1361///
1362/// * First we cast from the base type to the naming class.
1363///   The naming class is the class into which we were looking
1364///   when we found the member;  it's the qualifier type if a
1365///   qualifier was provided, and otherwise it's the base type.
1366///
1367/// * Next we cast from the naming class to the declaring class.
1368///   If the member we found was brought into a class's scope by
1369///   a using declaration, this is that class;  otherwise it's
1370///   the class declaring the member.
1371///
1372/// * Finally we cast from the declaring class to the "true"
1373///   declaring class of the member.  This conversion does not
1374///   obey access control.
1375bool
1376Sema::PerformObjectMemberConversion(Expr *&From,
1377                                    NestedNameSpecifier *Qualifier,
1378                                    NamedDecl *FoundDecl,
1379                                    NamedDecl *Member) {
1380  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1381  if (!RD)
1382    return false;
1383
1384  QualType DestRecordType;
1385  QualType DestType;
1386  QualType FromRecordType;
1387  QualType FromType = From->getType();
1388  bool PointerConversions = false;
1389  if (isa<FieldDecl>(Member)) {
1390    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1391
1392    if (FromType->getAs<PointerType>()) {
1393      DestType = Context.getPointerType(DestRecordType);
1394      FromRecordType = FromType->getPointeeType();
1395      PointerConversions = true;
1396    } else {
1397      DestType = DestRecordType;
1398      FromRecordType = FromType;
1399    }
1400  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1401    if (Method->isStatic())
1402      return false;
1403
1404    DestType = Method->getThisType(Context);
1405    DestRecordType = DestType->getPointeeType();
1406
1407    if (FromType->getAs<PointerType>()) {
1408      FromRecordType = FromType->getPointeeType();
1409      PointerConversions = true;
1410    } else {
1411      FromRecordType = FromType;
1412      DestType = DestRecordType;
1413    }
1414  } else {
1415    // No conversion necessary.
1416    return false;
1417  }
1418
1419  if (DestType->isDependentType() || FromType->isDependentType())
1420    return false;
1421
1422  // If the unqualified types are the same, no conversion is necessary.
1423  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1424    return false;
1425
1426  SourceRange FromRange = From->getSourceRange();
1427  SourceLocation FromLoc = FromRange.getBegin();
1428
1429  // C++ [class.member.lookup]p8:
1430  //   [...] Ambiguities can often be resolved by qualifying a name with its
1431  //   class name.
1432  //
1433  // If the member was a qualified name and the qualified referred to a
1434  // specific base subobject type, we'll cast to that intermediate type
1435  // first and then to the object in which the member is declared. That allows
1436  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1437  //
1438  //   class Base { public: int x; };
1439  //   class Derived1 : public Base { };
1440  //   class Derived2 : public Base { };
1441  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1442  //
1443  //   void VeryDerived::f() {
1444  //     x = 17; // error: ambiguous base subobjects
1445  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1446  //   }
1447  if (Qualifier) {
1448    QualType QType = QualType(Qualifier->getAsType(), 0);
1449    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1450    assert(QType->isRecordType() && "lookup done with non-record type");
1451
1452    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
1453
1454    // In C++98, the qualifier type doesn't actually have to be a base
1455    // type of the object type, in which case we just ignore it.
1456    // Otherwise build the appropriate casts.
1457    if (IsDerivedFrom(FromRecordType, QRecordType)) {
1458      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
1459                                       FromLoc, FromRange))
1460        return true;
1461
1462      if (PointerConversions)
1463        QType = Context.getPointerType(QType);
1464      ImpCastExprToType(From, QType, CastExpr::CK_UncheckedDerivedToBase,
1465                        /*isLvalue*/ !PointerConversions);
1466
1467      FromType = QType;
1468      FromRecordType = QRecordType;
1469
1470      // If the qualifier type was the same as the destination type,
1471      // we're done.
1472      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1473        return false;
1474    }
1475  }
1476
1477  bool IgnoreAccess = false;
1478
1479  // If we actually found the member through a using declaration, cast
1480  // down to the using declaration's type.
1481  //
1482  // Pointer equality is fine here because only one declaration of a
1483  // class ever has member declarations.
1484  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
1485    assert(isa<UsingShadowDecl>(FoundDecl));
1486    QualType URecordType = Context.getTypeDeclType(
1487                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
1488
1489    // We only need to do this if the naming-class to declaring-class
1490    // conversion is non-trivial.
1491    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
1492      assert(IsDerivedFrom(FromRecordType, URecordType));
1493      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
1494                                       FromLoc, FromRange))
1495        return true;
1496
1497      QualType UType = URecordType;
1498      if (PointerConversions)
1499        UType = Context.getPointerType(UType);
1500      ImpCastExprToType(From, UType, CastExpr::CK_UncheckedDerivedToBase,
1501                        /*isLvalue*/ !PointerConversions);
1502      FromType = UType;
1503      FromRecordType = URecordType;
1504    }
1505
1506    // We don't do access control for the conversion from the
1507    // declaring class to the true declaring class.
1508    IgnoreAccess = true;
1509  }
1510
1511  if (CheckDerivedToBaseConversion(FromRecordType,
1512                                   DestRecordType,
1513                                   FromLoc,
1514                                   FromRange,
1515                                   IgnoreAccess))
1516    return true;
1517
1518  ImpCastExprToType(From, DestType, CastExpr::CK_UncheckedDerivedToBase,
1519                    /*isLvalue=*/ !PointerConversions);
1520  return false;
1521}
1522
1523/// \brief Build a MemberExpr AST node.
1524static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
1525                                   const CXXScopeSpec &SS, ValueDecl *Member,
1526                                   NamedDecl *FoundDecl, SourceLocation Loc,
1527                                   QualType Ty,
1528                          const TemplateArgumentListInfo *TemplateArgs = 0) {
1529  NestedNameSpecifier *Qualifier = 0;
1530  SourceRange QualifierRange;
1531  if (SS.isSet()) {
1532    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
1533    QualifierRange = SS.getRange();
1534  }
1535
1536  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
1537                            Member, FoundDecl, Loc, TemplateArgs, Ty);
1538}
1539
1540/// Builds an implicit member access expression.  The current context
1541/// is known to be an instance method, and the given unqualified lookup
1542/// set is known to contain only instance members, at least one of which
1543/// is from an appropriate type.
1544Sema::OwningExprResult
1545Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1546                              LookupResult &R,
1547                              const TemplateArgumentListInfo *TemplateArgs,
1548                              bool IsKnownInstance) {
1549  assert(!R.empty() && !R.isAmbiguous());
1550
1551  SourceLocation Loc = R.getNameLoc();
1552
1553  // We may have found a field within an anonymous union or struct
1554  // (C++ [class.union]).
1555  // FIXME: This needs to happen post-isImplicitMemberReference?
1556  // FIXME: template-ids inside anonymous structs?
1557  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
1558    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1559      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1560
1561  // If this is known to be an instance access, go ahead and build a
1562  // 'this' expression now.
1563  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
1564  Expr *This = 0; // null signifies implicit access
1565  if (IsKnownInstance) {
1566    SourceLocation Loc = R.getNameLoc();
1567    if (SS.getRange().isValid())
1568      Loc = SS.getRange().getBegin();
1569    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
1570  }
1571
1572  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
1573                                  /*OpLoc*/ SourceLocation(),
1574                                  /*IsArrow*/ true,
1575                                  SS,
1576                                  /*FirstQualifierInScope*/ 0,
1577                                  R, TemplateArgs);
1578}
1579
1580bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
1581                                      const LookupResult &R,
1582                                      bool HasTrailingLParen) {
1583  // Only when used directly as the postfix-expression of a call.
1584  if (!HasTrailingLParen)
1585    return false;
1586
1587  // Never if a scope specifier was provided.
1588  if (SS.isSet())
1589    return false;
1590
1591  // Only in C++ or ObjC++.
1592  if (!getLangOptions().CPlusPlus)
1593    return false;
1594
1595  // Turn off ADL when we find certain kinds of declarations during
1596  // normal lookup:
1597  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1598    NamedDecl *D = *I;
1599
1600    // C++0x [basic.lookup.argdep]p3:
1601    //     -- a declaration of a class member
1602    // Since using decls preserve this property, we check this on the
1603    // original decl.
1604    if (D->isCXXClassMember())
1605      return false;
1606
1607    // C++0x [basic.lookup.argdep]p3:
1608    //     -- a block-scope function declaration that is not a
1609    //        using-declaration
1610    // NOTE: we also trigger this for function templates (in fact, we
1611    // don't check the decl type at all, since all other decl types
1612    // turn off ADL anyway).
1613    if (isa<UsingShadowDecl>(D))
1614      D = cast<UsingShadowDecl>(D)->getTargetDecl();
1615    else if (D->getDeclContext()->isFunctionOrMethod())
1616      return false;
1617
1618    // C++0x [basic.lookup.argdep]p3:
1619    //     -- a declaration that is neither a function or a function
1620    //        template
1621    // And also for builtin functions.
1622    if (isa<FunctionDecl>(D)) {
1623      FunctionDecl *FDecl = cast<FunctionDecl>(D);
1624
1625      // But also builtin functions.
1626      if (FDecl->getBuiltinID() && FDecl->isImplicit())
1627        return false;
1628    } else if (!isa<FunctionTemplateDecl>(D))
1629      return false;
1630  }
1631
1632  return true;
1633}
1634
1635
1636/// Diagnoses obvious problems with the use of the given declaration
1637/// as an expression.  This is only actually called for lookups that
1638/// were not overloaded, and it doesn't promise that the declaration
1639/// will in fact be used.
1640static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
1641  if (isa<TypedefDecl>(D)) {
1642    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
1643    return true;
1644  }
1645
1646  if (isa<ObjCInterfaceDecl>(D)) {
1647    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
1648    return true;
1649  }
1650
1651  if (isa<NamespaceDecl>(D)) {
1652    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
1653    return true;
1654  }
1655
1656  return false;
1657}
1658
1659Sema::OwningExprResult
1660Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1661                               LookupResult &R,
1662                               bool NeedsADL) {
1663  // If this is a single, fully-resolved result and we don't need ADL,
1664  // just build an ordinary singleton decl ref.
1665  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
1666    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());
1667
1668  // We only need to check the declaration if there's exactly one
1669  // result, because in the overloaded case the results can only be
1670  // functions and function templates.
1671  if (R.isSingleResult() &&
1672      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
1673    return ExprError();
1674
1675  // Otherwise, just build an unresolved lookup expression.  Suppress
1676  // any lookup-related diagnostics; we'll hash these out later, when
1677  // we've picked a target.
1678  R.suppressDiagnostics();
1679
1680  bool Dependent
1681    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
1682  UnresolvedLookupExpr *ULE
1683    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1684                                   (NestedNameSpecifier*) SS.getScopeRep(),
1685                                   SS.getRange(),
1686                                   R.getLookupName(), R.getNameLoc(),
1687                                   NeedsADL, R.isOverloadedResult());
1688  ULE->addDecls(R.begin(), R.end());
1689
1690  return Owned(ULE);
1691}
1692
1693
1694/// \brief Complete semantic analysis for a reference to the given declaration.
1695Sema::OwningExprResult
1696Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
1697                               SourceLocation Loc, NamedDecl *D) {
1698  assert(D && "Cannot refer to a NULL declaration");
1699  assert(!isa<FunctionTemplateDecl>(D) &&
1700         "Cannot refer unambiguously to a function template");
1701
1702  if (CheckDeclInExpr(*this, Loc, D))
1703    return ExprError();
1704
1705  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
1706    // Specifically diagnose references to class templates that are missing
1707    // a template argument list.
1708    Diag(Loc, diag::err_template_decl_ref)
1709      << Template << SS.getRange();
1710    Diag(Template->getLocation(), diag::note_template_decl_here);
1711    return ExprError();
1712  }
1713
1714  // Make sure that we're referring to a value.
1715  ValueDecl *VD = dyn_cast<ValueDecl>(D);
1716  if (!VD) {
1717    Diag(Loc, diag::err_ref_non_value)
1718      << D << SS.getRange();
1719    Diag(D->getLocation(), diag::note_declared_at);
1720    return ExprError();
1721  }
1722
1723  // Check whether this declaration can be used. Note that we suppress
1724  // this check when we're going to perform argument-dependent lookup
1725  // on this function name, because this might not be the function
1726  // that overload resolution actually selects.
1727  if (DiagnoseUseOfDecl(VD, Loc))
1728    return ExprError();
1729
1730  // Only create DeclRefExpr's for valid Decl's.
1731  if (VD->isInvalidDecl())
1732    return ExprError();
1733
1734  // If the identifier reference is inside a block, and it refers to a value
1735  // that is outside the block, create a BlockDeclRefExpr instead of a
1736  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1737  // the block is formed.
1738  //
1739  // We do not do this for things like enum constants, global variables, etc,
1740  // as they do not get snapshotted.
1741  //
1742  if (getCurBlock() &&
1743      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
1744    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
1745      Diag(Loc, diag::err_ref_vm_type);
1746      Diag(D->getLocation(), diag::note_declared_at);
1747      return ExprError();
1748    }
1749
1750    if (VD->getType()->isArrayType()) {
1751      Diag(Loc, diag::err_ref_array_type);
1752      Diag(D->getLocation(), diag::note_declared_at);
1753      return ExprError();
1754    }
1755
1756    MarkDeclarationReferenced(Loc, VD);
1757    QualType ExprTy = VD->getType().getNonReferenceType();
1758    // The BlocksAttr indicates the variable is bound by-reference.
1759    if (VD->getAttr<BlocksAttr>())
1760      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1761    // This is to record that a 'const' was actually synthesize and added.
1762    bool constAdded = !ExprTy.isConstQualified();
1763    // Variable will be bound by-copy, make it const within the closure.
1764
1765    ExprTy.addConst();
1766    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1767                                                constAdded));
1768  }
1769  // If this reference is not in a block or if the referenced variable is
1770  // within the block, create a normal DeclRefExpr.
1771
1772  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
1773}
1774
1775Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1776                                                 tok::TokenKind Kind) {
1777  PredefinedExpr::IdentType IT;
1778
1779  switch (Kind) {
1780  default: assert(0 && "Unknown simple primary expr!");
1781  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1782  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1783  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1784  }
1785
1786  // Pre-defined identifiers are of type char[x], where x is the length of the
1787  // string.
1788
1789  Decl *currentDecl = getCurFunctionOrMethodDecl();
1790  if (!currentDecl) {
1791    Diag(Loc, diag::ext_predef_outside_function);
1792    currentDecl = Context.getTranslationUnitDecl();
1793  }
1794
1795  QualType ResTy;
1796  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
1797    ResTy = Context.DependentTy;
1798  } else {
1799    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
1800
1801    llvm::APInt LengthI(32, Length + 1);
1802    ResTy = Context.CharTy.withConst();
1803    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1804  }
1805  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1806}
1807
1808Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1809  llvm::SmallString<16> CharBuffer;
1810  bool Invalid = false;
1811  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
1812  if (Invalid)
1813    return ExprError();
1814
1815  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
1816                            PP);
1817  if (Literal.hadError())
1818    return ExprError();
1819
1820  QualType Ty;
1821  if (!getLangOptions().CPlusPlus)
1822    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
1823  else if (Literal.isWide())
1824    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
1825  else if (Literal.isMultiChar())
1826    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
1827  else
1828    Ty = Context.CharTy;  // 'x' -> char in C++
1829
1830  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1831                                              Literal.isWide(),
1832                                              Ty, Tok.getLocation()));
1833}
1834
1835Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1836  // Fast path for a single digit (which is quite common).  A single digit
1837  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1838  if (Tok.getLength() == 1) {
1839    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1840    unsigned IntSize = Context.Target.getIntWidth();
1841    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1842                    Context.IntTy, Tok.getLocation()));
1843  }
1844
1845  llvm::SmallString<512> IntegerBuffer;
1846  // Add padding so that NumericLiteralParser can overread by one character.
1847  IntegerBuffer.resize(Tok.getLength()+1);
1848  const char *ThisTokBegin = &IntegerBuffer[0];
1849
1850  // Get the spelling of the token, which eliminates trigraphs, etc.
1851  bool Invalid = false;
1852  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1853  if (Invalid)
1854    return ExprError();
1855
1856  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1857                               Tok.getLocation(), PP);
1858  if (Literal.hadError)
1859    return ExprError();
1860
1861  Expr *Res;
1862
1863  if (Literal.isFloatingLiteral()) {
1864    QualType Ty;
1865    if (Literal.isFloat)
1866      Ty = Context.FloatTy;
1867    else if (!Literal.isLong)
1868      Ty = Context.DoubleTy;
1869    else
1870      Ty = Context.LongDoubleTy;
1871
1872    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1873
1874    using llvm::APFloat;
1875    APFloat Val(Format);
1876
1877    APFloat::opStatus result = Literal.GetFloatValue(Val);
1878
1879    // Overflow is always an error, but underflow is only an error if
1880    // we underflowed to zero (APFloat reports denormals as underflow).
1881    if ((result & APFloat::opOverflow) ||
1882        ((result & APFloat::opUnderflow) && Val.isZero())) {
1883      unsigned diagnostic;
1884      llvm::SmallString<20> buffer;
1885      if (result & APFloat::opOverflow) {
1886        diagnostic = diag::warn_float_overflow;
1887        APFloat::getLargest(Format).toString(buffer);
1888      } else {
1889        diagnostic = diag::warn_float_underflow;
1890        APFloat::getSmallest(Format).toString(buffer);
1891      }
1892
1893      Diag(Tok.getLocation(), diagnostic)
1894        << Ty
1895        << llvm::StringRef(buffer.data(), buffer.size());
1896    }
1897
1898    bool isExact = (result == APFloat::opOK);
1899    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1900
1901  } else if (!Literal.isIntegerLiteral()) {
1902    return ExprError();
1903  } else {
1904    QualType Ty;
1905
1906    // long long is a C99 feature.
1907    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1908        Literal.isLongLong)
1909      Diag(Tok.getLocation(), diag::ext_longlong);
1910
1911    // Get the value in the widest-possible width.
1912    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1913
1914    if (Literal.GetIntegerValue(ResultVal)) {
1915      // If this value didn't fit into uintmax_t, warn and force to ull.
1916      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1917      Ty = Context.UnsignedLongLongTy;
1918      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1919             "long long is not intmax_t?");
1920    } else {
1921      // If this value fits into a ULL, try to figure out what else it fits into
1922      // according to the rules of C99 6.4.4.1p5.
1923
1924      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1925      // be an unsigned int.
1926      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1927
1928      // Check from smallest to largest, picking the smallest type we can.
1929      unsigned Width = 0;
1930      if (!Literal.isLong && !Literal.isLongLong) {
1931        // Are int/unsigned possibilities?
1932        unsigned IntSize = Context.Target.getIntWidth();
1933
1934        // Does it fit in a unsigned int?
1935        if (ResultVal.isIntN(IntSize)) {
1936          // Does it fit in a signed int?
1937          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1938            Ty = Context.IntTy;
1939          else if (AllowUnsigned)
1940            Ty = Context.UnsignedIntTy;
1941          Width = IntSize;
1942        }
1943      }
1944
1945      // Are long/unsigned long possibilities?
1946      if (Ty.isNull() && !Literal.isLongLong) {
1947        unsigned LongSize = Context.Target.getLongWidth();
1948
1949        // Does it fit in a unsigned long?
1950        if (ResultVal.isIntN(LongSize)) {
1951          // Does it fit in a signed long?
1952          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1953            Ty = Context.LongTy;
1954          else if (AllowUnsigned)
1955            Ty = Context.UnsignedLongTy;
1956          Width = LongSize;
1957        }
1958      }
1959
1960      // Finally, check long long if needed.
1961      if (Ty.isNull()) {
1962        unsigned LongLongSize = Context.Target.getLongLongWidth();
1963
1964        // Does it fit in a unsigned long long?
1965        if (ResultVal.isIntN(LongLongSize)) {
1966          // Does it fit in a signed long long?
1967          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1968            Ty = Context.LongLongTy;
1969          else if (AllowUnsigned)
1970            Ty = Context.UnsignedLongLongTy;
1971          Width = LongLongSize;
1972        }
1973      }
1974
1975      // If we still couldn't decide a type, we probably have something that
1976      // does not fit in a signed long long, but has no U suffix.
1977      if (Ty.isNull()) {
1978        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1979        Ty = Context.UnsignedLongLongTy;
1980        Width = Context.Target.getLongLongWidth();
1981      }
1982
1983      if (ResultVal.getBitWidth() != Width)
1984        ResultVal.trunc(Width);
1985    }
1986    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1987  }
1988
1989  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1990  if (Literal.isImaginary)
1991    Res = new (Context) ImaginaryLiteral(Res,
1992                                        Context.getComplexType(Res->getType()));
1993
1994  return Owned(Res);
1995}
1996
1997Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1998                                              SourceLocation R, ExprArg Val) {
1999  Expr *E = Val.takeAs<Expr>();
2000  assert((E != 0) && "ActOnParenExpr() missing expr");
2001  return Owned(new (Context) ParenExpr(L, R, E));
2002}
2003
2004/// The UsualUnaryConversions() function is *not* called by this routine.
2005/// See C99 6.3.2.1p[2-4] for more details.
2006bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
2007                                     SourceLocation OpLoc,
2008                                     const SourceRange &ExprRange,
2009                                     bool isSizeof) {
2010  if (exprType->isDependentType())
2011    return false;
2012
2013  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2014  //   the result is the size of the referenced type."
2015  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2016  //   result shall be the alignment of the referenced type."
2017  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
2018    exprType = Ref->getPointeeType();
2019
2020  // C99 6.5.3.4p1:
2021  if (exprType->isFunctionType()) {
2022    // alignof(function) is allowed as an extension.
2023    if (isSizeof)
2024      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
2025    return false;
2026  }
2027
2028  // Allow sizeof(void)/alignof(void) as an extension.
2029  if (exprType->isVoidType()) {
2030    Diag(OpLoc, diag::ext_sizeof_void_type)
2031      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
2032    return false;
2033  }
2034
2035  if (RequireCompleteType(OpLoc, exprType,
2036                          PDiag(diag::err_sizeof_alignof_incomplete_type)
2037                          << int(!isSizeof) << ExprRange))
2038    return true;
2039
2040  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2041  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
2042    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
2043      << exprType << isSizeof << ExprRange;
2044    return true;
2045  }
2046
2047  return false;
2048}
2049
2050bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
2051                            const SourceRange &ExprRange) {
2052  E = E->IgnoreParens();
2053
2054  // alignof decl is always ok.
2055  if (isa<DeclRefExpr>(E))
2056    return false;
2057
2058  // Cannot know anything else if the expression is dependent.
2059  if (E->isTypeDependent())
2060    return false;
2061
2062  if (E->getBitField()) {
2063    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
2064    return true;
2065  }
2066
2067  // Alignment of a field access is always okay, so long as it isn't a
2068  // bit-field.
2069  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2070    if (isa<FieldDecl>(ME->getMemberDecl()))
2071      return false;
2072
2073  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
2074}
2075
2076/// \brief Build a sizeof or alignof expression given a type operand.
2077Action::OwningExprResult
2078Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
2079                              SourceLocation OpLoc,
2080                              bool isSizeOf, SourceRange R) {
2081  if (!TInfo)
2082    return ExprError();
2083
2084  QualType T = TInfo->getType();
2085
2086  if (!T->isDependentType() &&
2087      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
2088    return ExprError();
2089
2090  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2091  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
2092                                               Context.getSizeType(), OpLoc,
2093                                               R.getEnd()));
2094}
2095
2096/// \brief Build a sizeof or alignof expression given an expression
2097/// operand.
2098Action::OwningExprResult
2099Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
2100                              bool isSizeOf, SourceRange R) {
2101  // Verify that the operand is valid.
2102  bool isInvalid = false;
2103  if (E->isTypeDependent()) {
2104    // Delay type-checking for type-dependent expressions.
2105  } else if (!isSizeOf) {
2106    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
2107  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2108    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
2109    isInvalid = true;
2110  } else {
2111    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
2112  }
2113
2114  if (isInvalid)
2115    return ExprError();
2116
2117  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2118  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
2119                                               Context.getSizeType(), OpLoc,
2120                                               R.getEnd()));
2121}
2122
2123/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
2124/// the same for @c alignof and @c __alignof
2125/// Note that the ArgRange is invalid if isType is false.
2126Action::OwningExprResult
2127Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
2128                             void *TyOrEx, const SourceRange &ArgRange) {
2129  // If error parsing type, ignore.
2130  if (TyOrEx == 0) return ExprError();
2131
2132  if (isType) {
2133    TypeSourceInfo *TInfo;
2134    (void) GetTypeFromParser(TyOrEx, &TInfo);
2135    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
2136  }
2137
2138  Expr *ArgEx = (Expr *)TyOrEx;
2139  Action::OwningExprResult Result
2140    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
2141
2142  if (Result.isInvalid())
2143    DeleteExpr(ArgEx);
2144
2145  return move(Result);
2146}
2147
2148QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
2149  if (V->isTypeDependent())
2150    return Context.DependentTy;
2151
2152  // These operators return the element type of a complex type.
2153  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
2154    return CT->getElementType();
2155
2156  // Otherwise they pass through real integer and floating point types here.
2157  if (V->getType()->isArithmeticType())
2158    return V->getType();
2159
2160  // Reject anything else.
2161  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
2162    << (isReal ? "__real" : "__imag");
2163  return QualType();
2164}
2165
2166
2167
2168Action::OwningExprResult
2169Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
2170                          tok::TokenKind Kind, ExprArg Input) {
2171  UnaryOperator::Opcode Opc;
2172  switch (Kind) {
2173  default: assert(0 && "Unknown unary op!");
2174  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
2175  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
2176  }
2177
2178  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
2179}
2180
2181Action::OwningExprResult
2182Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
2183                              ExprArg Idx, SourceLocation RLoc) {
2184  // Since this might be a postfix expression, get rid of ParenListExprs.
2185  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
2186
2187  Expr *LHSExp = static_cast<Expr*>(Base.get()),
2188       *RHSExp = static_cast<Expr*>(Idx.get());
2189
2190  if (getLangOptions().CPlusPlus &&
2191      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
2192    Base.release();
2193    Idx.release();
2194    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2195                                                  Context.DependentTy, RLoc));
2196  }
2197
2198  if (getLangOptions().CPlusPlus &&
2199      (LHSExp->getType()->isRecordType() ||
2200       LHSExp->getType()->isEnumeralType() ||
2201       RHSExp->getType()->isRecordType() ||
2202       RHSExp->getType()->isEnumeralType())) {
2203    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
2204  }
2205
2206  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
2207}
2208
2209
2210Action::OwningExprResult
2211Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
2212                                     ExprArg Idx, SourceLocation RLoc) {
2213  Expr *LHSExp = static_cast<Expr*>(Base.get());
2214  Expr *RHSExp = static_cast<Expr*>(Idx.get());
2215
2216  // Perform default conversions.
2217  if (!LHSExp->getType()->getAs<VectorType>())
2218      DefaultFunctionArrayLvalueConversion(LHSExp);
2219  DefaultFunctionArrayLvalueConversion(RHSExp);
2220
2221  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
2222
2223  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
2224  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
2225  // in the subscript position. As a result, we need to derive the array base
2226  // and index from the expression types.
2227  Expr *BaseExpr, *IndexExpr;
2228  QualType ResultType;
2229  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
2230    BaseExpr = LHSExp;
2231    IndexExpr = RHSExp;
2232    ResultType = Context.DependentTy;
2233  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
2234    BaseExpr = LHSExp;
2235    IndexExpr = RHSExp;
2236    ResultType = PTy->getPointeeType();
2237  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
2238     // Handle the uncommon case of "123[Ptr]".
2239    BaseExpr = RHSExp;
2240    IndexExpr = LHSExp;
2241    ResultType = PTy->getPointeeType();
2242  } else if (const ObjCObjectPointerType *PTy =
2243               LHSTy->getAs<ObjCObjectPointerType>()) {
2244    BaseExpr = LHSExp;
2245    IndexExpr = RHSExp;
2246    ResultType = PTy->getPointeeType();
2247  } else if (const ObjCObjectPointerType *PTy =
2248               RHSTy->getAs<ObjCObjectPointerType>()) {
2249     // Handle the uncommon case of "123[Ptr]".
2250    BaseExpr = RHSExp;
2251    IndexExpr = LHSExp;
2252    ResultType = PTy->getPointeeType();
2253  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
2254    BaseExpr = LHSExp;    // vectors: V[123]
2255    IndexExpr = RHSExp;
2256
2257    // FIXME: need to deal with const...
2258    ResultType = VTy->getElementType();
2259  } else if (LHSTy->isArrayType()) {
2260    // If we see an array that wasn't promoted by
2261    // DefaultFunctionArrayLvalueConversion, it must be an array that
2262    // wasn't promoted because of the C90 rule that doesn't
2263    // allow promoting non-lvalue arrays.  Warn, then
2264    // force the promotion here.
2265    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2266        LHSExp->getSourceRange();
2267    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
2268                      CastExpr::CK_ArrayToPointerDecay);
2269    LHSTy = LHSExp->getType();
2270
2271    BaseExpr = LHSExp;
2272    IndexExpr = RHSExp;
2273    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
2274  } else if (RHSTy->isArrayType()) {
2275    // Same as previous, except for 123[f().a] case
2276    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
2277        RHSExp->getSourceRange();
2278    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
2279                      CastExpr::CK_ArrayToPointerDecay);
2280    RHSTy = RHSExp->getType();
2281
2282    BaseExpr = RHSExp;
2283    IndexExpr = LHSExp;
2284    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
2285  } else {
2286    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
2287       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
2288  }
2289  // C99 6.5.2.1p1
2290  if (!(IndexExpr->getType()->isIntegerType() &&
2291        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
2292    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
2293                     << IndexExpr->getSourceRange());
2294
2295  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
2296       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
2297         && !IndexExpr->isTypeDependent())
2298    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
2299
2300  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
2301  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
2302  // type. Note that Functions are not objects, and that (in C99 parlance)
2303  // incomplete types are not object types.
2304  if (ResultType->isFunctionType()) {
2305    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
2306      << ResultType << BaseExpr->getSourceRange();
2307    return ExprError();
2308  }
2309
2310  if (!ResultType->isDependentType() &&
2311      RequireCompleteType(LLoc, ResultType,
2312                          PDiag(diag::err_subscript_incomplete_type)
2313                            << BaseExpr->getSourceRange()))
2314    return ExprError();
2315
2316  // Diagnose bad cases where we step over interface counts.
2317  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
2318    Diag(LLoc, diag::err_subscript_nonfragile_interface)
2319      << ResultType << BaseExpr->getSourceRange();
2320    return ExprError();
2321  }
2322
2323  Base.release();
2324  Idx.release();
2325  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
2326                                                ResultType, RLoc));
2327}
2328
2329QualType Sema::
2330CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
2331                        const IdentifierInfo *CompName,
2332                        SourceLocation CompLoc) {
2333  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
2334  // see FIXME there.
2335  //
2336  // FIXME: This logic can be greatly simplified by splitting it along
2337  // halving/not halving and reworking the component checking.
2338  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
2339
2340  // The vector accessor can't exceed the number of elements.
2341  const char *compStr = CompName->getNameStart();
2342
2343  // This flag determines whether or not the component is one of the four
2344  // special names that indicate a subset of exactly half the elements are
2345  // to be selected.
2346  bool HalvingSwizzle = false;
2347
2348  // This flag determines whether or not CompName has an 's' char prefix,
2349  // indicating that it is a string of hex values to be used as vector indices.
2350  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
2351
2352  // Check that we've found one of the special components, or that the component
2353  // names must come from the same set.
2354  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
2355      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
2356    HalvingSwizzle = true;
2357  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
2358    do
2359      compStr++;
2360    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
2361  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
2362    do
2363      compStr++;
2364    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
2365  }
2366
2367  if (!HalvingSwizzle && *compStr) {
2368    // We didn't get to the end of the string. This means the component names
2369    // didn't come from the same set *or* we encountered an illegal name.
2370    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
2371      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
2372    return QualType();
2373  }
2374
2375  // Ensure no component accessor exceeds the width of the vector type it
2376  // operates on.
2377  if (!HalvingSwizzle) {
2378    compStr = CompName->getNameStart();
2379
2380    if (HexSwizzle)
2381      compStr++;
2382
2383    while (*compStr) {
2384      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
2385        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
2386          << baseType << SourceRange(CompLoc);
2387        return QualType();
2388      }
2389    }
2390  }
2391
2392  // The component accessor looks fine - now we need to compute the actual type.
2393  // The vector type is implied by the component accessor. For example,
2394  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2395  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2396  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2397  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
2398                                     : CompName->getLength();
2399  if (HexSwizzle)
2400    CompSize--;
2401
2402  if (CompSize == 1)
2403    return vecType->getElementType();
2404
2405  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2406  // Now look up the TypeDefDecl from the vector type. Without this,
2407  // diagostics look bad. We want extended vector types to appear built-in.
2408  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2409    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2410      return Context.getTypedefType(ExtVectorDecls[i]);
2411  }
2412  return VT; // should never get here (a typedef type should always be found).
2413}
2414
2415static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2416                                                IdentifierInfo *Member,
2417                                                const Selector &Sel,
2418                                                ASTContext &Context) {
2419
2420  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
2421    return PD;
2422  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2423    return OMD;
2424
2425  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2426       E = PDecl->protocol_end(); I != E; ++I) {
2427    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2428                                                     Context))
2429      return D;
2430  }
2431  return 0;
2432}
2433
2434static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2435                                IdentifierInfo *Member,
2436                                const Selector &Sel,
2437                                ASTContext &Context) {
2438  // Check protocols on qualified interfaces.
2439  Decl *GDecl = 0;
2440  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2441       E = QIdTy->qual_end(); I != E; ++I) {
2442    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
2443      GDecl = PD;
2444      break;
2445    }
2446    // Also must look for a getter name which uses property syntax.
2447    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2448      GDecl = OMD;
2449      break;
2450    }
2451  }
2452  if (!GDecl) {
2453    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2454         E = QIdTy->qual_end(); I != E; ++I) {
2455      // Search in the protocol-qualifier list of current protocol.
2456      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2457      if (GDecl)
2458        return GDecl;
2459    }
2460  }
2461  return GDecl;
2462}
2463
2464Sema::OwningExprResult
2465Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
2466                               bool IsArrow, SourceLocation OpLoc,
2467                               const CXXScopeSpec &SS,
2468                               NamedDecl *FirstQualifierInScope,
2469                               DeclarationName Name, SourceLocation NameLoc,
2470                               const TemplateArgumentListInfo *TemplateArgs) {
2471  Expr *BaseExpr = Base.takeAs<Expr>();
2472
2473  // Even in dependent contexts, try to diagnose base expressions with
2474  // obviously wrong types, e.g.:
2475  //
2476  // T* t;
2477  // t.f;
2478  //
2479  // In Obj-C++, however, the above expression is valid, since it could be
2480  // accessing the 'f' property if T is an Obj-C interface. The extra check
2481  // allows this, while still reporting an error if T is a struct pointer.
2482  if (!IsArrow) {
2483    const PointerType *PT = BaseType->getAs<PointerType>();
2484    if (PT && (!getLangOptions().ObjC1 ||
2485               PT->getPointeeType()->isRecordType())) {
2486      assert(BaseExpr && "cannot happen with implicit member accesses");
2487      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
2488        << BaseType << BaseExpr->getSourceRange();
2489      return ExprError();
2490    }
2491  }
2492
2493  assert(BaseType->isDependentType() || Name.isDependentName());
2494
2495  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2496  // must have pointer type, and the accessed type is the pointee.
2497  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
2498                                                   IsArrow, OpLoc,
2499                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2500                                                   SS.getRange(),
2501                                                   FirstQualifierInScope,
2502                                                   Name, NameLoc,
2503                                                   TemplateArgs));
2504}
2505
2506/// We know that the given qualified member reference points only to
2507/// declarations which do not belong to the static type of the base
2508/// expression.  Diagnose the problem.
2509static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
2510                                             Expr *BaseExpr,
2511                                             QualType BaseType,
2512                                             const CXXScopeSpec &SS,
2513                                             const LookupResult &R) {
2514  // If this is an implicit member access, use a different set of
2515  // diagnostics.
2516  if (!BaseExpr)
2517    return DiagnoseInstanceReference(SemaRef, SS, R);
2518
2519  // FIXME: this is an exceedingly lame diagnostic for some of the more
2520  // complicated cases here.
2521  DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
2522  SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
2523    << SS.getRange() << DC << BaseType;
2524}
2525
2526// Check whether the declarations we found through a nested-name
2527// specifier in a member expression are actually members of the base
2528// type.  The restriction here is:
2529//
2530//   C++ [expr.ref]p2:
2531//     ... In these cases, the id-expression shall name a
2532//     member of the class or of one of its base classes.
2533//
2534// So it's perfectly legitimate for the nested-name specifier to name
2535// an unrelated class, and for us to find an overload set including
2536// decls from classes which are not superclasses, as long as the decl
2537// we actually pick through overload resolution is from a superclass.
2538bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
2539                                         QualType BaseType,
2540                                         const CXXScopeSpec &SS,
2541                                         const LookupResult &R) {
2542  const RecordType *BaseRT = BaseType->getAs<RecordType>();
2543  if (!BaseRT) {
2544    // We can't check this yet because the base type is still
2545    // dependent.
2546    assert(BaseType->isDependentType());
2547    return false;
2548  }
2549  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
2550
2551  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2552    // If this is an implicit member reference and we find a
2553    // non-instance member, it's not an error.
2554    if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
2555      return false;
2556
2557    // Note that we use the DC of the decl, not the underlying decl.
2558    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
2559    while (RecordD->isAnonymousStructOrUnion())
2560      RecordD = cast<CXXRecordDecl>(RecordD->getParent());
2561
2562    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
2563    MemberRecord.insert(RecordD->getCanonicalDecl());
2564
2565    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
2566      return false;
2567  }
2568
2569  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
2570  return true;
2571}
2572
2573static bool
2574LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
2575                         SourceRange BaseRange, const RecordType *RTy,
2576                         SourceLocation OpLoc, const CXXScopeSpec &SS) {
2577  RecordDecl *RDecl = RTy->getDecl();
2578  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
2579                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
2580                                    << BaseRange))
2581    return true;
2582
2583  DeclContext *DC = RDecl;
2584  if (SS.isSet()) {
2585    // If the member name was a qualified-id, look into the
2586    // nested-name-specifier.
2587    DC = SemaRef.computeDeclContext(SS, false);
2588
2589    if (SemaRef.RequireCompleteDeclContext(SS)) {
2590      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
2591        << SS.getRange() << DC;
2592      return true;
2593    }
2594
2595    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
2596
2597    if (!isa<TypeDecl>(DC)) {
2598      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
2599        << DC << SS.getRange();
2600      return true;
2601    }
2602  }
2603
2604  // The record definition is complete, now look up the member.
2605  SemaRef.LookupQualifiedName(R, DC);
2606
2607  if (!R.empty())
2608    return false;
2609
2610  // We didn't find anything with the given name, so try to correct
2611  // for typos.
2612  DeclarationName Name = R.getLookupName();
2613  if (SemaRef.CorrectTypo(R, 0, &SS, DC) &&
2614      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
2615    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
2616      << Name << DC << R.getLookupName() << SS.getRange()
2617      << CodeModificationHint::CreateReplacement(R.getNameLoc(),
2618                                         R.getLookupName().getAsString());
2619    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
2620      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
2621        << ND->getDeclName();
2622    return false;
2623  } else {
2624    R.clear();
2625  }
2626
2627  return false;
2628}
2629
2630Sema::OwningExprResult
2631Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
2632                               SourceLocation OpLoc, bool IsArrow,
2633                               const CXXScopeSpec &SS,
2634                               NamedDecl *FirstQualifierInScope,
2635                               DeclarationName Name, SourceLocation NameLoc,
2636                               const TemplateArgumentListInfo *TemplateArgs) {
2637  Expr *Base = BaseArg.takeAs<Expr>();
2638
2639  if (BaseType->isDependentType() ||
2640      (SS.isSet() && isDependentScopeSpecifier(SS)))
2641    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
2642                                    IsArrow, OpLoc,
2643                                    SS, FirstQualifierInScope,
2644                                    Name, NameLoc,
2645                                    TemplateArgs);
2646
2647  LookupResult R(*this, Name, NameLoc, LookupMemberName);
2648
2649  // Implicit member accesses.
2650  if (!Base) {
2651    QualType RecordTy = BaseType;
2652    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
2653    if (LookupMemberExprInRecord(*this, R, SourceRange(),
2654                                 RecordTy->getAs<RecordType>(),
2655                                 OpLoc, SS))
2656      return ExprError();
2657
2658  // Explicit member accesses.
2659  } else {
2660    OwningExprResult Result =
2661      LookupMemberExpr(R, Base, IsArrow, OpLoc,
2662                       SS, /*ObjCImpDecl*/ DeclPtrTy());
2663
2664    if (Result.isInvalid()) {
2665      Owned(Base);
2666      return ExprError();
2667    }
2668
2669    if (Result.get())
2670      return move(Result);
2671  }
2672
2673  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
2674                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
2675                                  R, TemplateArgs);
2676}
2677
2678Sema::OwningExprResult
2679Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
2680                               SourceLocation OpLoc, bool IsArrow,
2681                               const CXXScopeSpec &SS,
2682                               NamedDecl *FirstQualifierInScope,
2683                               LookupResult &R,
2684                         const TemplateArgumentListInfo *TemplateArgs) {
2685  Expr *BaseExpr = Base.takeAs<Expr>();
2686  QualType BaseType = BaseExprType;
2687  if (IsArrow) {
2688    assert(BaseType->isPointerType());
2689    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
2690  }
2691
2692  NestedNameSpecifier *Qualifier =
2693    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2694  DeclarationName MemberName = R.getLookupName();
2695  SourceLocation MemberLoc = R.getNameLoc();
2696
2697  if (R.isAmbiguous())
2698    return ExprError();
2699
2700  if (R.empty()) {
2701    // Rederive where we looked up.
2702    DeclContext *DC = (SS.isSet()
2703                       ? computeDeclContext(SS, false)
2704                       : BaseType->getAs<RecordType>()->getDecl());
2705
2706    Diag(R.getNameLoc(), diag::err_no_member)
2707      << MemberName << DC
2708      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
2709    return ExprError();
2710  }
2711
2712  // Diagnose lookups that find only declarations from a non-base
2713  // type.  This is possible for either qualified lookups (which may
2714  // have been qualified with an unrelated type) or implicit member
2715  // expressions (which were found with unqualified lookup and thus
2716  // may have come from an enclosing scope).  Note that it's okay for
2717  // lookup to find declarations from a non-base type as long as those
2718  // aren't the ones picked by overload resolution.
2719  if ((SS.isSet() || !BaseExpr ||
2720       (isa<CXXThisExpr>(BaseExpr) &&
2721        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
2722      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
2723    return ExprError();
2724
2725  // Construct an unresolved result if we in fact got an unresolved
2726  // result.
2727  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
2728    bool Dependent =
2729      BaseExprType->isDependentType() ||
2730      R.isUnresolvableResult() ||
2731      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);
2732
2733    // Suppress any lookup-related diagnostics; we'll do these when we
2734    // pick a member.
2735    R.suppressDiagnostics();
2736
2737    UnresolvedMemberExpr *MemExpr
2738      = UnresolvedMemberExpr::Create(Context, Dependent,
2739                                     R.isUnresolvableResult(),
2740                                     BaseExpr, BaseExprType,
2741                                     IsArrow, OpLoc,
2742                                     Qualifier, SS.getRange(),
2743                                     MemberName, MemberLoc,
2744                                     TemplateArgs);
2745    MemExpr->addDecls(R.begin(), R.end());
2746
2747    return Owned(MemExpr);
2748  }
2749
2750  assert(R.isSingleResult());
2751  NamedDecl *FoundDecl = *R.begin();
2752  NamedDecl *MemberDecl = R.getFoundDecl();
2753
2754  // FIXME: diagnose the presence of template arguments now.
2755
2756  // If the decl being referenced had an error, return an error for this
2757  // sub-expr without emitting another error, in order to avoid cascading
2758  // error cases.
2759  if (MemberDecl->isInvalidDecl())
2760    return ExprError();
2761
2762  // Handle the implicit-member-access case.
2763  if (!BaseExpr) {
2764    // If this is not an instance member, convert to a non-member access.
2765    if (!IsInstanceMember(MemberDecl))
2766      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);
2767
2768    SourceLocation Loc = R.getNameLoc();
2769    if (SS.getRange().isValid())
2770      Loc = SS.getRange().getBegin();
2771    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
2772  }
2773
2774  bool ShouldCheckUse = true;
2775  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
2776    // Don't diagnose the use of a virtual member function unless it's
2777    // explicitly qualified.
2778    if (MD->isVirtual() && !SS.isSet())
2779      ShouldCheckUse = false;
2780  }
2781
2782  // Check the use of this member.
2783  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
2784    Owned(BaseExpr);
2785    return ExprError();
2786  }
2787
2788  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2789    // We may have found a field within an anonymous union or struct
2790    // (C++ [class.union]).
2791    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
2792        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
2793      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2794                                                      BaseExpr, OpLoc);
2795
2796    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2797    QualType MemberType = FD->getType();
2798    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
2799      MemberType = Ref->getPointeeType();
2800    else {
2801      Qualifiers BaseQuals = BaseType.getQualifiers();
2802      BaseQuals.removeObjCGCAttr();
2803      if (FD->isMutable()) BaseQuals.removeConst();
2804
2805      Qualifiers MemberQuals
2806        = Context.getCanonicalType(MemberType).getQualifiers();
2807
2808      Qualifiers Combined = BaseQuals + MemberQuals;
2809      if (Combined != MemberQuals)
2810        MemberType = Context.getQualifiedType(MemberType, Combined);
2811    }
2812
2813    MarkDeclarationReferenced(MemberLoc, FD);
2814    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FoundDecl, FD))
2815      return ExprError();
2816    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2817                                 FD, FoundDecl, MemberLoc, MemberType));
2818  }
2819
2820  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2821    MarkDeclarationReferenced(MemberLoc, Var);
2822    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2823                                 Var, FoundDecl, MemberLoc,
2824                                 Var->getType().getNonReferenceType()));
2825  }
2826
2827  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2828    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2829    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2830                                 MemberFn, FoundDecl, MemberLoc,
2831                                 MemberFn->getType()));
2832  }
2833
2834  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2835    MarkDeclarationReferenced(MemberLoc, MemberDecl);
2836    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
2837                                 Enum, FoundDecl, MemberLoc, Enum->getType()));
2838  }
2839
2840  Owned(BaseExpr);
2841
2842  if (isa<TypeDecl>(MemberDecl))
2843    return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2844                     << MemberName << int(IsArrow));
2845
2846  // We found a declaration kind that we didn't expect. This is a
2847  // generic error message that tells the user that she can't refer
2848  // to this member with '.' or '->'.
2849  return ExprError(Diag(MemberLoc,
2850                        diag::err_typecheck_member_reference_unknown)
2851      << MemberName << int(IsArrow));
2852}
2853
2854/// Look up the given member of the given non-type-dependent
2855/// expression.  This can return in one of two ways:
2856///  * If it returns a sentinel null-but-valid result, the caller will
2857///    assume that lookup was performed and the results written into
2858///    the provided structure.  It will take over from there.
2859///  * Otherwise, the returned expression will be produced in place of
2860///    an ordinary member expression.
2861///
2862/// The ObjCImpDecl bit is a gross hack that will need to be properly
2863/// fixed for ObjC++.
2864Sema::OwningExprResult
2865Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
2866                       bool &IsArrow, SourceLocation OpLoc,
2867                       const CXXScopeSpec &SS,
2868                       DeclPtrTy ObjCImpDecl) {
2869  assert(BaseExpr && "no base expression");
2870
2871  // Perform default conversions.
2872  DefaultFunctionArrayConversion(BaseExpr);
2873
2874  QualType BaseType = BaseExpr->getType();
2875  assert(!BaseType->isDependentType());
2876
2877  DeclarationName MemberName = R.getLookupName();
2878  SourceLocation MemberLoc = R.getNameLoc();
2879
2880  // If the user is trying to apply -> or . to a function pointer
2881  // type, it's probably because they forgot parentheses to call that
2882  // function. Suggest the addition of those parentheses, build the
2883  // call, and continue on.
2884  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
2885    if (const FunctionProtoType *Fun
2886          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
2887      QualType ResultTy = Fun->getResultType();
2888      if (Fun->getNumArgs() == 0 &&
2889          ((!IsArrow && ResultTy->isRecordType()) ||
2890           (IsArrow && ResultTy->isPointerType() &&
2891            ResultTy->getAs<PointerType>()->getPointeeType()
2892                                                          ->isRecordType()))) {
2893        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2894        Diag(Loc, diag::err_member_reference_needs_call)
2895          << QualType(Fun, 0)
2896          << CodeModificationHint::CreateInsertion(Loc, "()");
2897
2898        OwningExprResult NewBase
2899          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc,
2900                          MultiExprArg(*this, 0, 0), 0, Loc);
2901        if (NewBase.isInvalid())
2902          return ExprError();
2903
2904        BaseExpr = NewBase.takeAs<Expr>();
2905        DefaultFunctionArrayConversion(BaseExpr);
2906        BaseType = BaseExpr->getType();
2907      }
2908    }
2909  }
2910
2911  // If this is an Objective-C pseudo-builtin and a definition is provided then
2912  // use that.
2913  if (BaseType->isObjCIdType()) {
2914    if (IsArrow) {
2915      // Handle the following exceptional case PObj->isa.
2916      if (const ObjCObjectPointerType *OPT =
2917          BaseType->getAs<ObjCObjectPointerType>()) {
2918        if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2919            MemberName.getAsIdentifierInfo()->isStr("isa"))
2920          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2921                                                 Context.getObjCClassType()));
2922      }
2923    }
2924    // We have an 'id' type. Rather than fall through, we check if this
2925    // is a reference to 'isa'.
2926    if (BaseType != Context.ObjCIdRedefinitionType) {
2927      BaseType = Context.ObjCIdRedefinitionType;
2928      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2929    }
2930  }
2931
2932  // If this is an Objective-C pseudo-builtin and a definition is provided then
2933  // use that.
2934  if (Context.isObjCSelType(BaseType)) {
2935    // We have an 'SEL' type. Rather than fall through, we check if this
2936    // is a reference to 'sel_id'.
2937    if (BaseType != Context.ObjCSelRedefinitionType) {
2938      BaseType = Context.ObjCSelRedefinitionType;
2939      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2940    }
2941  }
2942
2943  assert(!BaseType.isNull() && "no type for member expression");
2944
2945  // Handle properties on ObjC 'Class' types.
2946  if (!IsArrow && BaseType->isObjCClassType()) {
2947    // Also must look for a getter name which uses property syntax.
2948    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
2949    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
2950    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2951      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2952      ObjCMethodDecl *Getter;
2953      // FIXME: need to also look locally in the implementation.
2954      if ((Getter = IFace->lookupClassMethod(Sel))) {
2955        // Check the use of this method.
2956        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2957          return ExprError();
2958      }
2959      // If we found a getter then this may be a valid dot-reference, we
2960      // will look for the matching setter, in case it is needed.
2961      Selector SetterSel =
2962      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2963                                         PP.getSelectorTable(), Member);
2964      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2965      if (!Setter) {
2966        // If this reference is in an @implementation, also check for 'private'
2967        // methods.
2968        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
2969      }
2970      // Look through local category implementations associated with the class.
2971      if (!Setter)
2972        Setter = IFace->getCategoryClassMethod(SetterSel);
2973
2974      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2975        return ExprError();
2976
2977      if (Getter || Setter) {
2978        QualType PType;
2979
2980        if (Getter)
2981          PType = Getter->getResultType();
2982        else
2983          // Get the expression type from Setter's incoming parameter.
2984          PType = (*(Setter->param_end() -1))->getType();
2985        // FIXME: we must check that the setter has property type.
2986        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter,
2987                                                  PType,
2988                                                  Setter, MemberLoc, BaseExpr));
2989      }
2990      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2991                       << MemberName << BaseType);
2992    }
2993  }
2994
2995  if (BaseType->isObjCClassType() &&
2996      BaseType != Context.ObjCClassRedefinitionType) {
2997    BaseType = Context.ObjCClassRedefinitionType;
2998    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
2999  }
3000
3001  if (IsArrow) {
3002    if (const PointerType *PT = BaseType->getAs<PointerType>())
3003      BaseType = PT->getPointeeType();
3004    else if (BaseType->isObjCObjectPointerType())
3005      ;
3006    else if (BaseType->isRecordType()) {
3007      // Recover from arrow accesses to records, e.g.:
3008      //   struct MyRecord foo;
3009      //   foo->bar
3010      // This is actually well-formed in C++ if MyRecord has an
3011      // overloaded operator->, but that should have been dealt with
3012      // by now.
3013      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3014        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3015        << CodeModificationHint::CreateReplacement(OpLoc, ".");
3016      IsArrow = false;
3017    } else {
3018      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
3019        << BaseType << BaseExpr->getSourceRange();
3020      return ExprError();
3021    }
3022  } else {
3023    // Recover from dot accesses to pointers, e.g.:
3024    //   type *foo;
3025    //   foo.bar
3026    // This is actually well-formed in two cases:
3027    //   - 'type' is an Objective C type
3028    //   - 'bar' is a pseudo-destructor name which happens to refer to
3029    //     the appropriate pointer type
3030    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
3031      const PointerType *PT = BaseType->getAs<PointerType>();
3032      if (PT && PT->getPointeeType()->isRecordType()) {
3033        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3034          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
3035          << CodeModificationHint::CreateReplacement(OpLoc, "->");
3036        BaseType = PT->getPointeeType();
3037        IsArrow = true;
3038      }
3039    }
3040  }
3041
3042  // Handle field access to simple records.  This also handles access
3043  // to fields of the ObjC 'id' struct.
3044  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
3045    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
3046                                 RTy, OpLoc, SS))
3047      return ExprError();
3048    return Owned((Expr*) 0);
3049  }
3050
3051  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
3052  // (*Obj).ivar.
3053  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
3054      (!IsArrow && BaseType->isObjCInterfaceType())) {
3055    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
3056    const ObjCInterfaceType *IFaceT =
3057      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
3058    if (IFaceT) {
3059      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3060
3061      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
3062      ObjCInterfaceDecl *ClassDeclared;
3063      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
3064
3065      if (!IV) {
3066        // Attempt to correct for typos in ivar names.
3067        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3068                         LookupMemberName);
3069        if (CorrectTypo(Res, 0, 0, IDecl) &&
3070            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
3071          Diag(R.getNameLoc(),
3072               diag::err_typecheck_member_reference_ivar_suggest)
3073            << IDecl->getDeclName() << MemberName << IV->getDeclName()
3074            << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3075                                                       IV->getNameAsString());
3076          Diag(IV->getLocation(), diag::note_previous_decl)
3077            << IV->getDeclName();
3078        }
3079      }
3080
3081      if (IV) {
3082        // If the decl being referenced had an error, return an error for this
3083        // sub-expr without emitting another error, in order to avoid cascading
3084        // error cases.
3085        if (IV->isInvalidDecl())
3086          return ExprError();
3087
3088        // Check whether we can reference this field.
3089        if (DiagnoseUseOfDecl(IV, MemberLoc))
3090          return ExprError();
3091        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
3092            IV->getAccessControl() != ObjCIvarDecl::Package) {
3093          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
3094          if (ObjCMethodDecl *MD = getCurMethodDecl())
3095            ClassOfMethodDecl =  MD->getClassInterface();
3096          else if (ObjCImpDecl && getCurFunctionDecl()) {
3097            // Case of a c-function declared inside an objc implementation.
3098            // FIXME: For a c-style function nested inside an objc implementation
3099            // class, there is no implementation context available, so we pass
3100            // down the context as argument to this routine. Ideally, this context
3101            // need be passed down in the AST node and somehow calculated from the
3102            // AST for a function decl.
3103            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
3104            if (ObjCImplementationDecl *IMPD =
3105                dyn_cast<ObjCImplementationDecl>(ImplDecl))
3106              ClassOfMethodDecl = IMPD->getClassInterface();
3107            else if (ObjCCategoryImplDecl* CatImplClass =
3108                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
3109              ClassOfMethodDecl = CatImplClass->getClassInterface();
3110          }
3111
3112          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
3113            if (ClassDeclared != IDecl ||
3114                ClassOfMethodDecl != ClassDeclared)
3115              Diag(MemberLoc, diag::error_private_ivar_access)
3116                << IV->getDeclName();
3117          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
3118            // @protected
3119            Diag(MemberLoc, diag::error_protected_ivar_access)
3120              << IV->getDeclName();
3121        }
3122
3123        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
3124                                                   MemberLoc, BaseExpr,
3125                                                   IsArrow));
3126      }
3127      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
3128                         << IDecl->getDeclName() << MemberName
3129                         << BaseExpr->getSourceRange());
3130    }
3131  }
3132  // Handle properties on 'id' and qualified "id".
3133  if (!IsArrow && (BaseType->isObjCIdType() ||
3134                   BaseType->isObjCQualifiedIdType())) {
3135    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
3136    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3137
3138    // Check protocols on qualified interfaces.
3139    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3140    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
3141      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
3142        // Check the use of this declaration
3143        if (DiagnoseUseOfDecl(PD, MemberLoc))
3144          return ExprError();
3145
3146        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3147                                                       MemberLoc, BaseExpr));
3148      }
3149      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
3150        // Check the use of this method.
3151        if (DiagnoseUseOfDecl(OMD, MemberLoc))
3152          return ExprError();
3153
3154        return Owned(new (Context) ObjCMessageExpr(Context, BaseExpr, Sel,
3155                                                   OMD->getResultType(),
3156                                                   OMD, OpLoc, MemberLoc,
3157                                                   NULL, 0));
3158      }
3159    }
3160
3161    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
3162                       << MemberName << BaseType);
3163  }
3164  // Handle Objective-C property access, which is "Obj.property" where Obj is a
3165  // pointer to a (potentially qualified) interface type.
3166  const ObjCObjectPointerType *OPT;
3167  if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
3168    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
3169    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
3170    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3171
3172    // Search for a declared property first.
3173    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
3174      // Check whether we can reference this property.
3175      if (DiagnoseUseOfDecl(PD, MemberLoc))
3176        return ExprError();
3177      QualType ResTy = PD->getType();
3178      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3179      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3180      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
3181        ResTy = Getter->getResultType();
3182      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
3183                                                     MemberLoc, BaseExpr));
3184    }
3185    // Check protocols on qualified interfaces.
3186    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3187         E = OPT->qual_end(); I != E; ++I)
3188      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
3189        // Check whether we can reference this property.
3190        if (DiagnoseUseOfDecl(PD, MemberLoc))
3191          return ExprError();
3192
3193        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
3194                                                       MemberLoc, BaseExpr));
3195      }
3196    // If that failed, look for an "implicit" property by seeing if the nullary
3197    // selector is implemented.
3198
3199    // FIXME: The logic for looking up nullary and unary selectors should be
3200    // shared with the code in ActOnInstanceMessage.
3201
3202    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
3203    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
3204
3205    // If this reference is in an @implementation, check for 'private' methods.
3206    if (!Getter)
3207      Getter = IFace->lookupPrivateInstanceMethod(Sel);
3208
3209    // Look through local category implementations associated with the class.
3210    if (!Getter)
3211      Getter = IFace->getCategoryInstanceMethod(Sel);
3212    if (Getter) {
3213      // Check if we can reference this property.
3214      if (DiagnoseUseOfDecl(Getter, MemberLoc))
3215        return ExprError();
3216    }
3217    // If we found a getter then this may be a valid dot-reference, we
3218    // will look for the matching setter, in case it is needed.
3219    Selector SetterSel =
3220      SelectorTable::constructSetterName(PP.getIdentifierTable(),
3221                                         PP.getSelectorTable(), Member);
3222    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
3223    if (!Setter) {
3224      // If this reference is in an @implementation, also check for 'private'
3225      // methods.
3226      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
3227    }
3228    // Look through local category implementations associated with the class.
3229    if (!Setter)
3230      Setter = IFace->getCategoryInstanceMethod(SetterSel);
3231
3232    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
3233      return ExprError();
3234
3235    if (Getter) {
3236      QualType PType;
3237      PType = Getter->getResultType();
3238      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
3239                                      Setter, MemberLoc, BaseExpr));
3240    }
3241
3242    // Attempt to correct for typos in property names.
3243    LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
3244                     LookupOrdinaryName);
3245    if (CorrectTypo(Res, 0, 0, IFace, false, OPT) &&
3246        Res.getAsSingle<ObjCPropertyDecl>()) {
3247      Diag(R.getNameLoc(), diag::err_property_not_found_suggest)
3248        << MemberName << BaseType << Res.getLookupName()
3249        << CodeModificationHint::CreateReplacement(R.getNameLoc(),
3250                                           Res.getLookupName().getAsString());
3251      ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
3252      Diag(Property->getLocation(), diag::note_previous_decl)
3253        << Property->getDeclName();
3254
3255      return LookupMemberExpr(Res, BaseExpr, IsArrow, OpLoc, SS,
3256                              ObjCImpDecl);
3257    }
3258    Diag(MemberLoc, diag::err_property_not_found)
3259      << MemberName << BaseType;
3260    if (Setter && !Getter)
3261      Diag(Setter->getLocation(), diag::note_getter_unavailable)
3262        << MemberName << BaseExpr->getSourceRange();
3263    return ExprError();
3264  }
3265
3266  // Handle the following exceptional case (*Obj).isa.
3267  if (!IsArrow &&
3268      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
3269      MemberName.getAsIdentifierInfo()->isStr("isa"))
3270    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
3271                                           Context.getObjCClassType()));
3272
3273  // Handle 'field access' to vectors, such as 'V.xx'.
3274  if (BaseType->isExtVectorType()) {
3275    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
3276    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
3277    if (ret.isNull())
3278      return ExprError();
3279    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
3280                                                    MemberLoc));
3281  }
3282
3283  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
3284    << BaseType << BaseExpr->getSourceRange();
3285
3286  return ExprError();
3287}
3288
3289/// The main callback when the parser finds something like
3290///   expression . [nested-name-specifier] identifier
3291///   expression -> [nested-name-specifier] identifier
3292/// where 'identifier' encompasses a fairly broad spectrum of
3293/// possibilities, including destructor and operator references.
3294///
3295/// \param OpKind either tok::arrow or tok::period
3296/// \param HasTrailingLParen whether the next token is '(', which
3297///   is used to diagnose mis-uses of special members that can
3298///   only be called
3299/// \param ObjCImpDecl the current ObjC @implementation decl;
3300///   this is an ugly hack around the fact that ObjC @implementations
3301///   aren't properly put in the context chain
3302Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
3303                                                   SourceLocation OpLoc,
3304                                                   tok::TokenKind OpKind,
3305                                                   const CXXScopeSpec &SS,
3306                                                   UnqualifiedId &Id,
3307                                                   DeclPtrTy ObjCImpDecl,
3308                                                   bool HasTrailingLParen) {
3309  if (SS.isSet() && SS.isInvalid())
3310    return ExprError();
3311
3312  TemplateArgumentListInfo TemplateArgsBuffer;
3313
3314  // Decompose the name into its component parts.
3315  DeclarationName Name;
3316  SourceLocation NameLoc;
3317  const TemplateArgumentListInfo *TemplateArgs;
3318  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
3319                         Name, NameLoc, TemplateArgs);
3320
3321  bool IsArrow = (OpKind == tok::arrow);
3322
3323  NamedDecl *FirstQualifierInScope
3324    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
3325                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
3326
3327  // This is a postfix expression, so get rid of ParenListExprs.
3328  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));
3329
3330  Expr *Base = BaseArg.takeAs<Expr>();
3331  OwningExprResult Result(*this);
3332  if (Base->getType()->isDependentType() || Name.isDependentName()) {
3333    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
3334                                      IsArrow, OpLoc,
3335                                      SS, FirstQualifierInScope,
3336                                      Name, NameLoc,
3337                                      TemplateArgs);
3338  } else {
3339    LookupResult R(*this, Name, NameLoc, LookupMemberName);
3340    if (TemplateArgs) {
3341      // Re-use the lookup done for the template name.
3342      DecomposeTemplateName(R, Id);
3343    } else {
3344      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
3345                                SS, ObjCImpDecl);
3346
3347      if (Result.isInvalid()) {
3348        Owned(Base);
3349        return ExprError();
3350      }
3351
3352      if (Result.get()) {
3353        // The only way a reference to a destructor can be used is to
3354        // immediately call it, which falls into this case.  If the
3355        // next token is not a '(', produce a diagnostic and build the
3356        // call now.
3357        if (!HasTrailingLParen &&
3358            Id.getKind() == UnqualifiedId::IK_DestructorName)
3359          return DiagnoseDtorReference(NameLoc, move(Result));
3360
3361        return move(Result);
3362      }
3363    }
3364
3365    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
3366                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
3367                                      R, TemplateArgs);
3368  }
3369
3370  return move(Result);
3371}
3372
3373Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3374                                                    FunctionDecl *FD,
3375                                                    ParmVarDecl *Param) {
3376  if (Param->hasUnparsedDefaultArg()) {
3377    Diag (CallLoc,
3378          diag::err_use_of_default_argument_to_function_declared_later) <<
3379      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3380    Diag(UnparsedDefaultArgLocs[Param],
3381          diag::note_default_argument_declared_here);
3382  } else {
3383    if (Param->hasUninstantiatedDefaultArg()) {
3384      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3385
3386      // Instantiate the expression.
3387      MultiLevelTemplateArgumentList ArgList
3388        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3389
3390      InstantiatingTemplate Inst(*this, CallLoc, Param,
3391                                 ArgList.getInnermost().getFlatArgumentList(),
3392                                 ArgList.getInnermost().flat_size());
3393
3394      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
3395      if (Result.isInvalid())
3396        return ExprError();
3397
3398      // Check the expression as an initializer for the parameter.
3399      InitializedEntity Entity
3400        = InitializedEntity::InitializeParameter(Param);
3401      InitializationKind Kind
3402        = InitializationKind::CreateCopy(Param->getLocation(),
3403               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
3404      Expr *ResultE = Result.takeAs<Expr>();
3405
3406      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3407      Result = InitSeq.Perform(*this, Entity, Kind,
3408                               MultiExprArg(*this, (void**)&ResultE, 1));
3409      if (Result.isInvalid())
3410        return ExprError();
3411
3412      // Build the default argument expression.
3413      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
3414                                             Result.takeAs<Expr>()));
3415    }
3416
3417    // If the default expression creates temporaries, we need to
3418    // push them to the current stack of expression temporaries so they'll
3419    // be properly destroyed.
3420    // FIXME: We should really be rebuilding the default argument with new
3421    // bound temporaries; see the comment in PR5810.
3422    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
3423      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
3424  }
3425
3426  // We already type-checked the argument, so we know it works.
3427  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3428}
3429
3430/// ConvertArgumentsForCall - Converts the arguments specified in
3431/// Args/NumArgs to the parameter types of the function FDecl with
3432/// function prototype Proto. Call is the call expression itself, and
3433/// Fn is the function expression. For a C++ member function, this
3434/// routine does not attempt to convert the object argument. Returns
3435/// true if the call is ill-formed.
3436bool
3437Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3438                              FunctionDecl *FDecl,
3439                              const FunctionProtoType *Proto,
3440                              Expr **Args, unsigned NumArgs,
3441                              SourceLocation RParenLoc) {
3442  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3443  // assignment, to the types of the corresponding parameter, ...
3444  unsigned NumArgsInProto = Proto->getNumArgs();
3445  bool Invalid = false;
3446
3447  // If too few arguments are available (and we don't have default
3448  // arguments for the remaining parameters), don't make the call.
3449  if (NumArgs < NumArgsInProto) {
3450    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
3451      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
3452        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
3453    Call->setNumArgs(Context, NumArgsInProto);
3454  }
3455
3456  // If too many are passed and not variadic, error on the extras and drop
3457  // them.
3458  if (NumArgs > NumArgsInProto) {
3459    if (!Proto->isVariadic()) {
3460      Diag(Args[NumArgsInProto]->getLocStart(),
3461           diag::err_typecheck_call_too_many_args)
3462        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
3463        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3464                       Args[NumArgs-1]->getLocEnd());
3465      // This deletes the extra arguments.
3466      Call->setNumArgs(Context, NumArgsInProto);
3467      return true;
3468    }
3469  }
3470  llvm::SmallVector<Expr *, 8> AllArgs;
3471  VariadicCallType CallType =
3472    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3473  if (Fn->getType()->isBlockPointerType())
3474    CallType = VariadicBlock; // Block
3475  else if (isa<MemberExpr>(Fn))
3476    CallType = VariadicMethod;
3477  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
3478                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3479  if (Invalid)
3480    return true;
3481  unsigned TotalNumArgs = AllArgs.size();
3482  for (unsigned i = 0; i < TotalNumArgs; ++i)
3483    Call->setArg(i, AllArgs[i]);
3484
3485  return false;
3486}
3487
3488bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3489                                  FunctionDecl *FDecl,
3490                                  const FunctionProtoType *Proto,
3491                                  unsigned FirstProtoArg,
3492                                  Expr **Args, unsigned NumArgs,
3493                                  llvm::SmallVector<Expr *, 8> &AllArgs,
3494                                  VariadicCallType CallType) {
3495  unsigned NumArgsInProto = Proto->getNumArgs();
3496  unsigned NumArgsToCheck = NumArgs;
3497  bool Invalid = false;
3498  if (NumArgs != NumArgsInProto)
3499    // Use default arguments for missing arguments
3500    NumArgsToCheck = NumArgsInProto;
3501  unsigned ArgIx = 0;
3502  // Continue to check argument types (even if we have too few/many args).
3503  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3504    QualType ProtoArgType = Proto->getArgType(i);
3505
3506    Expr *Arg;
3507    if (ArgIx < NumArgs) {
3508      Arg = Args[ArgIx++];
3509
3510      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3511                              ProtoArgType,
3512                              PDiag(diag::err_call_incomplete_argument)
3513                              << Arg->getSourceRange()))
3514        return true;
3515
3516      // Pass the argument
3517      ParmVarDecl *Param = 0;
3518      if (FDecl && i < FDecl->getNumParams())
3519        Param = FDecl->getParamDecl(i);
3520
3521
3522      InitializedEntity Entity =
3523        Param? InitializedEntity::InitializeParameter(Param)
3524             : InitializedEntity::InitializeParameter(ProtoArgType);
3525      OwningExprResult ArgE = PerformCopyInitialization(Entity,
3526                                                        SourceLocation(),
3527                                                        Owned(Arg));
3528      if (ArgE.isInvalid())
3529        return true;
3530
3531      Arg = ArgE.takeAs<Expr>();
3532    } else {
3533      ParmVarDecl *Param = FDecl->getParamDecl(i);
3534
3535      OwningExprResult ArgExpr =
3536        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3537      if (ArgExpr.isInvalid())
3538        return true;
3539
3540      Arg = ArgExpr.takeAs<Expr>();
3541    }
3542    AllArgs.push_back(Arg);
3543  }
3544
3545  // If this is a variadic call, handle args passed through "...".
3546  if (CallType != VariadicDoesNotApply) {
3547    // Promote the arguments (C99 6.5.2.2p7).
3548    for (unsigned i = ArgIx; i < NumArgs; i++) {
3549      Expr *Arg = Args[i];
3550      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
3551      AllArgs.push_back(Arg);
3552    }
3553  }
3554  return Invalid;
3555}
3556
3557/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3558/// This provides the location of the left/right parens and a list of comma
3559/// locations.
3560Action::OwningExprResult
3561Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
3562                    MultiExprArg args,
3563                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
3564  unsigned NumArgs = args.size();
3565
3566  // Since this might be a postfix expression, get rid of ParenListExprs.
3567  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));
3568
3569  Expr *Fn = fn.takeAs<Expr>();
3570  Expr **Args = reinterpret_cast<Expr**>(args.release());
3571  assert(Fn && "no function call expression");
3572
3573  if (getLangOptions().CPlusPlus) {
3574    // If this is a pseudo-destructor expression, build the call immediately.
3575    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3576      if (NumArgs > 0) {
3577        // Pseudo-destructor calls should not have any arguments.
3578        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3579          << CodeModificationHint::CreateRemoval(
3580                                    SourceRange(Args[0]->getLocStart(),
3581                                                Args[NumArgs-1]->getLocEnd()));
3582
3583        for (unsigned I = 0; I != NumArgs; ++I)
3584          Args[I]->Destroy(Context);
3585
3586        NumArgs = 0;
3587      }
3588
3589      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3590                                          RParenLoc));
3591    }
3592
3593    // Determine whether this is a dependent call inside a C++ template,
3594    // in which case we won't do any semantic analysis now.
3595    // FIXME: Will need to cache the results of name lookup (including ADL) in
3596    // Fn.
3597    bool Dependent = false;
3598    if (Fn->isTypeDependent())
3599      Dependent = true;
3600    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
3601      Dependent = true;
3602
3603    if (Dependent)
3604      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3605                                          Context.DependentTy, RParenLoc));
3606
3607    // Determine whether this is a call to an object (C++ [over.call.object]).
3608    if (Fn->getType()->isRecordType())
3609      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3610                                                CommaLocs, RParenLoc));
3611
3612    Expr *NakedFn = Fn->IgnoreParens();
3613
3614    // Determine whether this is a call to an unresolved member function.
3615    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
3616      // If lookup was unresolved but not dependent (i.e. didn't find
3617      // an unresolved using declaration), it has to be an overloaded
3618      // function set, which means it must contain either multiple
3619      // declarations (all methods or method templates) or a single
3620      // method template.
3621      assert((MemE->getNumDecls() > 1) ||
3622             isa<FunctionTemplateDecl>(*MemE->decls_begin()));
3623      (void)MemE;
3624
3625      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3626                                       CommaLocs, RParenLoc);
3627    }
3628
3629    // Determine whether this is a call to a member function.
3630    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
3631      NamedDecl *MemDecl = MemExpr->getMemberDecl();
3632      if (isa<CXXMethodDecl>(MemDecl))
3633        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3634                                         CommaLocs, RParenLoc);
3635    }
3636
3637    // Determine whether this is a call to a pointer-to-member function.
3638    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
3639      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
3640          BO->getOpcode() == BinaryOperator::PtrMemI) {
3641        if (const FunctionProtoType *FPT =
3642              dyn_cast<FunctionProtoType>(BO->getType())) {
3643          QualType ResultTy = FPT->getResultType().getNonReferenceType();
3644
3645          ExprOwningPtr<CXXMemberCallExpr>
3646            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args,
3647                                                          NumArgs, ResultTy,
3648                                                          RParenLoc));
3649
3650          if (CheckCallReturnType(FPT->getResultType(),
3651                                  BO->getRHS()->getSourceRange().getBegin(),
3652                                  TheCall.get(), 0))
3653            return ExprError();
3654
3655          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs,
3656                                      RParenLoc))
3657            return ExprError();
3658
3659          return Owned(MaybeBindToTemporary(TheCall.release()).release());
3660        }
3661        return ExprError(Diag(Fn->getLocStart(),
3662                              diag::err_typecheck_call_not_function)
3663                              << Fn->getType() << Fn->getSourceRange());
3664      }
3665    }
3666  }
3667
3668  // If we're directly calling a function, get the appropriate declaration.
3669  // Also, in C++, keep track of whether we should perform argument-dependent
3670  // lookup and whether there were any explicitly-specified template arguments.
3671
3672  Expr *NakedFn = Fn->IgnoreParens();
3673  if (isa<UnresolvedLookupExpr>(NakedFn)) {
3674    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
3675    return BuildOverloadedCallExpr(Fn, ULE, LParenLoc, Args, NumArgs,
3676                                   CommaLocs, RParenLoc);
3677  }
3678
3679  NamedDecl *NDecl = 0;
3680  if (isa<DeclRefExpr>(NakedFn))
3681    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3682
3683  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
3684}
3685
3686/// BuildResolvedCallExpr - Build a call to a resolved expression,
3687/// i.e. an expression not of \p OverloadTy.  The expression should
3688/// unary-convert to an expression of function-pointer or
3689/// block-pointer type.
3690///
3691/// \param NDecl the declaration being called, if available
3692Sema::OwningExprResult
3693Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3694                            SourceLocation LParenLoc,
3695                            Expr **Args, unsigned NumArgs,
3696                            SourceLocation RParenLoc) {
3697  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3698
3699  // Promote the function operand.
3700  UsualUnaryConversions(Fn);
3701
3702  // Make the call expr early, before semantic checks.  This guarantees cleanup
3703  // of arguments and function on error.
3704  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
3705                                                               Args, NumArgs,
3706                                                               Context.BoolTy,
3707                                                               RParenLoc));
3708
3709  const FunctionType *FuncT;
3710  if (!Fn->getType()->isBlockPointerType()) {
3711    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3712    // have type pointer to function".
3713    const PointerType *PT = Fn->getType()->getAs<PointerType>();
3714    if (PT == 0)
3715      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3716        << Fn->getType() << Fn->getSourceRange());
3717    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3718  } else { // This is a block call.
3719    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
3720                getAs<FunctionType>();
3721  }
3722  if (FuncT == 0)
3723    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3724      << Fn->getType() << Fn->getSourceRange());
3725
3726  // Check for a valid return type
3727  if (CheckCallReturnType(FuncT->getResultType(),
3728                          Fn->getSourceRange().getBegin(), TheCall.get(),
3729                          FDecl))
3730    return ExprError();
3731
3732  // We know the result type of the call, set it.
3733  TheCall->setType(FuncT->getResultType().getNonReferenceType());
3734
3735  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3736    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
3737                                RParenLoc))
3738      return ExprError();
3739  } else {
3740    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3741
3742    if (FDecl) {
3743      // Check if we have too few/too many template arguments, based
3744      // on our knowledge of the function definition.
3745      const FunctionDecl *Def = 0;
3746      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
3747        const FunctionProtoType *Proto =
3748            Def->getType()->getAs<FunctionProtoType>();
3749        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
3750          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3751            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3752        }
3753      }
3754    }
3755
3756    // Promote the arguments (C99 6.5.2.2p6).
3757    for (unsigned i = 0; i != NumArgs; i++) {
3758      Expr *Arg = Args[i];
3759      DefaultArgumentPromotion(Arg);
3760      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
3761                              Arg->getType(),
3762                              PDiag(diag::err_call_incomplete_argument)
3763                                << Arg->getSourceRange()))
3764        return ExprError();
3765      TheCall->setArg(i, Arg);
3766    }
3767  }
3768
3769  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3770    if (!Method->isStatic())
3771      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3772        << Fn->getSourceRange());
3773
3774  // Check for sentinels
3775  if (NDecl)
3776    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3777
3778  // Do special checking on direct calls to functions.
3779  if (FDecl) {
3780    if (CheckFunctionCall(FDecl, TheCall.get()))
3781      return ExprError();
3782
3783    if (unsigned BuiltinID = FDecl->getBuiltinID())
3784      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
3785  } else if (NDecl) {
3786    if (CheckBlockCall(NDecl, TheCall.get()))
3787      return ExprError();
3788  }
3789
3790  return MaybeBindToTemporary(TheCall.take());
3791}
3792
3793Action::OwningExprResult
3794Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
3795                           SourceLocation RParenLoc, ExprArg InitExpr) {
3796  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3797  // FIXME: put back this assert when initializers are worked out.
3798  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3799
3800  TypeSourceInfo *TInfo;
3801  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3802  if (!TInfo)
3803    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3804
3805  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
3806}
3807
3808Action::OwningExprResult
3809Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3810                               SourceLocation RParenLoc, ExprArg InitExpr) {
3811  QualType literalType = TInfo->getType();
3812  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
3813
3814  if (literalType->isArrayType()) {
3815    if (literalType->isVariableArrayType())
3816      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3817        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
3818  } else if (!literalType->isDependentType() &&
3819             RequireCompleteType(LParenLoc, literalType,
3820                      PDiag(diag::err_typecheck_decl_incomplete_type)
3821                        << SourceRange(LParenLoc,
3822                                       literalExpr->getSourceRange().getEnd())))
3823    return ExprError();
3824
3825  InitializedEntity Entity
3826    = InitializedEntity::InitializeTemporary(literalType);
3827  InitializationKind Kind
3828    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
3829                                     /*IsCStyleCast=*/true);
3830  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
3831  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3832                                   MultiExprArg(*this, (void**)&literalExpr, 1),
3833                                            &literalType);
3834  if (Result.isInvalid())
3835    return ExprError();
3836  InitExpr.release();
3837  literalExpr = static_cast<Expr*>(Result.get());
3838
3839  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3840  if (isFileScope) { // 6.5.2.5p3
3841    if (CheckForConstantInitializer(literalExpr, literalType))
3842      return ExprError();
3843  }
3844
3845  Result.release();
3846
3847  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
3848                                                 literalExpr, isFileScope));
3849}
3850
3851Action::OwningExprResult
3852Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
3853                    SourceLocation RBraceLoc) {
3854  unsigned NumInit = initlist.size();
3855  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
3856
3857  // Semantic analysis for initializers is done by ActOnDeclarator() and
3858  // CheckInitializer() - it requires knowledge of the object being intialized.
3859
3860  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
3861                                               RBraceLoc);
3862  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
3863  return Owned(E);
3864}
3865
3866static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
3867                                            QualType SrcTy, QualType DestTy) {
3868  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
3869    return CastExpr::CK_NoOp;
3870
3871  if (SrcTy->hasPointerRepresentation()) {
3872    if (DestTy->hasPointerRepresentation())
3873      return DestTy->isObjCObjectPointerType() ?
3874                CastExpr::CK_AnyPointerToObjCPointerCast :
3875                CastExpr::CK_BitCast;
3876    if (DestTy->isIntegerType())
3877      return CastExpr::CK_PointerToIntegral;
3878  }
3879
3880  if (SrcTy->isIntegerType()) {
3881    if (DestTy->isIntegerType())
3882      return CastExpr::CK_IntegralCast;
3883    if (DestTy->hasPointerRepresentation())
3884      return CastExpr::CK_IntegralToPointer;
3885    if (DestTy->isRealFloatingType())
3886      return CastExpr::CK_IntegralToFloating;
3887  }
3888
3889  if (SrcTy->isRealFloatingType()) {
3890    if (DestTy->isRealFloatingType())
3891      return CastExpr::CK_FloatingCast;
3892    if (DestTy->isIntegerType())
3893      return CastExpr::CK_FloatingToIntegral;
3894  }
3895
3896  // FIXME: Assert here.
3897  // assert(false && "Unhandled cast combination!");
3898  return CastExpr::CK_Unknown;
3899}
3900
3901/// CheckCastTypes - Check type constraints for casting between types.
3902bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
3903                          CastExpr::CastKind& Kind,
3904                          CXXMethodDecl *& ConversionDecl,
3905                          bool FunctionalStyle) {
3906  if (getLangOptions().CPlusPlus)
3907    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
3908                              ConversionDecl);
3909
3910  DefaultFunctionArrayLvalueConversion(castExpr);
3911
3912  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
3913  // type needs to be scalar.
3914  if (castType->isVoidType()) {
3915    // Cast to void allows any expr type.
3916    Kind = CastExpr::CK_ToVoid;
3917    return false;
3918  }
3919
3920  if (!castType->isScalarType() && !castType->isVectorType()) {
3921    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
3922        (castType->isStructureType() || castType->isUnionType())) {
3923      // GCC struct/union extension: allow cast to self.
3924      // FIXME: Check that the cast destination type is complete.
3925      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
3926        << castType << castExpr->getSourceRange();
3927      Kind = CastExpr::CK_NoOp;
3928      return false;
3929    }
3930
3931    if (castType->isUnionType()) {
3932      // GCC cast to union extension
3933      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
3934      RecordDecl::field_iterator Field, FieldEnd;
3935      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
3936           Field != FieldEnd; ++Field) {
3937        if (Context.hasSameUnqualifiedType(Field->getType(),
3938                                           castExpr->getType())) {
3939          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
3940            << castExpr->getSourceRange();
3941          break;
3942        }
3943      }
3944      if (Field == FieldEnd)
3945        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3946          << castExpr->getType() << castExpr->getSourceRange();
3947      Kind = CastExpr::CK_ToUnion;
3948      return false;
3949    }
3950
3951    // Reject any other conversions to non-scalar types.
3952    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
3953      << castType << castExpr->getSourceRange();
3954  }
3955
3956  if (!castExpr->getType()->isScalarType() &&
3957      !castExpr->getType()->isVectorType()) {
3958    return Diag(castExpr->getLocStart(),
3959                diag::err_typecheck_expect_scalar_operand)
3960      << castExpr->getType() << castExpr->getSourceRange();
3961  }
3962
3963  if (castType->isExtVectorType())
3964    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
3965
3966  if (castType->isVectorType())
3967    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
3968  if (castExpr->getType()->isVectorType())
3969    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
3970
3971  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
3972    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
3973
3974  if (isa<ObjCSelectorExpr>(castExpr))
3975    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3976
3977  if (!castType->isArithmeticType()) {
3978    QualType castExprType = castExpr->getType();
3979    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3980      return Diag(castExpr->getLocStart(),
3981                  diag::err_cast_pointer_from_non_pointer_int)
3982        << castExprType << castExpr->getSourceRange();
3983  } else if (!castExpr->getType()->isArithmeticType()) {
3984    if (!castType->isIntegralType() && castType->isArithmeticType())
3985      return Diag(castExpr->getLocStart(),
3986                  diag::err_cast_pointer_to_non_pointer_int)
3987        << castType << castExpr->getSourceRange();
3988  }
3989
3990  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
3991  return false;
3992}
3993
3994bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
3995                           CastExpr::CastKind &Kind) {
3996  assert(VectorTy->isVectorType() && "Not a vector type!");
3997
3998  if (Ty->isVectorType() || Ty->isIntegerType()) {
3999    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4000      return Diag(R.getBegin(),
4001                  Ty->isVectorType() ?
4002                  diag::err_invalid_conversion_between_vectors :
4003                  diag::err_invalid_conversion_between_vector_and_integer)
4004        << VectorTy << Ty << R;
4005  } else
4006    return Diag(R.getBegin(),
4007                diag::err_invalid_conversion_between_vector_and_scalar)
4008      << VectorTy << Ty << R;
4009
4010  Kind = CastExpr::CK_BitCast;
4011  return false;
4012}
4013
4014bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
4015                              CastExpr::CastKind &Kind) {
4016  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4017
4018  QualType SrcTy = CastExpr->getType();
4019
4020  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4021  // an ExtVectorType.
4022  if (SrcTy->isVectorType()) {
4023    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
4024      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4025        << DestTy << SrcTy << R;
4026    Kind = CastExpr::CK_BitCast;
4027    return false;
4028  }
4029
4030  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4031  // conversion will take place first from scalar to elt type, and then
4032  // splat from elt type to vector.
4033  if (SrcTy->isPointerType())
4034    return Diag(R.getBegin(),
4035                diag::err_invalid_conversion_between_vector_and_scalar)
4036      << DestTy << SrcTy << R;
4037
4038  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4039  ImpCastExprToType(CastExpr, DestElemTy,
4040                    getScalarCastKind(Context, SrcTy, DestElemTy));
4041
4042  Kind = CastExpr::CK_VectorSplat;
4043  return false;
4044}
4045
4046Action::OwningExprResult
4047Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
4048                    SourceLocation RParenLoc, ExprArg Op) {
4049  assert((Ty != 0) && (Op.get() != 0) &&
4050         "ActOnCastExpr(): missing type or expr");
4051
4052  TypeSourceInfo *castTInfo;
4053  QualType castType = GetTypeFromParser(Ty, &castTInfo);
4054  if (!castTInfo)
4055    castTInfo = Context.getTrivialTypeSourceInfo(castType);
4056
4057  // If the Expr being casted is a ParenListExpr, handle it specially.
4058  Expr *castExpr = (Expr *)Op.get();
4059  if (isa<ParenListExpr>(castExpr))
4060    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
4061                                    castTInfo);
4062
4063  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
4064}
4065
4066Action::OwningExprResult
4067Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
4068                          SourceLocation RParenLoc, ExprArg Op) {
4069  Expr *castExpr = static_cast<Expr*>(Op.get());
4070
4071  CXXMethodDecl *Method = 0;
4072  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
4073  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
4074                     Kind, Method))
4075    return ExprError();
4076
4077  if (Method) {
4078    // FIXME: preserve type source info here
4079    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, Ty->getType(),
4080                                                    Kind, Method, move(Op));
4081
4082    if (CastArg.isInvalid())
4083      return ExprError();
4084
4085    castExpr = CastArg.takeAs<Expr>();
4086  } else {
4087    Op.release();
4088  }
4089
4090  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
4091                                            Kind, castExpr, Ty,
4092                                            LParenLoc, RParenLoc));
4093}
4094
4095/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
4096/// of comma binary operators.
4097Action::OwningExprResult
4098Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
4099  Expr *expr = EA.takeAs<Expr>();
4100  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
4101  if (!E)
4102    return Owned(expr);
4103
4104  OwningExprResult Result(*this, E->getExpr(0));
4105
4106  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4107    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
4108                        Owned(E->getExpr(i)));
4109
4110  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
4111}
4112
4113Action::OwningExprResult
4114Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
4115                               SourceLocation RParenLoc, ExprArg Op,
4116                               TypeSourceInfo *TInfo) {
4117  ParenListExpr *PE = (ParenListExpr *)Op.get();
4118  QualType Ty = TInfo->getType();
4119
4120  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
4121  // then handle it as such.
4122  if (getLangOptions().AltiVec && Ty->isVectorType()) {
4123    if (PE->getNumExprs() == 0) {
4124      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
4125      return ExprError();
4126    }
4127
4128    llvm::SmallVector<Expr *, 8> initExprs;
4129    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
4130      initExprs.push_back(PE->getExpr(i));
4131
4132    // FIXME: This means that pretty-printing the final AST will produce curly
4133    // braces instead of the original commas.
4134    Op.release();
4135    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
4136                                                 initExprs.size(), RParenLoc);
4137    E->setType(Ty);
4138    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
4139  } else {
4140    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4141    // sequence of BinOp comma operators.
4142    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
4143    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
4144  }
4145}
4146
4147Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
4148                                                  SourceLocation R,
4149                                                  MultiExprArg Val,
4150                                                  TypeTy *TypeOfCast) {
4151  unsigned nexprs = Val.size();
4152  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4153  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4154  Expr *expr;
4155  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
4156    expr = new (Context) ParenExpr(L, R, exprs[0]);
4157  else
4158    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4159  return Owned(expr);
4160}
4161
4162/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
4163/// In that case, lhs = cond.
4164/// C99 6.5.15
4165QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
4166                                        SourceLocation QuestionLoc) {
4167  // C++ is sufficiently different to merit its own checker.
4168  if (getLangOptions().CPlusPlus)
4169    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
4170
4171  CheckSignCompare(LHS, RHS, QuestionLoc);
4172
4173  UsualUnaryConversions(Cond);
4174  UsualUnaryConversions(LHS);
4175  UsualUnaryConversions(RHS);
4176  QualType CondTy = Cond->getType();
4177  QualType LHSTy = LHS->getType();
4178  QualType RHSTy = RHS->getType();
4179
4180  // first, check the condition.
4181  if (!CondTy->isScalarType()) { // C99 6.5.15p2
4182    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4183      << CondTy;
4184    return QualType();
4185  }
4186
4187  // Now check the two expressions.
4188  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4189    return CheckVectorOperands(QuestionLoc, LHS, RHS);
4190
4191  // If both operands have arithmetic type, do the usual arithmetic conversions
4192  // to find a common type: C99 6.5.15p3,5.
4193  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4194    UsualArithmeticConversions(LHS, RHS);
4195    return LHS->getType();
4196  }
4197
4198  // If both operands are the same structure or union type, the result is that
4199  // type.
4200  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4201    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4202      if (LHSRT->getDecl() == RHSRT->getDecl())
4203        // "If both the operands have structure or union type, the result has
4204        // that type."  This implies that CV qualifiers are dropped.
4205        return LHSTy.getUnqualifiedType();
4206    // FIXME: Type of conditional expression must be complete in C mode.
4207  }
4208
4209  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4210  // The following || allows only one side to be void (a GCC-ism).
4211  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4212    if (!LHSTy->isVoidType())
4213      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4214        << RHS->getSourceRange();
4215    if (!RHSTy->isVoidType())
4216      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
4217        << LHS->getSourceRange();
4218    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
4219    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
4220    return Context.VoidTy;
4221  }
4222  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4223  // the type of the other operand."
4224  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
4225      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4226    // promote the null to a pointer.
4227    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
4228    return LHSTy;
4229  }
4230  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
4231      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4232    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
4233    return RHSTy;
4234  }
4235
4236  // All objective-c pointer type analysis is done here.
4237  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4238                                                        QuestionLoc);
4239  if (!compositeType.isNull())
4240    return compositeType;
4241
4242
4243  // Handle block pointer types.
4244  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
4245    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4246      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4247        QualType destType = Context.getPointerType(Context.VoidTy);
4248        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4249        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4250        return destType;
4251      }
4252      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4253      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4254      return QualType();
4255    }
4256    // We have 2 block pointer types.
4257    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4258      // Two identical block pointer types are always compatible.
4259      return LHSTy;
4260    }
4261    // The block pointer types aren't identical, continue checking.
4262    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
4263    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
4264
4265    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4266                                    rhptee.getUnqualifiedType())) {
4267      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4268      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4269      // In this situation, we assume void* type. No especially good
4270      // reason, but this is what gcc does, and we do have to pick
4271      // to get a consistent AST.
4272      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4273      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4274      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4275      return incompatTy;
4276    }
4277    // The block pointer types are compatible.
4278    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4279    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4280    return LHSTy;
4281  }
4282
4283  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4284  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4285    // get the "pointed to" types
4286    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4287    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4288
4289    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4290    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4291      // Figure out necessary qualifiers (C99 6.5.15p6)
4292      QualType destPointee
4293        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4294      QualType destType = Context.getPointerType(destPointee);
4295      // Add qualifiers if necessary.
4296      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4297      // Promote to void*.
4298      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4299      return destType;
4300    }
4301    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4302      QualType destPointee
4303        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4304      QualType destType = Context.getPointerType(destPointee);
4305      // Add qualifiers if necessary.
4306      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4307      // Promote to void*.
4308      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4309      return destType;
4310    }
4311
4312    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4313      // Two identical pointer types are always compatible.
4314      return LHSTy;
4315    }
4316    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
4317                                    rhptee.getUnqualifiedType())) {
4318      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
4319        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4320      // In this situation, we assume void* type. No especially good
4321      // reason, but this is what gcc does, and we do have to pick
4322      // to get a consistent AST.
4323      QualType incompatTy = Context.getPointerType(Context.VoidTy);
4324      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4325      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4326      return incompatTy;
4327    }
4328    // The pointer types are compatible.
4329    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
4330    // differently qualified versions of compatible types, the result type is
4331    // a pointer to an appropriately qualified version of the *composite*
4332    // type.
4333    // FIXME: Need to calculate the composite type.
4334    // FIXME: Need to add qualifiers
4335    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
4336    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4337    return LHSTy;
4338  }
4339
4340  // GCC compatibility: soften pointer/integer mismatch.
4341  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
4342    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4343      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4344    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
4345    return RHSTy;
4346  }
4347  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
4348    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4349      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4350    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
4351    return LHSTy;
4352  }
4353
4354  // Otherwise, the operands are not compatible.
4355  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4356    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
4357  return QualType();
4358}
4359
4360/// FindCompositeObjCPointerType - Helper method to find composite type of
4361/// two objective-c pointer types of the two input expressions.
4362QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
4363                                        SourceLocation QuestionLoc) {
4364  QualType LHSTy = LHS->getType();
4365  QualType RHSTy = RHS->getType();
4366
4367  // Handle things like Class and struct objc_class*.  Here we case the result
4368  // to the pseudo-builtin, because that will be implicitly cast back to the
4369  // redefinition type if an attempt is made to access its fields.
4370  if (LHSTy->isObjCClassType() &&
4371      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4372    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4373    return LHSTy;
4374  }
4375  if (RHSTy->isObjCClassType() &&
4376      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
4377    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4378    return RHSTy;
4379  }
4380  // And the same for struct objc_object* / id
4381  if (LHSTy->isObjCIdType() &&
4382      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4383    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4384    return LHSTy;
4385  }
4386  if (RHSTy->isObjCIdType() &&
4387      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
4388    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4389    return RHSTy;
4390  }
4391  // And the same for struct objc_selector* / SEL
4392  if (Context.isObjCSelType(LHSTy) &&
4393      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4394    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
4395    return LHSTy;
4396  }
4397  if (Context.isObjCSelType(RHSTy) &&
4398      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
4399    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
4400    return RHSTy;
4401  }
4402  // Check constraints for Objective-C object pointers types.
4403  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4404
4405    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4406      // Two identical object pointer types are always compatible.
4407      return LHSTy;
4408    }
4409    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
4410    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
4411    QualType compositeType = LHSTy;
4412
4413    // If both operands are interfaces and either operand can be
4414    // assigned to the other, use that type as the composite
4415    // type. This allows
4416    //   xxx ? (A*) a : (B*) b
4417    // where B is a subclass of A.
4418    //
4419    // Additionally, as for assignment, if either type is 'id'
4420    // allow silent coercion. Finally, if the types are
4421    // incompatible then make sure to use 'id' as the composite
4422    // type so the result is acceptable for sending messages to.
4423
4424    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4425    // It could return the composite type.
4426    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4427      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4428    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4429      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4430    } else if ((LHSTy->isObjCQualifiedIdType() ||
4431                RHSTy->isObjCQualifiedIdType()) &&
4432               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4433      // Need to handle "id<xx>" explicitly.
4434      // GCC allows qualified id and any Objective-C type to devolve to
4435      // id. Currently localizing to here until clear this should be
4436      // part of ObjCQualifiedIdTypesAreCompatible.
4437      compositeType = Context.getObjCIdType();
4438    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4439      compositeType = Context.getObjCIdType();
4440    } else if (!(compositeType =
4441                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4442      ;
4443    else {
4444      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4445      << LHSTy << RHSTy
4446      << LHS->getSourceRange() << RHS->getSourceRange();
4447      QualType incompatTy = Context.getObjCIdType();
4448      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
4449      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
4450      return incompatTy;
4451    }
4452    // The object pointer types are compatible.
4453    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
4454    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
4455    return compositeType;
4456  }
4457  // Check Objective-C object pointer types and 'void *'
4458  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4459    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4460    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4461    QualType destPointee
4462    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4463    QualType destType = Context.getPointerType(destPointee);
4464    // Add qualifiers if necessary.
4465    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
4466    // Promote to void*.
4467    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
4468    return destType;
4469  }
4470  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4471    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4472    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4473    QualType destPointee
4474    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4475    QualType destType = Context.getPointerType(destPointee);
4476    // Add qualifiers if necessary.
4477    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
4478    // Promote to void*.
4479    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
4480    return destType;
4481  }
4482  return QualType();
4483}
4484
4485/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
4486/// in the case of a the GNU conditional expr extension.
4487Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
4488                                                  SourceLocation ColonLoc,
4489                                                  ExprArg Cond, ExprArg LHS,
4490                                                  ExprArg RHS) {
4491  Expr *CondExpr = (Expr *) Cond.get();
4492  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
4493
4494  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
4495  // was the condition.
4496  bool isLHSNull = LHSExpr == 0;
4497  if (isLHSNull)
4498    LHSExpr = CondExpr;
4499
4500  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
4501                                             RHSExpr, QuestionLoc);
4502  if (result.isNull())
4503    return ExprError();
4504
4505  Cond.release();
4506  LHS.release();
4507  RHS.release();
4508  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
4509                                                 isLHSNull ? 0 : LHSExpr,
4510                                                 ColonLoc, RHSExpr, result));
4511}
4512
4513// CheckPointerTypesForAssignment - This is a very tricky routine (despite
4514// being closely modeled after the C99 spec:-). The odd characteristic of this
4515// routine is it effectively iqnores the qualifiers on the top level pointee.
4516// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
4517// FIXME: add a couple examples in this comment.
4518Sema::AssignConvertType
4519Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4520  QualType lhptee, rhptee;
4521
4522  if ((lhsType->isObjCClassType() &&
4523       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4524     (rhsType->isObjCClassType() &&
4525       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4526      return Compatible;
4527  }
4528
4529  // get the "pointed to" type (ignoring qualifiers at the top level)
4530  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
4531  rhptee = rhsType->getAs<PointerType>()->getPointeeType();
4532
4533  // make sure we operate on the canonical type
4534  lhptee = Context.getCanonicalType(lhptee);
4535  rhptee = Context.getCanonicalType(rhptee);
4536
4537  AssignConvertType ConvTy = Compatible;
4538
4539  // C99 6.5.16.1p1: This following citation is common to constraints
4540  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
4541  // qualifiers of the type *pointed to* by the right;
4542  // FIXME: Handle ExtQualType
4543  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4544    ConvTy = CompatiblePointerDiscardsQualifiers;
4545
4546  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
4547  // incomplete type and the other is a pointer to a qualified or unqualified
4548  // version of void...
4549  if (lhptee->isVoidType()) {
4550    if (rhptee->isIncompleteOrObjectType())
4551      return ConvTy;
4552
4553    // As an extension, we allow cast to/from void* to function pointer.
4554    assert(rhptee->isFunctionType());
4555    return FunctionVoidPointer;
4556  }
4557
4558  if (rhptee->isVoidType()) {
4559    if (lhptee->isIncompleteOrObjectType())
4560      return ConvTy;
4561
4562    // As an extension, we allow cast to/from void* to function pointer.
4563    assert(lhptee->isFunctionType());
4564    return FunctionVoidPointer;
4565  }
4566  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
4567  // unqualified versions of compatible types, ...
4568  lhptee = lhptee.getUnqualifiedType();
4569  rhptee = rhptee.getUnqualifiedType();
4570  if (!Context.typesAreCompatible(lhptee, rhptee)) {
4571    // Check if the pointee types are compatible ignoring the sign.
4572    // We explicitly check for char so that we catch "char" vs
4573    // "unsigned char" on systems where "char" is unsigned.
4574    if (lhptee->isCharType())
4575      lhptee = Context.UnsignedCharTy;
4576    else if (lhptee->isSignedIntegerType())
4577      lhptee = Context.getCorrespondingUnsignedType(lhptee);
4578
4579    if (rhptee->isCharType())
4580      rhptee = Context.UnsignedCharTy;
4581    else if (rhptee->isSignedIntegerType())
4582      rhptee = Context.getCorrespondingUnsignedType(rhptee);
4583
4584    if (lhptee == rhptee) {
4585      // Types are compatible ignoring the sign. Qualifier incompatibility
4586      // takes priority over sign incompatibility because the sign
4587      // warning can be disabled.
4588      if (ConvTy != Compatible)
4589        return ConvTy;
4590      return IncompatiblePointerSign;
4591    }
4592
4593    // If we are a multi-level pointer, it's possible that our issue is simply
4594    // one of qualification - e.g. char ** -> const char ** is not allowed. If
4595    // the eventual target type is the same and the pointers have the same
4596    // level of indirection, this must be the issue.
4597    if (lhptee->isPointerType() && rhptee->isPointerType()) {
4598      do {
4599        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
4600        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
4601
4602        lhptee = Context.getCanonicalType(lhptee);
4603        rhptee = Context.getCanonicalType(rhptee);
4604      } while (lhptee->isPointerType() && rhptee->isPointerType());
4605
4606      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
4607        return IncompatibleNestedPointerQualifiers;
4608    }
4609
4610    // General pointer incompatibility takes priority over qualifiers.
4611    return IncompatiblePointer;
4612  }
4613  return ConvTy;
4614}
4615
4616/// CheckBlockPointerTypesForAssignment - This routine determines whether two
4617/// block pointer types are compatible or whether a block and normal pointer
4618/// are compatible. It is more restrict than comparing two function pointer
4619// types.
4620Sema::AssignConvertType
4621Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
4622                                          QualType rhsType) {
4623  QualType lhptee, rhptee;
4624
4625  // get the "pointed to" type (ignoring qualifiers at the top level)
4626  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
4627  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
4628
4629  // make sure we operate on the canonical type
4630  lhptee = Context.getCanonicalType(lhptee);
4631  rhptee = Context.getCanonicalType(rhptee);
4632
4633  AssignConvertType ConvTy = Compatible;
4634
4635  // For blocks we enforce that qualifiers are identical.
4636  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
4637    ConvTy = CompatiblePointerDiscardsQualifiers;
4638
4639  if (!getLangOptions().CPlusPlus) {
4640    if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
4641      return IncompatibleBlockPointer;
4642  }
4643  else if (!Context.typesAreCompatible(lhptee, rhptee))
4644    return IncompatibleBlockPointer;
4645  return ConvTy;
4646}
4647
4648/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
4649/// for assignment compatibility.
4650Sema::AssignConvertType
4651Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
4652  if (lhsType->isObjCBuiltinType()) {
4653    // Class is not compatible with ObjC object pointers.
4654    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
4655        !rhsType->isObjCQualifiedClassType())
4656      return IncompatiblePointer;
4657    return Compatible;
4658  }
4659  if (rhsType->isObjCBuiltinType()) {
4660    // Class is not compatible with ObjC object pointers.
4661    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
4662        !lhsType->isObjCQualifiedClassType())
4663      return IncompatiblePointer;
4664    return Compatible;
4665  }
4666  QualType lhptee =
4667  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4668  QualType rhptee =
4669  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
4670  // make sure we operate on the canonical type
4671  lhptee = Context.getCanonicalType(lhptee);
4672  rhptee = Context.getCanonicalType(rhptee);
4673  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
4674    return CompatiblePointerDiscardsQualifiers;
4675
4676  if (Context.typesAreCompatible(lhsType, rhsType))
4677    return Compatible;
4678  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
4679    return IncompatibleObjCQualifiedId;
4680  return IncompatiblePointer;
4681}
4682
4683/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
4684/// has code to accommodate several GCC extensions when type checking
4685/// pointers. Here are some objectionable examples that GCC considers warnings:
4686///
4687///  int a, *pint;
4688///  short *pshort;
4689///  struct foo *pfoo;
4690///
4691///  pint = pshort; // warning: assignment from incompatible pointer type
4692///  a = pint; // warning: assignment makes integer from pointer without a cast
4693///  pint = a; // warning: assignment makes pointer from integer without a cast
4694///  pint = pfoo; // warning: assignment from incompatible pointer type
4695///
4696/// As a result, the code for dealing with pointers is more complex than the
4697/// C99 spec dictates.
4698///
4699Sema::AssignConvertType
4700Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
4701  // Get canonical types.  We're not formatting these types, just comparing
4702  // them.
4703  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
4704  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
4705
4706  if (lhsType == rhsType)
4707    return Compatible; // Common case: fast path an exact match.
4708
4709  if ((lhsType->isObjCClassType() &&
4710       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
4711     (rhsType->isObjCClassType() &&
4712       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
4713      return Compatible;
4714  }
4715
4716  // If the left-hand side is a reference type, then we are in a
4717  // (rare!) case where we've allowed the use of references in C,
4718  // e.g., as a parameter type in a built-in function. In this case,
4719  // just make sure that the type referenced is compatible with the
4720  // right-hand side type. The caller is responsible for adjusting
4721  // lhsType so that the resulting expression does not have reference
4722  // type.
4723  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
4724    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
4725      return Compatible;
4726    return Incompatible;
4727  }
4728  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
4729  // to the same ExtVector type.
4730  if (lhsType->isExtVectorType()) {
4731    if (rhsType->isExtVectorType())
4732      return lhsType == rhsType ? Compatible : Incompatible;
4733    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
4734      return Compatible;
4735  }
4736
4737  if (lhsType->isVectorType() || rhsType->isVectorType()) {
4738    // If we are allowing lax vector conversions, and LHS and RHS are both
4739    // vectors, the total size only needs to be the same. This is a bitcast;
4740    // no bits are changed but the result type is different.
4741    if (getLangOptions().LaxVectorConversions &&
4742        lhsType->isVectorType() && rhsType->isVectorType()) {
4743      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
4744        return IncompatibleVectors;
4745    }
4746    return Incompatible;
4747  }
4748
4749  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
4750    return Compatible;
4751
4752  if (isa<PointerType>(lhsType)) {
4753    if (rhsType->isIntegerType())
4754      return IntToPointer;
4755
4756    if (isa<PointerType>(rhsType))
4757      return CheckPointerTypesForAssignment(lhsType, rhsType);
4758
4759    // In general, C pointers are not compatible with ObjC object pointers.
4760    if (isa<ObjCObjectPointerType>(rhsType)) {
4761      if (lhsType->isVoidPointerType()) // an exception to the rule.
4762        return Compatible;
4763      return IncompatiblePointer;
4764    }
4765    if (rhsType->getAs<BlockPointerType>()) {
4766      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4767        return Compatible;
4768
4769      // Treat block pointers as objects.
4770      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
4771        return Compatible;
4772    }
4773    return Incompatible;
4774  }
4775
4776  if (isa<BlockPointerType>(lhsType)) {
4777    if (rhsType->isIntegerType())
4778      return IntToBlockPointer;
4779
4780    // Treat block pointers as objects.
4781    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
4782      return Compatible;
4783
4784    if (rhsType->isBlockPointerType())
4785      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
4786
4787    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4788      if (RHSPT->getPointeeType()->isVoidType())
4789        return Compatible;
4790    }
4791    return Incompatible;
4792  }
4793
4794  if (isa<ObjCObjectPointerType>(lhsType)) {
4795    if (rhsType->isIntegerType())
4796      return IntToPointer;
4797
4798    // In general, C pointers are not compatible with ObjC object pointers.
4799    if (isa<PointerType>(rhsType)) {
4800      if (rhsType->isVoidPointerType()) // an exception to the rule.
4801        return Compatible;
4802      return IncompatiblePointer;
4803    }
4804    if (rhsType->isObjCObjectPointerType()) {
4805      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
4806    }
4807    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
4808      if (RHSPT->getPointeeType()->isVoidType())
4809        return Compatible;
4810    }
4811    // Treat block pointers as objects.
4812    if (rhsType->isBlockPointerType())
4813      return Compatible;
4814    return Incompatible;
4815  }
4816  if (isa<PointerType>(rhsType)) {
4817    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4818    if (lhsType == Context.BoolTy)
4819      return Compatible;
4820
4821    if (lhsType->isIntegerType())
4822      return PointerToInt;
4823
4824    if (isa<PointerType>(lhsType))
4825      return CheckPointerTypesForAssignment(lhsType, rhsType);
4826
4827    if (isa<BlockPointerType>(lhsType) &&
4828        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4829      return Compatible;
4830    return Incompatible;
4831  }
4832  if (isa<ObjCObjectPointerType>(rhsType)) {
4833    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
4834    if (lhsType == Context.BoolTy)
4835      return Compatible;
4836
4837    if (lhsType->isIntegerType())
4838      return PointerToInt;
4839
4840    // In general, C pointers are not compatible with ObjC object pointers.
4841    if (isa<PointerType>(lhsType)) {
4842      if (lhsType->isVoidPointerType()) // an exception to the rule.
4843        return Compatible;
4844      return IncompatiblePointer;
4845    }
4846    if (isa<BlockPointerType>(lhsType) &&
4847        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
4848      return Compatible;
4849    return Incompatible;
4850  }
4851
4852  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
4853    if (Context.typesAreCompatible(lhsType, rhsType))
4854      return Compatible;
4855  }
4856  return Incompatible;
4857}
4858
4859/// \brief Constructs a transparent union from an expression that is
4860/// used to initialize the transparent union.
4861static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
4862                                      QualType UnionType, FieldDecl *Field) {
4863  // Build an initializer list that designates the appropriate member
4864  // of the transparent union.
4865  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
4866                                                   &E, 1,
4867                                                   SourceLocation());
4868  Initializer->setType(UnionType);
4869  Initializer->setInitializedFieldInUnion(Field);
4870
4871  // Build a compound literal constructing a value of the transparent
4872  // union type from this initializer list.
4873  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
4874  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
4875                                  Initializer, false);
4876}
4877
4878Sema::AssignConvertType
4879Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
4880  QualType FromType = rExpr->getType();
4881
4882  // If the ArgType is a Union type, we want to handle a potential
4883  // transparent_union GCC extension.
4884  const RecordType *UT = ArgType->getAsUnionType();
4885  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
4886    return Incompatible;
4887
4888  // The field to initialize within the transparent union.
4889  RecordDecl *UD = UT->getDecl();
4890  FieldDecl *InitField = 0;
4891  // It's compatible if the expression matches any of the fields.
4892  for (RecordDecl::field_iterator it = UD->field_begin(),
4893         itend = UD->field_end();
4894       it != itend; ++it) {
4895    if (it->getType()->isPointerType()) {
4896      // If the transparent union contains a pointer type, we allow:
4897      // 1) void pointer
4898      // 2) null pointer constant
4899      if (FromType->isPointerType())
4900        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
4901          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
4902          InitField = *it;
4903          break;
4904        }
4905
4906      if (rExpr->isNullPointerConstant(Context,
4907                                       Expr::NPC_ValueDependentIsNull)) {
4908        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
4909        InitField = *it;
4910        break;
4911      }
4912    }
4913
4914    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
4915          == Compatible) {
4916      InitField = *it;
4917      break;
4918    }
4919  }
4920
4921  if (!InitField)
4922    return Incompatible;
4923
4924  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
4925  return Compatible;
4926}
4927
4928Sema::AssignConvertType
4929Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
4930  if (getLangOptions().CPlusPlus) {
4931    if (!lhsType->isRecordType()) {
4932      // C++ 5.17p3: If the left operand is not of class type, the
4933      // expression is implicitly converted (C++ 4) to the
4934      // cv-unqualified type of the left operand.
4935      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
4936                                    AA_Assigning))
4937        return Incompatible;
4938      return Compatible;
4939    }
4940
4941    // FIXME: Currently, we fall through and treat C++ classes like C
4942    // structures.
4943  }
4944
4945  // C99 6.5.16.1p1: the left operand is a pointer and the right is
4946  // a null pointer constant.
4947  if ((lhsType->isPointerType() ||
4948       lhsType->isObjCObjectPointerType() ||
4949       lhsType->isBlockPointerType())
4950      && rExpr->isNullPointerConstant(Context,
4951                                      Expr::NPC_ValueDependentIsNull)) {
4952    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
4953    return Compatible;
4954  }
4955
4956  // This check seems unnatural, however it is necessary to ensure the proper
4957  // conversion of functions/arrays. If the conversion were done for all
4958  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
4959  // expressions that surpress this implicit conversion (&, sizeof).
4960  //
4961  // Suppress this for references: C++ 8.5.3p5.
4962  if (!lhsType->isReferenceType())
4963    DefaultFunctionArrayLvalueConversion(rExpr);
4964
4965  Sema::AssignConvertType result =
4966    CheckAssignmentConstraints(lhsType, rExpr->getType());
4967
4968  // C99 6.5.16.1p2: The value of the right operand is converted to the
4969  // type of the assignment expression.
4970  // CheckAssignmentConstraints allows the left-hand side to be a reference,
4971  // so that we can use references in built-in functions even in C.
4972  // The getNonReferenceType() call makes sure that the resulting expression
4973  // does not have reference type.
4974  if (result != Incompatible && rExpr->getType() != lhsType)
4975    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
4976                      CastExpr::CK_Unknown);
4977  return result;
4978}
4979
4980QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4981  Diag(Loc, diag::err_typecheck_invalid_operands)
4982    << lex->getType() << rex->getType()
4983    << lex->getSourceRange() << rex->getSourceRange();
4984  return QualType();
4985}
4986
4987QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
4988  // For conversion purposes, we ignore any qualifiers.
4989  // For example, "const float" and "float" are equivalent.
4990  QualType lhsType =
4991    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
4992  QualType rhsType =
4993    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
4994
4995  // If the vector types are identical, return.
4996  if (lhsType == rhsType)
4997    return lhsType;
4998
4999  // Handle the case of a vector & extvector type of the same size and element
5000  // type.  It would be nice if we only had one vector type someday.
5001  if (getLangOptions().LaxVectorConversions) {
5002    // FIXME: Should we warn here?
5003    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
5004      if (const VectorType *RV = rhsType->getAs<VectorType>())
5005        if (LV->getElementType() == RV->getElementType() &&
5006            LV->getNumElements() == RV->getNumElements()) {
5007          return lhsType->isExtVectorType() ? lhsType : rhsType;
5008        }
5009    }
5010  }
5011
5012  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5013  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5014  bool swapped = false;
5015  if (rhsType->isExtVectorType()) {
5016    swapped = true;
5017    std::swap(rex, lex);
5018    std::swap(rhsType, lhsType);
5019  }
5020
5021  // Handle the case of an ext vector and scalar.
5022  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
5023    QualType EltTy = LV->getElementType();
5024    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
5025      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
5026        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
5027        if (swapped) std::swap(rex, lex);
5028        return lhsType;
5029      }
5030    }
5031    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
5032        rhsType->isRealFloatingType()) {
5033      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
5034        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
5035        if (swapped) std::swap(rex, lex);
5036        return lhsType;
5037      }
5038    }
5039  }
5040
5041  // Vectors of different size or scalar and non-ext-vector are errors.
5042  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5043    << lex->getType() << rex->getType()
5044    << lex->getSourceRange() << rex->getSourceRange();
5045  return QualType();
5046}
5047
5048QualType Sema::CheckMultiplyDivideOperands(
5049  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
5050  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5051    return CheckVectorOperands(Loc, lex, rex);
5052
5053  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5054
5055  if (!lex->getType()->isArithmeticType() ||
5056      !rex->getType()->isArithmeticType())
5057    return InvalidOperands(Loc, lex, rex);
5058
5059  // Check for division by zero.
5060  if (isDiv &&
5061      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5062    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
5063                                     << rex->getSourceRange());
5064
5065  return compType;
5066}
5067
5068QualType Sema::CheckRemainderOperands(
5069  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5070  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5071    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5072      return CheckVectorOperands(Loc, lex, rex);
5073    return InvalidOperands(Loc, lex, rex);
5074  }
5075
5076  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5077
5078  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5079    return InvalidOperands(Loc, lex, rex);
5080
5081  // Check for remainder by zero.
5082  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
5083    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
5084                                 << rex->getSourceRange());
5085
5086  return compType;
5087}
5088
5089QualType Sema::CheckAdditionOperands( // C99 6.5.6
5090  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
5091  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5092    QualType compType = CheckVectorOperands(Loc, lex, rex);
5093    if (CompLHSTy) *CompLHSTy = compType;
5094    return compType;
5095  }
5096
5097  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5098
5099  // handle the common case first (both operands are arithmetic).
5100  if (lex->getType()->isArithmeticType() &&
5101      rex->getType()->isArithmeticType()) {
5102    if (CompLHSTy) *CompLHSTy = compType;
5103    return compType;
5104  }
5105
5106  // Put any potential pointer into PExp
5107  Expr* PExp = lex, *IExp = rex;
5108  if (IExp->getType()->isAnyPointerType())
5109    std::swap(PExp, IExp);
5110
5111  if (PExp->getType()->isAnyPointerType()) {
5112
5113    if (IExp->getType()->isIntegerType()) {
5114      QualType PointeeTy = PExp->getType()->getPointeeType();
5115
5116      // Check for arithmetic on pointers to incomplete types.
5117      if (PointeeTy->isVoidType()) {
5118        if (getLangOptions().CPlusPlus) {
5119          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5120            << lex->getSourceRange() << rex->getSourceRange();
5121          return QualType();
5122        }
5123
5124        // GNU extension: arithmetic on pointer to void
5125        Diag(Loc, diag::ext_gnu_void_ptr)
5126          << lex->getSourceRange() << rex->getSourceRange();
5127      } else if (PointeeTy->isFunctionType()) {
5128        if (getLangOptions().CPlusPlus) {
5129          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5130            << lex->getType() << lex->getSourceRange();
5131          return QualType();
5132        }
5133
5134        // GNU extension: arithmetic on pointer to function
5135        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5136          << lex->getType() << lex->getSourceRange();
5137      } else {
5138        // Check if we require a complete type.
5139        if (((PExp->getType()->isPointerType() &&
5140              !PExp->getType()->isDependentType()) ||
5141              PExp->getType()->isObjCObjectPointerType()) &&
5142             RequireCompleteType(Loc, PointeeTy,
5143                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5144                             << PExp->getSourceRange()
5145                             << PExp->getType()))
5146          return QualType();
5147      }
5148      // Diagnose bad cases where we step over interface counts.
5149      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5150        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5151          << PointeeTy << PExp->getSourceRange();
5152        return QualType();
5153      }
5154
5155      if (CompLHSTy) {
5156        QualType LHSTy = Context.isPromotableBitField(lex);
5157        if (LHSTy.isNull()) {
5158          LHSTy = lex->getType();
5159          if (LHSTy->isPromotableIntegerType())
5160            LHSTy = Context.getPromotedIntegerType(LHSTy);
5161        }
5162        *CompLHSTy = LHSTy;
5163      }
5164      return PExp->getType();
5165    }
5166  }
5167
5168  return InvalidOperands(Loc, lex, rex);
5169}
5170
5171// C99 6.5.6
5172QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
5173                                        SourceLocation Loc, QualType* CompLHSTy) {
5174  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
5175    QualType compType = CheckVectorOperands(Loc, lex, rex);
5176    if (CompLHSTy) *CompLHSTy = compType;
5177    return compType;
5178  }
5179
5180  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
5181
5182  // Enforce type constraints: C99 6.5.6p3.
5183
5184  // Handle the common case first (both operands are arithmetic).
5185  if (lex->getType()->isArithmeticType()
5186      && rex->getType()->isArithmeticType()) {
5187    if (CompLHSTy) *CompLHSTy = compType;
5188    return compType;
5189  }
5190
5191  // Either ptr - int   or   ptr - ptr.
5192  if (lex->getType()->isAnyPointerType()) {
5193    QualType lpointee = lex->getType()->getPointeeType();
5194
5195    // The LHS must be an completely-defined object type.
5196
5197    bool ComplainAboutVoid = false;
5198    Expr *ComplainAboutFunc = 0;
5199    if (lpointee->isVoidType()) {
5200      if (getLangOptions().CPlusPlus) {
5201        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5202          << lex->getSourceRange() << rex->getSourceRange();
5203        return QualType();
5204      }
5205
5206      // GNU C extension: arithmetic on pointer to void
5207      ComplainAboutVoid = true;
5208    } else if (lpointee->isFunctionType()) {
5209      if (getLangOptions().CPlusPlus) {
5210        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5211          << lex->getType() << lex->getSourceRange();
5212        return QualType();
5213      }
5214
5215      // GNU C extension: arithmetic on pointer to function
5216      ComplainAboutFunc = lex;
5217    } else if (!lpointee->isDependentType() &&
5218               RequireCompleteType(Loc, lpointee,
5219                                   PDiag(diag::err_typecheck_sub_ptr_object)
5220                                     << lex->getSourceRange()
5221                                     << lex->getType()))
5222      return QualType();
5223
5224    // Diagnose bad cases where we step over interface counts.
5225    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
5226      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
5227        << lpointee << lex->getSourceRange();
5228      return QualType();
5229    }
5230
5231    // The result type of a pointer-int computation is the pointer type.
5232    if (rex->getType()->isIntegerType()) {
5233      if (ComplainAboutVoid)
5234        Diag(Loc, diag::ext_gnu_void_ptr)
5235          << lex->getSourceRange() << rex->getSourceRange();
5236      if (ComplainAboutFunc)
5237        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5238          << ComplainAboutFunc->getType()
5239          << ComplainAboutFunc->getSourceRange();
5240
5241      if (CompLHSTy) *CompLHSTy = lex->getType();
5242      return lex->getType();
5243    }
5244
5245    // Handle pointer-pointer subtractions.
5246    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
5247      QualType rpointee = RHSPTy->getPointeeType();
5248
5249      // RHS must be a completely-type object type.
5250      // Handle the GNU void* extension.
5251      if (rpointee->isVoidType()) {
5252        if (getLangOptions().CPlusPlus) {
5253          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
5254            << lex->getSourceRange() << rex->getSourceRange();
5255          return QualType();
5256        }
5257
5258        ComplainAboutVoid = true;
5259      } else if (rpointee->isFunctionType()) {
5260        if (getLangOptions().CPlusPlus) {
5261          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
5262            << rex->getType() << rex->getSourceRange();
5263          return QualType();
5264        }
5265
5266        // GNU extension: arithmetic on pointer to function
5267        if (!ComplainAboutFunc)
5268          ComplainAboutFunc = rex;
5269      } else if (!rpointee->isDependentType() &&
5270                 RequireCompleteType(Loc, rpointee,
5271                                     PDiag(diag::err_typecheck_sub_ptr_object)
5272                                       << rex->getSourceRange()
5273                                       << rex->getType()))
5274        return QualType();
5275
5276      if (getLangOptions().CPlusPlus) {
5277        // Pointee types must be the same: C++ [expr.add]
5278        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
5279          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5280            << lex->getType() << rex->getType()
5281            << lex->getSourceRange() << rex->getSourceRange();
5282          return QualType();
5283        }
5284      } else {
5285        // Pointee types must be compatible C99 6.5.6p3
5286        if (!Context.typesAreCompatible(
5287                Context.getCanonicalType(lpointee).getUnqualifiedType(),
5288                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
5289          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
5290            << lex->getType() << rex->getType()
5291            << lex->getSourceRange() << rex->getSourceRange();
5292          return QualType();
5293        }
5294      }
5295
5296      if (ComplainAboutVoid)
5297        Diag(Loc, diag::ext_gnu_void_ptr)
5298          << lex->getSourceRange() << rex->getSourceRange();
5299      if (ComplainAboutFunc)
5300        Diag(Loc, diag::ext_gnu_ptr_func_arith)
5301          << ComplainAboutFunc->getType()
5302          << ComplainAboutFunc->getSourceRange();
5303
5304      if (CompLHSTy) *CompLHSTy = lex->getType();
5305      return Context.getPointerDiffType();
5306    }
5307  }
5308
5309  return InvalidOperands(Loc, lex, rex);
5310}
5311
5312// C99 6.5.7
5313QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5314                                  bool isCompAssign) {
5315  // C99 6.5.7p2: Each of the operands shall have integer type.
5316  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
5317    return InvalidOperands(Loc, lex, rex);
5318
5319  // Vector shifts promote their scalar inputs to vector type.
5320  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5321    return CheckVectorOperands(Loc, lex, rex);
5322
5323  // Shifts don't perform usual arithmetic conversions, they just do integer
5324  // promotions on each operand. C99 6.5.7p3
5325  QualType LHSTy = Context.isPromotableBitField(lex);
5326  if (LHSTy.isNull()) {
5327    LHSTy = lex->getType();
5328    if (LHSTy->isPromotableIntegerType())
5329      LHSTy = Context.getPromotedIntegerType(LHSTy);
5330  }
5331  if (!isCompAssign)
5332    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);
5333
5334  UsualUnaryConversions(rex);
5335
5336  // Sanity-check shift operands
5337  llvm::APSInt Right;
5338  // Check right/shifter operand
5339  if (!rex->isValueDependent() &&
5340      rex->isIntegerConstantExpr(Right, Context)) {
5341    if (Right.isNegative())
5342      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
5343    else {
5344      llvm::APInt LeftBits(Right.getBitWidth(),
5345                          Context.getTypeSize(lex->getType()));
5346      if (Right.uge(LeftBits))
5347        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
5348    }
5349  }
5350
5351  // "The type of the result is that of the promoted left operand."
5352  return LHSTy;
5353}
5354
5355// C99 6.5.8, C++ [expr.rel]
5356QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
5357                                    unsigned OpaqueOpc, bool isRelational) {
5358  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
5359
5360  // Handle vector comparisons separately.
5361  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5362    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
5363
5364  CheckSignCompare(lex, rex, Loc, &Opc);
5365
5366  // C99 6.5.8p3 / C99 6.5.9p4
5367  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
5368    UsualArithmeticConversions(lex, rex);
5369  else {
5370    UsualUnaryConversions(lex);
5371    UsualUnaryConversions(rex);
5372  }
5373  QualType lType = lex->getType();
5374  QualType rType = rex->getType();
5375
5376  if (!lType->isFloatingType()
5377      && !(lType->isBlockPointerType() && isRelational)) {
5378    // For non-floating point types, check for self-comparisons of the form
5379    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5380    // often indicate logic errors in the program.
5381    // NOTE: Don't warn about comparisons of enum constants. These can arise
5382    //  from macro expansions, and are usually quite deliberate.
5383    Expr *LHSStripped = lex->IgnoreParens();
5384    Expr *RHSStripped = rex->IgnoreParens();
5385    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
5386      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
5387        if (DRL->getDecl() == DRR->getDecl() &&
5388            !isa<EnumConstantDecl>(DRL->getDecl()))
5389          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5390
5391    if (isa<CastExpr>(LHSStripped))
5392      LHSStripped = LHSStripped->IgnoreParenCasts();
5393    if (isa<CastExpr>(RHSStripped))
5394      RHSStripped = RHSStripped->IgnoreParenCasts();
5395
5396    // Warn about comparisons against a string constant (unless the other
5397    // operand is null), the user probably wants strcmp.
5398    Expr *literalString = 0;
5399    Expr *literalStringStripped = 0;
5400    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
5401        !RHSStripped->isNullPointerConstant(Context,
5402                                            Expr::NPC_ValueDependentIsNull)) {
5403      literalString = lex;
5404      literalStringStripped = LHSStripped;
5405    } else if ((isa<StringLiteral>(RHSStripped) ||
5406                isa<ObjCEncodeExpr>(RHSStripped)) &&
5407               !LHSStripped->isNullPointerConstant(Context,
5408                                            Expr::NPC_ValueDependentIsNull)) {
5409      literalString = rex;
5410      literalStringStripped = RHSStripped;
5411    }
5412
5413    if (literalString) {
5414      std::string resultComparison;
5415      switch (Opc) {
5416      case BinaryOperator::LT: resultComparison = ") < 0"; break;
5417      case BinaryOperator::GT: resultComparison = ") > 0"; break;
5418      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
5419      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
5420      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
5421      case BinaryOperator::NE: resultComparison = ") != 0"; break;
5422      default: assert(false && "Invalid comparison operator");
5423      }
5424
5425      DiagRuntimeBehavior(Loc,
5426        PDiag(diag::warn_stringcompare)
5427          << isa<ObjCEncodeExpr>(literalStringStripped)
5428          << literalString->getSourceRange()
5429          << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
5430          << CodeModificationHint::CreateInsertion(lex->getLocStart(),
5431                                                   "strcmp(")
5432          << CodeModificationHint::CreateInsertion(
5433                                         PP.getLocForEndOfToken(rex->getLocEnd()),
5434                                         resultComparison));
5435    }
5436  }
5437
5438  // The result of comparisons is 'bool' in C++, 'int' in C.
5439  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
5440
5441  if (isRelational) {
5442    if (lType->isRealType() && rType->isRealType())
5443      return ResultTy;
5444  } else {
5445    // Check for comparisons of floating point operands using != and ==.
5446    if (lType->isFloatingType() && rType->isFloatingType())
5447      CheckFloatComparison(Loc,lex,rex);
5448
5449    if (lType->isArithmeticType() && rType->isArithmeticType())
5450      return ResultTy;
5451  }
5452
5453  bool LHSIsNull = lex->isNullPointerConstant(Context,
5454                                              Expr::NPC_ValueDependentIsNull);
5455  bool RHSIsNull = rex->isNullPointerConstant(Context,
5456                                              Expr::NPC_ValueDependentIsNull);
5457
5458  // All of the following pointer related warnings are GCC extensions, except
5459  // when handling null pointer constants. One day, we can consider making them
5460  // errors (when -pedantic-errors is enabled).
5461  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
5462    QualType LCanPointeeTy =
5463      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
5464    QualType RCanPointeeTy =
5465      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
5466
5467    if (getLangOptions().CPlusPlus) {
5468      if (LCanPointeeTy == RCanPointeeTy)
5469        return ResultTy;
5470      if (!isRelational &&
5471          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5472        // Valid unless comparison between non-null pointer and function pointer
5473        // This is a gcc extension compatibility comparison.
5474        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5475            && !LHSIsNull && !RHSIsNull) {
5476          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5477            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5478          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5479          return ResultTy;
5480        }
5481      }
5482      // C++ [expr.rel]p2:
5483      //   [...] Pointer conversions (4.10) and qualification
5484      //   conversions (4.4) are performed on pointer operands (or on
5485      //   a pointer operand and a null pointer constant) to bring
5486      //   them to their composite pointer type. [...]
5487      //
5488      // C++ [expr.eq]p1 uses the same notion for (in)equality
5489      // comparisons of pointers.
5490      bool NonStandardCompositeType = false;
5491      QualType T = FindCompositePointerType(lex, rex,
5492                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5493      if (T.isNull()) {
5494        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5495          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5496        return QualType();
5497      } else if (NonStandardCompositeType) {
5498        Diag(Loc,
5499             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5500          << lType << rType << T
5501          << lex->getSourceRange() << rex->getSourceRange();
5502      }
5503
5504      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5505      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5506      return ResultTy;
5507    }
5508    // C99 6.5.9p2 and C99 6.5.8p2
5509    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
5510                                   RCanPointeeTy.getUnqualifiedType())) {
5511      // Valid unless a relational comparison of function pointers
5512      if (isRelational && LCanPointeeTy->isFunctionType()) {
5513        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
5514          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5515      }
5516    } else if (!isRelational &&
5517               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
5518      // Valid unless comparison between non-null pointer and function pointer
5519      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
5520          && !LHSIsNull && !RHSIsNull) {
5521        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
5522          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5523      }
5524    } else {
5525      // Invalid
5526      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5527        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5528    }
5529    if (LCanPointeeTy != RCanPointeeTy)
5530      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5531    return ResultTy;
5532  }
5533
5534  if (getLangOptions().CPlusPlus) {
5535    // Comparison of pointers with null pointer constants and equality
5536    // comparisons of member pointers to null pointer constants.
5537    if (RHSIsNull &&
5538        (lType->isPointerType() ||
5539         (!isRelational && lType->isMemberPointerType()))) {
5540      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
5541      return ResultTy;
5542    }
5543    if (LHSIsNull &&
5544        (rType->isPointerType() ||
5545         (!isRelational && rType->isMemberPointerType()))) {
5546      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
5547      return ResultTy;
5548    }
5549
5550    // Comparison of member pointers.
5551    if (!isRelational &&
5552        lType->isMemberPointerType() && rType->isMemberPointerType()) {
5553      // C++ [expr.eq]p2:
5554      //   In addition, pointers to members can be compared, or a pointer to
5555      //   member and a null pointer constant. Pointer to member conversions
5556      //   (4.11) and qualification conversions (4.4) are performed to bring
5557      //   them to a common type. If one operand is a null pointer constant,
5558      //   the common type is the type of the other operand. Otherwise, the
5559      //   common type is a pointer to member type similar (4.4) to the type
5560      //   of one of the operands, with a cv-qualification signature (4.4)
5561      //   that is the union of the cv-qualification signatures of the operand
5562      //   types.
5563      bool NonStandardCompositeType = false;
5564      QualType T = FindCompositePointerType(lex, rex,
5565                              isSFINAEContext()? 0 : &NonStandardCompositeType);
5566      if (T.isNull()) {
5567        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
5568          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5569        return QualType();
5570      } else if (NonStandardCompositeType) {
5571        Diag(Loc,
5572             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
5573          << lType << rType << T
5574          << lex->getSourceRange() << rex->getSourceRange();
5575      }
5576
5577      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
5578      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
5579      return ResultTy;
5580    }
5581
5582    // Comparison of nullptr_t with itself.
5583    if (lType->isNullPtrType() && rType->isNullPtrType())
5584      return ResultTy;
5585  }
5586
5587  // Handle block pointer types.
5588  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
5589    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
5590    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
5591
5592    if (!LHSIsNull && !RHSIsNull &&
5593        !Context.typesAreCompatible(lpointee, rpointee)) {
5594      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5595        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5596    }
5597    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5598    return ResultTy;
5599  }
5600  // Allow block pointers to be compared with null pointer constants.
5601  if (!isRelational
5602      && ((lType->isBlockPointerType() && rType->isPointerType())
5603          || (lType->isPointerType() && rType->isBlockPointerType()))) {
5604    if (!LHSIsNull && !RHSIsNull) {
5605      if (!((rType->isPointerType() && rType->getAs<PointerType>()
5606             ->getPointeeType()->isVoidType())
5607            || (lType->isPointerType() && lType->getAs<PointerType>()
5608                ->getPointeeType()->isVoidType())))
5609        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
5610          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5611    }
5612    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5613    return ResultTy;
5614  }
5615
5616  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
5617    if (lType->isPointerType() || rType->isPointerType()) {
5618      const PointerType *LPT = lType->getAs<PointerType>();
5619      const PointerType *RPT = rType->getAs<PointerType>();
5620      bool LPtrToVoid = LPT ?
5621        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
5622      bool RPtrToVoid = RPT ?
5623        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
5624
5625      if (!LPtrToVoid && !RPtrToVoid &&
5626          !Context.typesAreCompatible(lType, rType)) {
5627        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5628          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5629      }
5630      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5631      return ResultTy;
5632    }
5633    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
5634      if (!Context.areComparableObjCPointerTypes(lType, rType))
5635        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
5636          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5637      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
5638      return ResultTy;
5639    }
5640  }
5641  if (lType->isAnyPointerType() && rType->isIntegerType()) {
5642    unsigned DiagID = 0;
5643    if (RHSIsNull) {
5644      if (isRelational)
5645        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5646    } else if (isRelational)
5647      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5648    else
5649      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5650
5651    if (DiagID) {
5652      Diag(Loc, DiagID)
5653        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5654    }
5655    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5656    return ResultTy;
5657  }
5658  if (lType->isIntegerType() && rType->isAnyPointerType()) {
5659    unsigned DiagID = 0;
5660    if (LHSIsNull) {
5661      if (isRelational)
5662        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
5663    } else if (isRelational)
5664      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
5665    else
5666      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
5667
5668    if (DiagID) {
5669      Diag(Loc, DiagID)
5670        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
5671    }
5672    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5673    return ResultTy;
5674  }
5675  // Handle block pointers.
5676  if (!isRelational && RHSIsNull
5677      && lType->isBlockPointerType() && rType->isIntegerType()) {
5678    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
5679    return ResultTy;
5680  }
5681  if (!isRelational && LHSIsNull
5682      && lType->isIntegerType() && rType->isBlockPointerType()) {
5683    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
5684    return ResultTy;
5685  }
5686  return InvalidOperands(Loc, lex, rex);
5687}
5688
5689/// CheckVectorCompareOperands - vector comparisons are a clang extension that
5690/// operates on extended vector types.  Instead of producing an IntTy result,
5691/// like a scalar comparison, a vector comparison produces a vector of integer
5692/// types.
5693QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
5694                                          SourceLocation Loc,
5695                                          bool isRelational) {
5696  // Check to make sure we're operating on vectors of the same type and width,
5697  // Allowing one side to be a scalar of element type.
5698  QualType vType = CheckVectorOperands(Loc, lex, rex);
5699  if (vType.isNull())
5700    return vType;
5701
5702  QualType lType = lex->getType();
5703  QualType rType = rex->getType();
5704
5705  // For non-floating point types, check for self-comparisons of the form
5706  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
5707  // often indicate logic errors in the program.
5708  if (!lType->isFloatingType()) {
5709    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
5710      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
5711        if (DRL->getDecl() == DRR->getDecl())
5712          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
5713  }
5714
5715  // Check for comparisons of floating point operands using != and ==.
5716  if (!isRelational && lType->isFloatingType()) {
5717    assert (rType->isFloatingType());
5718    CheckFloatComparison(Loc,lex,rex);
5719  }
5720
5721  // Return the type for the comparison, which is the same as vector type for
5722  // integer vectors, or an integer type of identical size and number of
5723  // elements for floating point vectors.
5724  if (lType->isIntegerType())
5725    return lType;
5726
5727  const VectorType *VTy = lType->getAs<VectorType>();
5728  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
5729  if (TypeSize == Context.getTypeSize(Context.IntTy))
5730    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
5731  if (TypeSize == Context.getTypeSize(Context.LongTy))
5732    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
5733
5734  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
5735         "Unhandled vector element size in vector compare");
5736  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
5737}
5738
5739inline QualType Sema::CheckBitwiseOperands(
5740  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
5741  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
5742    return CheckVectorOperands(Loc, lex, rex);
5743
5744  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
5745
5746  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
5747    return compType;
5748  return InvalidOperands(Loc, lex, rex);
5749}
5750
5751inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
5752  Expr *&lex, Expr *&rex, SourceLocation Loc) {
5753  if (!Context.getLangOptions().CPlusPlus) {
5754    UsualUnaryConversions(lex);
5755    UsualUnaryConversions(rex);
5756
5757    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
5758      return InvalidOperands(Loc, lex, rex);
5759
5760    return Context.IntTy;
5761  }
5762
5763  // C++ [expr.log.and]p1
5764  // C++ [expr.log.or]p1
5765  // The operands are both implicitly converted to type bool (clause 4).
5766  StandardConversionSequence LHS;
5767  if (!IsStandardConversion(lex, Context.BoolTy,
5768                            /*InOverloadResolution=*/false, LHS))
5769    return InvalidOperands(Loc, lex, rex);
5770
5771  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
5772                                AA_Passing, /*IgnoreBaseAccess=*/false))
5773    return InvalidOperands(Loc, lex, rex);
5774
5775  StandardConversionSequence RHS;
5776  if (!IsStandardConversion(rex, Context.BoolTy,
5777                            /*InOverloadResolution=*/false, RHS))
5778    return InvalidOperands(Loc, lex, rex);
5779
5780  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
5781                                AA_Passing, /*IgnoreBaseAccess=*/false))
5782    return InvalidOperands(Loc, lex, rex);
5783
5784  // C++ [expr.log.and]p2
5785  // C++ [expr.log.or]p2
5786  // The result is a bool.
5787  return Context.BoolTy;
5788}
5789
5790/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
5791/// is a read-only property; return true if so. A readonly property expression
5792/// depends on various declarations and thus must be treated specially.
5793///
5794static bool IsReadonlyProperty(Expr *E, Sema &S) {
5795  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
5796    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
5797    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
5798      QualType BaseType = PropExpr->getBase()->getType();
5799      if (const ObjCObjectPointerType *OPT =
5800            BaseType->getAsObjCInterfacePointerType())
5801        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
5802          if (S.isPropertyReadonly(PDecl, IFace))
5803            return true;
5804    }
5805  }
5806  return false;
5807}
5808
5809/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
5810/// emit an error and return true.  If so, return false.
5811static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
5812  SourceLocation OrigLoc = Loc;
5813  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
5814                                                              &Loc);
5815  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
5816    IsLV = Expr::MLV_ReadonlyProperty;
5817  if (IsLV == Expr::MLV_Valid)
5818    return false;
5819
5820  unsigned Diag = 0;
5821  bool NeedType = false;
5822  switch (IsLV) { // C99 6.5.16p2
5823  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
5824  case Expr::MLV_ArrayType:
5825    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
5826    NeedType = true;
5827    break;
5828  case Expr::MLV_NotObjectType:
5829    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
5830    NeedType = true;
5831    break;
5832  case Expr::MLV_LValueCast:
5833    Diag = diag::err_typecheck_lvalue_casts_not_supported;
5834    break;
5835  case Expr::MLV_Valid:
5836    llvm_unreachable("did not take early return for MLV_Valid");
5837  case Expr::MLV_InvalidExpression:
5838  case Expr::MLV_MemberFunction:
5839  case Expr::MLV_ClassTemporary:
5840    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
5841    break;
5842  case Expr::MLV_IncompleteType:
5843  case Expr::MLV_IncompleteVoidType:
5844    return S.RequireCompleteType(Loc, E->getType(),
5845              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
5846                  << E->getSourceRange());
5847  case Expr::MLV_DuplicateVectorComponents:
5848    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
5849    break;
5850  case Expr::MLV_NotBlockQualified:
5851    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
5852    break;
5853  case Expr::MLV_ReadonlyProperty:
5854    Diag = diag::error_readonly_property_assignment;
5855    break;
5856  case Expr::MLV_NoSetterProperty:
5857    Diag = diag::error_nosetter_property_assignment;
5858    break;
5859  case Expr::MLV_SubObjCPropertySetting:
5860    Diag = diag::error_no_subobject_property_setting;
5861    break;
5862  }
5863
5864  SourceRange Assign;
5865  if (Loc != OrigLoc)
5866    Assign = SourceRange(OrigLoc, OrigLoc);
5867  if (NeedType)
5868    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
5869  else
5870    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
5871  return true;
5872}
5873
5874
5875
5876// C99 6.5.16.1
5877QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
5878                                       SourceLocation Loc,
5879                                       QualType CompoundType) {
5880  // Verify that LHS is a modifiable lvalue, and emit error if not.
5881  if (CheckForModifiableLvalue(LHS, Loc, *this))
5882    return QualType();
5883
5884  QualType LHSType = LHS->getType();
5885  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
5886
5887  AssignConvertType ConvTy;
5888  if (CompoundType.isNull()) {
5889    // Simple assignment "x = y".
5890    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
5891    // Special case of NSObject attributes on c-style pointer types.
5892    if (ConvTy == IncompatiblePointer &&
5893        ((Context.isObjCNSObjectType(LHSType) &&
5894          RHSType->isObjCObjectPointerType()) ||
5895         (Context.isObjCNSObjectType(RHSType) &&
5896          LHSType->isObjCObjectPointerType())))
5897      ConvTy = Compatible;
5898
5899    // If the RHS is a unary plus or minus, check to see if they = and + are
5900    // right next to each other.  If so, the user may have typo'd "x =+ 4"
5901    // instead of "x += 4".
5902    Expr *RHSCheck = RHS;
5903    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
5904      RHSCheck = ICE->getSubExpr();
5905    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
5906      if ((UO->getOpcode() == UnaryOperator::Plus ||
5907           UO->getOpcode() == UnaryOperator::Minus) &&
5908          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
5909          // Only if the two operators are exactly adjacent.
5910          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
5911          // And there is a space or other character before the subexpr of the
5912          // unary +/-.  We don't want to warn on "x=-1".
5913          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
5914          UO->getSubExpr()->getLocStart().isFileID()) {
5915        Diag(Loc, diag::warn_not_compound_assign)
5916          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
5917          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
5918      }
5919    }
5920  } else {
5921    // Compound assignment "x += y"
5922    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
5923  }
5924
5925  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
5926                               RHS, AA_Assigning))
5927    return QualType();
5928
5929  // C99 6.5.16p3: The type of an assignment expression is the type of the
5930  // left operand unless the left operand has qualified type, in which case
5931  // it is the unqualified version of the type of the left operand.
5932  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
5933  // is converted to the type of the assignment expression (above).
5934  // C++ 5.17p1: the type of the assignment expression is that of its left
5935  // operand.
5936  return LHSType.getUnqualifiedType();
5937}
5938
5939// C99 6.5.17
5940QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
5941  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
5942  // C++ does not perform this conversion (C++ [expr.comma]p1).
5943  if (!getLangOptions().CPlusPlus)
5944    DefaultFunctionArrayLvalueConversion(RHS);
5945
5946  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
5947  // incomplete in C++).
5948
5949  return RHS->getType();
5950}
5951
5952/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
5953/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
5954QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
5955                                              bool isInc) {
5956  if (Op->isTypeDependent())
5957    return Context.DependentTy;
5958
5959  QualType ResType = Op->getType();
5960  assert(!ResType.isNull() && "no type for increment/decrement expression");
5961
5962  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
5963    // Decrement of bool is not allowed.
5964    if (!isInc) {
5965      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
5966      return QualType();
5967    }
5968    // Increment of bool sets it to true, but is deprecated.
5969    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
5970  } else if (ResType->isRealType()) {
5971    // OK!
5972  } else if (ResType->isAnyPointerType()) {
5973    QualType PointeeTy = ResType->getPointeeType();
5974
5975    // C99 6.5.2.4p2, 6.5.6p2
5976    if (PointeeTy->isVoidType()) {
5977      if (getLangOptions().CPlusPlus) {
5978        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
5979          << Op->getSourceRange();
5980        return QualType();
5981      }
5982
5983      // Pointer to void is a GNU extension in C.
5984      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
5985    } else if (PointeeTy->isFunctionType()) {
5986      if (getLangOptions().CPlusPlus) {
5987        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
5988          << Op->getType() << Op->getSourceRange();
5989        return QualType();
5990      }
5991
5992      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
5993        << ResType << Op->getSourceRange();
5994    } else if (RequireCompleteType(OpLoc, PointeeTy,
5995                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
5996                             << Op->getSourceRange()
5997                             << ResType))
5998      return QualType();
5999    // Diagnose bad cases where we step over interface counts.
6000    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
6001      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6002        << PointeeTy << Op->getSourceRange();
6003      return QualType();
6004    }
6005  } else if (ResType->isAnyComplexType()) {
6006    // C99 does not support ++/-- on complex types, we allow as an extension.
6007    Diag(OpLoc, diag::ext_integer_increment_complex)
6008      << ResType << Op->getSourceRange();
6009  } else {
6010    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
6011      << ResType << int(isInc) << Op->getSourceRange();
6012    return QualType();
6013  }
6014  // At this point, we know we have a real, complex or pointer type.
6015  // Now make sure the operand is a modifiable lvalue.
6016  if (CheckForModifiableLvalue(Op, OpLoc, *this))
6017    return QualType();
6018  return ResType;
6019}
6020
6021/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
6022/// This routine allows us to typecheck complex/recursive expressions
6023/// where the declaration is needed for type checking. We only need to
6024/// handle cases when the expression references a function designator
6025/// or is an lvalue. Here are some examples:
6026///  - &(x) => x
6027///  - &*****f => f for f a function designator.
6028///  - &s.xx => s
6029///  - &s.zz[1].yy -> s, if zz is an array
6030///  - *(x + 1) -> x, if x is an array
6031///  - &"123"[2] -> 0
6032///  - & __real__ x -> x
6033static NamedDecl *getPrimaryDecl(Expr *E) {
6034  switch (E->getStmtClass()) {
6035  case Stmt::DeclRefExprClass:
6036    return cast<DeclRefExpr>(E)->getDecl();
6037  case Stmt::MemberExprClass:
6038    // If this is an arrow operator, the address is an offset from
6039    // the base's value, so the object the base refers to is
6040    // irrelevant.
6041    if (cast<MemberExpr>(E)->isArrow())
6042      return 0;
6043    // Otherwise, the expression refers to a part of the base
6044    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
6045  case Stmt::ArraySubscriptExprClass: {
6046    // FIXME: This code shouldn't be necessary!  We should catch the implicit
6047    // promotion of register arrays earlier.
6048    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
6049    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
6050      if (ICE->getSubExpr()->getType()->isArrayType())
6051        return getPrimaryDecl(ICE->getSubExpr());
6052    }
6053    return 0;
6054  }
6055  case Stmt::UnaryOperatorClass: {
6056    UnaryOperator *UO = cast<UnaryOperator>(E);
6057
6058    switch(UO->getOpcode()) {
6059    case UnaryOperator::Real:
6060    case UnaryOperator::Imag:
6061    case UnaryOperator::Extension:
6062      return getPrimaryDecl(UO->getSubExpr());
6063    default:
6064      return 0;
6065    }
6066  }
6067  case Stmt::ParenExprClass:
6068    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
6069  case Stmt::ImplicitCastExprClass:
6070    // If the result of an implicit cast is an l-value, we care about
6071    // the sub-expression; otherwise, the result here doesn't matter.
6072    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
6073  default:
6074    return 0;
6075  }
6076}
6077
6078/// CheckAddressOfOperand - The operand of & must be either a function
6079/// designator or an lvalue designating an object. If it is an lvalue, the
6080/// object cannot be declared with storage class register or be a bit field.
6081/// Note: The usual conversions are *not* applied to the operand of the &
6082/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
6083/// In C++, the operand might be an overloaded function name, in which case
6084/// we allow the '&' but retain the overloaded-function type.
6085QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
6086  // Make sure to ignore parentheses in subsequent checks
6087  op = op->IgnoreParens();
6088
6089  if (op->isTypeDependent())
6090    return Context.DependentTy;
6091
6092  if (getLangOptions().C99) {
6093    // Implement C99-only parts of addressof rules.
6094    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
6095      if (uOp->getOpcode() == UnaryOperator::Deref)
6096        // Per C99 6.5.3.2, the address of a deref always returns a valid result
6097        // (assuming the deref expression is valid).
6098        return uOp->getSubExpr()->getType();
6099    }
6100    // Technically, there should be a check for array subscript
6101    // expressions here, but the result of one is always an lvalue anyway.
6102  }
6103  NamedDecl *dcl = getPrimaryDecl(op);
6104  Expr::isLvalueResult lval = op->isLvalue(Context);
6105
6106  MemberExpr *ME = dyn_cast<MemberExpr>(op);
6107  if (lval == Expr::LV_MemberFunction && ME &&
6108      isa<CXXMethodDecl>(ME->getMemberDecl())) {
6109    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
6110    // &f where f is a member of the current object, or &o.f, or &p->f
6111    // All these are not allowed, and we need to catch them before the dcl
6112    // branch of the if, below.
6113    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
6114        << dcl;
6115    // FIXME: Improve this diagnostic and provide a fixit.
6116
6117    // Now recover by acting as if the function had been accessed qualified.
6118    return Context.getMemberPointerType(op->getType(),
6119                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
6120                       .getTypePtr());
6121  } else if (lval == Expr::LV_ClassTemporary) {
6122    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
6123                                 : diag::ext_typecheck_addrof_class_temporary)
6124      << op->getType() << op->getSourceRange();
6125    if (isSFINAEContext())
6126      return QualType();
6127  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
6128    // C99 6.5.3.2p1
6129    // The operand must be either an l-value or a function designator
6130    if (!op->getType()->isFunctionType()) {
6131      // FIXME: emit more specific diag...
6132      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
6133        << op->getSourceRange();
6134      return QualType();
6135    }
6136  } else if (op->getBitField()) { // C99 6.5.3.2p1
6137    // The operand cannot be a bit-field
6138    Diag(OpLoc, diag::err_typecheck_address_of)
6139      << "bit-field" << op->getSourceRange();
6140        return QualType();
6141  } else if (op->refersToVectorElement()) {
6142    // The operand cannot be an element of a vector
6143    Diag(OpLoc, diag::err_typecheck_address_of)
6144      << "vector element" << op->getSourceRange();
6145    return QualType();
6146  } else if (isa<ObjCPropertyRefExpr>(op)) {
6147    // cannot take address of a property expression.
6148    Diag(OpLoc, diag::err_typecheck_address_of)
6149      << "property expression" << op->getSourceRange();
6150    return QualType();
6151  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
6152    // FIXME: Can LHS ever be null here?
6153    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
6154      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
6155  } else if (isa<UnresolvedLookupExpr>(op)) {
6156    return Context.OverloadTy;
6157  } else if (dcl) { // C99 6.5.3.2p1
6158    // We have an lvalue with a decl. Make sure the decl is not declared
6159    // with the register storage-class specifier.
6160    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
6161      if (vd->getStorageClass() == VarDecl::Register) {
6162        Diag(OpLoc, diag::err_typecheck_address_of)
6163          << "register variable" << op->getSourceRange();
6164        return QualType();
6165      }
6166    } else if (isa<FunctionTemplateDecl>(dcl)) {
6167      return Context.OverloadTy;
6168    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
6169      // Okay: we can take the address of a field.
6170      // Could be a pointer to member, though, if there is an explicit
6171      // scope qualifier for the class.
6172      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
6173        DeclContext *Ctx = dcl->getDeclContext();
6174        if (Ctx && Ctx->isRecord()) {
6175          if (FD->getType()->isReferenceType()) {
6176            Diag(OpLoc,
6177                 diag::err_cannot_form_pointer_to_member_of_reference_type)
6178              << FD->getDeclName() << FD->getType();
6179            return QualType();
6180          }
6181
6182          return Context.getMemberPointerType(op->getType(),
6183                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
6184        }
6185      }
6186    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
6187      // Okay: we can take the address of a function.
6188      // As above.
6189      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
6190          MD->isInstance())
6191        return Context.getMemberPointerType(op->getType(),
6192              Context.getTypeDeclType(MD->getParent()).getTypePtr());
6193    } else if (!isa<FunctionDecl>(dcl))
6194      assert(0 && "Unknown/unexpected decl type");
6195  }
6196
6197  if (lval == Expr::LV_IncompleteVoidType) {
6198    // Taking the address of a void variable is technically illegal, but we
6199    // allow it in cases which are otherwise valid.
6200    // Example: "extern void x; void* y = &x;".
6201    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
6202  }
6203
6204  // If the operand has type "type", the result has type "pointer to type".
6205  return Context.getPointerType(op->getType());
6206}
6207
6208QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
6209  if (Op->isTypeDependent())
6210    return Context.DependentTy;
6211
6212  UsualUnaryConversions(Op);
6213  QualType Ty = Op->getType();
6214
6215  // Note that per both C89 and C99, this is always legal, even if ptype is an
6216  // incomplete type or void.  It would be possible to warn about dereferencing
6217  // a void pointer, but it's completely well-defined, and such a warning is
6218  // unlikely to catch any mistakes.
6219  if (const PointerType *PT = Ty->getAs<PointerType>())
6220    return PT->getPointeeType();
6221
6222  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
6223    return OPT->getPointeeType();
6224
6225  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
6226    << Ty << Op->getSourceRange();
6227  return QualType();
6228}
6229
6230static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
6231  tok::TokenKind Kind) {
6232  BinaryOperator::Opcode Opc;
6233  switch (Kind) {
6234  default: assert(0 && "Unknown binop!");
6235  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
6236  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
6237  case tok::star:                 Opc = BinaryOperator::Mul; break;
6238  case tok::slash:                Opc = BinaryOperator::Div; break;
6239  case tok::percent:              Opc = BinaryOperator::Rem; break;
6240  case tok::plus:                 Opc = BinaryOperator::Add; break;
6241  case tok::minus:                Opc = BinaryOperator::Sub; break;
6242  case tok::lessless:             Opc = BinaryOperator::Shl; break;
6243  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
6244  case tok::lessequal:            Opc = BinaryOperator::LE; break;
6245  case tok::less:                 Opc = BinaryOperator::LT; break;
6246  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
6247  case tok::greater:              Opc = BinaryOperator::GT; break;
6248  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
6249  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
6250  case tok::amp:                  Opc = BinaryOperator::And; break;
6251  case tok::caret:                Opc = BinaryOperator::Xor; break;
6252  case tok::pipe:                 Opc = BinaryOperator::Or; break;
6253  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
6254  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
6255  case tok::equal:                Opc = BinaryOperator::Assign; break;
6256  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
6257  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
6258  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
6259  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
6260  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
6261  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
6262  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
6263  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
6264  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
6265  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
6266  case tok::comma:                Opc = BinaryOperator::Comma; break;
6267  }
6268  return Opc;
6269}
6270
6271static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
6272  tok::TokenKind Kind) {
6273  UnaryOperator::Opcode Opc;
6274  switch (Kind) {
6275  default: assert(0 && "Unknown unary op!");
6276  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
6277  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
6278  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
6279  case tok::star:         Opc = UnaryOperator::Deref; break;
6280  case tok::plus:         Opc = UnaryOperator::Plus; break;
6281  case tok::minus:        Opc = UnaryOperator::Minus; break;
6282  case tok::tilde:        Opc = UnaryOperator::Not; break;
6283  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
6284  case tok::kw___real:    Opc = UnaryOperator::Real; break;
6285  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
6286  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
6287  }
6288  return Opc;
6289}
6290
6291/// CreateBuiltinBinOp - Creates a new built-in binary operation with
6292/// operator @p Opc at location @c TokLoc. This routine only supports
6293/// built-in operations; ActOnBinOp handles overloaded operators.
6294Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
6295                                                  unsigned Op,
6296                                                  Expr *lhs, Expr *rhs) {
6297  QualType ResultTy;     // Result type of the binary operator.
6298  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
6299  // The following two variables are used for compound assignment operators
6300  QualType CompLHSTy;    // Type of LHS after promotions for computation
6301  QualType CompResultTy; // Type of computation result
6302
6303  switch (Opc) {
6304  case BinaryOperator::Assign:
6305    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
6306    break;
6307  case BinaryOperator::PtrMemD:
6308  case BinaryOperator::PtrMemI:
6309    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
6310                                            Opc == BinaryOperator::PtrMemI);
6311    break;
6312  case BinaryOperator::Mul:
6313  case BinaryOperator::Div:
6314    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
6315                                           Opc == BinaryOperator::Div);
6316    break;
6317  case BinaryOperator::Rem:
6318    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
6319    break;
6320  case BinaryOperator::Add:
6321    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
6322    break;
6323  case BinaryOperator::Sub:
6324    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
6325    break;
6326  case BinaryOperator::Shl:
6327  case BinaryOperator::Shr:
6328    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
6329    break;
6330  case BinaryOperator::LE:
6331  case BinaryOperator::LT:
6332  case BinaryOperator::GE:
6333  case BinaryOperator::GT:
6334    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
6335    break;
6336  case BinaryOperator::EQ:
6337  case BinaryOperator::NE:
6338    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
6339    break;
6340  case BinaryOperator::And:
6341  case BinaryOperator::Xor:
6342  case BinaryOperator::Or:
6343    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
6344    break;
6345  case BinaryOperator::LAnd:
6346  case BinaryOperator::LOr:
6347    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
6348    break;
6349  case BinaryOperator::MulAssign:
6350  case BinaryOperator::DivAssign:
6351    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
6352                                              Opc == BinaryOperator::DivAssign);
6353    CompLHSTy = CompResultTy;
6354    if (!CompResultTy.isNull())
6355      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6356    break;
6357  case BinaryOperator::RemAssign:
6358    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
6359    CompLHSTy = CompResultTy;
6360    if (!CompResultTy.isNull())
6361      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6362    break;
6363  case BinaryOperator::AddAssign:
6364    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6365    if (!CompResultTy.isNull())
6366      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6367    break;
6368  case BinaryOperator::SubAssign:
6369    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
6370    if (!CompResultTy.isNull())
6371      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6372    break;
6373  case BinaryOperator::ShlAssign:
6374  case BinaryOperator::ShrAssign:
6375    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
6376    CompLHSTy = CompResultTy;
6377    if (!CompResultTy.isNull())
6378      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6379    break;
6380  case BinaryOperator::AndAssign:
6381  case BinaryOperator::XorAssign:
6382  case BinaryOperator::OrAssign:
6383    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
6384    CompLHSTy = CompResultTy;
6385    if (!CompResultTy.isNull())
6386      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
6387    break;
6388  case BinaryOperator::Comma:
6389    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
6390    break;
6391  }
6392  if (ResultTy.isNull())
6393    return ExprError();
6394  if (CompResultTy.isNull())
6395    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
6396  else
6397    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
6398                                                      CompLHSTy, CompResultTy,
6399                                                      OpLoc));
6400}
6401
6402/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
6403/// ParenRange in parentheses.
6404static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6405                               const PartialDiagnostic &PD,
6406                               SourceRange ParenRange,
6407                               const PartialDiagnostic &SecondPD,
6408                               SourceRange SecondParenRange) {
6409  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6410  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6411    // We can't display the parentheses, so just dig the
6412    // warning/error and return.
6413    Self.Diag(Loc, PD);
6414    return;
6415  }
6416
6417  Self.Diag(Loc, PD)
6418    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
6419    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6420
6421  if (!SecondPD.getDiagID())
6422    return;
6423
6424  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
6425  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
6426    // We can't display the parentheses, so just dig the
6427    // warning/error and return.
6428    Self.Diag(Loc, SecondPD);
6429    return;
6430  }
6431
6432  Self.Diag(Loc, SecondPD)
6433    << CodeModificationHint::CreateInsertion(SecondParenRange.getBegin(), "(")
6434    << CodeModificationHint::CreateInsertion(EndLoc, ")");
6435}
6436
6437/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
6438/// operators are mixed in a way that suggests that the programmer forgot that
6439/// comparison operators have higher precedence. The most typical example of
6440/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
6441static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6442                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
6443  typedef BinaryOperator BinOp;
6444  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
6445                rhsopc = static_cast<BinOp::Opcode>(-1);
6446  if (BinOp *BO = dyn_cast<BinOp>(lhs))
6447    lhsopc = BO->getOpcode();
6448  if (BinOp *BO = dyn_cast<BinOp>(rhs))
6449    rhsopc = BO->getOpcode();
6450
6451  // Subs are not binary operators.
6452  if (lhsopc == -1 && rhsopc == -1)
6453    return;
6454
6455  // Bitwise operations are sometimes used as eager logical ops.
6456  // Don't diagnose this.
6457  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
6458      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
6459    return;
6460
6461  if (BinOp::isComparisonOp(lhsopc))
6462    SuggestParentheses(Self, OpLoc,
6463      Self.PDiag(diag::warn_precedence_bitwise_rel)
6464          << SourceRange(lhs->getLocStart(), OpLoc)
6465          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
6466      lhs->getSourceRange(),
6467      Self.PDiag(diag::note_precedence_bitwise_first)
6468          << BinOp::getOpcodeStr(Opc),
6469      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
6470  else if (BinOp::isComparisonOp(rhsopc))
6471    SuggestParentheses(Self, OpLoc,
6472      Self.PDiag(diag::warn_precedence_bitwise_rel)
6473          << SourceRange(OpLoc, rhs->getLocEnd())
6474          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
6475      rhs->getSourceRange(),
6476      Self.PDiag(diag::note_precedence_bitwise_first)
6477        << BinOp::getOpcodeStr(Opc),
6478      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
6479}
6480
6481/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
6482/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
6483/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
6484static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
6485                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
6486  if (BinaryOperator::isBitwiseOp(Opc))
6487    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
6488}
6489
6490// Binary Operators.  'Tok' is the token for the operator.
6491Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
6492                                          tok::TokenKind Kind,
6493                                          ExprArg LHS, ExprArg RHS) {
6494  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
6495  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
6496
6497  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
6498  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
6499
6500  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
6501  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
6502
6503  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
6504}
6505
6506Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
6507                                          BinaryOperator::Opcode Opc,
6508                                          Expr *lhs, Expr *rhs) {
6509  if (getLangOptions().CPlusPlus &&
6510      (lhs->getType()->isOverloadableType() ||
6511       rhs->getType()->isOverloadableType())) {
6512    // Find all of the overloaded operators visible from this
6513    // point. We perform both an operator-name lookup from the local
6514    // scope and an argument-dependent lookup based on the types of
6515    // the arguments.
6516    UnresolvedSet<16> Functions;
6517    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
6518    if (S && OverOp != OO_None)
6519      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
6520                                   Functions);
6521
6522    // Build the (potentially-overloaded, potentially-dependent)
6523    // binary operation.
6524    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
6525  }
6526
6527  // Build a built-in binary operation.
6528  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
6529}
6530
6531Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
6532                                                    unsigned OpcIn,
6533                                                    ExprArg InputArg) {
6534  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6535
6536  // FIXME: Input is modified below, but InputArg is not updated appropriately.
6537  Expr *Input = (Expr *)InputArg.get();
6538  QualType resultType;
6539  switch (Opc) {
6540  case UnaryOperator::OffsetOf:
6541    assert(false && "Invalid unary operator");
6542    break;
6543
6544  case UnaryOperator::PreInc:
6545  case UnaryOperator::PreDec:
6546  case UnaryOperator::PostInc:
6547  case UnaryOperator::PostDec:
6548    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
6549                                                Opc == UnaryOperator::PreInc ||
6550                                                Opc == UnaryOperator::PostInc);
6551    break;
6552  case UnaryOperator::AddrOf:
6553    resultType = CheckAddressOfOperand(Input, OpLoc);
6554    break;
6555  case UnaryOperator::Deref:
6556    DefaultFunctionArrayLvalueConversion(Input);
6557    resultType = CheckIndirectionOperand(Input, OpLoc);
6558    break;
6559  case UnaryOperator::Plus:
6560  case UnaryOperator::Minus:
6561    UsualUnaryConversions(Input);
6562    resultType = Input->getType();
6563    if (resultType->isDependentType())
6564      break;
6565    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
6566      break;
6567    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
6568             resultType->isEnumeralType())
6569      break;
6570    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
6571             Opc == UnaryOperator::Plus &&
6572             resultType->isPointerType())
6573      break;
6574
6575    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6576      << resultType << Input->getSourceRange());
6577  case UnaryOperator::Not: // bitwise complement
6578    UsualUnaryConversions(Input);
6579    resultType = Input->getType();
6580    if (resultType->isDependentType())
6581      break;
6582    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
6583    if (resultType->isComplexType() || resultType->isComplexIntegerType())
6584      // C99 does not support '~' for complex conjugation.
6585      Diag(OpLoc, diag::ext_integer_complement_complex)
6586        << resultType << Input->getSourceRange();
6587    else if (!resultType->isIntegerType())
6588      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6589        << resultType << Input->getSourceRange());
6590    break;
6591  case UnaryOperator::LNot: // logical negation
6592    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
6593    DefaultFunctionArrayLvalueConversion(Input);
6594    resultType = Input->getType();
6595    if (resultType->isDependentType())
6596      break;
6597    if (!resultType->isScalarType()) // C99 6.5.3.3p1
6598      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
6599        << resultType << Input->getSourceRange());
6600    // LNot always has type int. C99 6.5.3.3p5.
6601    // In C++, it's bool. C++ 5.3.1p8
6602    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
6603    break;
6604  case UnaryOperator::Real:
6605  case UnaryOperator::Imag:
6606    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
6607    break;
6608  case UnaryOperator::Extension:
6609    resultType = Input->getType();
6610    break;
6611  }
6612  if (resultType.isNull())
6613    return ExprError();
6614
6615  InputArg.release();
6616  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
6617}
6618
6619Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
6620                                            UnaryOperator::Opcode Opc,
6621                                            ExprArg input) {
6622  Expr *Input = (Expr*)input.get();
6623  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
6624      Opc != UnaryOperator::Extension) {
6625    // Find all of the overloaded operators visible from this
6626    // point. We perform both an operator-name lookup from the local
6627    // scope and an argument-dependent lookup based on the types of
6628    // the arguments.
6629    UnresolvedSet<16> Functions;
6630    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
6631    if (S && OverOp != OO_None)
6632      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
6633                                   Functions);
6634
6635    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
6636  }
6637
6638  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
6639}
6640
6641// Unary Operators.  'Tok' is the token for the operator.
6642Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
6643                                            tok::TokenKind Op, ExprArg input) {
6644  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
6645}
6646
6647/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
6648Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
6649                                            SourceLocation LabLoc,
6650                                            IdentifierInfo *LabelII) {
6651  // Look up the record for this label identifier.
6652  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
6653
6654  // If we haven't seen this label yet, create a forward reference. It
6655  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
6656  if (LabelDecl == 0)
6657    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
6658
6659  // Create the AST node.  The address of a label always has type 'void*'.
6660  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
6661                                       Context.getPointerType(Context.VoidTy)));
6662}
6663
6664Sema::OwningExprResult
6665Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
6666                    SourceLocation RPLoc) { // "({..})"
6667  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
6668  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
6669  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
6670
6671  bool isFileScope
6672    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
6673  if (isFileScope)
6674    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
6675
6676  // FIXME: there are a variety of strange constraints to enforce here, for
6677  // example, it is not possible to goto into a stmt expression apparently.
6678  // More semantic analysis is needed.
6679
6680  // If there are sub stmts in the compound stmt, take the type of the last one
6681  // as the type of the stmtexpr.
6682  QualType Ty = Context.VoidTy;
6683
6684  if (!Compound->body_empty()) {
6685    Stmt *LastStmt = Compound->body_back();
6686    // If LastStmt is a label, skip down through into the body.
6687    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
6688      LastStmt = Label->getSubStmt();
6689
6690    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
6691      Ty = LastExpr->getType();
6692  }
6693
6694  // FIXME: Check that expression type is complete/non-abstract; statement
6695  // expressions are not lvalues.
6696
6697  substmt.release();
6698  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
6699}
6700
6701Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
6702                                                  SourceLocation BuiltinLoc,
6703                                                  SourceLocation TypeLoc,
6704                                                  TypeTy *argty,
6705                                                  OffsetOfComponent *CompPtr,
6706                                                  unsigned NumComponents,
6707                                                  SourceLocation RPLoc) {
6708  // FIXME: This function leaks all expressions in the offset components on
6709  // error.
6710  // FIXME: Preserve type source info.
6711  QualType ArgTy = GetTypeFromParser(argty);
6712  assert(!ArgTy.isNull() && "Missing type argument!");
6713
6714  bool Dependent = ArgTy->isDependentType();
6715
6716  // We must have at least one component that refers to the type, and the first
6717  // one is known to be a field designator.  Verify that the ArgTy represents
6718  // a struct/union/class.
6719  if (!Dependent && !ArgTy->isRecordType())
6720    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
6721
6722  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
6723  // with an incomplete type would be illegal.
6724
6725  // Otherwise, create a null pointer as the base, and iteratively process
6726  // the offsetof designators.
6727  QualType ArgTyPtr = Context.getPointerType(ArgTy);
6728  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
6729  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
6730                                    ArgTy, SourceLocation());
6731
6732  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
6733  // GCC extension, diagnose them.
6734  // FIXME: This diagnostic isn't actually visible because the location is in
6735  // a system header!
6736  if (NumComponents != 1)
6737    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
6738      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
6739
6740  if (!Dependent) {
6741    bool DidWarnAboutNonPOD = false;
6742
6743    if (RequireCompleteType(TypeLoc, Res->getType(),
6744                            diag::err_offsetof_incomplete_type))
6745      return ExprError();
6746
6747    // FIXME: Dependent case loses a lot of information here. And probably
6748    // leaks like a sieve.
6749    for (unsigned i = 0; i != NumComponents; ++i) {
6750      const OffsetOfComponent &OC = CompPtr[i];
6751      if (OC.isBrackets) {
6752        // Offset of an array sub-field.  TODO: Should we allow vector elements?
6753        const ArrayType *AT = Context.getAsArrayType(Res->getType());
6754        if (!AT) {
6755          Res->Destroy(Context);
6756          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
6757            << Res->getType());
6758        }
6759
6760        // FIXME: C++: Verify that operator[] isn't overloaded.
6761
6762        // Promote the array so it looks more like a normal array subscript
6763        // expression.
6764        DefaultFunctionArrayLvalueConversion(Res);
6765
6766        // C99 6.5.2.1p1
6767        Expr *Idx = static_cast<Expr*>(OC.U.E);
6768        // FIXME: Leaks Res
6769        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
6770          return ExprError(Diag(Idx->getLocStart(),
6771                                diag::err_typecheck_subscript_not_integer)
6772            << Idx->getSourceRange());
6773
6774        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
6775                                               OC.LocEnd);
6776        continue;
6777      }
6778
6779      const RecordType *RC = Res->getType()->getAs<RecordType>();
6780      if (!RC) {
6781        Res->Destroy(Context);
6782        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
6783          << Res->getType());
6784      }
6785
6786      // Get the decl corresponding to this.
6787      RecordDecl *RD = RC->getDecl();
6788      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
6789        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
6790            DiagRuntimeBehavior(BuiltinLoc,
6791                                PDiag(diag::warn_offsetof_non_pod_type)
6792                                  << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
6793                                  << Res->getType()))
6794          DidWarnAboutNonPOD = true;
6795      }
6796
6797      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
6798      LookupQualifiedName(R, RD);
6799
6800      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
6801      // FIXME: Leaks Res
6802      if (!MemberDecl)
6803        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
6804         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));
6805
6806      // FIXME: C++: Verify that MemberDecl isn't a static field.
6807      // FIXME: Verify that MemberDecl isn't a bitfield.
6808      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
6809        Res = BuildAnonymousStructUnionMemberReference(
6810            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
6811      } else {
6812        PerformObjectMemberConversion(Res, /*Qualifier=*/0,
6813                                      *R.begin(), MemberDecl);
6814        // MemberDecl->getType() doesn't get the right qualifiers, but it
6815        // doesn't matter here.
6816        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
6817                MemberDecl->getType().getNonReferenceType());
6818      }
6819    }
6820  }
6821
6822  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
6823                                           Context.getSizeType(), BuiltinLoc));
6824}
6825
6826
6827Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
6828                                                      TypeTy *arg1,TypeTy *arg2,
6829                                                      SourceLocation RPLoc) {
6830  // FIXME: Preserve type source info.
6831  QualType argT1 = GetTypeFromParser(arg1);
6832  QualType argT2 = GetTypeFromParser(arg2);
6833
6834  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
6835
6836  if (getLangOptions().CPlusPlus) {
6837    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
6838      << SourceRange(BuiltinLoc, RPLoc);
6839    return ExprError();
6840  }
6841
6842  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
6843                                                 argT1, argT2, RPLoc));
6844}
6845
6846Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
6847                                             ExprArg cond,
6848                                             ExprArg expr1, ExprArg expr2,
6849                                             SourceLocation RPLoc) {
6850  Expr *CondExpr = static_cast<Expr*>(cond.get());
6851  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
6852  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
6853
6854  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
6855
6856  QualType resType;
6857  bool ValueDependent = false;
6858  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
6859    resType = Context.DependentTy;
6860    ValueDependent = true;
6861  } else {
6862    // The conditional expression is required to be a constant expression.
6863    llvm::APSInt condEval(32);
6864    SourceLocation ExpLoc;
6865    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
6866      return ExprError(Diag(ExpLoc,
6867                       diag::err_typecheck_choose_expr_requires_constant)
6868        << CondExpr->getSourceRange());
6869
6870    // If the condition is > zero, then the AST type is the same as the LSHExpr.
6871    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
6872    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
6873                                             : RHSExpr->isValueDependent();
6874  }
6875
6876  cond.release(); expr1.release(); expr2.release();
6877  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
6878                                        resType, RPLoc,
6879                                        resType->isDependentType(),
6880                                        ValueDependent));
6881}
6882
6883//===----------------------------------------------------------------------===//
6884// Clang Extensions.
6885//===----------------------------------------------------------------------===//
6886
6887/// ActOnBlockStart - This callback is invoked when a block literal is started.
6888void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
6889  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
6890  PushBlockScope(BlockScope, Block);
6891  CurContext->addDecl(Block);
6892  PushDeclContext(BlockScope, Block);
6893}
6894
6895void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
6896  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
6897  BlockScopeInfo *CurBlock = getCurBlock();
6898
6899  if (ParamInfo.getNumTypeObjects() == 0
6900      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
6901    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6902    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6903
6904    if (T->isArrayType()) {
6905      Diag(ParamInfo.getSourceRange().getBegin(),
6906           diag::err_block_returns_array);
6907      return;
6908    }
6909
6910    // The parameter list is optional, if there was none, assume ().
6911    if (!T->isFunctionType())
6912      T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0,
6913                                  FunctionType::ExtInfo());
6914
6915    CurBlock->hasPrototype = true;
6916    CurBlock->isVariadic = false;
6917    // Check for a valid sentinel attribute on this block.
6918    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6919      Diag(ParamInfo.getAttributes()->getLoc(),
6920           diag::warn_attribute_sentinel_not_variadic) << 1;
6921      // FIXME: remove the attribute.
6922    }
6923    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();
6924
6925    // Do not allow returning a objc interface by-value.
6926    if (RetTy->isObjCInterfaceType()) {
6927      Diag(ParamInfo.getSourceRange().getBegin(),
6928           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
6929      return;
6930    }
6931
6932    CurBlock->ReturnType = RetTy;
6933    return;
6934  }
6935
6936  // Analyze arguments to block.
6937  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
6938         "Not a function declarator!");
6939  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
6940
6941  CurBlock->hasPrototype = FTI.hasPrototype;
6942  CurBlock->isVariadic = true;
6943
6944  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
6945  // no arguments, not a function that takes a single void argument.
6946  if (FTI.hasPrototype &&
6947      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6948     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
6949        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
6950    // empty arg list, don't push any params.
6951    CurBlock->isVariadic = false;
6952  } else if (FTI.hasPrototype) {
6953    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6954      ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
6955      if (Param->getIdentifier() == 0 &&
6956          !Param->isImplicit() &&
6957          !Param->isInvalidDecl() &&
6958          !getLangOptions().CPlusPlus)
6959        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
6960      CurBlock->Params.push_back(Param);
6961    }
6962    CurBlock->isVariadic = FTI.isVariadic;
6963  }
6964  CurBlock->TheDecl->setParams(CurBlock->Params.data(),
6965                               CurBlock->Params.size());
6966  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
6967  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
6968
6969  bool ShouldCheckShadow =
6970    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
6971
6972  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
6973         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
6974    (*AI)->setOwningFunction(CurBlock->TheDecl);
6975
6976    // If this has an identifier, add it to the scope stack.
6977    if ((*AI)->getIdentifier()) {
6978      if (ShouldCheckShadow)
6979        CheckShadow(CurBlock->TheScope, *AI);
6980
6981      PushOnScopeChains(*AI, CurBlock->TheScope);
6982    }
6983  }
6984
6985  // Check for a valid sentinel attribute on this block.
6986  if (!CurBlock->isVariadic &&
6987      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
6988    Diag(ParamInfo.getAttributes()->getLoc(),
6989         diag::warn_attribute_sentinel_not_variadic) << 1;
6990    // FIXME: remove the attribute.
6991  }
6992
6993  // Analyze the return type.
6994  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
6995  QualType RetTy = T->getAs<FunctionType>()->getResultType();
6996
6997  // Do not allow returning a objc interface by-value.
6998  if (RetTy->isObjCInterfaceType()) {
6999    Diag(ParamInfo.getSourceRange().getBegin(),
7000         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
7001  } else if (!RetTy->isDependentType())
7002    CurBlock->ReturnType = RetTy;
7003}
7004
7005/// ActOnBlockError - If there is an error parsing a block, this callback
7006/// is invoked to pop the information about the block from the action impl.
7007void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
7008  // Pop off CurBlock, handle nested blocks.
7009  PopDeclContext();
7010  PopFunctionOrBlockScope();
7011  // FIXME: Delete the ParmVarDecl objects as well???
7012}
7013
7014/// ActOnBlockStmtExpr - This is called when the body of a block statement
7015/// literal was successfully completed.  ^(int x){...}
7016Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
7017                                                StmtArg body, Scope *CurScope) {
7018  // If blocks are disabled, emit an error.
7019  if (!LangOpts.Blocks)
7020    Diag(CaretLoc, diag::err_blocks_disable);
7021
7022  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
7023
7024  PopDeclContext();
7025
7026  QualType RetTy = Context.VoidTy;
7027  if (!BSI->ReturnType.isNull())
7028    RetTy = BSI->ReturnType;
7029
7030  llvm::SmallVector<QualType, 8> ArgTypes;
7031  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
7032    ArgTypes.push_back(BSI->Params[i]->getType());
7033
7034  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
7035  QualType BlockTy;
7036  if (!BSI->hasPrototype)
7037    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
7038                                FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7039  else
7040    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
7041                                      BSI->isVariadic, 0, false, false, 0, 0,
7042                                FunctionType::ExtInfo(NoReturn, 0, CC_Default));
7043
7044  // FIXME: Check that return/parameter types are complete/non-abstract
7045  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
7046  BlockTy = Context.getBlockPointerType(BlockTy);
7047
7048  // If needed, diagnose invalid gotos and switches in the block.
7049  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
7050    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
7051
7052  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
7053
7054  bool Good = true;
7055  // Check goto/label use.
7056  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
7057         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
7058    LabelStmt *L = I->second;
7059
7060    // Verify that we have no forward references left.  If so, there was a goto
7061    // or address of a label taken, but no definition of it.
7062    if (L->getSubStmt() != 0)
7063      continue;
7064
7065    // Emit error.
7066    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
7067    Good = false;
7068  }
7069  if (!Good) {
7070    PopFunctionOrBlockScope();
7071    return ExprError();
7072  }
7073
7074  // Issue any analysis-based warnings.
7075  const sema::AnalysisBasedWarnings::Policy &WP =
7076    AnalysisWarnings.getDefaultPolicy();
7077  AnalysisWarnings.IssueWarnings(WP, BSI->TheDecl, BlockTy);
7078
7079  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
7080                                         BSI->hasBlockDeclRefExprs);
7081  PopFunctionOrBlockScope();
7082  return Owned(Result);
7083}
7084
7085Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
7086                                        ExprArg expr, TypeTy *type,
7087                                        SourceLocation RPLoc) {
7088  QualType T = GetTypeFromParser(type);
7089  Expr *E = static_cast<Expr*>(expr.get());
7090  Expr *OrigExpr = E;
7091
7092  InitBuiltinVaListType();
7093
7094  // Get the va_list type
7095  QualType VaListType = Context.getBuiltinVaListType();
7096  if (VaListType->isArrayType()) {
7097    // Deal with implicit array decay; for example, on x86-64,
7098    // va_list is an array, but it's supposed to decay to
7099    // a pointer for va_arg.
7100    VaListType = Context.getArrayDecayedType(VaListType);
7101    // Make sure the input expression also decays appropriately.
7102    UsualUnaryConversions(E);
7103  } else {
7104    // Otherwise, the va_list argument must be an l-value because
7105    // it is modified by va_arg.
7106    if (!E->isTypeDependent() &&
7107        CheckForModifiableLvalue(E, BuiltinLoc, *this))
7108      return ExprError();
7109  }
7110
7111  if (!E->isTypeDependent() &&
7112      !Context.hasSameType(VaListType, E->getType())) {
7113    return ExprError(Diag(E->getLocStart(),
7114                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
7115      << OrigExpr->getType() << E->getSourceRange());
7116  }
7117
7118  // FIXME: Check that type is complete/non-abstract
7119  // FIXME: Warn if a non-POD type is passed in.
7120
7121  expr.release();
7122  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
7123                                       RPLoc));
7124}
7125
7126Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
7127  // The type of __null will be int or long, depending on the size of
7128  // pointers on the target.
7129  QualType Ty;
7130  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
7131    Ty = Context.IntTy;
7132  else
7133    Ty = Context.LongTy;
7134
7135  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
7136}
7137
7138static void
7139MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
7140                                          QualType DstType,
7141                                          Expr *SrcExpr,
7142                                          CodeModificationHint &Hint) {
7143  if (!SemaRef.getLangOptions().ObjC1)
7144    return;
7145
7146  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
7147  if (!PT)
7148    return;
7149
7150  // Check if the destination is of type 'id'.
7151  if (!PT->isObjCIdType()) {
7152    // Check if the destination is the 'NSString' interface.
7153    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
7154    if (!ID || !ID->getIdentifier()->isStr("NSString"))
7155      return;
7156  }
7157
7158  // Strip off any parens and casts.
7159  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
7160  if (!SL || SL->isWide())
7161    return;
7162
7163  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
7164}
7165
7166bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
7167                                    SourceLocation Loc,
7168                                    QualType DstType, QualType SrcType,
7169                                    Expr *SrcExpr, AssignmentAction Action) {
7170  // Decode the result (notice that AST's are still created for extensions).
7171  bool isInvalid = false;
7172  unsigned DiagKind;
7173  CodeModificationHint Hint;
7174
7175  switch (ConvTy) {
7176  default: assert(0 && "Unknown conversion type");
7177  case Compatible: return false;
7178  case PointerToInt:
7179    DiagKind = diag::ext_typecheck_convert_pointer_int;
7180    break;
7181  case IntToPointer:
7182    DiagKind = diag::ext_typecheck_convert_int_pointer;
7183    break;
7184  case IncompatiblePointer:
7185    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
7186    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
7187    break;
7188  case IncompatiblePointerSign:
7189    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
7190    break;
7191  case FunctionVoidPointer:
7192    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
7193    break;
7194  case CompatiblePointerDiscardsQualifiers:
7195    // If the qualifiers lost were because we were applying the
7196    // (deprecated) C++ conversion from a string literal to a char*
7197    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
7198    // Ideally, this check would be performed in
7199    // CheckPointerTypesForAssignment. However, that would require a
7200    // bit of refactoring (so that the second argument is an
7201    // expression, rather than a type), which should be done as part
7202    // of a larger effort to fix CheckPointerTypesForAssignment for
7203    // C++ semantics.
7204    if (getLangOptions().CPlusPlus &&
7205        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
7206      return false;
7207    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
7208    break;
7209  case IncompatibleNestedPointerQualifiers:
7210    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
7211    break;
7212  case IntToBlockPointer:
7213    DiagKind = diag::err_int_to_block_pointer;
7214    break;
7215  case IncompatibleBlockPointer:
7216    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
7217    break;
7218  case IncompatibleObjCQualifiedId:
7219    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
7220    // it can give a more specific diagnostic.
7221    DiagKind = diag::warn_incompatible_qualified_id;
7222    break;
7223  case IncompatibleVectors:
7224    DiagKind = diag::warn_incompatible_vectors;
7225    break;
7226  case Incompatible:
7227    DiagKind = diag::err_typecheck_convert_incompatible;
7228    isInvalid = true;
7229    break;
7230  }
7231
7232  Diag(Loc, DiagKind) << DstType << SrcType << Action
7233    << SrcExpr->getSourceRange() << Hint;
7234  return isInvalid;
7235}
7236
7237bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
7238  llvm::APSInt ICEResult;
7239  if (E->isIntegerConstantExpr(ICEResult, Context)) {
7240    if (Result)
7241      *Result = ICEResult;
7242    return false;
7243  }
7244
7245  Expr::EvalResult EvalResult;
7246
7247  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
7248      EvalResult.HasSideEffects) {
7249    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
7250
7251    if (EvalResult.Diag) {
7252      // We only show the note if it's not the usual "invalid subexpression"
7253      // or if it's actually in a subexpression.
7254      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
7255          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
7256        Diag(EvalResult.DiagLoc, EvalResult.Diag);
7257    }
7258
7259    return true;
7260  }
7261
7262  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
7263    E->getSourceRange();
7264
7265  if (EvalResult.Diag &&
7266      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
7267    Diag(EvalResult.DiagLoc, EvalResult.Diag);
7268
7269  if (Result)
7270    *Result = EvalResult.Val.getInt();
7271  return false;
7272}
7273
7274void
7275Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
7276  ExprEvalContexts.push_back(
7277        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
7278}
7279
7280void
7281Sema::PopExpressionEvaluationContext() {
7282  // Pop the current expression evaluation context off the stack.
7283  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
7284  ExprEvalContexts.pop_back();
7285
7286  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
7287    if (Rec.PotentiallyReferenced) {
7288      // Mark any remaining declarations in the current position of the stack
7289      // as "referenced". If they were not meant to be referenced, semantic
7290      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
7291      for (PotentiallyReferencedDecls::iterator
7292             I = Rec.PotentiallyReferenced->begin(),
7293             IEnd = Rec.PotentiallyReferenced->end();
7294           I != IEnd; ++I)
7295        MarkDeclarationReferenced(I->first, I->second);
7296    }
7297
7298    if (Rec.PotentiallyDiagnosed) {
7299      // Emit any pending diagnostics.
7300      for (PotentiallyEmittedDiagnostics::iterator
7301                I = Rec.PotentiallyDiagnosed->begin(),
7302             IEnd = Rec.PotentiallyDiagnosed->end();
7303           I != IEnd; ++I)
7304        Diag(I->first, I->second);
7305    }
7306  }
7307
7308  // When are coming out of an unevaluated context, clear out any
7309  // temporaries that we may have created as part of the evaluation of
7310  // the expression in that context: they aren't relevant because they
7311  // will never be constructed.
7312  if (Rec.Context == Unevaluated &&
7313      ExprTemporaries.size() > Rec.NumTemporaries)
7314    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
7315                          ExprTemporaries.end());
7316
7317  // Destroy the popped expression evaluation record.
7318  Rec.Destroy();
7319}
7320
7321/// \brief Note that the given declaration was referenced in the source code.
7322///
7323/// This routine should be invoke whenever a given declaration is referenced
7324/// in the source code, and where that reference occurred. If this declaration
7325/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
7326/// C99 6.9p3), then the declaration will be marked as used.
7327///
7328/// \param Loc the location where the declaration was referenced.
7329///
7330/// \param D the declaration that has been referenced by the source code.
7331void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
7332  assert(D && "No declaration?");
7333
7334  if (D->isUsed())
7335    return;
7336
7337  // Mark a parameter or variable declaration "used", regardless of whether we're in a
7338  // template or not. The reason for this is that unevaluated expressions
7339  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
7340  // -Wunused-parameters)
7341  if (isa<ParmVarDecl>(D) ||
7342      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
7343    D->setUsed(true);
7344
7345  // Do not mark anything as "used" within a dependent context; wait for
7346  // an instantiation.
7347  if (CurContext->isDependentContext())
7348    return;
7349
7350  switch (ExprEvalContexts.back().Context) {
7351    case Unevaluated:
7352      // We are in an expression that is not potentially evaluated; do nothing.
7353      return;
7354
7355    case PotentiallyEvaluated:
7356      // We are in a potentially-evaluated expression, so this declaration is
7357      // "used"; handle this below.
7358      break;
7359
7360    case PotentiallyPotentiallyEvaluated:
7361      // We are in an expression that may be potentially evaluated; queue this
7362      // declaration reference until we know whether the expression is
7363      // potentially evaluated.
7364      ExprEvalContexts.back().addReferencedDecl(Loc, D);
7365      return;
7366  }
7367
7368  // Note that this declaration has been used.
7369  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
7370    unsigned TypeQuals;
7371    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
7372        if (!Constructor->isUsed())
7373          DefineImplicitDefaultConstructor(Loc, Constructor);
7374    } else if (Constructor->isImplicit() &&
7375               Constructor->isCopyConstructor(TypeQuals)) {
7376      if (!Constructor->isUsed())
7377        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
7378    }
7379
7380    MaybeMarkVirtualMembersReferenced(Loc, Constructor);
7381  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
7382    if (Destructor->isImplicit() && !Destructor->isUsed())
7383      DefineImplicitDestructor(Loc, Destructor);
7384
7385  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
7386    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
7387        MethodDecl->getOverloadedOperator() == OO_Equal) {
7388      if (!MethodDecl->isUsed())
7389        DefineImplicitOverloadedAssign(Loc, MethodDecl);
7390    }
7391  }
7392  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
7393    // Implicit instantiation of function templates and member functions of
7394    // class templates.
7395    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
7396      bool AlreadyInstantiated = false;
7397      if (FunctionTemplateSpecializationInfo *SpecInfo
7398                                = Function->getTemplateSpecializationInfo()) {
7399        if (SpecInfo->getPointOfInstantiation().isInvalid())
7400          SpecInfo->setPointOfInstantiation(Loc);
7401        else if (SpecInfo->getTemplateSpecializationKind()
7402                   == TSK_ImplicitInstantiation)
7403          AlreadyInstantiated = true;
7404      } else if (MemberSpecializationInfo *MSInfo
7405                                  = Function->getMemberSpecializationInfo()) {
7406        if (MSInfo->getPointOfInstantiation().isInvalid())
7407          MSInfo->setPointOfInstantiation(Loc);
7408        else if (MSInfo->getTemplateSpecializationKind()
7409                   == TSK_ImplicitInstantiation)
7410          AlreadyInstantiated = true;
7411      }
7412
7413      if (!AlreadyInstantiated) {
7414        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
7415            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
7416          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
7417                                                                      Loc));
7418        else
7419          PendingImplicitInstantiations.push_back(std::make_pair(Function,
7420                                                                 Loc));
7421      }
7422    }
7423
7424    // FIXME: keep track of references to static functions
7425    Function->setUsed(true);
7426
7427    return;
7428  }
7429
7430  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
7431    // Implicit instantiation of static data members of class templates.
7432    if (Var->isStaticDataMember() &&
7433        Var->getInstantiatedFromStaticDataMember()) {
7434      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
7435      assert(MSInfo && "Missing member specialization information?");
7436      if (MSInfo->getPointOfInstantiation().isInvalid() &&
7437          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
7438        MSInfo->setPointOfInstantiation(Loc);
7439        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
7440      }
7441    }
7442
7443    // FIXME: keep track of references to static data?
7444
7445    D->setUsed(true);
7446    return;
7447  }
7448}
7449
7450/// \brief Emit a diagnostic that describes an effect on the run-time behavior
7451/// of the program being compiled.
7452///
7453/// This routine emits the given diagnostic when the code currently being
7454/// type-checked is "potentially evaluated", meaning that there is a
7455/// possibility that the code will actually be executable. Code in sizeof()
7456/// expressions, code used only during overload resolution, etc., are not
7457/// potentially evaluated. This routine will suppress such diagnostics or,
7458/// in the absolutely nutty case of potentially potentially evaluated
7459/// expressions (C++ typeid), queue the diagnostic to potentially emit it
7460/// later.
7461///
7462/// This routine should be used for all diagnostics that describe the run-time
7463/// behavior of a program, such as passing a non-POD value through an ellipsis.
7464/// Failure to do so will likely result in spurious diagnostics or failures
7465/// during overload resolution or within sizeof/alignof/typeof/typeid.
7466bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
7467                               const PartialDiagnostic &PD) {
7468  switch (ExprEvalContexts.back().Context ) {
7469  case Unevaluated:
7470    // The argument will never be evaluated, so don't complain.
7471    break;
7472
7473  case PotentiallyEvaluated:
7474    Diag(Loc, PD);
7475    return true;
7476
7477  case PotentiallyPotentiallyEvaluated:
7478    ExprEvalContexts.back().addDiagnostic(Loc, PD);
7479    break;
7480  }
7481
7482  return false;
7483}
7484
7485bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
7486                               CallExpr *CE, FunctionDecl *FD) {
7487  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
7488    return false;
7489
7490  PartialDiagnostic Note =
7491    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
7492    << FD->getDeclName() : PDiag();
7493  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
7494
7495  if (RequireCompleteType(Loc, ReturnType,
7496                          FD ?
7497                          PDiag(diag::err_call_function_incomplete_return)
7498                            << CE->getSourceRange() << FD->getDeclName() :
7499                          PDiag(diag::err_call_incomplete_return)
7500                            << CE->getSourceRange(),
7501                          std::make_pair(NoteLoc, Note)))
7502    return true;
7503
7504  return false;
7505}
7506
7507// Diagnose the common s/=/==/ typo.  Note that adding parentheses
7508// will prevent this condition from triggering, which is what we want.
7509void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
7510  SourceLocation Loc;
7511
7512  unsigned diagnostic = diag::warn_condition_is_assignment;
7513
7514  if (isa<BinaryOperator>(E)) {
7515    BinaryOperator *Op = cast<BinaryOperator>(E);
7516    if (Op->getOpcode() != BinaryOperator::Assign)
7517      return;
7518
7519    // Greylist some idioms by putting them into a warning subcategory.
7520    if (ObjCMessageExpr *ME
7521          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
7522      Selector Sel = ME->getSelector();
7523
7524      // self = [<foo> init...]
7525      if (isSelfExpr(Op->getLHS())
7526          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
7527        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7528
7529      // <foo> = [<bar> nextObject]
7530      else if (Sel.isUnarySelector() &&
7531               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
7532        diagnostic = diag::warn_condition_is_idiomatic_assignment;
7533    }
7534
7535    Loc = Op->getOperatorLoc();
7536  } else if (isa<CXXOperatorCallExpr>(E)) {
7537    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
7538    if (Op->getOperator() != OO_Equal)
7539      return;
7540
7541    Loc = Op->getOperatorLoc();
7542  } else {
7543    // Not an assignment.
7544    return;
7545  }
7546
7547  SourceLocation Open = E->getSourceRange().getBegin();
7548  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
7549
7550  Diag(Loc, diagnostic)
7551    << E->getSourceRange()
7552    << CodeModificationHint::CreateInsertion(Open, "(")
7553    << CodeModificationHint::CreateInsertion(Close, ")");
7554  Diag(Loc, diag::note_condition_assign_to_comparison)
7555    << CodeModificationHint::CreateReplacement(Loc, "==");
7556}
7557
7558bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
7559  DiagnoseAssignmentAsCondition(E);
7560
7561  if (!E->isTypeDependent()) {
7562    DefaultFunctionArrayLvalueConversion(E);
7563
7564    QualType T = E->getType();
7565
7566    if (getLangOptions().CPlusPlus) {
7567      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
7568        return true;
7569    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
7570      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
7571        << T << E->getSourceRange();
7572      return true;
7573    }
7574  }
7575
7576  return false;
7577}
7578