SemaExpr.cpp revision b2ebd48fc5253fa67d29d789ce55d4a921c29bf1
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Scope.h"
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29//  Standard Promotions and Conversions
30//===----------------------------------------------------------------------===//
31
32/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
33void Sema::DefaultFunctionArrayConversion(Expr *&E) {
34  QualType Ty = E->getType();
35  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
36
37  if (const ReferenceType *ref = Ty->getAsReferenceType()) {
38    ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr]
39    Ty = E->getType();
40  }
41  if (Ty->isFunctionType())
42    ImpCastExprToType(E, Context.getPointerType(Ty));
43  else if (Ty->isArrayType()) {
44    // In C90 mode, arrays only promote to pointers if the array expression is
45    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
46    // type 'array of type' is converted to an expression that has type 'pointer
47    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
48    // that has type 'array of type' ...".  The relevant change is "an lvalue"
49    // (C90) to "an expression" (C99).
50    //
51    // C++ 4.2p1:
52    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
53    // T" can be converted to an rvalue of type "pointer to T".
54    //
55    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
56        E->isLvalue(Context) == Expr::LV_Valid)
57      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
58  }
59}
60
61/// UsualUnaryConversions - Performs various conversions that are common to most
62/// operators (C99 6.3). The conversions of array and function types are
63/// sometimes surpressed. For example, the array->pointer conversion doesn't
64/// apply if the array is an argument to the sizeof or address (&) operators.
65/// In these instances, this routine should *not* be called.
66Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
67  QualType Ty = Expr->getType();
68  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
69
70  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
71    ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr]
72    Ty = Expr->getType();
73  }
74  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
75    ImpCastExprToType(Expr, Context.IntTy);
76  else
77    DefaultFunctionArrayConversion(Expr);
78
79  return Expr;
80}
81
82/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
83/// do not have a prototype. Arguments that have type float are promoted to
84/// double. All other argument types are converted by UsualUnaryConversions().
85void Sema::DefaultArgumentPromotion(Expr *&Expr) {
86  QualType Ty = Expr->getType();
87  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
88
89  // If this is a 'float' (CVR qualified or typedef) promote to double.
90  if (const BuiltinType *BT = Ty->getAsBuiltinType())
91    if (BT->getKind() == BuiltinType::Float)
92      return ImpCastExprToType(Expr, Context.DoubleTy);
93
94  UsualUnaryConversions(Expr);
95}
96
97/// UsualArithmeticConversions - Performs various conversions that are common to
98/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
99/// routine returns the first non-arithmetic type found. The client is
100/// responsible for emitting appropriate error diagnostics.
101/// FIXME: verify the conversion rules for "complex int" are consistent with
102/// GCC.
103QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
104                                          bool isCompAssign) {
105  if (!isCompAssign) {
106    UsualUnaryConversions(lhsExpr);
107    UsualUnaryConversions(rhsExpr);
108  }
109  // For conversion purposes, we ignore any qualifiers.
110  // For example, "const float" and "float" are equivalent.
111  QualType lhs =
112    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
113  QualType rhs =
114    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
115
116  // If both types are identical, no conversion is needed.
117  if (lhs == rhs)
118    return lhs;
119
120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
121  // The caller can deal with this (e.g. pointer + int).
122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
123    return lhs;
124
125  // At this point, we have two different arithmetic types.
126
127  // Handle complex types first (C99 6.3.1.8p1).
128  if (lhs->isComplexType() || rhs->isComplexType()) {
129    // if we have an integer operand, the result is the complex type.
130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
131      // convert the rhs to the lhs complex type.
132      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
133      return lhs;
134    }
135    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
136      // convert the lhs to the rhs complex type.
137      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
138      return rhs;
139    }
140    // This handles complex/complex, complex/float, or float/complex.
141    // When both operands are complex, the shorter operand is converted to the
142    // type of the longer, and that is the type of the result. This corresponds
143    // to what is done when combining two real floating-point operands.
144    // The fun begins when size promotion occur across type domains.
145    // From H&S 6.3.4: When one operand is complex and the other is a real
146    // floating-point type, the less precise type is converted, within it's
147    // real or complex domain, to the precision of the other type. For example,
148    // when combining a "long double" with a "double _Complex", the
149    // "double _Complex" is promoted to "long double _Complex".
150    int result = Context.getFloatingTypeOrder(lhs, rhs);
151
152    if (result > 0) { // The left side is bigger, convert rhs.
153      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
154      if (!isCompAssign)
155        ImpCastExprToType(rhsExpr, rhs);
156    } else if (result < 0) { // The right side is bigger, convert lhs.
157      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
158      if (!isCompAssign)
159        ImpCastExprToType(lhsExpr, lhs);
160    }
161    // At this point, lhs and rhs have the same rank/size. Now, make sure the
162    // domains match. This is a requirement for our implementation, C99
163    // does not require this promotion.
164    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
165      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
166        if (!isCompAssign)
167          ImpCastExprToType(lhsExpr, rhs);
168        return rhs;
169      } else { // handle "_Complex double, double".
170        if (!isCompAssign)
171          ImpCastExprToType(rhsExpr, lhs);
172        return lhs;
173      }
174    }
175    return lhs; // The domain/size match exactly.
176  }
177  // Now handle "real" floating types (i.e. float, double, long double).
178  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
179    // if we have an integer operand, the result is the real floating type.
180    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
181      // convert rhs to the lhs floating point type.
182      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
183      return lhs;
184    }
185    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
186      // convert lhs to the rhs floating point type.
187      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
188      return rhs;
189    }
190    // We have two real floating types, float/complex combos were handled above.
191    // Convert the smaller operand to the bigger result.
192    int result = Context.getFloatingTypeOrder(lhs, rhs);
193
194    if (result > 0) { // convert the rhs
195      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
196      return lhs;
197    }
198    if (result < 0) { // convert the lhs
199      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
200      return rhs;
201    }
202    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
203  }
204  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
205    // Handle GCC complex int extension.
206    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
207    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
208
209    if (lhsComplexInt && rhsComplexInt) {
210      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
211                                      rhsComplexInt->getElementType()) >= 0) {
212        // convert the rhs
213        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
214        return lhs;
215      }
216      if (!isCompAssign)
217        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
218      return rhs;
219    } else if (lhsComplexInt && rhs->isIntegerType()) {
220      // convert the rhs to the lhs complex type.
221      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
222      return lhs;
223    } else if (rhsComplexInt && lhs->isIntegerType()) {
224      // convert the lhs to the rhs complex type.
225      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
226      return rhs;
227    }
228  }
229  // Finally, we have two differing integer types.
230  // The rules for this case are in C99 6.3.1.8
231  int compare = Context.getIntegerTypeOrder(lhs, rhs);
232  bool lhsSigned = lhs->isSignedIntegerType(),
233       rhsSigned = rhs->isSignedIntegerType();
234  QualType destType;
235  if (lhsSigned == rhsSigned) {
236    // Same signedness; use the higher-ranked type
237    destType = compare >= 0 ? lhs : rhs;
238  } else if (compare != (lhsSigned ? 1 : -1)) {
239    // The unsigned type has greater than or equal rank to the
240    // signed type, so use the unsigned type
241    destType = lhsSigned ? rhs : lhs;
242  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
243    // The two types are different widths; if we are here, that
244    // means the signed type is larger than the unsigned type, so
245    // use the signed type.
246    destType = lhsSigned ? lhs : rhs;
247  } else {
248    // The signed type is higher-ranked than the unsigned type,
249    // but isn't actually any bigger (like unsigned int and long
250    // on most 32-bit systems).  Use the unsigned type corresponding
251    // to the signed type.
252    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
253  }
254  if (!isCompAssign) {
255    ImpCastExprToType(lhsExpr, destType);
256    ImpCastExprToType(rhsExpr, destType);
257  }
258  return destType;
259}
260
261//===----------------------------------------------------------------------===//
262//  Semantic Analysis for various Expression Types
263//===----------------------------------------------------------------------===//
264
265
266/// ActOnStringLiteral - The specified tokens were lexed as pasted string
267/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
268/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
269/// multiple tokens.  However, the common case is that StringToks points to one
270/// string.
271///
272Action::ExprResult
273Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
274  assert(NumStringToks && "Must have at least one string!");
275
276  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
277  if (Literal.hadError)
278    return ExprResult(true);
279
280  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
281  for (unsigned i = 0; i != NumStringToks; ++i)
282    StringTokLocs.push_back(StringToks[i].getLocation());
283
284  // Verify that pascal strings aren't too large.
285  if (Literal.Pascal && Literal.GetStringLength() > 256)
286    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
287                SourceRange(StringToks[0].getLocation(),
288                            StringToks[NumStringToks-1].getLocation()));
289
290  QualType StrTy = Context.CharTy;
291  if (Literal.AnyWide) StrTy = Context.getWCharType();
292  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
293
294  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
295  if (getLangOptions().CPlusPlus)
296    StrTy.addConst();
297
298  // Get an array type for the string, according to C99 6.4.5.  This includes
299  // the nul terminator character as well as the string length for pascal
300  // strings.
301  StrTy = Context.getConstantArrayType(StrTy,
302                                   llvm::APInt(32, Literal.GetStringLength()+1),
303                                       ArrayType::Normal, 0);
304
305  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
306  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
307                           Literal.AnyWide, StrTy,
308                           StringToks[0].getLocation(),
309                           StringToks[NumStringToks-1].getLocation());
310}
311
312/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
313/// CurBlock to VD should cause it to be snapshotted (as we do for auto
314/// variables defined outside the block) or false if this is not needed (e.g.
315/// for values inside the block or for globals).
316///
317/// FIXME: This will create BlockDeclRefExprs for global variables,
318/// function references, etc which is suboptimal :) and breaks
319/// things like "integer constant expression" tests.
320static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
321                                              ValueDecl *VD) {
322  // If the value is defined inside the block, we couldn't snapshot it even if
323  // we wanted to.
324  if (CurBlock->TheDecl == VD->getDeclContext())
325    return false;
326
327  // If this is an enum constant or function, it is constant, don't snapshot.
328  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
329    return false;
330
331  // If this is a reference to an extern, static, or global variable, no need to
332  // snapshot it.
333  // FIXME: What about 'const' variables in C++?
334  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
335    return Var->hasLocalStorage();
336
337  return true;
338}
339
340
341
342/// ActOnIdentifierExpr - The parser read an identifier in expression context,
343/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
344/// identifier is used in a function call context.
345Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
346                                           IdentifierInfo &II,
347                                           bool HasTrailingLParen) {
348  // Could be enum-constant, value decl, instance variable, etc.
349  Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S);
350
351  // If this reference is in an Objective-C method, then ivar lookup happens as
352  // well.
353  if (getCurMethodDecl()) {
354    ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
355    // There are two cases to handle here.  1) scoped lookup could have failed,
356    // in which case we should look for an ivar.  2) scoped lookup could have
357    // found a decl, but that decl is outside the current method (i.e. a global
358    // variable).  In these two cases, we do a lookup for an ivar with this
359    // name, if the lookup suceeds, we replace it our current decl.
360    if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
361      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
362      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) {
363        // FIXME: This should use a new expr for a direct reference, don't turn
364        // this into Self->ivar, just return a BareIVarExpr or something.
365        IdentifierInfo &II = Context.Idents.get("self");
366        ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
367        return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
368                                 static_cast<Expr*>(SelfExpr.Val), true, true);
369      }
370    }
371    // Needed to implement property "super.method" notation.
372    if (SD == 0 && &II == SuperID) {
373      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
374                     getCurMethodDecl()->getClassInterface()));
375      return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper);
376    }
377  }
378  if (D == 0) {
379    // Otherwise, this could be an implicitly declared function reference (legal
380    // in C90, extension in C99).
381    if (HasTrailingLParen &&
382        !getLangOptions().CPlusPlus) // Not in C++.
383      D = ImplicitlyDefineFunction(Loc, II, S);
384    else {
385      // If this name wasn't predeclared and if this is not a function call,
386      // diagnose the problem.
387      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
388    }
389  }
390
391  if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) {
392    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
393      if (MD->isStatic())
394        // "invalid use of member 'x' in static member function"
395        return Diag(Loc, diag::err_invalid_member_use_in_static_method,
396                    FD->getName());
397      if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent())
398        // "invalid use of nonstatic data member 'x'"
399        return Diag(Loc, diag::err_invalid_non_static_member_use,
400                    FD->getName());
401
402      if (FD->isInvalidDecl())
403        return true;
404
405      // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference.
406      ExprResult ThisExpr = ActOnCXXThis(SourceLocation());
407      return new MemberExpr(static_cast<Expr*>(ThisExpr.Val),
408                            true, FD, Loc, FD->getType());
409    }
410
411    return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName());
412  }
413  if (isa<TypedefDecl>(D))
414    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
415  if (isa<ObjCInterfaceDecl>(D))
416    return Diag(Loc, diag::err_unexpected_interface, II.getName());
417  if (isa<NamespaceDecl>(D))
418    return Diag(Loc, diag::err_unexpected_namespace, II.getName());
419
420  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
421  ValueDecl *VD = cast<ValueDecl>(D);
422
423  // check if referencing an identifier with __attribute__((deprecated)).
424  if (VD->getAttr<DeprecatedAttr>())
425    Diag(Loc, diag::warn_deprecated, VD->getName());
426
427  // Only create DeclRefExpr's for valid Decl's.
428  if (VD->isInvalidDecl())
429    return true;
430
431  // If the identifier reference is inside a block, and it refers to a value
432  // that is outside the block, create a BlockDeclRefExpr instead of a
433  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
434  // the block is formed.
435  //
436  // We do not do this for things like enum constants, global variables, etc,
437  // as they do not get snapshotted.
438  //
439  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
440    // The BlocksAttr indicates the variable is bound by-reference.
441    if (VD->getAttr<BlocksAttr>())
442      return new BlockDeclRefExpr(VD, VD->getType(), Loc, true);
443
444    // Variable will be bound by-copy, make it const within the closure.
445    VD->getType().addConst();
446    return new BlockDeclRefExpr(VD, VD->getType(), Loc, false);
447  }
448  // If this reference is not in a block or if the referenced variable is
449  // within the block, create a normal DeclRefExpr.
450  return new DeclRefExpr(VD, VD->getType(), Loc);
451}
452
453Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
454                                           tok::TokenKind Kind) {
455  PredefinedExpr::IdentType IT;
456
457  switch (Kind) {
458  default: assert(0 && "Unknown simple primary expr!");
459  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
460  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
461  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
462  }
463
464  // Verify that this is in a function context.
465  if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0)
466    return Diag(Loc, diag::err_predef_outside_function);
467
468  // Pre-defined identifiers are of type char[x], where x is the length of the
469  // string.
470  unsigned Length;
471  if (getCurFunctionDecl())
472    Length = getCurFunctionDecl()->getIdentifier()->getLength();
473  else
474    Length = getCurMethodDecl()->getSynthesizedMethodSize();
475
476  llvm::APInt LengthI(32, Length + 1);
477  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
478  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
479  return new PredefinedExpr(Loc, ResTy, IT);
480}
481
482Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
483  llvm::SmallString<16> CharBuffer;
484  CharBuffer.resize(Tok.getLength());
485  const char *ThisTokBegin = &CharBuffer[0];
486  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
487
488  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
489                            Tok.getLocation(), PP);
490  if (Literal.hadError())
491    return ExprResult(true);
492
493  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
494
495  return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
496                              Tok.getLocation());
497}
498
499Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
500  // fast path for a single digit (which is quite common). A single digit
501  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
502  if (Tok.getLength() == 1) {
503    const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
504
505    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
506    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
507                                         Context.IntTy,
508                                         Tok.getLocation()));
509  }
510  llvm::SmallString<512> IntegerBuffer;
511  // Add padding so that NumericLiteralParser can overread by one character.
512  IntegerBuffer.resize(Tok.getLength()+1);
513  const char *ThisTokBegin = &IntegerBuffer[0];
514
515  // Get the spelling of the token, which eliminates trigraphs, etc.
516  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
517
518  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
519                               Tok.getLocation(), PP);
520  if (Literal.hadError)
521    return ExprResult(true);
522
523  Expr *Res;
524
525  if (Literal.isFloatingLiteral()) {
526    QualType Ty;
527    if (Literal.isFloat)
528      Ty = Context.FloatTy;
529    else if (!Literal.isLong)
530      Ty = Context.DoubleTy;
531    else
532      Ty = Context.LongDoubleTy;
533
534    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
535
536    // isExact will be set by GetFloatValue().
537    bool isExact = false;
538    Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
539                              Ty, Tok.getLocation());
540
541  } else if (!Literal.isIntegerLiteral()) {
542    return ExprResult(true);
543  } else {
544    QualType Ty;
545
546    // long long is a C99 feature.
547    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
548        Literal.isLongLong)
549      Diag(Tok.getLocation(), diag::ext_longlong);
550
551    // Get the value in the widest-possible width.
552    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
553
554    if (Literal.GetIntegerValue(ResultVal)) {
555      // If this value didn't fit into uintmax_t, warn and force to ull.
556      Diag(Tok.getLocation(), diag::warn_integer_too_large);
557      Ty = Context.UnsignedLongLongTy;
558      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
559             "long long is not intmax_t?");
560    } else {
561      // If this value fits into a ULL, try to figure out what else it fits into
562      // according to the rules of C99 6.4.4.1p5.
563
564      // Octal, Hexadecimal, and integers with a U suffix are allowed to
565      // be an unsigned int.
566      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
567
568      // Check from smallest to largest, picking the smallest type we can.
569      unsigned Width = 0;
570      if (!Literal.isLong && !Literal.isLongLong) {
571        // Are int/unsigned possibilities?
572        unsigned IntSize = Context.Target.getIntWidth();
573
574        // Does it fit in a unsigned int?
575        if (ResultVal.isIntN(IntSize)) {
576          // Does it fit in a signed int?
577          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
578            Ty = Context.IntTy;
579          else if (AllowUnsigned)
580            Ty = Context.UnsignedIntTy;
581          Width = IntSize;
582        }
583      }
584
585      // Are long/unsigned long possibilities?
586      if (Ty.isNull() && !Literal.isLongLong) {
587        unsigned LongSize = Context.Target.getLongWidth();
588
589        // Does it fit in a unsigned long?
590        if (ResultVal.isIntN(LongSize)) {
591          // Does it fit in a signed long?
592          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
593            Ty = Context.LongTy;
594          else if (AllowUnsigned)
595            Ty = Context.UnsignedLongTy;
596          Width = LongSize;
597        }
598      }
599
600      // Finally, check long long if needed.
601      if (Ty.isNull()) {
602        unsigned LongLongSize = Context.Target.getLongLongWidth();
603
604        // Does it fit in a unsigned long long?
605        if (ResultVal.isIntN(LongLongSize)) {
606          // Does it fit in a signed long long?
607          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
608            Ty = Context.LongLongTy;
609          else if (AllowUnsigned)
610            Ty = Context.UnsignedLongLongTy;
611          Width = LongLongSize;
612        }
613      }
614
615      // If we still couldn't decide a type, we probably have something that
616      // does not fit in a signed long long, but has no U suffix.
617      if (Ty.isNull()) {
618        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
619        Ty = Context.UnsignedLongLongTy;
620        Width = Context.Target.getLongLongWidth();
621      }
622
623      if (ResultVal.getBitWidth() != Width)
624        ResultVal.trunc(Width);
625    }
626
627    Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
628  }
629
630  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
631  if (Literal.isImaginary)
632    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
633
634  return Res;
635}
636
637Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
638                                        ExprTy *Val) {
639  Expr *E = (Expr *)Val;
640  assert((E != 0) && "ActOnParenExpr() missing expr");
641  return new ParenExpr(L, R, E);
642}
643
644/// The UsualUnaryConversions() function is *not* called by this routine.
645/// See C99 6.3.2.1p[2-4] for more details.
646QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
647                                         SourceLocation OpLoc,
648                                         const SourceRange &ExprRange,
649                                         bool isSizeof) {
650  // C99 6.5.3.4p1:
651  if (isa<FunctionType>(exprType) && isSizeof)
652    // alignof(function) is allowed.
653    Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange);
654  else if (exprType->isVoidType())
655    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof",
656         ExprRange);
657  else if (exprType->isIncompleteType()) {
658    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
659                           diag::err_alignof_incomplete_type,
660         exprType.getAsString(), ExprRange);
661    return QualType(); // error
662  }
663  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
664  return Context.getSizeType();
665}
666
667Action::ExprResult Sema::
668ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
669                           SourceLocation LPLoc, TypeTy *Ty,
670                           SourceLocation RPLoc) {
671  // If error parsing type, ignore.
672  if (Ty == 0) return true;
673
674  // Verify that this is a valid expression.
675  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
676
677  QualType resultType =
678    CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof);
679
680  if (resultType.isNull())
681    return true;
682  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
683}
684
685QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
686  DefaultFunctionArrayConversion(V);
687
688  // These operators return the element type of a complex type.
689  if (const ComplexType *CT = V->getType()->getAsComplexType())
690    return CT->getElementType();
691
692  // Otherwise they pass through real integer and floating point types here.
693  if (V->getType()->isArithmeticType())
694    return V->getType();
695
696  // Reject anything else.
697  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
698  return QualType();
699}
700
701
702
703Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
704                                             tok::TokenKind Kind,
705                                             ExprTy *Input) {
706  UnaryOperator::Opcode Opc;
707  switch (Kind) {
708  default: assert(0 && "Unknown unary op!");
709  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
710  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
711  }
712  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
713  if (result.isNull())
714    return true;
715  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
716}
717
718Action::ExprResult Sema::
719ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
720                        ExprTy *Idx, SourceLocation RLoc) {
721  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
722
723  // Perform default conversions.
724  DefaultFunctionArrayConversion(LHSExp);
725  DefaultFunctionArrayConversion(RHSExp);
726
727  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
728
729  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
730  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
731  // in the subscript position. As a result, we need to derive the array base
732  // and index from the expression types.
733  Expr *BaseExpr, *IndexExpr;
734  QualType ResultType;
735  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
736    BaseExpr = LHSExp;
737    IndexExpr = RHSExp;
738    // FIXME: need to deal with const...
739    ResultType = PTy->getPointeeType();
740  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
741     // Handle the uncommon case of "123[Ptr]".
742    BaseExpr = RHSExp;
743    IndexExpr = LHSExp;
744    // FIXME: need to deal with const...
745    ResultType = PTy->getPointeeType();
746  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
747    BaseExpr = LHSExp;    // vectors: V[123]
748    IndexExpr = RHSExp;
749
750    // Component access limited to variables (reject vec4.rg[1]).
751    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
752        !isa<ExtVectorElementExpr>(BaseExpr))
753      return Diag(LLoc, diag::err_ext_vector_component_access,
754                  SourceRange(LLoc, RLoc));
755    // FIXME: need to deal with const...
756    ResultType = VTy->getElementType();
757  } else {
758    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
759                RHSExp->getSourceRange());
760  }
761  // C99 6.5.2.1p1
762  if (!IndexExpr->getType()->isIntegerType())
763    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
764                IndexExpr->getSourceRange());
765
766  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
767  // the following check catches trying to index a pointer to a function (e.g.
768  // void (*)(int)) and pointers to incomplete types.  Functions are not
769  // objects in C99.
770  if (!ResultType->isObjectType())
771    return Diag(BaseExpr->getLocStart(),
772                diag::err_typecheck_subscript_not_object,
773                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
774
775  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
776}
777
778QualType Sema::
779CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
780                        IdentifierInfo &CompName, SourceLocation CompLoc) {
781  const ExtVectorType *vecType = baseType->getAsExtVectorType();
782
783  // This flag determines whether or not the component is to be treated as a
784  // special name, or a regular GLSL-style component access.
785  bool SpecialComponent = false;
786
787  // The vector accessor can't exceed the number of elements.
788  const char *compStr = CompName.getName();
789  if (strlen(compStr) > vecType->getNumElements()) {
790    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
791                baseType.getAsString(), SourceRange(CompLoc));
792    return QualType();
793  }
794
795  // Check that we've found one of the special components, or that the component
796  // names must come from the same set.
797  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
798      !strcmp(compStr, "e") || !strcmp(compStr, "o")) {
799    SpecialComponent = true;
800  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
801    do
802      compStr++;
803    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
804  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
805    do
806      compStr++;
807    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
808  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
809    do
810      compStr++;
811    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
812  }
813
814  if (!SpecialComponent && *compStr) {
815    // We didn't get to the end of the string. This means the component names
816    // didn't come from the same set *or* we encountered an illegal name.
817    Diag(OpLoc, diag::err_ext_vector_component_name_illegal,
818         std::string(compStr,compStr+1), SourceRange(CompLoc));
819    return QualType();
820  }
821  // Each component accessor can't exceed the vector type.
822  compStr = CompName.getName();
823  while (*compStr) {
824    if (vecType->isAccessorWithinNumElements(*compStr))
825      compStr++;
826    else
827      break;
828  }
829  if (!SpecialComponent && *compStr) {
830    // We didn't get to the end of the string. This means a component accessor
831    // exceeds the number of elements in the vector.
832    Diag(OpLoc, diag::err_ext_vector_component_exceeds_length,
833                baseType.getAsString(), SourceRange(CompLoc));
834    return QualType();
835  }
836
837  // If we have a special component name, verify that the current vector length
838  // is an even number, since all special component names return exactly half
839  // the elements.
840  if (SpecialComponent && (vecType->getNumElements() & 1U)) {
841    Diag(OpLoc, diag::err_ext_vector_component_requires_even,
842         baseType.getAsString(), SourceRange(CompLoc));
843    return QualType();
844  }
845
846  // The component accessor looks fine - now we need to compute the actual type.
847  // The vector type is implied by the component accessor. For example,
848  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
849  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
850  unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
851                                       : strlen(CompName.getName());
852  if (CompSize == 1)
853    return vecType->getElementType();
854
855  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
856  // Now look up the TypeDefDecl from the vector type. Without this,
857  // diagostics look bad. We want extended vector types to appear built-in.
858  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
859    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
860      return Context.getTypedefType(ExtVectorDecls[i]);
861  }
862  return VT; // should never get here (a typedef type should always be found).
863}
864
865/// constructSetterName - Return the setter name for the given
866/// identifier, i.e. "set" + Name where the initial character of Name
867/// has been capitalized.
868// FIXME: Merge with same routine in Parser. But where should this
869// live?
870static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
871                                           const IdentifierInfo *Name) {
872  unsigned N = Name->getLength();
873  char *SelectorName = new char[3 + N];
874  memcpy(SelectorName, "set", 3);
875  memcpy(&SelectorName[3], Name->getName(), N);
876  SelectorName[3] = toupper(SelectorName[3]);
877
878  IdentifierInfo *Setter =
879    &Idents.get(SelectorName, &SelectorName[3 + N]);
880  delete[] SelectorName;
881  return Setter;
882}
883
884Action::ExprResult Sema::
885ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
886                         tok::TokenKind OpKind, SourceLocation MemberLoc,
887                         IdentifierInfo &Member) {
888  Expr *BaseExpr = static_cast<Expr *>(Base);
889  assert(BaseExpr && "no record expression");
890
891  // Perform default conversions.
892  DefaultFunctionArrayConversion(BaseExpr);
893
894  QualType BaseType = BaseExpr->getType();
895  assert(!BaseType.isNull() && "no type for member expression");
896
897  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
898  // must have pointer type, and the accessed type is the pointee.
899  if (OpKind == tok::arrow) {
900    if (const PointerType *PT = BaseType->getAsPointerType())
901      BaseType = PT->getPointeeType();
902    else
903      return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow,
904                  BaseType.getAsString(), BaseExpr->getSourceRange());
905  }
906
907  // Handle field access to simple records.  This also handles access to fields
908  // of the ObjC 'id' struct.
909  if (const RecordType *RTy = BaseType->getAsRecordType()) {
910    RecordDecl *RDecl = RTy->getDecl();
911    if (RTy->isIncompleteType())
912      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
913                  BaseExpr->getSourceRange());
914    // The record definition is complete, now make sure the member is valid.
915    FieldDecl *MemberDecl = RDecl->getMember(&Member);
916    if (!MemberDecl)
917      return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(),
918                  BaseExpr->getSourceRange());
919
920    // Figure out the type of the member; see C99 6.5.2.3p3
921    // FIXME: Handle address space modifiers
922    QualType MemberType = MemberDecl->getType();
923    unsigned combinedQualifiers =
924        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
925    MemberType = MemberType.getQualifiedType(combinedQualifiers);
926
927    return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
928                          MemberLoc, MemberType);
929  }
930
931  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
932  // (*Obj).ivar.
933  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
934    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member))
935      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
936                                 OpKind == tok::arrow);
937    return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar,
938                IFTy->getDecl()->getName(), Member.getName(),
939                BaseExpr->getSourceRange());
940  }
941
942  // Handle Objective-C property access, which is "Obj.property" where Obj is a
943  // pointer to a (potentially qualified) interface type.
944  const PointerType *PTy;
945  const ObjCInterfaceType *IFTy;
946  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
947      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
948    ObjCInterfaceDecl *IFace = IFTy->getDecl();
949
950    // Search for a declared property first.
951    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
952      return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
953
954    // Check protocols on qualified interfaces.
955    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
956         E = IFTy->qual_end(); I != E; ++I)
957      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
958        return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
959
960    // If that failed, look for an "implicit" property by seeing if the nullary
961    // selector is implemented.
962
963    // FIXME: The logic for looking up nullary and unary selectors should be
964    // shared with the code in ActOnInstanceMessage.
965
966    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
967    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
968
969    // If this reference is in an @implementation, check for 'private' methods.
970    if (!Getter)
971      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
972        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
973          if (ObjCImplementationDecl *ImpDecl =
974              ObjCImplementations[ClassDecl->getIdentifier()])
975            Getter = ImpDecl->getInstanceMethod(Sel);
976
977    if (Getter) {
978      // If we found a getter then this may be a valid dot-reference, we
979      // need to also look for the matching setter.
980      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
981                                                       &Member);
982      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
983      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
984
985      if (!Setter) {
986        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
987          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
988            if (ObjCImplementationDecl *ImpDecl =
989                ObjCImplementations[ClassDecl->getIdentifier()])
990              Setter = ImpDecl->getInstanceMethod(SetterSel);
991      }
992
993      // FIXME: There are some issues here. First, we are not
994      // diagnosing accesses to read-only properties because we do not
995      // know if this is a getter or setter yet. Second, we are
996      // checking that the type of the setter matches the type we
997      // expect.
998      return new ObjCPropertyRefExpr(Getter, Setter, Getter->getResultType(),
999                                     MemberLoc, BaseExpr);
1000    }
1001  }
1002
1003  // Handle 'field access' to vectors, such as 'V.xx'.
1004  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1005    // Component access limited to variables (reject vec4.rg.g).
1006    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
1007        !isa<ExtVectorElementExpr>(BaseExpr))
1008      return Diag(MemberLoc, diag::err_ext_vector_component_access,
1009                  BaseExpr->getSourceRange());
1010    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1011    if (ret.isNull())
1012      return true;
1013    return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
1014  }
1015
1016  return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union,
1017              BaseType.getAsString(), BaseExpr->getSourceRange());
1018}
1019
1020/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1021/// This provides the location of the left/right parens and a list of comma
1022/// locations.
1023Action::ExprResult Sema::
1024ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
1025              ExprTy **args, unsigned NumArgs,
1026              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1027  Expr *Fn = static_cast<Expr *>(fn);
1028  Expr **Args = reinterpret_cast<Expr**>(args);
1029  assert(Fn && "no function call expression");
1030  FunctionDecl *FDecl = NULL;
1031
1032  // Promote the function operand.
1033  UsualUnaryConversions(Fn);
1034
1035  // If we're directly calling a function, get the declaration for
1036  // that function.
1037  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
1038    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
1039      FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1040
1041  // Make the call expr early, before semantic checks.  This guarantees cleanup
1042  // of arguments and function on error.
1043  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
1044                                                 Context.BoolTy, RParenLoc));
1045  const FunctionType *FuncT;
1046  if (!Fn->getType()->isBlockPointerType()) {
1047    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1048    // have type pointer to function".
1049    const PointerType *PT = Fn->getType()->getAsPointerType();
1050    if (PT == 0)
1051      return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1052                  Fn->getSourceRange());
1053    FuncT = PT->getPointeeType()->getAsFunctionType();
1054  } else { // This is a block call.
1055    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1056                getAsFunctionType();
1057  }
1058  if (FuncT == 0)
1059    return Diag(LParenLoc, diag::err_typecheck_call_not_function,
1060                Fn->getSourceRange());
1061
1062  // We know the result type of the call, set it.
1063  TheCall->setType(FuncT->getResultType());
1064
1065  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1066    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1067    // assignment, to the types of the corresponding parameter, ...
1068    unsigned NumArgsInProto = Proto->getNumArgs();
1069    unsigned NumArgsToCheck = NumArgs;
1070
1071    // If too few arguments are available (and we don't have default
1072    // arguments for the remaining parameters), don't make the call.
1073    if (NumArgs < NumArgsInProto) {
1074      if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) {
1075        // Use default arguments for missing arguments
1076        NumArgsToCheck = NumArgsInProto;
1077        TheCall->setNumArgs(NumArgsInProto);
1078      } else
1079        return Diag(RParenLoc,
1080                    !Fn->getType()->isBlockPointerType()
1081                      ? diag::err_typecheck_call_too_few_args
1082                      : diag::err_typecheck_block_too_few_args,
1083                    Fn->getSourceRange());
1084    }
1085
1086    // If too many are passed and not variadic, error on the extras and drop
1087    // them.
1088    if (NumArgs > NumArgsInProto) {
1089      if (!Proto->isVariadic()) {
1090        Diag(Args[NumArgsInProto]->getLocStart(),
1091               !Fn->getType()->isBlockPointerType()
1092                 ? diag::err_typecheck_call_too_many_args
1093                 : diag::err_typecheck_block_too_many_args,
1094             Fn->getSourceRange(),
1095             SourceRange(Args[NumArgsInProto]->getLocStart(),
1096                         Args[NumArgs-1]->getLocEnd()));
1097        // This deletes the extra arguments.
1098        TheCall->setNumArgs(NumArgsInProto);
1099      }
1100      NumArgsToCheck = NumArgsInProto;
1101    }
1102
1103    // Continue to check argument types (even if we have too few/many args).
1104    for (unsigned i = 0; i != NumArgsToCheck; i++) {
1105      QualType ProtoArgType = Proto->getArgType(i);
1106
1107      Expr *Arg;
1108      if (i < NumArgs)
1109        Arg = Args[i];
1110      else
1111        Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
1112      QualType ArgType = Arg->getType();
1113
1114      // Compute implicit casts from the operand to the formal argument type.
1115      AssignConvertType ConvTy =
1116        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
1117      TheCall->setArg(i, Arg);
1118
1119      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
1120                                   ArgType, Arg, "passing"))
1121        return true;
1122    }
1123
1124    // If this is a variadic call, handle args passed through "...".
1125    if (Proto->isVariadic()) {
1126      // Promote the arguments (C99 6.5.2.2p7).
1127      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1128        Expr *Arg = Args[i];
1129        DefaultArgumentPromotion(Arg);
1130        TheCall->setArg(i, Arg);
1131      }
1132    }
1133  } else {
1134    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1135
1136    // Promote the arguments (C99 6.5.2.2p6).
1137    for (unsigned i = 0; i != NumArgs; i++) {
1138      Expr *Arg = Args[i];
1139      DefaultArgumentPromotion(Arg);
1140      TheCall->setArg(i, Arg);
1141    }
1142  }
1143
1144  // Do special checking on direct calls to functions.
1145  if (FDecl)
1146    return CheckFunctionCall(FDecl, TheCall.take());
1147
1148  return TheCall.take();
1149}
1150
1151Action::ExprResult Sema::
1152ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
1153                     SourceLocation RParenLoc, ExprTy *InitExpr) {
1154  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
1155  QualType literalType = QualType::getFromOpaquePtr(Ty);
1156  // FIXME: put back this assert when initializers are worked out.
1157  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
1158  Expr *literalExpr = static_cast<Expr*>(InitExpr);
1159
1160  if (literalType->isArrayType()) {
1161    if (literalType->isVariableArrayType())
1162      return Diag(LParenLoc,
1163                  diag::err_variable_object_no_init,
1164                  SourceRange(LParenLoc,
1165                              literalExpr->getSourceRange().getEnd()));
1166  } else if (literalType->isIncompleteType()) {
1167    return Diag(LParenLoc,
1168                diag::err_typecheck_decl_incomplete_type,
1169                literalType.getAsString(),
1170                SourceRange(LParenLoc,
1171                            literalExpr->getSourceRange().getEnd()));
1172  }
1173
1174  if (CheckInitializerTypes(literalExpr, literalType))
1175    return true;
1176
1177  bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl();
1178  if (isFileScope) { // 6.5.2.5p3
1179    if (CheckForConstantInitializer(literalExpr, literalType))
1180      return true;
1181  }
1182  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
1183}
1184
1185Action::ExprResult Sema::
1186ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
1187              SourceLocation RBraceLoc) {
1188  Expr **InitList = reinterpret_cast<Expr**>(initlist);
1189
1190  // Semantic analysis for initializers is done by ActOnDeclarator() and
1191  // CheckInitializer() - it requires knowledge of the object being intialized.
1192
1193  InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
1194  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
1195  return E;
1196}
1197
1198/// CheckCastTypes - Check type constraints for casting between types.
1199bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
1200  UsualUnaryConversions(castExpr);
1201
1202  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
1203  // type needs to be scalar.
1204  if (castType->isVoidType()) {
1205    // Cast to void allows any expr type.
1206  } else if (!castType->isScalarType() && !castType->isVectorType()) {
1207    // GCC struct/union extension: allow cast to self.
1208    if (Context.getCanonicalType(castType) !=
1209        Context.getCanonicalType(castExpr->getType()) ||
1210        (!castType->isStructureType() && !castType->isUnionType())) {
1211      // Reject any other conversions to non-scalar types.
1212      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar,
1213                  castType.getAsString(), castExpr->getSourceRange());
1214    }
1215
1216    // accept this, but emit an ext-warn.
1217    Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar,
1218         castType.getAsString(), castExpr->getSourceRange());
1219  } else if (!castExpr->getType()->isScalarType() &&
1220             !castExpr->getType()->isVectorType()) {
1221    return Diag(castExpr->getLocStart(),
1222                diag::err_typecheck_expect_scalar_operand,
1223                castExpr->getType().getAsString(),castExpr->getSourceRange());
1224  } else if (castExpr->getType()->isVectorType()) {
1225    if (CheckVectorCast(TyR, castExpr->getType(), castType))
1226      return true;
1227  } else if (castType->isVectorType()) {
1228    if (CheckVectorCast(TyR, castType, castExpr->getType()))
1229      return true;
1230  }
1231  return false;
1232}
1233
1234bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
1235  assert(VectorTy->isVectorType() && "Not a vector type!");
1236
1237  if (Ty->isVectorType() || Ty->isIntegerType()) {
1238    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
1239      return Diag(R.getBegin(),
1240                  Ty->isVectorType() ?
1241                  diag::err_invalid_conversion_between_vectors :
1242                  diag::err_invalid_conversion_between_vector_and_integer,
1243                  VectorTy.getAsString().c_str(),
1244                  Ty.getAsString().c_str(), R);
1245  } else
1246    return Diag(R.getBegin(),
1247                diag::err_invalid_conversion_between_vector_and_scalar,
1248                VectorTy.getAsString().c_str(),
1249                Ty.getAsString().c_str(), R);
1250
1251  return false;
1252}
1253
1254Action::ExprResult Sema::
1255ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
1256              SourceLocation RParenLoc, ExprTy *Op) {
1257  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
1258
1259  Expr *castExpr = static_cast<Expr*>(Op);
1260  QualType castType = QualType::getFromOpaquePtr(Ty);
1261
1262  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
1263    return true;
1264  return new ExplicitCastExpr(castType, castExpr, LParenLoc);
1265}
1266
1267/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
1268/// In that case, lex = cond.
1269inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
1270  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
1271  UsualUnaryConversions(cond);
1272  UsualUnaryConversions(lex);
1273  UsualUnaryConversions(rex);
1274  QualType condT = cond->getType();
1275  QualType lexT = lex->getType();
1276  QualType rexT = rex->getType();
1277
1278  // first, check the condition.
1279  if (!condT->isScalarType()) { // C99 6.5.15p2
1280    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
1281         condT.getAsString());
1282    return QualType();
1283  }
1284
1285  // Now check the two expressions.
1286
1287  // If both operands have arithmetic type, do the usual arithmetic conversions
1288  // to find a common type: C99 6.5.15p3,5.
1289  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
1290    UsualArithmeticConversions(lex, rex);
1291    return lex->getType();
1292  }
1293
1294  // If both operands are the same structure or union type, the result is that
1295  // type.
1296  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
1297    if (const RecordType *RHSRT = rexT->getAsRecordType())
1298      if (LHSRT->getDecl() == RHSRT->getDecl())
1299        // "If both the operands have structure or union type, the result has
1300        // that type."  This implies that CV qualifiers are dropped.
1301        return lexT.getUnqualifiedType();
1302  }
1303
1304  // C99 6.5.15p5: "If both operands have void type, the result has void type."
1305  // The following || allows only one side to be void (a GCC-ism).
1306  if (lexT->isVoidType() || rexT->isVoidType()) {
1307    if (!lexT->isVoidType())
1308      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void,
1309           rex->getSourceRange());
1310    if (!rexT->isVoidType())
1311      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void,
1312           lex->getSourceRange());
1313    ImpCastExprToType(lex, Context.VoidTy);
1314    ImpCastExprToType(rex, Context.VoidTy);
1315    return Context.VoidTy;
1316  }
1317  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
1318  // the type of the other operand."
1319  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
1320       Context.isObjCObjectPointerType(lexT)) &&
1321      rex->isNullPointerConstant(Context)) {
1322    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
1323    return lexT;
1324  }
1325  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
1326       Context.isObjCObjectPointerType(rexT)) &&
1327      lex->isNullPointerConstant(Context)) {
1328    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
1329    return rexT;
1330  }
1331  // Handle the case where both operands are pointers before we handle null
1332  // pointer constants in case both operands are null pointer constants.
1333  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
1334    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
1335      // get the "pointed to" types
1336      QualType lhptee = LHSPT->getPointeeType();
1337      QualType rhptee = RHSPT->getPointeeType();
1338
1339      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
1340      if (lhptee->isVoidType() &&
1341          rhptee->isIncompleteOrObjectType()) {
1342        // Figure out necessary qualifiers (C99 6.5.15p6)
1343        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
1344        QualType destType = Context.getPointerType(destPointee);
1345        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1346        ImpCastExprToType(rex, destType); // promote to void*
1347        return destType;
1348      }
1349      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
1350        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
1351        QualType destType = Context.getPointerType(destPointee);
1352        ImpCastExprToType(lex, destType); // add qualifiers if necessary
1353        ImpCastExprToType(rex, destType); // promote to void*
1354        return destType;
1355      }
1356
1357      QualType compositeType = lexT;
1358
1359      // If either type is an Objective-C object type then check
1360      // compatibility according to Objective-C.
1361      if (Context.isObjCObjectPointerType(lexT) ||
1362          Context.isObjCObjectPointerType(rexT)) {
1363        // If both operands are interfaces and either operand can be
1364        // assigned to the other, use that type as the composite
1365        // type. This allows
1366        //   xxx ? (A*) a : (B*) b
1367        // where B is a subclass of A.
1368        //
1369        // Additionally, as for assignment, if either type is 'id'
1370        // allow silent coercion. Finally, if the types are
1371        // incompatible then make sure to use 'id' as the composite
1372        // type so the result is acceptable for sending messages to.
1373
1374        // FIXME: This code should not be localized to here. Also this
1375        // should use a compatible check instead of abusing the
1376        // canAssignObjCInterfaces code.
1377        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1378        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1379        if (LHSIface && RHSIface &&
1380            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1381          compositeType = lexT;
1382        } else if (LHSIface && RHSIface &&
1383                   Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
1384          compositeType = rexT;
1385        } else if (Context.isObjCIdType(lhptee) ||
1386                   Context.isObjCIdType(rhptee)) {
1387          // FIXME: This code looks wrong, because isObjCIdType checks
1388          // the struct but getObjCIdType returns the pointer to
1389          // struct. This is horrible and should be fixed.
1390          compositeType = Context.getObjCIdType();
1391        } else {
1392          QualType incompatTy = Context.getObjCIdType();
1393          ImpCastExprToType(lex, incompatTy);
1394          ImpCastExprToType(rex, incompatTy);
1395          return incompatTy;
1396        }
1397      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1398                                             rhptee.getUnqualifiedType())) {
1399        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
1400             lexT.getAsString(), rexT.getAsString(),
1401             lex->getSourceRange(), rex->getSourceRange());
1402        // In this situation, we assume void* type. No especially good
1403        // reason, but this is what gcc does, and we do have to pick
1404        // to get a consistent AST.
1405        QualType incompatTy = Context.getPointerType(Context.VoidTy);
1406        ImpCastExprToType(lex, incompatTy);
1407        ImpCastExprToType(rex, incompatTy);
1408        return incompatTy;
1409      }
1410      // The pointer types are compatible.
1411      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
1412      // differently qualified versions of compatible types, the result type is
1413      // a pointer to an appropriately qualified version of the *composite*
1414      // type.
1415      // FIXME: Need to calculate the composite type.
1416      // FIXME: Need to add qualifiers
1417      ImpCastExprToType(lex, compositeType);
1418      ImpCastExprToType(rex, compositeType);
1419      return compositeType;
1420    }
1421  }
1422  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
1423  // evaluates to "struct objc_object *" (and is handled above when comparing
1424  // id with statically typed objects).
1425  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
1426    // GCC allows qualified id and any Objective-C type to devolve to
1427    // id. Currently localizing to here until clear this should be
1428    // part of ObjCQualifiedIdTypesAreCompatible.
1429    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
1430        (lexT->isObjCQualifiedIdType() &&
1431         Context.isObjCObjectPointerType(rexT)) ||
1432        (rexT->isObjCQualifiedIdType() &&
1433         Context.isObjCObjectPointerType(lexT))) {
1434      // FIXME: This is not the correct composite type. This only
1435      // happens to work because id can more or less be used anywhere,
1436      // however this may change the type of method sends.
1437      // FIXME: gcc adds some type-checking of the arguments and emits
1438      // (confusing) incompatible comparison warnings in some
1439      // cases. Investigate.
1440      QualType compositeType = Context.getObjCIdType();
1441      ImpCastExprToType(lex, compositeType);
1442      ImpCastExprToType(rex, compositeType);
1443      return compositeType;
1444    }
1445  }
1446
1447  // Selection between block pointer types is ok as long as they are the same.
1448  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
1449      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
1450    return lexT;
1451
1452  // Otherwise, the operands are not compatible.
1453  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
1454       lexT.getAsString(), rexT.getAsString(),
1455       lex->getSourceRange(), rex->getSourceRange());
1456  return QualType();
1457}
1458
1459/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
1460/// in the case of a the GNU conditional expr extension.
1461Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
1462                                            SourceLocation ColonLoc,
1463                                            ExprTy *Cond, ExprTy *LHS,
1464                                            ExprTy *RHS) {
1465  Expr *CondExpr = (Expr *) Cond;
1466  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
1467
1468  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
1469  // was the condition.
1470  bool isLHSNull = LHSExpr == 0;
1471  if (isLHSNull)
1472    LHSExpr = CondExpr;
1473
1474  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
1475                                             RHSExpr, QuestionLoc);
1476  if (result.isNull())
1477    return true;
1478  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
1479                                 RHSExpr, result);
1480}
1481
1482
1483// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1484// being closely modeled after the C99 spec:-). The odd characteristic of this
1485// routine is it effectively iqnores the qualifiers on the top level pointee.
1486// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1487// FIXME: add a couple examples in this comment.
1488Sema::AssignConvertType
1489Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1490  QualType lhptee, rhptee;
1491
1492  // get the "pointed to" type (ignoring qualifiers at the top level)
1493  lhptee = lhsType->getAsPointerType()->getPointeeType();
1494  rhptee = rhsType->getAsPointerType()->getPointeeType();
1495
1496  // make sure we operate on the canonical type
1497  lhptee = Context.getCanonicalType(lhptee);
1498  rhptee = Context.getCanonicalType(rhptee);
1499
1500  AssignConvertType ConvTy = Compatible;
1501
1502  // C99 6.5.16.1p1: This following citation is common to constraints
1503  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1504  // qualifiers of the type *pointed to* by the right;
1505  // FIXME: Handle ASQualType
1506  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1507       rhptee.getCVRQualifiers())
1508    ConvTy = CompatiblePointerDiscardsQualifiers;
1509
1510  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1511  // incomplete type and the other is a pointer to a qualified or unqualified
1512  // version of void...
1513  if (lhptee->isVoidType()) {
1514    if (rhptee->isIncompleteOrObjectType())
1515      return ConvTy;
1516
1517    // As an extension, we allow cast to/from void* to function pointer.
1518    assert(rhptee->isFunctionType());
1519    return FunctionVoidPointer;
1520  }
1521
1522  if (rhptee->isVoidType()) {
1523    if (lhptee->isIncompleteOrObjectType())
1524      return ConvTy;
1525
1526    // As an extension, we allow cast to/from void* to function pointer.
1527    assert(lhptee->isFunctionType());
1528    return FunctionVoidPointer;
1529  }
1530
1531  // Check for ObjC interfaces
1532  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
1533  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
1534  if (LHSIface && RHSIface &&
1535      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
1536    return ConvTy;
1537
1538  // ID acts sort of like void* for ObjC interfaces
1539  if (LHSIface && Context.isObjCIdType(rhptee))
1540    return ConvTy;
1541  if (RHSIface && Context.isObjCIdType(lhptee))
1542    return ConvTy;
1543
1544  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1545  // unqualified versions of compatible types, ...
1546  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1547                                  rhptee.getUnqualifiedType()))
1548    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1549  return ConvTy;
1550}
1551
1552/// CheckBlockPointerTypesForAssignment - This routine determines whether two
1553/// block pointer types are compatible or whether a block and normal pointer
1554/// are compatible. It is more restrict than comparing two function pointer
1555// types.
1556Sema::AssignConvertType
1557Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
1558                                          QualType rhsType) {
1559  QualType lhptee, rhptee;
1560
1561  // get the "pointed to" type (ignoring qualifiers at the top level)
1562  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
1563  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
1564
1565  // make sure we operate on the canonical type
1566  lhptee = Context.getCanonicalType(lhptee);
1567  rhptee = Context.getCanonicalType(rhptee);
1568
1569  AssignConvertType ConvTy = Compatible;
1570
1571  // For blocks we enforce that qualifiers are identical.
1572  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
1573    ConvTy = CompatiblePointerDiscardsQualifiers;
1574
1575  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
1576    return IncompatibleBlockPointer;
1577  return ConvTy;
1578}
1579
1580/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1581/// has code to accommodate several GCC extensions when type checking
1582/// pointers. Here are some objectionable examples that GCC considers warnings:
1583///
1584///  int a, *pint;
1585///  short *pshort;
1586///  struct foo *pfoo;
1587///
1588///  pint = pshort; // warning: assignment from incompatible pointer type
1589///  a = pint; // warning: assignment makes integer from pointer without a cast
1590///  pint = a; // warning: assignment makes pointer from integer without a cast
1591///  pint = pfoo; // warning: assignment from incompatible pointer type
1592///
1593/// As a result, the code for dealing with pointers is more complex than the
1594/// C99 spec dictates.
1595///
1596Sema::AssignConvertType
1597Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1598  // Get canonical types.  We're not formatting these types, just comparing
1599  // them.
1600  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
1601  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
1602
1603  if (lhsType == rhsType)
1604    return Compatible; // Common case: fast path an exact match.
1605
1606  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1607    if (Context.typesAreCompatible(lhsType, rhsType))
1608      return Compatible;
1609    return Incompatible;
1610  }
1611
1612  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
1613    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
1614      return Compatible;
1615    // Relax integer conversions like we do for pointers below.
1616    if (rhsType->isIntegerType())
1617      return IntToPointer;
1618    if (lhsType->isIntegerType())
1619      return PointerToInt;
1620    return IncompatibleObjCQualifiedId;
1621  }
1622
1623  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1624    // For ExtVector, allow vector splats; float -> <n x float>
1625    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
1626      if (LV->getElementType() == rhsType)
1627        return Compatible;
1628
1629    // If we are allowing lax vector conversions, and LHS and RHS are both
1630    // vectors, the total size only needs to be the same. This is a bitcast;
1631    // no bits are changed but the result type is different.
1632    if (getLangOptions().LaxVectorConversions &&
1633        lhsType->isVectorType() && rhsType->isVectorType()) {
1634      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1635        return Compatible;
1636    }
1637    return Incompatible;
1638  }
1639
1640  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1641    return Compatible;
1642
1643  if (isa<PointerType>(lhsType)) {
1644    if (rhsType->isIntegerType())
1645      return IntToPointer;
1646
1647    if (isa<PointerType>(rhsType))
1648      return CheckPointerTypesForAssignment(lhsType, rhsType);
1649
1650    if (rhsType->getAsBlockPointerType()) {
1651      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
1652        return BlockVoidPointer;
1653
1654      // Treat block pointers as objects.
1655      if (getLangOptions().ObjC1 &&
1656          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
1657        return Compatible;
1658    }
1659    return Incompatible;
1660  }
1661
1662  if (isa<BlockPointerType>(lhsType)) {
1663    if (rhsType->isIntegerType())
1664      return IntToPointer;
1665
1666    // Treat block pointers as objects.
1667    if (getLangOptions().ObjC1 &&
1668        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
1669      return Compatible;
1670
1671    if (rhsType->isBlockPointerType())
1672      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
1673
1674    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
1675      if (RHSPT->getPointeeType()->isVoidType())
1676        return BlockVoidPointer;
1677    }
1678    return Incompatible;
1679  }
1680
1681  if (isa<PointerType>(rhsType)) {
1682    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1683    if (lhsType == Context.BoolTy)
1684      return Compatible;
1685
1686    if (lhsType->isIntegerType())
1687      return PointerToInt;
1688
1689    if (isa<PointerType>(lhsType))
1690      return CheckPointerTypesForAssignment(lhsType, rhsType);
1691
1692    if (isa<BlockPointerType>(lhsType) &&
1693        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
1694      return BlockVoidPointer;
1695    return Incompatible;
1696  }
1697
1698  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1699    if (Context.typesAreCompatible(lhsType, rhsType))
1700      return Compatible;
1701  }
1702  return Incompatible;
1703}
1704
1705Sema::AssignConvertType
1706Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1707  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1708  // a null pointer constant.
1709  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
1710       lhsType->isBlockPointerType())
1711      && rExpr->isNullPointerConstant(Context)) {
1712    ImpCastExprToType(rExpr, lhsType);
1713    return Compatible;
1714  }
1715
1716  // We don't allow conversion of non-null-pointer constants to integers.
1717  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
1718    return IntToBlockPointer;
1719
1720  // This check seems unnatural, however it is necessary to ensure the proper
1721  // conversion of functions/arrays. If the conversion were done for all
1722  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1723  // expressions that surpress this implicit conversion (&, sizeof).
1724  //
1725  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1726  // are better understood.
1727  if (!lhsType->isReferenceType())
1728    DefaultFunctionArrayConversion(rExpr);
1729
1730  Sema::AssignConvertType result =
1731    CheckAssignmentConstraints(lhsType, rExpr->getType());
1732
1733  // C99 6.5.16.1p2: The value of the right operand is converted to the
1734  // type of the assignment expression.
1735  if (rExpr->getType() != lhsType)
1736    ImpCastExprToType(rExpr, lhsType);
1737  return result;
1738}
1739
1740Sema::AssignConvertType
1741Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1742  return CheckAssignmentConstraints(lhsType, rhsType);
1743}
1744
1745QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1746  Diag(loc, diag::err_typecheck_invalid_operands,
1747       lex->getType().getAsString(), rex->getType().getAsString(),
1748       lex->getSourceRange(), rex->getSourceRange());
1749  return QualType();
1750}
1751
1752inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1753                                                              Expr *&rex) {
1754  // For conversion purposes, we ignore any qualifiers.
1755  // For example, "const float" and "float" are equivalent.
1756  QualType lhsType =
1757    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
1758  QualType rhsType =
1759    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
1760
1761  // If the vector types are identical, return.
1762  if (lhsType == rhsType)
1763    return lhsType;
1764
1765  // Handle the case of a vector & extvector type of the same size and element
1766  // type.  It would be nice if we only had one vector type someday.
1767  if (getLangOptions().LaxVectorConversions)
1768    if (const VectorType *LV = lhsType->getAsVectorType())
1769      if (const VectorType *RV = rhsType->getAsVectorType())
1770        if (LV->getElementType() == RV->getElementType() &&
1771            LV->getNumElements() == RV->getNumElements())
1772          return lhsType->isExtVectorType() ? lhsType : rhsType;
1773
1774  // If the lhs is an extended vector and the rhs is a scalar of the same type
1775  // or a literal, promote the rhs to the vector type.
1776  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
1777    QualType eltType = V->getElementType();
1778
1779    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
1780        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
1781        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
1782      ImpCastExprToType(rex, lhsType);
1783      return lhsType;
1784    }
1785  }
1786
1787  // If the rhs is an extended vector and the lhs is a scalar of the same type,
1788  // promote the lhs to the vector type.
1789  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
1790    QualType eltType = V->getElementType();
1791
1792    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
1793        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
1794        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
1795      ImpCastExprToType(lex, rhsType);
1796      return rhsType;
1797    }
1798  }
1799
1800  // You cannot convert between vector values of different size.
1801  Diag(loc, diag::err_typecheck_vector_not_convertable,
1802       lex->getType().getAsString(), rex->getType().getAsString(),
1803       lex->getSourceRange(), rex->getSourceRange());
1804  return QualType();
1805}
1806
1807inline QualType Sema::CheckMultiplyDivideOperands(
1808  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1809{
1810  QualType lhsType = lex->getType(), rhsType = rex->getType();
1811
1812  if (lhsType->isVectorType() || rhsType->isVectorType())
1813    return CheckVectorOperands(loc, lex, rex);
1814
1815  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1816
1817  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1818    return compType;
1819  return InvalidOperands(loc, lex, rex);
1820}
1821
1822inline QualType Sema::CheckRemainderOperands(
1823  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1824{
1825  QualType lhsType = lex->getType(), rhsType = rex->getType();
1826
1827  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1828
1829  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1830    return compType;
1831  return InvalidOperands(loc, lex, rex);
1832}
1833
1834inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1835  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1836{
1837  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1838    return CheckVectorOperands(loc, lex, rex);
1839
1840  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1841
1842  // handle the common case first (both operands are arithmetic).
1843  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1844    return compType;
1845
1846  // Put any potential pointer into PExp
1847  Expr* PExp = lex, *IExp = rex;
1848  if (IExp->getType()->isPointerType())
1849    std::swap(PExp, IExp);
1850
1851  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
1852    if (IExp->getType()->isIntegerType()) {
1853      // Check for arithmetic on pointers to incomplete types
1854      if (!PTy->getPointeeType()->isObjectType()) {
1855        if (PTy->getPointeeType()->isVoidType()) {
1856          Diag(loc, diag::ext_gnu_void_ptr,
1857               lex->getSourceRange(), rex->getSourceRange());
1858        } else {
1859          Diag(loc, diag::err_typecheck_arithmetic_incomplete_type,
1860               lex->getType().getAsString(), lex->getSourceRange());
1861          return QualType();
1862        }
1863      }
1864      return PExp->getType();
1865    }
1866  }
1867
1868  return InvalidOperands(loc, lex, rex);
1869}
1870
1871// C99 6.5.6
1872QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
1873                                        SourceLocation loc, bool isCompAssign) {
1874  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1875    return CheckVectorOperands(loc, lex, rex);
1876
1877  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1878
1879  // Enforce type constraints: C99 6.5.6p3.
1880
1881  // Handle the common case first (both operands are arithmetic).
1882  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1883    return compType;
1884
1885  // Either ptr - int   or   ptr - ptr.
1886  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1887    QualType lpointee = LHSPTy->getPointeeType();
1888
1889    // The LHS must be an object type, not incomplete, function, etc.
1890    if (!lpointee->isObjectType()) {
1891      // Handle the GNU void* extension.
1892      if (lpointee->isVoidType()) {
1893        Diag(loc, diag::ext_gnu_void_ptr,
1894             lex->getSourceRange(), rex->getSourceRange());
1895      } else {
1896        Diag(loc, diag::err_typecheck_sub_ptr_object,
1897             lex->getType().getAsString(), lex->getSourceRange());
1898        return QualType();
1899      }
1900    }
1901
1902    // The result type of a pointer-int computation is the pointer type.
1903    if (rex->getType()->isIntegerType())
1904      return lex->getType();
1905
1906    // Handle pointer-pointer subtractions.
1907    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1908      QualType rpointee = RHSPTy->getPointeeType();
1909
1910      // RHS must be an object type, unless void (GNU).
1911      if (!rpointee->isObjectType()) {
1912        // Handle the GNU void* extension.
1913        if (rpointee->isVoidType()) {
1914          if (!lpointee->isVoidType())
1915            Diag(loc, diag::ext_gnu_void_ptr,
1916                 lex->getSourceRange(), rex->getSourceRange());
1917        } else {
1918          Diag(loc, diag::err_typecheck_sub_ptr_object,
1919               rex->getType().getAsString(), rex->getSourceRange());
1920          return QualType();
1921        }
1922      }
1923
1924      // Pointee types must be compatible.
1925      if (!Context.typesAreCompatible(
1926              Context.getCanonicalType(lpointee).getUnqualifiedType(),
1927              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
1928        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1929             lex->getType().getAsString(), rex->getType().getAsString(),
1930             lex->getSourceRange(), rex->getSourceRange());
1931        return QualType();
1932      }
1933
1934      return Context.getPointerDiffType();
1935    }
1936  }
1937
1938  return InvalidOperands(loc, lex, rex);
1939}
1940
1941// C99 6.5.7
1942QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1943                                  bool isCompAssign) {
1944  // C99 6.5.7p2: Each of the operands shall have integer type.
1945  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1946    return InvalidOperands(loc, lex, rex);
1947
1948  // Shifts don't perform usual arithmetic conversions, they just do integer
1949  // promotions on each operand. C99 6.5.7p3
1950  if (!isCompAssign)
1951    UsualUnaryConversions(lex);
1952  UsualUnaryConversions(rex);
1953
1954  // "The type of the result is that of the promoted left operand."
1955  return lex->getType();
1956}
1957
1958static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
1959                                        ASTContext& Context) {
1960  const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
1961  const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
1962  // ID acts sort of like void* for ObjC interfaces
1963  if (LHSIface && Context.isObjCIdType(RHS))
1964    return true;
1965  if (RHSIface && Context.isObjCIdType(LHS))
1966    return true;
1967  if (!LHSIface || !RHSIface)
1968    return false;
1969  return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
1970         Context.canAssignObjCInterfaces(RHSIface, LHSIface);
1971}
1972
1973// C99 6.5.8
1974QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc,
1975                                    bool isRelational) {
1976  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1977    return CheckVectorCompareOperands(lex, rex, loc, isRelational);
1978
1979  // C99 6.5.8p3 / C99 6.5.9p4
1980  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1981    UsualArithmeticConversions(lex, rex);
1982  else {
1983    UsualUnaryConversions(lex);
1984    UsualUnaryConversions(rex);
1985  }
1986  QualType lType = lex->getType();
1987  QualType rType = rex->getType();
1988
1989  // For non-floating point types, check for self-comparisons of the form
1990  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1991  // often indicate logic errors in the program.
1992  if (!lType->isFloatingType()) {
1993    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1994      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1995        if (DRL->getDecl() == DRR->getDecl())
1996          Diag(loc, diag::warn_selfcomparison);
1997  }
1998
1999  if (isRelational) {
2000    if (lType->isRealType() && rType->isRealType())
2001      return Context.IntTy;
2002  } else {
2003    // Check for comparisons of floating point operands using != and ==.
2004    if (lType->isFloatingType()) {
2005      assert (rType->isFloatingType());
2006      CheckFloatComparison(loc,lex,rex);
2007    }
2008
2009    if (lType->isArithmeticType() && rType->isArithmeticType())
2010      return Context.IntTy;
2011  }
2012
2013  bool LHSIsNull = lex->isNullPointerConstant(Context);
2014  bool RHSIsNull = rex->isNullPointerConstant(Context);
2015
2016  // All of the following pointer related warnings are GCC extensions, except
2017  // when handling null pointer constants. One day, we can consider making them
2018  // errors (when -pedantic-errors is enabled).
2019  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2020    QualType LCanPointeeTy =
2021      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2022    QualType RCanPointeeTy =
2023      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2024
2025    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2026        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2027        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2028                                    RCanPointeeTy.getUnqualifiedType()) &&
2029        !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
2030      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
2031           lType.getAsString(), rType.getAsString(),
2032           lex->getSourceRange(), rex->getSourceRange());
2033    }
2034    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2035    return Context.IntTy;
2036  }
2037  // Handle block pointer types.
2038  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2039    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2040    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2041
2042    if (!LHSIsNull && !RHSIsNull &&
2043        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2044      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2045           lType.getAsString(), rType.getAsString(),
2046           lex->getSourceRange(), rex->getSourceRange());
2047    }
2048    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2049    return Context.IntTy;
2050  }
2051  // Allow block pointers to be compared with null pointer constants.
2052  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
2053      (lType->isPointerType() && rType->isBlockPointerType())) {
2054    if (!LHSIsNull && !RHSIsNull) {
2055      Diag(loc, diag::err_typecheck_comparison_of_distinct_blocks,
2056           lType.getAsString(), rType.getAsString(),
2057           lex->getSourceRange(), rex->getSourceRange());
2058    }
2059    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2060    return Context.IntTy;
2061  }
2062
2063  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
2064    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
2065      ImpCastExprToType(rex, lType);
2066      return Context.IntTy;
2067    } else {
2068      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
2069        Diag(loc, diag::warn_incompatible_qualified_id_operands,
2070             lex->getType().getAsString(), rex->getType().getAsString(),
2071             lex->getSourceRange(), rex->getSourceRange());
2072        return QualType();
2073      }
2074    }
2075  }
2076  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
2077       rType->isIntegerType()) {
2078    if (!RHSIsNull)
2079      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2080           lType.getAsString(), rType.getAsString(),
2081           lex->getSourceRange(), rex->getSourceRange());
2082    ImpCastExprToType(rex, lType); // promote the integer to pointer
2083    return Context.IntTy;
2084  }
2085  if (lType->isIntegerType() &&
2086      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
2087    if (!LHSIsNull)
2088      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2089           lType.getAsString(), rType.getAsString(),
2090           lex->getSourceRange(), rex->getSourceRange());
2091    ImpCastExprToType(lex, rType); // promote the integer to pointer
2092    return Context.IntTy;
2093  }
2094  // Handle block pointers.
2095  if (lType->isBlockPointerType() && rType->isIntegerType()) {
2096    if (!RHSIsNull)
2097      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2098           lType.getAsString(), rType.getAsString(),
2099           lex->getSourceRange(), rex->getSourceRange());
2100    ImpCastExprToType(rex, lType); // promote the integer to pointer
2101    return Context.IntTy;
2102  }
2103  if (lType->isIntegerType() && rType->isBlockPointerType()) {
2104    if (!LHSIsNull)
2105      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
2106           lType.getAsString(), rType.getAsString(),
2107           lex->getSourceRange(), rex->getSourceRange());
2108    ImpCastExprToType(lex, rType); // promote the integer to pointer
2109    return Context.IntTy;
2110  }
2111  return InvalidOperands(loc, lex, rex);
2112}
2113
2114/// CheckVectorCompareOperands - vector comparisons are a clang extension that
2115/// operates on extended vector types.  Instead of producing an IntTy result,
2116/// like a scalar comparison, a vector comparison produces a vector of integer
2117/// types.
2118QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
2119                                          SourceLocation loc,
2120                                          bool isRelational) {
2121  // Check to make sure we're operating on vectors of the same type and width,
2122  // Allowing one side to be a scalar of element type.
2123  QualType vType = CheckVectorOperands(loc, lex, rex);
2124  if (vType.isNull())
2125    return vType;
2126
2127  QualType lType = lex->getType();
2128  QualType rType = rex->getType();
2129
2130  // For non-floating point types, check for self-comparisons of the form
2131  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2132  // often indicate logic errors in the program.
2133  if (!lType->isFloatingType()) {
2134    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2135      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2136        if (DRL->getDecl() == DRR->getDecl())
2137          Diag(loc, diag::warn_selfcomparison);
2138  }
2139
2140  // Check for comparisons of floating point operands using != and ==.
2141  if (!isRelational && lType->isFloatingType()) {
2142    assert (rType->isFloatingType());
2143    CheckFloatComparison(loc,lex,rex);
2144  }
2145
2146  // Return the type for the comparison, which is the same as vector type for
2147  // integer vectors, or an integer type of identical size and number of
2148  // elements for floating point vectors.
2149  if (lType->isIntegerType())
2150    return lType;
2151
2152  const VectorType *VTy = lType->getAsVectorType();
2153
2154  // FIXME: need to deal with non-32b int / non-64b long long
2155  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
2156  if (TypeSize == 32) {
2157    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
2158  }
2159  assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
2160  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
2161}
2162
2163inline QualType Sema::CheckBitwiseOperands(
2164  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
2165{
2166  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2167    return CheckVectorOperands(loc, lex, rex);
2168
2169  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2170
2171  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2172    return compType;
2173  return InvalidOperands(loc, lex, rex);
2174}
2175
2176inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
2177  Expr *&lex, Expr *&rex, SourceLocation loc)
2178{
2179  UsualUnaryConversions(lex);
2180  UsualUnaryConversions(rex);
2181
2182  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
2183    return Context.IntTy;
2184  return InvalidOperands(loc, lex, rex);
2185}
2186
2187inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
2188  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
2189{
2190  QualType lhsType = lex->getType();
2191  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
2192  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context);
2193
2194  switch (mlval) { // C99 6.5.16p2
2195  case Expr::MLV_Valid:
2196    break;
2197  case Expr::MLV_ConstQualified:
2198    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
2199    return QualType();
2200  case Expr::MLV_ArrayType:
2201    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
2202         lhsType.getAsString(), lex->getSourceRange());
2203    return QualType();
2204  case Expr::MLV_NotObjectType:
2205    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
2206         lhsType.getAsString(), lex->getSourceRange());
2207    return QualType();
2208  case Expr::MLV_InvalidExpression:
2209    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
2210         lex->getSourceRange());
2211    return QualType();
2212  case Expr::MLV_IncompleteType:
2213  case Expr::MLV_IncompleteVoidType:
2214    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
2215         lhsType.getAsString(), lex->getSourceRange());
2216    return QualType();
2217  case Expr::MLV_DuplicateVectorComponents:
2218    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
2219         lex->getSourceRange());
2220    return QualType();
2221  case Expr::MLV_NotBlockQualified:
2222    Diag(loc, diag::err_block_decl_ref_not_modifiable_lvalue,
2223         lex->getSourceRange());
2224    return QualType();
2225  }
2226
2227  AssignConvertType ConvTy;
2228  if (compoundType.isNull()) {
2229    // Simple assignment "x = y".
2230    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
2231
2232    // If the RHS is a unary plus or minus, check to see if they = and + are
2233    // right next to each other.  If so, the user may have typo'd "x =+ 4"
2234    // instead of "x += 4".
2235    Expr *RHSCheck = rex;
2236    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
2237      RHSCheck = ICE->getSubExpr();
2238    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
2239      if ((UO->getOpcode() == UnaryOperator::Plus ||
2240           UO->getOpcode() == UnaryOperator::Minus) &&
2241          loc.isFileID() && UO->getOperatorLoc().isFileID() &&
2242          // Only if the two operators are exactly adjacent.
2243          loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
2244        Diag(loc, diag::warn_not_compound_assign,
2245             UO->getOpcode() == UnaryOperator::Plus ? "+" : "-",
2246             SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()));
2247    }
2248  } else {
2249    // Compound assignment "x += y"
2250    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
2251  }
2252
2253  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
2254                               rex, "assigning"))
2255    return QualType();
2256
2257  // C99 6.5.16p3: The type of an assignment expression is the type of the
2258  // left operand unless the left operand has qualified type, in which case
2259  // it is the unqualified version of the type of the left operand.
2260  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
2261  // is converted to the type of the assignment expression (above).
2262  // C++ 5.17p1: the type of the assignment expression is that of its left
2263  // oprdu.
2264  return lhsType.getUnqualifiedType();
2265}
2266
2267inline QualType Sema::CheckCommaOperands( // C99 6.5.17
2268  Expr *&lex, Expr *&rex, SourceLocation loc) {
2269
2270  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
2271  DefaultFunctionArrayConversion(rex);
2272  return rex->getType();
2273}
2274
2275/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
2276/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
2277QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
2278  QualType resType = op->getType();
2279  assert(!resType.isNull() && "no type for increment/decrement expression");
2280
2281  // C99 6.5.2.4p1: We allow complex as a GCC extension.
2282  if (const PointerType *pt = resType->getAsPointerType()) {
2283    if (pt->getPointeeType()->isVoidType()) {
2284      Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange());
2285    } else if (!pt->getPointeeType()->isObjectType()) {
2286      // C99 6.5.2.4p2, 6.5.6p2
2287      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
2288           resType.getAsString(), op->getSourceRange());
2289      return QualType();
2290    }
2291  } else if (!resType->isRealType()) {
2292    if (resType->isComplexType())
2293      // C99 does not support ++/-- on complex types.
2294      Diag(OpLoc, diag::ext_integer_increment_complex,
2295           resType.getAsString(), op->getSourceRange());
2296    else {
2297      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
2298           resType.getAsString(), op->getSourceRange());
2299      return QualType();
2300    }
2301  }
2302  // At this point, we know we have a real, complex or pointer type.
2303  // Now make sure the operand is a modifiable lvalue.
2304  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context);
2305  if (mlval != Expr::MLV_Valid) {
2306    // FIXME: emit a more precise diagnostic...
2307    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
2308         op->getSourceRange());
2309    return QualType();
2310  }
2311  return resType;
2312}
2313
2314/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
2315/// This routine allows us to typecheck complex/recursive expressions
2316/// where the declaration is needed for type checking. We only need to
2317/// handle cases when the expression references a function designator
2318/// or is an lvalue. Here are some examples:
2319///  - &(x) => x
2320///  - &*****f => f for f a function designator.
2321///  - &s.xx => s
2322///  - &s.zz[1].yy -> s, if zz is an array
2323///  - *(x + 1) -> x, if x is an array
2324///  - &"123"[2] -> 0
2325///  - & __real__ x -> x
2326static ValueDecl *getPrimaryDecl(Expr *E) {
2327  switch (E->getStmtClass()) {
2328  case Stmt::DeclRefExprClass:
2329    return cast<DeclRefExpr>(E)->getDecl();
2330  case Stmt::MemberExprClass:
2331    // Fields cannot be declared with a 'register' storage class.
2332    // &X->f is always ok, even if X is declared register.
2333    if (cast<MemberExpr>(E)->isArrow())
2334      return 0;
2335    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
2336  case Stmt::ArraySubscriptExprClass: {
2337    // &X[4] and &4[X] refers to X if X is not a pointer.
2338
2339    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
2340    if (!VD || VD->getType()->isPointerType())
2341      return 0;
2342    else
2343      return VD;
2344  }
2345  case Stmt::UnaryOperatorClass: {
2346    UnaryOperator *UO = cast<UnaryOperator>(E);
2347
2348    switch(UO->getOpcode()) {
2349    case UnaryOperator::Deref: {
2350      // *(X + 1) refers to X if X is not a pointer.
2351      ValueDecl *VD = getPrimaryDecl(UO->getSubExpr());
2352      if (!VD || VD->getType()->isPointerType())
2353        return 0;
2354      return VD;
2355    }
2356    case UnaryOperator::Real:
2357    case UnaryOperator::Imag:
2358    case UnaryOperator::Extension:
2359      return getPrimaryDecl(UO->getSubExpr());
2360    default:
2361      return 0;
2362    }
2363  }
2364  case Stmt::BinaryOperatorClass: {
2365    BinaryOperator *BO = cast<BinaryOperator>(E);
2366
2367    // Handle cases involving pointer arithmetic. The result of an
2368    // Assign or AddAssign is not an lvalue so they can be ignored.
2369
2370    // (x + n) or (n + x) => x
2371    if (BO->getOpcode() == BinaryOperator::Add) {
2372      if (BO->getLHS()->getType()->isPointerType()) {
2373        return getPrimaryDecl(BO->getLHS());
2374      } else if (BO->getRHS()->getType()->isPointerType()) {
2375        return getPrimaryDecl(BO->getRHS());
2376      }
2377    }
2378
2379    return 0;
2380  }
2381  case Stmt::ParenExprClass:
2382    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
2383  case Stmt::ImplicitCastExprClass:
2384    // &X[4] when X is an array, has an implicit cast from array to pointer.
2385    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
2386  default:
2387    return 0;
2388  }
2389}
2390
2391/// CheckAddressOfOperand - The operand of & must be either a function
2392/// designator or an lvalue designating an object. If it is an lvalue, the
2393/// object cannot be declared with storage class register or be a bit field.
2394/// Note: The usual conversions are *not* applied to the operand of the &
2395/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
2396QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
2397  if (getLangOptions().C99) {
2398    // Implement C99-only parts of addressof rules.
2399    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
2400      if (uOp->getOpcode() == UnaryOperator::Deref)
2401        // Per C99 6.5.3.2, the address of a deref always returns a valid result
2402        // (assuming the deref expression is valid).
2403        return uOp->getSubExpr()->getType();
2404    }
2405    // Technically, there should be a check for array subscript
2406    // expressions here, but the result of one is always an lvalue anyway.
2407  }
2408  ValueDecl *dcl = getPrimaryDecl(op);
2409  Expr::isLvalueResult lval = op->isLvalue(Context);
2410
2411  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
2412    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
2413      // FIXME: emit more specific diag...
2414      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
2415           op->getSourceRange());
2416      return QualType();
2417    }
2418  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
2419    if (MemExpr->getMemberDecl()->isBitField()) {
2420      Diag(OpLoc, diag::err_typecheck_address_of,
2421           std::string("bit-field"), op->getSourceRange());
2422      return QualType();
2423    }
2424  // Check for Apple extension for accessing vector components.
2425  } else if (isa<ArraySubscriptExpr>(op) &&
2426           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
2427    Diag(OpLoc, diag::err_typecheck_address_of,
2428         std::string("vector"), op->getSourceRange());
2429    return QualType();
2430  } else if (dcl) { // C99 6.5.3.2p1
2431    // We have an lvalue with a decl. Make sure the decl is not declared
2432    // with the register storage-class specifier.
2433    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
2434      if (vd->getStorageClass() == VarDecl::Register) {
2435        Diag(OpLoc, diag::err_typecheck_address_of,
2436             std::string("register variable"), op->getSourceRange());
2437        return QualType();
2438      }
2439    } else
2440      assert(0 && "Unknown/unexpected decl type");
2441  }
2442
2443  // If the operand has type "type", the result has type "pointer to type".
2444  return Context.getPointerType(op->getType());
2445}
2446
2447QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
2448  UsualUnaryConversions(op);
2449  QualType qType = op->getType();
2450
2451  if (const PointerType *PT = qType->getAsPointerType()) {
2452    // Note that per both C89 and C99, this is always legal, even
2453    // if ptype is an incomplete type or void.
2454    // It would be possible to warn about dereferencing a
2455    // void pointer, but it's completely well-defined,
2456    // and such a warning is unlikely to catch any mistakes.
2457    return PT->getPointeeType();
2458  }
2459  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
2460       qType.getAsString(), op->getSourceRange());
2461  return QualType();
2462}
2463
2464static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
2465  tok::TokenKind Kind) {
2466  BinaryOperator::Opcode Opc;
2467  switch (Kind) {
2468  default: assert(0 && "Unknown binop!");
2469  case tok::star:                 Opc = BinaryOperator::Mul; break;
2470  case tok::slash:                Opc = BinaryOperator::Div; break;
2471  case tok::percent:              Opc = BinaryOperator::Rem; break;
2472  case tok::plus:                 Opc = BinaryOperator::Add; break;
2473  case tok::minus:                Opc = BinaryOperator::Sub; break;
2474  case tok::lessless:             Opc = BinaryOperator::Shl; break;
2475  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
2476  case tok::lessequal:            Opc = BinaryOperator::LE; break;
2477  case tok::less:                 Opc = BinaryOperator::LT; break;
2478  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
2479  case tok::greater:              Opc = BinaryOperator::GT; break;
2480  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
2481  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
2482  case tok::amp:                  Opc = BinaryOperator::And; break;
2483  case tok::caret:                Opc = BinaryOperator::Xor; break;
2484  case tok::pipe:                 Opc = BinaryOperator::Or; break;
2485  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
2486  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
2487  case tok::equal:                Opc = BinaryOperator::Assign; break;
2488  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
2489  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
2490  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
2491  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
2492  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
2493  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
2494  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
2495  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
2496  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
2497  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
2498  case tok::comma:                Opc = BinaryOperator::Comma; break;
2499  }
2500  return Opc;
2501}
2502
2503static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
2504  tok::TokenKind Kind) {
2505  UnaryOperator::Opcode Opc;
2506  switch (Kind) {
2507  default: assert(0 && "Unknown unary op!");
2508  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
2509  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
2510  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
2511  case tok::star:         Opc = UnaryOperator::Deref; break;
2512  case tok::plus:         Opc = UnaryOperator::Plus; break;
2513  case tok::minus:        Opc = UnaryOperator::Minus; break;
2514  case tok::tilde:        Opc = UnaryOperator::Not; break;
2515  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
2516  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
2517  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
2518  case tok::kw___real:    Opc = UnaryOperator::Real; break;
2519  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
2520  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
2521  }
2522  return Opc;
2523}
2524
2525// Binary Operators.  'Tok' is the token for the operator.
2526Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
2527                                    ExprTy *LHS, ExprTy *RHS) {
2528  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
2529  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
2530
2531  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
2532  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
2533
2534  QualType ResultTy;  // Result type of the binary operator.
2535  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
2536
2537  switch (Opc) {
2538  default:
2539    assert(0 && "Unknown binary expr!");
2540  case BinaryOperator::Assign:
2541    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
2542    break;
2543  case BinaryOperator::Mul:
2544  case BinaryOperator::Div:
2545    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
2546    break;
2547  case BinaryOperator::Rem:
2548    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
2549    break;
2550  case BinaryOperator::Add:
2551    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
2552    break;
2553  case BinaryOperator::Sub:
2554    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
2555    break;
2556  case BinaryOperator::Shl:
2557  case BinaryOperator::Shr:
2558    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
2559    break;
2560  case BinaryOperator::LE:
2561  case BinaryOperator::LT:
2562  case BinaryOperator::GE:
2563  case BinaryOperator::GT:
2564    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
2565    break;
2566  case BinaryOperator::EQ:
2567  case BinaryOperator::NE:
2568    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
2569    break;
2570  case BinaryOperator::And:
2571  case BinaryOperator::Xor:
2572  case BinaryOperator::Or:
2573    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
2574    break;
2575  case BinaryOperator::LAnd:
2576  case BinaryOperator::LOr:
2577    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
2578    break;
2579  case BinaryOperator::MulAssign:
2580  case BinaryOperator::DivAssign:
2581    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
2582    if (!CompTy.isNull())
2583      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2584    break;
2585  case BinaryOperator::RemAssign:
2586    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
2587    if (!CompTy.isNull())
2588      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2589    break;
2590  case BinaryOperator::AddAssign:
2591    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
2592    if (!CompTy.isNull())
2593      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2594    break;
2595  case BinaryOperator::SubAssign:
2596    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
2597    if (!CompTy.isNull())
2598      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2599    break;
2600  case BinaryOperator::ShlAssign:
2601  case BinaryOperator::ShrAssign:
2602    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
2603    if (!CompTy.isNull())
2604      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2605    break;
2606  case BinaryOperator::AndAssign:
2607  case BinaryOperator::XorAssign:
2608  case BinaryOperator::OrAssign:
2609    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
2610    if (!CompTy.isNull())
2611      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
2612    break;
2613  case BinaryOperator::Comma:
2614    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
2615    break;
2616  }
2617  if (ResultTy.isNull())
2618    return true;
2619  if (CompTy.isNull())
2620    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
2621  else
2622    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
2623}
2624
2625// Unary Operators.  'Tok' is the token for the operator.
2626Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
2627                                      ExprTy *input) {
2628  Expr *Input = (Expr*)input;
2629  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
2630  QualType resultType;
2631  switch (Opc) {
2632  default:
2633    assert(0 && "Unimplemented unary expr!");
2634  case UnaryOperator::PreInc:
2635  case UnaryOperator::PreDec:
2636    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
2637    break;
2638  case UnaryOperator::AddrOf:
2639    resultType = CheckAddressOfOperand(Input, OpLoc);
2640    break;
2641  case UnaryOperator::Deref:
2642    DefaultFunctionArrayConversion(Input);
2643    resultType = CheckIndirectionOperand(Input, OpLoc);
2644    break;
2645  case UnaryOperator::Plus:
2646  case UnaryOperator::Minus:
2647    UsualUnaryConversions(Input);
2648    resultType = Input->getType();
2649    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
2650      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2651                  resultType.getAsString());
2652    break;
2653  case UnaryOperator::Not: // bitwise complement
2654    UsualUnaryConversions(Input);
2655    resultType = Input->getType();
2656    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
2657    if (resultType->isComplexType() || resultType->isComplexIntegerType())
2658      // C99 does not support '~' for complex conjugation.
2659      Diag(OpLoc, diag::ext_integer_complement_complex,
2660           resultType.getAsString(), Input->getSourceRange());
2661    else if (!resultType->isIntegerType())
2662      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2663                  resultType.getAsString(), Input->getSourceRange());
2664    break;
2665  case UnaryOperator::LNot: // logical negation
2666    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
2667    DefaultFunctionArrayConversion(Input);
2668    resultType = Input->getType();
2669    if (!resultType->isScalarType()) // C99 6.5.3.3p1
2670      return Diag(OpLoc, diag::err_typecheck_unary_expr,
2671                  resultType.getAsString());
2672    // LNot always has type int. C99 6.5.3.3p5.
2673    resultType = Context.IntTy;
2674    break;
2675  case UnaryOperator::SizeOf:
2676    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2677                                           Input->getSourceRange(), true);
2678    break;
2679  case UnaryOperator::AlignOf:
2680    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc,
2681                                           Input->getSourceRange(), false);
2682    break;
2683  case UnaryOperator::Real:
2684  case UnaryOperator::Imag:
2685    resultType = CheckRealImagOperand(Input, OpLoc);
2686    break;
2687  case UnaryOperator::Extension:
2688    resultType = Input->getType();
2689    break;
2690  }
2691  if (resultType.isNull())
2692    return true;
2693  return new UnaryOperator(Input, Opc, resultType, OpLoc);
2694}
2695
2696/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
2697Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
2698                                      SourceLocation LabLoc,
2699                                      IdentifierInfo *LabelII) {
2700  // Look up the record for this label identifier.
2701  LabelStmt *&LabelDecl = LabelMap[LabelII];
2702
2703  // If we haven't seen this label yet, create a forward reference. It
2704  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
2705  if (LabelDecl == 0)
2706    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2707
2708  // Create the AST node.  The address of a label always has type 'void*'.
2709  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2710                           Context.getPointerType(Context.VoidTy));
2711}
2712
2713Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2714                                     SourceLocation RPLoc) { // "({..})"
2715  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2716  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2717  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2718
2719  // FIXME: there are a variety of strange constraints to enforce here, for
2720  // example, it is not possible to goto into a stmt expression apparently.
2721  // More semantic analysis is needed.
2722
2723  // FIXME: the last statement in the compount stmt has its value used.  We
2724  // should not warn about it being unused.
2725
2726  // If there are sub stmts in the compound stmt, take the type of the last one
2727  // as the type of the stmtexpr.
2728  QualType Ty = Context.VoidTy;
2729
2730  if (!Compound->body_empty()) {
2731    Stmt *LastStmt = Compound->body_back();
2732    // If LastStmt is a label, skip down through into the body.
2733    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
2734      LastStmt = Label->getSubStmt();
2735
2736    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
2737      Ty = LastExpr->getType();
2738  }
2739
2740  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2741}
2742
2743Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2744                                            SourceLocation TypeLoc,
2745                                            TypeTy *argty,
2746                                            OffsetOfComponent *CompPtr,
2747                                            unsigned NumComponents,
2748                                            SourceLocation RPLoc) {
2749  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2750  assert(!ArgTy.isNull() && "Missing type argument!");
2751
2752  // We must have at least one component that refers to the type, and the first
2753  // one is known to be a field designator.  Verify that the ArgTy represents
2754  // a struct/union/class.
2755  if (!ArgTy->isRecordType())
2756    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2757
2758  // Otherwise, create a compound literal expression as the base, and
2759  // iteratively process the offsetof designators.
2760  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2761
2762  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2763  // GCC extension, diagnose them.
2764  if (NumComponents != 1)
2765    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2766         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2767
2768  for (unsigned i = 0; i != NumComponents; ++i) {
2769    const OffsetOfComponent &OC = CompPtr[i];
2770    if (OC.isBrackets) {
2771      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2772      const ArrayType *AT = Context.getAsArrayType(Res->getType());
2773      if (!AT) {
2774        delete Res;
2775        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2776                    Res->getType().getAsString());
2777      }
2778
2779      // FIXME: C++: Verify that operator[] isn't overloaded.
2780
2781      // C99 6.5.2.1p1
2782      Expr *Idx = static_cast<Expr*>(OC.U.E);
2783      if (!Idx->getType()->isIntegerType())
2784        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2785                    Idx->getSourceRange());
2786
2787      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2788      continue;
2789    }
2790
2791    const RecordType *RC = Res->getType()->getAsRecordType();
2792    if (!RC) {
2793      delete Res;
2794      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2795                  Res->getType().getAsString());
2796    }
2797
2798    // Get the decl corresponding to this.
2799    RecordDecl *RD = RC->getDecl();
2800    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2801    if (!MemberDecl)
2802      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2803                  OC.U.IdentInfo->getName(),
2804                  SourceRange(OC.LocStart, OC.LocEnd));
2805
2806    // FIXME: C++: Verify that MemberDecl isn't a static field.
2807    // FIXME: Verify that MemberDecl isn't a bitfield.
2808    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2809    // matter here.
2810    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2811  }
2812
2813  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2814                           BuiltinLoc);
2815}
2816
2817
2818Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2819                                                TypeTy *arg1, TypeTy *arg2,
2820                                                SourceLocation RPLoc) {
2821  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2822  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2823
2824  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2825
2826  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2827}
2828
2829Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2830                                       ExprTy *expr1, ExprTy *expr2,
2831                                       SourceLocation RPLoc) {
2832  Expr *CondExpr = static_cast<Expr*>(cond);
2833  Expr *LHSExpr = static_cast<Expr*>(expr1);
2834  Expr *RHSExpr = static_cast<Expr*>(expr2);
2835
2836  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2837
2838  // The conditional expression is required to be a constant expression.
2839  llvm::APSInt condEval(32);
2840  SourceLocation ExpLoc;
2841  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2842    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2843                 CondExpr->getSourceRange());
2844
2845  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2846  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2847                                               RHSExpr->getType();
2848  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2849}
2850
2851//===----------------------------------------------------------------------===//
2852// Clang Extensions.
2853//===----------------------------------------------------------------------===//
2854
2855/// ActOnBlockStart - This callback is invoked when a block literal is started.
2856void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
2857  // Analyze block parameters.
2858  BlockSemaInfo *BSI = new BlockSemaInfo();
2859
2860  // Add BSI to CurBlock.
2861  BSI->PrevBlockInfo = CurBlock;
2862  CurBlock = BSI;
2863
2864  BSI->ReturnType = 0;
2865  BSI->TheScope = BlockScope;
2866
2867  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
2868  PushDeclContext(BSI->TheDecl);
2869}
2870
2871void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
2872  // Analyze arguments to block.
2873  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2874         "Not a function declarator!");
2875  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
2876
2877  CurBlock->hasPrototype = FTI.hasPrototype;
2878  CurBlock->isVariadic = true;
2879
2880  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
2881  // no arguments, not a function that takes a single void argument.
2882  if (FTI.hasPrototype &&
2883      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2884      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
2885        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
2886    // empty arg list, don't push any params.
2887    CurBlock->isVariadic = false;
2888  } else if (FTI.hasPrototype) {
2889    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2890      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
2891    CurBlock->isVariadic = FTI.isVariadic;
2892  }
2893  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
2894
2895  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
2896       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
2897    // If this has an identifier, add it to the scope stack.
2898    if ((*AI)->getIdentifier())
2899      PushOnScopeChains(*AI, CurBlock->TheScope);
2900}
2901
2902/// ActOnBlockError - If there is an error parsing a block, this callback
2903/// is invoked to pop the information about the block from the action impl.
2904void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
2905  // Ensure that CurBlock is deleted.
2906  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
2907
2908  // Pop off CurBlock, handle nested blocks.
2909  CurBlock = CurBlock->PrevBlockInfo;
2910
2911  // FIXME: Delete the ParmVarDecl objects as well???
2912
2913}
2914
2915/// ActOnBlockStmtExpr - This is called when the body of a block statement
2916/// literal was successfully completed.  ^(int x){...}
2917Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
2918                                          Scope *CurScope) {
2919  // Ensure that CurBlock is deleted.
2920  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
2921  llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
2922
2923  PopDeclContext();
2924
2925  // Pop off CurBlock, handle nested blocks.
2926  CurBlock = CurBlock->PrevBlockInfo;
2927
2928  QualType RetTy = Context.VoidTy;
2929  if (BSI->ReturnType)
2930    RetTy = QualType(BSI->ReturnType, 0);
2931
2932  llvm::SmallVector<QualType, 8> ArgTypes;
2933  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
2934    ArgTypes.push_back(BSI->Params[i]->getType());
2935
2936  QualType BlockTy;
2937  if (!BSI->hasPrototype)
2938    BlockTy = Context.getFunctionTypeNoProto(RetTy);
2939  else
2940    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
2941                                      BSI->isVariadic);
2942
2943  BlockTy = Context.getBlockPointerType(BlockTy);
2944
2945  BSI->TheDecl->setBody(Body.take());
2946  return new BlockExpr(BSI->TheDecl, BlockTy);
2947}
2948
2949/// ExprsMatchFnType - return true if the Exprs in array Args have
2950/// QualTypes that match the QualTypes of the arguments of the FnType.
2951/// The number of arguments has already been validated to match the number of
2952/// arguments in FnType.
2953static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
2954                             ASTContext &Context) {
2955  unsigned NumParams = FnType->getNumArgs();
2956  for (unsigned i = 0; i != NumParams; ++i) {
2957    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
2958    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
2959
2960    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
2961      return false;
2962  }
2963  return true;
2964}
2965
2966Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2967                                         SourceLocation *CommaLocs,
2968                                         SourceLocation BuiltinLoc,
2969                                         SourceLocation RParenLoc) {
2970  // __builtin_overload requires at least 2 arguments
2971  if (NumArgs < 2)
2972    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2973                SourceRange(BuiltinLoc, RParenLoc));
2974
2975  // The first argument is required to be a constant expression.  It tells us
2976  // the number of arguments to pass to each of the functions to be overloaded.
2977  Expr **Args = reinterpret_cast<Expr**>(args);
2978  Expr *NParamsExpr = Args[0];
2979  llvm::APSInt constEval(32);
2980  SourceLocation ExpLoc;
2981  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2982    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2983                NParamsExpr->getSourceRange());
2984
2985  // Verify that the number of parameters is > 0
2986  unsigned NumParams = constEval.getZExtValue();
2987  if (NumParams == 0)
2988    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2989                NParamsExpr->getSourceRange());
2990  // Verify that we have at least 1 + NumParams arguments to the builtin.
2991  if ((NumParams + 1) > NumArgs)
2992    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2993                SourceRange(BuiltinLoc, RParenLoc));
2994
2995  // Figure out the return type, by matching the args to one of the functions
2996  // listed after the parameters.
2997  OverloadExpr *OE = 0;
2998  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2999    // UsualUnaryConversions will convert the function DeclRefExpr into a
3000    // pointer to function.
3001    Expr *Fn = UsualUnaryConversions(Args[i]);
3002    const FunctionTypeProto *FnType = 0;
3003    if (const PointerType *PT = Fn->getType()->getAsPointerType())
3004      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
3005
3006    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
3007    // parameters, and the number of parameters must match the value passed to
3008    // the builtin.
3009    if (!FnType || (FnType->getNumArgs() != NumParams))
3010      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
3011                  Fn->getSourceRange());
3012
3013    // Scan the parameter list for the FunctionType, checking the QualType of
3014    // each parameter against the QualTypes of the arguments to the builtin.
3015    // If they match, return a new OverloadExpr.
3016    if (ExprsMatchFnType(Args+1, FnType, Context)) {
3017      if (OE)
3018        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
3019                    OE->getFn()->getSourceRange());
3020      // Remember our match, and continue processing the remaining arguments
3021      // to catch any errors.
3022      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
3023                            BuiltinLoc, RParenLoc);
3024    }
3025  }
3026  // Return the newly created OverloadExpr node, if we succeded in matching
3027  // exactly one of the candidate functions.
3028  if (OE)
3029    return OE;
3030
3031  // If we didn't find a matching function Expr in the __builtin_overload list
3032  // the return an error.
3033  std::string typeNames;
3034  for (unsigned i = 0; i != NumParams; ++i) {
3035    if (i != 0) typeNames += ", ";
3036    typeNames += Args[i+1]->getType().getAsString();
3037  }
3038
3039  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
3040              SourceRange(BuiltinLoc, RParenLoc));
3041}
3042
3043Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
3044                                  ExprTy *expr, TypeTy *type,
3045                                  SourceLocation RPLoc) {
3046  Expr *E = static_cast<Expr*>(expr);
3047  QualType T = QualType::getFromOpaquePtr(type);
3048
3049  InitBuiltinVaListType();
3050
3051  // Get the va_list type
3052  QualType VaListType = Context.getBuiltinVaListType();
3053  // Deal with implicit array decay; for example, on x86-64,
3054  // va_list is an array, but it's supposed to decay to
3055  // a pointer for va_arg.
3056  if (VaListType->isArrayType())
3057    VaListType = Context.getArrayDecayedType(VaListType);
3058  // Make sure the input expression also decays appropriately.
3059  UsualUnaryConversions(E);
3060
3061  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
3062    return Diag(E->getLocStart(),
3063                diag::err_first_argument_to_va_arg_not_of_type_va_list,
3064                E->getType().getAsString(),
3065                E->getSourceRange());
3066
3067  // FIXME: Warn if a non-POD type is passed in.
3068
3069  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
3070}
3071
3072bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
3073                                    SourceLocation Loc,
3074                                    QualType DstType, QualType SrcType,
3075                                    Expr *SrcExpr, const char *Flavor) {
3076  // Decode the result (notice that AST's are still created for extensions).
3077  bool isInvalid = false;
3078  unsigned DiagKind;
3079  switch (ConvTy) {
3080  default: assert(0 && "Unknown conversion type");
3081  case Compatible: return false;
3082  case PointerToInt:
3083    DiagKind = diag::ext_typecheck_convert_pointer_int;
3084    break;
3085  case IntToPointer:
3086    DiagKind = diag::ext_typecheck_convert_int_pointer;
3087    break;
3088  case IncompatiblePointer:
3089    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
3090    break;
3091  case FunctionVoidPointer:
3092    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
3093    break;
3094  case CompatiblePointerDiscardsQualifiers:
3095    // If the qualifiers lost were because we were applying the
3096    // (deprecated) C++ conversion from a string literal to a char*
3097    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
3098    // Ideally, this check would be performed in
3099    // CheckPointerTypesForAssignment. However, that would require a
3100    // bit of refactoring (so that the second argument is an
3101    // expression, rather than a type), which should be done as part
3102    // of a larger effort to fix CheckPointerTypesForAssignment for
3103    // C++ semantics.
3104    if (getLangOptions().CPlusPlus &&
3105        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
3106      return false;
3107    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
3108    break;
3109  case IntToBlockPointer:
3110    DiagKind = diag::err_int_to_block_pointer;
3111    break;
3112  case IncompatibleBlockPointer:
3113    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
3114    break;
3115  case BlockVoidPointer:
3116    DiagKind = diag::ext_typecheck_convert_pointer_void_block;
3117    break;
3118  case IncompatibleObjCQualifiedId:
3119    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
3120    // it can give a more specific diagnostic.
3121    DiagKind = diag::warn_incompatible_qualified_id;
3122    break;
3123  case Incompatible:
3124    DiagKind = diag::err_typecheck_convert_incompatible;
3125    isInvalid = true;
3126    break;
3127  }
3128
3129  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
3130       SrcExpr->getSourceRange());
3131  return isInvalid;
3132}
3133